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in this lecture include: general properties of neutrinos in the SM, the theory of neutrino masses
and mixings (Dirac and Majorana), neutrino oscillations both in vacuum and in matter, as well as an
overview of the experimental evidence for neutrino masses and of the prospects in neutrino oscillation
physics. We also briefly comment on the relevance of neutrinos in leptogenesis and in beyond-the-
Standard-Model physics.
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1 Introduction

Neutrinos made their first invisible appearance at the beginning of the 20th century as dark particles in

radioactive -decay. In this process a nucleus undergoes a transition

A
ZX !A

Z+1 X
0 + e, (1.1)

emitting an electron, which, by energy–momentum conservation, should have an energy approximately

equal to the difference of the parent and daughter nuclear masses, Q, see Fig. 1.

Expected

Observed

Q
Energy

Number of electrons

Fig. 1: Electron spectrum of -decay.

The spectrum of the electrons was measured to be instead continuous with an end-point at Q. It

took almost 20 years to come up with an explanation to this apparent violation of energy–momentum

conservation. W. Pauli called for a desperate remedy, suggesting that in the decay, a neutral and light

particle was being emitted together with the electron and escaped undetected. In that case the spectrum of

the electron would indeed be continuous since only the sum of the energy of the electron and the phantom

particle should equal Q. The dark particle got an Italian name: neutrino in honour of E. Fermi, who was

among the first to take seriously Pauli’s hypothesis, from which he constructed the famous theory of

-decay [1]. In this theory, the interaction responsible for -decay is shown in Fig. 2, a four-fermion

interaction with strength given by GF , the Fermi constant.

Such interaction implies that neutrinos should also scatter off matter through the inverse beta
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Fig. 2: Fermi four-fermion coupling responsible for -decay.

process, ⌫̄ p! ne+. Bethe and Pearls [2] estimated the cross section for such process to be

⌫̄  1044 cm2, E⌫̄ ' 2 MeV, (1.2)

and concluded that “it is absolutely impossible to observe processes of this kin”. Indeed this tiny cross

section implies that a neutrino has a mean free path of thousands of light-years in water.

Pontecorvo [3] however was among the first to realise that it was not so hopeless. One could

get a few events per day in a ton-mass scale detector with a neutrino flux of 1011⌫/cm2/s. Such is the

neutrino flux from a typical nuclear reactor at a few tens of meters distance from its core. Reines and

Cowen (RC) succeeded in detecting reactor neutrinos [4, 5]. They were able to detect neutrinos via

inverse beta decay in a very massive detector thanks to the extremely clean signal which combines the

detection of the positron and the neutron in delayed coincidence, see Fig. 3. This experiment not only led

to the discovery of anti-neutrinos, but introduced a detection technique that is still being used today in

state-of-the-art reactor neutrino experiments and continues to make fundamental discoveries in neutrino

physics.

Fig. 3: Detection technique in the Reines–Cowan experiment.

Shortly after anti-neutrinos were discovered, it was realised that they come in flavours or families.

The muon had been discovered in cosmic rays much earlier, and pion decay to muons is an analogous
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process to -decay:

⇡ ! µ⌫̄µ. (1.3)

It was understood that also in this case a (anti-)neutrino is emitted but, accompanying a µ instead of an

electron, it had a different identity to that in -decay. Since the energy transfer in this process is higher

than in -decay, and the neutrino cross-sections grow fast with energy in the Fermi theory, it would

actually be easier to detect this new type of neutrino.

In 1962 Lederman, Schwartz and Steinberger (LSS) detected for the first time neutrinos from pion

decay by creating the first accelerator neutrino beam [6]. The accelerated proton beam is made to hit a

fixed target producing pions and other hadrons that decay into neutrinos and other particles, mimicking

what happens in cosmic rays. If a thick shield intercepts the secondary particles, all particles except the

neutrinos are stopped, see Fig. 4. Finally a neutrino detector is located behind the shield. A neutrino

event will induce the appearance of a muon in the detector. Again this was such a great idea that we are

still making discoveries with the modern versions of the LSS experiment, in the so-called conventional

accelerator neutrino beams.

Fig. 4: Lederman, Schwartz, Steinberger experiment.

Kinematical effects of neutrino masses were searched for by measuring very precisely the end-

point of the lepton energy spectrum in weak decays, that gets modified if neutrinos are massive. In

particular the most stringent limit is obtained from tritium -decay for the “electron” neutrino:

3H !3 He + e + ⌫̄e. (1.4)

Figure 5 shows the effect of a neutrino mass in the end-point electron energy spectrum in this decay.

The best limit has been recently improved by the Katrin experiment [7]:

m⌫e < 0.8 eV(90%CL) , (1.5)

which aims at reaching a sensitivity of 0.2 eV. The direct limits from processes involving µ, ⌧ leptons

are much weaker. The best limit on the ⌫µ mass (m⌫µ < 170 keV [8]) was obtained from the end-

point spectrum of the decay ⇡+ ! µ+⌫µ, while that on the ⌫⌧ mass was obtained at LEP (m⌫⌧ <
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Fig. 5: Effect of a neutrino mass in the end-point of the lepton energy spectrum in  decay.

Table 1: Irreducible fermionic representations in the Standard Model: (dSU(3), dSU(2))Y .

(1,2)


1
2

(3,2) 1
6

(1,1)1 (3,1) 2
3

(3,1)


1
3

✓

⌫e
e

◆

L

✓

ui

di

◆

L

eR uiR diR

✓

⌫µ
µ

◆

L

✓

ci

si

◆

L

µR ciR siR

✓

⌫⌧
⌧

◆

L

✓

ti

bi

◆

L

⌧R tiR biR

18.2 MeV [9]) from the decay ⌧ ! 5⇡⌫⌧ . Neutrinos in the Standard Model were therefore conjectured

to be massless.

2 Neutrinos in the Standard Model

The Standard Model (SM) is a gauge theory based on the gauge group SU(3) ⇥ SU(2) ⇥ UY (1). All

elementary particles arrange in irreducible representations of this gauge group. The quantum numbers

of the fermions (dSU(3), dSU(2))Y are listed in Table 1.

Under gauge transformations neutrinos transform as doublets of SU(2), they are singlets under

SU(3) and their hypercharge is 1/2. The electric charge, given by Q = T3 + Y , vanishes. They are

therefore the only particles in the SM that carry no conserved charge.

The two most intriguing features of Table 1 are its left–right or chiral asymmetry, and the three-

fold repetition of family structures. Neutrinos have been essential in establishing both features.

2.1 Chiral structure of the weak interactions

The left and right entries in Table 1 have well defined chirality, negative and positive respectively. They

are two-component spinors or Weyl fermions, the smallest irreducible representation of the Lorentz

group representing spin 1/2 particles. Only fields with negative chirality carry the SU(2) charge. For

free fermions moving at the speed of light (i.e., massless), the chiral states have a well defined helicity,
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i.e they are eigenstates of the helicity operator, ⌃ = s·p
|p| , that measures the component of the spin in

the direction of the momentum. This is not inconsistent with Lorentz invariance, since for a fermion

travelling at the speed of light, the helicity is the same in any reference frame. In other words, the

helicity operator commutes with the Hamiltonian for a massless fermion and is thus a good quantum

number.

The discrete symmetry under CPT (charge conjugation, parity, and time reversal), which is a basic

building block of any Lorentz invariant and unitary quantum field theory (QFT), requires that for any

left-handed particle, there exists a right-handed antiparticle, with opposite charge, but the right-handed

particle state may not exist. A Weyl fermion field represents therefore a particle of negative helicity and

an antiparticle with positive one.

Parity however transforms left and right fields into each other, thus the left-handedness of the weak

interactions implies that parity is maximally broken in the SM. The breaking is nowhere more obvious

than for neutrinos since the parity partner of the neutrino does not exist. All the remaining fermions in

the SM come in parity pairs, albeit with different SU(2) ⇥ U(1) charges. Since this gauge symmetry

is spontaneously broken, the left and right fields combine into massive Dirac fermions, that is a four

component representation of the Lorentz group and parity, which represents a particle and an antiparticle

with either helicity. The chirality components are recovered from the four-component Dirac spinor by

the chiral projectors

 L = PL =
1 5

2
 ,  R = PR =

1 + 5

2
 . (2.1)

The SM resolved the Fermi interaction as being the result of the exchange of the SU(2) massive

W boson as in Fig. 6.

p

n

W

Νe

e

Fig. 6: -decay process in the SM.

Neutrinos interact in the SM via charged and neutral currents:

LSM 
gp
2

X

↵

⌫̄↵µPLl↵W
+
µ

g

2 cos ✓W

X

↵

⌫̄↵µPL⌫↵Z
+
µ + h.c. (2.2)

The weak current is therefore V –A since it only couples to the left fields: µPL / µ–µ5.

This structure is clearly seen in the kinematics of weak decays involving neutrinos, such as the classic
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Fig. 7: Kinematics of pion decay: two recoiling particles must have same helicity to ensure angular
momentum conservation.

Fig. 8: Triangle diagrams that can give rise to anomalies. W,B,G are the gauge bosons associated to
the SU(2), UY (1), SU(3) gauge groups, respectively, and g is the graviton

example of pion decay to e⌫̄e or µ⌫̄µ. In the limit of vanishing electron or muon mass, this decay is

forbidden, because the spin of the initial state is zero and thus it is impossible to conserve simultaneously

momentum and angular momentum if the two recoiling particles must have opposite helicities, as shown

in Fig. 7. The decay amplitude is therefore proportional to the lepton mass and the ratio of the decay

rates to electrons and muons, in spite of the larger phase space in the former, is strongly suppressed by

the factor
⇣

me

mµ

⌘2
⇠ 2⇥ 105.

Another profound consequence of the chiral nature of the weak interaction is anomaly cancella-

tion. The chiral coupling of fermions to gauge fields leads generically to inconsistent gauge theories due

to chiral anomalies: if any of the diagrams depicted in Fig. 8 is non-vanishing, the weak current which is

conserved at tree level is not at one loop, implying a catastrophic breaking of gauge invariance. Anomaly

cancellation is the requirement that all these triangle diagrams vanish, which imposes strong constraints

on the hypercharge assignments of the fermions in the SM, which are miraculously satisfied:

GGB
z }| {
X

i=quarks

Y L
i  Y R

i =

WWB
z }| {
X

i=doublets

Y L
i =

Bgg
z }| {
X

i

Y L
i  Y R

i =

B3

z }| {
X

i

(Y L
i )3  (Y R

i )3 = 0, (2.3)

where Y L/R
i are the hypercharges of the left/right components of the fermionic field i, and the

triangle diagram corresponding to each of the sums is indicated above the bracket.

2.2 Family structure

Concerning the family structure, we know, thanks to neutrinos, that there are exactly three families in

the SM. An extra SM family with quarks and charged leptons so heavy that cannot be produced at the

energies explored so far in colliders, would also have massless neutrinos that would contribute to the
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Fig. 9: Z0 resonance from the LEP experiments. Data are compared to the case of N⌫ = 2, 3 and 4

invisible Z0 decay:

Z0 ! ⌫̄↵⌫↵. (2.4)

The invisible width of the Z0 has been measured at LEP with an impressive precision, as shown in

Fig. 9 [10]. This measurement has been recently revised [11, 12] with a reduced systematic error and

excludes any number of standard families different from three:

N⌫ =
inv

⌫̄⌫
= 2.9963± 0.00074. (2.5)

3 Massive neutrinos

Neutrinos are ubiquitous in our surroundings. If we open our hand, it will be crossed each second by

about O(1012) neutrinos from the sun, about O(10) from the atmosphere, about O(109) from natural

radioactivity in the earth and even O(1012) relic neutrinos from the Big Bang. In 1987, the Kamiokande

detector in Japan observed the neutrino burst from a SuperNova that exploded in the Large Magellanic

Cloud, at a distance of 160 thousand light years from earth. For a few seconds, the supernova neutrino

flux was of the same order of magnitude as the flux of solar neutrinos!

Using many of these sources as well as others from reactors and accelerators, a decade of revolu-

tionary neutrino experiments have demonstrated that, for the time being, neutrinos are the less standard

of the SM particles. They have tiny masses and this necessarily requires new degrees of freedom with

respect to those in Table 1.

A massive fermion necessarily has two states of helicity, since it is always possible to reverse the

helicity of a state that moves at a slower speed than light by looking at it from a boosted reference frame.

What is the right-handed state of the neutrino? It turns out there are two ways to proceed.
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Let us consider the case of free fermions. A four-component Dirac fermion can be made massive

adding the following mass term to the Lagrangian:

LDirac
m = m ̄ = m( L +  R)( L +  R) = m( L R +  R L). (3.1)

A Dirac mass term couples the left-handed and right-handed chiral components of the fermion field, and

therefore this coupling vanishes identically in the case of a Weyl fermion.

Can one give a mass to a two-component Weyl fermion? As first noticed by Majorana, this indeed

can be done with the following mass term:

LMajorana
m =

m

2
 c +

m

2
  c =

m

2
 TC +

m

2
 ̄C ̄T , (3.2)

where

 c
⌘ C ̄T = C0 

⇤. (3.3)

It is easy to check that the Majorana mass term satisfies the required properties:

1) It can be constructed with a two-component spinor or Weyl fermion: if  = PL 

 TC =  T
L i2 L, (3.4)

which does not vanish in the absence of the right chiral component.

2) It is Lorentz invariant. It is easy to show, using the properties of the gamma matrices that under a

Lorentz transformation  and  c transform in the same way,

 ! e
i
4
!µ⌫

µ⌫

 ⌘ S(⇤) ,  c ! S(⇤) c, (3.5)

with µ⌫ ⌘= i
4 [µ, ⌫ ], and therefore the bilinear  c is Lorentz invariant.

3) The equation of motion derived from Eq. (3.2) for a free majorana fermion has plane wave solu-

tions satisfying the relativistic relation for a massive fermion:

E2
 p2 = m2.

In the SM none of the mass terms of Eqs. (3.1) and (3.2) are gauge invariant. Spontaneous sym-

metry breaking allows to generate the Dirac mass term from Yukawa couplings for all fermions in the

SM, while the Majorana mass term can only be generated for neutrinos. Let us see how this works.

3.1 Massive Dirac neutrinos

We can enlarge the SM by adding a set of three right-handed neutrino, ⌫R states, with quantum numbers

(1, 1)0, i.e. singlets under all the gauge groups. A new Yukawa (Fig. 10) coupling of these new states

with the lepton doublet is exactly gauge invariant and therefore can be added to the SM:

LDirac
m = L  ⌫R + h.c. (3.6)
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Fig. 10: Neutrino Yukawa coupling.
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Fig. 11: Fermion spectrum in the Standard Model.

where L = (⌫ l) is the lepton doublet,  ⌘ i2
⇤ and  is the Higgs field, with quantum numbers

(1,2)


1
2
. Upon spontaneous symmetry breaking the scalar doublet gets a vacuum expectation value

hi = ( vp
2
0), and therefore a neutrino Dirac mass term is generated

LDirac
m !  ⌫L

vp
2
⌫R + h.c. (3.7)

The neutrino mass matrix is proportional to the Higgs vacuum expectation value, in complete analogy to

the remaining fermions:

m⌫ =
vp
2
. (3.8)

There are two important consequences of Dirac neutrinos. First, there is a new hierarchy problem

in the SM to be explained: why are neutrinos so much lighter than the remaining leptons, even those in

the same family (see Fig. 11), if they get the mass in the same way? This requires a large hierarchy in

the Yukawa couplings that should differ in many orders of magnitude. Secondly, an accidental global

symmetry, lepton number L, that counts the number of leptons minus that of antilepton, remains exactly

conserved at the classical level,1 just as baryon number, B, is.

1As usual B + L is broken by the anomaly and only B L remains exact at all orders.
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Higgs Higgs

Λij
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Fig. 12: Weinberg operator.

3.2 Massive Majorana neutrinos

Since the combination L̄ is a singlet under all gauge groups, the Majorana-type contraction (see

Fig. 12):

LMajorana
m = L̄ ↵CT L̄T + h.c., (3.9)

is gauge invariant. This term, first writen down by Weinberg [13], gives rise to a Majorana mass term for

neutrinos upon spontaneous symmetry breaking:

LMajorana
m ! ⌫̄L↵

v2

2
C⌫̄TL + h.c., (3.10)

The neutrino mass matrix in this case is given by:

m⌫ = ↵v2. (3.11)

The Weinberg operator has dimension 5, and therefore the coupling [↵] = 1. We can write it in terms

of a dimensionless coupling as

↵ =


⇤
, (3.12)

where ⇤ is a new physics scale, in principle unrelated to the electroweak scale.

The consequences of the SM neutrinos being massive Majorana particles are profound. If the scale

⇤ is much higher than the electroweak scale v, a strong hierarchy between the neutrino and the charged

lepton masses arises naturally. If all dimensionless couplings  are of the same order, neutrino masses are

suppressed by a factor v/⇤ with respect to the charged fermions. On the other hand, Weinberg’s operator

violates lepton number L and provides a new seed for generating the matter/antimatter asymmetry in the

Universe as we will see.

Even though the Majorana mechanism to generate neutrino masses does not involve any extra

degree of freedom with respect to those in the SM, the existence of the Weinberg coupling implies that

cross sections involving for example the scattering of neutrinos and the Higgs will grow with energy,
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ultimately violating unitarity. The situation is analogous to that of the Fermi interaction of Fig. 2. The

SM resolved this interaction at higher energies as being the result of the interchange of a heavy vector

boson, Fig. 6. The Majorana coupling, if it exists, should also represent the effect at low energies of

the exchange of one or more unknown massive states. What those states are remains one of the most

interesting open questions in neutrino physics.

Finally, it is interesting to note that the anomaly cancellation conditions fix all the hypercharges

in this case (i.e., there is only one possible choice for the hypercharges that satisfies Eq. (2.3)), which

implies that electromagnetic charge quantization is the only possibility in a field theory with the same

matter content as the SM.

3.3 Neutrino masses and physics beyond the Standard Model

Any new physics beyond the standard model (BSM) characterized by a high scale, ⇤, will induce effects

at low energies E ⌧ ⇤ that can be described by an effective field theory [14, 15] of the form:

Le↵ = LSM +
X

i

↵i

⇤
Od=5

i +
X

i

i

⇤2
Od=6

i + ... (3.13)

It is the most general Lagrangian which includes the SM and an infinite tower of operators constructed

out of the SM fields respecting Lorentz and gauge symmetries. In principle such a theory depends on

infinite new couplings, one per new independent operator, and it is therefore not predictive. However, if

we are interested in describing processes at energies E ⌧ ⇤, we can truncate the sum of operators up to

a given dimension d in such a way that our predictions are correct up to order


E
⇤

d4
.

The operators of lowest dimension are the most relevant at low energies. It turns out that there

is only one such operator of the lowest possible dimension, d = 5, which is precisely the Weinberg

operator of Eq. (3.9). In this perspective, it is natural to expect that the first indication of BSM physics

is precisely Majorana neutrino masses. While many types of BSM theories can give rise to neutrino

masses, generically they will induce other new physics effects represented by the operators of d = 6 and

higher.

4 Neutrino masses and lepton mixing

Neutrino masses, whether Dirac or Majorana, imply lepton mixing [16, 17]. The Yukawa coupling in

Eq. (3.6) is a generic complex matrix in flavour space, while that in Eq. (3.9) is a generic complex

symmetric matrix, and the same holds for the corresponding leptonic mass matrices:

LDirac
m = ⌫iL (M⌫)ij ⌫

j
R + liL (Ml)ij l

j
R + h.c. (4.1)

LMajorana
m =

1

2
⌫iL (M⌫)ij ⌫

cj
L + liL (Ml)ij l

j
R + h.c. (4.2)

In the Dirac case, the two mass matrices can be diagonalized by a bi-unitary rotation:

M⌫ = U †
⌫Diag(m1,m2,m3)V⌫ , Ml = U †

l Diag(me,mµ,m⌧ )Vl, (4.3)
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while in the Majorana case, the neutrino mass matrix, being symmetric, can be taken to a diagonal form

by

M⌫ = U †
⌫Diag(m1,m2,m3)U

⇤

⌫ . (4.4)

We can go to the mass basis by rotating the fields as:

⌫ 0R = V⌫⌫R, ⌫
0
L = U⌫⌫L, l

0
R = VllR, l

0
L = UllL. (4.5)

In this basis the charged-current interactions are no longer diagonal, in complete analogy with the quark

sector (see Fig. 13):

Llepton
CC =

gp
2
l̄0iµPLW

+
µ (U †

l U⌫)ij
| {z }

UPMNS

⌫ 0j + h.c. (4.6)

The mixing matrix in the lepton sector is referred to as the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)

matrix, analogous to the CKM one in the quark sector.

W
+

_

i

u
j

d

j

W
+

l
_

i

ν

Fig. 13: Quark and lepton mixing.

The number of physical parameters in the lepton mixing matrix, UPMNS, can easily be computed by

counting the number of independent real and imaginary elements of the Yukawa matrices and eliminating

those that can be absorbed in field redefinitions. The allowed field redefinitions are the unitary rotations

of the fields that leave the rest of the Lagrangian invariant (only those that are not symmetries of the full

Lagrangian when lepton masses are included are efficient in absorbing flavour parameters).

In the Dirac case, it is possible to rotate independently the left-handed lepton doublet, together

with the right-handed charged leptons and neutrinos, that is U(n)3, for a generic number of families n.

However, this includes total lepton number which remains a symmetry of the massive theory and thus

cannot be used to reduce the number of physical parameters in the mass matrix. The parameters that can

be absorbed in field redefinitions are thus the parameters of the group U(n)3/U(1) (that is 3(n2n)
2 real,

3(n2+n)1
2 imaginary).

In the case of Majorana neutrinos, there is no independent right-handed neutrino field, nor is lepton

number a good symmetry. Therefore the number of field redefinitions is the number of parameters of the

elements in U(n)2 (that is n2  n real and n2 + n imaginary).

The resulting real physical parameters are the mass eigenstates and the mixing angles, while the

resulting imaginary parameters are CP-violating phases. All this is summarized in Table 2. Dirac and

Majorana neutrinos differ only in the number of observables phases. For three families (n = 3), there is
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Table 2: Number of real and imaginary parameters in the Yukawa matrices, of those that can be absorbed
in field redefinitions. The difference between the two is the number of observable parameters: the lepton
masses (m), mixing angles (✓), and imaginary phases ().

Yukawas Field redefinitions No. m No. ✓ No.

Dirac l, ⌫ U(n)3/U(1)

Real, Im 2n2, 2n2
3(n2  n)

2
,
3(n2 + n) 1

2
2n

n2  n

2

(n 2)(n 1)

2

Majorana l, ↵
T
⌫ = ↵⌫ U(n)2

Real,Im n2 + n(n+1)
2 , n2 + n(n+1)

2 n2  n, n2 + n 2n
n2  n

2

n2  n

2

just one Dirac phase and three in the Majorana case.

A standard parametrization of the mixing matrices for Dirac, UPMNS, and Majorana, ŨPMNS, is

given by

UPMNS =

0

B
@

1 0 0

0 c23 s23

0 s23 c23

1

C
A

0

B
@

c13 0 s13e
i

0 1 0

s13e
i 0 c13

1

C
A

0

B
@

c12 s12 0

s12 c12 0

0 0 1

1

C
A ,

ŨPMNS = UPMNS(✓12, ✓13, ✓23, )

0

B
@

1 0 0

0 ei↵1 0

0 0 ei↵2

1

C
A , (4.7)

where in all generality ✓ij 2 [0,⇡/2] and ,↵1,↵2 2 [0, 2⇡].

5 Majorana versus Dirac

It is clear that establishing the Majorana nature of neutrinos is of great importance, since it would imply

the existence of a new physics scale. In principle there are very clear signatures, such as the one depicted

in Fig. 14, where a ⌫µ beam from ⇡+ decay is intercepted by a detector, D. In the Dirac case, the

interaction of neutrinos on the detector via a charged current interaction will produce only a µ in the

final state. If neutrinos are Majorana, a wrong-sign muon in the final state is also possible. Unfortunately

the rate for µ+ production is suppressed by m⌫/E in amplitude with respect to the µ. For example, for

E⌫ = O(1) GeV and m⌫ ⇠ O(1) eV the cross section for this process will be roughly 1018 times the

usual CC neutrino cross section.

The best hope of observing a rare process of this type seems to be the search for neutrinoless

double-beta decay (20⌫), the right diagram of Fig. 15. The background to this process is the standard

double-beta decay depicted on the left of Fig. 15, which has been observed to take place for various

isotopes with a lifetime of T22⌫ > 1019–1021 years.

If the source of this process is just the Majorana ⌫ mass, the inverse lifetime for this process is
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Fig. 14: A neutrino beam from ⇡+ decay (⌫µ) could interact in the magnetized detector producing a µ+

only if neutrinos are Majorana.

given by

T1
20⌫ ' G0⌫

|{z}

Phase



M0⌫




2

| {z }

NuclearM.E.











X

i

⇣

Ũ ei
PMNS

⌘2
mi











2

| {z }

|mee|2

. (5.1)

In spite of the suppression in the neutrino mass (over the energy of this process), the neutrinoless

mode has a phase factor orders of magnitude larger than the 2⌫ mode, and as a result present experiments

searching for this rare process have already set bounds on neutrino masses in the eV range as shown in

Table 3.

W

22⌫

W

eL

eL

⌫eL

⌫eL

uL

uLdL

dL

W

20⌫

⇥

W

eL

eL

mL

⌫eL

⌫eL

uL

uLdL

dL

Fig. 15: 2 decay: normal (left) and neutrinoless (right).

Table 3: Present bounds at 90%CL from some recent neutrinoless double-beta-decay experiments [18].

Experiment Nucleus |mee|
EXO-200 136Xe < 0.093–0.286 eV
AMoRE 100Mo < 1.2–2.1 eV
GERDA 76Ge < 0.079–0.18 eV
KamLAND-Zen 136Xe < 0.061–0.165 eV
CUORE 130Te < 0.11–0.52 eV
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6 Neutrino oscillations

The most spectacular implication of neutrino masses and mixings is the macroscopic quantum phe-

nomenon of neutrino oscillations, first introduced by B. Pontecorvo [19]. The Nobel Prize of 2015 was

awarded to T. Kajita (from the SuperKakiokande collaboration) and A. B. McDonald (from the SNO

collaboration) for the discovery of neutrino oscillations, which shows that neutrinos have a mass.

We have seen that if neutrinos are massive the neutrino flavour fields (⌫e, ⌫µ, ⌫⌧ ), that couple via

CC to the leptons (e, µ, ⌧) , are unitary combinations of the mass eigenstates fields (⌫1, ⌫2, ⌫3):

0

B
@

⌫e

⌫µ

⌫⌧

1

C
A = UPMNS(✓12, ✓13, ✓23, phases)

0

B
@

⌫1

⌫2

⌫3

1

C
A . (6.1)

In a neutrino oscillation experiment, neutrinos are produced by a source (e.g. pion or µ decays, nuclear

reactions, etc) and are detected some macroscopic distance, L, away from the production point. They are

produced and detected via weak processes in combination with a given lepton flavour, that is in flavour

states or a combination of mass eigenstates. As these states propagate undisturbed in space-time from

the production to the detection regions, the different mass eigenstates, having slighly different phase

velocities, pick up different phases, resulting in a non-zero probability that the state that arrives at the

detector is in a different flavour combination to the one originally produced, see Fig. 16. The probability

for this flavour transition oscillates with the distance travelled.

Two ingredients are mandatory for this phenomenon to take place:

– neutrinos must keep quantum coherence in propagation over macroscopic distances, which is only

possible because they are so weakly interacting

– there is sufficient uncertainty in momentum at production and detection so that a coherent flavour

state can be produced2.

The master formula for the oscillation probability of ⌫↵ turning into a ⌫ is

P (⌫↵ ! ⌫) =
X

i,j

U⇤

↵iUiU↵jU
⇤

je
i

m2
jiL

2|p| , (6.2)

where m2
ji ⌘ m2

i  m2
j , U↵i are the elements of the PMNS matrix, L is the baseline and p is the

neutrino momentum.

There are many ways to derive this formula. The simplest way that appears in most textbooks

uses simple quantum mechanics, where neutrinos are treated as plane waves. A slightly more rigorous

method treats neutrinos as wave packets. Finally, it is also possible to derive it from QFT, where neutrinos

are treated as intermediate virtual states. The different methods make more or less explicit the basic

necessary conditions of neutrino oscillations mentioned above, and therefore are more or less prone to

quantum paradoxes.

2If the momentum uncertainty is sufficiently small one could kinematically distinguish the mass eigenstate being pro-
duced/detected.
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Fig. 16: Neutrino oscillations.

6.1 Plane wave derivation

Let us suppose that a neutrino of flavor ↵ is produced at t0. It is therefore a superposition of the mass

eigenstates that we assume to be plane waves with spatial momentum p:

|⌫↵(t0)i =
X

i

U⇤

↵i|⌫i(p)i. (6.3)

The mass eigenstates are eigenstates of the free Hamiltonian:

Ĥ|⌫i(p)i. = Ei(p)|⌫i(p)i, Ei(p)
2 = p2 +m2

i . (6.4)

The time evolution operator from t0 ! t is given by eiĤ(tt0) and therefore the state at time t is given

by

|⌫↵(t)i = eiĤ(tt0)|⌫↵(t0)i =
X

i

U⇤

↵ie
iEi(p)(tt0)|⌫i(p)i. (6.5)

The probability that at time t the state is in flavour  is

P (⌫↵ ! ⌫)(t) = |h⌫ |⌫↵(t)i|2 =










X

i

UiU
⇤

↵ie
iEi(p)(tt0)











2

, (6.6)

where we have used the orthogonality relation h⌫i(p)|⌫j(p)i = ij .

Since the neutrinos are ultrarelativistic, we can approximate

Ei(p) Ej(p) '
1

2

m2
i m2

j

|p| +O(m4), (6.7)

and L ' (t t0), so that the master formula in Eq. (6.2) is recovered.

The well-founded criticism to this derivation can be summarized in the following questions: 1)

why are all mass eigenstates of equal spatial momentum, p? 2) is the plane wave treatment justified

when the production and detection regions are localized? 3) why is it necessary to do the t  t0 ! L

conversion?

A number of quantum paradoxes can be formulated from these questions, that can be resolved only

when the two basic conditions for neutrino oscillations above are made explicit. This can be achieved in
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a wave packet treatment.

6.2 Wave packet derivation

Many authors have derived the master formula treating neutrinos involved as wave packets. For exam-

ples, see Refs. [20, 21].

A neutrino of flavour ↵ is produced at time and position (t0,x0) = (0,0) as a superposition

of source wave packets, fSi (p), one for each mass eigenstate. The state at time and position (t,x) is

therefore

|⌫↵(t,x)i =
X

i

U⇤

↵i

Z

p

fSi (p)e
iEi(p)teipx|⌫ii. (6.8)

For simplicity we will assume Gaussian wave packets, with an average momentum Qi and width S :

fSi (p) / e(pQi)
2/22

S . (6.9)

Note that we have lifted the assumption that all mass eigenstates have the same spatial momentum.

A neutrino of flavour  is detected at time and position (T,L) as a superposition of detector wave

packets, fDi (p), created at this space-time position. The state detected is therefore

|⌫(t,x)i =
X

j

U⇤

j

Z

p

fDj (p)eiEj(p)(tT )eip(xL)|⌫ji, (6.10)

where we also assume Gaussian wave packets at detection, with average momentum Q0
j and width D:

fDj (p) / e(pQ0
j)

2/22
D . (6.11)

The probability amplitude for the first state to turn into the second is therefore

A(⌫↵ ! ⌫) /
Z

dxh⌫(t,x)|⌫↵(t,x)i =
X

i

U⇤

↵iUi

Z

p

eiEi(p)T eipLfSi (p)f
D⇤

i (p) (6.12)

For Gaussian wave packets we can rewrite the product of the S and D wave packets as a Gaussian wave

packet:

fD⇤

i (p)fSi (p) / fovi (p)e(QiQ0
i)

2/4(2
S+2

D), (6.13)

where the overlap wave packet

fovi (p) ⌘ e(pQ̄i)
2/22

ov , Q̄i ⌘

✓

Qi

2
S

+
Q0

i

2
D

◆

2
ov, 2

ov ⌘
1

1/2
S + 1/2

D

. (6.14)

The momentum integral in Eq. (6.12) can be done analytically if we approximate

Ei(p) ' Ei(Q̄i) +
X

k

@Ei

@pk









Q̄i

(pk  (Q̄i)k) + ... = Ei(Q̄i) + vi(p Q̄i) + ..., (6.15)
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where vi is the overlap wave packet group velocity.

The amplitude obtained is

A(⌫↵ ! ⌫) /
X

i

U⇤

↵iUie
iEi(Q̄i)T eiQ̄iLe(QiQ0

i)
2/4(2

S+2
D)e(LviT )22

ov/2. (6.16)

Note that the two last exponential factors impose momentum conservation (the average momentum of

the source and detector wave packets should be equal up to the momentum uncertainty) and the classical

relation L = viT within the spatial uncertainty, 1
ov .

Since we usually do not measure the detection time T in a neutrino oscillation experiment, we

should integrate the probability over this variable. For simplicity we assume Qi ' Q0
i and parallel to L.

In this case, the integral gives:

P (⌫↵ ! ⌫) /
Z 1

1
dT |A(⌫↵ ! ⌫)|2

/
X

i,j

U⇤

↵iUiU↵jU
⇤

je
i

m2
jiL

2|p| e


⇣

L
Lcoh(i,j)

⌘2

| {z }

coherence

e


✓

Ei(Q̄i)Ej(Q̄j)

2ov

◆2

| {z }

momentum uncertainty

(6.17)

where the coherence length

Lcoh(i, j) ' ov
|vi  vj |
q

v2
i + v2

j

, (6.18)

represents the distance travelled by the two wave packets, moving at slightly different group velocities vi

and vj , such that the center of the two wave packets have separated spacially a distance of the order of the

spatial uncertainty 1
ov . For L  Lcoh(i, j) the coherence between the wave packets i, j is lost and the

corresponding terms in the oscillation probability exponentially suppressed. The last exponential factor

in Eq. (6.17) leads to a suppression of the oscillation probability when the difference in average energies

of the two wave packets i, j is larger than the momentum uncertainty of the overlap wave packet, ov.

Note that ov is dominated by the smallest of the production and detection uncertainties, and therefore

both should be large enough to ensure that the wave packets of the different mass eigenstates remain

coherent. To the extent that L ⌧ Lcoh and |Ei  Ej | ⌧ Min(S ,D), the probability reduces to

the master formula, with one caveat: we have lost the normalization along the way. This is usually

unavoidable in the wave packet derivation. The right normalization can be imposed only a posteriori, for

example, from unitarity,
P

 P (⌫↵ ! ⌫) = 1.

In summary, the wave packet derivation is clearly more physical, as it makes explicit the two nec-

essary conditions for neutrino oscillations to take place: coherence and sufficient momentum uncertainty.

6.3 QFT derivation

Since we are dealing with relativistic quantum mechanics, QFT should be the appropriate framework to

derive the oscillation probability.

In QFT we consider scattering processes where some asymptotic in-states that we can prepare
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Fig. 17: Neutrino oscillations in QFT.

in the infinite past come close together at some finite time in an interaction region and scatter off into

other asymptotic out-states at time t ! 1. The probability amplitude for this process is just the scalar

product of the in and out states. In computing this amplitude we usually idealise the asymptotic states

as plane waves, which is a good approximation provided the interaction region is small compared to the

Compton wavelength of the scattering states. In reality however the proper normalization of the scattering

probability as a probability per unit time and volume requires that the initial states are normalized wave

packets.

In a neutrino oscillation experiment, the asymptotic states are not the neutrinos, we cannot re-

ally prepare the neutrino states, but the particles that produce the neutrino at the source and those that

interact with the neutrino in the detector. The neutrino is just a virtual particle being exchanged be-

tween the source and detector, see Fig. 17, and in this perspective the interaction region is as large as

the baseline and therefore macroscopic, in particular much larger than the Compton wavelength of the

asymptotic states involved. It is mandatory therefore to consider the in-states as wave packets to ensure

the localization of the source and detector.

Consider for example a neutrino beam produced from pions at rest and a detector some distance

apart, where neutrinos interact with nucleons that are also at rest, via a quasi-elastic event:

⇡n! pµl . (6.19)

The in-states therefore will be the two wave packets representing a static pion that decays and is localized

at time and position (0,0) within the uncertainty better defined than the decay tunnel, and a nucleon that

is static and localized within the detector, at time and position (T,L), when the interaction takes place.

The out-states are the muon produced in pion decay and the lepton and hadron produced in the quasi-

elastic event. The probability amplitude for the whole process includes the pion decay amplitude, the

neutrino propagation and the scattering amplitude at the detector. Therefore in order to extract from the

full amplitude an oscillation probability, it must be the case that there is factorization of the whole prob-

ability into three factors that can be identified with the flux of neutrino from pion decay, an oscillation
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probability and a neutrino cross section.

By explicit calculation [22], it is possible to show that such factorization does indeed take place

as long as kinematical effects of neutrino masses can be neglected. The oscillation probability defined

as the ratio of the probability for the whole process and the product of the neutrino flux from pion decay

and the neutrino scattering cross-section is properly normalized.

6.4 Neutrino oscillations in vacuum

Let us analyse more closely the master formula Eq. (6.2). The probability is a superposition of oscillatory

functions of the baseline with wavelengths that depend on the neutrino mass differences m2
ij = m2

j

m2
i , and amplitudes that depend on different combinations of the mixing matrix elements. Defining

W ij
↵ ⌘ [U↵iU

⇤

iU
⇤
↵jUj ] and using the unitarity of the mixing matrix, we can rewrite the probability in

the more familiar form:

P (⌫↵ ! ⌫) = ↵  4
X

j>i

Re[Wij
↵ ] sin

2

 

m2
ij L

4E⌫

!

⌥ 2
X

j>i

Im[Wij
↵ ] sin

 

m2
ij L

2E⌫

!

, (6.20)

where the ⌥ refers to neutrinos/antineutrinos and |p| ' E⌫ .

We refer to an appearance or disappearance oscillation probability when the initial and final

flavours are different (↵ 6= ) or the same (↵ = ), respectively. Note that oscillation probabilities

show the expected GIM suppression of any flavour changing process: they vanish if the neutrinos are

degenerate.

In the simplest case of two-family mixing, the mixing matrix depends on just one mixing angle:

UPMNS =

 

cos ✓ sin ✓

 sin ✓ cos ✓

!

, (6.21)

and there is only one mass square difference m2. The oscillation probability of Eq. (6.20) simplifies to

the well-known expression where we have introduced convenient physical units:

P (⌫↵ ! ⌫) = sin2 2✓ sin2
✓

1.27
m2(eV2)L(km)

E⌫(GeV)

◆

, ↵ 6=  .

P (⌫↵ ! ⌫↵) = 1 P (⌫↵ ! ⌫). (6.22)

The probability is the same for neutrinos and antineutrinos, because there cannot be CP violation when

there are only two families. Indeed CPT implies that the disappearance probabilities are the same for

neutrinos and antineutrinos, and therefore according to Eq. (6.22) the same must hold for the appearance

probability. The latter is a sinusoidal function of the distance between source and detector, with a period

determined by the oscillation length:

Losc (km) = ⇡
E⌫(GeV)

1.27m2(eV2)
, (6.23)
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Fig. 18: Left: two-family appearance oscillation probability as a function of the baseline of L at fixed
neutrino energy. Right: same probability shown as a function of the neutrino energy for fixed baseline.

which is proportional to the neutrino energy and inversely proportional to the neutrino mass square differ-

ence. The amplitude of the oscillation is determined by the mixing angle. It is maximal for sin2 2✓ = 1

or ✓ = ⇡/4. The oscillation probability as a function of the baseline is shown on the left plot of Fig. 18.

In many neutrino oscillation experiments the baseline is not varied but the oscillation probability

can be measured as a function of the neutrino energy. This is shown on the right plot of Fig. 18. In this

case, the position of the first maximum contains information on the mass splitting:

Emax(GeV) = 1.27
m2(eV2)L(km)

⇡/2
. (6.24)

An optimal neutrino oscillation experiment in vacuum is such that the ratio of the neutrino

energy and baseline are tuned to be of the same order as the mass splitting, E/L ⇠ m2. If

E/L  m2, the oscillation phase is small and the oscillation probability is approximately P (⌫↵ !
⌫) / sin2 2✓(m2)2, so the mixing angle and mass splitting cannot be disentangled. The opposite limit

E/L⌧ m2 is the fast oscillation regime, where one can only measure an energy or baseline-smeared

oscillation probability

hP (⌫↵ ! ⌫)i '
1

2
sin2 2✓, (6.25)

sensitivity to the mass splitting is lost in this limit. It is interesting, and reassuring, to note that this

averaged oscillation regime gives the same result as the flavour transition probability in the case of

incoherent propagation (L Lcoh):

P (⌫↵ ! ⌫) =
X

i

|U↵iUi|2 = 2 cos2 ✓ sin2 ✓ =
1

2
sin2 2✓. (6.26)

Flavour transitions via incoherent propagation are sensitive to mixing but not to the neutrino mass split-

ting. The smoking gun for neutrino oscillations is not the flavour transition, which can occur in the

presence of neutrino mixing without oscillations, but the peculiar L/E⌫ dependence. An optimal exper-

iment that intends to measure both the mixing and the mass splitting requires running E/L ⇠ m2.
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6.5 Neutrino propagation in matter

When neutrinos propagate in matter (earth, sun, etc.), their propagation is modified owing to coherent

forward scattering on electrons and nucleons [23]:

W±

e

⌫ee

⌫e

Z0

⌫e,µ,⌧

p, n, ep, n, e

⌫e,µ,⌧

The effective Hamiltonian density resulting from the charged current interaction is

HCC = 2
p
2GF [ēµPL⌫e][⌫̄e

µPLe] = 2
p
2GF [ēµPLe][⌫̄e

µPL⌫e]. (6.27)

Since the medium is not polarized, the expectation value of the electron current is simply the number

density of electrons:

hēµPLeiunpol.medium = µ0
Ne

2
. (6.28)

Including also the neutral current interactions in the same way, the effective Hamiltonian for neutrinos

in the presence of matter is

hHCC +HNCimedium = ⌫̄Vm0(1 5)⌫ (6.29)

Vm =

0

B
B
@

GFp
2



Ne
Nn

2



0 0

0 GFp
2




Nn

2



0

0 0 GFp
2




Nn

2



1

C
C
A
, (6.30)

where Nn is the number density of neutrons. Due to the neutrality of matter, the proton and electron

contributions to the neutral current potential cancel.

The plane wave solutions to the modified Dirac equation satisfy a different dispersion relation

E2 = |p|2 +M2
⌫ ± 4EVm, (6.31)

where ± is for neutrinos/antineutrinos. The phases of neutrino oscillation phenomena change.

The effect of matter can be simply accommodated in an effective mass matrix:

M̃2
⌫ =M2

⌫ ± 4EVm. (6.32)
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The effective mixing matrix ṼMNS is the one that takes us from the original flavour basis to that which

diagonalizes this effective mass matrix:

0

B
@

m̃2
1 0 0

0 m̃2
2 0

0 0 m̃2
3

1

C
A = Ṽ †

MNS

0

B
@M

2
⌫ ± 4E

0

B
@

Ve 0 0

0 Vµ 0

0 0 V⌧

1

C
A

1

C
A ṼMNS. (6.33)

The effective mixing angles and masses depend on the energy.

The matter potential in the center of the sun is Vm ⇠ 1012 eV and in the earth Vm ⇠ 1013 eV.

In spite of these tiny values, these effects are non-negligible in neutrino oscillations.

6.6 Neutrino oscillations in constant matter

In the case of two flavours, the effective mass and mixing angle have relatively simple expressions:

m̃2 =

r
⇣

m2 cos 2✓ ⌥ 2
p
2EGF Ne

⌘2
+ (m2 sin 2✓)2, (6.34)

sin2 2✓̃ =



m2 sin 2✓
2

(m̃2)2
, (6.35)

where the sign ⌥ corresponds to neutrinos/antineutrinos. The corresponding oscillation amplitude has a

resonance [24], when the neutrino energy satisfies

p
2GF Ne ⌥

m2

2E
cos 2✓ = 0 ) sin2 2✓̃ = 1, m̃2 = m2 sin 2✓. (6.36)

The oscillation amplitude is therefore maximal, independently of the value of the vacuum mixing angle.

We also note that

– oscillations vanish at ✓ = 0, because the oscillation length becomes infinite for ✓ = 0;

– the resonance is only there for ⌫ or ⌫̄ but not both;

– the resonance condition depends on the sign(m2 cos 2✓):

resonance observed in ⌫ ! sign(m2 cos 2✓) > 0,

resonance observed in ⌫̄ ! sign(m2 cos 2✓) < 0.

The origin of this resonance is a would-be level crossing in the case of vanishing mixing. In the

case of two families, for ✓ = 0, the mass eigenstates as a function of the electron number density, at

fixed neutrino energy, are depicted in Fig. 19 for m2 > 0. As soon as the mixing is lifted from zero, no

matter how small, the crossing cannot take place. The resonance condition corresponds to the minimum

level-splitting point.

6.7 Neutrino oscillations in variable matter

In the sun the density of electrons is not constant. However, if the variation is sufficiently slow, the

eigenstates will change slowly with the density, and we can assume that the neutrino produced in an
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Fig. 19: Mass eigenstates as a function of the electron number density at fixed neutrino energy for ✓ = 0
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eigenstate in the center of the sun, remains in the same eigenstate along the trajectory. This is the so-

called adiabatic approximation.

We consider here two-family mixing for simplicity. At any point in the trajectory, it is possible to

diagonalize the Hamiltonian fixing the matter density to that at the given point. The resulting eigenstates

can be written as

|⌫̃1i = |⌫ei cos ✓̃  |⌫µi sin ✓̃, (6.37)

|⌫̃2i = |⌫ei sin ✓̃ + |⌫µi cos ✓̃. (6.38)

Neutrinos are produced close to the centre x = 0 where the electron density is Ne(0). Let us suppose

that it satisfies

2
p
2GFNe(0)  m2 cos 2✓. (6.39)

Then the diagonalization of the mass matrix at this point gives

✓̃ ' ⇡

2
) |⌫ei ' |⌫̃2i, (6.40)

in such a way that an electron neutrino is mostly the second mass eigenstate. When neutrinos exit the

sun, at x = R, the matter density falls to zero, Ne(R) = 0, and the local effective mixing angle is the

one in vacuum, ✓̃ = ✓. If ✓ is small, the eigenstate ⌫̃2 is mostly ⌫µ according to Eq. (6.38).

Therefore an electron neutrino produced at x = 0 is mostly the eigenstate ⌫̃2, but this eigenstate

outside the sun is mostly ⌫µ. There is maximal ⌫e ! ⌫µ conversion if the adiabatic approximation is a

good one. This is the famous MSW effect [23, 24]. The conditions for this to happen are:

– Resonant condition: the density at the production is above the critical one

Ne(0) >
m2 cos 2✓

2
p
2EGF

. (6.41)

– Adiabaticity: the splitting of the levels is large compared to energy injected in the system by the
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Fig. 20: MSW triangle: in the region between the two lines the resonance and adiabaticity conditions
are both satisfied for neutrinos of energy 1 MeV.

variation of Ne(r). A measurement of this is given by  which should be much larger than one:

 =
sin2 2✓

cos 2✓

m2

2E

1

|r logNe(r)|
> min > 1, (6.42)

where r = @/@r.

At fixed energy both conditions give the famous MSW triangles, if plotted on the plane

(log(sin2 2✓), log(m2)):

log


m2


< log

 

2
p
2GFNe(0)E

cos 2✓

!

(6.43)

log


m2


> log

✓

min2Er logNe
cos 2✓

sin2 2✓

◆

. (6.44)

For example, taking Ne(r) = Nc exp(r/R0), R0 = R/10.54, Nc = 1.6 ⇥ 1026 cm3, E = 1 MeV,

these curves are shown in Fig. 20.

It should be stressed that neutrino oscillations are not responsible for the flavour transition of solar

neutrinos. The survival probability of the solar ⌫e in the adiabatic approximation is the incoherent sum

of the contribution of each of the mass eigenstates:

P (⌫e ! ⌫e) =
X

i

|h⌫e|⌫̃i(R)i|2|h⌫̃i(0)|⌫ei|2, (6.45)

where ⌫̃i(r) is the i-th mass eigenstate for the electron number density, Ne(r), at a distance r from the

center of the sun. If the mass eigenstates contribute incoherently, how can we measure the neutrino mass

splitting? The answer is that the resonance condition of Eq. (6.41) depends on the neutrino energy. If we
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Fig. 21: Schematic survival probability of solar neutrinos as a function of the energy.

define

Eres ⌘
m2 cos 2✓

2
p
2GFNe(0)

, (6.46)

the MSW effect will affect neutrinos with E > Eres, while for E < Eres, the oscillation probability

is close to that in vacuum for averaged oscillations. The spectrum of the solar neutrino flux includes

energies both above and below Eres:

P (⌫e ! ⌫e) ' 1 1
2 sin

2 2✓, E ⌧ Eres

P (⌫e ! ⌫e) ' sin2 ✓, E  Eres (6.47)

The sensitivity to m2 relies on the ability to locate the resonant energy. This behaviour is schematically

depicted in Fig. 21.

7 Evidence for neutrino oscillations

Nature has been kind enough to provide us with two natural sources of neutrinos (the sun and the atmo-

sphere) where neutrino flavour transitions have been observed in a series of ingenious experiments, that

started back in the 1960s with the pioneering experiment of R. Davies. This effort was rewarded with

the Nobel prize of 2002 to R. Davies and M. Koshiba for the detection of cosmic neutrinos.

7.1 Solar neutrinos

The sun, like all stars, is an intense source of neutrinos produced in the chain of nuclear reactions that

burn hydrogen into helium:

4p ! 4He + 2e+ + 2⌫e. (7.1)
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Fig. 22: Spectrum of solar neutrinos [26]. The arrows indicate the threshold of the different detection
techniques.

The theory of stellar nucleosynthesis was established at the end of the 30’s by H. Bethe [25]. The

spectrum of the solar ⌫e, for massless neutrinos, is shown in Fig. 22. The prediction of this flux, obtained

by J. Bahcall and collaborators [26], is the result of a detailed simulation of the solar interior and has

been improved over many years. It is the so-called standard solar model (SSM).

Neutrinos coming from the sun have been detected with several experimental techniques that have

a different neutrino energy threshold as indicated in Fig. 22. On the one hand, the radiochemical tech-

niques, used in the experiments Homestake (chlorine, 37Cl) [27], Gallex/GNO [28] and Sage [29] (using

gallium, 71Ga, and germanium, 71Ge, respectively), can count the total number of neutrinos with a rather

low threshold (E⌫ > 0.81 MeV in Homestake and E⌫ > 0.23 MeV in Gallex and Sage), but they cannot

get any information on the directionality, the energy of the neutrinos, nor the time of the event.

On the other hand, Kamiokande [30] pioneered a new technique to observe solar neutrinos using

water Cherenkov detectors that can measure the recoil electron in elastic neutrino scattering on electrons:

⌫e + e ! ⌫e + e. This is a real-time experiment that provides information on the directionality

and the energy of the neutrinos. The threshold on the other hand is much higher, ⇠ 5 MeV. All these

experiments have consistently observed a number of solar neutrinos between 1/3 and 1/2 of the number

expected in the SSM and for a long time this was referred to as the solar neutrino problem or deficit.

The progress in this field over the last two decades has been enormous culminating in a solution

to this puzzle that no longer relies on the predictions of the SSM. There have been three milestones.

1998: The experiment Super-Kamiokande [31] measured the solar neutrino deficit with unprece-

dented precision, using the elastic reaction (ES):

(ES) ⌫e + e ! ⌫e + e Ethres > 5 MeV. (7.2)

The measurement of the direction of the events demonstrated that the neutrinos measured definitely come

from the sun: the left plot of Fig. 23 shows the distribution of the events as a function of the zenith angle
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Fig. 23: Left: distribution of solar neutrino events as a function of the zenith angle of the sun. Right:
seasonal variation of the solar neutrino flux in Super-Kamiokande (from Ref. ( [32])).

of the sun. A seasonal variation of the flux is expected since the distance between the earth and the sun

varies seasonally. The right plot of Fig. 23 shows that the measured variation is in perfect agreement

with that expectation.

2001: The SNO experiment [33, 34] measured the flux of solar neutrinos using also the two reac-

tions:

(CC) ⌫e + d! p+ p+ e Ethres > 5 MeV (7.3)

(NC) ⌫x + d! p+ n+ ⌫x x = e, µ, ⌧ Ethres > 2.2 MeV (7.4)

Since the CC reaction is only sensitive to electron neutrinos, while the NC one is sensitive to all the types

that couple to the Z0 boson, the comparison of the fluxes measured with both reactions can establish if

there are ⌫µ and ⌫⌧ in the solar flux independently of the normalization given by the SSM. The result

is shown on the Nobel-prize-winning plot Fig. 24. These measurements demonstrate that the sun shines

(⌫µ, ⌫⌧ ) about twice more than it shines ⌫e, which constitutes the first direct demonstration of flavour

transitions in the solar flux! Furthermore the NC flux that measures all active species in the solar flux, is

compatible with the total ⌫e flux expected according to the SSM.

All solar neutrino data can be interpreted in terms of neutrino masses and mixings. The solar ⌫e
deficit can be explained for a m2

solar ' 7–8⇥105eV and a relatively large mixing angle. The fortunate

circumstance that

m2
solar ⇠ hE⌫(1 MeV)i/L(100 km) (7.5)

implies that one could look for this oscillation measuring reactor neutrinos at baselines of ⇠ 100 km.

This was the third milestone.

2002: The solar oscillation is confirmed with reactor neutrinos in the KamLAND experiment [35].

This has 1 kilo ton of liquid scintillator which measures the flux of reactor neutrinos produced in a cluster

of nuclear plants around the Kamioka mine in Japan. The average distance is hLi = 175 km. Neutrinos
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are detected via inverse -decay which has a threshold energy of about 2.6 MeV:

⌫̄e + p! e+ + n Eth > 2.6 MeV . (7.6)

Figure 25 shows the KamLAND results [36] on the antineutrino spectrum, as well as the survival

probability as a function of the ratio E⌫/L.

The low-energy contribution of geo-neutrinos is clearly visible. This measurement could have

important implications in geophysics.

Concerning the sensitivity to the oscillation parameters, Fig. 26 shows the present determination

of the solar oscillation parameters from KamLAND and other solar experiments. The precision in the

determination of m2
solar is spectacular and shows that solar neutrino experiments are entering the era of
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Fig. 27: Comparison of solar neutrino fluxes measured by the different solar neutrino experiments (from
Ref. [37]).

precision physics.

The last addition to this success story is the Borexino experiment [37]. This is the lowest-threshold

real-time solar neutrino experiment and the only one capable of measuring the flux of the monochromatic
7Be neutrinos and pep neutrinos. Their recent results are shown in Fig. 27. The result is in agreement

with the oscillation interpretation of other solar and reactor experiments and it adds further information

to disfavour alternative exotic interpretations of the data.

In summary, solar neutrinos experiments have made fundamental discoveries in particle physics

and are now becoming useful for other applications, such as a precise understanding of the sun and the
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Fig. 28: Comparison of the predictions of different Monte Carlo simulations of the atmospheric neutrino
fluxes averaged over all directions (left) and of the flux ratios (⌫µ + ⌫̄µ)/(⌫e + ⌫̄e), ⌫µ/⌫̄µ, and ⌫e/⌫̄e
(right). The solid line corresponds to a recent full 3D simulation. Taken from the last reference in
Ref. [38].

earth.

7.2 Atmospheric neutrinos

Neutrinos are also produced in the atmosphere when primary cosmic rays impinge on it producing K,⇡

that subsequently decay. The fluxes of such neutrinos can be predicted within a 10–20% accuracy to be

those in the left plot of Fig. 28.

Clearly, atmospheric neutrinos are an ideal place to look for neutrino oscillation since the E⌫/L

span several orders of magnitude, with neutrino energies ranging from a few hundred MeV to 103 GeV

and distances between production and detection varying from 10–104 km, as shown in Fig. 29 (right).

Many of the uncertainties in the predicted fluxes cancel when the ratio of muon to electron events

is considered. The first indication of a problem was found when a deficit was observed precisely in this

ratio by several experiments: Kamiokande, IMB, Soudan2 and Macro.

In 1998, Super-Kamiokande clarified the origin of this anomaly [39]. This experiment can dis-

tinguish muon and electron events, measure the direction of the outgoing lepton (the zenith angle with

respect to the earth’s axis) which is correlated to that of the neutrino (the higher the energy the higher

the correlation), in such a way that they could measure the variation of the flux as a function of the

distance travelled by the neutrinos. Furthermore, they considered different samples of events: sub-GeV

(lepton with energy below 1 GeV), multi-GeV (lepton with energy above 1 GeV), together with stopping

and through-going muons that are produced on the rock surrounding Super-Kamiokande. The different
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samples correspond to different parent neutrino energies as can be seen in Fig. 29 (left).

The number of events for the different samples as a function of the zenith angle of the lepton are

shown in the Nobel-prize-winning plot Fig. 30.

While the electron events observed are in rough agreement with predictions, a large deficit of muon

events was found with a strong dependence on the zenith angle: the deficit was almost 50% for those

events corresponding to neutrinos coming from below cos ✓ = 1, while there is no deficit for those

coming from above. The perfect fit to the oscillation hypothesis is rather non-trivial given the sensitivity

of this measurement to the E⌫ (different samples) and L (zenith angle) dependence. The significance of

the E⌫/L dependence has also been measured by the Super-Kamiokande Collaboration [41], as shown

in Fig. 31. The best fit value of the oscillation parameters indicate m2 ' 3 ⇥ 103 eV2 and maximal

mixing.

Appropriate neutrino beams to search for the atmospheric oscillation can easily be produced at

accelerators if the detector is located at a long baseline of a few hundred kilometres, and also with

reactor neutrinos in a baseline of O(1km), since

|m2
atmos| ⇠

E⌫(1 10 GeV)

L(102  103 km)
⇠
E⌫(1 10 MeV)

L(0.1 1 km)
. (7.7)

A conventional accelerator neutrino beam, as the one used in the LSS experiment, is produced from

protons hitting a target and producing ⇡ and K:

p ! Target ! ⇡+,K+ ! ⌫µ(%⌫e, ⌫̄µ, ⌫̄e) (7.8)

⌫µ ! ⌫x. (7.9)

Those of a selected charge are focused and are left to decay in a long decay tunnel producing a neutrino

beam of mostly muon neutrinos (or antineutrinos) with a contamination of electron neutrinos of a few

per cent. The atmospheric oscillation can be established by studying, as a function of the energy, either

the disappearance of muon neutrinos, the appearance of electron neutrinos or, if the energy of the beam
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for ⌫µ $ ⌫⌧ oscillations (from Ref. [40]).

is large enough, the appearance of ⌧ neutrinos.

Three conventional beams confirmed the atmospheric oscillation from the measurement of the dis-

appearance of ⌫µ neutrinos: K2K (L = 235 km) [42], MINOS (L = 730 km) [43] and from the appearance

of ⌫⌧ , OPERA (L = 730 km) [44]. Fig. 32 shows the measurement of the ⌫µ survival probability as a

function of the reconstructed neutrino energy in the MINOS experiment.

Three reactor neutrino experiments, Daya Bay [46], RENO [47] and Double Chooz [48], have

discovered that the electron neutrino flavour also oscillates with the atmospheric wavelength: electron

antineutrinos from reactors disappear at distances of O(1 km), but with a small amplitude. See Fig. 33.

Finally the T2K and NOVA experiments have measured the appearance of ⌫e and ⌫̄e in an accel-

erator ⌫µ/⌫̄µ beam [49, 50] in the atmospheric range. The agreement of all these measurements with the
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Fig. 32: Ratio of measured to expected (in absence of oscillations) neutrino events in MINOS as a
functions of neutrino energy compared to the best fit oscillation solution (from Ref. [45]).

original atmospheric oscillation signal is excellent.

8 The three-neutrino mixing scenario

As we have seen, the evidence summarized in the previous section points to two distinct neutrino mass

square differences related to the solar and atmospheric oscillation frequencies:

|m2
solar|

| {z }

⇠8·105 eV2

⌧ |m2
atmos|

| {z }

⇠2.5·103 eV2

(8.1)

The mixing of the three standard neutrinos ⌫e, ⌫µ, ⌫⌧ can accommodate both. The two independent

neutrino mass square differences are conventionally assigned to the solar and atmospheric ones in the
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following way:

m2
13 = m2

3 m2
1 = m2

atmos, m2
12 = m2

2 m2
1 = m2

solar . (8.2)

The PMNS mixing matrix depends on three angles and one or more CP phases (see Eq. (4.7) for the stan-

dard parametrization). Only one CP phase, the so-called Dirac phase , appears in neutrino oscillation

probabilities.

With this convention, the mixing angles ✓23 and ✓12 in the parametrization of Eq. (4.7) corre-

spond approximately to the ones measured in atmospheric and solar oscillations, respectively. This is

because solar and atmospheric anomalies approximately decouple as independent 2-by-2 mixing phe-

nomena thanks to the hierarchy between the two mass splittings, |m2
atmos|  |m2

solar| , on the one

hand, and the fact that the angle ✓13, which measures the electron component of the third mass eigenstate

element sin ✓13 = (UPMNS)e3, is small.

To see this, let us first consider the situation in which E⌫/L ⇠ |m2
atmos|. We can thus neglect

the solar mass square difference in front of the atmospheric one and E⌫/L. The oscillation probabilities

obtained in this limit are given by

P (⌫e ! ⌫µ) ' s223 sin2 2✓13 sin2
✓

m2
13L

4E⌫

◆

, (8.3)

P (⌫e ! ⌫⌧ ) ' c223 sin2 2✓13 sin2
✓

m2
13L

4E⌫

◆

, (8.4)

P (⌫µ ! ⌫⌧ ) ' c413 sin2 2✓23 sin2
✓

m2
13L

4E⌫

◆

. (8.5)

The results for antineutrinos are the same (there is no CP violation if one mass difference is neglected).

All flavours oscillate therefore with the atmospheric frequency, but only two angles enter these formulae:

✓23 and ✓13. The latter is the only one that enters the disappearance probability for ⌫e or ⌫̄e in this regime
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since

P (⌫e ! ⌫e) = P (⌫̄e ! ⌫̄e) = 1 P (⌫e ! ⌫µ) P (⌫e ! ⌫⌧ ) ' sin2 2✓13 sin2
✓

m2
13L

4E⌫

◆

. (8.6)

This is precisely the measurement of reactor neutrino experiments like Chooz, Daya Bay, RENO and

Double Chooz. Therefore the oscillation amplitude of these experiments is a direct measurement of the

angle ✓13, which has been measured to be small.

Note that in the limit ✓13 ! 0, the only probability that survives in Eq. (8.5) is the ⌫µ ! ⌫⌧ one,

which has the same form as a 2-family mixing formula Eq. (6.22) if we identify

(m2
atmos, ✓atmos) ! (m2

13, ✓23) . (8.7)

Therefore the close-to-maximal mixing angle observed in atmospheric neutrinos and the accelerator

neutrino experiments like MINOS is identified with ✓23.

Instead if we consider experiments in the solar range, E⌫/L ⇠ m2
solar, the atmospheric oscil-

lation its too rapid and gets averaged out. The survival probability for electrons in this limit is given

by:

P (⌫e ! ⌫e) = P (⌫̄e ! ⌫̄e) ' c413

✓

1 sin2 2✓12 sin2
✓

m2
12L

4E⌫

◆◆

+ s413. (8.8)

Again it depends only on two angles, ✓12 and ✓13, and in the limit in which the latter is zero, the survival

probability measured in solar experiments has the form of two-family mixing if we identify

(m2
solar, ✓solar) ! (m2

12, ✓12) . (8.9)

The results that we have shown in the previous section of solar and atmospheric experiments have been

analysed in terms of 2-family mixing. The previous argument indicates that when fits are done in the

context of 3-family mixing nothing changes too much.

On the other hand, the fact that reactor experiments have already measured the disappearance of

reactor ⌫̄e in the atmospheric range implies that the effects of ✓13 ' 9 are not negligible, and therefore

a proper analysis of all the oscillation data requires performing global fits in the 3-family scenario.

Figure 34 shows the 2 as a function of each of the six parameters from one recent global analysis [51].

See also Refs. [52, 53].

There are two parameters in which we observe two distinct minima, these corresponds to degen-

eracies that cannot be resolved with present data. The first corresponds to the neutrino mass ordering or

hierarchy: present data cannot distinguish between the normal (NH or NO) and inverted ordering (IH or

IO) represented in Fig. 35.

Note that we denote by m2
13 = m2

atmos the atmospheric splitting for NO and m2
23 =

m2
atmos for IO. The second degeneracy corresponds to the octant choice of ✓23. Present data are

mostly sensitive to sin2 2✓23. If this angle is not maximal, there are two possible choices that are roughly

equivalent ✓23 $ ⇡/4 ✓23. Due to this degeneracy, the largest angle is also the one less accurate. The
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1 limits for NO are:

✓23/
 = 49.2+1

1.3, ✓12/
 = 33.4+0.77

0.74, ✓13/
 = 8.57(13),

m2
12 = 7.42(21)⇥ 105 eV2, m2

13 = 2.515(28)⇥ 103 eV2. (8.10)

The CP phase  remains roughly unconstrained at 3, while there is about half of the region excluded at

2. As we will see, the dependence on the phase requires sensitivity to both frequencies simultaneously.

9 Prospects in determining unknown neutrino parameters

An ambitious experimental program is underway to pin down the remaining unknowns and reach a 1%

precision in the lepton flavour parameters. The neutrino ordering, the octant of ✓23 and the CP violat-

ing phase, , can be searched for in neutrino oscillation experiments with improved capabilities. The

determination of the absolute neutrino mass scale relies on tritium beta decay experiments or cosmology.

9.1 Neutrino ordering

Concerning the neutrino ordering, the best hope to identify the spectrum exploits the MSW effect in

the propagation of GeV neutrinos through earth’s matter. In the case of three neutrinos propagating in

matter, the ⌫ mass eigenstates as a function of the electron density for vanishing ✓12, ✓13 are depicted

in Fig. 36 for NO and IO. For NO we see that there are two level crossings giving rise to two MSW

resonances. The first one is essentially the one relevant for solar neutrinos, as it affects the smallest mass

splitting, with the resonance condition:

E(1)
res =

m2
12 cos 2✓12

2
p
2GFNe

. (9.1)

The second one affects the largest mass splitting

E(2)
res =

m2
13 cos 2✓13

2
p
2GFNe

. (9.2)

For IO, only the first resonance appears in the ⌫ channel.

For ⌫̄ the dependence on Ne of the first eigenstate has a negative slope and therefore there is no

resonance for NO and only the atmospheric resonance appears for IO.

The existence of the atmospheric resonance implies a large enhancement of the oscillation prob-

ability P (⌫e $ ⌫µ) for NO for energies near the resonant energy and at sufficiently long baseline. For

IO the enhancement occurs in P (⌫̄e $ ⌫̄µ) instead. For the typical matter densities of the earth’s crust

and mantle and the value of the atmospheric mass splitting, the resonant energy for neutrinos travelling

through earth is ' 6 GeV, an energy that can be reached in accelerator neutrino beams. The measure-

ment of the neutrino ordering becomes almost a digital measurement sending a conventional ⌫ beam

sufficiently far as shown in Fig. 37, which shows the oscillation probability P (⌫µ ! ⌫e) as a function of

the neutrino energy at a distance corresponding to the baseline from CERN-Kamioka (8770 km).

The first experiment that will be sensitive to this effect is the NOvA experiment, optimized like
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Fig. 37: Resonant increase of the Pµe for NH as a function of neutrino energy for L corresponding to the
distance CERN-Kamioka for NH/IH. The bands corresponds to the uncertainty in  (from Ref. [54]).

T2K to see the ⌫e appearance signal, with a baseline of 810km, which is however a bit short to see a

large enhancement. Nevertheless if lucky NOvA could discriminate the ordering at 3.

The atmospheric resonance must also affect atmospheric neutrinos at the appropriate energy and

baseline. Unfortunately the atmospheric flux contains both neutrinos and antineutrinos in similar num-

bers, and the corresponding events cannot be told apart, because present atmospheric neutrino detectors

cannot measure the lepton charge. If we superimpose the neutrino and antineutrino signals, both order-

ings will give rise to an enhancement in the resonance region, since either the neutrino or antineutrino

channel will have a resonance. Nevertheless with sufficient statistics, there is some discrimination power

and in fact the biggest neutrino telescopes, IceCube and KM3NeT have proposed to instrument more

finely some part of their detectors (PINGU and ORCA projects) to perform this measurement. Also

the next generation of atmospheric neutrino detectors, such as Hyper-Kamiokande, with a factor O(20)

more mass than the present Super-Kamiokande, or the INO detector that is designed to measure the muon

charge in atmospheric events, could discriminate between the two orderings.

A very different strategy has been proposed for reactor neutrino experiments (e.g. JUNO project).

The idea is to measure very precisely the reactor neutrinos at a baseline of roughly 50 km, where the

depletion of the flux due to the solar oscillation is maximal. At this optimal distance, one can get a superb
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Fig. 38: Reactor neutrino spectrum in JUNO for NO/IO (from Ref. [57]).

measurement of the solar oscillation parameters, (✓12,m2
12), and, with sufficient energy resolution, one

could detect the modulation of the signal due to the atmospheric oscillation [55, 56]. Figure 38 shows

how this modulation is sensitive to the neutrino ordering. A leap ahead is however needed to reach the

required energy resolution that would enable this measurement.

9.2 Leptonic CP violation

As we have seen, the CP phase, , in the mixing matrix induces CP violation in vacuum neutrino oscil-

lations, that is a difference between P (⌫↵ ! ⌫) and P (⌫̄↵ ! ⌫̄), for ↵ 6= . As we saw in the general

expression of Eq. (6.20), CP violation is possible if there are imaginary entries in the mixing matrix that

make Im[W jk
↵ ] 6= 0. By CPT, disappearance probabilities cannot violate CP however, because under

CPT

P (⌫↵ ! ⌫) = P (⌫̄ ! ⌫̄↵) , (9.3)

so in order to observe a CP or T-odd asymmetry the initial and final flavour must be different, ↵ 6= :

ACP
↵ ⌘

P (⌫↵ ! ⌫) P (⌫̄↵ ! ⌫̄)

P (⌫↵ ! ⌫) + P (⌫̄↵ ! ⌫̄)
, AT

↵ ⌘
P (⌫↵ ! ⌫) P (⌫ ! ⌫↵)

P (⌫↵ ! ⌫) + P (⌫ ! ⌫↵)
. (9.4)

In the case of 3-family mixing it is easy to see that the CP(T)-odd terms in the numerator are the same

for all transitions ↵ 6= :

ACP(T)-odd
⌫↵⌫

=
sin c13 sin 2✓13

solar
z }| {

sin 2✓12
m2

12L

4E⌫

atmos
z }| {

sin 2✓23 sin
2 m

2
13L

4E⌫

PCP-even
⌫↵⌫

. (9.5)

As expected, the numerator is GIM suppressed in all the m2
ij and all the angles, because if any of

them is zero, the CP-odd phase becomes unphysical. Therefore an experiment which is sensitive to CP

violation must be sensitive to both mass splittings simultaneously. In this situation, it is not clear a priori

what the optimization of E/L should be.

It can be shown that including only statistical errors, the signal-to-noise ratio for this asymmetry is
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maximized for hE⌫i/L ⇠ m2
atmos. In this case, only two small parameters remain in the CP-odd terms:

the solar splitting, m2
solar (i.e., compared to the other scales, m2

atmos and hE⌫i/L), and the angle ✓13.

The asymmetry is then larger in the sub-leading transitions: ⌫e ! ⌫µ(⌫⌧ ), because the CP-even terms in

the denominator are also suppressed by the same small parameters. A convenient approximation for the

⌫e $ ⌫µ transitions is obtained expanding to second order in both small parameters [58]:

P⌫e⌫µ(⌫̄e⌫̄µ) = s223 sin2 2✓13 sin2
✓

m2
13 L

4E⌫

◆

⌘ P atmos

+ c223 sin2 2✓12 sin2
✓

m2
12 L

4E⌫

◆

⌘ P solar

+ J̃ cos

✓

±
m2

13 L

4E⌫

◆

m2
12 L

4E⌫
sin

✓

m2
13 L

4E⌫

◆

⌘ P inter, (9.6)

where J̃ ⌘ c13 sin 2✓13 sin 2✓12 sin 2✓23. The first term corresponds to the atmospheric oscillation, the

second one is the solar one and there is an interference term which has the information on the phase

and depends on both mass splittings.

These results correspond to vacuum propagation, but usually these experiments require the propa-

gation of neutrinos in the earth’s matter. The oscillation probabilities in matter can also be approximated

by a similar series expansion [58]. The result has the same structure as in vacuum:

P⌫e⌫µ(⌫̄e⌫̄µ) = s223 sin2 2✓13

✓

13

B±

◆2

sin2
✓

B±L
2

◆

+ c223 sin2 2✓12

✓

12

A

◆2

sin2
✓

AL

2

◆

+ J̃
12

A
sin(

AL

2
)
13

B±
sin

✓

B±L
2

◆

cos

✓

±
13 L

2

◆

, (9.7)

where

B± = |A±13| ,ij =
m2

ij

2E⌫
, A =

p
2GFNe . (9.8)

The oscillation probability for neutrinos and antineutrinos now differ not just because of leptonic CP

violation, but also due to the matter effects, that as we have seen can be resonant. In particular, the

atmospheric term which is the dominant one, shows the expected resonant enhancement in the neutrino

or antineutrino oscillation probability (depending on the ordering).

The sensitivity to the interference term requires very good knowledge of the leading atmospheric

term and the present degeneracies (the octant and the neutrino ordering) directly affect the leading term

compromising therefore the  sensitivity. Either both uncertainties are solved before this measurement,

or there must be sufficient sensitivity from the energy dependence of the signal to resolve all unknowns

simultaneously.

A rough optimization ofL for fixedE/L for discovering CP violation is shown in Fig. 39. It shows

the signal-to-noise as a function of the true value of , assuming only statistical errors, but including

the expected dependence of the cross sections and fluxes. At very short baselines, the sensitivity is

compromised due to the lack of knowledge of the neutrino ordering. In a wide intermediate region
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Fig. 39: Signal-to-noise for the discovery of CP violation at fixed E/L ⇠ m2
atm as a function of

the true value of  for L = 295km (long-dashed), L = 650km (short-dashed), L = 1300km (dotted),
L = 2300km (solid). The ordering is assumed to be unknown.

Fig. 40: Sensitivity to CP violation as a function of the true value of  in Hyper-Kamiokande (left) [59]
and DUNE (right) [60]. Solid (dashed) lines on the left plot correspond to the mass ordering (MO)
known(unknown).

around O(1000)km the sensitivity is optimal, and at much larger baselines the sensitivity deteriorates

because the matter effects completely hide CP-violation.

Several projects have been proposed to search for leptonic CP violation, including conventional

beams, but also novel neutrino beams from muon decays (neutrino factories), from radioactive ion decays

(-beams) or from spalation sources (ESS). The relatively large value of ✓13 has refocused the interest

in using the less challenging conventional beams and two projects are presently being developed: the

Hyper-Kamiokande detector, an up-scaled version of Super-Kamiokande that will measure atmospheric

neutrinos with unprecedented precision, and also intercept a neutrino beam from JPARC at a relatively

short baseline L = 295km, and the DUNE project that involves a liquid argon neutrino detector and a

neutrino beam from Fermilab to the Soudan mine at a baseline of L = 1500km. The expected sensitivi-

ties to CP violation of both projects are shown in Fig. 40.
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9.3 Absolute neutrino mass scale

Neutrino oscillation experiments are only sensitive to neutrino mass differences, so at present we do not

have information on the absolute neutrino mass scale, only upper limits. The sum of all neutrino masses

is tightly constrained by cosmological measurements of the cosmic microwave background (CMB) [61]:

X

i

mi  0.12 eV. (9.9)

As we have seen the kinematical effects of neutrino masses in this range can also modify the end-point

spectrum of beta decay. More precisely, this measurement can constrain the combination

m⌫e ⌘

s
X

i

|Uei|2m2
i . (9.10)

The strongest upper limit of 0.8 eV as we saw has been set by the Katrin experiment [7].

In Fig. 41 we show the allowed regions on the plane m⌫e vs
P

imi from the known neutrino

masses and mixings. The limit from cosmology on the right axis is already more stringent (although

cosmological model dependent) than the present and future expected sensitivity of the Katrin experiment.
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Fig. 41: Allowed region for m⌫e for IO (blue contour) and NO (red contour) from a global analysis of
neutrino data (from Ref. [51]) on the plane m⌫e vs the sum of all neutrino masses.

10 Outliers: the LSND anomaly

The long-standing puzzle brought by the LSND experiment is still unresolved. This experiment [62]

observed a surplus of electron events in a muon neutrino beam from ⇡+ decaying in flight (DIF) and a

surplus of positron events in a neutrino beam from µ+ decaying at rest (DAR). The interpretation of this

data in terms of neutrino oscillations, that is a non-vanishing P (⌫µ ! ⌫e), gives the range shown by a

coloured band in Fig. 43.
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Fig. 42: Reactor neutrino flux measured by various near detectors compared with the recent flux predic-
tions (from Ref. [70]).

⇡+ ! µ+ ⌫µ

⌫µ ! ⌫e DIF (28± 6/10± 2)

µ+ ! e+⌫e⌫̄µ

⌫̄µ ! ⌫̄e DAR (64± 18/12± 3)

A significant fraction of this region was already excluded by the experiment KARMEN [63] that has

unsuccessfully searched for ⌫̄µ ! ⌫̄e in a similar range.

The experiment MiniBOONE was designed to further investigate the LSND signal, with incon-

clusive results [64]. They did not confirm the LSND anomaly, but found a significant excess at lower

energies [65]. Recently the MicroBoone experiment [66], designed to have improved discrimination

capabilities of NC background, did not find evidence for the MiniBOONE anomaly.

On the other hand, the results of various short baseline (tens of meters) reactor neutrino experi-

ments were revised, after an update on the reactor neutrino flux predictions [67–69], which increased

these fluxes by a few per cent. While the measured neutrino flux was found to be in agreement with

predictions before, after this revision some reactor neutrinos seem to disappear before reaching near

detectors, L = O(10)m. This is the so-called reactor anomaly shown in Fig. 42. This result brought

some excitement because if this disappearance is due to oscillations, it might reinforce the oscillation

interpretation of the LSND anomaly.

The required mass splitting to describe both anomalies is m2
LSND ' 1eV2, which is much

larger than the solar and atmospheric, and therefore requires the existence of at least a fourth neutrino

mass eigenstate, i. If such a state can explain the LSND anomaly, it must couple to both electrons and

muons. Unfortunately the smoking gun would require that also accelerator ⌫µ disappear with the same

wavelength and this has not been observed:

P (⌫µ ! ⌫e) / |UeiUµi|2 LSND

1 P (⌫e ! ⌫e) / |Uei|4 reactor

1 P (⌫µ ! ⌫µ) / |Uµi|4 not observed
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Fig. 43: Sterile neutrino search combining disappearance of ⌫µ’s and ⌫e (from Ref. [71]). At 90% CL
only the region to the left of the red line is allowed, excluding most of the regions favoured by LSND,
MiniBoone and the global fits.

The strongest constraint on the disappearance of ⌫µ in the LSND range has been recently set by MINOS+

and the tension between appearance and disappearance measurements is shown in Fig. 43.

Very recently a new update on the flux predictions has been presented and the significance of the

reactor anomaly has decreased. In parallel a plethora of new short baseline reactor neutrino experiments

(Prospect, DANSS, Stereo, NEOS, NEUTRINO-4) have taken data exploiting the L dependence of a

putative oscillation signal. The results have for the most part not confirmed the oscillation of reactor

neutrinos. A global analysis of all the reactor data results shows that at 2.6 the results are compatible

with the non-oscillation hypothesis. See Ref. [72] for a recent status and references.

11 Neutrinos and BSM physics

The new lepton flavour sector of the SM has opened new perspectives into the flavour puzzle. As we

have seen neutrinos are massive but significantly lighter than the remaining charged fermions. Clearly

the gap of Fig. 11 calls for an explanation. The leptonic mixing matrix is also very different to that in the

quark sector. The neutrino mixing matrix is approximately given in Ref. [51]

|UPMNS|3 '

0

B
@

0.80 0.84 0.51 0.58 0.14 0.16

0.23 0.50 0.46 0.69 0.63 0.78

0.26 0.52 0.47 0.70 0.61 0.76

1

C
A . (11.1)

The CKM matrix is presently constrained [73] to be:

|VCKM| '

0

B
@

0.97435(16) 0.22500(67) 0.00369(11)

0.22486(67) 0.97349(16) 0.04182(85)

0.00857(20) 0.04110(83) 0.999118(31)

1

C
A . (11.2)
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There is a striking difference between the two (and not only in the precision of the entries). The CKM

matrix is close to the unit matrix:

VCKM '

0

B
@

1 O() O(3)

O() 1 O(2)

O(3) O(2) 1

1

C
A ,  ⇠ 0.2, (11.3)

while the leptonic one has large off-diagonal entries. With a similar level of precision, it is close to the

tri-bimaximal mixing pattern [74]

UPMNS ' Vtri-bi '

0

B
B
B
@

q
2
3

q
1
3 0



q
1
6

q
1
3

q
1
2q

1
6

q
1
3

q
1
2

1

C
C
C
A
.

Discrete flavour symmetries have been extensively studied as the possible origin of this pattern.

While we do not have yet a compelling explanation of the different mixing patterns, we do have

one for the gap between neutrino and other fermion masses. We saw that if the light neutrinos are

Majorana particles and get their mass via the Weinberg interaction of Fig. 12, they are signalling BSM

physics. As we have seen neutrino masses are then

m⌫ =
v2

⇤
, (11.4)

where ⇤ represents the mass of the neutrino mass mediators, i.e. the heavy particles that give rise to the

Weinberg interaction. The more massive these particles are, the lighter neutrinos become. This is the

famous seesaw mechanism depicted in Fig. 44.

L

mn

Fig. 44: Seesaw mechanism: the higher the scale ⇤ of new physics is, the lighter neutrino masses
become.

 on the other hand is the strength of the coupling of the new states with the lepton and Higgs

doublets. Both parameters are in principle undetermined and only the combination
⇤

is fixed by neutrino

masses. If we assume that the natural choice for  is O(1), then neutrino masses require ⇤ ⇠ MGUT,
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that is a grand unification scale. This is an intriguing fact, however it leads to the famous hierarchy

problem [75, 76]:

m2
H ⇠ ⇤

2. (11.5)

The recent discovery of the Higgs field and in particular the value of its mass mH = 125 GeV [77]

suggests that the SM is as healthy as ever. In spite of the Landau poles present in the theory, the value of

the SM couplings surprisingly conspire to make the model consistent up to the Planck scale [78].

On the other hand, the SM contains other small couplings, for example the electron Yukawa cou-

pling is Ye ⇠ O(106). It is then a fair question to ask how small can  be not to worsen the flavour

hierarchies in the charged lepton and quark sectors. Unfortunately the answer to this question depends on

the underlying model. We can for example consider the three types of seesaw models, which correspond

to the models that give rise to the Weinberg operator from the exchange of a massive particle, as depicted

in Fig. 45:

Fig. 45: Magnifying-glass view of the Weinberg operator in seesaw models of Type I (left), Type II
(middle), Type III (right).

– type I see-saw: SM+ heavy singlet fermions, N , with mass MN [79–82],

– type II see-saw: SM + heavy triplet scalar, , with mass M [83–87],

– type III see-saw: SM + heavy triple fermions, ⌃ with mass M⌃ [88, 89],

In each of these cases ⇤ =MN//⌃ and the matching of the underlying theory to the Weinberg interac-

tion fixes . For Type I and III:

TypeI/III :  = O(Y 2
N/⌃), (11.6)

where YN,⌃ is the neutrino Yukawa coupling. In the case of Type II also the scalar trilinear coupling

enters. If we now plot the hierarchies in the Yukawa couplings as opposed to the masses for Type I and

III, we see that assuming a YN,⌃ ⇠ Ye, the scale ⇤ can be close to the electroweak scale, as shown in

Fig. 46.

It is also possible that Weinberg’s interaction is generated by new physics at higher orders, such as

in the famous Zee model [90] and related ones [91, 92]. In this case, neutrino masses have an additional

suppression by loop factors 1/(16⇡2) and generically higher powers of the couplings of the underlying

theory.
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MN~ v
n

Yukawa

Yukawa

MN~ GUT
n

Fig. 46: Yukawa hierarchies in the Type I and III seesaw model if MN ⇠MGUT or ⇠ v.

Summarizing, for ⇤ 2 [v,MGUT], neutrino masses do not imply larger hierarchies than already

present in the minimal SM. Determining the scale ⇤ is one of the crucial problems in neutrino physics

that we will try to elucidate in the future.

If ⇤  100MeV, there is a model-independent prediction: neutrinoless double-beta decay is

possible with an amplitude proportional to the combination

mee =
X

i=1,3

(UPMNS)
2
eimi. (11.7)

The information we already have about neutrino masses and mixings constrains this quantity to be in any

of the bands in Fig. 47 depending on the neutrino mass ordering.

Fig. 47: Allowed region for mee for IO (blue contour) and NO (red contour) from a global analysis of
neutrino data (from Ref. [51]) on the plane mee vs the sum of all neutrino masses. We have added by the
shaded region the exclusion from present neutrinoless double-beta decay searches.

Obviously if ⇤ is below the energies of present colliders, the new particles may be directly acces-
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sible. The dynamics of this new physics sector breaks lepton number and generically might induce the

generation of the baryon asymmetry in the universe or may be connected to dark matter. Unfortunately

both predictions: the production of these new states in colliders and their connection to baryogenesis or

dark matter are model dependent. The type I seesaw model is the better studied case so we will consider

this scenario in the following discussion.

11.1 One example: Type I seesaw model

It is arguably the most minimal extension of the SM explaining neutrino masses [79–82]. It involves

the addition of nR  2 singlet Weyl fermions, ⌫R, to the SM. With nR = 2 two light neutrinos can be

massive, which is the minimum compatible with neutrino mass measurements, i.e. two neutrino mass

differences. The minimum number of singlets required to give non-zero mass to the three light neutrinos

is nR = 3, as shown in Fig. 48.
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Fig. 48: Particle content of the SM+Type I seesaw model with three light massive neutrinos.

The most general renormalizable Lagrangian which satisfies Lorentz and the gauge symmetries is

given by:

LTypeI = LSM
X

↵,i

L̄↵Y ↵i
⌫  ⌫iR

nRX

i,j

1

2
⌫̄icR M ij

N ⌫
j
R + h.c. , (11.8)

where the new parameters involved are a 3 ⇥ nR neutrino Yukawa matrix and a nR ⇥ nR symmetric

Majorana mass matrix for the singlet fields. Upon spontaneous symmetry breaking these couplings

become mass terms, that can be written in the Majorana basis (⌫cL, ⌫R) as

LTypeI ! LSM
1

2

⇣

⌫̄L ⌫̄cR

⌘

 

0 mD

mT
D MN

! 

⌫cL

⌫R

!

+ h.c.+ ... (11.9)

where

mD = Y⌫
vp
2
. (11.10)
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Note that Dirac neutrinos are a particular case of the model for nR = 3. If we invoke a global lepton

number symmetry, under which ⌫R have charge +1, this forces MN = 0, the singlets are exactly equiva-

lent to the right-handed neutrinos in the Dirac case described in sec. 3.1. In the opposite limit MN  v,

the singlets can be integrated out and give rise to the Weinberg interaction as well as others at d = 6, etc.

For intermediate MN , the spectrum of this theory contains in general 3+ nR Majorana neutrinos, which

are admixtures of the active ones and the extra singlets.

It is easy to diagonalize the mass matrix in Eq. (11.9) in an expansion in mD/MN . The result to

leading order in this expansion is

UT

 

0 mD

mT
D MN

!

U '
 

mD
1

MN
mT

D 0

0 MN

!

+O(✓2), U =

 

1 ✓

✓† 1

!

, (11.11)

where

✓ = m⇤

D

1

MN
. (11.12)

The matrix represents the active component of the heavy neutrino states and therefore controls their

gauge interactions. To this order therefore the light neutrino and heavy neutrino masses are given by

ml = Diag



mD
1

MN
mT

D



, Mh = Diag[MN ]. (11.13)
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Fig. 49: Spectrum of the type I seesaw model for nR = 3 as a function of a common MN .

Figure 49 depicts the spectrum for the case of nR = 3 as a function of a common MN . In the

limit MN ! 0 the states degenerate in pairs to form Dirac fermions. As MN increases three states get

more massive proportional to MN . These are often referred to as heavy neutral leptons (HNL), while

three get lighter proportional to M1
N , as expected from the seesaw mechanism. The number of new free

parameters is large. For the case nR = 3 there are 18 fundamental parameters in the lepton sector: six of

them are masses, six mixing angles and six phases. The counting of parameters for general nR is shown

in Table 4. Out of these 18 parameters we have determined only five: two mass differences and three

neutrino mixing angles.

A very convenient parametrization in this model was introduced by Casas–Ibarra [93], which
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Table 4: Number of physical parameters in the see-saw model with n families and the same number of
right-handed Majorana neutrinos at high and low energies

Yukawas Field redefinitions No. m No. ✓ No.

see-saw Yl, Y⌫ ,MR =MT
R U(n)3

E Mi 5n2 + n 3(n2n)
2 , 3(n

2+n)
2 3n n2  n n2  n

see-saw Yl,↵
T
⌫ = ↵⌫ U(n)2

E ⌧Mi 3n2 + n n2  n, n2 + n 2n n2n
2

n2n
2

allows to write in all generality (up to corrections of O(✓2)) the Lagrangian parameters in terms of

those of the light neutrino masses and mixings, and others related to the HNLs. In particular the phe-

nomenology of this model depends on the spectrum of neutrino mass eigenstates, that we denote by

(⌫1, ⌫2, ⌫3, N1, N2, ...NnR
), and their admixture in the flavour neutrino states :

0

B
@

⌫e

⌫µ

⌫⌧

1

C
A = Ull

0

B
@

⌫1

⌫2

⌫3

1

C
A+ Ulh

0

B
B
B
B
@

N1

N2

..

NnR

1

C
C
C
C
A

. (11.14)

In the Casas–Ibarra parametrization we have

Ull = UPMNS +O(✓2),

Ulh = iUPMNS
p
mlR

1p
Mh

+O(✓2), (11.15)

where R is a general complex orthogonal matrix, RTR = 1, which together with the heavy neutrino

masses, Mh, parametrizes the parameter space inaccessible to neutrino oscillation experiments. Note

that Ull is the mixing matrix that we measure in neutrino oscillation experiments, assuming the heavy

states are too heavy to play a role. This matrix is however no longer unitary,3 but the unitarity violations

are parametrically of O(✓2) ⇠ ml/Mh .

Equations (11.15) indicate that in this model there is a strong correlation between flavour mixings

of the heavy states, Ulh, and the ratio of light-to-heavy neutrino masses. However the presence of the

unknown matrix R, which is not bounded, implies that the naive seesaw scaling, |Ulh|2 ⇠ ml/Mh, that

would hold exactly for one neutrino family, is far too naive for nR > 1. In fact there are regions of

parameter space where these mixings can be much larger than suggested by the naive scaling, and these

are precisely the regions with more phenomenological interest, as we will see below.

Let us discuss some phenomenological implications of the different choices of the scale MN .

3The Casas–Ibarra parametrization needs to be modified in the presence of large unitarity violations. A similar parametrization
valid to all orders in ✓ is given in Ref. [94].
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11.1.1 Neutrinoless double-beta decay

The amplitude for this process receives contributions from the light and heavy states:

mee ⌘

3X

i=1

(UPMNS)
2
eimi +

nRX

j=1

(Ulh)
2
ejMj

M0⌫(Mj)

M0⌫(0)
, (11.16)

where the ratio of matrix elements M0⌫ for heavy and light mediators satisfy [95]:

M0⌫(Mj)

M0⌫(0)
/

✓

100MeV

Mj

◆2

, Mj ! 1. (11.17)

If all the heavy state masses  100 MeV, the second term is suppressed and the amplitude contains only

the light neutrino masses and mixings, which is constrained as shown before in Fig. 47. A plethora of

experiments using different technologies have been proposed to reach a sensitivity in mee in the range

of 102 eV , which could be sufficient to explore the full parameter space in the case of the IO. The

importance of this measurement can hardly be overstated. A non-zero mee will imply that neutrinos are

Majorana and therefore a new physics scale must exist, that lepton number is violated, and might give

very valuable information on the lightest neutrino mass, and even help establishing the neutrino mass

ordering. On the other hand, if the heavy states are not too heavy, within 100 MeV–few GeV, they could

also contribute to the process significantly and even dominate over the light neutrino contribution for

both orderings [96–98].

11.1.2 Cosmology and the seesaw scale

For MN  100 MeV, the heavy states in seesaw models can sizeably modify the history of the Uni-

verse: the abundance of light elements, the fluctuations in the CMB and the galaxy distribution at large

scales. This is the case because these extra states contribute to the expansion either as a significant extra

component of dark matter (⌦m) or radiation (Ne↵ ).

The singlet states in this mass range are produced at T below the electroweak phase transition

via mixing. The state i will reach thermal equilibrium if their interaction rate, si(T ), is larger than the

Hubble parameter at some T . If this is the case, the extra species will contribute like one extra neutrino

for T > Mi or like an extra component of dark matter for T < Mi. The latest results from Planck

strongly constrain an extra radiation component at CMB:

Ne↵(CMB) = 3.2± 0.5. (11.18)

and also measures the dark matter component to be ⌦m = 0.308 ± 0.012. Similar bounds are obtained

from the abundance of light elements, BBN. These bounds exclude the possibility of having essentially

any extra fully thermalized neutrino that is sufficiently long-lived to survive BBN. It can be shown that

the ratio si
(T )

H(T ) reaches a maximum at Tmax [99, 100] and

si(Tmax)

H(Tmax)
⇠

P

↵ |(Ulh)↵i|2Mi
p

g⇤(Tmax)
. (11.19)

191



PILAR HERNÁNDEZ

The naive seesaw scaling U2
lhMh ⇠ ml, would seem to imply that the thermalization condition depends

only on the light neutrino masses and is independent on the seesaw scale. In fact a detailed study shows

that indeed this naive expectation holds.

For nR = 2, the heavy states must beMi  100 MeV [101], so that they might decay before BBN.

For nR = 3 two things can happen [102]. If the lightest neutrino mass, mlightest  3⇥ 103 eV, all the

three heavy states thermalize and Mi  100 MeV. If mlightest  3⇥ 103 eV two states must be above

this limit, but one of the states with mass M1 might not thermalize and therefore be sufficiently diluted.

M1 may take any value provided mlightest, which is presently unconstrained, and is tuned accordingly.

11.1.3 Warm dark matter

For mlightest  105 eV, M1 might be O( keV), and a viable warm dark matter candidate [103, 104].

This scenario is the so-called ⌫MSM model [104]. The most spectacular signal of this type of dark matter

is a monochromatic X-ray line from the decay of this keV neutrino. There has been some evidence for

an unexplained X-ray line in galaxy clusters that might be compatible with a 7 keV neutrino [105, 106].

These results are under intense scrutiny. If interpreted in terms of a keV neutrino, the mixing however is

too small and some extra mechanism is needed to enhance the production so that it matches the required

dark matter density, such as the presence of large primordial lepton asymmetries [107].

11.1.4 Direct searches for heavy neutral leptons

Naturalness arguments suggest that maybe the scale of MN is not far from the electroweak scale. States

with masses in this range could be produced in the lab [108]. The production of the HNL is mediated

by charged or neutral currents or Higgs interactions with strength given by the Uhl coupling, see Fig. 50.

The most important production mechanisms, from meson decays, at e+e collisions at the Z peak or at

hadron colliders, are shown in Fig. 51.
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Fig. 50: Interactions of HNL in Type I seesaw model.
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Fig. 51: Production processes of HNLs from meson decays, e+e colliders and hadron colliders.

192



NEUTRINO PHYSICS

The present experimental bounds on the e mixings of these heavy states are shown in Figs. 52,

on the plane
P

↵=e,µ,⌧ |(Uhl)↵i|2 versus Mi. The shaded regions correspond to existing constraints and

the unshaded ones to prospects of various new experiments. For masses below a few GeV, the best

constraints come from peak searches in meson decays. In particular the new beam dump experiment

SHiP [109] can improve considerably the sensitivity in the region between the Kaon and B meson mass.

Above the B meson mass and below the Z boson mass, searches in FCCee at the Z peak would improve

present limits by several orders of magnitude [110]. The best existing limits in this range come from the

LEP experiment DELPHI [111] and LHC searches from displaced vertices [112, 113]. The HNL in this

range are very long lived and lead to displaced decays [114–116] that have a negligible SM background.
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Fig. 52: Constraints from present and future experiments on a HNLs. Shaded regions are existing bounds
on the HNL electron mixing as a function of the HNL mass, from the various processes that are sensitive
to different mass ranges. The dashed line is the future sensitivity of SHiP at lower masses and FCCee at
higher ones. Below the seesaw line neutrino masses cannot be explained. The exclusion from BBN is
also added. Figure is courtesy of S. Sandner.

For masses above the W and Z masses, the best constraints are presently coming from LHC

searches [117–119].

12 Low-scale leptogenesis

The Universe is made of matter. The matter–antimatter asymmetry is measured to be [61]

⌘B ⌘
Nb Nb̄

N
⇠ 6.21(16)⇥ 1010 . (12.1)

One generic implication of neutrino mass models is that they provide a new mechanism to explain this

asymmetry dynamically.

It has been known for a long time that all the ingredients to generate such an asymmetry from a

symmetric initial state are present in the laws of particle physics. These ingredients were first put forward

by Sakharov [120]:

1. Baryon number violation

B + L is anomalous in the SM [121] both with and without massive neutrinos. At high T in the early
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Fig. 53: Artistic view of a sphaleron.
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horizontal line corresponds to the Hubble expansion rate.

Universe, B + L violating transitions are in thermal equilibrium [122] due to the thermal excitation of

configurations with topological charge called sphalerons, see Fig. 53.

These processes violate baryon and lepton numbers by the same amount:

B = L. (12.2)

In seesaw models, there is generically an additional source of L violation (andBL). If a lepton charge

is generated at temperatures where the sphalerons are still in thermal equilibrium, a baryon charge can

be generated.

The sphaleron rate in the SM has been computed accurately after the discovery of the Higgs

boson [123]. The rate normalized to the fourth power of the temperature is shown in Fig. 54 around the

electroweak phase transition. At T  160GeV the rate is / ↵5
WT

4, while it drops exponentially at lower

temperatures. The Hubble rate is indicated by the horizontal line. The temperature where the sphaleron

rate equals the Hubble expansion rate is the sphaleron decoupling temperature, T sph
dec , below which no

baryon number violation is possible.
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2. C and CP violation

Any lepton or baryon asymmetry can only be generated if there is C and CP violation. Seesaw models

generically include new sources of CP violation. As we have seen in type I seesaw model with nR = 3

there are six new CP phases in the lepton sector. They can be absorbed in the Yukawa matrix, Y⌫ of

Eq. (11.8). Even though CP violation is connected to imaginary phases, CP violating observables such as

the baryon asymmetry depends on many flavour parameters. A very useful concept is that of the flavour

CP invariants [124]. Let us consider for example the minimal SM. Since quark Yukawa couplings are the

only source of CP violation and they are small, we expect that any CP violating asymmetry generated

at high temperatures (above the quark masses) can be expanded as a a polynomial in the up and down

Yukawa couplings, Yu and Yd. Furthermore we expect that this polynomial is independent of the flavour

basis used4 and it is not real, that is it must have a non-zero imaginary part. The lowest order polynomial

of Yu and Yd that satisfies these conditions is the famous Jarlskog invariant [124]


quarks
CP = Im

h

det
⇣

[YuY
†
u , YdY

†
d

⌘i

/ J
Y

i<j

(m2
di
m2

dj
)
Y

i<j

(m2
ui

m2
uj
), (12.3)

with

J ⌘ Im[V ⇤

ijViiV
⇤

jiVjj ] = c23s23c12s12c
2
13s13 sin . (12.4)

We can then naively estimate the baryon asymmetry generated at the EW transition in the SM as

YB /
quarks
CP

T 12
EW

⇠ 1020, (12.5)

where the denominator is fixed by dimensional analysis. This simple analysis shows that the CP violation

in the minimal SM is far too small to explain the baryon asymmetry at the electroweak phase transition.

A detailed computation arrives to the same conclusion [125].

In the case of the Type I seesaw extension of the SM we have also CP violation in the lepton

sector encoded in the flavour parameters: Majorana mass matrix of the singlets, MN , and the neutrino

and charge lepton Yukawas, Y⌫ and Yl. The lowest order invariant involving Y⌫ and MN is [126, 127]:


leptons
CP = Im

⇣

Tr[Y †
⌫ Y⌫M

†MM⇤(Y †
⌫ Y⌫)

⇤M ]
⌘

, (12.6)

or including also the lepton Yukawa


leptons
CP = Im

⇣

Tr[Y †
⌫ Y⌫M

†MY †
⌫ YlY

†
l Y⌫ ]

⌘

⌘
X

↵

y2l↵↵. (12.7)

Even at low scales, these invariants are potentially much larger that those in the quark sector [128].

3. Departure from thermal equilibrium

In order for a CP asymmetry to arise, it is necessary that the relevant processes occur out of thermal

equilibrium since otherwise the abundances are fixed by the thermal Fermi–Dirac distributions and are

4A unitary rotation in flavour space of left and right chiral fields leaves all the terms in the Lagrangian invariant except the
Yukawa couplings.
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Fig. 55: High scale seesaw: abundance of the heavy Majorana singlets at the decoupling temperature
and the lepton number generated in the decay.

equal for particles and antiparticles. Out-of-equilibrium conditions can happen in the evolution of the

universe in the presence of first-order phase transitions, or due to the presence of sufficiently weakly

coupled sectors that cannot keep up with the expansion of the universe. This happens when the interaction

rates become smaller than the Hubble expansion rate, (T )  H(T ). This must happen at T above the

sphaleron decoupling, T sph
dec to be effective in generating baryons.

No particle in the minimal SM satisfies this condition within the standard cosmological model,

not even neutrinos, that decouple much below sphaleron decoupling. On the other hand, the SM predicts

the existence of a phase transition from the broken phase at low temperatures to a symmetric phase

above, i.e. the EW phase transition. The critical temperature, TEW, is closely related to the sphaleron

decoupling temperature. The EW transition has been shown to be a crossover transition and therefore

with insufficient departure from thermal equilibrium [129].

In the Type I seesaw extension at low scales however, some of the states are more weakly interact-

ing than neutrinos and therefore can fulfil the requirement Ni
(T )  Hu(T ), for T  T sph

dec .

In the high scale scenario Mi  v, the non-equilibrium condition is met at freeze out of the

heavy neutrino states. These are thermally produced and freeze out at temperatures similar to their

masses [128]. A net lepton asymmetry can be produced if the decay rate is slower than the expansion of

the Universe at T ⇠Mi, as shown in Fig. 55.

In contrast, in the low-scale scenario, for Mi < v, the out-of-equilibrium condition is met at

freeze-in [104, 130, 131], that is some of the states never reach thermal equilibrium above T sph
dec . A non-

vanishing lepton and baryon asymmetry can survive and, if this is the case, sphaleron transitions can

no longer wash it out. It turns out that these conditions can be met naturally in type I seesaw models

for masses in the range [0.1, 100] GeV. The relevant CP asymmetries arise in the production of the

heavy seesaw states via the interference of CP-odd phases from the Yukawa couplings with CP-even

phases from propagation and oscillations, see Fig. 56. A quantum treatment of the corresponding kinetic

equations is mandatory in this case and quite complex.

A perturbative solution to the kinetic equations [132] allows to extract the analytical solution for

YB in terms of the CP invariants, and using the Casas–Ibarra parametrization can then be expressed in

terms of the neutrino masses and mixings, CP phases and HNL parameters.
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Fig. 56: Low-scale seesaw: abundance of the heavy Majorana singlets at TEW.
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Fig. 57: Numerical scan of points on the plane of mixing versus mass of the HNL where the baryon
asymmetry can be explained and within the sensitivity region of SHiP and/or FCCee (dashed line) in the
minimal Type I seesaw (nR = 2). The line is obtained analytically from a perturbative solution of the
kinetic equations that can be expressed in terms of CP flavour invariants and maximized over unknown
parameters. From Ref. [132].

In Fig. 57 we show the region on the plane U2 v.s. Mi, where the baryon asymmetry and neutrino

masses can be accounted for within the range of sensitivity of the future SHiP and FCCee projects. The

solid line is the analytical upper bound to explain the baryon asymmetry based on the analytical solutions,

and maximizing the asymmetry over the unknown parameters. This demonstrates the discovery potential

of the future projects.

Other interesting correlations between YB and other observables are shown in Fig. 58. On the left,

we show the HNL flavoured mixings for masses in the range accessible to FCC when neutrino masses are

explained for both hierarchies. On the right plot the constrain of generating the correct baryon asymmetry

is added. The correct baryon asymmetry therefore restricts the flavour of the HNL mixings as well as the

PMNS CP phases (only two for nR = 2), as shown in Fig. 59 for both hierarchies.
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NO

IO

Fig. 58: Normalized mixings to e, µ, ⌧ of HNLs with masses in the range of FCCee and mild degeneracy.
Only the constrain from neutrino masses is imposed on the left plot, while also the YB is imposed on the
right plot. The two regions correspond to neutrino orderings. From Ref. [132].
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Fig. 59: Numerical scan of points that explain YB on the plane of the Dirac CP violating phase, , and
the Majorana phase,  in the minimal Type I seesaw (nR = 2). From Ref. [132].

An interesting question is whether the baryon asymmetry can be predicted quantitatively from the

measurements of CP violation in neutrino oscillations or from the CP violation in the neutrino mass ma-

trix. Unfortunately this is not the case generically, because the asymmetry depends on more parameters

than those in the light neutrino mass matrix. However, if the model is sufficiently constrained very strong

correlations can occur.

For example, in the minimal Type I seesaw model, nR = 2, and in the assumption that the two

eigenvalues of the matrix MN are degenerate, there are only two physical CP violating phases, that can

then be parametrized by the two in the light neutrino mass matrix. They determine both YB and CP

violation in neutrino oscillations. In this case, the measurement of the HNL mixings to electrons, muons

and ⌧ ’s can pin down the CP phase in neutrino oscillations and YB up to discrete degeneracies, as shown

in Fig. 60. If the phase  is also measured, a prediction of YB is possible from laboratory measurements.

This simple example demonstrates the interplay between YB and other observables in neutrino

physics.
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Fig. 60: Assuming the minimal Type I seesaw model with nR = 2, and degenerate singlets within the
FCCee range, with parameters that can explain neutrino masses and YB . Upper Plot: determination
of  and YB from a putative measurement of HNL mixings to electrons and muons and masses with
accuracies as indicated, and for NO (blue) and IO(blue). Middle Plot: adding also a measurement of
the HNL mixing to ⌧ ’s. Bottom Plot: adding also a measurement of the phase  from future neutrino
oscillation experiments. From Ref. [133].
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13 Conclusions

The results of many beautiful experiments in the last decade have demonstrated that neutrinos are massive

and mix. The standard 3⌫ scenario can explain all available data, except that of the unconfirmed signal

of LSND. The lepton flavour sector of the Standard Model is expected to be at least as complex as the

quark one, even though we know it only partially.

The structure of the neutrino spectrum and mixing is quite different from the one that has been

observed for the quarks: there are large leptonic mixing angles and the neutrino masses are much smaller

than those of the remaining leptons. These peculiar features of the lepton sector strongly suggest that

leptons and quarks constitute two complementary approaches to understanding the origin of flavour in

the Standard Model. In fact, the smallness of neutrino masses can be naturally understood if there is new

physics beyond the electroweak scale.

Many fundamental questions remain to be answered in future neutrino experiments, and these can

have very important implications for our understanding of the Standard Model and of what lies beyond:

Are neutrinos Majorana particles? Are neutrino masses the result of a new physics scale? Is CP violated

in the lepton sector? Could neutrinos be the seed of the matter–antimatter asymmetry in the Universe?

A rich experimental programme lies ahead where fundamental physics discoveries are very likely

(almost warranted). We can only hope that neutrinos will keep up with their old tradition and provide a

window to what lies beyond the Standard Model.

200



NEUTRINO PHYSICS

References
[1] E. Fermi. Trends to a theory of  radiation. (In Italian). Nuovo Cim. 11 (1934) 1–19,

doi:10.1007/BF02959820.

[2] H. Bethe and R. Peierls. The “neutrino”. Nature, 133 (1934) 532, doi:10.1038/133532a0.

[3] B. Pontecorvo. Inverse  process, reprinted in K. Winter, Neutrino physics 2nd ed. (Cambridge

Univ. Press, Cambridge, 2008), pp. 23–28, version from Centro Pontecorvo.

[4] F. Reines and C. L. Cowan. The neutrino. Nature 178 (1956) 446–449, doi:10.1038/178446a0.

[5] C. L. Cowan et al., Detection of the free neutrino: A confirmation, Science 124 (1956) 103–104,

doi:10.1126/science.124.3212.103.

[6] G. Danby et al., Observation of high-energy neutrino reactions and the existence of two kinds of

neutrinos, Phys. Rev. Lett. 9 (1962) 36–44, doi:10.1103/PhysRevLett.9.36.

[7] M. Aker et al., Direct neutrino-mass measurement with sub-electronvolt sensitivity, Nature Phys.

18(2) (2022) 160–166, doi:10.1038/s41567-021-01463-1.

[8] K. Assamagan et al., Upper limit of the muon-neutrino mass and charged pion mass from

momentum analysis of a surface muon beam, Phys. Rev. D53 (1996) 6065–6077,

doi:10.1103/PhysRevD.53.6065.

[9] R. Barate et al., An upper limit on the tau-neutrino mass from three-prong and five-prong tau

decays, Eur. Phys. J. C2 (1998) 395–406, doi:10.1007/s100529800850.

[10] S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006)

257–454, doi:10.1016/j.physrep.2005.12.006.

[11] P. Janot and S. Jadach, Improved Bhabha cross section at LEP and the number of light neutrino

species, Phys. Lett. B803 (2020) 135319, doi:10.1016/j.physletb.2020.135319.

[12] G. Voutsinas et al., Beam-beam effects on the luminosity measurement at LEP and the number of

light neutrino species, Phys. Lett. B800 (2020) 135068, doi:10.1016/j.physletb.2019.135068.

[13] S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566–1570,

doi:10.1103/PhysRevLett.43.1566.

[14] S. Weinberg, Phenomenological Lagrangians, Physica A96 (1979) 327–340,

doi:10.1016/0378-4371(79)90223-1.

[15] W. Buchmuller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor

conservation, Nucl. Phys. B268 (1986) 621–653, doi:10.1016/0550-3213(86)90262-2.

[16] Z. Maki, M. Nakagawa, and S. Sakata, Remarks on the unified model of elementary particles,

Prog. Theor. Phys. 28 (1962) 870–880, doi:10.1143/PTP.28.870.

[17] B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov.

Phys. JETP 26 (1968) 984–988 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717], Inspire.

[18] P.A. Zyla et al., Review of particle physics, PTEP 2020(8) (2020) 083C01,

doi:10.1093/ptep/ptaa104.

[19] B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP 6 (1957) 429 [Zh. Eksp. Teor. Fiz.

33 (1957) 549], Inspire.

201



PILAR HERNÁNDEZ

[20] E.K. Akhmedov and A.Yu. Smirnov, Paradoxes of neutrino oscillations, Phys. Atom. Nucl. 72
(2009) 1363–1381, doi:10.1134/S1063778809080122, arXiv:0905.1903.

[21] E.K. Akhmedov and J. Kopp, Neutrino oscillations: quantum mechanics vs. quantum field theory,

JHEP 04 (2010) 008, doi:10.1007/JHEP04(2010)008, [Erratum: JHEP 10 (2013) 052,

doi:10.1007/JHEP10(2013)052].

[22] M. Cerdá, Neutrino oscillations in quantum field theory. Master thesis, University of Valencia,

2011.

[23] L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D17 (1978) 2369–2374,

doi:10.1103/PhysRevD.17.2369.

[24] S.P. Mikheev and A.Yu. Smirnov, Resonance amplification of oscillations in matter and

spectroscopy of solar neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913–917 [Yad. Fiz. 42, 1441 (1985)].

[25] H.A. Bethe, Energy production in stars, Phys. Rev. 55 (1939) 434–456,

doi:10.1103/PhysRev.55.434.

[26] J.N. Bahcall, M.H. Pinsonneault, and S. Basu, Solar models: current epoch and time dependences,

neutrinos, and helioseismological properties, Astrophys. J. 555 (2001) 990–1012,

doi:10.1086/321493.

[27] B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine

detector, Astrophys. J. 496 (1998) 505–526, doi:10.1086/305343.

[28] W. Hampel et al., GALLEX solar neutrino observations: results for GALLEX IV, Phys. Lett.

B447 (1999) 127–133, doi:10.1016/S0370-2693(98)01579-2.

[29] J.N. Abdurashitov et al., Solar neutrino flux measurements by the Soviet-American Gallium

Experiment (SAGE) for half the 22 year solar cycle, J. Exp. Theor. Phys. 95 (2002) 181–193 [Zh.

Eksp. Teor. Fiz. 122 (2002) 211], doi:10.1134/1.1506424, arXiv:astro-ph/0204245.

[30] Y. Fukuda et al., Solar neutrino data covering solar cycle 22, Phys. Rev. Lett. 77 (1996)

1683–1686, doi:10.1103/PhysRevLett.77.1683.

[31] Y. Fukuda et al., Measurement of the solar neutrino energy spectrum using neutrino electron

scattering, Phys. Rev. Lett. 82 (1999) 2430–2434, doi:10.1103/PhysRevLett.82.2430,

arXiv:hep-ex/9812011.

[32] J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D73 (2006)

112001, doi:10.1103/PhysRevD.73.112001, arXiv:hep-ex/0508053.

[33] Q.R. Ahmad et al., Measurement of the rate of ⌫e + d! p+ p+ e interactions produced by 8B

solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301,

doi:10.1103/PhysRevLett.87.071301, arXiv:nucl-ex/0106015.

[34] Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current

interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301,

doi:10.1103/PhysRevLett.89.011301, arXiv:nucl-ex/0204008.

[35] K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance,

Phys. Rev. Lett. 90 (2003) 021802, doi:10.1103/PhysRevLett.90.021802, arXiv:hep-ex/0212021.

202



NEUTRINO PHYSICS

[36] S. Abe et al., Precision measurement of neutrino oscillation parameters with KamLAND, Phys.

Rev. Lett. 100 (2008) 221803, doi:10.1103/PhysRevLett.100.221803, arXiv:0801.4589.

[37] G. Bellini et al., Final results of Borexino Phase-I on low energy solar neutrino spectroscopy,

Phys. Rev. D89 (2014) 112007, doi:10.1103/PhysRevD.89.112007, arXiv:1308.0443.

[38] M. Honda et al., A new calculation of the atmospheric neutrino flux in a 3-dimensional scheme,

Phys. Rev. D 70 (2004) 043008, doi:10.1103/PhysRevD.70.043008, arXiv:astro-ph/0404457.

[39] Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998)

1562–1567, doi:10.1103/PhysRevLett.81.1562, arXiv:hep-ex/9807003.

[40] Y. Ashie et al., Measurement of atmospheric neutrino oscillation parameters by

Super-Kamiokande I, Phys. Rev. D71 (2005) 112005, doi:10.1103/PhysRevD.71.112005,

arXiv:hep-ex/0501064.

[41] Y. Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino oscillation, Phys.

Rev. Lett. 93 (2004) 101801, doi:10.1103/PhysRevLett.93.101801, arXiv:hep-ex/0404034.

[42] M.H. Ahn et al., Measurement of neutrino oscillation by the K2K experiment, Phys. Rev. D74
(2006) 072003, doi:10.1103/PhysRevD.74.072003, arXiv:hep-ex/0606032.

[43] D.G. Michael et al., Observation of muon neutrino disappearance with the MINOS detectors and

the NuMI neutrino beam, Phys. Rev. Lett. 97 (2006) 191801, doi:10.1103/PhysRevLett.97.191801,

arXiv:hep-ex/0607088.

[44] N. Agafonova et al., Discovery of ⌧ neutrino appearance in the CNGS neutrino beam with the

OPERA experiment, Phys. Rev. Lett. 115 (2015) 121802, doi:10.1103/PhysRevLett.115.121802,

arXiv:1507.01417.

[45] A. Holin, Results from the MINOS experiment and new MINOS+ data, PoS NUFACT2014
(2014) 028, doi:10.22323/1.226.0028, arXiv:1507.08564.

[46] F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett.

108 (2012) 171803, doi:10.1103/PhysRevLett.108.171803, arXiv:1203.1669.

[47] J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO

experiment, Phys. Rev. Lett. 108 (2012) 191802, doi:10.1103/PhysRevLett.108.191802.

[48] Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double

Chooz experiment, Phys. Rev. Lett. 108 (2012) 131801, doi:10.1103/PhysRevLett.108.131801.

[49] K. Abe et al., Observation of electron neutrino appearance in a muon neutrino beam, Phys. Rev.

Lett. 112 (2014) 061802, doi:10.1103/PhysRevLett.112.061802.

[50] P. Adamson et al., First measurement of electron neutrino appearance in NOvA, Phys. Rev. Lett.

116 (2016) 151806, doi:10.1103/PhysRevLett.116.151806.

[51] I. Esteban et al., The fate of hints: updated global analysis of three-flavor neutrino oscillations,

JHEP 09 (2020) 178, doi:10.1007/JHEP09(2020)178.

[52] P.F. de Salas et al., 2020 global reassessment of the neutrino oscillation picture, JHEP 02 (2021)

071, doi:10.1007/JHEP02(2021)071.

203



PILAR HERNÁNDEZ

[53] F. Capozzi et al., Global constraints on absolute neutrino masses and their ordering, Phys. Rev. D

95 (2017) 096014, doi:10.1103/PhysRevD.95.096014. [Addendum: Phys. Rev. D101 (2020)

116013, doi:10.1103/PhysRevD.101.116013].

[54] S.K. Agarwalla and P. Hernandez, Probing the neutrino mass hierarchy with Super-Kamiokande,

JHEP 10 (2012) 086, doi:10.1007/JHEP10(2012)086.

[55] S.T. Petcov and M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino

mass hierarchy and reactor neutrino experiments, Phys. Lett. B533 (2002) 94–106,

doi:10.1016/S0370-2693(02)01591-5.

[56] S. Choubey, S.T. Petcov, and M. Piai, Precision neutrino oscillation physics with an intermediate

baseline reactor neutrino experiment, Phys. Rev. D68 (2003) 113006,

doi:10.1103/PhysRevD.68.113006.

[57] F. An et al., Neutrino physics with JUNO, J. Phys. G43 (2016) 030401,

doi:10.1088/0954-3899/43/3/030401.

[58] A. Cervera et al., Golden measurements at a neutrino factory, Nucl. Phys. B579 (2000) 17–55,

doi:10.1016/S0550-3213(00)00221-2. [Erratum: Nucl. Phys. B593 (2001) 731,

doi:10.1016/S0550-3213(00)00606-4].

[59] J. Bian et al., Hyper-Kamiokande experiment: A Snowmass white paper, in Snowmass 2021,

March 2022, doi:10.48550/arXiv.2203.02029.

[60] B. Abi et al., Long-baseline neutrino oscillation physics potential of the DUNE experiment, Eur.

Phys. J. C80 (2020) 978, doi:10.1140/epjc/s10052-020-08456-z.

[61] N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641
(2020) A6, doi:10.1051/0004-6361/201833910. [Erratum: Astron. Astrophys. 652 (2021) C4,

doi:10.1051/0004-6361/201833910e].

[62] A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of ⌫̄e
appearance in a ⌫̄µ beam, Phys. Rev. D64 (2001) 112007, doi:10.1103/PhysRevD.64.112007.

[63] B. Armbruster et al., Upper limits for neutrino oscillations ⌫̄µ ! ⌫̄e from muon decay at rest,

Phys. Rev. D65 (2002) 112001, doi:10.1103/PhysRevD.65.112001.

[64] A.A. Aguilar-Arevalo et al., Improved search for ⌫̄µ ! ⌫̄e oscillations in the MiniBooNE

experiment, Phys. Rev. Lett. 110 (2013) 161801, doi:10.1103/PhysRevLett.110.161801.

[65] A.A. Aguilar-Arevalo et al., Significant excess of electron-like events in the MiniBooNE

short-baseline neutrino experiment, Phys. Rev. Lett. 121 (2018) 221801,

doi:10.1103/PhysRevLett.121.221801.

[66] P. Abratenko et al., Search for an excess of electron neutrino interactions in MicroBooNE using

multiple final-state topologies, Phys. Rev. Lett. 128 (2022) 241801,

doi:10.1103/PhysRevLett.128.241801.

[67] T.A. Mueller et al., Improved predictions of reactor antineutrino spectra, Phys. Rev. C83 (2011)

054615, doi:10.1103/PhysRevC.83.054615.

[68] G. Mention et al., The reactor antineutrino anomaly, Phys. Rev. D83 (2011) 073006,

doi:10.1103/PhysRevD.83.073006.

204



NEUTRINO PHYSICS

[69] P. Huber, Determination of antineutrino spectra from nuclear reactors, Phys. Rev. C84 (2011)

024617, doi:10.1103/PhysRevC.84.024617. [Erratum: Phys. Rev. C85 (2012) 029901,

doi:10.1103/PhysRevC.85.029901].

[70] F.P. An et al., Measurement of the reactor antineutrino flux and spectrum at Daya Bay, Phys. Rev.

Lett. 116 (2016) 061801, doi:10.1103/PhysRevLett.116.061801.

[71] P. Adamson et al., Improved constraints on sterile neutrino mixing from disappearance searches in

the MINOS, MINOS+, Daya Bay, and Bugey-3 experiments, Phys. Rev. Lett. 125 (2020) 071801,

doi:10.1103/PhysRevLett.125.071801.

[72] C. Giunti et al., Gallium anomaly: critical view from the global picture of ⌫e and ⌫̄e

disappearance, JHEP 10 (2022) 164, doi:10.1007/JHEP10(2022)164.

[73] R.L. Workman et al., Review of particle physics, PTEP 2022 (2022) 083C01,

doi:10.1093/ptep/ptac097.

[74] P.F. Harrison, D.H. Perkins, and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation

data, Phys. Lett. B530 (2002) 167, doi:10.1016/S0370-2693(02)01336-9.

[75] F. Vissani, Do experiments suggest a hierarchy problem? Phys. Rev. D57 (1998) 7027–7030,

doi:10.1103/PhysRevD.57.7027.

[76] J.A. Casas, J.R. Espinosa, and I. Hidalgo, Implications for new physics from fine-tuning

arguments. 1. Application to SUSY and seesaw cases, JHEP 11 (2004) 057,

doi:10.1088/1126-6708/2004/11/057.

[77] G. Aad et al., Combined measurement of the Higgs boson mass in pp collisions at
p
s = 7 and 8

TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803,

doi:10.1103/PhysRevLett.114.191803.

[78] G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08
(2012) 098, doi:10.1007/JHEP08(2012)098.

[79] P. Minkowski, µ! e at a rate of one out of 109 muon decays?, Phys. Lett. B67 (1977) 421–428,

doi:10.1016/0370-2693(77)90435-X.

[80] M. Gell-Mann, P. Ramond, and R. Slansky. Complex spinors and unified theories, Conf. Proc.

C790927 (1979) 315–321, doi:10.48550/arXiv.1306.4669.

[81] T. Yanagida. Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C7902131 (1979)

95–99, Inspire.

[82] R.N. Mohapatra and G. Senjanovic, Neutrino mass and spontaneous parity violation, Phys. Rev.

Lett. 44 (1980) 912, doi:10.1103/PhysRevLett.44.912.

[83] M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B94 (1980)

61, doi:10.1016/0370-2693(80)90825-4.

[84] J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) ⌦ U(1) theories, Phys. Rev. D22 (1980)

2227, doi:10.1103/PhysRevD.22.2227.

[85] C. Wetterich, Neutrino masses and the scale of B  L violation, Nucl. Phys. B187 (1981) 343,

doi:10.1016/0550-3213(81)90279-0.

205



PILAR HERNÁNDEZ

[86] G. Lazarides, Q. Shafi, and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model,

Nucl. Phys. B181 (1981) 287–300, doi:10.1016/0550-3213(81)90354-0.

[87] R.N. Mohapatra and G. Senjanovic, Neutrino masses and mixings in gauge models with

spontaneous parity violation, Phys. Rev. D23 (1981) 165, doi:10.1103/PhysRevD.23.165.

[88] R. Foot et al., Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C44 (1989) 441,

doi:10.1007/BF01415558.

[89] E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171–1174,

doi:10.1103/PhysRevLett.81.1171.

[90] A. Zee, A theory of lepton number violation, neutrino Majorana mass, and oscillation, Phys. Lett.

B93 (1980) 389, doi:10.1016/0370-2693(80)90349-4. [Erratum: Phys. Lett. B95 (1980) 461,

doi:10.1016/0370-2693(80)90193-8].

[91] A. Zee, Charged scalar field and quantum number violations, Phys. Lett. B161 (1985) 141,

doi:10.1016/0370-2693(85)90625-2.

[92] K.S. Babu, Model of “calculable” Majorana neutrino masses, Phys. Lett. B203 (1988) 132,

doi:10.1016/0370-2693(88)91584-5.

[93] J.A. Casas and A. Ibarra, Oscillating neutrinos and µ! e, Nucl. Phys. B618 (2001) 171–204,

doi:10.1016/S0550-3213(01)00475-8.

[94] A. Donini et al., The minimal 3 + 2 neutrino model versus oscillation anomalies, JHEP 07 (2012)

161, doi:10.1007/JHEP07(2012)161.

[95] M. Blennow et al., Neutrinoless double beta decay in seesaw models, JHEP 07 (2010) 096,

doi:10.1007/JHEP07(2010)096.

[96] A. Ibarra, E. Molinaro, and S.T. Petcov, TeV scale see-saw mechanisms of neutrino mass

generation, the Majorana nature of the heavy singlet neutrinos, and ()0⌫-decay, JHEP 09
(2010) 108, doi:10.1007/JHEP09(2010)108.

[97] M. Mitra, G. Senjanovic, and F. Vissani, Neutrinoless double beta decay and heavy sterile

neutrinos, Nucl. Phys. B856 (2012) 26–73, doi:10.1016/j.nuclphysb.2011.10.035.

[98] J. Lopez-Pavon, E. Molinaro, and S.T. Petcov, Radiative corrections to light neutrino masses in

low-scale type I seesaw scenarios and neutrinoless double beta decay, JHEP 11 (2015) 030,

doi:10.1007/JHEP11(2015)030.

[99] R. Barbieri and A. Dolgov, Bounds on sterile-neutrinos from nucleosynthesis, Phys. Lett. B237
(1990) 440–445, doi:10.1016/0370-2693(90)91203-N.

[100] K. Kainulainen, Light singlet neutrinos and the primordial nucleosynthesis, Phys. Lett. B244
(1990) 191–195, doi:10.1016/0370-2693(90)90054-A.

[101] P. Hernandez, M. Kekic, and J. Lopez-Pavon, Low-scale seesaw models versus Ne↵ , Phys. Rev.

D89 (2014) 073009, doi:10.1103/PhysRevD.89.073009.

[102] P. Hernandez, M. Kekic, and J. Lopez-Pavon, Ne↵ in low-scale seesaw models versus the lightest

neutrino mass, Phys. Rev. D90 (2014) 065033, doi:10.1103/PhysRevD.90.065033.

[103] S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994)

17–20, doi:10.1103/PhysRevLett.72.17.

206



NEUTRINO PHYSICS

[104] T. Asaka and M. Shaposhnikov, The ⌫MSM, dark matter and baryon asymmetry of the universe,

Phys. Lett. B620 (2005) 17–26, doi:10.1016/j.physletb.2005.06.020.

[105] E. Bulbul et al., Detection of an unidentified emission line in the stacked X-ray spectrum of

galaxy clusters, Astrophys. J. 789 (2014) 13, doi:10.1088/0004-637X/789/1/13.

[106] A. Boyarsky et al., Unidentified line in X-ray spectra of the Andromeda galaxy and Perseus

galaxy cluster, Phys. Rev. Lett. 113 (2014) 251301, doi:10.1103/PhysRevLett.113.251301.

[107] X.-D. Shi and G.M. Fuller, A new dark matter candidate: Nonthermal sterile neutrinos, Phys.

Rev. Lett. 82 (1999) 2832–2835, doi:10.1103/PhysRevLett.82.2832.

[108] A. Atre et al., The search for heavy Majorana neutrinos, JHEP 05 (2009) 030,

doi:10.1088/1126-6708/2009/05/030.

[109] C. Ahdida et al., Sensitivity of the SHiP experiment to heavy neutral leptons, JHEP 04 (2019)

077, doi:10.1007/JHEP04(2019)077.

[110] A. Blondel et al., Search for heavy right-handed neutrinos at the FCC-ee, Nucl. Part. Phys. Proc.

273-275 (2016) 1883–1890, doi:10.1016/j.nuclphysbps.2015.09.323.

[111] P. Abreu et al., Search for neutral heavy leptons produced in Z decays, Z. Phys. C74 (1997)

57–71, doi:10.1007/s002880050459. [Erratum: Z. Phys. C75, 580 (1997)].

[112] G. Aad et al., Search for heavy neutral leptons in decays of W bosons using a dilepton displaced

vertex in
p
s = 13 TeV pp collisions with the ATLAS detector, Phys. Rev. Lett. 131 (2023) 061803

doi:10.1103/PhysRevLett.131.061803.

[113] A. Tumasyan et al., Search for long-lived heavy neutral leptons with displaced vertices in

proton-proton collisions at
p
s = 13 TeV, JHEP 07 (2022) 081, doi:10.1007/JHEP07(2022)081.

[114] J.C. Helo, M. Hirsch, and S. Kovalenko, Heavy neutrino searches at the LHC with displaced

vertices, Phys. Rev. D89 (2014) 073005, doi:10.1103/PhysRevD.89.073005.

[115] E. Izaguirre and B. Shuve, Multilepton and lepton jet probes of sub-weak-scale right-handed

neutrinos, Phys. Rev. D91 (2015) 093010, doi:10.1103/PhysRevD.91.093010.

[116] A.M. Gago et al., Probing the Type I seesaw mechanism with displaced vertices at the LHC, Eur.

Phys. J. C75 (2015) 470, doi:10.1140/epjc/s10052-015-3693-1.

[117] F. del Aguila and J. A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with

multi-lepton signals, Nucl. Phys. B813 (2009) 22–90, doi:10.1016/j.nuclphysb.2008.12.029.

[118] G. Aad et al., Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp

collisions using prompt and displaced signatures with the ATLAS detector, JHEP 10 (2019) 265,

doi:10.1007/JHEP10(2019)265.

[119] A.M. Sirunyan et al., Search for heavy neutral leptons in events with three charged leptons in

proton-proton collisions at
p
s = 13 TeV, Phys. Rev. Lett. 120 (2018) 221801,

doi:10.1103/PhysRevLett.120.221801.

[120] A.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe,

Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32–35, [Usp. Fiz. Nauk 161(1991) 61–64, Sov. Phys. Usp. 34
(1991) 392–393, doi:10.1070/PU1991v034n05ABEH002497].

207



PILAR HERNÁNDEZ

[121] G. ’t Hooft, Symmetry breaking through Bell–Jackiw anomalies, Phys. Rev. Lett. 37 (1976) 8–11,

doi:10.1103/PhysRevLett.37.8.

[122] V.A. Kuzmin, V.A. Rubakov, and M.E. Shaposhnikov, On the anomalous electroweak baryon

number nonconservation in the early universe, Phys. Lett. B155 (1985) 36,

doi:10.1016/0370-2693(85)91028-7.

[123] M. D’Onofrio, K. Rummukainen, and A. Tranberg, Sphaleron rate in the minimal Standard

Model, Phys. Rev. Lett. 113 (2014) 141602, doi:10.1103/PhysRevLett.113.141602.

[124] C. Jarlskog, Commutator of the quark mass matrices in the Standard Electroweak Model and a

measure of maximal CP violation, Phys. Rev. Lett. 55 (1985) 1039,

doi:10.1103/PhysRevLett.55.1039.

[125] M.B. Gavela et al., Standard Model CP violation and baryon asymmetry. Part 2: Finite

temperature, Nucl. Phys. B430 (1994) 382–426, doi:10.1016/0550-3213(94)00410-2.

[126] G.C. Branco et al., A Bridge between CP violation at low energies and leptogenesis, Nucl. Phys.

B617 (2001) 475–492, doi:10.1016/S0550-3213(01)00425-4.

[127] E.E. Jenkins and A.V. Manohar, Algebraic structure of lepton and quark flavor invariants and CP

violation, JHEP 10 (2009) 094, doi:10.1088/1126-6708/2009/10/094.

[128] M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B174 (1986)

45, doi:10.1016/0370-2693(86)91126-3.

[129] K. Kajantie et al., Is there a hot electroweak phase transition at mH & mW ?, Phys. Rev. Lett. 77
(1996) 2887–2890, doi:10.1103/PhysRevLett.77.2887.

[130] E.K. Akhmedov, V. Rubakov, and A.Y. Smirnov, Baryogenesis via neutrino oscillations, Phys.

Rev. Lett. 81 (1998) 1359–1362, doi:10.1103/PhysRevLett.81.1359.

[131] L. Canetti, M. Drewes, T. Frossard, and M. Shaposhnikov. Dark matter, baryogenesis and

neutrino oscillations from right handed neutrinos. Phys. Rev., D87:093006, 2013, 1208.4607.

[132] P. Hernandez et al., Bounds on right-handed neutrino parameters from observable leptogenesis.

JHEP, 12 (2022) 012, doi:10.1007/JHEP11(2023)153.

[133] S. Sandner et al., Predicting the baryon asymmetry with degenerate right-handed neutrinos,

JHEP 11 (2023) 153, 10.1007/JHEP11(2023)153

208


