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D* mesons have been observed in photoproduction in Fermilab experiment E687. A
sample of approximately 2500 events of the decay D* — KFr*r* has been analyzed.

The cross section for x5 > 0 is measured to be
BR -0 =0.368 +0.073 £ 0.111 gb/Be nucleus

at our average photon energy of 220 GeV. The cross section dependence on incident
photon energy, Feynman z, and transverse momentum has also been measured and

found to be in good agreement with other measurements.

The lifetime of the D* has been measured to be 1.061 + 0.039 =+ 0.020 picoseconds.

This measurement is also in good agreement with recent results.
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LIST OF ABBREVIATIONS

BGM Beam Gamma Monitor: an electromagnetic shower counter at zero
degrees, designed to collect primarily uninteracted beam photons.

BR Branching Ratio: the fraction of parent particles which decay a certain
way.
BT Electron Beam Trigger scintillator counter which counts electrons in

the electron beam.

CHC Central Hadron Calorimeter: hadron calorimeter at zero degrees, which
supplements the Hadron Calorimeter.

HC Hadron Calorimeter: calorimeter to measure the energy of charged
hadrons. This device is also used for triggering.

HxV Two planes of scintillators: one with counters arranged horizontally,
the other with the planes arranged vertically. These counters are used
for triggering.

IE Inner Electromagnetic shower counter: detects electromagnetic parti-
cles at smaller angles.

MG Master Gate: the trigger which initiates basic data aquisition.

OE Outer Electromagnetic shower counter: large aperture device for de-
tecting electromagnetic particles.

OH Outer Hodoscope: large aperture scintillator array, used for triggering.
PGF Photon Gluon Fusion: a model for predicting heavy quark production.
PWC Proportional Wire Chamber: wire chamber for detecting charged particles.

RESH Recoil Electron Shower Hodoscope: a set of electromagnetic shower
cells which detect the recoil electron.

RESHLO Trigger condition which requires energy deposition in 1, 2, or 3 adjacent
cells in the RESH counter.

SSD Silicon Strip Detector: the high resolution, silicon microstrip vertexing
detector.
TR1 Scintillator trigger counter immediately upstream of the microstrip

detector.
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INTRODUCTION

In 1964, Bjorken and Glashow [1] proposed the existence of a fourth quark, so
that the number of quarks equaled the number of (known) leptons. In 1970, Glashow,
Iliopoulos, and Maiani [2] proposed a theory of weak interactions, which required a fourth
quark to explain the absence of strangeness-changing neutral currents. The discovery
of the J/v in 1974 [3,4] led to speculations that this particle might be the lowest mass
c¢ vector meson. Subsequent observation of excited i states [5] cemented this idea. In

1976, the first D mesons (open charm) were observed. [6,7]

Much of the early experimental work on D mesons has been done at ete™ ma-
chines. About 40% of e*e~ events (well above threshold) are charm events, and beam-
energy constraints significantly improve mass resolution as well as reject considerable
background. However, these machines are limited by their luminosity. Much higher
luminosity can be reached with photon beams, and although charm events constitute
only about 1% of the events well above charm threshold, the absolute rate of produc-
tion is higher than in ete™ machines. Photon beams can also sample the entire charm
spectrum simultaneously. Unfortunately, background rejection is a more difficult task.
Recently however, advances in technology (i.e., silicon microstrips) have made it possible
to accurately measure decay vertexes of charm particles. Using the D meson lifetime,

then, can significantly reduce the background.

E687 uses a high-luminosity bremsstrahlung photon beam to collect large samples
of charm particles. A photon interacts in a Beryllium (or Silicon) target producing
primary reaction products in the forward direction, including occasional charm partides.
Generally speaking, nuclear fragments will travel at large angles and will not be detected.
The charm particles will travel a certain distance (for D*, a few centimeters) before
decaying. The charm particle itself is not detected, but its charged decay daughters
will leave tracks in the high resolution silicon microstrip vertex detector, and in the
wire tracking chambers in the main spectrometer. The tracks’ positions and directions

can be reconstructed, and their bends in the analysis magnets will provide momentum




information. With the aid of particle identification information from Cerenkov counters,
we can reconstruct the original charm particle by forming an invariant mass. Since
hadronic background is substantial in fixed target experiments, it is necessary to rely
on the decay distance of the charm particle to distinguish these charm particles from
hadronic background. This effort is aided greatly by the advanced, high-resolution
silicon microstrip vertex detector, which can determine decay vertexes to high accuracy.
The charm sample obtained by E687 in this way is comparable to the world’s largest
charm sample. This thesis will concentrate on three areas of D* phenomena: production

dynamics, lifetime, and decay structure.



CHAPTER 1
Theory

1.1 Photon-Gluon Fusion Model

In the photon-gluon fusion (PGF) mechanism [8] for the photoproduction of heavy
flavored states, the photon “fuses” with a gluon from the target nucleon, and creates a c¢
pair. The relevant diagrams are shown in Figure 1.1. The cross section for this process
can be given as the cross section for the quark-level subprocess, &(w, r), convoluted with

the gluon distribution function:

1

o(w) = /d:r: G(z,Q?) 6(w, z) (1.1)

Zmin

where G(z,Q?) is the gluonic structure of the proton, which can be a function of the Q?
of the process, Tmin = 4m? /s, and s is the total squared center of mass energy for this
process: § = mfv + 2m w where w is the energy of the photon, and m, is the mass of
the target nucleon. The quark sub-process cross section, calculated to first order in a,

is:

owr2) = 222 (D) 0 4a o (125) s+ G2)

where § = zs, 7 = 4m?2/3, B = /T — 7, By experimentally measuring the charm cross

section, we can examine the predictive power of QCD.

Unfortunately, neither the gluon structure, the mass of the charm quark, nor the
strong coupling constant (as) are known with high accuracy. Traditionally, the Q2

dependance of the gluon structure function is ignored, and the form is taken to be:
1 N
rG(z) = E(Ng + 1)(1 — z)™¢ (1.3)

with N, generally taken to be 5-10. The behavior of the gluon structure function at low z

is a matter of considerable interest and speculation. Recently, the CHARM collaboration



has derived gluon distribution functions from neutrino data [9].  Figure 1.2 shows

different gluon distribution functions.

The PGF model will also predict the form of the differential cross section (do/dx )
as a function of Feynman x (zy) of the charm quarks. However, the differential cross
section for mesons will have a different behavior, due to effects of fragmentation, that

is, how the charm quarks dress themselves into colorless particles.

Figure 1.3 shows PGF cross section calculations for different gluon structure func-
tions and quark masses. Figure 1.4 shows the differential cross section for quarks, and

for mesons, assuming a dressing function.

In 1988, Ellis and Nason  [10] calculated second-order (in o) corrections to the
PGF cross section. (Some example Feynman diagrams are shown in Figure 1.5.) These
corrections are quite large. Although the shape of the o(w) does not change much (at
high photon energies) the overall level increases by a factor of 2 to 4. These second-order

calculations will be used when comparing the E687 results to theory. (See Chapter 5.)

1.2 Associated Production

QCD-based models like PGF are symmetric in charm and anti-charm. Associated
production models claim that charm quarks are likely to combine with target baryon
quarks, producing charm baryons. This leaves the anti-charm quark, which will materi-
alize as an anti-charm meson. This model thus predicts an excess of anti-charm mesons
relative to charm mesons. This is a well-known phenomenon in strange hyperon produc-
tion right above threshold. The associated production mechanism was used to explain
the complete lack of D° events at a medium-energy (40-70. GeV) photoproduction exper-
iment at the CERN SPS [11], although several hundred D° were seen. We expect that
associated production effects will diminish as photon energies are increased, that is, the

charm meson to anti-charm meson ratio may be a function of the meson momentum.



1.3 D* Mesons

1.3.1 Lifetime of the D*

The lifetime of the D* meson has interested physicists since its discovery. Using
simple valence-quark diagrams (Figure 1.6a), where the non-charm quark in a D¥ or
D° meson is just a spectator, one would expect the lifetimes of the D* and the D° to
be equal, since the identity of the spectator cannot make any difference. Unfortunately,
the lifetime of the D¥ is about 2.5 times longer than the D°! It was thought that
the annihilation diagram (Figure 1.6b), which exists for the D° but not the D* was
responsible for this discrepancy. Recently, however, this explanation has fallen into
disfavor. The currently favored theory [12] is that the charged- and (effective)
neutral-current diagrams (Figure 1.7), which for the D* produce identical final states,

interfere destructively , thus lengthening the lifetime of the D relative to the D°.

1.3.2 Dynamic Sub-structure of the D* — K¥rtg*

'MARK III noticed very strange-looking Dalitz plots of the D* — K¥r*g* decay
[13]. They attributed the distributions to the interference of the D*¥ — K*(892)r*
decay with non-resonant background, which they were unable to describe adequately.
Subsequently, Diakonou and Diakonos [14] have found that by assuming that the D¥ —
K¥Fr*r% decay is dominated by D* — K*(892)r* and D* — KJ(1430)x*, which
interfere significantly, the MarkIII effects can be well-described.



Figure 1.1: Feynman diagrams for photon gluon fusion.
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PGF Cross Section (o = 200 GeV)
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CHAPTER 2
Apparatus

2.1 Beamline

The Wideband beamline was designed to be as versatile as possible. In different
configurations, it can transport neutral hadrons, electrons, muons, pions, or photons to
the experimental target. While E687 uses the clean photon beam for experimental data,

other beams are useful for calibration.

The FNAL Tevatron provides 800 GeV protons to the Proton East (PE) line. (See
Figure 2.1). These protons are incident on a 46 cm beryllium production target (about
77% of a radiation length, 89% of an interaction length). The charged particles are
swept out of the resulting beam, leaving neutrons, neutral kaons, and photons (pri-
marily from 7% decay). The neutral beam impinges on a lead converter of about 60%
radiation length which converts photons to ete™ pairs. The electrons are captured and
transported around a beam dump, in which the leftover neutral particles are absorbed.
In the process of transporting the electrons, the secondary beam energy is selected: 350
GeV for this analysis. The steering magnet apertures and collimators are such to allow
for a large (about +£13%) momentum bite, hence the “Wideband” name. The elec-
tron beam impinges on a lead radiator of about 20% radiation length which produces
the final bremsstrahlung photon beam. (Additional beamline material increases the to-
tal radiator to 27% of a radiation length.) The recoil electrons are swept out of the
beamline with sweeper magnets, where they are recorded in the Recoil Electron Shower
Hodoscope (RESH). The RESH is a system of 10 lead-scintillator shower counters shown

in Figure 2.2. The position of the hit cell gives the energy of the recoil electron.

Photons from the beamline will either interact in the target to produce events, or
travel through the center of the spectrometer, to be collected at the Beam Gamma Moni-
tor (BGM). The BGM consists of 45 layers of lead (0.32 cm thick) interleaved with Lucite

(0.32 cm thick). The BGM serves two purposes: 1) as a luminosity monitor, its signal

13



is discriminated, and a scaler counts each signal corresponding to energy deposition in
the BGM of 133 GeV or more. (More on luminosity in chapter 5.) 2) as a multiple
bremsstrahlung photon collector, it measures the energy deposition from photons from
the electromagnetic shower in the radiator which did not interact in the target. Using
the average value for the energy of the incident electron, the RESH and BGM supply
us with enough information to estimate the energy of the interacting photon. (More on

photon energy estimation in Chapter 3).

2.2 Targets

The experiment used three major 1:a.rgets:1 two beryllium targets (“5-Be” and “4-
Be”) and a silicon wafer target (“Si”). The 5-Be (4-Be) target consists of 2 (1) square,
large transverse Be segments, 2.54 cm on a side and 0.8128 cm thick. (See Figure 2.3).
These segments are oriented at 45 degrees with respect to the vertical view, as shown in
the figure. The remaining 3 segments are smaller transverse pieces of beryllium, 0.8128
cm thick, hexagonal-shaped to match the high resolution area of the microstrip detector.
The gaps between segments are 75-200 microns. The total radiation length of the 5-Be
(4-Be) target is 11.5% (9.2%).

The Si target consists of 29 silicon wafers of 220 micron thickness interleaved with
300 micron Be wafers, followed by 19 silicon wafers of 250 micron thickness, with 250
micron gaps between wafers. (See Figure 2.4.) The total radiation length of the Si
target is 14.4% (11.9% from Si, 2.5% from Be). The Si wafers were pulse-height analyzed
so that jumps in charge multiplicity from one plane to another would localize the primary
interaction point. Although data taken with the Si target are used in this analysis, the

charge multiplicity information is not used here.

2.3 Spectrometer

The E687 spectrometer was designed as a multi-purpose device. It consists of several

systems: tracking, Cerenkov particle identification, calorimetry, muon identification,

1 Also some minor targets, including $4.75 in quarters.
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and trigger. Table 2.1 gives locations and sizes of each device in the spectrometer.

Figure 2.5 shows the plan and elevation views of the spectrometer.

2.3.1 Tracking

The tracking system consists of two momentum-analyzing magnets, 5 multi-wire
proportional chambers, and 12 planes of silicon microstrip detector planes. The magnets,
M1 and M2, are run with opposite polarity, with current chosen to give momentum kicks
of 0.400 GeV and -0.850 GeV, respectively

The wire chambers (PWCs) consist of 4 views (except P4), an X and a Y (measuring)
view, plus U and V views at * arctan (.2) from the Y view. Wire chambers PO and P3
are sized to match the aperture of the analysis magnets; the other chambers are matched
to the acceptance of the spectrometer (except P4). Our original P4 was destroyed
by fire [15], and was replaced with a similar chamber, but smaller, and with only 3

views: X, U, and V (with same stereo angles). All chambers were run with argon-ethane

(65%/35%) bubbled through ethyl alcohol. Table 2.2 gives specifications of the PWCs.

'The microstrips (SSDs) are organized into 4 stations of 3 views each (z, 7, and &
views); see Figure 2.6. The first station consists of strips of width 25 microns in the
inner region, and 50 microns in the outer region. The other planes have 50 micron strips
in the inner region and 100 micron strips in the outer region (Figure 2.6). The strips
are read out in an analog way: charge division among strips is used to improve the

resolution of the device.

2.3.2 Particle Identification

The E68T7 particle identification system consists of three threshold Cerenkov coun-
ters. Cerenkov counters C1 and C2 are located between the two magnets, and counter
C3 is located downstream of the second magnet. Each counter consists of about 100
cells. Light from Cerenkov radiation is reflected off mirrors on the downstream face of
the counter into phototubes. C3 and the outer region of C1 are outfitted with focussing
mirrors. C2 and the inner section of C1 use planar mirrors at 45 degrees to the beamline.

Specifications of the Cerenkov counters is summarized in Table 2.3.

15



2.3.3 Calorimetry

E687 has two electromagnetic shower counters, one large aperture Outer Electro-
magnetic shower counter (OE) just upstream of M1, for electromagnetic identification
of particles in the outer spectrometer, and one Inner Electromagnetic shower counter
(IE) for the inner spectrometer. Each shower counter consists of layers of lead and

scintillator. Neither is used for this analysis.

The Hadron Calorimeter (HC) consists of 28 iron plates of 4.42 cm thickness (8
interaction lengths total), interleaved with sense planes, 2.86 cm thick. The sense planes
consist of proportional tubes filled with 50% argon and 50% ethane. (In later runs, 1%
ethyl alcohol vapor was added.) The signals are read capacitively from pads ganged
together longitudinally to form towers. The hole in the HC is covered by a Central
Hadron Calorimeter (CHC). The CHC consists of 16 layers of 3.8 cm thick depleted
uranium slabs, clad with 0.24 cm thick steel, interleaved with 0.635 cm thick scintillator.
The total amount of material is 6.4 interaction lengths. Together, the HC and CHC are
used in the second level trigger, which requires that at least 35 GeV of energy is deposited

in the hadrometers.

2.3.4 Muon System

The Muon system consists of planes of scintillator and gas proportional tubes. The
outer muon system (OM) was just downstream of and shielded by the M1 magnet steel.
OM comprised 2 planes of prop tubes and 2 planes of scintillator. The inner muon
system was just downstream of the muon filter steel, comprising 4 prop tube planes and

3 scintillator planes. The muon system is not used in this analysis.

2.4 Trigger

Like most high energy experiments, E687 uses a two-level trigger system. The first
level trigger, or Master Gate, is responsible for gating the data aquisition devices so that
wire chambers can be read out, latches set, ADC’s gated, etc. The Master Gate also
holds off subsequent triggers, while the second level trigger is at work. The second level

trigger, using PWC information, latch information, and ADC pulse height information,

16



makes a decision as to whether the event is to be accepted or not. If the event is accepted,
the inhibit against additional triggers continues while additional data aquisition tasks
are completed (digitization of ADC information, readout into buffers, etc). If the event
is not to be accepted, the second level trigger issues a fast clear, the data aquisition

devices are cleared, and the inhibit is released.

2.4.1 First Level Triggering

Several trigger counters are used in E687: A scintillator counter in the electron
beamline, T0; a scintillator in the photon beam, A0; two scintillators placed on either
side of the photon beam pipe (for detecting muons in the beam halo), TM1 and TM2;
and scintillator counters just upstream and just downstream of the microstrip detector,
TR1 and TR2. A schematic drawing of the target region trigger counters is shown in
Figure 2.7. The first level (or minimum bias) trigger (Master Gate, or MG) requires
a charged particle in the electron beam (T0), no charged particle in the photon beam
(A0), no muon from an upstream target (T M1 + TM2) and charged particles emerging
from the target (TR1-TR2). In addition we require two or more charged bodies in the
spectrometer. This is accomplished with two trigger hodoscopes: The inner hodoscope,
HXV and the outer hodoscope, OH. (Figure 2.8.) HxV is a set of crossed scintillators,
located just downstream of the last PWC. A 7.1 cm gap separates the east and west
halves, to allow uninteresting e*e™ pairs to pass through. The OH is a layer of scintil-
lators attached to the upstream face of the OE. The OH also has a gap between east
and west halves. The Master Gate requires either two or more bodies in the HxV, or
at least one body in the HxV and at least one body in the OH. The total Master Gate

logical requirement is thus:
MG = T+ [((H X V)31p0dy - OH) @ (H X V)3104;] (2.1.a)

where
T =A0-T0-TR1-TR2. TM1 + TM2 (2.1.b)
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2.4.2 Second Level Triggering

The second level trigger required at least 35 GeV deposited in the HC, at least one
hit in the x view of PO (outside the pair region), and a signal in the RESH counter.
Additional second level triggers (not used in this analysis), are a muon pair trigger, a

prescaled ete™ pairs trigger, and a prescaled MG.
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Table 2.1: Spectrometer layout

Device Z location* (cm) |Z length (cm) | Transverse Size (cm)
5-Be target -3.11 411 see text
SSD1 4.63 1.07 2.48 x 3.50
SSD2 10.69 1.07 4.96 x 4.96
SSD3 16.72 1.07 4.96 x 4.96
SSD4 28.66 1.07 4.96 x 4.96
M1 Up. Shield 17.44 17.78 336.00 x 384.00
M1 Up. Shield hole 77.44 17.78 25.40 x 101.60
M1 steel 220.95 167.64 350.52 x 546.10
M1 hole 220.95 167.64 76.20 x 127.00
M1 Down. Shield 370.17 8.90 336.00 x 384.00
M1 Down. Shield hole 370.17 8.90 76.20 x 127.00
PO 405.08 17.78 76.20 x 127.00
C1 519.75 187.90 101.60 x 152.40
P1 644.26 17.78 152.40 x 228.60
C2 757.00 187.96 152.40 x 228.60
P2 878.47 17.78 152.40 x 228.60
OE 962.99 132.40 270.00 x 300.00
OE hole 962.99 132.40 48.60 x 83.20
M2 Up. Shield 1091.43 8.90 336.00 x 384.00
M2 Up. Shield hole 1091.43 8.90 76.20 x 127.00
M2 steel 1238.11 167.64 350.52 x 546.10
M2 hole 1238.11 167.64 76.20 x 127.00
M2 Down. Shield 1383.52 8.90 336.00 x 384.00

* Z locations are measured from the front face of the Granite Block (which supports
the microstrip detector) to the center of the device.
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Table 2.1: (continued) Spectrometer layout

Device Z location (cm) |Z length (cm) | Transverse Size (cm)

M2 Down. Shield hole 1383.52 8.90 76.20 x 127.00
Oup X 1399.24 10.00 304.80 x 508.00
Ou X hole 1399.24 10.00 101.60 x 162.56
OpY 1416.94 10.00 304.80 x 508.00
Op Y hole 1416.94 10.00 101.60 x 162.56
P3 1442.60 - 17.78 76.20 x 127.00

Op H 1474.56 15.00 304.80 x 487.68
Ou H hole 1474.56 15.00 121.92 x 152.40
OuV 1505.06 22.80 304.80 x 508.00
Op V hole 1505.06 22.80 121.92 x 152.40
C3 1884.42 711.20 190.50 x 228.60

P4 2288.89 17.78 101.60 x 152.40
HxV 2328.19 9.22 141.60 x 246.00
HxV gap 9328.19 9.22 7.10 x 365.80
IE 2399.67 76.84 123.12 x 123.12
IE hole 2399.67 76.84 10.16 x 10.16
HC 2569.78 219.30 203.20 x 304.80

HC hole 2569.78 919.30 | 30.00 (diameter)
BGM 2704.03 40.64 25.40 x 22.86
CHC 2778.00 101.60 45.72 x 45.72

u filterl iron 2895.66 128.60 231.14 x 330.20
 filterl hole 2895.66 128.60 10.16 x 10.16
Ip 1X 2973.48 10.00 203.20 x 304.80

Ip 1Y 2993.21 10.00 203.20 x 304.80
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Table 2.1: (continued) Spectrometer layout

Device Z location (cm) (Z length (cm) | Transverse Size (cm)
Ip 1V 3012.52 15.30 213.36 x 304.80
Ip 1H 3036.07 9.00 203.20 x 304.80
u filter2 iron 3079.66 63.00 231.14 x 330.20
p filter2 hole 3079.66 63.00 10.16 x 10.16
Ip 2X 3138.95 10.00 203.20 x 304.80
Ip 2Y 3158.09 10.00 203.20 x 304.80
Ip 2H 3178.25 9.00 203.20 x 304.80
Table 2.2: PWC Specifications
# instrumented wires
Station Pitch X U \' Y
PO 2mm 376 | 640 | 640 | 640
P1 3mm 512 | 832 | 832 | 768
P2 3mm 512 | 832 | 832 | 768
P3 2mm 376 | 640 | 640 | 640
P4 |X:2mm; U,V:3mm/| 336 | 768 | 768 -
Table 2.3: Cerenkov Counter Specifications
Photoelectron | Thresholds (GeV)
Counter Gas cells| yield (ave) = | K p
C1 50% He/50% N2 | 90 2.6 6.7 [23.3| 44.3
C2 N,O 110 8 4.4 (16.2| 30.9
C3 He 100 9 17.0160.8 | 116.2
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CHAPTER 3
Analysis

3.1 Reconstruction and Analysis

3.1.1 SSD Track Reconstruction

The microstrip tracks are found by finding projections in the 3 views, then by match-
ing the projections in space. Each projection is required to have at least 3 hits. Hit
sharing is allowed. The resulting track is required to have a x? per degree of freedom
of 8 or less. Tra.cks which share projections are arbitrated by their y? values. Leftover
hits are then used to search for wide-angle or highly multiple-scattered tracks. The res-
olution of tracks which consist entirely of hits in the high resolution section of the SSD

(extrapolated to the center of the target) is determined to be:

2

2
oy = 7.7pm\/1 + (25GpeV) (3.1)

where the second term in the square root is the contribution due to multiple scattering

effects.

3.1.2 PWC Track Reconstruction

PWC tracks are also found by projections. U,V, and Y view projections are found
using PWC information only, and X (non-bend) view projections are found by matching
hits to SSD track extrapolations. The projections are then matched, and must pass a
x? per degree of freedom cut. Tracks must not have more than 4 missing hits total, and
no more than 2 missing hits can be from the same chamber. When all tracks with a
SSD extension are found, X projections are found using PWC information alone, and

matched to unused U, V, and Y projections.

30



In addition, “recovery” routines were used to find tracks in more difficult classes,

such as SSD extensions into PO and P1, and 3 chamber extensions into P3.

3.1.3 Linking

SSD tracks and PWC tracks are “linked” by matching extrapolations at the center
of M1. The z and y positions as well as the slope in z are matched. Prospective links

are subjected to a fit of all the hits, and must pass a x2 cut.

3.1.4 Momentum Determination

When all magnetic corrections have been applied to the tracks, the momentum can

be determined by the bend of the track in M1 and/or M2. The momentum resolution

- 2
P 17GeV
3.4% (—-—) \/1 + ( ) for M1;
100GeV P
* ) (3.2)

P 2
P 23GeV
1.4% (m) \/1 + ( P ) for M2

where, again, the second term in the square root is the contribution due to multiple

1s:

scattering.

3.1.5 Particle Identification

For each track traversing a Cerenkov counter, if the momentum is known and a
particle identification (electron, pion, kaon, or proton) is assumed, predictions can be
made about the Cerenkov light which the track contributes to associated cells (the cell
the track hits, and all adjacent cells). If the light yield of the cells is greater than a certain
noise level, the counter is called “on” for that track. If a cell could conceivably be “on”
due to more than one track in the vicinity of the cell, then the counter is called “confused”
for that track. Given the momentum of the track, the thresholds of the counters, and the
on/off pattern for the track, the track can be placed (to the extent the three Cerenkov
counters agree) into a definite or ambiguous identification category. Figure 3.1 shows

the momentum ranges for which certain particle identification categories can be found.
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Particularly important (since charm particles tend to decay into strange particles) are

the kaon categories.

3.1.6 Vertex Reconstruction (Stand-alone Method)

The stand-alone vertexing algorithm is run on each event as part of the standard
reconstruction. The algorithm tries to find free-form vertexes using only microstrip
tracks. First, all tracks are put into one vertex, the x? of the vertex is calculated. If
the x? is not acceptable, then the “worst” track (the track which contributes the most
to the “badness” of the x?) is ejected from the vertex. The x? of the new vertex is then
calculated. The process repeats until a vertex of acceptable x? is found. The algorithm
is then applied to the ejected tracks, trying to form additional vertexes from them, until
finally there is a list of acceptable vertexes (and some leftover tracks). The algorithm is

able to find at least one vertex in about 50% of the events.

Since the stand-alone vertex algorithm is run on every event, the vertexes provided
by this algorithm can be used by subsequent reconstruction techniques, for instance,

finding neutral Vees, or determining the momentum of some categories of tracks.

Unfortunately, the stand-alone vertex algorithm is not very efficient at finding decay
vertexes of short-lived particles. When two vertexes are close together, they can coalesce
into one vertex, with a x* acceptable to the algorithm. Additionally, small angle tracks

from charm secondaries are often consistent with the primary or secondary vertex.

3.1.7 Vertex Reconstruction (Candidate-driven Method)

Because of the limitations of the stand-alone vertexing algorithm, a second vertexing
algorithm was developed. This algorithm is run only when a possible fully-reconstructed
“candidate” is found (for instance, by virtue of its invariant mass). The tracks in the
candidate are then used to create a single “candidate” momentum vector. This candidate
momentum vector is extrapolated backwards and used as a “seed” track for forming a
primary vertex. The extrapolation errors for the “seed” track are computed from the full

- covariance matrix of the tracks composing the charm candidate. Tracks are attached

to the seed track in various combinations and the vertex with the largest number of
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tracks which has a confidence level of at least 2.5% is accepted as the primary vertex.
This algorithm produces a number of chi-squared variables: the x? of the candidate
(secondary) vertex, the x? of the primary vertex, and a x? of the fit which determines
the distance between the primary and secondary vertexes. In addition, the algorithm
returns complete covariance matrices for the found vertexes. This algorithm can not
only find primary and secondary vertexes which are very close, it can also find primary

vertexes where there is only one track (in addition to the candidate seed track).

3.2 Data Reduction

During the 1987-88 run, E687 took 75 million triggers (60 million were hadronic
triggers) which were written onto 1200 9-track magnetic tapes. A reduced data sample
is obtained through use of a skim process. The skim was run on all the reconstructed data
on the Fermilab AMDAHL machine. The D¥’s used in this data analysis were obtained
from a skim stream which was designed to kéep all Cabibbo-allowed and Cabibbo singly-
and multiply-suppressed decays of charmed mesons into all possible combinations of
charged kaons, charged pions and K,’s, up to 6 bodies [16]. This skim combines

kinematic requirements with vertexing requirements.

For the D* — K¥r*r¥* decay, every possible combination of 3 linked tracks with
total charge of +1 is formed. The oppositely charged track is declared the kaon. This

three-track group is considered an acceptable D* candidate if
a) Its invariant mass is between 1.60 GeV and 2.22 GeV
b) The candidate-driven vertex algorithm is successfully performed on the candidate.

c) The log of the confidence level of the fit of the candidate (secondary) vertex is
- greater than -5.0 (which corresponds to a confidence level of about 0.00674).

d) The kaon is identified as K definite, K/p ambiguous, or K/x /e ambiguous (for
momenta greater than 60.8 GeV) AND the significance of separation between the

secondary and primary vertexes (L/o,) is greater than 2.5

OR
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The kaon is identified as anything EXCEPT e definite, 7 definite, e/7 ambiguous,
or p definite AND L/o, is greater than 5.5.

3.3 D* Analysis

The D* — K¥Fx*x* sample used for this analysis must necessarily include the
requirements from the D* skim. In addition, some of the cuts were made more strict,

and an extra cut was applied:

a) The confidence level of the fit of the candidate (secondary) vertex greater than

1%. This exceeds the cut required by the skim.

b) The kaon identified as K definite, K/p ambiguous, or K /7 /e ambiguous (for mo-

menta greater than 60.8 GeV). This cut exceeds the requirement of the skim.

e) The significance of separation between the secondary and primary vertexes (L/a,)

greater than 3. This cut exceeds the requirement of the skim.
f) The pions NOT identified as K definite, p definite, or K/p ambiguous.

The power of the candidate-driven vertexing algorithm is demonstrated in Fig-
ure 3.2. The data sample is from an early data reduction algorithm which does not use
the candidate-driven vertexing algorithm. The background of the sample is reduced by
an order of magnitude by requesting a significance of detachment (L/o,) of 8 or greater.
Figure 3.2also shows a D¥ signal where there is only one track (in addition to the “seed”

track) in the primary vertex.

The D* signal used in this analysis is shown in Figure 3.3.

3.4 Photon Energy Measurement

Crucial to measuring the cross section is the measurement of the photon energy.
Assuming a nominal electron beam energy (350 GeV), and measuring the energy of the

recoil electron in the RESH:

Eloss = Ebea.m - Etecoil (33)
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(See Figure 3.4). In the case where the “lost” energy is radiated into a number of photons
(multi-bremsstrahlung), equation 3.3 does not give the energy of the interacting photon.
However, the BGM (the EM calorimeter at zero degrees) will capture the energy of the

non-interacting multi-brem photons, which we can subtract from Ejue to get the photon

energy, w:

w = Ebea.m - Erecoil — EpgMm (3'4)

Of course, equation 3.4 will not be accurate if, in addition to the multi-brem photons,
there are e™e™ pairs generated in the incident electron shower. However, the presence
of accompanying pairs is not serious for three reasons: 1) extra pairs occur in only
about 10% of the electron showers, 2) most of the ete™ pairs will be low energy and
thus not greatly subtract from the measured photon energy and 3) if the e*e™ pairs are
energetic, the electron will very likely be swept into the RESH along with the original
recoil electron, thus causing two separated hits in the RESH, which is vetoed in the

second level trigger.

There are several problems associated with measuring the photon energy with equa-
tion 3.4. First, the energy of the incident electron is not measured. The secondary
electron beam is tuned to an energy of 350 Gev, but the momentum bite is large (about

+13%). Thus, we only “know” the electron energy to about +45 GeV.

Secondly, the recoil energy measured by the RESH is quantized, since the energy is
measured magnetically by the position of the struck cell. The position of the hit cell
will measure the bend angle of the recoil electron through the sweeper magnets, and
thus the energy of the recoil electron. The recoil electron energy is given as the nominal
energy of the cell (the energy of an electron hitting the cell in the center), or, if two
adjacent cells fire, the energy of an electron hitting the crack between the two cells.
Thus, Ergsh is one of 19 different values (10 cells plus 9 cracks between cells). The
cells are arranged such that low energy photons “see” more granularity of the RESH

measurement. (Figure 3.4.)

Thirdly, there is a significant pile-up problem in the BGM. Thus, the BGM will not

only see the multibrem photons, but also stray photons from a piled-up event. Pile-up
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in the BGM occurs in about 35% of the events. This will artificially lower the energy

measurement of the photon.

We attempt to compensate for these effects when we measure low photon energies
by comparing the photon energy estimate from equation 3.4 above to the sum of the
momenta of the charged tracks in the event. This should be a lower bound on the photon
energy, so for low (less than 200 GeV) energy photons, we take the larger of equation
3.4 and Fi;acks. We chose Eiracks approximately 25% of the time.
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Figure 3.1: Momentum ranges where certain Cerenkov identification classes are possible

a) for tracks passing through all three Cerenkov counters, and b) for tracks passing
through only C1 and C2.
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Figure 3.2: These plots illustrate the power of the candidate-driven vertexing algorithm:
a) a selection of K¥r¥r* events from an early data reduction, which did not use the
candidate-driven vertex algorithm. This sample requires only Cerenkov identification
on the K (K definite, K/p ambiguous, or if the momentum is above 60.8 GeV, ¢/K/x
ambiguous). b) The sample with an additional requirement that the significance of
separation (L/o,) between the primary and secondary vertexes be at least 8. Notice
that the background has dropped by an order of magnitude. ¢) The sample with the
additional cut that the confidence level of the secondary vertex (the candidate vertex)
be at least 2%. d) A sample of D¥ events which only have one track (in addition to the
candidate “seed” track) in the primary vertex. Stand-alone vertexing algorithms cannot

find one-track vertexes.
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applications.
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CHAPTER 4
Monte Carlo

The Monte Carlo used for simulating E687 has to be carefully designed to take into
account some unique problems. First, the long radiator (which produces the photon
beam from the electron beam) will create several photons for each electron shower,
causing problems we call multi-bremsstrahlung complications. We need to have some
mechanism to decide which of the multi-brem photons is to produce a charm interaction.
Secondly, our Be targets were very unusually shaped, (Figure 2.3) and the beam spot

exceeds the edges of these targets, which cause targeting correction problems.

4.1 The Event Generator

Event generation includes all simulation of the incident beam, the production of
the primary charm particles, and the decay of all particles. The generation is done
by a program called GENERIC, which allows the user to freely choose most of the
parameters of the experimental conditions, as well as the production and decay models

of the particles.

4.1.1 Beam and Targeting Simulation

GENERIC starts by simulating the electron in the secondary beamline, which will
bremsstrahlung to form the photon beam. The electron’s energy is given by the exper-
imentally measured distribution. (Measured by running a low intensity electron beam
into the BGM.) Figure 4.1 shows the measured electron distribution and the distribution
simulated by GENERIC.

In order to simulate the photon flux of the beam, ®(z,y) where z,y is the trans-
verse position of the beam, we must assume that the electron profile is the same as the
photon beam profile. Because the beam spot is larger than the target segments, ®(z, y)

is modeled according to primary vertex distributions of photons which interact in the
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larger scintillator trigger counter TR1, which is just upstream of the microstrips (Fig-
ure 2.7). Figure 4.2 shows the = and y vertex distributions in TR1. Clearly the z and
y distributions are not independent, the x distribution is more peaked for central values
of y. After some experimentation, we found we could model the beam using elliptical
probability contours. Since the = beam size is twice as broad as the y beam size, we

invent a variable, R:

R=1/(z -z} + (2(y — )" (4.1)

where (z¢, yc) is the center of the beam spot. ~We assume the beam is azimuthally
symmetric in R. This method is called the R-parameterization method. An R value is
chosen from 0 to Rpye; and an angle from 0 to 27, and the z and y values calculated.

Figure 4.3 shows the R distribution.

The electron then showers, according to 27% radiation length. First, a classical
amount of energy is subtracted, to account for radiated photons of energy less than
5 MeV. Then the electron is stepped through the radiator material, according to a mean
free path of radiation. The electron is allowed to multiple-scatter. The resulting photons
are tested for conversions, and all shower products are traced until the daughters are

less than 10 MeV, or have succeeded in exiting the radiator volume.

The dual problems of targeting and multi-brem photon activation can be addressed
in the following way. Each of the photons resulting from the electron shower is given
a possible interaction point by the z,y position of the radiating electron at the point
of radiation, and a z position drawn uniformly from the upstream face of the target
to A = L, 0,/0mc(w), where L, exceeds the maximum length of the target, omc(w)
is the cross section energy dependence being simulated by the Monte Carlo and o, is
a reference cross section for dimensionality purposes. The photon interaction point

(z,y, z) is activated into a charm particle with activation probability given by:

0 if outside the target;
{4 (42)
1 if inside the target
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The probability of a photon being activated into a charm particle is then given by:

P = ("(“’)) (”(‘”’y’z)) O(z,y)dzdy %z: (4.3)

g Po

where p(z,y, 2) is the density function of the target, which is 0 outside the target and
po inside the target. By following this prescription, we simultaneously select a charm

activation as a function of o(w), and properly simulate the targeting.

At this point we have to introduce some complications. One of the experimental

targets uses Silicon as well as Beryllium, so we must modify equation 4.2:

0 if outside the target;
A=<1 if inside Si; (4.4)
p(Be)/p(Si) if inside Be.

That is, if the activation point is in Be, it is only activated about 79% of the time. Here,

we assume an A! dependence of the interaction cross section.

We also correct for the attenuation of the photon beam in 2, by vetoing a fraction
of a;ctivated photons by checking for pair conversion. A conversion location is given as
z,y of the photon activation location, and a zcony chosen according to the distribution
exp (—2zconv/A(w)) where A(w) is an energy dependent mean free path where A(w —
00) — (9/7)X,, (Figure 4.4) where X, is the radiation length of the target material.
If the conversion location is upstream of the interaction location, then this activation is

vetoed.

In the case that two (or more) photons in the same event are both activated into

charm, only the last activation is considered valid. The other photon(s) are de-activated.

In any event where there is a photon activation into charm, the accompanying pho-
tons are tested for conversions according to the method stated above. If these conversion
locations are inside the target volume, then the electron pairs accompany the charmed

event. Any unconverted photons also accompany the event.

We keep track of the number of Monte Carlo beam electrons necessary to create the

sample of Monte Carlo charm events. We also simulate a BGM counter by incrementing
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the BGM count for every electron which radiates at least 133 GeV into photons. Of
course, the luminosity must be scaled to account for the role of the reference cross

section. Derivation of this scale factor can be found in Appendix A.

4.1.2 Charm Particle Generation

Once a photon energy is chosen, the charm particles can be produced. For this
analysis, a P? distribution is simulated according to results from Fermilab experiment
E691 [17]:

dN/d(P})mc o exp(—1.07P%)

An z; (the longitudinal momentum in the center of mass frame divided by the maxi-
mum possible longitudinal momentum) is also chosen with a distribution given by the

parameterization of E691:
Ty (1 + Qxf)(l — zf)2‘63

The P, and z; determine the momentum of the D%,

The particles decay according to an appropriate matrix element, generally just phase
space. Additional decay matrix elements are available for semi-leptonic decays, reso-
nance decays, and special decays (such as pseudo-scalar to vector plus pseudo-scalar, or

vector to three pseudo-scalars).

4.1.83 Additional Event Particles

Backward jets are created according to the Feynman-Field prescription [18] to add
particles to the primary vertex. The jets are propagated with respect to the overall
center of mass with energy of \/s/2. Occasionally, two separate events (caused by two
separate beam electrons) are observed in the same gate. In this case, the second “piled-
up” event is virtually always a photon conversion. We call these conversions embedded
pairs. These conversions are different from multi-bremsstrahlung conversions, in that
the vertex location is not correlated at all with the charm interaction vertex. To mimic

this effect in the Monte Carlo, embedded pairs are added to 17% of the events. For
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expediency, a photon is generated with a simple energy spectrum, 1/w. The energy is
divided between the electron and the positron according to a flat distribution. A vertex

location is chosen randomly in the target volume.

4.2 Event Simulation

The event simulation is done by a program called ROGUE. This program simulates
responses of the spectrometer devices to the particles, as well as the particles responses

(magnetic deflection, multiple Coulomb scattering, etc.,) to the spectrometer.

The basic philosophy of ROGUE is to trace each particle in turn, by stepping the
particle to specified stopping locations, until the particle uses up its given decay path,
fails to clear an aperture, or leaves the spectrometer. Stopping locations are points
where some action must be undertaken: at wire chamber planes to simulate hits, at
specified points for multiple scattering, at the aperture of a device to determine if the
particle is accepted by it. When all the particles are finished being tracked, then the

event is “digitized”, and written to tape.

4.2.1 Tracking

Charged particles are traced through the spectrometer with a TURTLE tracing
procedure: the deflection of the particle is determined according to its momentum and

the magnetic field that it is experiencing.

At each SSD plane, a SSD hit is simulated. The amount of charge deposited is
given by a Landau distribution, fit to microstrip data. Charge sharing between strips is
given by a simple geometrical model based on the thickness of the ionization cloud and
the intersection of the track with the detector plane [19]. Multiple scattering occurs at
the middle plane of the stack. Before digitizing, spurious hits are added according to a,-

Gaussian noise distribution.

At each PWC plane, the relevant coordinate is stored for later digitizing. For each
hit, the adjacencies are determined. Each plane is characterized by an adjacency fraction,

ay, which is how often a hit is associated with an adjacent hit. These numbers are
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measured from the data, and are typically 4-6%. A band of width afAw (where Aw is
the wire spacing) in the central region between two wires is the adjacency region. Any

track passing in the adjacency region will cause hits in both wires.

Before digitizing, some hits are removed to simulate chamber inefficiency. Each plane
has a characteristic efficiency, calculated from the data (about 80-98%). If a removed

hit has an adjacency, the adjacency is removed also.

Certain locations are set up as multiple scattering stops. At these locations, the
particle’s direction is changed by adding Az', and Ay’ to the z and y slopes where Az,

and Ay' are gaussian distributions with width:

.014 GeV /Lg
| P |

oMcs = (4.5)
Where Lpg is the radiation length of the multiple scattering volume being simulated,
and | P | is the magnitude of the particle’s momentum. At multiple scattering stops,

electrons and positrons also undergo bremsstrahlung.

Neutral particles are also moved through the spectrometer, stopping only for aper-

tures and calorimeters.

4.2.2 Cerenkov

Charged tracks which pass through the Cerenkov counters, and which are above
threshold, will throw off photons according to the mean free path of Cerenkov radiation
in the particular counter. These photons are then traced to the mirrors, reflected and
traced into the collection cones (if any) to the photomultiplier tube. Inefficiencies due
to radiator transparency, mirror reflectivity, and photocathode quantum efficiency are
all considered (averaged over wavelength). FElectronics noise is not simulated in the

Cerenkov counters.

4.2.3 Triggers

The HxV and OH scintillators are set “on” with probability according to their

measured efficiency each time a charged particle strikes the counter. The measured
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efficiencies are generally 95-98%. The Master Gate, which initiates the data aquisition
process, is formed using the HxV and OH signals (see equation 2.1.a). The T trigger
(see equation 2.1.b) is assumed to be 100% efficient.

To simulate the RESH response, we calculate the z position of the recoil electron at
the RESH counter. The energy is shared among the hit and adjacent cells. The second
level trigger required a signal in the RESH consisting of 1, 2, or 3 adjacent RESH cells to
be “on” (RESHLO trigger) as determined by the electromagnetic shower response. The
cells are “on” if the deposited energy in the cell is more than 20% of the the energy of a
nominal recoil electron which woulld hit the center of the cell as determined magnetically

by its bend in the sweeper magnet.

The hadronic (HC) trigger response is simulated by adding the total energy of
charged particles which hit the face of the Hadron Calorimeter, except for the energy of
electrons, and positrons, which is assumed to be absorbed in the IE, and muons which
are assumed to deposit no energy in the hadrometer. The trigger is simulated according
to a parameterization of the trigger efficiency as a function of the sum of the momenta
of charged tracks hitting the HC (not including tracks which go through the hole in the
center.)  [20]. The data and fits for the HC trigger efficiency are shown in Figure 4.5

for different running periods.

The multiplicity trigger is “on” if there is at least one hit in POX outside the central

region (pair region).

The second level trigger requires the Master Gate, RESHLO trigger, HC trigger,
and the multiplicity trigger to all be “on”.

4.3 Run Period Simulation

The various changes in triggering, performance, and targeting conditions were re-
flected in the Monte Carlo. The 1987-88 data run is divided into 8 run periods. These
run periods are delineated by downtimes, target changes, or beam changes. Important

differences in these run periods are considered by the Monte Carlo:

1. Target type.

47



2. Target location.
3. Beam location.
4. PWC efficiency.
5. HC trigger efficiency.

In order to simulate the targeting properly, trigger efficiency, and reconstruction effi-
ciency, (crucial for measuring cross sections,) the Monte Carlo simulates a “mini-data-
run”. GENERIC selects a run period for each beam electron simulated. The run periods

are distributed proportional to their luminosity in the data.

48




: I I‘I—I | I T 1 T 1 I I—lﬁ

§
i ]
1250 [~ ]
- T
i ]
1000 —
o i §
m = -
J) - i
7 750 — -
™~ S i
s_‘ L .
ﬁj . -
5 500 - —
o - 1
© 250 —
L 4
o [ .

200

Figure 4.1: The measured energy distribution of the electron beam (histogram) and the

distribution simulated in the Monte Carlo (curve).
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Figure 4.2: a) Vertex distribution of interactions in the TR1 trigger counter (which gives
the photon ﬂux-<I>(~’B, ¥)). The top edge is clearly visible. b) = distribution of interactions
in TR1 (the histogram is the data, and the curve is the Monte Carlo simulation.) c) y
distribution. Again the edge of the counter is visible. d)-f) z distributions for different

slices in y. Clearly the z distribution is not independent of y.
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Figure 4.3: The measured (histogram) and simulated (curve) R-distribution, as de-

scribed in the text.
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Figure 4.4: Photon conversion probability as a function of energy.
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Figure 4.5: The Hadrometer trigger (EHADM) efficiency as a function of the sum of
the momenta of the tracks hitting the face of the HC (Ehad) for different run periods.
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CHAPTER 5

D* Cross Sections

5.1 Problems Caused by Poor Resolution

We would like to measure the D* photoproduction cross section as a function of
photon energy (w) and the differential cross section (do/dzy) as a function of Feynman x

(z#). Feynman x is given by:

E, E}-P

w 2m, E, (5.1)

Tf=
where E_ is the lab frame energy of the D¥, P, is its longitudinal momentum, and m,,
is the mass of the target nucleon. For z; > 0.25, 5 ~ P,/w, where P, is the total
lab frame momentum of the D*. The momentum is well-determined, but the photon
energy is uncertain to £45 GeV. Therefore, the uncertainty on zy is:

N 45GeV

a.zf ~

ry for z5>0.25 (5.2)
w

For example, for a photon energy of 150 GeV, equation 5.2 implies a 30% uncertainty
in zy, which is more than +0.2 for zs greater than zy = 0.70. Uncertainty of +0.2 is
large on the scale of the anticipated fall-off of do/dz; at large zj.

The serious resolution effects in w and s pose serious problems in measuring the
cross section and differential cross section. An event measured at z;* and w* will not
give direct information about the cross section at zs* and w*, because each measured
T f* represents a range of true ry values, Similarly, the number of events in a given w*
range reflects the cross sections over a large range of true w values. In addition, poor
resolution gives rise to correlations between cross section ranges. Consider two Az bins
which are completely unresolvable from each other. The number of data entries in one

bin will not only be affected by the cross section in that bin, but also by the cross section
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in the adjacent bin. The two bins will be highly negatively correlated: the sum of the
cross sections will be well determined, but the difference will not be, due the the sloshing
of events from one bin to the other. In the limit where the bins are nearly completely
unresolvable, the errors on the cross section will be much larger than the statistical error
on the number of events in a bin. The method we use for finding cross sections uses a
Monte Carlo to determine the true xy, w ranges represented by certain measured zs*,
w* ranges, and then the cross section is unfolded from the resolution effects  [21]. The
unfolding process will take into account the enhanced errors due to correlations between

bins.

5.2 Method for Measuring Cross Sections

We bin the data in joint bins of the measured quantities A:v} and Aw* (the super-
script * indicates measured quantities). Thus, if we have 4 z; bins and 3 w bins, there

will be 3 x 4 = 12 measured (Az}Aw*) bins.

The number of events produced in the a’th true AzsAw bin (Greek indices will
indicate true quantities, and Roman indices will indicate measured quantities) will be the
average cross section for that bin times an appropriate luminosity factor and efficiency

for that bin:

nag = Lq €a Cq (6.3)

There will be a measurement matriz, Ko, which transforms events which actually occur
in the ao’th bin into events in the ’th measured bin. The number of events that are

found in the 7’th bin is then:
n; = ZKiana = Z Kicr»ca €o Ca
o [+ 2

= Z Riaca

In general, the solution of equation 5.4 is a linear transformation:

(5.4)

Ca =) pai ni (5.5)
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In the case where the number of measured bins is the same as the number of true bins,

then the solution to the cross section problem is exactly constrained:
Ca=)» Ry'mi (5.6a)
t
that is,

pai = B} (5.6b)

In general however, a fit for the the cross section given a redundant number of n; data
entries is found by minimizing the following x? (once the R;q matrix is computed from

Monte Carlo):

1

. . 2
X2 = Z (ni Z;Em Ca)

The solution to this standard minimization problem gives:

Rio Riﬂ

H;ﬂl Rig
Pai = Z T— where Haﬂ = Z n— (57)
1

8 b i

Equation 5.7 represents the optimal variance solution when all variables are Poisson

distributed and uncorrelated, and there is no background.

In order to count the number of D*’s which occur in a particular bin, we need to
incorporate some sort of background subtraction in our technique. In principle, one
could make invariant mass plots for each measured Aa:}Aw" bin, fit the signal peak to
find n;, and then multiply by the p matrix to calculate Cy. An alternative is to make
separate weighted histograms for each desired C'y measurement. An event is entered into
a given o histogram with a weight of p,;, where 7 is the measured bin that the event falls
into. The resulting histogram will have a signal peak over a smooth background. The
area under the peak, < paini >, will be the model independent, unbiased, background-

subtracted estimator for Cy according to equation 5.5.
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In actual practice, we do not wish to measure cross sections for individual Az fAw
bins, rather we wish to make a histogram for each, say, Azy bin, where the Aw bins
have been summed over. The weighted histogram scheme is ideal for this purpose.
The individual weights for the a bins belonging to the concatenated “super-bin” are
added, forming a “super-weight”. The event is added once to the super-bin cross section

histogram weighted by the super-weight.

5.3 Constructing the R;, matrix

We construct the R;, matrix from Monte Carlo. Since the Monte Carlo adequately
(we hope) simulates the experimental apparatus and analysis procedures, the measure-
ment matrix, Ky, and the efficiency function, €,, are the same as for data. Similarly,
we assume that the Monte Carlo properly simulates the photon spectrum. Then the R;,
matrix will be the same for Monte Carlo and data, except for a factor normalizing the
total luminosity:

Rio = ‘nggt) R(mc) (5.8)

Tl

Since the normalization factor is a ratio, we can chose any luminosity indicator that we

want. Our choice, the BGM scaler, is justified in section 5.5.

We now turn to a discussion of how the R;, and p,; matrices are computed by the
Monte Carlo. The basic idea is to increment a matrix, Gy, for each event which falls in

the true o’th bin, and is measured in the 7’th bin, then

Rme) _ Gia

(me)

(5.9)

The Ca™" (me) is the Monte Carlo cross section used to simulate data, and is given by:

W2a

Coa = / / dz ——(a: w) (5.10)
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5.4 Error Calculation

We have assumed that the signal errors are Poisson distributed and uncorrelated

such that:

< én; bn; >= nidi; (5.11)

The anticipated errors for the cross section fit are:

<6Cy 6Cg >= Y pai ni pp; (5.12)

o(Ca) =, /Z nipl; (5.13)

From this we see that the variance on C, is the sum of all weights in a bin added in

The error on C, will be:

quadrature. This is the standard way of computing errors in a weighted histogram,
which means that the error in the signal peak in the weighted histogram will be the
error on C,. If one fits the weighted mass plot with standard weight errors for each
mass bin, then the error in the area under the invariant mass peak will reflect both the

errors from equation 5.13 as well as the additional error caused by the background.

In addition to these errors there will be some error associated with the finite statistics
of the Monte Carlo, with which was made the p,; matrix. If we include the Monte Carlo

errors, then the errors on the cross sections given by equation 5.13 should be modified:

o(Cq) = Zn.-pfu. V14 Nygta/Nme (5.14)

(See Appendix B.) Since we typically have 10 times the Monte Carlo sample as data,
the error must be scaled by about 1.05.

5.5 Luminosity

To monitor luminosity, a scintillator counter (BT) counts electrons in the secondary
beamline. Unfortunately, this counter will also count pions which contaminate the beam-

line, but which do not contribute significantly to the photon flux. The BT counter has
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also been shown to have a pile-up problem at high rates; a problem due to multiply

occupied rf buckets.

Thus, due to the difficulty of understanding the BT counter, we use the Beam
Gamma Monitor (BGM) as a luminosity counter. Its signal is counted every time there
is at least 133 GeV deposited in the BGM. Since the BGM counts photons, the count is
not compromised by the pion contamination in the secondary beamline. There is also
less problem with pile-up: two electrons which arrive within the resolving time of the
BGM scaler can cause a maximum of one count in the BGM, but the photon radiation
from the two electrons is more likely f,o exceed the BGM threshold than photon radiation

from one electron. These competing effects will cancel, as shown in Figure 5.1.

The BGM rate is artificially depleted when photons destined for the BGM are ab-
sorbed (pair-produce) in the spectrometer. A simple Monte Carlo is used to determine
these effects. Uninteracted photons are traced through the spectrometer. If the photon
pair-produces in the spectrometer then the electrons are traced through the spectrom-
eter. In some cases, one or both of the electrons are focussed back to the BGM, where
their energy is deposited. This Monte Carlo shows that the number of BGM counts
should be multiplied by 1.044 for the 4-Be target, 1.055 for the 5-Be target, and 1.079
for the Si target to get the true number of times an electron from the secondafy beamline

gives off at least 133 GeV’s worth of photons.

The recorded counts in the BGM must be corrected not only for the absorption
factor, but also for livetime. Photons which arrive during the deadtime of the experiment
do not exist as far as luminosity is concerned. The livetime for this experiment is
typically 75%, which is measured by comparing a free-running ((H x V)>1b0dy - OH) @
(H x V)>2b0dy) to one which is inhibited during the experimental deadtime.

For each spill found in the data sample, the relevant entry in the Spill Scaler Record is
looked up. If the BGM count is in the record, it is multiplied by the relevant absorbtion-
correction factor, and adjusted for livetime. A running sum is kept of the total. For
about 5% of the spills, no BGM scaler entry is found (due to hardware glitches, etc.)
We estimate the BGM counts for the spill by using the average BGM counts for the

particular run period.
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5.6 Results

The D* sample used to measure cross sections includes the general requirements
previously explained, plus several additional cuts. First, we wish to clean up the signal
a bit more, so we apply a harder significance of detachment cut: L/o, > 5. Two cuts
are added to ensure that the data sample passes the same trigger requirements as the

Monte Carlo:

1. The second level trigger in data includes not only the hadronic energy trigger,
but also prescaled Master Gate, muon pair trigger, etc. Since the Monte Carlo
does not simulate any of these triggers, events are required to satisfy the hadronic

energy trigger.

2. During certain times in the data run, the RESH requirement was removed from the
second level trigger. Events from these run periods are kept only if the RESHLO

trigger requirement is satisfied in addition to the second level trigger requirement.
Two other cuts were added to ensure the quality of the data sample:

3. Several reconstructed tapes (20%) were mis-written, so that BGM energy informa-
tion was unavailable. Since we do not want to bias our photon energy estimation
by ignoring or inventing BGM information, we remove these tapes from the data

sample.

4. Luminosity information was unavailable for a few runs. Data from these runs is

ignored.

In total, the sample includes about 1760 D¥ events and is shown in Figure 0.1. When
making the C, weighted histograms, we choose to histogram the normalized mass dif-
ference, (m, — Mmeas)/0m. This is because the mass resolution can be a function of
the D¥ momentum, and thus z #- The fit for the normalized mass difference can be

constrained so that the gaussian width equals 1.

The ¢ and a bins are chosen to be the same. We chose w bins so that their width is
approximately twice the w resolution. The exact bin boundaries take into account the
structure inherent in the measured photon spectrum. Because the RESH measures only

quantized energies, the w spectrum will have spikes (Figure 0.2). The subtraction of
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of the BGM energy smears these spikes toward lower energies. We chose bins so that

spikes and their smears are included in the same bin. The bins are

z¢bins |w bins (GeV)
0.0 - 0.2 100 - 184
0.2-0.45 184 - 261
0.45-0.65| 261 - 350
0.65 - 1.0

The D signal, partitioned into these bins, is shown in Figure 5.4.

The Monte Carlo sample includes about 19,000 reconstructed D events. These events
were generated with a linear cross section for photon energies above 50 GeV; the slope

was based on early cross section calculations:

1.94
o(W)me GoV (w — 50 GeV)

The generated z 7 distribution is described in detail in Chapter 4. The D¥ — KFrtg*
proceeds according to three-body phase space. The recoil state is chosen to be a generic
charm quark, which is allowed to be any of the well-established charm mesons or baryons.
For bookkeeping simplicity, care was taken to ensure that the recoil charm particle did

not at any time produce a D¥ — KFrtr® decay.

To compare the Monte Carlo model to the data, we can bin the Monte Carlo as we
did for the data in Figure 5.4, fit for the number of D* in each bin, and divide by the
total. This will give a fractional yield for each bin. We can compare to the fractional

yield of data for each bin:
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Table 5.1: Fractional yield for Data (Monte Carlo)

w =100 - 184 184 - 261 261 - 350 GeV
zp=0.-02] 3.7+ 1.0% (3.1%) | 10.2 + 1.6% (8.2%) | 3.2 £ 0.9% (4.8%)
0.2-045 |16.9 + 1.6% (11.6%) |23.5 + 2.1% (22.7%) | 7.1 + 1.0% (11.2%)
0.45-0.65 | 7.7+ 1.0% (8.2%) |10.6 £ 1.2% (11.4%) | 4.1 £ 0.6% (4.4%)
0.65-1.0 | 5.5+ 0.8% (4.3%) | 4.3 £ 0.7% (4.6%) | 0.8 £ 0.3% (1.2%)

The Monte Carlo was run without any absorption of tracks. This will make the
efficiency of the Monte Carlo artificially high with respect to the data. The absorption
can be added to the Monte Carlo in a post hoc fashion during the analysis. For each
track in a D¥ decay, its probability of absorption is calculated, by the distance it travels
in the target and the meson absorption length. The absorption length is pretty much the
same for kaons and pions, and is independent of momentum in the momentum ranges
we deal with. This absorption calculation shows that about 8% of the Monte Carlo D*
signal will vanish due to absorbtion, thus we will have to multiply our measured cross

sections by 1.08 to take into account this effect.

In addition, the Cerenkov efficiency for identifying the kaon in the Monte Carlo is
better than for the data. Since the efficiency difference is independent of momentum,
we can compensate for this effect by scaling the final cross sections. The scale factor
is determined experimentally with D°’s from D* decay [22]. Since a clear D° signal
without Cerenkov identification is easily obtained by cutting on the D*-D° mass differ-
ence, the effects of the Kaon identification requirement can be determined. The scale

factor due to Cerenkov efficiency is about 1.21.

The combined scale factor for absorption and Cerenkov effects is thus 1.30. This
factor will be applied to our measured cross sections. These effects will also contribute

to the systematic error.

The weighted histograms of the normalized mass difference for the various Cy, as
well as the fit to to signal peak, are shown in Figure 5.5. The cross section results are
shown in Figure 5.6. The measured cross sections are for inclusive D and D~ per Be

nucleus times the branching ratio for D* — K¥r%x*, The cross section as a function
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of photon energy includes the zy region from 0. to 1. We have included a systematic

error of 30%, added in quadrature. (See section 5.7.)

The measured cross section for inclusive D is determined to be

BR:0=10.368 £0.073 +£0.111 ub/Be nucleus

at our average photon energy of 220 GeV.

A recent photoproduction experiment at the Fermilab Tagged Photon Lab [17] pub-
lished a D* inclusive cross section of 1.34 & 0.03 + 0.23 ub/Be nucleus, for z f>02
at their average energy of 145 GeV. From their parameterization of the cross section
as a function of z5, we find that about 34.3% of their cross section is between z¢= 0.
and z = 0.2. We must scale their cross section by 1.52 to account for the the fraction
between x5 = 0 and =y = 0.2. Multiplying by the branching ratio that they used, 9.1%,
their BR - o becomes 0.186 + 0.031 pb/Be nucleus, where the systematic and statistical
error have been added in quadrature and scaled by the same factor as the cross section.
The value measured in this analysis for 142 GeV is 0.242 +0.034 +0.073 ub/Be nucleus.

This number is consistent with the E691 measurement, within errors.

Most of the published cross section results are for total ¢¢ production. To prepare
the E687 result for comparison with these published results, we must first divide out the
branching ratio of the decay D* — KFr*r¥ to get the total inclusive cross section for
D*. (We use the currently accepted value of 7.9%.) We must then invoke a scale factor
which is the inverse of the fraction of the total ¢ cross section which is D*. The E691
total cc cross section at 145 GeV is approximately 4.93 ub/Be nucleus [17]. Comparing
the E691 ¢ cross section to their D cross section (corrected for their z; range), the
E691 scale factor from D¥ to c¢ cross sections is 2.42. We will apply that scale factor
to this analysis. The resulting estimated c¢ cross sections from this analysis are shown
with other cross section measurements, as well as the PGF cross section calculations of

Ellis and Nason [10], in Figure 5.7.
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5.7 Systematic Error

There are many factors which will contribute to the systematic error of the cross
sections. We try to pay particular attention to factors which will make our measured
cross section larger than the true cross section, because E687 measurements tend to be

somewhat higher than other measured results.

1. Since the beam profile, ®(z,y) was measured with devices which were not ade-
quately large for the task, the R-parameterization of the ®(z,y) could inadequately
describe the true beam profile. If for instance, we over-attribute the beam to the
halo section, then the luminosity-to-charm ratio will be low in Monte Carlo com-
pared to data. This means that our cross section measurement is higher than
the true cross section. If however, there is more beam halo in data than we are
describing in Monte Carlo, then our current measured cross section is lower than

the true cross section.

2. The Hadron Calorimeter trigger is not well understood. At a certain point in the
running the Central Hadron Calorimeter, CHC, was accidentally removed from the
energy sum which constituted the hadronic energy trigger. With the central region
missing, the HC trigger effectively becomes a transverse energy trigger. Since the
transverse energy for charm is larger than for the ordinary hadronic events with
which the HC trigger was parameterized, the HC trigger could actually be more
efficient in charm data than in Monte Carlo, which means that our measured cross

section is higher than the true cross section.

3. Similarly, charm events will be kaon rich. Kaons will leave less energy in the Inner
Electromagnetic counter (immediately upstream of the HC), and thus deposit more
energy in the HC, again making the HC trigger efficiency greater for charm data
than for the ordinary hadronic events with which HC trigger was parameterized.
Again, this means that our measured cross section is higher than the the true cross

section.

4. If noise in the PWCs adversely affects our ability to reconstruct tracks, then the
Monte Carlo track reconstruction efficiency will be artificially high. Again, this

causes our measured cross section to be lower than the true cross section.
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5. Since the P4 used in this experiment was undersized, a sizable number of particles
strike the aluminum frame. If these particles shower, it will increase the efficiency
of the HxV trigger (since the HxV counters are immediately downstream of P4.)
This effect will mean that our measured cross sections are higher than the true

cross section.

We estimate that the combined systematic effects cause a 30% systematic error in the

cross sections.

64



BGM /e vs SEM

G T T 1 T T I I LI |‘l 1 1 lj I 1 1 T :
®) -
£ - .
-+ = -
O 025 [— —
) - i
© . :—%-:' )
g 0.20 %
D] legs 7 L
Q e -
~ 0.15 — i
7 N ]
g~ r ]
:Oj 0.10 I ]
O - ]
= 0.05 L —
O .
m - . ~ j
0.00 a1 | L | L 1 i L I.nl.l_.l [N l‘;-l I L 1 |
0 1 2 3 4

Protons delivered per spill (X 10'%)

Figure 5.1: The ratio of the BGM scaler to the number of electrons as a function of
the number of protons delivered to the wideband beam (SEM). (The number of electrons
is counted by the BT scintillator, which suffers from pile-up due to multiply occupied
rf buckets. The pile-up can be éorrected by a simple model based in the duty factor
of the beam.) The BGM/e ratio is constant over the entire range of delivered protons,

indicating that the BGM scaler has no problem with pileup.
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Figure 5.2: The DT sample used to measure cross sections.
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Figure 5.5: a) The normalized mass difference for all events, and the C, weighted

histograms for b)-d) different w ranges, and for e)-h) different z¢ ranges, as described
in the text. The cross section signal peaks were fit to a gaussian which was constrained
to be width = 1 and centered at the same location as the fit to the normalized mass
difference for all the events. The area under the peaks is the average cross section times

branching ration (nb/nucleon) for the bin.
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Figure 5.7: Comparison of various charm cross section measurements to photon-gluon
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Ellis and Nason, see references therein.
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CHAPTER 6
D¥ Lifetime

6.1 Method
In general, a lifetime fit proceeds by fitting the data to an exponential:

dN
s o exp(—tmeas/T)

where t is the proper time. However, attempting to separate the signal from the back-
ground on an event-by event basis is impossible, so some method must be invented to
take care of the contamination by the background. In doing so, one can bring in an
appreciable amount of systematical error due to Monte Carlo model dependence or a
particular chosen parameterization. In addition, in this case, the D¥ sample is obtained
through use of a significance of detachment cut, which implies a minimum lifetime (on
an event-by-event basis). We wish to find a lifetime measurement method which will
include minimal model dependence or parameterization and will be able to deal with

the effects of the significance of detachment cuts.

Fermilab Experiment E691 has devised a clever method which addresses the above
issues [23]. This lifetime method fits for a modified proper time, t = tmeas — Aoy,
where oy is the error on the individual event. That is, we “start the clock” (A) on an
event-by-event basis, using the individual errors for that event. The modified proper
time distribution will also be exponential. This method allows us to incorporate a
significance-of-detachment requirement (which removes zero lifetime background), but

lose as few real charm events as possible.

The method we use to find lifetimes is a binned maximum likelihood fit to an expo-
nential, with sideband background subtraction. (“Sidebands” are invariant mass regions
at higher or lower mass than the charm particle signal region.) Since this method uses
no parameterization for the lifetime of the background, it does not suffer from system-

atic uncertainty arising from such a parameterization. Since the background will include
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both zero-lifetime background as well as “charm leftovers”, a suitable background pa-
rameterization is difficult to construct. In addition there is very little statistical power

in parameterizing the background, and the systematic effects are difficult to understand.

6.2 Lifetime Resolution

The measured proper time and the error in the proper time are calculated from the

decay length of the D* and its error:

boens = 2 T2
meas — c PD
GL mD
oy = — —= 6.1
t=7 P, (6.1)
where m, and P, are the mass and momentum of the D¥*, Our resolutions are

studied using a sample of D°’s which come from D*’s [24]. Cutting on the mass difference
between the D° and D* gives a D° sample which is selected only kinematically, with no
lifetime requirements at all. Plotting the fraction of D°’s which survive a L/o, cut, and
using the world average lifetime, o, is found to be about 0.048 ps. We can confirm this
number with Monte Carlo by measuring the difference between the measured lifetime

and the generated lifetime. From Monte Carlo, o, is about 0.045 ps. (See Figure 6.1.)

6.3 Binned Maximum Likelihood

In each lifetime bin, centered at t;, there will be S; signal events and B; back-

ground events, for a total of N; = S; + B; events. The total number of signal events is

Stot = Y_; Si. The likelihood function (assuming Poisson statistics) is:
N;
el
L= : b 2
I5%< 62
where
e~ /T

i = €(t;i) Stot + B; (6.3).

T
The function €(t) is a modulator function which describes how the measured events are

expected to deviate from a true exponential. Minimizing (—In L) with respect to
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produces a lifetime. We can repeat this calculation for different values of A, the “clock-

starting” point.

6.4 The ¢(t) Function

The €(t) function takes into account two factors. First, the reconstruction efficiency
may have a dependence on decay distance, and thus proper time. Second, resolution

effects will move events from their true lifetime bins into adjacent bins.
Some examples of the effects included in the €(¢) function:

1. Events with very long lifetimes will verticize inside the microstrips. The daughters

from this decay will be less likely to be reconstructed.

2. Daughter particles which traverse a longer distance of the target are more likely

to be absorbed, lowering the efficiency for shorter-lived events.

3. The angular acceptance of the SSDs may discriminate against events which “open

up” far upstream of the SSD.

4. For very short-lived events, resolution effects may cause the the measured lifetime
to fluctuate negative. Since there are no “negative lifetime” events to fluctuate

high and compensate, there will be a depletion of events at very short lifetimes.

The effects listed above, as well as other efficiency effects, are difficult to calculate,
so we determine €(t) from Monte Carlo. We measure the deviance of the measured
distribution from the assumption that the reconstructed events are distributed according

to an exponential. For each lifetime bin:

€ = : (6.4)

where N™¢ is the number of Monte Carlo events reconstructed in bin ¢, N7y is the total

number of reconstructed Monte Carlo events, 7 is the Monte Carlo lifetime, and At is .
the bin width.
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6.5 Additional Sources of Uncertainty

In addition to the uncertainty of the lifetime due to the fit, there are two additional
sources of lifetime uncertainty: that due to fluctuations in the sidebands, and that due

to fluctuations in the Monte Carlo.

The variance of the fit parameter, «, measured by maximum likelihood is given by:

1 (0F/0c:)?
‘—Tz = /dt 0'2(F— Fpred) (65)

where F is the data which are being fit to, and Fj,.q is the theoretical function being fit
for. In the usual case, there is no error in Fj,.q, since the fit function is known, so the
total variance of F' — Fj,¢q is just the variance of F'. In our case, however, we do have
an uncertainty in Fp,.q, due to statistical fluctuations in the sideband background, and

due to fluctuations in the Monte Carlo, which determines e.

6.5.1 Uncertainty Contributed by Sideband Subtraction

The sideband subtraction method assumes that the time evolution of the background
under the signal peak is well-described by the sideband background. Clearly, the error on
the background estimation will decrease as the sideband width is increased. However, as
the sidebands grow farther from the signal region, the more unreliable their description
of the lifetime distribution of the signal-region background. Some compromise between

the two effects must be made.
The anticipated variance of the measured lifetime will be given by:

1 (05/0r)
? B ]dt 0'2(Ni - Npred) (6.9

T

where our fitting function is NP™*!(t) = SP"** + BP™?, where SP™? is the predicted
signal, SP"*? = ¢(t)Siorexp(—t/7)/7 and B is the predicted background, B? red —
RB{® where Bg® is the number of events in the sidebands and R is the ratio of the
width of the signal region to the combined width of the sideband regions. The data we
are fitting is given by N; = S; + Bi. In the case where N’ red is totally determined,
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that is, ignoring fluctuations in € and B,, the denominator for equation 6.6 becomes
o*(N; — N? red) = 4%(N;) = N;. If however, we include the effects of the variance of

the sideband background, the denominator in equation 6.6 becomes:

o?(N; — NP"%) = o%(N;) + o®(NP™?) (6.7a)
= o2(N;) + o2(SP"*%) + o(BP?) (6.7b)
= o*(V;) 4+ 0*(S7"*%) + R? o*(B}Y) (6.7¢)
= o?(N;) + R? o*(BY) (6.7d)

where we have ignored uncertainty in the € function in step 6.7d, so that the variance
of the predicted signal is zero. The variance of a yield is, of course, just the yield itself.
We then scale the errors reported by the maximum likelihood fitter by the ratio of the

original anticipated error to the new (sideband-corrected) anticipated error:

/ it (05/07)?
N;

(8S/07)*
dt————
\ N; + R*B}

new __ _fit
o, =0

(6.8)

6.5.2 Uncertainty Contributed by Monte Carlo

In addition, the lifetime uncertainty will include effects due to fluctuations in the
Monte Carlo lifetime distributions. These fluctuations will cause uncertainties in the
€(t) function, and therefore the fitting function. It is obviously better to have as much
Monte Carlo as possible, and certainly the Monte Carlo sample should be much larger

than the data sample.

If we work in the limit of negligible background
o2(N; — NP4y = 62(5; — 577°%) = o2(5;) + o2(5P™%) (6.92)

The variance of (S? red) ultimately comes from Monte Carlo counting statistics. Since
5?4 « ¢ (equation 6.3), and € o NI*¢ (equation 6.4), then az(Sf’red)/Sfred = 1/N™
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and

Sf)red )2

o?(N; — NP4y = 5; + (N(mc) (6.9b)

Here we make some approximations to simplify the calculation of the new error.
Since the x? has been minimized, S; =~ Sf"ed. Also, if the Monte Carlo lifetime is
identical to the data, the measured Monte Carlo events will fall into lifetime bins in the

same proportion as the data, so that S.'/N'-(mc) will just be .S'u,t/Nt(‘::l <), Thus

0,2(5', _ S?red) ~ S.' (1 + 5{%) (69(:)

tot

The constant term (1 + Sios /N,(o';l ) ) can be pulled out of the integral of equation 6.6,

which means that the new error is given by:
N,
orew = g2, [1 4 (—jn’) (6.10)
N, tot

6.6 Lifetime Results

The D* sample selected for the lifetime analysis includes all of the analysis require-
ments previously explained, as well as a cut which removes events with either primary
or secondary vertexes in the TR1 trigger counter. This cut removes background with
secondary interactions, which may distort the lifetime measurement. Only events with
lifetimes less than 67 , are used. The sample includes about 2600 D*’s and is shown

in Figure 6.2.

The requirements of the skim and the analysis are relatively bias-free, except for the
significance-of-detachment cut of L/o, > 3. Since a significance of detachment cut is
implicit in our lifetime method (in fact it is just A), the skim requirement merely forces

a lower bound on our choice of A.
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The signal region is chosen to be £25 MeV of the accepted value of the D¥ mass,
and the sideband background regions are chosen to be 50 MeV wide and separated from
the signal region by 40 MeV. The R factor, therefore, is 1/2. Typical scale factors due
to sideband fluctuations are about 1.04 to 1.06. The signal and sideband regions are
illustrated in Figure 6.2. The number of ¢ bins in the binned maximum likelihood fit is

chosen to be 25, although the results do not change appreciably when 100 bins are used.

The Monte Carlo sample, which requires the same analysis cuts as the data, consists
of about 23,000 events, about 9 times larger than the data sample. The generated Tot
of the Monte Carlo events is 1.067 ps.  Figure 6.3 shows ¢(t) functions for A = 3
and A = 5. This function deviates significantly from 1 at large lifetimes because of the
inefficiency of reconstruction for events which decay inside the microstrips. However,
the €(t) function shows very small corrections at short lifetimes. The o scale factor due

to Monte Carlo fluctuations (equation 6.10) is about 1.05.

Figure 6.4 shows sample lifetime fits for A =3 and A = 5. The points plotted are
the background-subtracted number of events in the bin divided by the €(¢) function; the
error bars are simply the square root of that number. The line shows the result of the

fit. Figure 6.5 shows the measured lifetime using different values of A.

To quote a lifetime, we want to use an A region where the signal-to-background is
relatively good. At A values greater than about 7.5, the signal-to-background is greater
than 3 to 1. We also want to minimize our dependance on the modulator function, ¢,
measured from the Monte Carlo. At an A cut of about 14, 10% of the data will come
from lifetime regions which are appreciably influenced by e. Thus, we average the lifetime
values at A = 8 to A = 14. Systematic error is estimated to be 0.020 ps by looking at
the magnitude of Monte Carlo corrections and the fluctuations of the measured lifetime

for different values of A. Thus, the D¥ lifetime measured in this analysis is:
7o+ = 1.061 + 0.039 + 0.020 ps

Figure 6.6 shows this result in comparison with other recent lifetime measurements. A

remarkably consistent picture emerges.
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CHAPTER 7
Additional D* Studies

7.1 Charge Asymmetry

Associated production models will predict an excess of D~ (anti-charm) mesons.
Studies were done to find the ratio of Dt to D~. For several values of L/, the signal
was split into positive and negative histograms. These signals were fit to a gaussian with
a fixed width equal to the width of the fit to the total signal. The signals and fits are
shown in Figure 7.1. In each case there appears to be a slight excess of DT mesons,
although the yields of the positive and negative D’s are consistent within errors. The
Monte Carlo exhibits no charge asymmetry. The charge ratio for data and Monte Carlo

is summarized in Table 7.1.

Table 7.1: Charge Asymmetry for data and Monte Carlo

L/e, >| D*/D- (data) | D*/D~ (MC)
5 | 1.042 £ 0.062 | 1.001 + 0.014
8 | 1.073 +0.062 |0.998 + 0.015
11 | 1.057 £ 0.062 | 1.006 + 0.016
15 | 1.066 + 0.068 | 1.019 + 0.018

The Dt /D~ ratio result is obtained by averaging the values for the different L /o,

cuts and using a typical error bar. The result is:

number of Dt
number of D~

= 1.060 £ 0.063

The anti-charm excess predicted by associated production models will be particu-

larly noticeable near threshold. Thus, we look at the charge asymmetry for different
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momentum ranges. Here, we use the normalized mass difference, (m, — Mmeas)/om,
since the width of the signal may be a function of momentum. If we use the normalized
mass difference, we can constrain the fit to be of width = 1. The results are found in
Figure 7.2. Again, although there may be a slight excess of Dt mesons, the excess is
not statistically significant. There is no noticeable dependance on the momentum. We

see no evidence of an excess of D~ which is predicted by associated production models.

7.2 Transverse Momentum Distribution

We have also studied the D* distribution as a function of traﬁsverse momentum
squared, PJ2_. From Monte Carlo we determine that the acceptance is flat in PJZ_ out to
about 8 or 10 GeV?, where we run out of statistics. (See Figure 7.3.) To plot the P?
distribution, we make sideband-subtracted weighted histograms. Two mass sidebands,
from 1.74 to 1.78 GeV and 1.96 to 2.00 GeV are chosen. Each sideband is the same
width as the signal region which extends from 1.85 to 1.89 GeV. Therefore, events
whose mass falls in the sideband region are added to the histogram with a weight of
-0.5. Events in the signal region are incremented with a weight of 1.0. Histograms are
made for various significance of detachment requirements. The harder the cut on the
significance of detachment, the less the background, and the less we rely on the validity
of the sideband subtraction. Of course, there will be fewer events as we cut harder. The
P, distributions are shown in Figure 7.4. The distributions are fit to exponentials of

polynomials in PJZ_:

dN/d(P?) = Aexp(a1P? 4 ayP})

The fits for the various L/o cuts are very consistent. Taking the average of the a; and

ay values for the different L/o, cuts gives:

ay = —0.925 + 0.050/ GeV?

az = 0.0368 + 0.0071/ GeV*
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7.3 Dynamic Substructure in the D* — K¥xtxt decay

The D* sample for the purpose of making Dalitz plots must be fairly clean. The
sample used is the usual sample with a harder significance of detachment cut: L/ay > 15.
We then use only events in in the DT mass region: 1.83 GeV < m, < 1.90 GeV. Since
there are two identical pions in the final state, it is appropriate to select a specific one of
the K¥7* masses to plot against the mass of the r*7*. (Technically known as “folding”
the Dalitz plot.) Conventionally, one selects the lower of the two K¥7% masses. In the
absence of interesting effects, we expect the events to spread uniformly throughout the
allowed region of the Dalitz plot. Figure 7.5a shows the Dalitz plot for Monte Carlo

events, where the D* — K¥rEz¥ decay is governed solely by three-body phase-space.

It has been claimed [13,25] that about 20% of the D¥ — K¥r*x® proceed via
D* — K*(892)r*. The Dalitz plot for a Monte Carlo with this fraction of K* events is
shown in Figure 7.5b. A clear, narrow K* band can be seen in this Monte Carlo Dalitz

plot.

The Dalitz plot for the data sample is shown in Figure 7.6. Clearly the distribution
of events in the Dalitz plot is not uniform, although no clear resonance bands can be
seen. The data resemble neither of the Monte Carlo Dalitz plots. The Dalitz
plot and its projections are shown in Figure 7.7, along with MarkIII data [13,31]. The

distributions are very similar.

Figure 7.8 shows the (K¥7r%);,,, mass for the DT sample described above, and for
the K*-added Monte Carlo. The Monte Carlo K* signal is evident, but no corresponding
signal can be seen in the data. We then try to enhance the possible K* signal by taking
into account conservation of angular momentum. Since the D is a pseudo-scalar, which
decays into a vector (K*) and a pseudo-scalar (%), we expect the angle between the
the two pions, as viewed in the K* center of mass, to be distributed according to cos? 6.

Cutting on |cos? 8| we get the KFx* mass plots shown in Figure 7.9.

Diakonou and Diakonos [14] have postulated that most of the D* — KFx*r¥ signal
is due to D¥ — K*(892)r* and D* — K}(1430)x*, which interfere so significantly,
that the relative amounts of K*(892) and K}(1430) must be derived from complicated

Monte Carlos which take into account the effects of interference.
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The narrow K* peak is clear in the Monte Carlo, but there is no clear evidence of a

narrow resonance in the data.
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CHAPTER 8

Conclusion and Summary

Fermilab experiment E687 has seen a large sample of D¥ charm mesons in the
decay D* — K¥r*r*, This sample is comparable to the world’s largest sample. With
this sample we have been able to study the production dynamics, the lifetime, and the

dynamic substructure of the decay. This chapter will summarize the results.

We have been able to extend cross section measurements out to the world’s highest
photon energies. At our average photon energy of 220 GeV, the cross section times

branching ratio for inclusive photoproduction of D% is:
BR-0 =0.368 £ 0.073 £0.111 ub/Be nucleus

for 7> 0. Our cross section result at a photon energy of 142 GeV agrees with recent
results from Fermilab experiment E691, at 145 GeV [17]. Our cross section as a function
of photon energy shows a gentle rise, consistent with a compendium of cross section
results. Our estimate of the total c¢ cross section as a function of energy appears
somewhat higher than other measurements, although it is consistent with other data
within errors. Our measured cross section agrees well with the photon-gluon fusion
model calculated to second order in as, for m, near 1.5 GeV [10]. The cross section as

a function of s is also presented.

We are able to make very precise measurements of lifetimes with the aid of our
Silicon microstrip vertex detector. The lifetime of the D¥ meson is calculated using
a binned maximum likelihood technique with sideband background subtraction. The

lifetime of the D* is measured to be:
Tp+ = 1.061 + 0.039 + 0.020 picoseconds

The lifetime is consistent with other lifetime results and with the world average.
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The ratio of Dt to D~ has been measured and is found to be consistent with 1.

number of DY

=1. .063
number of D— 1.060 + 0.06

The ratio is not a function of momentum. No evidence is seen for associated production.

The transverse momentum (squared) distribution for D* was measured. The distri-

bution is fit to the form:

dN/d(P}) x exp(a; P2 + a2 P})

ay = —0.925 % 0.050/ GeV?

az = 0.0368 + 0.0071/ GeV*
Dynamic substructure is found in the D¥ — K¥r%r% decay, although no clear
resonances are seen. 1he results agree with the Mark III data. The substructure is

described by Diakanou and Diakanos [14], who attribute the lack of clear resonances to
interference between the K*(892) and the K;(1430).
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APPENDIX A
Calculation of the Monte Carlo Luminosity Scale Factor

A.1 Charm Particles Produced in Data:

A small target element of density p4 and thickness dz, irradiated by dn, photons
will produce dn. charm particles, assuming a cross section per nucleus of a,(;A), which is

different for different nuclei:

dnc = dn, (%) oA pa dz (A.1)

where A, is Avagadro’s number, and A is the atomic weight of the nucleus in question.

We write dn, in terms of the photon flux,

dny = ®(Z) drdy (A.2)
and
dn, = <%) o pa @(%) dedydz (A.3)

To get the total number of charm particles produced, we must add up the contri-
butions from all these tiny target elements. Let us first determine the total number of
charm particles created during a single run period, by the Si target. First, we find the
total number of charm particles which are contributed by the Si sections of the target

by integrating equation A.3 over the Silicon portion of the target:

i Na i - -
NS = / (A(Si)) o p(si) (%) ®(Z) dzdydz (A.4a)

Where p(s;)(Z) is the spatially varying density function, which is p.(,Si) inside the Si

sections of the Si target, and 0 elsewhere. The contribution from the Be sections of the
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Si target to the total number of charm particles produced is:
N o
N{Be) = / (A—(g?)) (B¢ p(Be)(Z) ®(Z) dzdydz (A.4b)

Where p(g.)(Z) is pSBe) inside the Be sections of the Si target, and 0 elsewhere. The

total number of charmed particles during this run is then

Nodatay = N 4+ N (A.5)

If we assume that the cross section goes as A! then

o(B) (50

= (A.6)
ABe) . Agsiy
and we can write the total number of charm particles produced as:
S
Nc(data) A(S] ‘) /d3$ Q(z) P(z) (A7)
Where
0 if outside target;
p(Z) = < P(si) if inside the Si sections; (A.8)
P(Be) if inside the Be sections.
We introduce the total number of incident photons:
N‘y(data) = /dzdy ®(z,y,z=10) (A9)
and an effective target length:
Bz ®(Z) p(Z
f (Z) o(Z)/p(s3) (A.10)

[ d&2¥(z,y,z = 0)

then the number of charm particles produced during the the run period is given by:
Na
Nc(data] = 7(data) ( (S )) 0'((: )P(S;) eeﬁ (A.ll)
]

We can follow the same arguments for each of the run periods, even with different

targets. We replace the p(#) function with p*(Z) where the index i indicates the run
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period. This target density function is still given by equation A.8, namely, 0 if outside
the target, p(g;) if in Silicon, and p( Be) if in Beryllium. The spatially varying photon
flux will also change for each run period: ® — ®;, and N, — N.f, and thus the effective
lengths for the different run periods are:

fd% $i(2) Pi(f)/P(Sf)

by = J d22®;(z,y,z = 0) (A-12)

If we introduce the total number of photons from the 1987-88 run, and the fractions of

photons in each of the run periods (f;) such that:

N;(data) = f"N;‘(,ctiata) (A°13)

then we can write the combined total of charmed particles that E687 got during its

1987-88 run as:

Nap
tot tot “Va P(Si) (S.)
Nc(data) - N‘y(data) A( si) Z ft (A14)

A.2 Charm Particles Produced in Monte Carlo

Let us look at the charm particles produced in GENERIC during one run seg-
ment. Our photon activation locations are chosen with an «,y distribution according
to ®(z,y) and the z location is chosen from the upstream face of the target to dis-
tance A = A, 0o/0mc, where A, is the length of the longest target, the 5-Be target:
Ao = 4.06 cn. (We define a A, in this way so that it can be factored out when we sum

over run periods.) The activation locations are then distributed according to:
&(z,y) dedy Ome dz
(fdz-"«‘ O(z,y)/ \ doho (A-19)

Once we have chosen the possible activation location, we activate the photon into a

charm particle with an activation probability given by:

0 if outside the target;
A=1¢1 if inside Si; (A.16)
p(Be)/p(Si) if inside Be.
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Comparing equation A.16 with equation A.8, we see that the probability of activation
is just p(Z)/p(si)-

Thus, the probability that any given photon turns into a charm particle is given
by the integration of the activation locations (equation A.15) times the probability of

activation (equation A.16):

D= < Umc) (fd3:t q) T y) P(-’E)/p(s.)) Ome eeﬂ (A17)

oMo [ &z®(x,y) ool

where we have again introduced the concept of the effective target length as given in

equation A.10.

If N,(mc) photons are generated, then the number of charm particles created will

be:
N'y(mc) Umc eeﬂ

= Nl
Ne(me) ooly (A.18)
Again, we sum over the run periods: N,(y;,) — N;(mc), bog — Ziﬂ and the total
number of charmed particles produced in a MC run is:

0 0 amc
th(rtnc) 'i(:nc) Z fi € eﬂ (A 19)

where we have used the photon fraction for each run period, and the total number of

photons for all run periods.

A.3 Comparing Data to MC

Since we have arranged the Monte Carlo so that the f; are the same as for data, and
the photon fluxes are the same as for data, the eiﬁ are the same for data and Monte
Carlo. Further, if the cross sections are the same for Monte Carlo and data, we can use

equations A.14 and A.19 to predict the number of charm particles in the data:

Ntot N <A
tot tot v(data) a P(Si) NoTo
Nc(data) Nc(mc) ( N’t;():nc) ) ( A(Si) ) (AZO)

That is, since the charm-particle-to-photon ratio is artificially boosted in the Monte

Carlo, we must multiply the counted Monte Carlo luminosity by a scale factor, the last
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term in parentheses. The effective Monte Carlo luminosity is given by:

Na P(Si) Aoo'o) (A.21)

,Ceﬁ = ACmc ( A(S)
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APPENDIX B

Cross Section Errors Caused by Monte Carlo Statistics

In general, the anticipated errors for the cross section fits are:

< 6Cq 50,9 >= me' i PBi (B.].)

o(Ca) = |3 mirk (B2)

If errors on the p,i matrix are considered (due to finite Monte Carlo statistics, then

and the error on Cj, is:

where we are using the repeated index summation convention (except for «, which is
never to be summed over). Autocorrelating and throwing out cross terms (which vanish

if estimates are unbiased) we get:

< 6Cq 8Cy > = pai pai ni+ < 8paj bpak > njng
(B.4)

= Pai Pai Mi + 0%,

The familiar first term is the just error due to fluctuations in the number of charm events
found in the data (equation B.1). The second term is the additional error arising from

the uncertainty of the poi matrix elements. If the cross section measurement is correct
then:

ng = R,’gCﬁ and n; = J'»,C»,
Tme =< Rig 8pai Rjy bpaj > CpCy (B.5)
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We consider the case of the just-constrained limit, where p = R~1. The inverse

relation between these two correlates their errors:
(Pai +8pai)(Rig + 6Rig) =1 or  6paiRig = —paid Rig (B.6)
Using equation B.6 we can reduce equation B.5 to:

Now, the R;, matrix is measured from Monte Carlo by equation 5.9: R;q =

9Gia/ Cf,"“) , where we have used ¢ to replace the ratio of the luminosities. The bracketed

term in equation B.7 can be written as:

2
g
o (B.8)

= — o Gig 8ij 8y
Substituting into equation B.7, we get:
U2mc = 92 Pai Z mqg Pai
B
as long as (™) = C(d8ta)  If we let m; = Eﬁ Gig we get:

0% me = §° Pai ™Mi Pai (B.10)

an expression which is analogous to the first term of equation B.4. Since we are assuming

Cc(!mc) — C((ldata)’ then
m; = -]:R;a Cc(.mc) = ! ng (B.11)
g g
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Thus:

Uzmc = ¢ Pai s Pat

< 8Cq 6Coq >= pai pai ni (1+9) (B.12)

Since we have assumed the cross sections for Monte Carlo and data are identical, and
since the Monte Carlo simulation is identical to data, then the ratio of the luminosities
of the Monte Carlo and data will be the same as the ratio of the charm events found
in Monte Carlo and data: ¢ = Nysta/NVmc. Thus, to include the effects of Monte Carlo

statistics, the errors of the cross sections given by equation B.2 should be modified:

U(Cd) = A /Znipgi \/1—"" Ndata/ch (B13)
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