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Summary. — The production of charmonium and bottomonium states in pp col-
lisions is studied using the Wigner density formalism. For practical purposed the
Wigner density of the quarkonia is approximated by analytical 3-D isotropic har-
monic oscillator Wigner densities with the same root-mean-square radius as the wave
function, which is given by the solution of the Schrödinger equation. This approach
reproduces quite well the available experimental transverse momentum and rapidity
distributions.

1. – Introduction

Hidden heavy flavor mesons serve as valuable tool for studying the strongly inter-
acting quark gluon plasma (QGP), which forms during high-energy heavy-ion collisions.
Due to the large quark mass mQ, where mQ � ΛQCD, with ΛQCD representing the QCD
cutoff, the production of quarkonium can be factorized into two main processes. Firstly,
the production of a heavy quark pair QQ̄, which can be described by perturbative QCD.
Secondly, a subsequent soft non-perturbative process describes the formation of a color-
less quarkonium state from the QQ̄ pair. Various approaches have been proposed for this
latter process, including the Color-Evaporation Model (CEM), the Color-Singlet Model
(CSM), and the Color-Octet Model (COM), with the latter two being encompassed in
the Non-Relativistic QCD (NRQCD) framework. For a comprehensive review, see [1].

Recently, the rapidity and transverse momentum (pT ) distributions of hidden heavy
flavor mesons, produced in proton-proton (pp) collisions, have been successfully repro-
duced using the Wigner density matrix formalism [2-4]. Here, we aim to extend this
formalism up to the 3S state and utilize the EPOS4 model to generate the initial heavy
quarks.
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Table I. – The masses, root-mean-square radii, and the Gaussian widths σ of different charmo-
nium and bottomonium states in vacuum. The experimental data are from ref. [7].

J/ψ χc(1P ) ψ(2S) Υ(1S) χb(1P ) χb(1D) Υ(2S) χb(2P ) Υ(3S)

Mass Theo.(GeV) 3.071 3.483 3.652 9.390 9.870 10.109 9.959 10.208 10.288

Mass Exp. (GeV) 3.097 3.463 3.686 9.460 9.876 10.163 10.023 10.243 10.355

〈r2〉 (fm2) 0.182 0.453 0.714 0.042 0.153 0.284 0.236 0.410 0.520

σ(fm) 0.348 0.426 0.452 0.167 0.247 0.285 0.260 0.302 0.307

2. – Framework for Wigner projection

The Wigner density functional formalism is based on the quantal density matrix
projection, where the probability that a meson i is produced is given by Pi =Tr(ρiρ

(N))
with ρi being the density matrix of the meson i and ρ(N) the density matrix of the N
heavy quarks and antiquarks produced in a pp collision. A partial Fourier transformation
of the density matrices then yields

(1)
dPi

d3Rd3P
=

∑∫
d3rd3p

(2π)6
Wi(r,p)

∏
j>2

∫
d3rjd

3pj
(2π)3(N−2)

W (N)(r1,p1, r2,p2, . . . , rN ,pN ).

Wi is the two-body Wigner density of the bound heavy quark pair, and
W (N)(r1,p1, r2,p2, ..., rN ,pN ) is the quantal density matrix in Wigner representation
of the ensemble of N heavy quarks produced in a pp collision. r(R) and p(P) are the
relative (center of mass) coordinates and momenta of the heavy quark and antiquark
bound in a quarkonium. We assume that the unknown quantal N -body Wigner density

can be replaced by the average of classical phase space distributions, W (N) ≈ 〈W (N)
classical〉.

The classical momentum space distributions of the heavy quarks are provided by
EPOS4 [5, 6]. However, EPOS4 only provides the coordinate information of the vertex
where the QQ̄ pair is created. For a heavy quark pair created at the same vertex, we
assume that the relative distance between Q and Q̄ in their center-of-mass frame is given
by a Gaussian distribution. The Wigner density for a QQ̄ pair can then be expressed as

(2) W (2)(r,p) ∼ r2 exp

(
− r2

2σ2
QQ̄

)
fEPOS4
QQ̄ (p),

where the distance is controlled by the effective width σQQ̄. With the momenta and
positions of the heavy quarks, we can calculate the yield of charmonium and bottomonium
according to eq. (1).

Now we come to the construction of the Wigner density of the quarkonium. The
Wigner density is obtained by the Wigner-Weyl transformation of the density matrix of
the quarkonium.

The wave function of the quarkonium is the solution of the two-body Schrödinger
equation, which we solve for charmonium and bottomonium with the Cornell potential,
V (r) = −α/r + κr + c with α = 0.513, κ = 0.17GeV2, c = −0.161, and with the quark
masses mc = 1.5GeV and mb = 5.2GeV. The wave functions are shown in fig. 1, and the
masses as well as the root-mean-square radii 〈r2〉 are listed in table I. We observe that
the masses are very close to the experimental values.
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Fig. 1. – Wave function of different charmonium (left) and bottomonium (right) states. Solid
lines are from the Schrödinger equation, dashed lines are from the 3-D isotropic harmonic
oscillator (eq. (3)).

However, the wave function is not analytical, so the Wigner density can only be cal-
culated numerically, which complicates the solution of eq. (1). It is therefore convenient
to approximate the wave function by a 3D isotropic harmonic oscillator wave function
for the potential V (r) = 1/(2mQσ

4)r2. These wave functions are analytical and can be
expressed as ψnlm(r, θ, φ) = Rnl(r)Yl,m(θ, φ), where Yl,m are the spherical harmonics.

The radial part can be expressed as follows:

(3) Rnl(r) =

[
2(n!)

σ3Γ(n+ l + 3/2)

] 1
2 ( r

σ

)l

e−
r2

2σ2 Ll+1/2
n

(
r2

σ2

)
,

where L
l+1/2
n are Laguerre polynomials. The parameters of the 3-D isotropic harmonic

oscillator wave functions are chosen to match the root-mean-square radius 〈r2〉 of the
real quarkonium wave function: 〈r2〉 = 3σ2/2 for 1S, 〈r2〉 = 5σ2/2 for 1P , 〈r2〉 = 7σ2/2
for 1D and 2S, 〈r2〉 = 9σ2/2 for 2P , and 〈r2〉 = 11σ2/2 for 3S states. The corresponding
widths are shown in table I and the wave functions are shown in fig. 1 with dashed lines.
We can see that the ground states and low lying excited states can be well reproduced
by the 3-D isotropic harmonic oscillator, while the difference increases for higher excited
states, e.g. 2S, 2P , and 3S.

With this analytical wavefunction, the Wigner function can be constructed via a
Wigner transformation in the spherical coordinate. The Wigner function for any give
(n, l) state can be expressed as

Wnl(r,p) =
1

2l + 1

(−1)l

2π3

∑
n′+N+l′=K

(−1)n
′+3l′/2(4)

×
√

π(2l + 1)(2l′ + 1)n′!N !

Γ(n′ + l′ + 3/2)Γ(N + l′ + 3/2)

× (n′l′Nl′0|nlnl0)Ll′+1/2
N (2r2)L

l′+1/2
N (2p2)

× (2|r||p|)l′Pl′(cos θ)e
−(r2+p2),

where K = 2n+l. θ is the angle between r and p. Ll
n is generalized Laguerre polynomial.

Pl′ is Legendre polynomial. This form is firstly given by ref. [8]. (n′l′Nl′0|nlnl0) is Talmi-
Brody-Moshinsky (TBM) brackets.
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Fig. 2. – pT spectra of different charmonium states (left), where red is J/ψ, orange is χc(1P ),
and green is ψ(2S). Prompt J/ψ (middle). Prompt ψ(2S) (right). The experimental data are
from ALICE [9,10], ATLAS [11], and CMS [12].

The Wigner densities for different states up to 3S are

(5)

W1S(r,p) =8e−ξ,

W1P(r,p) =
8

3
e−ξ

(
2ξ − 3

)
,

W1D(r,p) =
8

15
e−ξ

(
15 + 4ξ2 − 20ξ + 8[p2r2 − (p · r)2]

)
,

W2S(r,p) =
8

3
e−ξ

(
3 + 2ξ2 − 4ξ − 8[p2r2 − (p · r)2)]

)
,

W2P(r,p) =
8

15
e−ξ

(
− 15 + 4ξ3 − 22ξ2 + 30ξ − 8(2ξ − 7)[p2r2 − (p · r)2]

)
,

W3S(r,p) =
8

315
e−ξ

(
315 + 42ξ4 − 336ξ3 + 924ξ2 − 840ξ − [2009 + 32p2r2

+ 336r4/σ4 − 1400r2/σ2 − 896p2σ2 + 224p4σ4][p2r2 − (p · r)2]− [686

+ 608p2r2 + 112r2/σ2 − 896p2σ2 + 224p4σ4 − 672(p · r)2](p · r)2
)
,

where ξ = r2

σ2 + p2σ2. The transverse momentum and rapidity distribution of charmo-
nium and bottomonium (see eq. (1)) are shown in figs. 2 and 3. We see, as far as data are
available, a quite good agreement with the experimental results for cc̄ as well bb̄ mesons
when choosing σcc̄ = 0.4 fm and σbb̄ = 0.2 fm in eq. (2).

We can conclude that the experimentally available rapidity and transverse momentum
distribution of cc̄ and bb̄ quarkonia can be well described in the Wigner density formalism.
The only parameter which enters the calculation is the width of the distribution of the
relative distance of the QQ̄ pair at production. The relative contribution of the different
states is then exclusively given by their wave function.
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Fig. 3. – pT and rapidity y dependence of different bottomonium states. The experimental data
are from CMS [13].
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