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Abstract: When fitting cosmological models to data, a Bayesian framework is commonly
used, requiring assumptions on the form of the likelihood and model prior. In light of
current tensions between different data, it is interesting to investigate the robustness of
cosmological measurements to statistical assumptions about the likelihood distribution from
which the data was drawn. We consider the impact of changes to the likelihood caused by
uncertainties due to the finite number of mock catalogs used to estimate the covariance
matrix, leading to the replacement of the standard Gaussian likelihood with a multivariate
t-distribution. These changes to the likelihood have a negligible impact on recent cosmic
microwave background (CMB) lensing and baryon acoustic oscillation (BAO) measurements,
for which covariance matrices were measured from mock catalogs. We then extend our analysis
to perform a sensitivity test on the Gaussian likelihoods typically adopted, considering
how increasing the size of the tails of the likelihood (again using a t-distribution) affects
cosmological inferences. For an open ΛCDM model constrained by BAO alone, we find that
increasing the weight in the tails shifts and broadens the resulting posterior on the parameters,
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with a ∼0.2–0.4σ effect on ΩΛ and Ωk. In contrast, the CMB temperature and polarization
constraints in ΛCDM showed less than 0.03σ changes in the parameters, except for {τ ,
ln(1010As), σ8, S8, σ8Ω0.25

m , zre, 109Ase
−2τ } which shifted by around 0.1–0.2σ. If we use solely

ℓ < 30 data, the amplitude Ase
−2τ varies in the posterior mean by 0.7σ and the error bars

increase by 6%. We conclude, at least for current-generation CMB and BAO measurements,
that uncertainties in the shape and tails of the likelihood do not contribute to current tensions.

Keywords: Bayesian reasoning, cosmological parameters from CMBR, cosmological
parameters from LSS
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1 Introduction

The standard cosmological model with a cosmological constant (Λ) and cold dark mat-
ter (CDM) model agrees well with an extensive range of observational results. Experiments
that support this ΛCDM model include spectroscopic galaxy surveys such as the extended
Baryon Oscillation Spectroscopic Survey (BOSS and eBOSS; [1, 2]), photometric weak lensing
surveys such as the Dark Energy Survey (DES; [3]), cosmic microwave background (CMB)
measurements like Planck [4], and the Pantheon and Union supernova compilations [5, 6].
However, there are tensions in the derived parameters of the ΛCDM model from different
datasets. In particular, the Hubble constant (H0) measurements from local distance ladder
measurements [7] are in tension with those from the CMB [4] or from Big Bang nucle-
osynthesis (BBN) analysed together with Baryon Acoustic Oscillation (BAO) data [8]. In
addition, different measurements of the clustering amplitude of matter (S8) differ by up to 3σ,
particularly those from weak lensing [9–11] when compared to the predictions from Planck.

Given these tensions and future improvements in data precision [12, 13], there has been
a renewed focus on parameter uncertainties stemming from systematic errors. For example,
the reionization optical depth, τ , as measured using the CMB is very sensitive to changes
in the analysis pipeline. The value has changed significantly between analyses: the WMAP
experiment measured τ = 0.17 ± 0.04 [14] from the year one data, and τ = 0.089 ± 0.014
after nine years of data [15]. In contrast, Planck published τ = 0.097 ± 0.038 in its first
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set of results [16], and τ = 0.058 ± 0.006 using the final data and an updated pipeline [17].
Research collaborations independent from Planck, such as BeyondPlanck [18], continue to
improve the analysis technique to achieve a higher control over the uncertainty propagation
and provide a more robust estimate.

In the standard Bayesian analysis pipelines used to make inferences from cosmological
data (e.g. [19]), credible intervals for cosmological model parameters are determined by
exploring the posterior surface.1 The results depend on the prior assumed for each parameter
and any assumptions made when determining the likelihood. The likelihood is typically
approximated to be Gaussian, but this is generally not exact. For example, the likelihood of
CMB multipoles Cℓ is a Wishart distribution, which deviates from Gaussianity particularly at
low ℓ where the central limit theorem does not hold [21, 22]. A further complication results
from errors in the covariance matrix [23, 24], which also modify the simple Gaussian likelihood.

In this paper, we consider how assumptions about the form of the likelihood affect
recovered credible intervals for fits to the Sloan Digital Sky Survey (SDSS) [8] and Planck [4]
data. We first consider the case where the covariance on an intermediate statistic itself has
an error. This is the situation when covariance matrices for correlation functions or power
spectra are determined from sets of mocks, as for recent analyses of eBOSS data [8] and CMB
lensing [25] data from Planck, for example. In this case, to complete a Bayesian analysis we
need a prior on the covariance matrix, and a number of suggestions have previously been
made for this, including an Independence-Jeffreys prior [26], or a prior matching frequentist
confidence intervals with Bayesian credible intervals [20]. We consider the effect of this choice
of prior, comparing against the situation where we ignore the errors in the covariance matrix.

We then extend this work to test the sensitivity to the Gaussian assumptions for the
likelihood when fitting BAO and CMB data. This can be considered a sensitivity analysis
for the cosmological inferences made. Within the fields of biostatistics and epidemiology,
sensitivity analyses play a crucial role in assessing the robustness of conclusions drawn from
observational data (eg. [27–29]). They are a critical way of assessing the impact, effect, or
influence of key modelling choices like definitions of outcomes, protocol deviations, missing
data assumptions, outliers, or prior specifications. Many experiments make a Gaussian
approximation for the likelihood even if the model does not intrinsically support this, or
the central limit theorem does not hold. Additionally, noise is not necessarily Gaussian
distributed, and large-scale structure analyses often use quasi-linear modes where gravitational
non-Gaussianity is non-negligible. Hence, considering heavy-tailed likelihoods in cosmology
is well-motivated and this has been done in past work [30–32]. We focus on the tails of the
distribution assumed for the likelihood, using the multivariate t-distribution as a replacement
for the Gaussian distribution to vary the fraction of probability within the tails and determine
how sensitive the final parameter constraints are to this choice.

Section 2 provides background information on statistical techniques and introduces the
procedure we implemented to stress test components of the data analysis. Then, section 3
outlines the datasets that we studied. Following this, section 4 considers analyses where the
covariance matrix itself has errors, while section 5 details our sensitivity analysis of more
general BAO and CMB measurements. Finally, we conclude in section 6.

1For a comparison of Bayesian credible intervals to frequentist confidence regions, see [20].
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2 Statistical techniques

We will focus on Bayesian parameter inference (e.g. [33]), where one derives credible regions
for parameters based on the posterior, inferred using Bayes’ theorem:

P(H|D) ∝ P(H)P(D|H) , (2.1)

where H is the hypothesis to be tested and D is the data. The posterior P(H|D) is determined
from the likelihood P(D|H) and prior P(H). So, to determine the posterior distribution of
the model parameters, the prior must be chosen to reflect the knowledge of the parameters
before the new data is considered, and a likelihood function specified. The multivariate
Gaussian (Normal) distribution is often adopted for the likelihood, if the distribution from
which the data are drawn is not known: [34]

P(x|p, Σ) = 1√
|2πΣ|

exp
[
−1

2χ2(x, p, Σ−1)
]

. (2.2)

Here, Σ is the covariance matrix, the data is xd, the data model is x(p), the parameters
are p, and

χ2(x, p, Σ−1) ≡
∑
ij

[xd
i − xi(p)]Σ−1

ij [xd
j − xj(p)]. (2.3)

In order to test how robust modern cosmology is to the choices made for the likelihood,
we consider two different cases as detailed in the next section.

2.1 Covariance matrix estimated from simulations

An unbiased estimate of the true covariance matrix Σ from a set of simulated data is given by

S = 1
ns − 1

ns∑
i=1

(xm
i − x̄m)(xm

i − x̄m)T , (2.4)

where ns is the number of mock simulations, xm
i are the mock data, and x̄m is the mean of

xm
i . Inverting this estimate (S−1), however, gives a biased estimate of the inverse covariance

Σ−1 [35]. This systematically biases the credible regions placed on cosmological parameters.
Simply correcting the skewness in the inverse covariance matrix as advocated by [35] does
not correct the credible regions because it does not take into account the way in which the
posterior surface is explored, which can be considered a constrained inversion of the inverse
covariance back to a covariance of new parameters [20]. An approximate correction for this
effect is to preserve the Gaussian likelihood function and simply scale the covariance [20, 36],
such that the matrix to invert is S′ where

S′ = (ns − 1)[1 + B(nd − np)]
ns − nd + np − 1 S , (2.5)

B = (ns − nd − 2)
(ns − nd − 1)(ns − nd − 4) . (2.6)

Here nd is the number of data points and np is the number of parameters.
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Ref. [26] instead considered a fully Bayesian approach where an Independence-Jeffreys
prior is placed on the covariance matrix, and it is considered a random variable in the analysis.
This results in a multivariate t-distribution posterior [26],

P(µ|x0, S) ∝
[
1 + (x0 − µ)S−1(x0 − µ)T

ns − 1

]− m
2

, (2.7)

where x0 are the data with dimension nd and expectation value µ. For the Independence-
Jeffreys prior we have m = ns. Ref. [20] considered instead a prior on the covariance matrix
designed to match Bayesian credible intervals with frequentist confidence intervals. Again,
this results in a multivariate t-distribution posterior, but this time with

m = np + 2 + ns − 1 + B(nd − np)
1 + B(nd − np) . (2.8)

We note that for the multivariate t-distribution, S is referred to as the scale matrix, as the
covariance is (m − nd)S/(m − nd − 2).

Using either the Independence-Jeffreys or frequentist matching prior for the true covari-
ance matrix results in a posterior with larger tails than a Gaussian, increasing the likelihood
of parameter values further away from the central region. This raises the question of how
much this changes the cosmological constraints for previously published datasets. We will
investigate this for both choices of priors, hereafter calling the posteriors the Independence-
Jeffreys t-distribution and the matching prior t-distribution, comparing against a Gaussian
posterior where the error in the covariance matrix is ignored.

2.2 Sensitivity analysis

In the previous section, we considered well motivated changes within a Bayesian context to
the likelihood following consideration of how the covariance matrix was estimated. Changes
to the likelihood can also form part of a sensitivity analysis, where we consider how robust
our inferences are to the analysis method assumed. The approximation of a particular form
for the likelihood may not be easy to determine, but we can easily test how important
that approximation is for particular parameters. For this, following on from section 2.1, we
consider the general form of the multivariate t-distribution:

f(x) = Γ[(ν + nd)/2]
Γ(ν/2)νnd/2πnd/2 | Σ |1/2

[
1 + 1

ν
(x − µ)T Σ−1(x − µ)

]−(ν+nd)/2
. (2.9)

Here, x is the data and µ is the model, which both have dimension nd × 1. Σ is the nd × nd

scale matrix and ν is the number of degrees of freedom. In the limit ν → ∞, the distribution
tends towards a Gaussian form. Using the multivariate t-distribution we can set the number
of degrees of freedom based on how much more probability is in the tails of the chosen
t-distribution compared to a Gaussian.

In order to quantify the extent to which we are adjusting the likelihoods, we consider the
multivariate t-distribution for a single data point, marginalized over the other data points, and
calculate the 2σ interval for different values of ν. We choose the two ν values which correspond
to 2σ intervals that are 1% or 10% larger than those of a marginalized multivariate Gaussian
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Figure 1. A Gaussian distribution (orange) versus the Student t-distribution with its 2σ interval
10% larger than the Gaussian’s (blue).

with matching variance. To do this, we use the marginalized multivariate t-distribution,
which is the Student t-distribution,

f(x) = Γ[(ν + 1)/2]
Γ(ν/2)

√
νπ

[
1 + x2

ν

]−(ν+1)/2

, (2.10)

and calculate the cumulative distribution function and evaluate the 2.5th and 97.5th percentiles.
These are then compared to the percentiles of the Gaussian distribution so the value of ν

that increased the region by 1% and 10% could be determined. For the 1% scaling, ν = 104,
and for 10% scaling, ν = 13. An example of how the distribution changes is shown in figure 1
for the 10% case. In the Monte Carlo code, the multivariate Gaussian distribution was
replaced with eq. (2.9) using the derived values of ν, along with the corresponding value
of nd for the dataset considered.

3 Data

3.1 SDSS BAO

Over 20 years, the Sloan Digitial Sky Survey (SDSS; [37]) has undertaken a series of galaxy
redshift surveys, from which the BAO scale can be measured. At low redshift, 0.07 < z < 0.2,
there is the Main Galaxy Sample (MGS; [38, 39]) from Data Release 7 (DR7; [40]); at
0.2 < z < 0.5, the Baryon Oscillation Spectroscopic Survey (BOSS; [1]) from DR12 ([41]);
and at z > 0.6, extended BOSS (eBOSS) [2] from DR16 ([42]). In our work, we focus on
the analyses where galaxies are used as discrete tracers of the density field, and the BAO
were measured and fitted from these samples using both the correlation function and power
spectrum. For the 2-point functions, covariance matrices are calculated using mock catalogues.

– 5 –
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We primarily focus on fitting the DR12 BOSS LRG correlation function [43] for redshift
bins z = 0.38 and z = 0.61 (since incorporating bin z = 0.51 adds negligible extra information),
as these data represent the best large-scale structure data currently available. We directly fit
the cosmological parameters to the two-point correlation function using the post-reconstruction
damped BAO model of [44]. In appendix A, we instead work with all BAO samples described
above (which are summarized in table 8, including the number of mocks, size of the data
vector, and number of parameters in the model), but use their publicly released compressed
parameters (α∥, α⊥) rather than re-fitting the correlation function measurements. The SDSS
team conducted these fits in two phases, first compressing the correlation function into
(model-independent) Alcock-Paczysnki (AP) parameters, α∥ and α⊥, which parameterise
the measured dilation of the BAO peak along and across the line of sight with respect to a
fiducial cosmology. They then fit cosmological parameters to the compressed dataset. Our
likelihood directly fits the cosmological parameters to the correlation functions by converting
them into α∥ and α⊥ and then shifting the post-reconstruction BAO model of [43] by these
AP parameters. The likelihood of [43] includes a prior on the nuisance parameter B0, which
controls the amplitude of the correlation function template and hence the BAO strength in
the model. The Gaussian prior is of width log(Bx) = 0.4 around the best-fitting B0 in the
range 50 < r < 80 h−1 Mpc. We first split this prior from the likelihood, and then add it
back after scaling χ2 or changing from a Gaussian to a t-distribution.

We use the publicly available post-reconstruction correlation functions and covariance
matrices of [43],2 and removed the Hartlap factor before switching to either a frequentist-
matching prior or Independence-Jeffreys t-distribution. We considered the open ΛCDM
(oΛCDM) model that allows for non-zero curvature, sampling over cosmological parameters
Ωm, and Ωk and fixing Ωb = 0.0468 and H0 = 70 km s−1 Mpc−1. H0 is fixed since we are
following the analysis of ref. [8] and because the data does not have sufficient constraining
power for both Ωk and H0 when using only the BOSS LRG results. We use Cobaya [19]
to obtain the cosmological parameter constraints and considered the chains converged for
Gelman-Rubin R − 1 ≤ 0.02 [45] along with a further exploration of the tails beyond the
95% confidence interval, with a permitted quantile chain variance of 0.02 standard deviations
in the 95% confidence interval.

3.2 Planck CMB lensing

We also consider the Planck 2018 CMB lensing measurements [25]. Gravitational lensing
creates distinctive, non-Gaussian structure in CMB temperature and polarization maps, which
can be extracted using quadratic estimators [46]. The Planck team applied these estimators to
the Planck temperature (T ) and E-mode polarization (E) maps to produce a map of the CMB
lensing potential ϕ̂ across 60% of the sky. Estimating the lensing potential power spectrum
requires (i) a mean field normalization correction, (ii) a subtraction of noise biases (arising
from the disconnected four-point function of the Gaussian CMB, non-primary couplings of
the connected four-point function, and point source biases), and (iii) the application of a

2Data available at https://github.com/ashleyjross/BAOfit/tree/master/exampledata/Ross_2016_COMBI
NEDDR12 and our code was adapted from their likelihood in https://github.com/ashleyjross/LSSanalysis/tre
e/main.
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simulation-determined Monte Carlo calculation. Complications such as the Galactic mask
and sky varying noise couple previously independent Fourier modes of ϕ. The covariance
matrix used to include such effects in [25] was estimated by applying lensing reconstruction
to 240 realistic FFP10 CMB simulations.3 Any dependence on the theoretical model of the
CMB power spectra is removed by marginalization over the primary CMB power spectrum,
which adds a term to the covariance matrix (eq. (34) in [25]). It is this covariance matrix
containing the additive correction that we include in our analysis.

We test the sensitivity of the measurements from CMB lensing for the ΛCDM model,
sampling over the cosmological parameters Ωbh2, Ωch

2, 100θMC, ln(1010As) and ns. We
used a modified version of the code CosmoMC [47] to obtain the parameter constraints with a
convergence criterion of R − 1 ≤ 0.01 and further sample the tails beyond the 99% confidence
level, with a limit on the quantile chain variance of 0.2 standard deviations. To calculate
the covariance matrix, the number of simulations used was ns = 240, the data vector had
nd = 9 (corresponding to the conservative multipole range 8 ≤ ℓ ≤ 400), and the number
of parameters was np = 5 [25]. We also checked that using the aggressive multipole range
8 ≤ ℓ ≤ 2048 gave results similar to the conservative range, so for this test the data vector
was nd = 14.4 Unlike SDSS, only the Hartlap correction factor [35] was considered, so we
removed this and then changed from the Gaussian to the Independence-Jeffreys and matching
prior t-distribution posteriors. We used the lensing convergence power spectrum from the
minimum variance (MV) combination of T and E maps.5

3.3 Planck CMB temperature and polarization

Next, we consider the Planck CMB measurements of temperature and polarization (T &P ) [48].
Planck considers different combinations of auto- and cross-correlations of the T and E spectra,
as well as different ℓ ranges. These are contained in separate codes exploring high-ℓ and
low-ℓ multipoles separately [49]. In detail, Plik is the joint TT , EE and TE likelihood in
the multipole range 30–2508 for TT , and 30 − 1996 for TE and EE. It is based on the
binned cross-spectra from 100, 145 and 217 GHz channels, and represents the likelihood
as a correlated Gaussian:

− ln L(Ĉ|C(θ)) = 1
2

[(
Ĉ − C(θ)

)T
Σ−1

(
Ĉ − C(θ)

)]
+ constant , (3.1)

where Ĉ is the vector with observed spectra, C(θ) are the predicted spectra for the cosmological
parameter set θ, and Σ is the covariance matrix as computed for a fiducial realisation. Even
though the Gaussian shape is an approximation to the true Wishart distribution, it has been
demonstrated to perform reasonably well even for ℓ ∼ 30, as discussed in [22]. In the [25]
analysis, large angular scales (ℓ < 30) use the SimAll (EE) and commander (TT ) likelihoods.
The latter is based on a Gaussianised Blackwell-Rao estimator of the TT power spectrum

3It was confirmed in private communication with Julien Carron that the number of simulations should be
240, not the 300 mentioned in [25].

4In private communication with Julien Carron we learned that nd = 14 not 16 as indicated in [25].
5The .inputparams files used in CosmoMC, obtained from h t t p s : / / p l a . e s a c . e s a . i n t / #

c o s m o l o g y, are called ‘base_lensing_lenspriors.inputparams’ for the conservative range and
‘base_lensing_lenspriors_pttagr2.inputparams’ for the aggressive range.
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from foreground cleaned CMB samples [50], whereas the former consists of a brute-force
inversion of the likelihood for polarisation power spectra estimates from foreground-cleaned
maps [49]. Hence commander is a Gaussian likelihood, and SimAll is not. Our procedure
consists of changing Gaussian likelihoods to multivariate t-distributions, and should not be
applied to likelihood forms that are already non-Gaussian.

We therefore use the LFI-based likelihood bflike for large angular scales [49], replacing
commander and SimAll. bflike is a map-based Gaussian likelihood, and unlike commander,
it includes polarization as well as temperature. The likelihood for bflike is

L(Cℓ) = P(m|Cℓ) = 1√
2π|S(θ) + N|

exp
{

−1
2mT (S(θ) + N)−1m

}
, (3.2)

where m is the CMB-plus-Noise map, and S(θ) + N is the Signal-plus-Noise covariance. The
signal covariance here is computed for every cosmological parameter set θ in order to explore
the full joint posterior distribution for TT , TE, EE and BB power spectra in the multipole
range 2 − 30. In order for the covariance to be non-singular, it is required that the number of
pixels in the Stokes I, Q, and U maps is larger than ∼ (2ℓmax + 1)2. We considered the value
of our data vector in the t-distribution to be nd = 2289 for Plik and nd = 6467 for bflike,
where the latter value comes from the number of unmasked pixels in I, Q, and U CMB maps
at HEALPix Nside = 16, and the former from the number of bins used in TT, TE, and EE
in different frequency channels (given in table (20) of [49]). In this work, we used bflike
in combination with Plik and alone. The first case covers the full Planck multipole range,
whereas the second focuses on the large angular scales ℓ < 30. The motivation for the latter
is twofold: firstly, it is a good consistency check for our methodology to test the different
Planck likelihood parts separately, and secondly, it provides a focus on the cosmological
parameters that show a strong dependence on small multipoles, namely the optical depth
of reionization, the scalar amplitude, and the primordial perturbation spectral index. For
the MCMC runs, the base cosmological parameters were Ωbh2, Ωch

2, 100θMC, τ , ln(1010As)
and ns when we considered both Plik (TTTEEE) and bflike (lowTEB).6 For runs with
only bflike, we sampled over cosmological parameters τ and ln(1010As). We again used
CosmoMC with the same convergence settings as given above for CMB lensing.

4 Results for the likelihood choice using mock-based covariances

We begin by producing cosmological constraints for the oΛCDM model using SDSS BOSS’s
original likelihood setup with the Gaussian distribution, before moving on to consider results
using instead the t-distribution with Independence-Jeffreys or frequentist-matching priors
on the covariance matrix. We also compare against the scenario where all of the corrections
are removed, equivalent to assuming no error in the covariance matrix. The cosmological
constraints are illustrated in figure 2, which shows a high level of agreement between the
contours. Additionally, the constraints for ΩΛ and Ωk are listed in table 1. The correction
factors used by SDSS increase the size of the confidence intervals by 1%, compared to not
using the correction factors and using a Gaussian likelihood.

6The .ini files we used in CosmoMC were ‘batch3/plik_rd12_HM_v22_TTTEEE.ini’ for T T T EEE and
‘batch2/lowTEB.ini’ for lowT EB.
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Figure 2. Comparison of the Ωk–ΩΛ constraints at 68% and 95% credible intervals for the oΛCDM
model using BOSS DR12 LRG correlation function data for redshift bins centered at zeff = 0.38 and
0.61. The left panel shows constraints for the original BAO results from using SDSS’s method (red),
with the correction factors removed (purple), the matching prior t-distribution (orange), and the
Independence-Jeffreys t-distribution (blue). On the right is again the original Gaussian set-up (red)
along with the sensitivity test with 1% larger tails (purple) and 10% larger tails (blue).

BOSS DR12 LRG BAO, z = 0.38, 0.61
ΩΛ Ωk

Original SDSS method (Gaussian) 0.650+0.172
−0.215 −0.035+0.424

−0.242

Removed correction factors 0.648+0.171
−0.212 −0.036+0.417

−0.240

Independence-Jeffreys t-dist. 0.643+0.172
−0.213 −0.027+0.415

−0.240

Matching prior t-dist. 0.642+0.172
−0.213 −0.026+0.417

−0.240

Table 1. Parameter constraints for the oΛCDM model, using the BOSS DR12 LRG correlation
function data for redshift bins centered at zeff = 0.38 and 0.61. The uncertainties are the 68%
credible intervals. Results were found using the original SDSS method, no correction factors, then the
Independence-Jeffreys prior t-distribution and the matching prior t-distribution.

For the two t-distribution likelihoods, the parameters only have up to a 0.04σ difference
in comparison to the original Gaussian results, and the confidence intervals are similar in size
to the Gaussian likelihood without the correction factors. The primary take-home message
from table 1 is that none of the choices results in a significant change in constraints. This was
also seen when instead of fitting to the correlation function data, we fit to the compressed
data (AP parameters) in appendix A. Therefore, while these methods of marginalizing over
the unknown covariance are statistically more rigorous, in practice it does not mean that
results from previously published studies need to be reanalyzed.

Next, we consider the Planck 2018 CMB lensing measurements within the ΛCDM model.
We first do this for both the original Gaussian setup and then including no correction
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Planck CMB Lensing

σ8Ω0.25
m σ8 Ωm

Original Planck 2018 method (Gaussian) 0.589 ± 0.020 0.805+0.140
−0.074 0.335+0.055

−0.200

Removed correction factors 0.590 ± 0.020 0.805+0.140
−0.076 0.337+0.059

−0.200

Independence-Jeffreys t-dist. 0.590 ± 0.021 0.803+0.140
−0.076 0.339+0.059

−0.200

Matching prior t-dist. 0.590 ± 0.020 0.804+0.140
−0.075 0.338+0.058

−0.200

Table 2. Parameter constraints for the ΛCDM model using CMB lensing measurements. The
uncertainties are given by the 68% credible intervals. We considered using either the original
Gaussian method, removing the correction factors, or a t-distribution with an Independence-Jeffreys
or frequentist-matching prior.

0.2 0.4 0.6 0.8 1.0

Ωm

0.6

0.7

0.8

0.9

1.0

σ
8

Planck lensing Original Gaussian

Removed correction factors

Independence-Jeffreys t-dist.

Matching prior t-dist.

Figure 3. The contour plot for the ΛCDM model, illustrating the Ωm-σ8 constraints at 68% and 95%
credible intervals for Planck CMB lensing. Shown on the plot is the case of using Planck’s original
Gaussian method (red), correction factors removed (purple), the Independence-Jeffreys t-distribution
(orange), and the matching prior t-distribution (blue).

factors, which are compared in table 2 and figure 3 against methods that consider a posterior
that allows for the covariance matrix error. The marginalised parameter credible regions
are effectively the same with less than a 0.05σ difference. We conclude that the error on
the covariance matrix used for the CMB lensing analysis was sufficiently small that the
corrections for it are negligible.
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BOSS DR12 LRG BAO, z = 0.38, 0.61
ΩΛ Ωk

Original SDSS method (Gaussian) 0.650+0.172
−0.215 −0.035+0.424

−0.242

T -dist. likelihood with ν = 104 (1% larger tails) 0.615+0.195
−0.221 0.014+0.422

−0.241

T -dist. likelihood with ν = 13 (10% larger tails) 0.567 ± 0.241 0.068+0.432
−0.253

Table 3. The parameter values for the oΛCDM model using the BOSS DR12 LRG correlation
function data for redshift bins centered at zeff = 0.38 and 0.61. We compare the results found using
the Gaussian likelihood that SDSS had implemented versus a t-distribution likelihood of 1% or 10%
extra probability in the tails. The uncertainties are given by the 68% credible intervals.

5 Results from the sensitivity analysis

In the previous section we evaluated the importance of the correction to the likelihood when
considering uncertainty in a covariance matrix constructed using mocks. In this section we
take this one step further and consider the sensitivity of the analysis to generic changes to
the heaviness of the tails, without a specific motivation from the details of the analysis. This
is a form of sensitivity analysis that is common in other research fields, and is designed to
test the robustness of the inferences made to the statistical form assumed for the data (e.g.
in the presence of “unknown unknowns” that may affect the tails of the distribution). For
this test, we consider the BAO and CMB lensing data as well as the Planck temperature
and lensing data. To perform our sensitivity analysis, we have changed the likelihood to a
t-distribution with degrees of freedom ν = 104 (1% extra tail probability) or ν = 13 (10%
extra tail probability) as described in section 2.2.

5.1 BAO and CMB lensing

First, we applied this test to BAO data and we fitted the oΛCDM model, and focused on ΩΛ
and Ωk as the parameters of interest. We have deliberately chosen these data, as we know
that the data only weakly constrains these parameters. As shown in table 3 and figure 2, the
parameter medians increase respectively by (ΩΛ, Ωk)=(0.2σ, 0.2σ) and (ΩΛ, Ωk)=(0.4σ, 0.3σ)
for 1% and 10% more power in the tails of the likelihood. Moreover, the error bars increase
by 7% (25%) for ΩΛ and are nearly unchanged for Ωk. It is important to note that we find
this sensitivity to the heaviness of the tails when constraining an extended model with BAO
only. Hence, the increased sensitivity to the likelihood assumptions is likely linked to the
data only weakly constraining the model degeneracy we are moving along, which explains
why this form of robustness test may be even more relevant to perform on these types of
poorly constrained models. We find that fitting directly to the correlation function (rather
than the intermediate compressed statistics α∥ and α⊥) is critical. In appendix A, we fit to
α∥ and α⊥ instead of the correlation function and find that the constraints do not change
significantly (∼ 0.02σ) with the form of the likelihood.
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Planck CMB Lensing

σ8Ω0.25
m σ8 Ωm

Original Planck 2018 method (Gaussian) 0.589 ± 0.020 0.805+0.140
−0.074 0.335+0.055

−0.200

T -dist. likelihood with ν = 104 (1% larger tails) 0.589 ± 0.020 0.803+0.140
−0.074 0.338+0.058

−0.200

T -dist. likelihood with ν = 13 (10% larger tails) 0.589 ± 0.020 0.804+0.140
−0.074 0.336+0.057

−0.200

Table 4. These are the 68% credible intervals for the ΛCDM model using CMB lensing measurements.
The table compares the results for a Gaussian likelihood to t-distribution likelihoods derived from a
1% and 10% increase of a Gaussian’s 2σ region.

We also applied this sensitivity analysis to CMB lensing data for the ΛCDM model,
which resulted in the parameter constraints outlined in table 4. The CMB lensing results
exhibited almost no variation in the parameter constraints with regards to the form of the
likelihood, with only up to 0.02σ differences. We further confirmed that CMB lensing with
the aggressive multipole range (with larger correction factors due to larger nd) had results
consistent with that found for the conservative range.

5.2 CMB T&P

Fitting to the CMB temperature and polarization data, we again replaced the Gaussian
likelihood with a multivariate t-distribution for different choices of degrees of freedom, ν.
The results for TTTEEE and bflike lowTEB are shown in tables 5 and 6, then for only
lowTEB in table 7. We found for TTTEEE + lowTEB that parameters related to optical
depth and the overall power spectrum amplitude {τ, ln(1010As), σ8, S8, σ8Ω0.25

m , zre, 109Ase
−2τ }

exhibited similar behaviour, ranging between a 0.1–0.2σ difference from the t-distributions
to the Gaussian. This corresponds to a lower value of σ8 and S8, which slightly reduces
the S8 tension. The other parameters did not differ significantly from the original Gaussian
likelihood, with a maximum discrepancy of 0.03σ. For the lowTEB t-distribution results, we
found that τ changed by 0.15σ whereas ln(1010As) and 109Ase

−2τ had a 0.7σ difference from
the Gaussian case. By increasing power in the tails of the distribution, we obtain a lower
estimate of τ and As. This prompted us to investigate another choice of degrees of freedom,
ν = 213, to confirm this trend in parameter constraints. This corresponds to a 0.3% increase of
the Gaussian’s 2σ region, so it is a mid-point between the Gaussian case and the 1% increase.
Indeed, it does show the same behaviour of decreased mean values of τ and As, suggesting
that the change in constraints may be a discontinuous one caused by changing the likelihood
from Gaussian to a t-distribution. We should note that the polarization of the CMB at large
angular scales is dominated by noise and, because there is a strong degeneracy between τ

and As, these parameters are sensitive to this noisy signal. Since we use the variance of the
map to infer cosmological parameters, any residual or additional noise not captured by the
noise covariance matrix will be interpreted as additional signal, thus causing a systematic
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Planck CMB TTTEEE + bflike lowTEB

Original Planck, Gaussian likelihood T -dist. likelihood, 1% larger tails
Parameter Mean ±σ ±2σ ±3σ Mean ±σ ±2σ ±3σ

Ωbh2 0.02243 0.00015 0.00030 +0.00047
−0.00046 0.02242 0.00016 +0.00031

−0.00031
+0.00047
−0.00046

Ωch
2 0.1195 0.0014 0.0028 +0.0045

−0.0042 0.1195 0.0014 0.0028 +0.0042
−0.0043

100θMC 1.04097 0.00032 +0.00063
−0.00062

+0.0010
−0.00093 1.04097 0.00032 +0.00062

−0.00063
+0.00095
−0.00099

τ 0.0780 +0.0146
−0.0145

+0.0288
−0.0292

+0.0436
−0.0458 0.0757 +0.0148

−0.0146
+0.0292
−0.0303

+0.0436
−0.0502

ln(1010As) 3.090 0.029 +0.056
−0.057

+0.084
−0.090 3.086 0.029 +0.056

−0.060
+0.086
−0.097

ns 0.9671 0.0046 0.0090 +0.0138
−0.0137 0.9671 0.0047 +0.0093

−0.0090 0.0139

H0 67.59 0.63 1.24 +1.93
−1.91 67.58 0.65 +1.27

−1.26
+2.00
−1.86

ΩΛ 0.6877 0.0087 +0.0166
−0.0175

+0.0251
−0.0278 0.6876 0.0089 +0.0169

−0.0176
+0.0257
−0.0264

Ωm 0.312 0.009 +0.018
−0.017

+0.028
−0.025 0.312 0.009 +0.018

−0.017
+0.026
−0.026

σ8 0.8290 +0.0116
−0.0115

+0.0230
−0.0232

+0.0348
−0.0352 0.8271 +0.0118

−0.0117
+0.0228
−0.0237

+0.0353
−0.0374

S8 0.846 0.017 0.034 +0.053
−0.050 0.844 0.018 +0.034

−0.035
+0.052
−0.049

σ8Ω0.25
m 0.6197 +0.0098

−0.0100
+0.0196
−0.0197

+0.0300
−0.0291 0.6184 +0.0100

−0.0101
+0.0195
−0.0202 0.0294

zre 9.88 +1.38
−1.22

+2.47
−2.74

+3.61
−4.64 9.67 +1.45

−1.19
+2.65
−2.73

+3.64
−5.23

109Ase
−2τ 1.881 0.012 0.023 0.035 1.881 0.012 0.023 +0.036

−0.034

Table 5. Difference between the ΛCDM model parameter constraints when using Planck CMB Plik
high-l TT,TE,EE and bflike low-l TT,TE,EE,BB measurements for a Gaussian likelihood versus
a t-distribution likelihood with 1% larger tails (ν = 104). Included are the 68%, 95%, and 99.7%
credible intervals. We used the units of km s−1Mpc−1 for H0 and defined S8 ≡ σ8(Ωm/0.3)0.5. In the
first grouping of rows are the base parameters used in our MCMC analysis and the bottom group are
the derived parameters.
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Planck CMB TTTEEE + bflike lowTEB

Original Planck, Gaussian likelihood T -dist. likelihood, 10% larger tails
Parameter Mean ±σ ±2σ ±3σ Mean ±σ ±2σ ±3σ

Ωbh2 0.02243 0.00015 0.00030 +0.00047
−0.00046 0.02242 0.00016 +0.00031

−0.00030
+0.00047
−0.00048

Ωch
2 0.1195 0.0014 0.0028 +0.0045

−0.0042 0.1195 0.0014 0.0028 0.0042

100θMC 1.04097 0.00032 +0.00063
−0.00062

+0.0010
−0.00093 1.04097 0.00032 0.00063 +0.00093

−0.00097

τ 0.0780 +0.0146
−0.0145

+0.0288
−0.0292

+0.0436
−0.0458 0.0759 +0.0147

−0.0145 0.0290 +0.0434
−0.0451

ln(1010As) 3.090 0.029 +0.056
−0.057

+0.084
−0.090 3.086 0.029 +0.056

−0.057
+0.086
−0.089

ns 0.9671 0.0046 0.0090 +0.0138
−0.0137 0.9672 0.0046 +0.0091

−0.0091
+0.0137
−0.0136

H0 67.59 0.63 1.24 +1.93
−1.91 67.60 0.64 +1.25

−1.24
+1.95
−1.89

ΩΛ 0.6877 0.0087 +0.0166
−0.0175

+0.0251
−0.0278 0.6879 0.0087 +0.0167

−0.0174
+0.0255
−0.0269

Ωm 0.312 0.009 +0.018
−0.017

+0.028
−0.025 0.312 0.009 0.017 +0.027

−0.025

σ8 0.8290 +0.0116
−0.0115

+0.0230
−0.0232

+0.0348
−0.0352 0.8271 +0.0117

−0.0115 0.0227 +0.0343
−0.0355

S8 0.846 0.017 0.034 +0.053
−0.050 0.844 0.017 +0.034

−0.033
+0.051
−0.050

σ8Ω0.25
m 0.6197 +0.0098

−0.0100
+0.0196
−0.0197

+0.0300
−0.0291 0.6182 0.0099 +0.0193

−0.0195
+0.0289
−0.0294

zre 9.88 +1.38
−1.22

+2.47
−2.74

+3.61
−4.64 9.69 +1.40

−1.23
+2.60
−2.64

+3.58
−4.68

109Ase
−2τ 1.881 0.012 0.023 0.035 1.881 0.012 0.023 +0.035

−0.037

Table 6. Comparison of parameter constraints for the ΛCDM model using Planck CMB temperature
and polarization measurements for a Gaussian likelihood and a t-distribution likelihood with 10%
more probability in the tails (ν = 13). The uncertainties are the 68%, 95%, and 99.7% intervals,
the units of H0 are km s−1Mpc−1, and S8 ≡ σ8(Ωm/0.3)0.5. In the first section of rows are the base
parameters sampled over in MCMC, and the bottom section are the derived parameters.
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Planck CMB lowTEB

Parameter
Original Planck T -dist. likelihood T -dist. likelihood T -dist. likelihood

method with with ν = 213 with ν = 104 with ν = 13
Gaussian likelihood (0.3% larger tails) (1% larger tails) (10% larger tails)

τ 0.062+0.022
−0.017 0.060+0.022

−0.018 0.059+0.022
−0.018 0.059+0.022

−0.017

ln(1010As) 2.966 ± 0.056 2.927 ± 0.061 2.925 ± 0.060 2.925 ± 0.060

109Ase
−2τ 1.718+0.078

−0.091 1.660 ± 0.090 1.657+0.083
−0.096 1.658+0.082

−0.097

Table 7. For Planck CMB low-l TT ,TE,EE,BB measurements, the ΛCDM model parameter
constraints are compared for a Gaussian likelihood and t-distribution likelihoods that have 0.3%, 1%
and 10% larger 2σ regions than the Gaussian. These are the 68% credible intervals.

preference for larger values of τ and As. Therefore, our results show that more weight in the
tails of the distribution means more weight is given to the noise, lowering 109Ase

−2τ .
There is a well-known tendency for τ to shift between different CMB analyses, due to

the difficulty of modelling the extremely large angular scales that are sensitive to τ . For
instance, the official Planck 2018 low-l LFI (bflike) likelihood value is τ = 0.063 ± 0.020 [49]
and the combined Commander and SimAll result is τ = 0.0506 ± 0.0086. Natale et al. [51]
reported τ = 0.069+0.011

−0.012 for their WMAP + LFI likelihood, which roughly corresponds
to a 0.9σ difference from the t-distributions. Moreover, the BeyondPlanck LFI results are
τ = 0.065 ± 0.012, which corresponds to a 0.5σ offset [18]. These shifts in τ are comparable
to or somewhat larger than the shifts we find of ∆τ = 0.003, when switching from a Gaussian
to a t-distribution. This also shows that τ is very sensitive to choices made in the likelihood,
possibly explaining discrepancies seen in the literature. However, interestingly, the overall
amplitude Ase

−2τ and the matter fluctuation amplitude As are more sensitive to the form
of the likelihood than τ for low-l LFI data. When high-ℓ and HFI data are included this
sensitivity decreases significantly.

6 Conclusions

We have examined how cosmological constraints from BAO and CMB measurements rely
on the form of the likelihood used in the parameter inferences. Initially we considered how,
when the covariance matrix is estimated through simulations, we can marginalize over the
true covariance matrix instead of assuming a Gaussian likelihood with a scaled covariance.
Then, we tested the effect of different choices of priors on the covariance matrix, including the
Independence-Jeffreys prior and the frequentist matching prior. We found minimal differences
between the different approaches when applied to current BAO and CMB lensing data from
SDSS and Planck, respectively (less than 0.05σ differences). We further confirmed that the
insensitivity to the form of the likelihood held regardless of whether we fit to the correlation
function data or the compressed AP parameters. This demonstrates that the previously
published constraints are robust to the change in the likelihood due to uncertainties in the
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covariance matrix, but future data analyses should consider using the t-distribution likelihood
when the covariance is estimated from simulations, as it is more statistically robust.

Second, we have performed a sensitivity test on the assumption of Gaussianity in the
likelihood by examining how parameter constraints are affected by increasing the probability
in the tails for a wider range of data. When constraining extensions to flat ΛCDM with
BAO only, we find some sensitivity to using heavier tails with a multivariate t-distribution
likelihood. In particular, ΩΛ changed by ∼ 0.2σ for a t-distribution with 1% larger tails and
0.4σ for 10% larger tails. To find this sensitivity, we must directly fit the correlation functions
to obtain the parameter constraints rather than modifying the cosmological likelihood for
the compressed AP parameters. This is because the compressed AP parameters assume
a Gaussian correlation function likelihood [43]. Additionally, we emphasize that we see
these changes when considering open ΛCDM, which has some very weakly constrained
parameters, which may be more susceptible to likelihood non-Gaussianity. This demonstrates
how assumptions about the likelihood can influence parameter constraints, which may be
more relevant in cases where the model is not well constrained by data.

When applying the sensitivity test to the CMB in the ΛCDM model, we found that
the cosmological constraints were mostly insensitive to increased probability in the tails
of the likelihood. However, for CMB temperature and polarization data, the TTTEEE

+ bflike lowTEB results had {τ , ln(1010As), σ8, S8, σ8Ω0.25
m , zre, 109Ase

−2τ } change by
about ∼ 0.1–0.2σ from the original Gaussian results. Moreover, the lowTEB (low-l LFI) τ

constraints differed by 0.15σ and both ln(1010As) and 109Ase
−2τ differed by 0.7σ. Given the

long history of τ constraints being the most heavily influenced by systematic uncertainties,
this parameter provides insights into possible issues in the data analysis. If we consider
runs where only the lowTEB likelihood is included, the constraint for a 1% widening of
the Gaussian’s 2σ region is τ = 0.059+0.022

−0.018 and for a 10% widening it is τ = 0.059+0.022
−0.017.

This is lower than the official Planck 2018 result of τ = 0.063 ± 0.020 from using the low-l
LFI likelihood [49] and even lower than the BeyondPlanck LFI τ = 0.065 ± 0.012 [18] and
WMAP+LFI τ = 0.069+0.011

−0.012 [51]. Therefore, if there are any unaccounted systematic effects
that result in larger tails of the likelihood, τ and As would be shifted to a lower mean value
than currently estimated. However, note that when high-ℓ and HFI data are included, the
improved constraining power and decreased sensitivity to residuals help to break the τ–As
degeneracy. As a result, we only find small (∼ 0.15σ) shifts in both of these parameters
when using the t-distribution on the high-ℓ and HFI data.
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BAO Sample
ξ(r)

ns nd np Reference ncpor P (k)
SDSS MGS ξ(r) 1000 21 5

Ross et al. 2015 [39] 1
DR7 P (k) 1000 35 8

BOSS LRG ξ(r) 1000 40 10 Ross et al. 2016 [43]
4

DR12 P (k) 1000 116 16 Beutler et al. 2016b [52]
eBOSS LRG ξ(r) 1000 40 9 Bautista et al. 2020 [53]

2
DR16 P (k) 1000 112 17 Gil-Marin et al. 2020 [54]

eBOSS ELG ξ(r) 1000 40 9 Raichoor et al. 2020 [55]
1

DR16 P (k) 1000 54 13 deMattia et al. 2020 [56]
eBOSS QSO ξ(r) 1000 40 10 Hou et al. 2020 [57]

2
DR16 P (k) 1000 126 22 Neveux et al. 2020 [58]

Table 8. A summary of the methods used to analyse BAO data from various surveys. Here, ξ(r)
implies that the correlation function was used as the intermediate statistic, and P (k) implies that the
power spectrum was used. The other values stated are the number of simulations (ns), the data vector
(nd), and the number of parameters fitted (np). ncp is the number of cosmological parameters kept
after the analysis to be fitted by models, the other np − ncp nuisance parameters being marginalised
over. All analyses used a Gaussian likelihood with a multiplicative correction as described in [36].
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A BAO results: fitting to compressed data

In this section, rather than re-fitting the correlation function and power spectrum measure-
ments as we did above, we instead work with the publicly released compressed (α∥, α⊥)
constraints, which are easier to use and more readily available for a wide range of surveys.
This requires us to make a number of approximations. For each data sample, the results from
configuration space and Fourier space were combined before being publicly released. In order
to allow for this in our revision of the method, we average the values (ns, nd, np) given in
table 8. Following this assumption, we remove the multiplicative factor applied following the
derivations of [36]. We can then convert the cosmological constraints into an estimate of the χ2

as would be measured from the correlation function and power spectrum for those parameters.
An additional approximation is required to allow for the (nd − ncp) nuisance parameters

that are marginalised over when fitting the 2-point statistics — typically quantifying the
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broad-band and BAO damping terms. We assume that these do not change the χ2 values
recovered, in part supported by the fact that the multivariate Gaussian and t-distributions
with the same χ2 have the same mean values. When evaluating eq. (2.9) for the sensitivity
tests, we therefore use ncp as the dimension of the scale matrix.

The code CosmoMC was used to obtain the cosmological parameter constraints for the
non-flat oΛCDM model [47]. In particular, we worked with the version of CosmoMC produced
by the SDSS eBOSS collaboration since it contained the setup they used to obtain their
results [59]. We considered two cases, the first where we fit to just the DR12 BOSS LRG
z = 0.38 and z = 0.61 AP parameters, sampling the parameters {Ωm, Ωk} while fixing
{Ωb = 0.0468, H0 = 70}, matching the analysis done in the main text. We put uninformative,
flat priors on Ωm between (0.1, 0.9) and Ωk between (-0.8, 0.8). The second case is where
we fit to all BAO measurements and sample the parameters {Ωm, Ωb, H0, and Ωk}. In
addition to the two priors mentioned already, we also had flat priors on Ωb between (0.001,
0.3) and H0 between (20, 100).

A.1 Results for the likelihood choice using mock-based covariances

The oΛCDM model’s cosmological constraints were produced using SDSS’s original Gaus-
sian likelihood setup, then with correction factors removed, and followed by applying the
Independence-Jeffreys and frequentist-matching prior t-distributions. First, we considered
fitting just the DR12 BOSS LRG z = 0.38 and z = 0.61 AP parameters from [43] so that it
was the same BAO sample as we use in our main analysis, but with the compressed data
rather than correlation functions. The constraints are reported in table 9 and show at most a
0.03σ difference from the Gaussian case. The second case we considered was fitting all of
the BAO samples given in table 8. These parameter constraints are listed in table 10 and
show that the results coincide up to 0.05σ. Both of these results are consistent with the
level of sensitivity found in table 1 where we used the full fits. This demonstrates that the
choice of likelihood does not have a large effect on the constraints, which holds true when
fitting to either correlation functions or compressed data.

A.2 Results from the sensitivity analysis

The sensitivity analysis was performed on the compressed BAO data, using both a t-
distribution with 1% extra tail probability and one with 10% extra tail probability. First,
the results from fitting just the DR12 BOSS LRG z = 0.38 and z = 0.61 AP parameters are
shown in table 11. We can see that the parameter constraints are much less sensitive to the
change of likelihood (∼ 0.02σ) than when we fit to the correlation function data (∼ 0.2–0.4σ),
as presented in table 3. This shows that the sensitivity to the form of the likelihood is
dependent on fitting directly to the correlation function data, not using the compressed data.
We therefore do not present a sensitivity analysis fitting to all BAO samples, as it should
be performed on the full fits, not compressed fits.
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BOSS DR12 LRG BAO, z = 0.38, 0.61
ΩΛ Ωk

Original SDSS method (Gaussian) 0.579 ± 0.189 0.063+0.380
−0.306

Removed correction factors 0.583 ± 0.185 0.055+0.375
−0.300

Independence-Jeffreys t-dist. 0.584 ± 0.186 0.055+0.371
−0.306

Matching prior t-dist. 0.582 ± 0.190 0.056+0.377
−0.312

Table 9. The posterior mean parameter values and 68% credible intervals are shown for BOSS DR12
LRG data with z = 0.38, 0.61 and using the oΛCDM model. We compare results found using the
original SDSS method, no correction factors, the Independence-Jeffreys prior t-distribution and the
matching prior t-distribution.

All BAO
ΩΛ Ωk

Original SDSS method (Gaussian) 0.507+0.115
−0.104 0.247 ± 0.162

Removed correction factors 0.511+0.109
−0.099 0.243+0.154

−0.153

Independence-Jeffreys t-dist. 0.512 ± 0.103 0.246+0.154
−0.152

Matching prior t-dist. 0.510+0.107
−0.107 0.248+0.159

−0.158

Table 10. Parameter constraints for the oΛCDM model using all BAO measurements. The
uncertainties are the 68% credible intervals. Results were found using the original SDSS method,
no correction factors, then the Independence-Jeffreys prior t-distribution and the matching prior
t-distribution.

BOSS DR12 LRG BAO, z = 0.38, 0.61
ΩΛ Ωk

Original SDSS method (Gaussian) 0.579 ± 0.189 0.063+0.380
−0.306

T -dist. likelihood with ν = 104 (1% larger tails) 0.582 ± 0.192 0.056+0.368
−0.319

T -dist. likelihood with ν = 13 (10% larger tails) 0.581 ± 0.194 0.057+0.374
−0.316

Table 11. Parameter constraints for BOSS DR12 LRG data with z = 0.38, 0.61 and using the
oΛCDM model. The 68% credible intervals are shown first using SDSS’s Gaussian setup and for a
t-distribution likelihood with 1% and 10% more weight in the tails.
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