
5.32.5

Hybrid Quantum–Classical Deep
Neural Networks Based Smart
Contract Vulnerability Detection

Sinan Durgut, Ecir Uğur Küçüksille and Mahmut Tokmak

Article

https://doi.org/10.3390/app15074037

https://www.mdpi.com/journal/applsci
https://www.scopus.com/sourceid/21100829268
https://www.mdpi.com/journal/applsci/stats
https://www.mdpi.com
https://doi.org/10.3390/app15074037

Academic Editor: DaeEun Kim

Received: 27 February 2025

Revised: 1 April 2025

Accepted: 4 April 2025

Published: 7 April 2025

Citation: Durgut, S.; Küçüksille, E.U.;

Tokmak, M. Hybrid

Quantum–Classical Deep Neural

Networks Based Smart Contract

Vulnerability Detection. Appl. Sci.

2025, 15, 4037. https://doi.org/

10.3390/app15074037

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Hybrid Quantum–Classical Deep Neural Networks Based Smart
Contract Vulnerability Detection

Sinan Durgut 1,* , Ecir Uğur Küçüksille 2 and Mahmut Tokmak 3

1 Institute of Natural and Applied Sciences, Suleyman Demirel University, Isparta 32200, Türkiye
2 Department of Computer Engineering, Engineering and Natural Sciences Faculty, Suleyman Demirel

University, Isparta 32200, Türkiye; ecirkucuksille@sdu.edu.tr
3 Department of Management Information Systems, Bucak Zeliha Tolunay School of Applied Technology and

Management, Burdur Mehmet Akif Ersoy University, Burdur 15300, Türkiye;

mahmuttokmak@mehmetakif.edu.tr

* Correspondence: sinandurgut95@gmail.com

Abstract: The increasing adoption of blockchain technology has presented significant chal-

lenges in maintaining the security and reliability of smart contracts. This study addresses

the problem of identifying security flaws in smart contracts, which may result in monetary

damages and diminished confidence in blockchain systems. A Hybrid Quantum–Classical

Deep Neural Network (HQCDNN) approach was proposed, combining quantum comput-

ing principles with classical deep learning methods to identify various vulnerability types,

including access control, arithmetic, front-running, reentrancy, time manipulation, denial

of service, and unchecked low calls. The SmartBugs Wild Dataset was used for training,

with TF-IDF employed as a preprocessing technique optimized for hybrid architectures.

Experiments were conducted using hybrid architectures with 2-qubit and 4-qubit quantum

layers, alongside a classical deep neural network (DNN) model for comparative analysis.

The HQCDNN model attained accuracy levels ranging from 96.4% to 78.2% and F1-scores

between 96.6% and 80.2%, showcasing enhanced performance compared to the classical

and deep learning models referenced in the literature. These results highlight the capability

of HQCDNNs to improve the identification of security flaws in smart contracts. Future

work could focus on evaluating the model on actual quantum devices and expanding its

application to larger datasets for further validation.

Keywords: quantum machine learning; quantum neural networks; hybrid quantum–

classical neural networks; smart contract; smart contract; vulnerability detection

1. Introduction

Blockchain technology has established itself as a revolutionary development in recent

years, bringing about new paradigms in transaction processing and data management [1].

Among its most impactful innovations is the Ethereum blockchain network—a decentral-

ized platform that extends blockchain capabilities beyond mere transactional operations by

assisting in the creation of smart contracts and decentralized apps (DApps) [2]. Recognized

as Blockchain 2.0, Ethereum pioneered support for smart contracts with Turing-complete

capabilities, establishing itself as the earliest and most extensively adopted platform for this

feature [3]. Its design, which enables complex computations and programmable agreements,

has solidified Ethereum as a cornerstone in the evolution of blockchain technologies [4].

While Bitcoin focuses on secure and decentralized value transfers, the Ethereum Virtual

Machine (EVM) allows developers to create DApps and automated, reliable digital con-

tracts [5]. Additionally, Ethereum’s gas mechanism determines the computational costs

Appl. Sci. 2025, 15, 4037 https://doi.org/10.3390/app15074037

https://doi.org/10.3390/app15074037
https://doi.org/10.3390/app15074037
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6516-4733
https://orcid.org/0000-0002-3293-9878
https://doi.org/10.3390/app15074037
https://www.mdpi.com/article/10.3390/app15074037?type=check_update&version=1

Appl. Sci. 2025, 15, 4037 2 of 24

of smart contracts, ensuring the network operates securely and efficiently [6]. As a result,

Ethereum has evolved beyond a simple payment system into a foundational infrastructure

for large-scale applications across various industries.

The Ethereum Virtual Machine (EVM) serves as the execution environment that en-

ables smart contract processing within the Ethereum blockchain, ensuring deterministic

and decentralized computation [5]. While the blockchain functions as a secure and im-

mutable ledger that records transactions, the EVM facilitates the execution of complex

programmable logic, allowing for trustless automation through smart contracts [7]. Smart

contracts, typically written in Solidity, are compiled into bytecode and executed on the EVM,

with each Ethereum node replicating the computations to maintain network consensus [8].

The EVM allows developers to launch applications that execute precisely as intended,

ensuring they operate without downtime, censorship, fraud, or interference from third

parties [5]. It compiles code into bytecode executable on the blockchain, guaranteeing that

every node across the network arrives at the same outcome for computation results [6]. This

virtual machine serves as a cornerstone for preserving the Ethereum network’s integrity

and functionality, offering a robust platform for smart contract execution [7,8].

Smart contracts function as self-enforcing digital agreements, with their conditions

seamlessly woven into the code, running on decentralized blockchain networks like

Ethereum [9]. These contracts automatically enforce agreements without intermediaries,

promising enhanced efficiency and reduced costs across various industries [6]. Because

blockchain technology is unchangeable, after a smart contract is put into place, it remains

unchangeable and transactions are final, ensuring transparency and trustworthiness. That

is, once smart contracts are placed on the blockchain, they are immutable, meaning that

their code cannot be changed or removed [10]. However, this immutability also implies

that any vulnerabilities in the smart contract code remain permanent, posing significant

security risks [10,11].

The rise of smart contracts has been accompanied by considerable security challenges,

especially throughout the Ethereum ecosystem. Flaws in smart contract code have fa-

cilitated high-profile exploits, causing significant monetary losses and eroding trust in

blockchain systems. The complexity of the EVM and the novelty of smart contract program-

ming introduce risks that traditional software development practices may not fully address.

For instance, the notorious Decentralized Autonomous Organization (DAO) breach in

2016 leveraged a reentrancy vulnerability, culminating in the theft of around 3.6 million

Ether [11,12]. Similarly, the Parity Wallet vulnerability in 2017 exposed a multi-signature

wallet flaw, leading to over $150 million worth of Ether being permanently frozen [10]. An-

other significant exploit occurred in 2022 when the Wormhole Bridge was hacked, resulting

in the loss of approximately $320 million due to a flaw in its smart contract validation mech-

anism [13]. More recently, the Ronin Bridge hack in 2022 exploited validator weaknesses,

allowing attackers to drain over $600 million from Axie Infinity’s network [14].

Traditional methods for detecting these vulnerabilities often involve formal verifica-

tion and static analysis tools tailored for the EVM and Solidity [10]. While these methods are

effective to some extent, they may struggle with scalability and the complexity of detecting

sophisticated or novel attack vectors inherent in the Ethereum network. Machine learning

(ML) has been proposed as a solution to enhance vulnerability detection by learning pat-

terns associated with insecure code within the EVM context [15]. Classical machine learning

approaches can sift through extensive datasets to pinpoint possible security weaknesses

more effectively than manual techniques. However, they are limited by computational

constraints and may not fully capture the intricacies inherent in smart contract vulnerabili-

ties, especially as the Ethereum blockchain grows in size and complexity [16]. Moreover,

classical machine learning models struggle with feature engineering limitations, often

Appl. Sci. 2025, 15, 4037 3 of 24

failing to extract complex vulnerability patterns due to reliance on predefined features [17].

They also exhibit poor generalization to novel attack vectors, making them ineffective

against previously unseen exploits [18].

Quantum machine learning (QML) represents an innovative avenue for overcoming

these constraints by harnessing quantum computing fundamentals—such as superposition

and entanglement. Quantum computing itself, fueled by quantum bits (qubits), unlocks

groundbreaking possibilities for tackling challenges that lie beyond the scope of classical

systems, enabling QML to tackle computationally intensive tasks with unprecedented

efficiency and scalability [19]. QML algorithms have the potential to process and analyze

data at unprecedented speeds [20]. The application of QML to vulnerability detection could

significantly enhance the ability to identify and mitigate security risks in smart contracts

executed on the EVM, offering a new layer of protection in blockchain ecosystems [21].

Quantum Neural Networks (QNNs) offer a great advantage over classical methods

by combining the power of quantum computing with ML [22]. QNNs can provide higher

processing speed and accuracy, especially when processing large and complex datasets.

However, the physical limitations of current quantum computers and the difficulties

encountered in training QNNs are the biggest obstacles to this technology reaching its

full potential.

The sensitivity to noise in current quantum devices and the constraints imposed by

having a small qubit count pose significant challenges, making it difficult for QNNs to

implement deep, intricate architectures [17]. Additionally, QNNs face the “barren plateau”

problem, where gradients rapidly approach zero during training. This phenomenon

undermines the efficiency of optimizing model parameters and negatively impacts the

training process [23]. During the transitional quantum stage often termed the Noisy

Intermediate-Scale Quantum (NISQ) era, these issues are compounded by two more hurdles

to creating QML models that outdo classical approaches: (1) the scarcity of locally accessible

quantum data and (2) the absence of specialized quantum memory (QRAM) and sufficiently

advanced quantum hardware to manage large-scale information. These barriers collectively

impede the advancement of independent and robust QNNs, thereby slowing overall

progress in the field [22].

HQCDNNs aim to unify the strongest features of classical methodologies with quan-

tum frameworks, leading to more efficient and optimized models [22]. In this approach,

some of the computations are performed on classical deep neural networks, while critical

computations are performed on quantum circuits. In this way, the potential of quantum

computing is exploited, despite the limitations of existing QNNs [23]. HQCDNNs are

particularly advantageous in handling large and complex datasets where classical meth-

ods face limitations such as reduced generalization capacity and prolonged processing

times [20,24]. By leveraging quantum computing’s parallel processing capabilities, super-

position, and entanglement, HQCDNNs can model intricate relationships within data more

efficiently [20,23]. For instance, in the security analysis of smart contracts, the complexity

of EVM opcode structures and the need for applicability on resource-constrained devices

highlight the significant advantages of the hybrid design of HQCDNNs. This approach

provides enhanced performance and efficiency in such scenarios [18].

This paper examines the incorporation of HQCDNN methods for identifying secu-

rity weaknesses in smart contracts deployed on the Ethereum blockchain network. Our

objective is to unite recent quantum computing breakthroughs with real-world security

solutions in blockchain technology. By adapting hybrid quantum algorithms to analyze

smart contract code within the EVM environment, we seek to improve detection accuracy

and processing efficiency compared to classical approaches.

Appl. Sci. 2025, 15, 4037 4 of 24

Our contributions are threefold. First, we conduct an in-depth survey of current

techniques for uncovering security flaws in Ethereum smart contracts, highlighting their

shortcomings. Second, we introduce a framework for applying hybrid classical–QNN

algorithms to this problem domain, incorporating advanced feature extraction techniques

suitable for the EVM’s opcode structure. Third, we share experimental findings that

highlight the potential benefits of our hybrid approach, accompanied by an examination of

the obstacles and future research paths in this domain.

2. Literature Review

In recent years, researchers have proposed diverse strategies to bolster the reliability and

security of on-chain agreements. These strategies primarily involve symbolic execution, fuzz

testing, formal verification, programmatic analysis, and ML-based approaches [3,25,26].

Symbolic execution facilitates precise and comprehensive program analysis by simulat-

ing program execution using symbolic inputs rather than concrete values. Oyente is among

the first tools created for analyzing the security of Ethereum smart contracts. It leverages

symbolic execution to simulate the behavior of contracts and identify vulnerabilities such

as reentrancy, mishandled exceptions, and transaction-ordering issues. By modeling the

EVM, Oyente explores different execution paths to uncover potential weaknesses. Symbolic

inputs are formulated by aggregating constraints that must be satisfied for execution to

traverse a specific program path, facilitating the analysis of smart contract behavior. A path

is considered infeasible if its condition cannot be met; on the other hand, a path is called

feasible if the condition can be met [3,10,27,28]. Mythril is a sophisticated, open-source

security analysis tool developed to identify vulnerabilities within the EVM bytecode. Lever-

aging advanced methodologies such as symbolic execution, Satisfiability Modulo Theories

(SMT) solving, and taint analysis, Mythril is highly effective in pinpointing critical security

issues in smart contracts, such as reentrancy vulnerabilities, integer underflows/overflows,

and access control misconfigurations [29]. MAIAN focuses on identifying weaknesses that

may lead to significant security threats. These threats are classified into three primary

categories: suicidal (contracts that can be arbitrarily destroyed), prodigal (contracts that

may unintentionally transfer assets), and greedy (contracts that indefinitely lock funds).

MAIAN integrates symbolic execution with heuristic evaluation to precisely detect these

vulnerabilities [30]. Osiris expands on symbolic execution by incorporating taint analysis,

enabling it to detect arithmetic issues like integer overflow, underflow, and division by

zero. This makes it particularly valuable for analyzing contracts with complex numerical

operations [12]. Securify serves as a verification platform, leveraging static analysis to en-

sure conformity with established security guidelines. It leverages compliance and violation

patterns to determine if smart contracts fulfill designated security criteria or demonstrate

potentially exploitable behaviors. This structured approach makes Securify scalable and

efficient for analyzing large contracts [31]. Slither functions as a specialized analysis tool

for Solidity code, enabling rapid and comprehensive identification of numerous security

flaws. It makes use of taint tracking and data flow analysis, among other methods, to detect

vulnerabilities such as reentrancy, uninitialized variables, and inefficient gas usage. Its

speed and flexibility make it suitable for use in continuous development workflows [32].

Fuzzing, also known as fuzzy testing, is a dynamic approach to software security

analysis aimed at detecting vulnerabilities by subjecting a program to unexpected or ran-

domly generated inputs. Unlike static analysis, which inspects code without execution,

fuzzing actively executes the software under test, systematically injecting malformed or

anomalous data to observe its response. This method is particularly effective for uncovering

flaws such as buffer overflows, null pointer dereferences, memory leaks, and unhandled

exceptions, which may not be apparent through conventional testing techniques [3,33].

Appl. Sci. 2025, 15, 4037 5 of 24

ContractFuzzer is a specialized fuzzing framework developed for identifying security vul-

nerabilities within Ethereum smart contracts. It operates by generating test inputs derived

from the Application Binary Interface (ABI) specifications of the targeted contracts. The

framework uses predefined test oracles to identify possible security issues and integrates

an instrumented EVM to track and record runtime behaviors during execution. These

recorded logs are subsequently analyzed to identify and report security vulnerabilities [34].

ILF leverages imitation learning to develop a fuzzing policy modeled as an ensemble

of neural networks. This policy is trained using a dataset of high-quality transaction se-

quences generated through symbolic execution. By utilizing this approach, ILF is capable

of generating effective test cases that maximize code coverage and enhance the detection

of vulnerabilities [35]. In addition, fuzzing tools such as EtherFuzz [36], which uses a

mutation fuzzy test method, and sFuzz [37], which is based on AFL and adopts a feedback

adaptive fuzzification strategy, have been developed.

Formal verification is the process of using mathematical methods to prove or disprove

the correctness of a system with respect to a certain formal specification. Unlike testing,

which examines software behavior under specific inputs, formal verification ensures cor-

rectness across all possible inputs and states. Because of this characteristic, it is well aligned

with the stringent reliability standards required by on-chain agreements [38]. A variety of

solutions and frameworks now support the formal validation of on-chain contracts. For

instance, KEVM provides a detailed representation of the EVM, enabling comprehensive

analysis of EVM bytecode [39]. FSolidM is a solution that conceptualizes contracts using

Finite-State Machines [40]. Isabelle/HOL: A general-purpose theorem prover that can

model smart contract behaviors [41].

Program analysis and taint analysis have become fundamental techniques for detecting

vulnerabilities in smart contracts, particularly in blockchain ecosystems. These approaches

facilitate the systematic examination of code behavior and the tracking of data flows to

identify potential security risks, such as unauthorized data access or unintended state

changes [3,10]. Slither integrates techniques like data flow analysis, taint tracking, and

custom rule detection to identify issues such as reentrancy, uninitialized variables, and

inefficient gas usage [32]. SmartCheck translates the contract’s code into an intermediate

representation to apply pattern-matching rules, identifying issues like reentrancy, integer

overflows, and insecure function visibility. SmartCheck provides detailed reports with

categorized findings for ease of remediation [42].

Researchers have investigated ML techniques for vulnerability detection to address

the shortcomings of traditional methods. ML algorithms can analyze large datasets to learn

patterns associated with insecure code, enhancing detection capabilities more efficiently

than manual methods. Recent studies have introduced novel approaches to smart contract

vulnerability detection, leveraging advancements in neural networks and graph-based

models. Liu et al. [43] proposed a method combining pure neural networks with inter-

pretable graph features and expert pattern fusion, providing a more robust mechanism

for identifying security weaknesses in smart contracts. Sendner et al. [44] introduced

G-Scan, a graph neural network designed for line-level vulnerability identification. This

model focuses on precise detection, making it a valuable tool for developers to pinpoint

vulnerabilities within specific lines of code. Chen [45] developed Vulnerability-Hunter,

which employs an adaptive feature perception attention network to enhance vulnerabil-

ity detection. By focusing on dynamic feature extraction and attention mechanisms, the

model improves accuracy for complex vulnerability patterns. This approach highlights

the increasing sophistication of ML techniques in addressing smart contract security. Qian

et al. [46] conducted an extensive review of methods for identifying vulnerabilities in smart

contracts, highlighting developments in both conventional and ML-driven approaches.

Appl. Sci. 2025, 15, 4037 6 of 24

Their work emphasizes the need for multimodal fusion strategies, integrating diverse

data sources to enhance detection precision. Li et al. [47] applied deep learning combined

with multimodal decision fusion to improve the identification of vulnerabilities, setting a

benchmark for integrated approaches. In addition, in recent years, the frequent use of deep

learning algorithms in vulnerability detection has been seen in the literature [3,45,48–51].

The field of quantum computing has gained significant attention for leveraging quantum

mechanics to execute computations at speeds beyond the reach of classical computers [52].

QML combines quantum computing with ML algorithms, potentially offering exponential

speedups for certain computational tasks [20]. Schuld and Petruccione [24] discussed how

QML could revolutionize data processing by handling large datasets more efficiently.

In the context of blockchain security, Leng et al. [53] examined quantum computing’s

potential to both threaten and enhance blockchain systems. While quantum attacks could

compromise cryptographic algorithms used in blockchain, quantum solutions could also

fortify security measures. Although specific studies applying QML directly to smart con-

tract vulnerability detection are sparse, the potential to leverage quantum-enhanced feature

extraction and classification aligns with the increasing complexity of blockchain systems.

Future research may build on these foundational works to develop QML-enabled tools.

HQCDNNs have emerged to utilize the advantages of quantum computing in ML

tasks. By incorporating quantum computing elements into classical neural network ar-

chitectures, these approaches seek to leverage quantum computational capabilities while

ensuring compatibility with existing classical systems. Kashif and Al-Kuwari [22] proposed

a systematic methodology for the design of quantum layers in HQCDNNs, achieving

significant computational advantages over pure classical architectures. In financial time

series forecasting, Kea et al. [23] designed a mixed quantum–classical framework utilizing

quantum-assisted LSTM networks and showcased enhanced effectiveness over traditional

models. In cybersecurity, Suryotrisongko and Musashi [54] evaluated an HQCDNN model

for botnet detection and achieved high performance in certain situations. Katı et al. [19]

introduced an integrated quantum-based approach for identifying deepfake content. They

obtained remarkable results in the study. When these studies are evaluated, they emphasize

the potential of HQCDNNs in vulnerability detection by combining quantum computing

capabilities with classical neural network models.

3. Materials and Methods

This part of the study provides a detailed overview of the dataset, hardware, and

software tools used, emphasizing their importance in the implementation and evaluation

of the proposed model. It also describes the classification methods employed, detailing

their design, implementation, and relevance to the objectives of this research. To aid in

understanding the model’s structure and functionality, Figure 1 presents a visual depiction

of the proposed architecture.

Figure 1. Proposed model.

Appl. Sci. 2025, 15, 4037 7 of 24

3.1. Dataset

The dataset used in the study is the SmartBugs Wild Dataset, created by Durieux et al.,

extracted from the Ethereum network and consisting of real-world data. This publicly

available dataset was designed to examine potential security risks in smart contracts built

on the Ethereum platform [18]. This dataset contains common types of vulnerabilities in

smart contracts and was analyzed with 9 open-source tools. The dataset includes an analysis

of 47,518 smart contracts. At the same time, 9 different vulnerabilities were categorized in

the dataset. Table 1 shows the average time it takes open-source tools to analyze one smart

contract and the time it takes to analyze the total number of smart contracts.

Table 1. Tool execution times.

Tool Avg. Execution Time Total Execution Time

Honeybadger 0:00:46 0:53:11
Maian 0:02:57 3:23:50

Manticore 0:08:11 5:03:04
Mythril 0:01:13 1:23:42
Osiris 0:00:44 0:50:03

Oyente 0:00:36 0:41:29
Securify 0:01:00 1:09:08
Slither 0:00:03 0:03:35

Smartcheck 0:00:06 0:06:34

The vulnerability types examined are reentrancy, access control, arithmetic issues,

unchecked return values for low-level calls, denial of service, front-running, and time

manipulation. Reentry vulnerability can lead to the uncontrolled transfer of funds if the

same function is called again, while access control vulnerability allows unauthorized users

to access sensitive data. Arithmetic errors can lead to unexpected results such as overflows

or underflows. Unsupervised return values can lead to transaction failures if failures

of low-level operations go unnoticed. Denial of service leads to the contract or service

becoming unavailable. Priority processing can lead to attacks due to the predictability of

the transaction order. Time manipulation allows for changing the direction of transactions

by abusing block timestamps. Such vulnerabilities pose serious risks in terms of financial

losses for users and platform reliability.

3.2. Data Preprocessing and Feature Extraction

In our study, feature extraction was performed using the Term Frequency-Inverse

Document Frequency (TF-IDF) method, and a 2-g (bigram) analysis was applied. This

choice was made because the experiments showed that the performance metrics—recall,

precision, accuracy, and F1-score—were low in the 1-g analysis. In particular, it was

observed that the lack of contextual information hindered the proper representation of

word relationships. On the other hand, the 3-g analysis could not be conducted due to

insufficient resources.

Additionally, an ANOVA test and effect size analysis were performed to examine

the impact of TF-IDF parameters on model performance. The ANOVA results indicated a

statistically significant difference between TF-IDF parameters (F = 12.81, p = 3.74 × 10−6).

According to the effect size (η2) calculations, these parameters accounted for approximately

4.9% of the variance in model performance. The tests showed that the “default” TF-IDF

settings achieved the highest recall (0.992) and F1-score (0.966), making them the most

successful in terms of overall model performance.

Furthermore, the “Sublinear=True” parameter improved some model results; however,

it was insufficient compared to the “default” setting. The “Sublinear=True & Norm=L1”

Appl. Sci. 2025, 15, 4037 8 of 24

option had the lowest average metrics, with a notable drop in precision. In conclusion, the

results indicate that TF-IDF parameters directly impact model performance, with the best

overall accuracy and balance achieved using the “default” parameter settings. Although

alternative configurations may enhance specific aspects of the model, the “default” settings

are considered the most suitable option for optimal performance.

TF-IDF is a statistical approach used to determine the significance of a term (word or

phrase) within a given text [55]. This method allows for distinguishing between frequently

occurring but generally insignificant words and rarely occurring but important ones. By

assessing the occurrence rate of a term within a text (TF) and its distribution across multiple

texts (IDF), the significance of the term in the given context is determined [56].

The 2-g analysis allows us to examine the frequency of groups of two words in the

text. This approach allows a deeper understanding of important word combinations by

analyzing consecutive word pairs. In this way, the distribution and importance of word

pairs in the text are analyzed instead of single words [57].

Operational codes (opcodes) are instructions that determine the logic of the software.

When analyzing the vulnerabilities of software, the sequential use of certain opcode pairs

can be essential in identifying the types of vulnerabilities present in that software. Analyz-

ing opcodes in pairs is thought to provide a better understanding of how these instructions

interact with each other and how certain combinations are associated with certain types

of vulnerabilities. For example, the consecutive use of two specific opcodes may indicate

a limit overflow or a specific type of vulnerability. While individual opcodes may fail

to reveal such relationships, binary combinations provide a clearer picture of such rela-

tionships. Therefore, examining opcodes in pairs using TF-IDF and 2-g analysis enables

more accurate and faster detection of software vulnerabilities. This method makes the

vulnerability detection process more effective by analyzing the importance and distribution

of opcodes in the text in more detail.

3.3. Quantum Artificial Neural Networks

In classical neural networks, input data are usually processed in numerical form and

with a given distribution. As these data pass through the neural network layers, each

neuron is multiplied by weights and subjected to a non-linear activation function. However,

in QNNs, this process follows a different structure. QNNs work with quantum gates and

qubits [58].

While in classical neural networks, data are processed with neurons and weights,

in QNNs, these operations are performed through quantum gates. Qubits are processed

within quantum gates, which serve as the fundamental building blocks of quantum circuits.

These gates are mathematically represented by matrices and play a crucial role in quantum

computing operations. In particular, superposition and entanglement allow for much more

complex computations compared to the limitations of classical neural networks [59].

The superposition property of qubits allows QNNs to process multiple possibilities

simultaneously. This replaces the sequential computation processes in classical networks

with parallel computation processes. This enables faster processing of more complex

datasets and problems [60].

| ψ⟩= α | 0⟩+β |⟩1 (1)

Mathematically, a qubit state is expressed as in Formula (1). α and β are complex

number amplitudes and satisfy the condition | α |2 + | β |2 = 1. Since the information that

is represented as 0 or 1 in a classical system is represented by probability amplitudes at the

quantum level, quantum computers can have the advantage of “parallel computing” for

certain problems [61].

Appl. Sci. 2025, 15, 4037 9 of 24

The entanglement property of qubits provides a great advantage for QNNs. While

in classical neural networks, data are processed between independent neurons, in QNNs,

entanglement creates a strong dependency between qubits. A change made in one qubit

can affect other qubits. This helps to more deeply understand and process the relationships

between data [62].

QNNs combine the basic principles of quantum mechanics with artificial neural net-

work models to target high performance in specific problem classes [52]. The effectiveness

of this approach relies on the premise that the high-dimensional and complex structures

of classical data (e.g., images, text, or sensor data) can be represented more efficiently in

quantum circuits [63]. Unfortunately, the data encoding process called “feature mapping”

or “data embedding” becomes a significant cost factor as the data size increases, limiting

the scalability of applications [64]. Moreover, repeating the readout process for each data

sample in QNN models increases the training cost by requiring the system to be re-prepared

due to the “collapse” of the quantum state after the readout [65].

These problems are particularly pronounced in the so-called NISQ era, where current

quantum computers are limited to noisy processors at the 50- to several-hundred-qubit

level [66]. Due to their limited qubit capacity and high noise ratios, NISQ devices face

serious limitations in both data encoding and error correction approaches [67]. Moreover,

handling extensive datasets during QNN training increases the risk of encountering low-

gradient regions, known as “barren plateaus”, which further complicates the learning

process [68]. On the other hand, the interface between classical computers and quantum

processors (e.g., data preprocessing, output conversion to classical format) also increases

the time and resource cost, limiting the large-scale use of QNN models.

3.4. Hybrid Quantum–Classical Deep Neural Networks

HQCDNN is a neural network architecture designed for binary classification prob-

lems, combining the advantages of both quantum and classical computing [67,69]. In this

architecture, the hidden layer consists of parameterized quantum circuits and Variational

Quantum Circuits (VQCs), and these circuits act as “quantum neurons” [70]. Classical data

are transformed into quantum states via amplitude coding, resulting in a unique quantum

state for each input [71].

Compared to standalone VQC models, HQCDNNs offer higher accuracy and lower

cost on simulated quantum hardware [67]. While qubit errors and noise from quantum

gates in current quantum hardware pose significant constraints for purely quantum-based

models, keeping the quantum circuits in the hidden layer relatively small in the HQCDNN

architecture reduces the impact of this noise [20]. As a result, the quantum layer enables a

more complex and compact representation of the data in the quantum domain [64]. On the

other hand, the adoption of well-established learning methods such as extensive parameter

optimization and backpropagation within the classical neural network (DNN) ensures a

stable and efficient training process [70]. Thus, HQCDNNs combine the advantage of rich

data representation obtained in the quantum layer with the scalability and computational

power of the classical layer [69].

This hybrid approach allows for higher accuracy and lower computational cost, espe-

cially on low-dimensional datasets, compared to models that use only quantum circuits or

purely classical methods [67]. However, as the data dimension increases, the growing num-

ber of qubits and quantum gates required for amplitude coding can make the model more

susceptible to noise and optimization challenges [64]. Nonetheless, HQCDNNs mitigate

some of these high-dimensional issues commonly faced by fully quantum-based models by

leveraging classical layers [70]. The ability to use classical backpropagation algorithms for

parameter updates also supports this process [69].

Appl. Sci. 2025, 15, 4037 10 of 24

HQCDNNs make it possible to benefit from the unique advantages of quantum com-

puting despite the limitations of current quantum hardware and to take advantage of the

scalability and efficient learning approaches of deep neural networks DNNs [20]. By pro-

cessing data interactively between quantum and classical layers, this architecture provides

a high-performance learning process that is more resilient to hardware constraints [67].

Current research suggests that HQCDNNs could be adapted to more complex problems as

quantum technology advances and that hybrid models may become a significant part of

future quantum machine learning applications [71].

The HQCDNN model we propose in this study is shown in Figure 2. The transition

between classical dense layers and quantum circuits is one of the most critical stages

of hybrid classical–quantum models. This process involves the conversion of classical

data into a form suitable for processing in quantum computing. The classical dense layer

provides the preprocessing of classical data before it is input to the quantum circuit. In

this layer, usually multidimensional classical data Xi = [X1, X2, . . . , Xn] are reduced

to dimensions that the quantum circuit can accept. For example, data consisting of n-

dimensional features in a dataset are reduced to m dimensions in accordance with the

number of qubits in the quantum circuit. Since 2 qubits are used in this study, the feature

vectors are reduced to 2 dimensions. In order for a classical feature vector to be used in

quantum computing, it must be represented in a Hilbert space, the Hilbert space in which

quantum systems operate. Hilbert space is a high-dimensional space of complex vectors

in which quantum states are mathematically described. Hilbert space is a vector space of

complex numbers used to represent the states of quantum mechanical systems. Quantum

states are represented by state vectors | ψ⟩ ∈ H, which are elements of this space:

|𝑋௜⟩ = cos 𝑋௜|0⟩ + sin 𝑋௜|1⟩ = ൤cos 𝑋௜sin 𝑋௜ ൨ 𝑈஺ா൫𝑋௝௜൯|0⟩ 𝑅௑ 𝑋
𝑅௑(𝜃) = 𝑒ି௜ఏଶ௑ = cos 𝜃௜2 |0⟩ + 𝑒௜ఝ೔sin 𝜃௜2 |1⟩

𝑅௑(𝜃) = ൦ cos 𝜃2 −𝑖. sin 𝜃2−𝑖. sin 𝜃2 cos 𝜃2 ൪
𝜃 𝑖𝑈஺ா൫𝑋௝௜൯ |00⟩𝑋ଵ 𝑋ଶ 𝜃ଵ𝜃ଶ |𝑋ଵ⟩ |𝑋ଶ⟩ 𝑈஺ா൫𝑋௝௜൯

ห𝑋஺ா௜ ൿ = ⨂௜ୀଵଶ  𝑈஺ா൫𝑋௝௜൯
𝑈஺ா൫𝑋௝௜൯ = ቈ cos 𝑋௝௜ −𝑖 ⋅ sin 𝑋௝௜−𝑖 ⋅ sin 𝑋௝௜ cos 𝑋௝௜ ቉

𝑋௏

Figure 2. HQCDNN architecture.

H: Hilbert space

| ψ⟩ ∈ H ket vector

The classical feature vector Xi = [X1, X2, . . . , Xn], is translated into a quantum state

for processing in quantum systems. This process is called embedding in Hilbert space.

Angle Encoding provides the link between classical data and quantum computing. In

quantum computing systems, classical data cannot be processed directly. Instead, these

data are encoded into quantum states [72].

Xi = [X1, X2] (2)

|X i⟩ = [|X 1⟩ , |X 2⟩] (3)

Appl. Sci. 2025, 15, 4037 11 of 24

The Angle Embedding Layer is tasked with mapping the classical input data into

a quantum state, as described in Equation (2), projected onto the Bloch sphere, a quan-

tum state vector in positional space in Equation (3), and into Hilbert space, as shown in

Equation (4) [22,72].

|Xi⟩ = cos Xi|0⟩+ sin Xi|1⟩ =

[

cos Xi

sin Xi

]

(4)

The Angle Embedding Layer is represented using the unit matrix UAE

(

Xi
j

)

and is

designed to link multiple single-qubit return X gates, with every qubit set to the initial state

|0⟩. The RX return X gates are mathematically expressed in Equations (5) and (6) [19,22,72].

RX(θ) = e−i θ
2 X = cos

θi

2
|0⟩+ eiϕi sin

θi

2
|1⟩ (5)

RX(θ) =

[

cos θ
2 −i· sin θ

2

−i· sin θ
2 cos θ

2

]

(6)

where θ is the rotation angle in radians and i is the virtual unit. The Angle Embedding Layer

is denoted by UAE

(

Xi
j

)

for the unit matrix representation. This is a 2-qubit quantum circuit

represented in Equation (7), initially initialized as the state |00⟩. This layer is designed to

encode the classical feature vector X1, X2 2 with different rotation angles θ1, θ2 based on the

values |X 1⟩ |X 2⟩ corresponding to the quantum states of each qubit. The resulting state

of the two-qubit Angle Embedding quantum system after Angle Embedding is expressed

as a unified state at the output UAE

(

Xi
j

)

(Equation (8)), which is the tensor product of the

rotated states of each qubit [19,22,71].

∣

∣

∣
Xi

AE

〉

=
2

⊗

i=1

UAE

(

Xi
j

)

(7)

UAE

(

Xi
j

)

=

[

cos Xi
j −i·sin Xi

j

−i·sin Xi
j cos Xi

j

]

(8)

The quantum node’s second layer is referred to as the Basic Entangling Layer, which

is designed to create entanglement between multiple qubits. Entanglement creates a

correlation between quantum systems, which is advantageous for quantum computing.

The Basic Entangling Layer used in this work is a simple and efficient structure that creates

entanglement with only CNOT gates.

To construct a quantum circuit based on a 2-qubit Basic Entangling Layer (Equation (9)),

the circuit generating an entangled vector XV is connected with a CNOT gate to create

entanglement between both qubits. In this layer, entanglement is applied to only one pair

of qubits and the quantum states of the system are correlated [19,22,71].

XV⟩ = CNOT.(R(θ1)⊗ R(θ2)) (9)

4. Experiment

In this study, an HQCDNN classification model for smart contract vulnerability detection

is used. The hardware and software tools we used in the study are a computer with Intel I9-

13900K CPU, 24 cores, 64 GB main memory, 6 TB SSD, Proxmox operation system, Anaconda

platform (open access), Python 3.12 programming language, Pandas 2.2.3 library, NumPy

2.2.4 library, Keras 2.14.0 library, Solcx 2.0.3 library, TensorFlow 2.14.0 library, Scikit-learn

(Sklearn) 1.6.1 library, PennyLane 0.40.0 library, and MongoDB 8.0 database, respectively. In

Appl. Sci. 2025, 15, 4037 12 of 24

the proposed model, firstly, opcode data of smart contracts are extracted and feature vectors

are created using the TF-IDF method.

The SmartBugs Wild dataset initially consisted of 47,587 smart contracts. However,

since the solcx library does not support Solidity versions 0.4.11 and earlier, contracts

using those versions were excluded, reducing the database to 45,877 contracts. Thus,

Solidity 0.4.11 and earlier make up approximately 3.5% of the entire dataset. In a 2017

announcement [73], the Solidity team addressed several security vulnerabilities found

in earlier versions. Today, versions prior to 0.4.11 are no longer officially supported.

Consequently, the analysis tools developed focus on Solidity 0.4.11 and later versions.

Furthermore, Wu et al. [3] used the same dataset and reported having filtered out

contracts featuring what they refer to as “premature” compiler versions, ultimately exper-

imenting on 24,957 contracts. This approach aligns with the aim of excluding outdated

versions to more accurately represent the current smart contract ecosystem. In line with

these considerations, our study also concentrates its analyses on Solidity ≥ 0.4.11.

Smart contract data are based on vulnerability types such as access control, arithmetic,

front-running, reentrancy, time manipulation, denial of service, and unchecked low-level

calls, which were flagged by dynamic and static analysis tools such as Mythril, Osiris,

Oyente, Securify, Slither, and SmartCheck. Table 2 presents only the vulnerabilities and

tools for which more than 1000 instances were identified. For the model to be effectively

trained, a dataset containing at least 1000 vulnerable smart contracts is required for each

tool and vulnerability type. This threshold plays a crucial role in enabling the model to

distinguish security vulnerabilities while enhancing its ability to learn different types of

weaknesses and generalize effectively.

Table 2. Tools with over 1000 vulnerabilities.

Tool
Access
Control

Arithmetic
Front

Running
Reentrancy

Time
Manipulation

Denial
of Service

Unchecked
Low Calls

Mythril 1057 18,220 1953 8343 - - -
Osiris - 13,409 - - 1432 - -

Oyente - 33,631 - - 1403 - -
Securify - - 7023 1915 - - -
Slither 2260 - - 8507 - 2484 -

Smartcheck - 6993 - - - 11,198 2484

There are 3665 smart contracts for which none of the analysis tools identified any

vulnerabilities. These contracts are considered non-vulnerable and are included in the

dataset as such to ensure balanced training for the models.

There are instances where multiple tools have detected the same type of vulnerability

in the same smart contract. In such cases, a vulnerability is considered for evaluation only

if it has been marked by multiple tools at least 1000 times within the same contract. Table 3

presents the number of vulnerabilities commonly identified by multiple tools.

For each tool, tool combination, and vulnerability type, a total of 25 different models

were trained. To prevent data imbalance, the number of vulnerable and non-vulnerable

instances was equalized. When constructing the training dataset, if the number of vulnera-

ble contracts exceeded 3665, a random subset of 3665 vulnerable contracts was selected for

inclusion. Conversely, if the number of vulnerable contracts was less than 3665, an equal

number of non-vulnerable contracts was chosen to maintain data balance. This approach

helps prevent learning errors caused by data imbalance during training, ensuring that the

models produce more generalizable results.

Appl. Sci. 2025, 15, 4037 13 of 24

Table 3. The number of vulnerabilities marked in common by the same tools.

Tool Arithmetic
Front

Running
Reentrancy

Denial
of Service

Mythril
Osiris

6624 - - -

Mythril
Oyente

17,117 - - -

Mythril
Securify

- 1028 - -

Mythril
Slither

- - 3910 -

Mythril
Smartcheck

23,513 - - -

Osiris
Oyente

12,622 - - -

Osiris
Smartcheck

1998 - - -

Oyente
Smartcheck

5237 - - -

Slither
Smartcheck

- - - 2171

Mythril
Osiris

Oyente
6284 - - -

Mythril
Oyente

Smartcheck
2135 - - -

Osiris
Oyente

Smartcheck
1815 - - -

TF-IDF-based feature vectors were created using contract texts and vulnerability

reports, and a model was trained.

The dataset was divided into 80% training and 20% testing. In the training phase,

TF-IDF features were provided to the proposed HQCDNN architecture, and the results

were compared. In the ML algorithm, we relied on “default” parameters. Our proposed

HQCDNN architecture consists of three basic layers:

The classical dense layer, where the features in the dataset are initially larger than the

size of the quantum circuits. The number of qubits used in a quantum circuit is 2 due to

current hardware and simulation constraints. Therefore, a dense layer is used to reduce the

size of the data to make it a suitable input to the quantum layer. At this stage, a non-linear

transformation of the data is achieved by applying the ReLU activation function. The

Quantum Circuit (Quantum Node) Layer is located at the center of the hybrid structure,

where a quantum circuit with learnable parameters is run. In the study, the PennyLane

library is used and the simulation device default.qubit is preferred with 2 qubits. This

device simulates the quantum circuit in software without access to the actual hardware.

The general flow of the quantum circuit is as follows:

- Angle Embedding: Low-dimensional features of classical data are encoded into qubits

as rotation angles with Rx, Ry, or Rz gates. Angle Encoding transforms classical

Appl. Sci. 2025, 15, 4037 14 of 24

data into quantum states by applying rotations on the Bloch Sphere, as shown in

Figure 3, with each data feature represented as a rotation on the quantum state

vector [22]. This approach enables classical data to be processed by quantum systems,

leveraging quantum properties like superposition and entanglement to enhance model

performance [23].

- Entangling Layer: By creating entanglement between qubits (e.g., gates such as CNOT),

as shown in Figure 4, hidden correlations in the data are blended with the superposi-

tion properties of quantum mechanics.

- Measurement: Classical output vectors are obtained by taking the Pauli-Z expecta-

tion value for each qubit. The learnable parameters are updated with the classical

backpropagation framework.

Figure 3. Bloch sphere [74].

Figure 4. Basic Entangling Layer quantum circuit [74].

Final Classification Layer: The resulting vectors from the quantum layer are transferred

back to a classical neural network layer. Here, a single-neuron dense layer performs binary

classification using sigmoid activation. This produces a final prediction of “vulnerable” or

“not vulnerable”.

5. Results

In this study, we analyzed the results of six vulnerability detection tools (Mythril,

Osiris, Oyente, Securify, Slither, Smartcheck) that examine seven vulnerability types (ac-

cess control, arithmetic, front-running, reentrancy, denial of service, time manipulation,

unchecked low calls). The results obtained in the study are presented as follows.

The classification metrics for access control vulnerability are presented in Table 4. The

classification results indicate that Slither consistently outperforms Mythril across all models.

The 2-qubit and 4-qubit models achieve higher accuracy and recall than the DNN model,

Appl. Sci. 2025, 15, 4037 15 of 24

suggesting that quantum-assisted architectures improve vulnerability detection. While the

4-qubit model provides slight performance gains over the 2-qubit model, the difference

is minimal.

Table 4. Classification metrics for access control vulnerability.

2 Qubit 4 Qubit DNN

Vulnerability Tool Acc Pre Re F1 Acc Pre Re F1 Acc Pre Re F1

Access Control
Mythril 0.915 0.941 0.888 0.913 0.917 0.941 0.893 0.916 0.872 0.870 0.879 0.874
Slither 0.924 0.903 0.949 0.926 0.920 0.928 0.912 0.920 0.854 0.840 0.874 0.857

For Mythril, both quantum models (2-qubit and 4-qubit) perform similarly, but the

DNN model shows lower accuracy and recall, reinforcing the effectiveness of quantum-

enhanced methods.

Overall, quantum models exhibit stronger precision–recall balance, making them more

effective in detecting access control vulnerabilities. The DNN model, while competitive,

lags behind, particularly in recall, suggesting a potential trade-off between classical and

quantum approaches.

Table 5 presents classification results for reentrancy vulnerabilities, where Slither again

shows the highest detection performance with an F1-score of 0.944 and an accuracy of 0.918.

Mythril and Securify also perform well, achieving F1-scores of 0.927 and 0.910, respectively.

Table 5. Classification metrics for reentrancy vulnerability.

2 Qubit 4 Qubit DNN

Vulnerability Tool Acc Pre Re F1 Acc Pre Re F1 Acc Pre Re F1

Reentrancy

Mythril 0.898 0.913 0.942 0.927 0.898 0.878 0.915 0.896 0.892 0.869 0.912 0.890
Slither 0.918 0.912 0.978 0.944 0.915 0.878 0.956 0.915 0.870 0.845 0.895 0.869
Securify 0.907 0.886 0.935 0.910 0.920 0.900 0.945 0.922 0.852 0.859 0.843 0.851
Mythril
Slither

0.940 0.932 0.950 0.941 0.943 0.923 0.963 0.942 0.896 0.872 0.918 0.894

When comparing model architectures, the 2-qubit and 4-qubit models outperform

the DNN model in nearly all cases. The 4-qubit model slightly improves recall values,

particularly for Mythril–Slither (0.963 recall, 0.943 accuracy), showing that increasing qubits

enhances detection.

The DNN model performs the weakest, especially in recall, which is crucial for identi-

fying reentrancy attacks. This suggests that quantum-enhanced architectures may provide

a more robust approach to detecting critical security threats like reentrancy.

Table 6 presents the classification results for arithmetic vulnerabilities, where tool

combinations outperform individual tools. The Osiris + Oyente + Smartcheck combina-

tion achieved the highest detection performance with 0.956 accuracy and 0.957 F1-score,

confirming that using multiple tools enhances vulnerability detection.

Among individual tools, Oyente performed the best (0.938 accuracy, 0.966 F1-score),

followed by Smartcheck (0.926 accuracy, 0.944 F1-score). Mythril had the lowest performance

(0.782 accuracy, 0.802 F1-score), showing that it struggles with arithmetic vulnerabilities.

When comparing model architectures, the 4-qubit model generally outperformed the

2-qubit and DNN models, especially in precision and recall. Quantum-enhanced models

performed significantly better than the DNN model, which had the lowest recall across all

tool configurations.

The results indicate that combining tools improves detection reliability, and quantum-

enhanced models provide superior classification performance compared to classical deep

Appl. Sci. 2025, 15, 4037 16 of 24

learning approaches. This pattern suggests that hybrid quantum–classical models may

offer a strong advantage for detecting arithmetic vulnerabilities.

Table 6. Classification metrics for arithmetic vulnerability.

2 Qubit 4 Qubit DNN

Vulnerability Tool Acc Pre Re F1 Acc Pre Re F1 Acc Pre Re F1

Arithmetic

Mythril 0.782 0.722 0.903 0.802 0.837 0.788 0.905 0.842 0.806 0.749 0.899 0.817
Osiris 0.928 0.923 0.990 0.955 0.911 0.906 0.911 0.908 0.891 0.878 0.898 0.888

Oyente 0.938 0.942 0.992 0.966 0.825 0.787 0.874 0.828 0.790 0.775 0.793 0.784
Smartcheck 0.926 0.943 0.945 0.944 0.908 0.901 0.908 0.905 0.864 0.829 0.902 0.864

Mythril
Osiris

0.928 0.933 0.961 0.947 0.917 0.887 0.948 0.916 0.898 0.856 0.948 0.900

Mythril
Oyente

0.907 0.911 0.983 0.946 0.840 0.803 0.885 0.842 0.805 0.741 0.913 0.818

Mythril
Smartcheck

0.927 0.916 0.938 0.927 0.832 0.930 0.934 0.932 0.854 0.858 0.844 0.851

Osiris
Smartcheck

0.954 0.937 0.976 0.956 0.964 0.966 0.963 0.965 0.934 0.922 0.951 0.936

Oyente
Smartcheck

0.938 0.942 0.952 0.947 0.940 0.939 0.936 0.938 0.872 0.895 0.831 0.862

Osiris
Oyente

Smartcheck
0.956 0.941 0.973 0.957 0.963 0.952 0.975 0.963 0.905 0.911 0.898 0.905

Mythril
Osiris

Oyente
0.935 0.940 0.959 0.950 0.921 0.893 0.949 0.920 0.896 0.862 0.933 0.896

Mythril
Oyente

Smartcheck
0.926 0.921 0.932 0.927 0.929 0.928 0.930 0.929 0.864 0.879 0.846 0.862

Table 7 presents the classification results for time manipulation vulnerabilities, where

Oyente achieved the highest performance with 0.943 accuracy and 0.944 F1-score, closely

followed by Osiris (0.937 accuracy, 0.938 F1-score). Slither showed slightly lower perfor-

mance (0.908 accuracy, 0.911 F1-score) but still maintained strong detection capabilities.

Table 7. Classification metrics for time manipulation vulnerability.

2 Qubit 4 Qubit DNN

Vulnerability Tool Acc Pre Re F1 Acc Pre Re F1 Acc Pre Re F1

Time
Manipulation

Osiris 0.937 0.909 0.968 0.938 0.934 0.903 0.968 0.934 0.887 0.825 0.975 0.894
Oyente 0.943 0.928 0.961 0.944 0.945 0.931 0.961 0.946 0.875 0.827 0.950 0.884
Slither 0.908 0.919 0.903 0.911 0.910 0.905 0.925 0.915 0.878 0.891 0.873 0.882

Comparing model architectures, the 4-qubit model slightly outperformed the 2-qubit

model, showing small but consistent gains in accuracy and F1-score. The DNN model, while

competitive, had the lowest precision and recall, indicating that classical deep learning

struggles more with time-based exploits.

These results suggest that quantum-enhanced models (especially with 4 qubits) pro-

vide more reliable detection of time manipulation vulnerabilities, and Oyente remains the

most effective tool for identifying such exploits.

Table 8 shows that Securify achieved the highest performance in detecting front-

running vulnerabilities (0.923 accuracy, 0.943 F1-score), making it the most effective tool for

identifying transaction order manipulation in DeFi applications. Among model architec-

tures, the 2-qubit model performed best, slightly outperforming the 4-qubit model, while

Appl. Sci. 2025, 15, 4037 17 of 24

the DNN model showed the weakest precision and F1-score, indicating higher false posi-

tives. These results highlight the advantage of quantum-enhanced models, particularly the

2-qubit approach, in detecting front-running vulnerabilities more accurately than classical

deep learning.

Table 8. Classification metrics for front-running vulnerability.

2 Qubit 4 Qubit DNN

Vulnerability Tool Acc Pre Re F1 Acc Pre Re F1 Acc Pre Re F1

Front
Running

Securify 0.923 0.920 0.967 0.943 0.902 0.885 0.916 0.900 0.848 0.804 0.904 0.851

Table 9 shows that Slither achieved the highest performance in detecting denial of

service vulnerabilities (0.930 accuracy, 0.932 F1-score), demonstrating its effectiveness in

identifying potential attack vectors. Among model architectures, the 4-qubit model slightly

outperformed the 2-qubit model, achieving 0.937 accuracy, while the DNN model had the

lowest performance, particularly in F1-score (0.888). These results reinforce the advantage

of quantum-enhanced models, with 4-qubit configurations providing the most reliable

detection for denial of service vulnerabilities.

Table 9. Classification metrics for denial of service vulnerability.

2 Qubit 4 Qubit DNN

Vulnerability Tool Acc Pre Re F1 Acc Pre Re F1 Acc Pre Re F1

Denial
Service

Slither 0.930 0.946 0.917 0.932 0.937 0.960 0.917 0.938 0.883 0.890 0.886 0.888

Table 10 shows that Slither achieved the highest performance in detecting unchecked

low call vulnerabilities (0.928 accuracy, 0.954 F1-score), outperforming Smartcheck (0.876 ac-

curacy, 0.880 F1-score). Among model architectures, the 2-qubit model performed best,

while the 4-qubit model showed slightly lower accuracy (0.915) but maintained stable recall.

The DNN model had the weakest performance, particularly in recall, indicating a higher

risk of missed detections. These results highlight the effectiveness of quantum-enhanced

models, with Slither proving to be the most reliable tool for detecting unchecked external

call vulnerabilities.

Table 10. Classification metrics for unchecked low call vulnerability.

2 Qubit 4 Qubit DNN

Vulnerability Tool Acc Pre Re F1 Acc Pre Re F1 Acc Pre Re F1

Unchecked
low call

Slither 0.928 0.925 0.986 0.954 0.915 0.898 0.929 0.914 0.887 0.867 0.904 0.885
Smartcheck 0.876 0.891 0.869 0.880 0.894 0.892 0.908 0.900 0.823 0.845 0.809 0.827

To statistically validate the observed performance improvement of HQCDNNs, we

focused on the arithmetic vulnerability detection task using the best-performing model

configuration: a 2-qubit HQCDNN model trained on the combined output of the Osiris,

Oyente, and Smartcheck tools. This specific setup outperformed all other 2-qubit con-

figurations, and the same data were also used to train a classical DNN for comparison.

Both models were evaluated using 10-fold cross-validation. Normality was tested via the

Shapiro–Wilk test, which indicated a non-normal distribution for the DNN accuracy scores

(p = 0.0266) and a normal distribution for the HQCDNN results (p = 0.7830). Given the

Appl. Sci. 2025, 15, 4037 18 of 24

non-normality of DNN results, we applied the non-parametric Wilcoxon Signed-Rank

test to compare the models. The resulting p-value (p = 0.0020) confirms that the observed

accuracy gain in HQCDNN is statistically significant and unlikely to be due to random

variation. These results demonstrate that the performance improvement achieved through

quantum integration is both substantial and statistically meaningful.

6. Discussion

The results of this study demonstrate the potential of HQCDNNs in the detection of

vulnerabilities in smart contracts. Compared to classical machine learning models and deep

learning models, HQCDNNs offer notable improvements in accuracy and efficiency, partic-

ularly in the classification of various vulnerability types such as access control, arithmetic,

front-running, reentrancy, time manipulation, denial of service, and unchecked low calls.

The integration of quantum computing principles into traditional deep learning methods

allows for better pattern recognition within EVM opcode structures.

The comparative performance of the 2-qubit and 4-qubit HQCDNN models provides

insight into the contribution of quantum layers in our framework. In our experiments, both

quantum-enhanced models consistently outperformed the conventional DNN baseline

across multiple vulnerability types, underlining the efficacy of integrating quantum circuits

with deep learning. The 4-qubit HQCDNN variant achieved slightly higher recall and F1-

scores than the 2-qubit HQCDNNs (particularly for critical vulnerabilities like reentrancy

and time manipulation), suggesting that increasing the number of qubits can enhance the

model’s ability to capture complex patterns in smart contract code.

This improvement is attributed to the richer expressiveness afforded by additional

qubits: more qubits allow the quantum layer to encode and entangle more features simulta-

neously, leading to better pattern recognition within the EVM opcode sequences. Notably,

the performance gap between 4-qubit and 2-qubit models was relatively small for most

metrics (e.g., only a minor increase in recall), indicating that even a modest 2-qubit quan-

tum circuit is sufficient to confer a significant performance boost over classical methods.

This finding is encouraging, as it shows that useful quantum advantages can be obtained

without a large quantum system, which is practical given current hardware limitations.

However, one key drawback observed in our experiments was the increased com-

putational cost associated with the 4-qubit HQCDNN model. The training and inference

times for the 4-qubit model were approximately 2 to 3 times longer than those for the

2-qubit variant. This is primarily due to the increased complexity of simulating larger

quantum circuits, where the computational overhead grows exponentially with the number

of qubits. While this longer runtime is expected in quantum-enhanced models, it raises

practical concerns regarding scalability, especially when running on quantum simulators

or near-term hardware with limited processing capabilities. Given that the performance

gains from 4 qubits were only incremental compared to the 2-qubit model, the trade-off

between accuracy and efficiency must be carefully considered in real-world applications.

This hybrid synergy explains the superior accuracy and balanced precision–recall of

our HQCDNN models, highlighting that even a small quantum component can substan-

tially contribute to vulnerability detection performance. At the same time, the slight edge of

the 4-qubit model underscores a trend that further quantum capacity can yield incremental

gains, a consideration that points toward future research with higher qubit counts once

technical challenges (like noise and circuit depth limitations) are mitigated.

Other studies have used the smart wild dataset and different datasets. However, due

to the differences in the tools they use, the number of samples they use in their studies

may vary. Similarly, the types of vulnerabilities they study may have similarities and

differences. Considering these findings, comparative results are presented in Table 11.

Appl. Sci. 2025, 15, 4037 19 of 24

According to these results, our HQCDNN model achieved an accuracy range of 96.4–78.2%

and an F1-score range of 96.6–80.2%. This performance is superior to several classical

models and deep learning models, such as those proposed by Wu et al. (2022) with a

maximum accuracy of 93.36% and Zhang et al. (2022) at 93.30%. Notably, our model

outperformed deep learning-based solutions such as that by Deng et al. (2023), which had

a lower F1-score range of 82–42%. Additionally, our method demonstrated comparable or

better performance than many studies; however, it did not exceed Sendner et al. (2023),

whose Graph Neural Network model achieved an accuracy of 98.33% and an F1-score of

90.74%. This is because Sendner et al. did not consider only the reentrancy vulnerability in

their study. They focused on the detection of call, send, and transfer vulnerabilities, which

are subtypes of the reentrancy vulnerability.

Table 11. Comparative analysis with other studies.

Studies Dataset Method Vulnerabilities Accuracy F1-Score

Liu et al., 2021 [43] ESC & VSC
Attentive

Multi-Encoder
Reentrancy, Timestamp

Dependence, Infinite Loop
90.19–80.32 87.94–78.8

Zhang et al., 2022 [48]
SmartBugs Wild

Dataset
CBGRU (based on a

deep learning)

Callstack Depth Attack,
Integer Overflow, Integer
Underflow, Reentrancy,

Timestamp Dependency,
Infinite Loop

93.30–85.43 93.50–85.28

Wu et al., 2023 [3]
SmartBugs Wild

Dataset SBcurated

Hybrid Attention
Mechanism (based
on deep learning)

Reentrancy, Arithmetic
Vulnerability, Unchecked
Return Value, Timestamp

Dependency, and Tx.origin

93.36–82.19 94.4–75.57

Li et al., 2023 [47] Smartbug-SolidiFI Deep Learning
Reentrancy, Timestamp
Dependency, Tx.origin,

Integer Overflow
90.96–83.58 90.50–81.41

Sendner et al., 2023 [44]
Peculiar (SmartBugs

Wild Dataset)
Graph Neural

Networks
Reentrancy Subtypes: Call,

Send, and Transfer
98.33–90.74 91.2–87.21

Wang et al., 2023 [49] Etherscan.io
Triplet Loss
and BiLSTM

Arithmetic, Reentrancy,
UnChecked Calls,

Inconsistent Access Control
93.25–88.21 90.89–85.46

Deng et al., 2023 [50] ScrawID dataset
Deep Learning and

Multimodal
Decision Fusion

Arithmetic, Reentrancy,
Transaction Order

Dependence,
Ethernet Locking

91.6–89.5 82–42

Guo et al., 2024 [75]
SmartBugs Wild

dataset, ESC dataset,
Qian et al. Dataset

MultiScale Encoder
Reentrancy, Timestamp

Dependency, Infinite Loop
92.13–86.94 91.04–86.21

Bani-Hani et al., 2024 [51]
ScrawID dataset,

Slither dataset

Deep Learning
(Vgg19,

Resnet50, etc.)
Binary Classification 84.12–79.05 86.6–77.08

Chen 2024 [45] ESC & VSC
AFPNet (based on

deep learning)
Reentrancy, Timestamp

Dependency, Infinite Loop
95.85–92.02

Our Study
SmartBugs Wild

Dataset
HQCDNNs

Access Control, Arithmetic,
Front-Running, Reentrancy,
Time Manipulation, Denial

Service and Unchecked
Low Calls

96.4–78.2 96.6–80.2

Overall, these results reinforce the notion that quantum–classical hybrid models can

offer notable improvements in analysis tasks, with our study specifically demonstrating

how a carefully designed 2-qubit or 4-qubit quantum layer can enhance smart contract

vulnerability detection beyond what is achievable with classical deep learning alone. By

comparing these variants, we also identify a trade-off: classical DNN models are easier to

implement on today’s hardware but may miss subtle vulnerability patterns (reflected in

lower recall), whereas quantum-augmented models capture those patterns more effectively

Appl. Sci. 2025, 15, 4037 20 of 24

at the cost of additional computational complexity and the need for quantum resources.

This insight is crucial for guiding the development of next-generation security analysis

tools that balance performance gains against practical feasibility.

The results presented in this study indicate that HQCDNNs can bridge this gap

by leveraging quantum properties such as superposition and entanglement to improve

model generalization and training efficiency. Specifically, our model achieved high accu-

racy and F1-scores, surpassing many classical approaches, particularly in reentrancy and

arithmetic vulnerabilities.

7. Conclusions

This study introduces an innovative method for identifying smart contract vulnerabili-

ties through the integration of HQCDNNs. The proposed model leverages the principles

of quantum computing, specifically superposition and entanglement, to enhance feature

extraction and classification efficiency. Unlike traditional deep learning and ML models,

the HQCDNN framework combines classical neural networks with quantum circuits to

improve detection accuracy across various vulnerability types, including access control,

arithmetic, front-running, reentrancy, time manipulation, denial of service, and unchecked

low calls.

The research utilizes the SmartBugs Wild Dataset, a comprehensive dataset containing

real-world Ethereum smart contracts analyzed for security vulnerabilities. The feature

extraction process is based on TF-IDF and 2-g analysis, allowing the model to capture

significant opcode patterns.

The findings from the experiments indicate that the HQCDNN model attains higher

accuracy compared to various classical and deep learning-based models. The integration of

quantum computing principles, such as superposition and entanglement, enabled better

pattern recognition in opcode structures, leading to improved accuracy and recall across

various vulnerability types. Even with only 2 qubits, the HQCDNN model achieved supe-

rior results compared to classical deep learning, proving that a small quantum component

can provide tangible benefits. The 4-qubit model offered additional improvements, particu-

larly in complex vulnerability scenarios, though the gains were incremental rather than

dramatic. One of the most notable challenges was the increased computational cost of

the 4-qubit model, which took approximately 2 to 3 times longer to train and infer results

compared to the 2-qubit version. This raises concerns about scalability, particularly in

real-time or resource-constrained applications. While quantum hardware advancements

may mitigate these issues in the future, current limitations in quantum processing power

and noise sensitivity remain obstacles to large-scale implementation. The model’s perfor-

mance is particularly notable in detecting reentrancy and arithmetic vulnerabilities, which

are among the most exploited security risks in blockchain applications. The comparative

analysis against existing approaches highlights the potential of hybrid quantum–classical

models in enhancing security analysis within the Ethereum ecosystem.

Beyond smart contract vulnerability detection, HQCDNNs hold significant potential in

various fields requiring high computational efficiency. In healthcare, they can enhance med-

ical imaging analysis and genomic data processing, leading to more accurate diagnostics

and personalized treatments. In cybersecurity, HQCDNNs can be leveraged for advanced

threat detection and anomaly identification, improving real-time response to cyberattacks.

Additionally, in finance, they can optimize risk assessment models and fraud detection

systems by analyzing complex transaction patterns more efficiently than classical mod-

els. These applications highlight the versatility of hybrid quantum–classical approaches,

demonstrating their value in solving complex problems across multiple industries.

Appl. Sci. 2025, 15, 4037 21 of 24

Future studies may explore evaluating the model on actual quantum hardware and

training it with larger and more diverse datasets. Moreover, enhancing the model for

real-time analysis, ensuring its compatibility with low-resource devices, and incorporat-

ing multimodal analyses (e.g., opcode patterns, transaction behaviors) could broaden

its applicability. Furthermore, evaluating the model’s robustness against adversarial at-

tacks and refining its security capabilities could be key steps for future advancements in

blockchain security.

Author Contributions: Conceptualization, E.U.K. and S.D.; methodology, E.U.K. and S.D.; formal

analysis, E.U.K., S.D. and M.T.; original draft preparation, E.U.K., S.D. and M.T.; writing—review

and editing, E.U.K., S.D. and M.T.; administration, E.U.K.; supervision, E.U.K. and M.T. All authors

have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the

article; further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://www.klausnordby.com/bitcoin/

Bitcoin_Whitepaper_Document_HD.pdf (accessed on 13 November 2024).

2. Buterin, V. A Next-Generation Smart Contract and Decentralized Application Platform. White Pap. 2014, 3, 1–36.

3. Wu, H.; Dong, H.; He, Y.; Duan, Q. Smart Contract Vulnerability Detection Based on Hybrid Attention Mechanism Model. Appl.

Sci. 2023, 13, 770. [CrossRef]

4. Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.-N. Ethereum Smart Contract Analysis Tools: A Systematic Review. IEEE

Access 2022, 10, 57037–57062. [CrossRef]

5. Wood, G. Ethereum: A Secure Decentralised Generalised Transaction Ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.

6. Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An Overview of Blockchain Technology: Architecture, Consensus, and Future

Trends. In Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress), Honolulu, HI, USA, 25–30 June

2017; IEEE: Piscataway, NJ, USA, 2017; pp. 557–564.

7. Antonopoulos, A.M.; Wood, G. Mastering Ethereum: Building Smart Contracts and Dapps; O’reilly Media: Sebastopol, CA, USA, 2018.

8. Hirai, Y. Defining the Ethereum Virtual Machine for Interactive Theorem Provers. In Proceedings of the Financial Cryptography

and Data Security, Sliema, Malta, 3–7 April 2017; Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y.A., Teague, V., Bracciali,

A., Sala, M., Pintore, F., Jakobsson, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 520–535.

9. Szabo, N. Formalizing and Securing Relationships on Public Networks. First Monday 1997. Available online: https://firstmonday.

org/ojs/index.php/fm/article/view/548 (accessed on 13 November 2024). [CrossRef]

10. Luu, L.; Chu, D.-H.; Olickel, H.; Saxena, P.; Hobor, A. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; Association for Computing

Machinery: New York, NY, USA, 2016; pp. 254–269.

11. Atzei, N.; Bartoletti, M.; Cimoli, T. A Survey of Attacks on Ethereum Smart Contracts (SoK). In Principles of Security and Trust;

Maffei, M., Ryan, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10204,

pp. 164–186. ISBN 978-3-662-54454-9.

12. Kalra, S.; Goel, S.; Dhawan, M.; Sharma, S. Zeus: Analyzing Safety of Smart Contracts. In Proceedings of the Ndss, San Diego,

CA, USA, 18–21 February 2018; pp. 1–12.

13. Team, C. Wormhole Hack: Lessons From The Wormhole Exploit. 2022. Available online: https://www.chainalysis.com/blog/

wormhole-hack-february-2022/ (accessed on 13 March 2025).

14. Hackers Steal More than $600 Million from Maker of Axie Infinity. Available online: https://www.nbcnews.com/tech/tech-

news/hackers-steal-600-million-maker-axie-infinity-rcna22031 (accessed on 13 March 2025).

15. Wu, Z.; Li, S.; Wang, B.; Liu, T.; Zhu, Y.; Zhu, C.; Hu, M. Detecting Vulnerabilities in Ethereum Smart Contracts with Deep

Learning. In Proceedings of the 2022 4th International Conference on Data Intelligence and Security (ICDIS), Shenzhen, China,

24–26 August 2022; pp. 55–60.

https://www.klausnordby.com/bitcoin/Bitcoin_Whitepaper_Document_HD.pdf
https://www.klausnordby.com/bitcoin/Bitcoin_Whitepaper_Document_HD.pdf
https://doi.org/10.3390/app13020770
https://doi.org/10.1109/ACCESS.2022.3169902
https://firstmonday.org/ojs/index.php/fm/article/view/548
https://firstmonday.org/ojs/index.php/fm/article/view/548
https://doi.org/10.5210/fm.v2i9.548
https://www.chainalysis.com/blog/wormhole-hack-february-2022/
https://www.chainalysis.com/blog/wormhole-hack-february-2022/
https://www.nbcnews.com/tech/tech-news/hackers-steal-600-million-maker-axie-infinity-rcna22031
https://www.nbcnews.com/tech/tech-news/hackers-steal-600-million-maker-axie-infinity-rcna22031

Appl. Sci. 2025, 15, 4037 22 of 24

16. Feng, Q.; He, D.; Zeadally, S.; Khan, M.K.; Kumar, N. A Survey on Privacy Protection in Blockchain System. J. Netw. Comput. Appl.

2019, 126, 45–58. [CrossRef]

17. Zhuang, Y.; Liu, Z.; Qian, P.; Liu, Q.; Wang, X.; He, Q. Smart Contract Vulnerability Detection Using Graph Neural Networks. In

Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, Yokohama,

Japan, 7–15 January 2021; pp. 3283–3290.

18. Durieux, T.; Ferreira, J.F.; Abreu, R.; Cruz, P. Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts.

In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul, Republic of Korea, 27 June–19

July 2020; pp. 530–541.

19. Katı, B.E.; Küçüksille, E.U.; Sarıman, G. Enhancing Deepfake Detection Through Quantum Transfer Learning and Class-Attention

Vision Transformer Architecture. Appl. Sci. 2025, 15, 525. [CrossRef]

20. Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum Machine Learning. Nature 2017, 549, 195–202.

[CrossRef]

21. Dunjko, V.; Briegel, H.J. Machine Learning & Artificial Intelligence in the Quantum Domain: A Review of Recent Progress. Rep.

Prog. Phys. 2018, 81, 074001.

22. Kashif, M.; Al-Kuwari, S. Design Space Exploration of Hybrid Quantum–Classical Neural Networks. Electronics 2021, 10, 2980.

[CrossRef]

23. Kea, K.; Kim, D.; Huot, C.; Kim, T.-K.; Han, Y. A Hybrid Quantum-Classical Model for Stock Price Prediction Using Quantum-

Enhanced Long Short-Term Memory. Entropy 2024, 26, 954. [CrossRef] [PubMed]

24. Schuld, M.; Petruccione, F. Quantum Information. In Supervised Learning with Quantum Computers; Schuld, M., Petruccione, F.,

Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 75–125. ISBN 978-3-319-96424-9.

25. He, D.; Wu, R.; Li, X.; Chan, S.; Guizani, M. Detection of Vulnerabilities of Blockchain Smart Contracts. IEEE Internet Things J.

2023, 10, 12178–12185. [CrossRef]

26. Wu, H.; Zhang, Z.; Wang, S.; Lei, Y.; Lin, B.; Qin, Y.; Zhang, H.; Mao, X. Peculiar: Smart Contract Vulnerability Detection Based

on Crucial Data Flow Graph and Pre-Training Techniques. In Proceedings of the 2021 IEEE 32nd International Symposium on

Software Reliability Engineering (ISSRE), Wuhan, China, 25–28 October 2021; pp. 378–389.

27. JJ, L.; Singh, K. Enhancing Oyente: Four New Vulnerability Detections for Improved Smart Contract Security Analysis. Int. J. Inf.

Tecnol. 2024, 16, 3389–3399. [CrossRef]

28. Steinhöfel, D. Symbolic Execution: Foundations, Techniques, Applications, and Future Perspectives. In The Logic of Software. A

Tasting Menu of Formal Methods: Essays Dedicated to Reiner Hähnle on the Occasion of His 60th Birthday; Ahrendt, W., Beckert, B.,

Bubel, R., Johnsen, E.B., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 446–480. ISBN 978-3-031-08166-8.

29. Consensys Mythril. Available online: https://github.com/ConsenSys/mythril (accessed on 12 August 2023).

30. Nikolić, I.; Kolluri, A.; Sergey, I.; Saxena, P.; Hobor, A. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. In

Proceedings of the 34th Annual Computer Security Applications Conference, San Juan, PR, USA, 3–7 December 2018; ACM: New

York, NY, USA, 2018; pp. 653–663.

31. Tsankov, P.; Dan, A.; Drachsler-Cohen, D.; Gervais, A.; Bünzli, F.; Vechev, M. Securify: Practical Security Analysis of Smart

Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON,

Canada, 15–19 October 2018; ACM: New York, NY, USA, 2018; pp. 67–82.

32. Feist, J.; Grieco, G.; Groce, A. Slither: A Static Analysis Framework For Smart Contracts. In Proceedings of the 2019 IEEE/ACM

2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), Montreal, QC, Canada, 27

May 2019; pp. 8–15.

33. Pani, S.; Nallagonda, H.V.; Prakash, S.; Vigneswaran, R.; Medicherla, R.K.; Rajan, M.A. Smart Contract Fuzzing for Enterprises:

The Language Agnostic Way. In Proceedings of the 2022 14th International Conference on COMmunication Systems & NETworkS

(COMSNETS), Bangalore, India, 4–8 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6.

34. Jiang, B.; Liu, Y.; Chan, W.K. ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering, Montpellier, France, 3–7 September 2018; Association

for Computing Machinery: New York, NY, USA, 2018; pp. 259–269.

35. He, J.; Balunović, M.; Ambroladze, N.; Tsankov, P.; Vechev, M. Learning to Fuzz from Symbolic Execution with Application to

Smart Contracts. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK,

11–15 November 2019; ACM: New York, NY, USA, 2019; pp. 531–548.

36. Wang, X.; Sun, J.; Hu, C.; Yu, P.; Zhang, B.; Hou, D. EtherFuzz: Mutation Fuzzing Smart Contracts for TOD Vulnerability Detection.

Wirel. Commun. Mob. Comput. 2022, 2022, 1565007. [CrossRef]

37. Nguyen, T.D.; Pham, L.H.; Sun, J.; Lin, Y.; Minh, Q.T. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts. In

Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul, Republic of Korea, 27 June–19 July

2020; ACM: New York, NY, USA, 2020; pp. 778–788.

https://doi.org/10.1016/j.jnca.2018.10.020
https://doi.org/10.3390/app15020525
https://doi.org/10.1038/nature23474
https://doi.org/10.3390/electronics10232980
https://doi.org/10.3390/e26110954
https://www.ncbi.nlm.nih.gov/pubmed/39593899
https://doi.org/10.1109/JIOT.2023.3241544
https://doi.org/10.1007/s41870-024-01909-8
https://github.com/ConsenSys/mythril
https://doi.org/10.1155/2022/1565007

Appl. Sci. 2025, 15, 4037 23 of 24

38. Murray, Y.; Anisi, D.A. Survey of Formal Verification Methods for Smart Contracts on Blockchain. In Proceedings of the 2019 10th

IFIP International Conference on New Technologies, Mobility and Security (NTMS), Canary Islands, Spain, 24–26 June 2019;

pp. 1–6.

39. Hildenbrandt, E.; Saxena, M.; Rodrigues, N.; Zhu, X.; Daian, P.; Guth, D.; Moore, B.; Park, D.; Zhang, Y.; Stefanescu, A. Kevm:

A Complete Formal Semantics of the Ethereum Virtual Machine. In Proceedings of the 2018 IEEE 31st Computer Security

Foundations Symposium (CSF), Oxford, UK, 9–12 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 204–217.

40. Mavridou, A.; Laszka, A. Designing Secure Ethereum Smart Contracts: A Finite State Machine Based Approach. In Financial

Cryptography and Data Security; Meiklejohn, S., Sako, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 523–540.

41. Amani, S.; Bégel, M.; Bortin, M.; Staples, M. Towards Verifying Ethereum Smart Contract Bytecode in Isabelle/HOL. In

Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs, Los Angeles, CA, USA, 8–9

January 2018; ACM: New York, NY, USA, 2018; pp. 66–77.

42. Tikhomirov, S.; Voskresenskaya, E.; Ivanitskiy, I.; Takhaviev, R.; Marchenko, E.; Alexandrov, Y. SmartCheck: Static Analysis of

Ethereum Smart Contracts. In Proceedings of the 1st International Workshop on Emerging Trends in Software Engineering for

Blockchain, Gothenburg, Sweden, 27 May–3 June 2018; ACM: New York, NY, USA, 2018; pp. 9–16.

43. Liu, Z.; Qian, P.; Wang, X.; Zhu, L.; He, Q.; Ji, S. Smart Contract Vulnerability Detection: From Pure Neural Network to

Interpretable Graph Feature and Expert Pattern Fusion. In Proceedings of the Thirtieth International Joint Conference on Artificial

Intelligence, Montreal, QC, Canada, 19–27 August 2021; pp. 2751–2759.

44. Sendner, C.; Zhang, R.; Hefter, A.; Dmitrienko, A.; Koushanfar, F. G-Scan: Graph Neural Networks for Line-Level Vulnerability

Identification in Smart Contracts. arXiv 2023, arXiv:2307.08549.

45. Chen, Y. Vulnerability-Hunter: An Adaptive Feature Perception Attention Network for Smart Contract Vulnerabilities. arXiv

2024, arXiv:2407.05318.

46. Qian, P.; Liu, Z.; He, Q.; Huang, B.; Tian, D.; Wang, X. Smart Contract Vulnerability Detection Technique: A Survey. arXiv 2022,

arXiv:2209.05872.

47. Li, J.; Lu, G.; Gao, Y.; Gao, F. A Smart Contract Vulnerability Detection Method Based on Multimodal Feature Fusion and Deep

Learning. Mathematics 2023, 11, 4823. [CrossRef]

48. Zhang, L.; Chen, W.; Wang, W.; Jin, Z.; Zhao, C.; Cai, Z.; Chen, H. Cbgru: A Detection Method of Smart Contract Vulnerability

Based on a Hybrid Model. Sensors 2022, 22, 3577. [CrossRef]

49. Wang, M.; Xie, Z.; Wen, X.; Li, J.; Zhou, K. Ethereum Smart Contract Vulnerability Detection Model Based on Triplet Loss and

BiLSTM. Electronics 2023, 12, 2327. [CrossRef]

50. Deng, W.; Wei, H.; Huang, T.; Cao, C.; Peng, Y.; Hu, X. Smart Contract Vulnerability Detection Based on Deep Learning and

Multimodal Decision Fusion. Sensors 2023, 23, 7246. [CrossRef] [PubMed]

51. Bani-Hani, R.M.; Shatnawi, A.S.; Al-Yahya, L. Vulnerability Detection and Classification of Ethereum Smart Contracts Using

Deep Learning. Future Internet 2024, 16, 321. [CrossRef]

52. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010.

53. Leng, J.; Zhou, M.; Zhao, J.L.; Huang, Y.; Bian, Y. Blockchain Security: A Survey of Techniques and Research Directions. IEEE

Trans. Serv. Comput. 2022, 15, 2490–2510. [CrossRef]

54. Suryotrisongko, H.; Musashi, Y. Evaluating Hybrid Quantum-Classical Deep Learning for Cybersecurity Botnet DGA Detection.

Procedia Comput. Sci. 2022, 197, 223–229. [CrossRef]

55. Qaiser, S.; Ali, R. Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. Int. J. Comput. Appl. 2018, 181,

25–29. [CrossRef]

56. Trstenjak, B.; Mikac, S.; Donko, D. KNN with TF-IDF Based Framework for Text Categorization. Procedia Eng. 2014, 69, 1356–1364.

[CrossRef]

57. Ou, J.; Chen, Y.; Tian, W. Lossless Acceleration of Large Language Model via Adaptive N-Gram Parallel Decoding. arXiv 2024,

arXiv:2404.08698.

58. Schuld, M.; Sinayskiy, I.; Petruccione, F. An Introduction to Quantum Machine Learning. Contemp. Phys. 2015, 56, 172–185.

[CrossRef]

59. Grover, L.K. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing—STOC ’96, Philadelphia, PA, USA, 22–24 May 1996; ACM Press: New York, NY, USA,

1996; pp. 212–219.

60. Hidary, J.D. Quantum Computing: An Applied Approach; Springer International Publishing: Cham, Switzerland, 2021;

ISBN 978-3-030-83273-5.

61. Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett. 2009, 103, 150502.

[CrossRef]

62. Theis, T.N.; Wong, H.-S.P. The End of Moore’s Law: A New Beginning for Information Technology. Comput. Sci. Eng. 2017, 19,

41–50. [CrossRef]

https://doi.org/10.3390/math11234823
https://doi.org/10.3390/s22093577
https://doi.org/10.3390/electronics12102327
https://doi.org/10.3390/s23167246
https://www.ncbi.nlm.nih.gov/pubmed/37631785
https://doi.org/10.3390/fi16090321
https://doi.org/10.1109/TSC.2020.3038641
https://doi.org/10.1016/j.procs.2021.12.135
https://doi.org/10.5120/ijca2018917395
https://doi.org/10.1016/j.proeng.2014.03.129
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1109/MCSE.2017.29

Appl. Sci. 2025, 15, 4037 24 of 24

63. Montanaro, A. Quantum Algorithms: An Overview. NPJ Quantum Inf. 2016, 2, 1–8. [CrossRef]

64. Schuld, M.; Petruccione, F. Supervised Learning with Quantum Computers; Quantum Science and Technology; Springer International

Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-96423-2.

65. Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised Learning with

Quantum-Enhanced Feature Spaces. Nature 2019, 567, 209–212.

66. Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.; Buell, D.A. Quantum

Supremacy Using a Programmable Superconducting Processor. Nature 2019, 574, 505–510. [CrossRef] [PubMed]

67. Benedetti, M.; Lloyd, E.; Sack, S.; Fiorentini, M. Parameterized Quantum Circuits as Machine Learning Models. Quantum Sci.

Technol. 2019, 4, 043001. [CrossRef]

68. McClean, J.R.; Boixo, S.; Smelyanskiy, V.N.; Babbush, R.; Neven, H. Barren Plateaus in Quantum Neural Network Training

Landscapes. Nat. Commun. 2018, 9, 4812. [CrossRef]

69. Mitarai, K.; Negoro, M.; Kitagawa, M.; Fujii, K. Quantum Circuit Learning. Phys. Rev. A 2018, 98, 032309. [CrossRef]

70. Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.

Variational Quantum Algorithms. Nat. Rev. Phys. 2021, 3, 625–644. [CrossRef]

71. Qml.BasicEntanglerLayers. Available online: https://docs.pennylane.ai/en/stable/code/api/pennylane.BasicEntanglerLayers.

html (accessed on 20 March 2025).

72. Paayas, P.; Sridevi, S.; Kanimozhi, T.; Valliammai, M.; Mohanraj, J.; Kumar, V.; Bakiya, A.; Rithani, M. Hybrid Classical

Quantum Neural Network Based Classification of Photonic Band Gap Crystal Structure Defects. In Proceedings of the 2023 14th

International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 6–8 July 2023;

IEEE: Piscataway, NJ, USA, 2023; pp. 1–5.

73. Solidity 0.4.11 Release Announcement. Available online: https://soliditylang.org/blog/2017/05/03/solidity-0.4.11-release-

announcement/ (accessed on 20 March 2025).

74. Filatov, S.; Auzinsh, M. Towards Two Bloch Sphere Representation of Pure Two-Qubit States and Unitaries. Entropy 2024, 26, 280.

[CrossRef]

75. Guo, J.; Lu, L.; Li, J. Smart Contract Vulnerability Detection Based on Multi-Scale Encoders. Electronics 2024, 13, 489. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/s41586-019-1666-5
https://www.ncbi.nlm.nih.gov/pubmed/31645734
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1038/s42254-021-00348-9
https://docs.pennylane.ai/en/stable/code/api/pennylane.BasicEntanglerLayers.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.BasicEntanglerLayers.html
https://soliditylang.org/blog/2017/05/03/solidity-0.4.11-release-announcement/
https://soliditylang.org/blog/2017/05/03/solidity-0.4.11-release-announcement/
https://doi.org/10.3390/e26040280
https://doi.org/10.3390/electronics13030489

	Introduction
	Literature Review
	Materials and Methods
	Dataset
	Data Preprocessing and Feature Extraction
	Quantum Artificial Neural Networks
	Hybrid Quantum–Classical Deep Neural Networks

	Experiment
	Results
	Discussion
	Conclusions
	References

