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Abstract: A particle beam-thin foil scattering model is updated within the context of parametrized
relativistic quantum theory (pRQT). This paper focuses on the creation, annihilation, and detection
of tachyons when a beam of particles scatters off a thin foil. Improved calculation procedures and
recent data are used to update model calculations for a pion-proton system.
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1. Introduction

Mass state transitions at scattering vertices can be used to test parametrized relativis-
tic quantum theory (pRQT), a manifestly covariant quantum theory with an invariant
evolution parameter. Introductions to pRQT are presented by myself [1,2], Pavšič [3,4],
and Horwitz [5]. A review of relativistic classical mechanics and electrodynamics in
the parametrized framework is given by Land and Horwitz [6]. In [7], I developed a
parametrized relativistic quantum field theory that was extended by Pavšič (see [3], Chap-
ter 1) to include canonical quantization and creation/annihilation operators. Horwitz
([5], Chapter 3) discussed Fock space and quantum field theory. Additional topics in-
clude branes and quantized fields [4,8]. I [1,2] and Pavšič [3,4,9] discussed the role of
action-at-a-distance, nonlocality, and tachyons in pRQT.

Transitions from one mass state to another are induced in pRQT when a system with
discrete mass states interacts with a parameter-dependent perturbation [10,11]. This is anal-
ogous to the transition from one energy state to another when a system with discrete energy
states interacts with a time-dependent perturbation in Schroedinger quantum mechanics.

Tachyon physics in pRQT differs from other formulations [1,9,12]. Pavšič [4] clarified
and analyzed tachyon topics that he identified as misconceptions and confusing. For
example, the conventional view is that tachyons have imaginary mass. By contrast, as
shown below, tachyons in pRQT have real mass. Furthermore, mass-state transitions in
pRQT provide a mechanism for creating, annihilating, or detecting tachyons.

The purpose of this paper is to highlight tachyon creation and annihilation cases that
could facilitate the design of experimental tests for pRQT. The cases were introduced in a
previous publication [12] where they were a relatively small part of a more comprehensive
study. Recent experimental results [13] show that results reported previously [12] should
be updated. Some background material and new calculation procedures are included to
help the reader understand and apply the procedures. References are provided for readers
who would like more information.

Particle mass in parametrized relativistic classical mechanics (pRCM) and pRQT is
discussed in Sections 2 and 3, respectively. It is shown that tachyon mass is real and posi-
tive in both pRCM (Section 2) and pRQT (Section 3). The theory of mass state transitions
in pRQT and a model of particle scattering off a thin foil [12] are reviewed in Section 4.
Section 5 contains updated results for calculating tachyon creation, annihilation, and detec-
tion. The existence of alternative theories of tachyons is recognized and the opportunity
to test pRQT tachyon physics is highlighted in Section 6. Details of the calculations are
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succinctly outlined in two new appendices and are more direct than procedures reported
previously [12].

2. Parametrized Relativistic Classical Mechanics and Classical Mass

The meaning of the concept of mass in pRQT differs from the conventional view of
mass. According to the conventional view, mass is a property of a particle that must be
entered into calculations. The difference between the conventional view of mass and the
pRQT view is demonstrated by first considering the concept of mass in pRCM.

2.1. Lagrangian and Hamiltonian Formulations of pRCM

The relationship between mass and motion of a free particle illustrates the role of mass
in pRCM. We begin the evaluation of mass and motion in pRCM by outlining parametrized
Lagrangian and Hamiltonian formulations. This leads to formulations that are applicable
to a parametrized Hamiltonian for a classical free particle.

Hamilton’s variational principle is used to develop pRCM by first defining the action,

A =
∫ s2

s1

LS
(
q1, . . . , qn,

.
q1, . . . ,

.
qn, s

)
ds, (1)

with invariant evolution parameter s. The Lagrangian, LS, is a function of n generalized
coordinates {q1, . . . , qn}. The generalized coordinate,

.
qi, denotes differentiation of qi with

respect to s. The subscript S in LS indicates that LS is a Lagrangian that satisfies a special
relativistic metric. The evolution parameter s is a relativistic scalar that does not depend on
generalized coordinates. Parameter end points, s1 and s2, are fixed.

The functional form of LS is

LS = LS

(
qµ,

.
qµ, s

)
= LS

(
q0, q1, q2, q3,

.
q0,

.
q1,

.
q2,

.
q3, s

)
, (2)

where the generalized coordinates are elements of a spacetime four-vector, nonzero ele-
ments of the fundamental metric tensor gµυ, µ, υ = 0(time), 1, 2, 3(space), are g00 = 1 =
−g11 = −g22 = −g33, and

.
q =

dq
ds

. (3)

According to Hamilton’s principle, the variation δA of action A must vanish:

δA = 0 =
∫ s2

s1

δLS

(
qµ,

.
qµ, s

)
ds. (4)

The solution of Equation (4) leads to Euler–Lagrange equations for a parametrized
Lagrangian LS:

∂LS
∂qµ −

d
ds

∂LS

∂
.
qµ = 0. (5)

The Lagrangian formulation can be transformed into the Hamiltonian formulation by
deriving canonical equations from the Legendre transformation:

K
(
qµ, pµ, s

)
=

.
qµ pµ − LS

(
qµ,

.
qµ, s

)
= K

(
q0, q1, q2, q3, p0, p1, p2, p3, .s

)
.

(6)

The function K is a parametrized Hamiltonian function K
(
qµ, pµ, s

)
. The Legendre

transformation can be used to derive Hamilton’s equations for a parametrized Hamiltonian:

.
pµ = − ∂K

∂qµ (7)
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and
.
qµ

=
∂K
∂pµ

(8)

2.2. Mass of a Classical Free Particle

The relationship between the mass and motion of a classical free particle is obtained
by specifying a parametrized Hamiltonian. A free particle with constant mass, M, has the
parametrized Hamiltonian,

K f =
gµv

2M
pµ pv. (9)

The spacetime four-vector, qµ, and momentum–energy four-vector, pµ, are

qµ =
(
q0, q1, q2, q3) = (ct,

→
q
)

,

pµ = (p0, p1, p2, p3) =
(

E/c,−→p
)

,
(10)

with the speed of light in vacuum, c, the time, t, and the energy, E. Substituting K f into
Equations (7) and (8) gives:

.
qµ

= pµ/M (11)

and
.
pµ = 0. (12)

The Lagrangian L f , corresponding to K, f is

L f =
gµv

2M

(
M

.
qµ

)(
M

.
qv
)
=

M
2

.
qv .

qv. (13)

Equation (12) shows that the four-momentum of a free particle is constant:

pµ = p0µ. (14)

Equation (11) is solved by substituting Equation (14) into Equation (11) and integrating
over s to find:

qµ = qµ
0 +

pµ
0 s

M
or qµ − qµ

0 =
pµ

0 s
M

. (15)

The terms pµ
0 , qµ

0 are constants. According to Equation (15), the trajectory of a free
particle is linearly dependent on s. If one varies the spacetime four-vector and form its
inner product, then:

δqµδqµ =
pµ

0 p0µ

M2 (δs)2. (16)

The term M2 is found by rearranging Equation (16); thus,

M2 =
pµ

0 p0µ

δqµδqµ
(δs)2. (17)

The invariant evolution parameter increases monotonically so that δs > 0. The terms
pµ

0 p0µ, δqµδqµ can be either timelike pµ
0 p0µ > 0, δqµδqµ > 0 or spacelike pµ

0 p0µ < 0,
δqµδqµ < 0 for independent space–time coordinates and energy–momentum components.
Consequently, M2 is positive for both timelike and spacelike motion because negative signs
associated with spacelike motion cancel. Free tachyons in pRCM have real mass.
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3. Parametrized Relativistic Quantum Theory and the Meaning of Mass

The pRCM concepts, outlined in Section 2, are extended to the quantum case here.
The pRQT field equation is the Stueckelberg equation for a single particle. It has the form:

i}∂Ψ
∂s

= KΨ, (18)

with mass operator

K =
πµπµ

2m
+ V, (19)

and potential energy V. Here Ψ is particle wave function and } is the reduced Planck constant.
The four-vector potential, Aµ, is contained in the four-momentum operator πµ with

minimal coupling:

πµ =
}
i

∂

∂xµ
− e

c
Aµ. (20)

The expectation value of an observable Ω in pRQT is

〈Ω〉 =
∫

Ψ∗ΩΨdx. (21)

An analysis of the free particle provides insight into the meaning of m. The Stueckel-
berg equation for the free particle is

i}
∂ψ f

∂s
= − }2

2m
∂µ∂µψ f (22)

with the general solution

iΨ f (x, s) =
∫

ψ f κ(x, s)dk f

=
∫

η f κ exp
[
iκ f

(
k f

)
s + ik f µxµ

]
dk f .

(23)

The integral is over energy–momentum, η f κ denotes normalization coefficient for

solution ψ f κ , ψ f κ(x, s) = η f κ exp
[
iκ f

(
k f

)
s + ik f µxµ

]
, and

κ f

(
k f

)
= − }2

2m
k f µkµ

f . (24)

The expectation value of the four-velocity of the free particle is

〈V µ
f 〉 =

d〈xµ
f 〉

ds
=
〈pµ

f 〉
m

. (25)

Integrating Equation (25) from s to s + δs gives the most probable trajectory of the
free particle,

δ〈xµ
f 〉 =

〈pµ
f 〉

m
δs. (26)

The observable world-line of the free particle is given by the inner product

δ〈xµ
f 〉δ〈x f µ〉 =

〈pµ
f 〉〈p f µ〉
m2 (δs)2. (27)

Solving for m2 gives:

m2 =
〈pµ

f 〉〈p f µ〉

δ
〈

xµ
f

〉
δ〈x f µ〉

(δs)2. (28)
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As in the classical case, the invariant evolution parameter increases monotonically
so that δs > 0. The terms 〈pµ

f 〉〈p f µ〉, δ〈xµ
f 〉δ〈x f µ〉 can be either timelike 〈pµ

f 〉〈p f µ〉 > 0,

δ〈xµ
f 〉δ〈x f µ〉 > 0 or spacelike 〈pµ

f 〉〈p f µ〉 < 0, δ〈xµ
f 〉δ〈x f µ〉 < 0 for independent space–time

coordinates and energy–momentum components. Consequently, m2 is positive for both
timelike and spacelike motion because negative signs associated with spacelike motion
cancel. Free tachyons in pRQT have real mass.

4. Tachyon Creation and Annihilation in pRQT

Bilaniuk et al. [14] showed that classical special relativity does not prohibit faster-than-
light (FTL) motion. Classical special relativity does prohibit subluminal particles from
becoming superluminal particles and vice versa when one has the relationship,

m =
m0√

1− β2
, β =

v
c

, (29)

between rest mass, m0, and mass m of a classical particle moving at speed v. The mass m
approaches infinity as v→ c from below or from above. The question remains whether
there a mechanism that makes it possible to avoid the infinite mass prohibition.

Non-relativistic quantum theory suggests an analogous mechanism. In the non-
relativistic quantum case, time-dependent interaction potentials enable transitions between
energy states, which are observed in such physical systems as spectra and lasers. A
study of mass state transitions at a scattering vertex [1,12] showed that the analogous
mechanism in pRQT is the transition between mass states associated with s-dependent
interaction potentials.

It was previously shown [12] that the mass state transition in pRQT can be used as a
mechanism for quantum transitions across the light cone. The mechanism enables tachyon
creation, annihilation, and detection. An example of a physical system that can be modelled
as a mass state transition is the scattering of a particle beam by a thin foil:

projectile (Ψ) + target (ΦT)→ product. (30)

The simple model of a particle beam-thin foil system, represented by Equation (30),
generates mass state transitions between bradyon and tachyon states. The terms “bradyon”,
“luxon”, and “tachyon” denote subluminal, luminal, and superluminal particles, respectively.

A particle beam-thin foil model [12] has the field equation,

i}∂Ψ
∂s

= − }2

2mΨ

∂2Ψ
∂xµ∂xµ

+ g(ΦT + Φ∗T)Ψ , (31)

with a postulated coupling constant g. The dependence on s occurs in the interaction
term g(ΦT + Φ∗T)Ψ. Section 4.1 reviews the perturbation theory for an s-dependent per-
turbing potential in pRQT. The iterative technique for calculating matrix elements for an
s-dependent perturbation potential is analogous to the non-relativistic iterative solution
for a t-dependent perturbation. The non-relativistic theory views transition amplitudes for
a t-dependent perturbation as transitions between energy states, while transition ampli-
tudes for an s-dependent perturbation in pRQT refer to transitions between mass states.
Section 4.2 applies the formalism to the particle beam–thin foil model.

4.1. Perturbation Theory for an s-Dependent Perturbing Potential

The scalar field equation for a perturbation analysis of transitions between mass states
due to an s-dependent perturbing potential VI is:

i}∂Φ(x1, s)
∂s

= [K0 + VI ]Φ(x1, s) = KΦ(x1, s), (32)
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for spacetime coordinates x1 and invariant evolution parameter s. The operator K0 does not
depend on s. The dependence on s is contained in the Hermitian, perturbing interaction VI .
The Hermitian requirement ensures that matrix elements involving VI are real and meaning-
ful. s-dependent perturbation theory in pRQT is analogous to time-dependent perturbation
theory used for perturbatively solving the time-dependent Schroedinger equation.

The state Φ is written as the summation over N mass states as

Φ(x1, s) =
N

∑
n=1

an(s)φn(x1, s) (33)

where φn(x1, s), n = 1, 2, . . . , N, are solutions of the unperturbed field equation,

i}∂φn(x1, s)
∂s

= K0φn(x1, s). (34)

The normalization condition on Φ,∫
Φ∗Φd4x1 = 1, (35)

Implies:
N

∑
n=1

a∗n(s)an(s) = 1. (36)

The set of differential equations for the expansion coefficients is

i}∂am

∂s
=

N

∑
n=1

Vmnan, m = 1, 2, . . . , N, (37)

and the set of matrix elements {Vmn} of the perturbing potential is

Vmn =
∫

φ∗mVIφnd4x1. (38)

The field equation for an s-dependent perturbation is

i}∂sΨ = K0Ψ + K1Ψ, (39)

where K0 refers to the unperturbed mass generator and K1 corresponds to the s-dependent
interaction term V1 in Equation (32). The perturbation is Hermitian if it satisfies the constraint∫

[K∗1 Ψ−Ψ∗K1]d4x = 0. (40)

An approximate solution to the perturbation problem is obtained by the eigenfunc-
tion expansion,

Ψ(x, s) =
∫

aξ(s)ψξ(x, s)dξ, (41)

where aξ(s) are expansion coefficients and ψξ are solutions for the unperturbed system.

4.2. Particle Beam–Thin Foil Model

The transition probability amplitude in pRQT is

aξ = a0
ξ −

i
}

∫ s

0
[
∫

ψ∗ξ K1d4x]ds′. (42)

The transition probability density to state ξ is

Pξ = a∗ξ aξ (43)
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and the transition rate density to state ξ is

Rξ =
∂Pξ

∂s
. (44)

The formalism of s-dependent perturbation theory applied to the interaction
K1Ψ = g(ΦT + Φ∗T)Ψ in Equation (31) yields the four-momentum constraints

four−momentum :
kα = ka + Kb,
kα = ka − Kb,

(45)

where subscripts a, b, α denote the projectile, the target, and the product particle, respec-
tively. In addition, there is a set of mass constraint equations:

mass :
qα = qa + Qb ,
qα = qa −Qb .

(46)

Free particle masses are obtained by solving Equation (39) without the interaction
term K1. The result is

qn =
}2kn · kn

2mn}
. (47)

The scalar product is
kn · kn = (kn)σ(kn)

σ, (48)

where the Einstein summation convention applies to index σ.
Possible mass state transitions are given in Table 1, which is replicated here from

references [1,12] for ease of reference. Letter “B” denotes bradyon and letter “T” denotes
tachyon. Cases may be signified by the three-letter designation L1L2L3, where L1 denotes
the projectile particle as either B or T, L2 denotes the target particle as either B or T, and L3
denotes the product particle as either B or T.

The first row in the table is case BBB. In this case, the Product-1 constraint yields a
bradyon product after the bradyon projectile interacts with a bradyon target. The product-
2 constraint can yield either a bradyon or a tachyon product after a bradyon projectile
interacts with a bradyon target. If a bradyon is produced, the case is denoted as BBB.
On the other hand, the case is denoted BBT if a tachyon is produced. The product of the
interaction depends on the target and projectile properties. Allowed interactions must
satisfy a mass constraint and four-momentum constraints. Equation (47) is a mass constraint
that constrains physically allowable processes and makes the pRQT formulation different
from other tachyon kinematic systems.

Table 1. Possible mass state transitions. “B” stands for bradyon and “T” stands for tachyon. The
subscripts a, b, α denote the projectile, the target, and the product particle, respectively, the variables q
and Q denote the corresponding masses. See text for details.

Target
Qb

Projectile
qa

Product-1
qα=qa+Qb

Product-2
qα=qa−Qb

B B B B
T

B T B
T T

T B B
T B

T T T B
T
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5. Projectile-Stationary Target Kinematics

The allowed physical properties of tachyons in the simple particle beam–thin foil
model considered are constrained by kinematic equations. Consequently, an experimental
search must be very specific. As an example, consider particle experiments that involve the
interaction of a projectile beam with a thin foil. Except for thermal motion, it is reasonable
to assume that target particles in the foil may be viewed as stationary targets relative to
an energetic incident beam. The example presented here shows that tachyon creation
and annihilation are kinematically possible in pRQT using the equations and detailed
calculations given in [1,12]. The calculations have been updated using particle properties
from [13].

The equations for tachyon creation following the interaction of bradyons (case BBT) are:

α0 = a0 − b0 ,
α1 = a1 − b1 ,

mα = mb −ma,
(49)

where a0, a1, b0, b1 and α0, α1 are the nonzero components of the energy-momentum four-
vectors for the projectile, target, and product particles, respectively. The masses of the projectile,
target, and product particles are ma, mb, and mα, respectively. The mass constraint is simplified
by noting that observable free particles have sharply peaked expectation values (see [12],
Section 4.2). In addition to Equation (49), the on-shell mass-energy-momentum relations,

bradyon projectile : m2
a = a2

0 − a2
1,

bradyon target : m2
b = b2

0 − b2
1,

tachyon product : m2
α = α2

1 − α2
0

(50)

must be satisfied.
Results for the scattering of a pion projectile by a proton target are shown in Table 2.

The applicability of the scalar particle model is improved here by using the electrically
neutral pion as the incident projectile so there is no electromagnetic interaction. The
resulting model provides kinematic relations for the interaction of a neutral pion projectile
with a proton target via a hypothesized s-dependent potential. The product particle is an
anti-tachyon with real mass. Details of the case BBT calculation are outlined in Appendix A.

Table 2. Case BBT calculation (in MeV/c2 with c set to 1) with Equations (49) and (50) satisfied up to
four digits after the decimal shown. See text for details.

Process Projectile Target Product

π0 + p
a0 = 822.7126 b0 = 938.2721 α0 = −115.5595
a1 = 811.5647 b1 = 0.0000 α1 = 811.5647
ma = 134.9768 mb = 938.2721 mα = 803.2953

Table 2 shows that experimentally attainable energies and readily available bradyons
are theoretically suitable for producing tachyons (or anti-tachyons). If our model is physi-
cally realistic, it is possible that tachyons may have already been created but not detected.
The results presented in Table 2 require that a detector must be tuned to either detect a
case BBT superluminal anti-particle or a case TBB bradyon particle. An example of a set
of properties that might be expected for a case TBB bradyon can be obtained by using the
tachyon produced in the neutral pion–proton interaction shown in Table 2.

The case TBB equations for tachyon annihilation following the interaction with a
bradyon are:

α0 = a0 + b0,
α1 = a1 + b1,

mα = mb −ma ,
(51)
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where {a0, a1}, {b0, b1}, and {α0, α1} are the nonzero components of the energy–momentum
four-vectors for the projectile, target, and product particles, respectively. In addition to
Equation (51), the on-shell mass-energy-momentum relations are:

tachyon projectile : m2
a = a2

1 − a2
0 ,

bradyon target : m2
b = b2

0 − b2
1 ,

bradyon product : m2
α = α2

0 − α2
1 ,

(52)

where masses ma, mb, and mα must be satisfied. Assuming the case BBT product anti-
tachyon is the case TBB anti-tachyon projectile, and taking the case TBB target particle to
be a proton, the two solutions are found as shown in Tables 3 and 4. Solution 1 refers to a
stationary target, and Solution 2 refers to a non-stationary target. Details of the case TBB
calculation are outlined in Appendix B.

Table 3. Case TBB Solution 1 (in MeV/c2 with c set to 1) with Equations (51) and (52) satisfied up to
four digits after the decimal shown. See text for details.

Process Projectile Target Product

T + p
a0 = −115.5595 b0 = 938.2721 α0 = 822.7126
a1 = 811.5647 b1 = 0.0000 α1 = 811.5647
ma = 803.2953 mb = 938.2721 mα = 134.9768

Table 4. Case TBB Solution 2 (in MeV/c2 with c set to 1) with Equations (51) and (52) satisfied up to
four digits after the decimal shown. See text for details.

Process Projectile Target Product

T + p
a0 = −115.5595 b0 = −977.1067 α0 = −1092.6662
a1 = 811.5647 b1 = 272.7325 α1 = 1084.2971
ma = 803.2953 mb = 938.2721 mα = 134.9768

6. Discussion

We have shown that formulations of relativistic classical and quantum mechanics with
an invariant evolution parameter predict that tachyon mass should be real. Illustrative
calculations of creation, annihilation, and detection of tachyons using a beam of particles
interacting with a thin foil are presented using up-to-date data. The cases, presented in Sec-
tion 5, show that scattering of a particle beam by a thin foil provides a means for designing
an experiment capable of producing (case BBT) and detecting (case TBB) tachyons.

Tachyon physics in pRQT [1,4,9,12] differs from other formulations. Many alter-
native theories are available in the literature. Introductions to alternative theories are
presented in Refs. [15–21]. More recent examples of alternative theories are presented
in Refs. [22–34]. They cover a range of topics, including expansion of the universe [16],
inflation [22–24,31,33], the cosmological constant [25,26], dark energy [29], spontaneous
symmetry breaking [19,27], rolling tachyons [15,17], trapped ions [30], condensation in
magnetic compactification [34], and the possibility of tachyonic neutrinos [28,32].

Pavšič [4] clarified and analyzed tachyon topics that he identified as misconceptions
and confusing. For example, the conventional view is that tachyons have imaginary mass.
By contrast, tachyons in pRQT have real mass. Furthermore, mass-state transitions in
pRQT provide a mechanism for creating, annihilating, or detecting tachyons. Comparisons
of pRQT with alternative theories suggest directions for future work in pRQT. They also
provide an opportunity for comparing and testing different theories, as illustrated in [35,36].
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Appendix A. Case BBT Calculation Procedure

The calculation procedure, provided in a previous paper [12], is replaced by a more
direct solution procedure. Case BBT constraint equations are Equations (49) and (50). In
this case, the following variables are known:

masses ma, mb, and b1 = 0. (A1)

From Equations (49) and (50),

mα = mb −ma,
b0 = mb.

(A2)

From Equations (49) and (A2),

a0 − α0 = b0,
α0 = a0 −mb,

α1 = a1 since b1 = 0.
(A3)

From Equations (50) and (A2),

m2
α = (mb −ma)

2 = α2
1 − α2

0. (A4)

Insert Equation (A3) into the RHS of Equation (A4):

(mb −ma)
2 = α2

1 − (a0 −mb)
2. (A5)

Solve for a1 using Equations (50) and (A5):

a2
1 = (mb −ma)

2 + (a0 −mb)
2 = a2

0 −m2
a. (A6)

Solve for a0 by expanding Equation (A6):

a0 =
1

2mb

[
m2

a + (mb −ma)
2 + m2

b

]
. (A7)

The remaining terms are found from

a2
1 = a2

0 −m2
a,

α0 = a0 −mb,
α1 = a1.

(A8)

Results are verified by showing that Equations (49) and (50) are satisfied.

Appendix B. Case TBB Calculation Procedure

Case TBB constraint equations are Equations (51) and (52). In this case, the following
variables are known:

masses ma, mb and tachyon values a0 and a1. (A9)
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Tachyon values are given by case BBT. Confirm

m2
a = a2

1 − a2
0 (A10)

and calculate
mα = mb −ma. (A11)

From Equations (51) and (52), find

m2
α = α2

0 − α2
1 = (a0 + b0)

2 − (a1 + b1)
2 (A12)

and
m2

b = b2
0 − b2

1 =⇒ b2
0 = m2

b + b2
1. (A13)

Rearrange Equation (52) to get

b2
0 = m2

b + b2
1 =⇒ b0 = ±

√(
m2

b + b2
1
)
. (A14)

Since b0, b1 are unknown but constrained by Equation (A13), assume

b1 = λmb (A15)

for parameter λ. Substitute Equation (A15) into Equation (A13) so that

b2
0 − b2

1 = b2
0 − (λmb)

2 = m2
b. (A16)

Rearrange Equation (A16) for

b2
0 = m2

b

(
1 + λ2

)
. (A17)

Combine Equations (A11) and (A12) to get

m2
α = (mb −ma)

2 = (a0 + b0)
2 − (a1 + b1)

2. (A18)

Substitute the solution b0 = −mb
√(1 + λ2) of Equation (A17), based on Ref. [12],

into Equation (A18) to get

(mb −ma)
2 =

(
a0 −mb

√(1 + λ2
))2
− (a1 + λmb)

2. (A19)

Expand Equation (A19) and simplify to get

a0mb
√(1 + λ2

)
= mbma −m2

a − a1λmb. (A20)

The term λ is found as the intersection of the left-hand side and right-hand side of
Equation (A20) as functions of λ. This value of λ is used in Equations (A15) and (A17) and
b0 = −mb

√(1 + λ2) to get {b0, b1}. The terms {α0, α1} are found from Equation (52) to
complete case TBB.

Results are verified by showing that Equations (51) and (52) are satisfied.
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