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Ground-based muon detectors are sensitive to anisotropies of cosmic rays at approximately 50
GeV and have been operated with great stability for over 10 years. The anisotropy is controlled by
the space environment in various time scales and is an attractive target of data-driven approaches.
We report on unsupervised machine-learning of anisotropy data accumulated by Global Muon
Detector Network (GMDN). It will provide a comprehensive and statistical picture of cosmic-ray
anisotropies excluding biases such as data selections relying on a visual inspection.
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1. Introduction

Cosmic-ray anisotropy is an essential and attractive subject of cosmic-ray physics, interplane-
tary physics, and heliospheric physics as it is a manifestation of cosmic-ray propagation processes in
the space environment. Diverse scientific phenomena in various time scales, such as interplanetary
shocks (IP-shocks) and cyclic variations of the heliosphere, are involved in cosmic-ray anisotropy.
A comprehensive study covering these variations is necessary to establish a statistical picture and
approach a universal mechanism or physics behind the anisotropy. However, most of the previous
works focus on a special subject, such as IP-shocks or an 11-year cycle variation of the heliosphere,
separately. Such an approach can overlook a scientific finding because the space environment is a
complex system where multiple phenomena evolve in parallel. Additionally, typical IP-shock stud-
ies are mainly case studies on limited events arbitrarily selected, while a small number of studies
challenge establishing a statistical picture of IP-shock events[1–3].

Data mining is expected to be a powerful approach for an inclusive survey of diverse phenomena
in anisotropy on a mathematical basis. It will lead to a statistically reliable picture and a discovery
of a new profile of cosmic-ray anisotropy. This approach is also expected to be useful for reducing
dimensions of anisotropy. Its multidimensional quantities interacting with each other via phase-
space dynamics[4] have caused difficulty in establishing a physical interpretation of variation of
anisotropy.

Global Muon Detector Network (GMDN) started its operation with two-hemisphere detectors
at Nagoya (Japan) and Hobart (Australia) in 1992. SãoMartinho da Serra (Brazil) and Kuwait
detectors were installed in 2006. GMDN achieved its initial completion in 2016 by expanding
Kuwait detector to a comparable detection area (25 m2) with Nagoya detector (36 m2).

This study attempts an inclusive survey of anisotropy for both long- and short-term varia-
tions, based on unsupervised machine-learning. Harmonic components of anisotropy derived from
GMDN data[5] are used as sample data. Preliminary results demonstrate the advantages of our
approach.

2. Preparation of datasets

Muon counting-rate can be modeled in terms of spherical harmonics, as[6]

𝐼𝑖, 𝑗 (𝑡) ≈
2∑︁

𝑛=0

𝑛∑︁
𝑚=0

{ 𝜉𝑚𝑐
𝑛 (𝑡)

(
𝑐𝑚𝑛𝑖, 𝑗 cos𝑚𝜔𝑡𝑖 − 𝑠𝑚𝑛𝑖, 𝑗 sin𝑚𝜔𝑡𝑖

)
+

𝜉𝑚𝑠
𝑛 (𝑡)

(
𝑠𝑚𝑛𝑖, 𝑗 cos𝑚𝜔𝑡𝑖 + 𝑐𝑚𝑛𝑖, 𝑗 sin𝑚𝜔𝑡𝑖

) (1)

where 𝐼𝑖, 𝑗 denotes our observable, deviation [%] of counting-rate recorded in the 𝑗-th directional
channel of the 𝑖-th detector. Zero-level to take the deviation is set at an average counting-rate in each
Bartels rotation (27 days). We use 13-17 channels compiled in each detector and total 60 channels
in GMDN 4 stations. 𝜉𝑚𝑐

𝑛 and 𝜉𝑚𝑠
𝑛 are expansion coefficients of spherical harmonics in the order

(𝑛, 𝑚), representing cosmic-ray anisotropy. 𝑐𝑚
𝑛𝑖, 𝑗

and 𝑠𝑚
𝑛𝑖, 𝑗

are coupling coefficients expressing a
response of 𝐼𝑖, 𝑗 to the anisotropy. They are derived by numerically calculating the geomagnetic and
atmospheric propagation of cosmic rays with a specific rigidity, and then integrating them for the
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rigidity. 𝑡 is universal time and𝜔 is the angular velocity of Earth’s rotation. 𝜔𝑡𝑖 = 𝜔𝑡+𝜙𝑖 where 𝜙𝑖 is
geographic longitude of the 𝑖-th detector. Anisotropy components 𝜉𝑚𝑐

𝑛 and 𝜉𝑚𝑠
𝑛 are derived by fitting

the model function into observed deviation 𝐼𝑖, 𝑗 . The best-fitting procedure, including corrections
for atmospheric variations, is described in [6, 7] and practically used in previous works[3, 8–10].
One modification in this preliminary analysis from the precedents is the integration upper limit, set
at 200 GV for 𝑛 > 0 components, based on estimation by [11].

We performed the best-fitting for 60-channel data recorded every hour by GMDN from 2015
to 2022 and obtained 9 parameters in each time, as listed below.

• 𝜉0𝑐
0 : Isotropic component of spherical harmonics representing the deviation of cosmic-ray

density from average level.

• 𝜉0𝑐
1 , 𝜉1𝑐

1 , and 𝜉1𝑠
1 : The 1st order harmonics, which represent uni-directional cosmic-ray flow

and respectively correspond to 𝑧-, 𝑥- and 𝑦-components of the flow in this order.

• 𝜉0𝑐
2 , 𝜉1𝑐

2 , 𝜉1𝑠
2 , 𝜉2𝑐

2 , and 𝜉2𝑠
2 : The 2nd order harmonics which represent bi-directional flow

induced by spatial derivatives of the uni-directional flow and interplanetary magnetic field.

The best-fit parameters are obtained in the geocentric (GEO) coordinate system whose 𝑥-axis is
fixed to 0 a.m. in LT, and then transformed to the geocentric solar ecliptic (GSE) coordinate system.
The available hours with a small number of inactive channels are 45132, therefore our dataset size
is 9 parameters × 45132 hours.

3. Methods and results

3.1 Cluster analysis

We categorize the anisotropy data using unsupervised machine-learning. The anisotropy at
each time derived in the previous section is expressed as a single point in the parameter space with
9 dimensions, corresponding to 9 components of the anisotropy components. Each parameter in
the dataset is standardized by the Z-score normalization for the whole period as a preprocessing.
Then, 45132 points in the 9-dimensional space are grouped by the k-means clustering of Python
scikit-learn library[12]. The number of clusters is set at 10, where the sum of squared errors of
prediction is sufficiently decreased and the significant correlations with solar activity and IP-shocks
discussed in the following sections appear. Each time in the dataset is provided with a cluster ID,
1, 2, 3,..., or 10, by this clustering. It is noted that the standardized parameters are restored to their
original quantities after labeling the clusters, for scientific discussions in the following sections.

Figure 1 displays averages of the 0th and 1st anisotropy components in the individual clusters.
Standard errors of averages are not plotted because they are so small that it’s hard to see. Figure 1(a)
shows averages of the 0th component, or density variation 𝜉0𝑐

0 . Averages of the diurnal anisotropy,
𝜉1𝑐

1 and 𝜉1𝑠
1 , are displayed in Figure 1(b1) which is a so-called harmonic dial, where the upward

direction corresponds to 0 a.m. (midnight) direction in LT while the right side represents 6 a.m.
(morning). It has to be noted that the LT expression is exact in the GEO coordinate system, but
now it deviates slightly because we transformed the anisotropy components into the GSE coordinate
system. Figure 1(b2) shows averages of north-south anisotropy, 𝜉0𝑐

1 , along with 𝜉1𝑐
1 in a vector

3
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Figure 1: Averages of the 0th and 1st order anisotropy components in the clusters grouped by k-means
clustering. (a) Average density deviation 𝜉0𝑐

0 in each cluster from average level. (b1) Average vector of
diurnal anisotropy (𝜉1𝑐

1 and 𝜉1𝑠
1 ) in each cluster, presented in a harmonic dial. (b2) Average of north-south

anisotropy, 𝜉0𝑐
1 , in each cluster presented in a vector diagram with 𝜉1𝑐

1

diagram. Averages of the 2nd order anisotropy (𝜉0𝑐
2 , 𝜉1𝑐

2 , 𝜉1𝑠
2 , 𝜉2𝑐

2 , and 𝜉2𝑠
2 ) are displayed by intensity

maps on spheres in Figure 2, because it cannot be expressed by a simple 2D or 3D vector.
The clusters 1, 3, 4, and 5 have enhanced deviations of density from the average level (𝜉0𝑐

0 = 0)
in common. They also have relatively enhanced 1st order (diurnal or north-south) and 2nd order
anisotropies. However, the polarities or directions of the enhancements are different from each other,
possibly causing the grouping into different clusters. Clusters 7, 8, 9, and 10 have moderate or small
magnitudes of the density deviation and 2nd order anisotropy, but have comparable amplitudes of
the 1st order anisotropy with the clusters mentioned above (1, 3, 4, and 5). Remained clusters, 2
and 6, have negligible density deviations, but cluster 6 has a characteristic direction of the diurnal
anisotropy while the 1st order anisotropy of cluster 2 has a negligible amplitude.

Most of the average diurnal anisotropies of the clusters orient in the range between 0 p.m. and
3 p.m. in Figure 1(b1), earlier LTs than ∼6 p.m. expected by the diffusion-convection picture. This
phase shift is known as a common feature in a period with the positive polarity of the solar dipole
magnetic field[13] as it is in our analysis period (2015-2022).

3.2 Long-term variation of occurrence rates of clusters

The number of hours labeled with each cluster is counted in each year and then transformed into
a yearly occurrence rate of the cluster by dividing it by the total active hours in the year. As shown
in Figure 3 we can find clear solar-activity dependences of the occurrence rates. The occurrence
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Figure 2: Average intensity maps of the 2nd anisotropy composed of 𝜉0𝑐
2 , 𝜉1𝑐

2 , 𝜉1𝑠
2 , 𝜉2𝑐

2 , and 𝜉2𝑠
2 for individual

clusters. Horizontal axes are GSE longitudes, and vertical axes are GSE latitudes.

rates of clusters 3, 4, and 7 are high near the solar activity maximum (just before 2015) and then
decrease to their minimum around the solar activity minimum (2019-2020). Contrarily, clusters 2,
6, and 9 have low occurrence rates near the solar maximum and increase up to the solar minimum.
Cluster 1 may also have a similar trend with relatively small significance.

The anisotropy vector simply averaged over time is proved to have its amplitude positively
correlating with solar activity[13]. Our result is consistent with it overall, except for cluster 9
which has a relatively large amplitude of the 1st order anisotropy while negatively correlating
occurrence rate with solar activity. Long-term variation of the heliosphere, or space climate,
contains complex mechanisms such as coronal mass ejections, coronal holes, corotating interaction
regions, heliospheric current sheet, and sector structure. Investigating correlations of individual
clusters with such phenomena may lead to a new finding overlooked in previous works based on a
simple mean of anisotropy.
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Figure 3: Yearly occurrence rate of each cluster. Horizontal dashed lines denote average occurrence rates in
the whole analyzed period (2015-2022).

3.3 Occurrence rates of clusters around IP-shocks

Using an IP-shock list from CfA Interplanetary Shock Database[14], we investigate the temporal
variation of the cluster occurrence rates before and after a shock arrival. Total of 81 shock events
are identified in WIND satellite data in our analysis period (2015-2022). Yearly numbers of the
events are 25, 6, 12, 10, 9, 4, and 15 respectively in 2015, 2016, 2017, 2018, 2019, 2020, and 2021.
The event number is roughly high around the solar maximum but does not necessarily vary with
the sunspot number.

We extract anisotropy data in each period of several days centered on a shock arrival at the
Wind satellite. Timestamps of the data are re-assigned by hours relative to the shock arrivals with
polarities negative before shock arrivals and positive after them. Then they are summed up for
every 6 hours before and after shock arrivals. A cluster occurrence rate every 6 hours for all 81
events is calculated.

Figure 4 displays the occurrence rate for each cluster as a function of relative time to shock
arrivals at the Wind satellite. Horizontal dashed lines are the average occurrence rates in the
whole analyzed period (2015-2022) as well as Figure 3. It is notable that cluster 10 significantly
enhances its occurrence rate, succeeding for ∼1 day from just before shock arrivals. The occurrence
rate of cluster 4 also increases from shock arrivals and keeps its enhancement over a few days.
These 2 clusters, especially cluster 4, feature density depletions as shown in Figure 1(a). These
enhancements are expected to represent Forbush decreases generally observed in IP-shock events.

6
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Figure 4: Occurrence rates of clusters every 6 hours before and after shock arrivals. Vertical lines at 0 hours
correspond to 81 shock arrivals in the IP-shock list. Horizontal dashed lines denote average occurrence rates
in the whole analyzed period (2015-2022).

Cluster 4 is also accompanied by an enhanced bi-directional flow along the Parker spiral (9 a.m.
and 9 p.m.), as shown in Figure 2. Recently [15] reported an enhanced bi-directional flow inside a
coronal mass ejection, and our result implies that such a bi-directional flow appears more frequently
than expected. It is notable that cluster 4 also features the largest enhancement of the 1st order
anisotropy. Clusters 2 and 6, both featuring negligible density deviations, show suppressions of their
occurrence rates from before or just after shock arrivals, indicating density disturbances commonly
appear in IP-shock events.

3.4 Conclusion

We demonstrated a data-mining approach for the study of cosmic-ray anisotropy by a pre-
liminary analysis. The k-means clustering reduces 9 components of anisotropy into one of 10
cluster labels each time, allowing us to survey and discover an average feature of anisotropy. The
temporal evolution of the cluster label shows close correlations with solar activities and IP-shock
events. These results encourage future works to prove a new aspect and its physical background
in anisotropy, which have been overlooked in previous works based on limited samples or simple
averaging.

This work is supported by “Strategic Research Projects” grant from ROIS (Research Organi-
zation of Information and Systems). The observations are supported by Nagoya University with
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the Nagoya muon detector, by INPE and UFSM with the São Martinho da Serra muon detector, by
the Australian Antarctic Division with the Hobart muon detector, and by project SP01/09 of the
Research Administration of Kuwait University with the Kuwait City muon detector.
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