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1　 導入

　多体系 に お い て は ほ と ん どの 場合、系の 自由度 の 多さゆえに正確な計算が困難で ある 。 したが っ

て 結合定数 e が小 さい 場合 〔e 《 1）に は ．摂 動計算が広 く用 い られ て い る 。 しか し粒子の 質量 が

無視で きる程度の高温 （T ）に お ける フ ェ ル ミオ ンーボ ソ ン 系 （湯川模型 、量子電磁力学 （QED）、量

子色力学 （QCD ）な ど）で は、素朴な摂動計算が 信頼 で きな い 場合 が あ る、

　そ の 事 に関 して
、

フ ェ ル ミ オ ン の 伝播 関数に 関する解析の場合に説明する （図 1）。 考えるエ ネ

ル ギ ー領域が eT 程度 の 場合 、　hard　thermal　lo⊂♪p 〔HTL ）近似 ［1］と呼ばれ る素朴な 1 ル ープ近似

が適用 で き る こ とが知ら れ て い る。こ の 近似は VlasOV 方程式 と等価 で あ る ［2］。こ の 近似 の 結果、

ノ ーマ ル フ ェ ル ミ オ ン および プ ラ ズ ミーノ と呼ば れ る フ ェ ル ミオ ン 的 な集団運動が出現す る こ とが

知 られ て い る 。

一
方エ ネ ル ギーが e2 丁 程度か それ以下の 場合、　 HTL 近似は もはや適用 で きな い

。

こ の エ ネル ギ
ー

領域 で は resumrnati 〔m1 を行 う必要が ある ［4 ，
5］。 そ の 手続 きは以下 の 通 りで ある ：

1，粒子の 熱質量お よ び崩壊幅 を resum した伝播関数 を用 い る

2．梯 子型 の ダイ ア グ ラ ム を全 て足 し上 げる

こ の 手法を用 い た解析の結果 、 存在が示唆 され て い た ［5］集団運動 の 存在が確立 した ［4］。

　しか し なが ら こ の 手続 きに は 、場 の 理論に 基 づ い た systematic な導出が ある わけで は な い 。ま

た、梯子型ダ イ ア グ ラ ム の 足 し上 げが物理的 に は何に対応す る の か が 不明瞭で あっ た 。 そ こ で我々

は こ の resummation を使 っ た手法 と等価 な運動論的方程式を Kadanoff−Baym 方程式か ら導出 し、
こ の 点 を明 らか に した 。 以 下 で それ に つ い て 述 べ る 。

2　 Kadanoff −・Baym 方 程式

　紙面 の都合上、湯川模型お よ び QCD の 場合は 省略 し、　QED の 場合に限 っ て 導出を行 う。 こ こ

で の 計算は ク
ー

ロ ン ゲージを採用 し、Keldysh形 式 を用 い て行う。

　フ ェ ル ミオ ン 的な集団運動 を Kadanoff−Bayrn 方程式 を使 っ て解析す るに は、以下 の 状況を考え

れば良い 。 熱平衡系に十分弱い フ ェ ル ミオ ン 的な外場 （η＠））を加え、それ に よ っ て フ ェ ル ミ オ ン 的

集団運動 〔Ψ（x ））を 生 じ させ る 。 そ の よ うな状況で の Kadanoff−Bayrn方程式は以下 の 通 りである ：
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図 1： 各エ ネル ギ
ー

ス ケ
ー

ル に お け る ダ イ ア グ ラ ム 的 な解析手法、運動学的方程式、お よびそ れ ら の 結果存
在 が 示 唆 さ れ る フ ェ ル ミ オ ン 的励起。

1
ボ ソ ン の 伝播 関数 の 解析 にお け る resumlnation は ［3］を 参照。

N 工工
一Eleotronio 　Library 　



Soryushiron Kenkyu

NII-Electronic Library Service

Soryushiron 　 Kenkyu

「熱場の量子論 とそ の 応 用」
一F153 一

こ こ で 、

　　 S 〈
（x ， y）≡ 〈 ψ（y）ψ〔x ）〉，　D 函レ （x ，　y）≡ 〈 （・・v （：ty）aVt （x ）〉

，　1／〈i’
（x ，

tJ＞≡ 〈 ψ（x ）apa （ty）〉 　　（3）

を導入 した 。 た だ し、V・　（x ）（α
μ
（x
’
））は フ ェ ル ミオ ン （ボ ソ ン ）場の ゆ ら ぎで あ る

。 また 、Σ
R
（，x，　IY）、

H昼。 ＠ Ψ）、 δr μ＠ ，g＞は 、 それぞれ フ ェ ル ミ オ ン お よびボ ソ ン の 遅延 自己 エ ネル ギ
ー、　vertex 補正

で あ る 。

　
一

方 、 考える集団運動 （Ψ （x ））の 時間発展 は 以 下 の 式で与え ら れ る ：

乞φ詔
重（x ）＝η（x ）十 ηind（x ：）， （4）

ηind（の ≡ e瑳＠，め は我々 が知りた い 量で ある フ ェ ル ミ オ ン の 自己エ ネ ル ギ
ー

（Σ
R
（X ））を使 っ て

ηind（x
’
）＝∫d  Σ

R
（x

− y）W （g）と書け る た め 、結局我 々 が や る べ きこ と は 式 （1）お よ び （2＞か ら

κ μ
（x ，Y）を求め る事に帰着する 。

　こ こ で 2 つ の 近似 を行う。1つ め は、gradient　．R 開 と呼ば れ る もの で ある 。 まず 、 時空 の 座標 x

お よび tJ を使 っ て 、そ の 平均 X ≡ ＠ ＋ ly）／2 お よ び差 s ≡ x −
　tJ を定義する 。

こ こ で 、　 X は平均

場の 座標に対応す る た め 、∂x 〜 e2T で ある 。　
一
方後で み る よ うに、　 s は ゆ らぎの 相関関数 の 引数

で あ る。ゆ らぎの 起源は熱的なもの なの で 、∂s
〜 T で ある 。 したが っ て 、∂s に 比 べ て ∂x を無視

する事が で きる。

　さて 、こ こ で 運動 景 空間 に 移 る た め に Wigner 変換 を行 う。Wigncr 変換は任意 の 関数 ！＠，y）を

使 っ て 以下 の よ うに 定義 され る ：

篤 ・ 1殉 （… μ 一・／・）許
’5 ・ （5）

　次に 2 つ め の 近 似を説明する 。 今外場 （η）が十分小 さい 場 合を考えて い る た め 、系は熱平衡状

態か ら ほ とん ど離れ て い ない
。 従 っ て式 （1）お よ び   に現れ る伝播関数を、以下 の 熱平衡時に お

ける相互作用が ない 場合の それ で 置 き換える事がで きる ：

　　　　　　　S 〈 （eq ）
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こ こ で ρ
o
（k）≡ 2π sgn （krO）δ（k2）、　n （kO）≡ （ekefT ＋ 1）

−1、　Ar（kD）≡ （ε
il°〆T − 1）

− 1
で ある 。 ま た 、

横波成分 へ の 射影演算子 Pt
，u
’
r（k）　≡ 9μ

．iguj（δ毎　
一kzた3）を導入 した。た だ し、炉 ≡ k’

／lklで ある 。

た だ し κ μ は平衡時に 0 で あるため、そ の まま残す 。 さ らに、自己エ ネル ギーは熱．平衡時に おける

1 ル ープの値 を用い 、vertex 補 正 は非平衡状態に お ける 1 ル
ー

プ の値 を用 い る ：

　　　　　　　　　｛苑Σ
R
  ｝一握 一2iζ・κ

゜
，　H影（k）　一　・nZP

，。T （k）， 　 　 　 　 （7）

　　　　　　　　　　　… 圃 一・
・1、鵄、際 豹・K ・ （1， X ・・　 　 〔・・

こ こ で 、ml ≡ e2T2 ／4、　mZ ≡ e2T2 ／6 で あ る 。フ ェ ル ミ オ ン の 崩壊幅 （〈f 〜 e2TIII （11e））は

leading−！og の 精度で しか計算さ れ て い な い た め 、表式を書 く事はで きな い 。

　 こ の 2 つ の 近似 の 結果 、以下 の 運動論的方程式が得 られる。

　　　 　　 　　 　　　 　　 　 δm2

　　　　　　　　（2’v　・∂x ±

可
＋ 2聯 ・ （k，X ）＝ 蹴 N （1’e1）＋ n （1ic1））Ψ（X ＞

　　　　
一ト巳

2
つ／i，　？5〔N （IkI）　

一ト箆（lkI））1⊇望（v）≡Σ≡三1　（圭募葺3 三Σ青rT三e千三者〒‘〒…傷ユ
α

1丶5α （t’x ）　　　　　　　　　　　（9）
こ こ で、K μ

（k，　X ）≡ 2π δ（為
2X

θ（鳶
o
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X ）十 θ（
− ke）A巳（
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1）・

δm2 ≡ m 言　
一　m ？を導入 し た。
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表 1： resummed 　peI
・turbatlon と運動論的方程式 と の 対応関係 。

　さて 、各項 の 意味 を見 て み よう。まず左 辺 第 1項 は、相互 作用 が な い 場合 の 時間発展 を表す項 で

あ り、Boltzmann 方程式 に お ける駆動項に対応する 。 第 2 項は 、伝播 関数 に自己 エ ネル ギ
ー

と し

て で は な く、通常の 質量 と して mf と ηη，
を人れた時に も出 て くる。こ の た め 、こ の 項は フ ェ ル ミ

オ ン お よ び ボ ソ ン の 質量 に 由来する 。 こ の 項を質量項 と呼ぶ 事に する。第 3項 は散乱振 幅の 2乗 を

使 っ て 表す こ とが で き、 衝突項に対応する 。 た だ し、κ μ が平衡時 に 0 になる事に よ り、緩和時聞

近似 を行 っ た時の 形に な っ て い る 。

一
方右辺第 1 項は 、平均場 との 相互作用 に 由来 して お り、外力

項 に対応する。第 2項 は、vertex 補正 δP
。

に 由来す る た め 、外力の 補正 で ある と解釈す る 。
こ こ

で、駆動項以外の項の 形は 、 Bolt，zmann 方程式にお けるそれ とは異な っ て い る事に注意する 。 こ

の 事は 、Boltzmai 皿 方程 式の 場合 とは違 い 、今時間発展を調 べ て い る 量 r〈”・が異 なる粒 子 間 の 相

関関数で ある こ とに 由来する。

　また 、こ の 運動 論的方程式か ら計算 した Σ
R
（p）は、［4｝に お い て resummed 　perturbation を使 っ

て計算 され た もの と
一

致する 。
こ の こ とか ら、我 々 が導出した運動論的方程式 と reSUInlned 　per−

turbation は等価で ある と言える 。 した が っ て、　resummed 　perturbation における各手続 きを運動

学的 に解釈で きる 。 そ の結果 は 、 熱質量は質量項 に、崩壊幅は 衝突項 に、梯子型 ダイ ア グ ラ ム は

外力の補正項 に対応す るとい うもの で あ る （表 1）。

　最後に 、こ こ で 行 っ た 2 つ の 近似 は弱結合性か ら正当化さ れ る事に 注意す る。1 つ め は ∂x
〜 e2T

，

∂s
”“T よ り明 らか で あ る 。 2 つ め の 近似が必要十分で ある事を見る た め に、運動論的方程式の 各

項の 大 きさを評価 しよ う。 まず 自己 エ ネ ル ギ
ー

を 1 ル
ー

プ で近似 し た こ とか ら、質量項お よび衝突

項が 出現 した 。 こ れ らの 項 は e2TA 程度 の 大 きさで ある 。 また 、　 vcrtex 補正 を 1 ル
ー

プで 近似 した

ため 、外力の 補正項が 出現 した 。
こ の項の大 きさも f，

2TA
程度で ある 。

一方駆動項 は、∂x 〜 e2T 、
k ・vT よ り、e2T2A 程度 の 大 きさで あ る 。 考 えて い る 項が全て 同程度で あるた め 、こ こ で使 っ た 1
ル ープ近似 は leading　order の 寄 与の み を考え る 限 り必要十 分 で あ る事が わ か る ；2 ル

ー
プ以上 の

効果 は 駆動 項 よ り小 さ く、無視で き る 。

3　 ま とめ

　我 々 は線形応答領域 に おける Kadano 正f−Bayln 方程式に gradienL展開を用 い る事 に よ っ て 、フ ェ

ル ミ オ ン 的集団運 動を解析で き る新 しい 運動論 的方程式を導出 した 。
こ の 運動論的方程式か ら計

算 した Σ
R
（1，）は

、 resllmmed 　perturbation か ら計算 された もの と
一

致 したため 、 そ の 運動論的方

程式は resllIIlmed 　perturbatioI1 と等価で ある事が わ か っ た。こ の 事は resummed 　pertllrbation の

基礎付け を与える。また、こ の 等価性 を使 っ て rcsummed 　perturbationの 手続 きの 運動学的な解

釈 を与えた （表 1）。
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