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Abstract

There have been numerous quantum neural networks reported, but they struggle to match
traditional neural networks in accuracy. Given the huge improvement of the neural network
models’ accuracy by two-dimensional tensor network (TN) states in classical tensor network
machine learning (TNML), it is promising to explore whether its application in quantum machine
learning can extend the performance boundary of the models. Here, we transform
two-dimensional TNs into quantum circuits for supervised learning. Specifically, we encode
two-dimensional TNs into quantum circuits through rigorous mathematical proofs for
constructing model ansitze, including string-bond states, entangled-plaquette states and isometric
TN states. In addition, we propose adaptive data encoding methods and combine with TNs. We
construct a tensor-network-inspired quantum circuit (TNQC) supervised learning framework for
transferring TNML from classical to quantum, and build several novel two-dimensional
TN-inspired quantum classifiers based on this framework. Finally, we propose a parallel quantum
machine learning method for multi-class classification to construct 2D TNQC-based multi-class
classifiers. Classical simulation results on the MNIST benchmark dataset show that our proposed
models achieve the state-of-the-art accuracy performance, significantly outperforming other
quantum classifiers on both binary and multi-class classification tasks, and beat simple
convolutional classifiers on a fair track with identical inputs. The noise resilience of the models
makes them successfully run and work in a real quantum computer.

Abbreviations list

List of abbreviations and definitions

TNQC Tensor-network-inspired quantum circuit
QCL Quantum circuit learning

NISQ Noisy intermediate-scale quantum

QNN Quantum neural network

N Tensor network

TNML Tensor network machine learning

PEPS Projected entangled pair states

MPS Matrix product states

TTN Tree tensor network

MERA Multi-scale entanglement renormalization ansatz
SBS String-bond states

EPS Entangled-plaquette states

isoTNS Isometric tensor network states

QMPS MPS-inspired quantum circuit ansatz
QSBS SBS-inspired quantum circuit ansatz
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QEPS EPS-inspired quantum circuit ansatz
QisoTNS IsoTNS-inspired quantum circuit ansatz
AE Angle encoding

CE Convolutional encoding

VAE Variational angle encoding

VINE Variational tensor network encoding
PQN Parallel quantum node

1. Introduction

Quantum computing has improved by leaps and bounds in recent decades. It becomes more meaningful to
seek and develop applications exerting quantum potential with the emergence of NISQ computers. In recent
years, parameterized QCL [1-3] algorithms have drawn a wide range of interest for their noise tolerance and
low qubit requirements. In these QCL algorithms, classical data are transformed into vectors in Hilbert space
and quantum entanglements are used to represent correlations between them. The learning process is
executed by optimizing trainable parameters of the variational quantum circuit. Therefore, the model
established is also called QNN. However, almost all QNN struggle to achieve the accuracy performance of
classical neural networks, even the simplest multi-layer perceptrons (MLPs). Researchers are looking for ways
to further improve QNN performance.

Variational quantum circuits inspired by TNs have been applied to machine learning [4-9] and
optimization problems [10—12] in recent studies and have become one of the most effective architectures in
quantum machine learning. The so-called TN is a framework that approximates higher-order tensors using
the contraction of lower-order tensors, whose entanglement entropy satisfies the area law [13, 14]. It has
been widely used to simulate quantum many-body systems [15, 16] and has been employed in various fields
such as building new frameworks for machine learning [17-19] and constructing quantum circuit simulators
[20]. In classical TNML, the two-dimensional PEPS-based model shows a huge improvement in accuracy
performance compared to the MPS-based model, and the fusion with convolution feature map further
improves the performance of CNN classifier. Such performance is due to the direct reflection of
two-dimensional spatial correlations and structural prior knowledge of natural images on PEPS [19].
Because of the natural compatibility of TN with quantum mechanics, quantum computing can benefit from
mature TN algorithms [21], which can be encoded into quantum circuits for machine learning. There have
been several TNQCs machine learning algorithms proposed, such as MPS [5, 7], TTNs [4, 5], MERA [5, 9].
Classical TNs require exponential bond dimensions to achieve the performance of their quantum version.
Although these quantum models have been shown to be effective and hardware-efficient [5], they still
significantly underperform classical neural networks in accuracy performance. Given the excellent
performance of 2D TN in TNML, it will be interesting to explore whether it can bring similar performance
improvements to QCL models and even enable them to challenge classical ones.

In this paper, we aim to apply 2D TN to QCL and improve the accuracy performance of quantum
models. To this end, we mainly face two questions: first, how to encode 2D TN into quantum circuit for
being applied to QCL just as it does in TNML? Second, how to use 2D TN to improve the accuracy
performance of QCL to meet or even exceed that of classical classifiers?

To solve the first question, we first encode 2D TNs into quantum circuits of unitary gates through
rigorous mathematical proofs, including SBS [22, 23], EPS [24], and isoTNS [25]. Then, to allow these 2D
TNQC:s to be used in QCL to construct ansitze or encoders, we construct a TNQC supervised learning
framework transferring TNML from classical to quantum. Any circuit encoded from a TN can be applied to
QCL through this framework. To solve the second question, we not only use 2D TNQCs as ansitze of
quantum models, but also propose several variational encoding methods, which can be combined with CNN
feature map or TNQC:s to transform the original data to adaptive quantum state features. We integrate our
proposed variational encoders and 2D TNQC ansitze on the basis of TNQC supervised learning framework
to build 9 novel 2D TNQC classifiers. These classifiers are validated and compared with existing quantum
classifiers in terms of performance on the same dataset. Considering that classical classifiers can easily
perform multi-class classification tasks, the quantum models should be compared with classical ones in the
same multi-class classification task, so we propose a parallel quantum machine learning method for
multi-class classification, on which we build our 2D TNQC multi-class classifier.

We evaluate effectiveness of the proposed method and the performance of these models on the MNIST
[26] image benchmark dataset through classical simulations as many QNN models do. The results show that
our models achieve the state-of-the-art accuracy performance among quantum models, and beat classical
neural network classifiers on the fair track. Without adding any classical network layer, our proposed models
achieve test accuracy of over 99% in almost all MNIST pairwise subset classification tasks and still perform at
a high level on another dataset Fashion-MNIST [27]. Such performances are significantly better than the
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MPS-inspired QCL model and outperform other quantum classifiers. The 99.18% test accuracy in quaternary
classification exceeds that of a simple CNN classifier with identical inputs. Such results demonstrate the
effectiveness of our proposed encoders, ansitze, framework and models. 2D TN successfully helps the QCL
models to improve their accuracy performance by 18.38%, making them outperform the classical classifiers
in some cases. Moreover, performing 2D TNQC ansitze on quantum computers instead of computing the
contraction of 2D TN or simulating these ansitze on classical computers can alleviate memory bottleneck
problem. This advantage allows larger scale 2D TNQC:s to be constructed to build QNN models with larger
data input dimensions and higher accuracy and promote their practical benefits. Thus, we hope that these
models are not only useful on simulators but also on real quantum machines. To this end we test noise
resilience of the model, the results show that the models have certain robustness to thermal relaxation noise,
which encourages us to run a minimum example successfully on the ibmq_nairobi quantum computer.

In summary, this paper makes the following contributions:

o We encode two-dimensional TNs into quantum circuits of unitary gates using rigorous mathematical proofs.

e We propose 3 novel and effective quantum variational encoding methods.

e We construct a supervised learning framework for transferring TNML from classical to quantum.

e We design 9 novel two-dimensional TN inspired QCL models.

e We propose a parallel quantum machine learning method called PQN for multi-class classification.

o The accuracies of the models extend the performance boundary of QCL, and our research promotes the
application of TNs in quantum machine learning.

2. Methods

2.1. Introduction to two-dimensional TNs
TN is a framework that approximates higher-order tensors using the contraction of lower-order tensor. In a
tensor diagram, each index of a tensor is represented by a line, and the tensor itself is depicted as a node. The
edges between nodes represent the contraction of virtual indices, whose dimension is called bond (or virtual)
dimension D and generally bounded as D < x to reduce the computational cost. TN contracts in a certain
direction, thus forming some specific TN architectures.

MPS can effectively describe the ground state in one-dimensional quantum spin system, which is due to
the fact that MPS can fully capture local entanglement characteristics in the system. As shown in figure 1(a),
an MPS with N nodes is described as

) = S (4545, A% © s (1)
(@ =
where each third-order tensor A}, has a,_; and a, which are related to the left and right virtual indices
and has a physical index s,,. All the virtual indices are contracted to form a tensor with N physical indices, so
it can be used to describe the 1D quantum-many body systems.

However, the applicability of MPS is difficult to extend to higher-dimensional systems. The same
problem also occurs in machine learning models based on MPS and its quantum version. For example, when
the model involves processing two-dimensional data such as natural images, as shown in figure 1(b), pixels
are rearranged into one-dimensional vectors in a certain order to meet the requirements of MPS, such
processing loses the original correlation information between pixels. To solve this problem, a natural idea is
to construct models using 2D TNs with the same geometric structure as data, the most typical of which is the
PEPS [15, 16], which is the high-dimensional generalization of MPS. A PEPS with open boundary on a
two-dimensional lattice of size H x V =4 x 4 shown in figure 1(c) can be written as

H Vv
v pEps) = Z]: (Ms((ll,’i;v 2 7A’IS((HHL¥}))) 22 I5Gij)) ()
(s} -

where Ms((mn)) is a fifth-order tensor with four virtual indices «, 5,7, € (corresponding to the left, up, right,
down direction) connecting neighbors and a physical index s. 7 denotes the contraction of virtual indices of
all tensors. However, it is more difficult to simulate PEPS than MPS in both classical or quantum way [10,
28], and the expansion of model is limited by computational cost. Here, we introduce other types of 2D TN
states, including SBS, EPS and isoTNS, which are described as PEPS subclasses with certain limitations [25,
29]. They can reduce computational cost and the quantum circuit ansétze inspired by them can efficiently
describe 2D TN.

A SBS [21] defines a set S of ordered strings, and a one-dimensional MPS for each string. By covering all
nodes on the two-dimensional lattice with overlapping MPS, the correlations of two-dimensional nodes are
obtained while retaining the advantages of one-dimensional structure. The description power of SBS
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Figure 1. Classical TNs. (a) Tensor diagram of a matrix product state with virtual indices of bond dimension D = x, and physical
indices (lines sticking out) of dimension d. (b) A tensor network machine learning model for image classification. The data is
expanded into one dimension and mapped into vectors. The parameterized TN contracts with vectors to obtain a probability
distribution over labels. (c) A PEPS with open boundary condition on a 4 X 4 lattice. (d) An SBS composed of vertical and
horizontal strings overlaps. (e) An EPS composed of small overlapping plaquettes containing 4 physical indices. (f) IsoTNS. These
arrows indicate the isometry conditions of tensors. The red node in the upper left corner is the orthogonality center, and its row
and column are orthogonality hypersurfaces.
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depends on the choice of strings. In image learning tasks, two-dimensional lattice is usually covered by
strings on multiple rows and columns shown in figure 1(d), and overlapping snake strings can also work,
which is called Snake-SBS.

Another efficient method for 2D TN is EPS, or called correlator product states. The basic approach of the
EPS is to describe a wave function by product of multiple sub-plaquette tensors in a 2D lattice, and to
describe the short-range correlation by overlap of sub-plaquettes whose wave functions are constructed
exactly [24]. An EPS composed of P = 9 plaquettes with 4 physical indices is shown in figure 1(e). The
description power of EPS depends on the size of sub-plaquettes. Larger plaquettes bring higher accuracy but
also increase computational cost.

An isoTNS describes a TN state with isometry conditions, which allows the two-dimensional network to
be reduced to the canonical form of 1D MPS when contracting rows and columns [25]. For 2D isoTNS, all
tensors that make up isoTNS are isometries. The physical index of each tensor has an incoming arrow, and
the virtual indices have incoming and outgoing arrows. All arrows point in the direction of the center node
(called orthogonality center) or the rows and columns where it is located (called orthogonality
hypersurfaces), and the directions of theses arrows are opposite to those of tensor contractions. When the
incoming virtual indices and physical index of these tensors contract with the corresponding indices of their
complex conjugate tensors, the remaining indices yield the identity. For example, the tensor outside the
orthogonality hypersurfaces in figure 1(f) satisfies

D A A = TaarIpsr (3)
sye

where [ is the identity and the tensor on the orthogonality hypersurfaces satisfies

S A e = @
sBvye

IsoTNS can be more easily implemented on quantum circuit by efficiently moving the orthogonality
center to the corner of two-dimensional lattice [25]. Note that all of the above TN satisfy equation (2). They
are applicable to classical computing, and they inspire circuit ansitze in QCL. The most obvious difference is
that the quantum gates used to describe the states on quantum circuits are unitary, meaning that their
corresponding classical 2D TN tensors are also required to be unitary.
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Figure 2. Quantum circuits inspired by different TNs. There are 16 green nodes in each diagram that represent encoded qubits
and are arranged in a 4 x 4 lattice in 2D TNQC. Each blue block represents a multi-qubit unitary, except in QSBS where a block
represents a QMPS. (a) A 16-qubit QMPS circuit consists of fifteen two-qubit unitaries sequentially applied to adjacent qubits (b)
A 16-qubit QSBS circuit consists of four vertical QMPSs first prepared and four horizontal QMPSs followed. (c) A 16-qubit QEPS
circuit consists of nine sequentially applied four-qubit unitaries. (d) A 16-qubit QisoTNS circuit consists of nine three-qubit
unitaries and three two-qubit unitaries, these unitaries are applied in the order of their layers.

2.2. Ansitze: generating quantum circuit ansétze from 2D TNs through mathematical proofs

We introduced three classical 2D TNs in the previous section, since our goal is to apply 2D TNs to QCL, the
first thing we need to do is to encode them into quantum circuits. In this section we propose 3 different 2D
TNQC ansitze and we show how they are generated from classical TNs with rigorous mathematical proofs.

2.2.1. Circuit ansitze

QMPS: Before introducing 2D TNQC ansitze, we first review the 1D MPS circuit ansatz. As shown in
figure 2(a), a 16-qubit QMPS can be implemented by sequentially applying a two-qubit unitary to adjacent
qubits [30]. Each two-qubit unitary entangles the last qubit obtained from a previous unitary with the next

N
one. Starting from the encoded product state ® |¢;), QMPS returns a state
i=1
N
[+ QMPS> = UE]_I U{2]_2 .. U£2] UEZ] ‘®1 D) (5)
i=

where U ,n={1,2,...,N—2,N— 1} denotes a two-qubit unitary acts on the nth and (n + 1)th qubit.

The structure of QMPS shows that entanglement only occurs between one-dimensional adjacent qubits,
while 2D TNQC ansitze extend it to two dimensions.

QSBS: We construct a 2D lattice of qubits of size N = H x V to demonstrate the spatial structure of 2D
TNQC. The first ansatz shown in figure 2(b) is inspired by SBS (called QSBS), which consists of multiple
QMPSs. QSBS first applies a set of vertically oriented QMPSs on different columns in parallel on the lattice,
followed by a set of horizontally oriented QMPSs on all rows in the next layer. The QMPSs corresponding to
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the strings in the same direction are set as canonical form with the same orthogonal direction to generate
linear sequential circuits [31]. So QSBS returns a state

au

H
v qsps) = H (mV 1)’ U[2 1)HU[H 1n) " (l]n) ® ® |¢(1J)> (6)

where U[ ) is a two-qubit unitary acting on the qubits at (m,n) and (m + 1,n) for vertical QMPSs or (m,n)
and (m, n + 1) for horizontal QMPSs of the 2D lattice.

QEPS: The EPS-inspired quantum circuit (called QEPS) sequentially applies a unitary U[ ) to the four
qubits of each 2 x 2 plaquette from (m,n) to (m + 1,1+ 1) on the lattice. It returns a state

| qeps) = H Ut & ® | (i.j)) (7)
T€§ =

where 7 = (m,n) € g, 3 denotes the order of unitary gates. Figure 2(c) shows a QEPS consisting of 9
four-qubit unitaries acting on different plaquettes, and the unitaries are applied sequentially in the order
S§=1((1,1),(1,2),...(3,2),(3,3)).

QisoTNS: The isoTNS-inspired quantum circuit (called QisoTNS) starts from the corner of the 2D
lattice and applies a three-qubit unitary UE 1] ) on a qubit group including qubits located at (1,1), (2,1) and

(2,2). Then in the next layer, we apply a three-qubit unitary Uul ) acting on (m, n), (m—+1,n) and
(m+1,n+ 1) in parallel at each location offset by +1 row or column relative to the qubit group in the
previous layer. This process is repeated up to the boundary of the 2D lattice. A qubit group beyond the
rightmost boundary of the lattice only applies a two-qubit unitary UEZV’]L,”) on the qubits located at (m,n) and

(m+ 1,n). Such a design follows the tensor contraction direction and satisfies isometry conditions in
isoTNS. A QisoTNS can be described as

|9 isoTNs) = H H Ur % QE |9 6ij)) (8)

where [ represents the layer number of circuit, 7 is an ordered set of layers ranging from 1 to H+ V — 2, and
these layers are applied sequentially. S; represents the unitaries applied in the /th layer, which contains
min(l,H+ V+ 1 — ) unitaries of three-qubit or two-qubit, and these unitaries are applied in parallel. In
total, a QisoTNS circuit contains (H — 1) x V unitaries. For example, a 16-qubit QisoTNS ansatz shown in

3 3 3 3] )
figure 2(d) has 6 layers, namely, {U[l 1)}1’ {U(2 1y El},z)}b {UE3],1)7 ngl,z)’ Ut 3)}3, {U(3 2 (2 3 U[ }4,

(UG5 U} (UG e

These c1rcu1t ansitze are generated from TNs. Recalling the classical TN, all the indices are set to 2 so
that each tensor that makes up them is described by a unitary gate on the quantum circuit. Tensors in MPS
and isoTNS first needs to balance the number of incoming and outgoing indices due to unitary gate
constraints, then unitary gates are applied in a specific order according to the adjusted directed MPS and
isoTNS diagrams to generate QMPS and QisoTNS having the same tensor diagrams. SBS and EPS provide
specific methods to represent a 2D TN by overlapping local tensors in a lattice, which allows us to construct
quantum circuits with the same rules, so QSBS and QEPS are inspired by the generating rules rather than
specific states, and their corresponding TNs can be described by transforming unitaries back to tensors.

2.2.2. Mathematical proofs

Mathematical proof for QMPS: Now we further prove that ansitze introduced above are generated from
TNs. First, a QMPS ansatz is a left (or right)-orthogonal MPS with D = d = 2, and each tensor of the MPS
satisfies the left (or right)-orthogonal condition, i.e.,

s
ZA”% 16111 n)an Vap ﬂn 1051 (9)

San
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Figure 3. (a) The diagrammatic proof that each combination of a two-qubit unitary and |¢) is equivalent to an MPS tensor, and it
satisfies the isometry condition. (b) A QMPS circuit is equivalent to a special MPS. (c) The TN diagram corresponding to the
16-qubit QSBS circuit. (d) The TN diagram corresponding to the 16-qubit QEPS circuit. (e) The diagrammatic proof that each
combination of a three-qubit unitary and |¢ ) is equivalent to an isoTNS tensor, and it satisfies the isometry condition. (f) The
TN diagram corresponding to the 16-qubit QisoTNS circuit.

While two-qubit unitary gates applied in a QMPS can be written as

2] _ ZBs(ll)al(SléZ s1,a1)(01,02]

S1,041
2 Sn
UL] = ZB(”)anflﬂn n+1|5ﬂ7aﬂ><a”—1’6n+l| . (10)
Snyan
2] SN—15,
Uy = Z BILllNaN 25N|5N—175N><QN—2’5N|
SN—15SN

with 1 < #n < N—1and dim(a,) = dim(s,) = dim(d,) = 2 where J,, is the index connecting |¢,,). Since U,
is a unitary, it has U U, = Io, .a;_ 15,67, - Then according to equation (10) and
[Gnt1) = 25, Vnt1)5,4 [Ont1), we have

TSn Sn —
ZZV5n+1 (n)a/_,a ,‘+1B(n)u,,,1an6n+ly5n+l _Iﬂn a,_, (11)

n—
Snln Opg1

as shown in figure 3(a) with a tensor diagram. Let 25n+1 BS(" Yo 1y V) dnss = As("n)a oy then tensor

AS(';)a o, satisfies the isometry condition equation (9). Therefore, each unitary gate can be identified as an

MPS tensor. Combining equation (5), we get
N
% qups) = URL U, -+ US U} 2 |¢)

B B RRENE: 2316
_ZZ (N—1)ay_»6n (1)u15152|51”’5N>< 1" N|i@1 ZV(1)6;| z>
-\5

{s} {a} )
BSN 15N B N
B ZZZ (N=Day—28yV N3N " B(1)a 5,6, (2)82Y (15, ,'le |si)
{s} {a} {6}
— Asbll—l C AS N N
o ZZ (N=1)an—, (Day E’l Isi) = |1 mps)
{s} {a}

where s,_; = sy—1Sn- This means that a QMPS is generated from a special MPS. For example, as shown in
figure 3(b), a QMPS with # unitaries is generated from a left-orthogonal MPS having n tensors. Each tensor
has a physical index of dimension 2, except for the last tensor which has a physical index of dimension 22, this
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can be seen as a contraction between Ay_; and an additional tensor [11]. The dimensions of all indices are 2.
The temporal sequence of applying unitaries on quantum circuit is the opposite of the arrows’ directions.

Mathematical proof for QSBS: Now back to 2D TNQC ansitze. The unitary gates applied in QSBS are
the same as those in QMPS. So according to equation (6), we can get

T

2] [ g2 g
WQSBS H (mV—l) Uml)HUH 1) (1 n)l@l@) |¢(w>

H \%4
S(m V—1)S(m, v) . S(m,1) /
g | D DR D e o P  Istn9) © (3|

(m,V—=2)"(m, V) (m,1) "~ (m,1) "~ (m, 2)]
m=
Hoon }Hat, }

14
8 5 8
(H—1,n) 9 (H,n) (1,n)
x l l Z Z A(H Lm)at “.A(l n)arrt ® ® |6(1»1)>
vt (H—2,n) ) i=1j=1
{50 faen}

E : 2 : E : E :BS(H 1,V—=1)S(H—1,V) BS(H,Vfl)S(H.V) A(S(/H—I,V)(S(IH V)
- ! ! . vert e
B TG H—1,V—1)a (17721 V— 2)5(11 1,V) (H,V=1)a (Tqmv 2)6(/1-1 V) (H I,V)a(H zv) ’
s
{ (m‘)}{“(v")}
’ ’
S(1,1 g 1,1 g 1,2
X B( ) A ¢ )wrt A S vert ® ® |S 7])>

horiz
(1, 1)“(‘1) 1)5(/1 1)5(1 2) (l’l)u(l‘l) (l’z)a(l 2)i=lj=1

(H—1,V— 1)5(H 1,V)S(H,V—1)S(H,V) (1,1)
- E E E MS(H 1,V—1)ahorz ghoriz gvert "'7Mhorxz avert_grert ® ® |5(l,])>
(H 1,v—2)4(H,v—2)}(H-2,v) Aan%a,n4a, 2)i=1j=1
{S} { (mﬁ)}{u(,n)}

H V
= Z Z Z M(([-’-Il ]1 \/‘/_1>1)a/harxz vert MS(er}z)a/vert ® ® |S l])> = WPEPS) (13)

(H—1,V=2) (H zv) (1 e, i=lj=1
{5} {”(/m,)}{u(’”)}

horiz vert g

where ¢’ denes the indices of the first layer tensors connected with the second layer tensors. a™"# and a**"" are
virtual indexes in the horizontal and vertical directions. s(’ Ho1,v—1) = S(H=1,y=1)S(H=1,V)S(H,Vv—=1)S(H,V) and
a(lg)fi,vfz) = alggifl’vfz)algﬂff/iz) mean that tensor My v_1) has a physical index of dimension 2% and it
has a virtual index of dimension 22 in the horizontal direction. Our proposed 16-qubit QSBS using the same
generating rule as SBS but is equivalent to the TN shown in figure 3(c), which indicates that the
SBS-inspired circuit is a special PEPS with non-uniform virtual and physical bond dimensions. Moreover,

’
) OGij+1) )
H ’ ’
(, ) (17])‘1(,} 1) (, })5(, 41 (17]+1)u(1 1,j+1)4(, )+1) (111)“(,,]—1)“(1,])u("*h]‘#")“(":]‘#")
(three or four in some cases) from two layers create a PEPS tensor. In addition, since indices have directions,
QSBS can actually be further classified as the isoTNS.

Mathematical proof for QEPS: The four-qubit unitary gate used in QEPS can be written as

= > 1l e e} {6 (14)
{s7},{a"}

means that two unitaries

where Tg} 57}{ar} 18 an eighth-order tensor (i.e. a 24 x 2* matrix), and {s"},{a” }, {07} are the physical
indices, virtual indices, and indices connecting encoded states |¢) of this tensor, {a],} and {a; } are the set of
its incoming and outgoing virtual indexes. According to equation (7), we have

H Vv
|9 qEps) = H UE] i§1j§1|¢(i’j)>

TE?

I X e D} 7 S & S vipaslien)  as)
res {57 hiam} "o

- { (Hfl,Vfl)} { (1, 1)}

- Z}:{Z}: (H-1,v—1){ati=1v=D}7 """ (1 D{attn} ;2 ® ® [5(i,)

with 3050y TES, Va) {vs} =M {af}i" which shows that each four-qubit unitary gate creates a tensor on the
2D TN. However, the EPS-inspired circuit is not a PEPS, because, as shown in figure 3(d) where lies the
corresponding tensor diagram of QEPS, its virtual bonds are not always between adjacent tensors, QEPS is a
special 2D TN with non-vertical connections.
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Mathematical proof for QisoTNS: Now moving to QisoTNS, a three-qubit unitary gate outside the
orthogonality hypersurfaces is described as

Uiy = D Dl myapes|s::7) (8,06 (16)

sye

where D is a sixth-order tensor (i.e. a 2> x 2’ matrix), and «, 3,7, € are its virtual indices. Since

(m, n)(saﬁfys
3 3
UI;[n]n) UE}L n) = loarIpp Iss, we can get

i i _
ZZv(m+l,n+l)5D(1Sn,n)a’B’yadDS(m,n)aB'yaév(m-H,ﬂ+1)5 - Iaa'lﬁﬂ" (17)
sye §

Let) s Ds(m_’n)a BryesV(m+1,n41)6 = Ms(m,n)a e then tensor M; () satisfies the isometry condition
equation (3), which is shown in figure 3(e). For a three-qubit unitary gate on the orthogonality
hypersurfaces, > 5 5 D%, _5.5,V6,V5, = M., and M, satisfies the isometry condition equation (4). In

addition, the two-qubit unitary gate in QisoTNS has similar properties to that in QMPS. These lead to the
fact that each unitary gate can be viewed as an isoTNS tensor. Combined with equation (8), we have

H v
¥ Gisorns) = H H Ur ® ® 9 ij))

IEB TES
(H—1,V)S(H,V) (1,n H v
ZZMS(H L,v) a(H 1, v)} M5(1 1){a(1=1)} i§1j§1 |5(i,j)> (18)
{s} {a}
s/, H V
( 1,V) (1,1) —
- {Z}:{X}: (1;{ 1‘v ai=1n Ms(l,l){a(‘»‘)}igljgl |5(i’j)> = | peps)

where s(’ He1,1) = S(H—1,)S(H,n) Means that each tensor in the bottom row has a physical index of dimension
22. And a QisoTNS is generated from a special PEPS satisfying the isometry conditions, namely, an isoTNS.
The 16-qubit QisoTNS circuit is equivalent to an isoTNS with 12 tensors as shown in figure 3(f). Each tensor
has a physical index of dimension 2, except tensors in the bottom row, which is similar to the QMPS. The
green lines indicate indices connected to the encoded states. Such directed tensor diagram is adapted from
the original isoTNS. As mentioned before, to construct a QisoTNS equivalent to isoTNS, each tensor is
connected by a different number of green lines to balance indices before generating QisoTNS. In addition,
making the upper-left tensor the orthogonality center is easier for generating QisoTNS.

These three types of ansitze are generated from special 2D TNs. QSBS and QisoTNS belong to the same
type of TN, and QisoTNS has more tensors and more uniform dimensions of indices. Although QSBS is also
a 2D TN, not all its connections are between neighbors. Their TN structures may affect the classification
performance.

Note that we only show single-layer circuit ansitze with mathematical proofs in this section, which are
formally equivalent to TNs with D = d = 2. However, when constructing QCL models, the models can
follow the proposal of [11] to use multi-layer circuit ansitze to construct TNs with a larger bond dimension
D. These circuit structures can also be used in encoders, as we will mention in section 2.4.

2.3. Framework: from TNML to TN-inspired QCL

Our goal is to apply 2D TN to QCL, now that 2D TN has been transformed into 2D TNQC ansitze, the next
thing that needs to be done is to apply these ansitze to QCL, so here we propose a TNQC supervised learning
framework shifting the perspective from classical TN to quantum one.

Typically, a classification task learns from a dataset of existing classification labels and establishes a
mapping from the input data space to the classification label space. Here, we consider the training data with
an N-dimensional real number vector x = (x,%,,...,xy) from a grayscale image, where x; € [0, 1], which
represents the normalized value of this pixel. It first needs to map data vectors to a high-dimensional space. A
typical way in classical TNML is to use the local feature map ¢ (xl) = cos( 5 x;)|0) 4 sin(Zx;)|1) for each

element of a vector, then we obtain a global feature map ® (x) = ® ¢ (x;). This can be implemented on

quantum circuit by applying a single-qubit RY rotation on each of the N qubits, which is called AE. Starting
from the product state [0)®N, the quantum state after feature mapping is

1) — %1 RY (%) |0). (19)
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In order to meet the requirements of the geometric position of a 2D TN, the encoded (or mapped) data is
placed on a two-dimensional lattice according to the original positions of pixels, which is expressed as the
product of N order-1 tensors.

In TNML, the data tensors after feature mapping are multiplied by a (N + 1)-order weight tensor W'
containing the label index L. The next step is to decompose W' into TN form and optimize the tensor by TN
method [8, 17]. Finally, we choose I for which f(x) = W'® (x) is largest as the label of input x. While in our
TN-inspired QCL, the weight tensor is constructed by a TN-inspired unitary Ury containing trainable
parameters, which makes the weight tensor actually a 2N-order tensor. Then we predict labels based on
measurement results of quantum circuit. Usually, the measurement operator set { M} with completeness is
used for measurement, the index i represents the possible results of measurement. These operators act on the
state space of the system to be measured, so a TN-inspired quantum classifier can be interpreted as a
contraction of input data tensors, weight tensor, measurement operator tensor and their corresponding
conjugate transpose tensor from the TN perspective. After measurement, the circuit will output the
probabilities of 2V different results, the probability of the result i is

pi = (@ Uy (U; (60) MUz (U; (61) |2) (20)

where U (Uj(6y)) represents the quantum circuit composed of a set of unitaries U; and their trainable
parameters 0, and the self-adjoint measurement operator M; is the feature space projection of the
observable c®N. In our models, given an input x, the output logits E can be obtained by taking

a linear combination of the square roots of the probabilities of all results, specifically

E(x,0) = Zfi;l_l Pi— lel;,\l_l pi» which differs from f{x) in TNML. The meaning of E(x, ) is to divide
the observation bases equally into two sets and calculate the difference value between the sum of amplitude
absolute values over the bases in the two sets. The result of the optimization will maximize one of the sets’
sum of amplitude absolute values, which also means maximizing the sum of probabilities of this sets (Note
that using the sum of amplitude absolute values makes the network converge more stably than that of
probabilities). Thus E(x,6) only compares probabilities of two sets that the measurement results occur on.
Using a finite number of shots (y/p, = 0 for some 7) could also normally evaluate E(x,) and make it work on
real quantum machines or simulators obtaining probabilities of results by repeated measurements. We show
this in section 3.4.

Next, the optimization of weight Upy follows the QCL framework under the classical-quantum hybrid
hardware architecture [1], it feeds the logits E(x, #) back to classical computer, and then use the adaptive
moment estimation (Adam) optimization method to adjust the parameters 6 to minimize the difference
between the predicted labels and the real ones. In binary classification, the loss function is defined as

1

1
cz_ﬁglogl+exp(fE(x,9)) (21)

where D represents a batch of data, logits E(x, ) is processed by the sigmoid function and then used to
calculate the cross entropy with the true labels. In multi-class classification, circuits of the same structure
containing different parameters are repeated k times to produce k outputs. Its loss function is

_expEc(x,0)
21 eXp (22)
& ZCXPE (x,0)

i=1

where c is the sample label, E;(x, ) is the output of the ith circuit, which is used to calculate the probability
that the predicted label of x is ¢ through the softmax function. Then we calculate the cross entropy of model’s
probabilities and data’s labels.

Each step of training will return an average loss of the batch of data, and the gradient of loss can be
calculated exactly using automatic differentiation software for QCL. The parameters are adjusted by Adam
algorithm to generate a new quantum circuit for the next training step. This process is iterated to minimize
loss and finally obtain the optimal parameters, which correspond to the optimal weight tensor in TNML.
Finally, we predict the label of x as sign(E(x,6) — 1) in binary classification. In multi-class classification, we
choose i for which E;(x, 6) is largest as the label of input x.

2.4. Encoders: novel variational encoding methods

In order to improve the accuracy performance of QCL, in addition to applying 2D TN to QCL, considering
the effect of data encoders also matters. Although AE maps data to high-dimensional Hilbert space, the
number of qubits it requires is equal to the classical data dimension, which makes it difficult to use complete
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Figure 4. (a) Convolution encoding. The tensor after convolution feature mapping is re-divided into L X L c-dimensional input
vectors, each vector is encoded by ¢ single-qubit rotation on the same qubit to map into a two-dimensional vector. (b) Variational
angle encoding. (c) Variational tensor network encoding. The image is divided into several parts of equal size, each part is
encoded by a 2D TNQC encoding layer Uep, and an adjustment layer Uyg; is used to adjust the correlation between pixel blocks.
(d) Implementations of three types of multi-qubit unitaries. (e) Implementations of unitaries used for variational tensor network
encoding.

data due to the constraints of a limited number of qubits on NISQ hardware. We have to use dimensionality
reduction methods to pre-process data before training. Besides, the essence of AE is a product state feature
map, which is untrainable. This may result in the mapped data not being in the optimal position in the
Hilbert space for classification using a TNQC ansatz. A better choice is to use a variational feature map with
trainable parameters.

To address above two issues, we propose a data encoding method based on convolutional feature map,
called CE, which naturally conforms to the spatial arrangement of 2D TNQC ansitze. As shown in
figure 4(a), the input image data with shape Ly x Ly is processed through convolutional and pooling layers to
generate a third-order feature tensor with dimensions L x L x ¢, where ¢ represents the number of
convolutional channels. Instead of flattening this feature tensor, we group the data at the same position in
different channels into a c-dimensional vector to inherit the spatial features of the image. Therefore, it can be
regarded as a product state in the space /L. Next, ¢ single qubit rotations selected from {RY,RZ} are
applied on each of the L x L qubits, so the convolutional features are further transformed into a product state
in the Hilbert space of dimension 2:*L, For 2D image data, adopting a trainable CE method can effectively
extract 2D features from multiple channels of the images, which can be continuously adjusted during
training to better fit the 2D TNQC classifiers. Meanwhile, the CE reduces the dimensionality of original
high-dimensional data to a size that can be used by QNN.

The key to the effectiveness of CE lies in its parameters being learned jointly with those in TNQC during
the training process, resulting in a hybrid classical-quantum architecture. It is more desirable to see QNNs
perform without the aid of classical network layers, thus eliminating the possibility that the performance of
the classifier comes from classical network layers. Following this idea, we introduce trainable parameters into
AE, which is called VAE. As shown in figure 4(b), it begins with |0) on each qubit and sequentially applies
two single-qubit rotations RY with angles determined by the data x; and a trainable parameter 6 respectively.
This is equivalent to applying an RY gate with a rotation angle x; + 6. Therefore, VAE yields a product state

N
[¥) = ® RY(x;+ 0)|0), and it is trained together with the 2D TNQC classifier. Note that scaling the
i=1

normalized data x = (x1,x,, . ..,Xy) before training can further improve its adaptability.

Although VAE incorporates trainable parameters, it still requires N qubits to encode N-dimensional data
which makes it difficult to make full use of the data’s power. Moreover, the linear transformation of VAE
limits its adaptive capability. Therefore, we propose a VINE method to act as a scalar between the number of
qubits and the data dimension, and to perform a nonlinear transformation. Specifically, the original image is
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partitioned into several equally sized 2D image blocks. For each block, a 2D TNQC ansatz layer using special
unitaries that we will introduce later is applied to encode it, and these encoding layers are applied to
quantum circuit in sequence. This method ensures the expression of spatial correlation in image blocks, and
we can also add an adjustment layer between two encoding layers to adjust the correlation between pixel
blocks. The two types of layers apply the same kind of 2D TNQC ansatz but with different unitaries, and each
of them can be viewed as a 2D TN operator. From this perspective, data of any dimension can be encoded as
a TN state [11], and measurement operation on the circuit results in a contraction of the TN state and its
conjugate transpose. This encoding method is presented in figure 4(c). In addition, when using VINE, the
encoder circuit architecture and the circuit of QCL ansatz used as trainable weights are inspired by the same
TN (1D MPS or a 2D TN). Thus the circuits of VTNE-based QCL models always consist of multiple layers of
QMPS or 2D TNQC, and a L-layer circuit forms a TN of D = 2L,

Now, we can integrate our proposed variational encoders and 2D TNQC ansitze on the basis of TNQC
supervised learning framework to build several novel 2D TNQC classifiers, which we will show in the
section 3.

2.5. Unitary implementations

There are three unitaries used to construct distinct circuit ansitze, and these ansétze can be employed for
data encoding or describing weight tensor. For ease of distinction, a TNQC ansatz layer used to describe the
weight tensor is referred to as a QNN layer. While in VINE, TNQC ansitze are also used to construct
encoding layers and adjustment layers. Here we introduce unitary implementation in different layers and
TNQC ansitze. First, TNQC ansitze in the QNN layer and the adjustment layers use the same unitaries
including

n+1
UZ(0) = CNOT, .1 ® (RYi(6;)),

[2] . m—+1 n+1
Ulnn (0) = CNOTm ) 1 & (RY (i) (Bim ) 0 CNOT (o, ety 8 (RY (o (O ),

[3] _ . (23)
UP (8) = CNOT iy 0 CNOT ® RY(i (01:10)),

(mJl)( ) (m+1,n),(m+1,n+1) (m,n),(m=+1,n) (i,j)e{(m,n),(m+l,n),(m+1,n+l)}( (,])( (1,])))

[] m—+1 n+1 lntl

4 m n
Uiy (@) = [T CNOT G im—i 1) (it [ [ ENOT iy i1y © © (RY(ijy(0i)))

i=m j=n p=my=n

Figure 4(d) shows all three multi-qubit unitaries used in different circuit ansitze in these two layers,
which consist of single-qubit RY rotations containing trainable parameters and CNOT; ; gates. Where i is
control qubit and j is target qubit, it is set to always i < jin two-qubit and three-qubit unitaries to ensure that
CNOT gates are in the same direction in all unitaries. The four-qubit unitary is required to apply CNOT gate
counterclockwise from the upper left corner of the local 2 x 2 lattice.

Second, in the encoding layers, we use special unitaries to construct TNQC ansitze compared to the
origin ones in QNN or adjustment layer, including

n+1
Uene ) (0,%) = UZ(0) @ (RY;(x)),

m-+1 n+1
Uencﬁl,n) (0,x) = UEZ] (0) i;@m (RY(i,”) (x(iyﬂ))) or Uf;),"] (9)](§n (RY(m>j) (x(”%]')))7

m,n)
Uencps o (0.%) = UL (6) (R (x(i5)) .
enc ’x = o ® ,7. x.,A ,
(1) (rm,m) (i,j)e{(m,n),(m+1,n),(m+1,n+1)} () i)
[4] . [4] m+1n+1
Uerc(onn) (0:%) = U,y (0) 8 ® (RY iy (x(i7)))

To be specific, each special unitary for encoding applies an RY rotation on every qubit prior to the
original unitary being applied, with the angle of RY being the corresponding pixel value x; on the 2D lattice
location of the qubit. And the RY rotations of different encoding unitaries applied on the same qubit use the
same pixel as angle. Figure 4(e) illustrates three multi-qubit unitaries used for VINE.

2.6. PQN: a novel parallel quantum machine learning method for multi-class classification

Classical neural networks can easily perform multi-class classification tasks, given that our goal is to compare
the accuracy performance of quantum and classical classifiers on a fair track, limiting the classification task
to binary classification is obviously not fair to classical classifiers. However, quantum classifiers often need to
perform multi-class classification tasks with the help of adding a classical dense layer or an MLP classifier,
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forming the so-called classical-quantum hybrid classifiers. That’s not a good thing because it is difficult to
determine which part of the network really plays a role. The classical layer can learn and classify on its own,
and sometimes using only the classical part of the hybrid model even outperforms the full hybrid classifier.
Using the probabilities of the quantum measurement results or the expectation of each qubit as the logits for
classification, we can perform multi-class classification without resorting to classical neural networks, but we
will get a poor classification accuracy.

In order to enable quantum classifiers to efficiently perform multi-class classification tasks without the
help of classical networks, we propose a parallel quantum machine learning method called PQNs for
multi-class classification. For a k-class classification task, we create k quantum circuits having the same
architecture. Each circuit has independent parameters for learning and iteration. They can be considered as k
‘quantum nodes’ of the classifier. These ‘quantum nodes’ can be executed in parallel on multiple different
quantum machines. For an identical input, they will generate k outputs after measurement, which are then
used as logits to calculate loss according to equation (22), and parameters in all kK quantum nodes are then
simultaneously optimized according to the gradient calculated by loss. Such quantum nodes act similarly to
the output neurons in the last layer of the MLP. Note that such a multi-class classifier is still composed of
pure QNNs.

3. Results

Based on the TNQC supervised learning framework, 9 different 2D TNQC classifiers can be obtained by
combining the different encoders and ansitze we propose. However, it is not yet clear the specific
performance of these classifiers. We evaluated the accuracy performance of the 2D TNQC classifiers on the
most commonly used MNIST benchmark dataset for testing QCL models. Our simulations and experiments
are geared towards answering the following research questions (RQs):

e RQI. Can 2D TNQC ansitze and new data encoding methods improve the accuracy performance of QCL?

o RQ2. Which is the best of the new models built with different ansitze and encoders?

e RQ3 Whether the accuracy performances of the models are affected by some TN features of ansitze?

e RQ4. Can QCL classifiers be used for multi-class classification tasks without the aid of classical dense layers?
How does it perform?

e RQ5. How do the best quantum classifiers perform compared to classical classifiers?

e RQ6. Do our models work on a real quantum machine?

In order to answer these questions, we implement the 2D TNQC models’ simulations using Tensorflow [32]
deep learning framework and Tensorcircuit [33] quantum simulator. Tensorcircuit claims to provide
significant speedup by constructing simulator using a TN engine. It is well-compatible with tensorflow, with
which enabling automatic differentiation and GPU acceleration, so it is suitable for variational quantum
algorithms. The actual experiments are carried out on ibmq_nairobi quantum computer to verify the
feasibility of the model on a real quantum machine. Since Tensorcircuit does not provide direct support for
IBM hardware, this part is done using Qiskit [34]. And training of the model for the experiments uses
FakeNairobi simulator backend provided by it. Note that circuits simulated by Tensorcircuit allow to return
the ideal state vector and the exact probabilities of the measurement results, and it automatically computes
the exact gradients. While our circuits simulated by Qiskit only estimate the probabilities of the
measurement results by repeating the measurement multiple times and counting the frequencies, and use the
finite-difference method to compute gradients. Thus logits E(x, ) in section 2.3 can be computed directly on
Tensorcircuit from the exact probabilities returned by the simulator, and are evaluated on Qiskit based on the
probabilities obtained from finite shots (repeated measurements).

We perform simulations on a server with an 8-core 3.60 GHz Intel(R) Core(TM) i7-7820X CPU and a
TITAN RTX GPU. The server has 16 GB RAM and 24 GB VRAM.

We carried out 4 tasks for above RQs, which we will present in the following 4 subsections. All model
training is done on the simulators. We list in advance the calculation time and number of qubits required to
carry out these tasks in table 1.

We use 16 models of different combinations in section 3.1 while all other tasks only use the
VTNE-QisoTNS model. The ansatz we use in section 3.2 varies in the bond dimension D while all other tasks
have D = 2. We perform a multiclassification task in section 3.3 while all others are binary classification. Our
training on FakeNairobi in section 3.4 is based on Qiskit with CPU, while others are based on Tensorcircuit
with GPU. Other settings on the dataset and training can be found below. These tasks are huge amount of
computation for classical simulators, although the excellent performance of Tensorcircuit greatly accelerates
our training process by more than 10 times compared to using any other simulators, they still take some
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Table 1. Calculation time and number of qubits in each simulation.

Task Simulation Time (s) Qubits number Simulation Time (s) Qubits number
AE-QMPS 115 CE-QMPS 1473
AE-QSBS 173 16 CE-QSBS 1543 16
AE-QEPS 144 CE-QEPS 1559
Section 3.1 AE-QisoTNS 170 CE-QisoTNS 1534
VAE-QMPS 173 VTNE-QMPS 1462
VAE-QSBS 208 16 VTNE-QSBS 1671 16
VAE-QEPS 181 VTNE-QEPS 2877
VAE-QisoTNS 206 VTNE-QisoTNS 1979
D=0 1362 D=2’ 5314 16
Section 3.2 D=2 1979 16 D=2* 8476
D=2? 3589 — — —
Section 3.3 Multiclassification 16 256 16 — — —
Section 3.4 Noise resilience 9157 9 — — —
FakeNairobi 2260 7 — — —

time. The statistics in table 1 show that simulating TNs with larger bond dimensions (section 3.2),
performing multiclassification tasks (section 3.3) and simulating noise model (section 3.4) is very
time-consuming. Because they require the simulator to use a large amount of memory to simulate deep
circuits that record precise quantum states. Deeper (as D increases) and more (non-parallel
multiclassification tasks on the simulator) circuits, as well as the addition of noise channels increase the
memory and time consumption of the simulations substantially. The use of quantum hardware would be an
important means of solving these problems.

3.1. Classical simulation results of binary classification for RQ1 & 2

In this section, we construct 16 QCL classifiers by combining 4 encoding methods and 4 circuit ansitze
under the TNQC supervised learning framework. Among them, encoder baseline and ansitze baseline are
the existing QMPS (also known as hardware-efficient ansatz) and basic angle encoding methods,
respectively. To answer RQ1 and RQ2, we use a simulator to run quantum classifiers to perform binary
classification tasks. The simulation results are used to analyze whether 2D TN and variational encoding help
improve accuracy, and to analyze performance differences between classifiers. All simulations below are
repeated 10 times with randomly initialized condition.

The number of pixels encoded by the 4 encoding methods is not the same while using the same number
of qubits. In order to ensure the fairness of the comparison, we first use AE and VAE on 16 qubits to encode
data and test the performance of different ansitze, because they encode the same number of pixels. The
simulations are based on MNIST dataset which is a handwritten digital image dataset containing a training
set of 60 000 samples and a test set of 10 000 samples, and each sample is a 28 x 28 grayscale image and
belongs to one of 10 classes. We choose three binary classification tasks of increasing difficulty including 01,
27, and 49 classification tasks. These images are resized to 4 x 4 using area-based resampling method, which
allows them to retain two-dimensional connections between pixels and be encoded to 16 qubits. All
simulations use identical hyperparameters, the batch size is 100 and Adam optimizer is used with an initial
learning rate of A = 0.01 and a decay rate of & = 0.1. The learning rate is decayed after 15 epochs, and the
total number of training epochs is 30.

Table 2 shows the mean test accuracy and standard deviation of 10 simulations with randomly initialized
parameters in different tasks. Here, the ‘Ansatz’ column describes the network architecture. QMPS with AE is
chosen as a baseline for the simulations, and all ansitze use the same number of layers fairly in the sense of
TN to compare their performance. The ‘Encoding’ column describes the encoding method. The bold values
indicate the best result for each classificaiton task.

The results lead to following conclusions. First, 2D TNQC ansitze can improve the accuracy performance
of QCL since 2D TNQC classifiers outperform 1D QMPS classifier with the same encoder in all three tasks of
varying difficulty. For instance, in the 2 or 7’ classification task, QisoTNS classifier using AE achieves an
accuracy 3.06% higher than that of QMPS. Its advantage stems from the fact that the two-dimensional
entanglements can capture the correlations between adjacent pixels and image’s overall structural
information. From the perspective of TN, 2D TN has a higher-dimensional entanglement than 1D MPS with
the same bond dimension, which enables it to represent a larger subspace in the Hilbert space. This property
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Table 2. Binary classification accuracy on MNIST dataset.

Ansatz Encoding Oorl 2or7 4or9

QMPS AE 96.86 + 0.64 93.48 + 0.61 80.31 £ 0.37
QMPS VAE 97.11 £0.88 94.86 £+ 1.34 80.72 £ 1.57
QSBS AE 97.34 £0.43 96.32 £ 0.19 81.09 £ 0.95
QSBS VAE 98.47 £ 0.20 96.56 £ 0.45 83.14 £ 1.05
QEPS AE 97.45 +0.40 96.62 £+ 0.25 81.81 £+ 0.67
QEPS VAE 98.34 +0.29 96.89 £ 0.50 82.56 £ 0.77
QisoTNS AE 96.73 £ 0.59 96.54 + 0.21 80.79 £ 0.94
QisoTNS VAE 97.28 £0.95 96.89 + 0.54 80.42 £ 0.93

endows the 2D TNQC classifier with a larger solution space for learning global optimal parameters. Second,
QCL benefits from variational encoding methods since VAE achieves higher accuracy than AE in the same
classifier in almost all cases (except QisoTNS), especially in simpler or harder classification tasks. This
illustrates the effectiveness of adaptive feature map. Effective improvements can be achieved by simply adding
trainable bias to individual data when encoding. Additionally, there are performance differences among 2D
TNQC classifiers with the same encoder. This is not only because these ansitze are generated from different
TN, but also because the specific implementations of unitaries that make up the ansitze are also different.

Quantum classifiers using AE and VAE require O(#n) qubits to encode # pixels, so we have to compress
the images significantly, resulting in a loss of information, which clearly prevents them from being the best
classifiers. Also, it may be more effective to extract higher dimensional adaptive features than VAE to
transform individual data into adaptive features separately. So next we use CE and VTNE based classifiers on
16 qubits to conduct the 49-classification task which is the most difficult one in 3 tasks done above. Note that
in the simulations using CE, the images are not resized, while in the simulations using VINE, all images are
resized to 12 x 12 to prevent the circuit from being too deep. So we are not going to compare these two
encodings to each other. The simulations using CE share the same hyperparameters as the AE simulations.
While in VINE simulations, epoch is set to 10, the batch size is 50, and the learning rate starts to decay from
the 8th epoch.

Figure 5 display the average accuracy and loss on training dataset and test dataset during the training
process with 10 different random parameter initializations. Analyzing the results, we observe that with the
aid of CE, all QC classifiers achieve improved accuracy at least 16.26% owing to the availability of larger
dimensions of data and efficient nonlinear transformation. With the same bond dimension, 2D TNQC still
performs slightly better than 1D QMPS. Specifically, the test accuracy of QMPS reaches 99.09%, to which
QEPS is similar (99.17%), and QSBS has the highest test accuracy of 99.40%. So CE-QSBS is the best
classifier in classical-quantum hybrid networks.

We also notice that CE-QisoTNS stabilizes at 100% in accuracy and has the lowest train loss during the
training stage, but it suffers from overfitting with a test accuracy of only 99.32%. In order to explore the
cause of overfitting and figure out whether CE-QisoTNS has more expressive power comparing to other TN,
we test the overfitting of the model by using L2 regularization at the CE and QisoTNS layers of the network
respectively. After training, the training and test accuracy and the difference value A between them are as
following table 3.

From the results, it can be found that the accuracy difference of the classifiers with CE regularization
layer is reduced to a certain extent compared to the model without regularization (overfitting reduction),
and the reduction Ay, — Acg is greater than the reduction Aygne — Agisorns in difference value of the
classifiers with the QisoTNS regularization layer compared to the model without regularization, which
indicates that the overfitting of the model mainly occurs in the CE layer.

The reason for this situation may be that the classical layer continues to learn after the quantum layer
convergence. All our classical quantum hybrid models will have overfitting, and the sequence of their
overfitting depends on the convergence speed of the quantum layer. For example, our results show that the
training accuracy of CE-QMPS reaches 100% at the 37th epoch, while the training accuracy of CE-QSBS
reaches 100% at the 51epoch, this situation is not observed with CE-QEPS. But their test accuracies do not
improve further. This shows that after the convergence of the quantum layer, the classical CE layer still adjust
the features adaptively to the quantum classifier and finally achieve 100% training accuracy.

According to the above inference, we believe that QisoTNS has certain advantages in the convergence
speed. In order to further test whether it has advantages in accuracy, regularization is used on both CE and
QisoTNS layers. Acpg.gisorns decreases significantly, which indicates that overfitting is mitigated, but the test
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Figure 5. Binary classification results. The training and testing results of different models on MNIST dataset are shown in (a)—(d),
here all models are subjected to 10 simulations with random initialization, and their average accuracy and loss are presented,
including (a) training results and (b) test results of models applying convolutional encoding, (c) training results and (d) test
results of models applying variational tensor network encoding. We present more results including (e) the best test accuracy of
VTNE-QisoTNS classifier on all MNIST pairwise subsets and (f) on all Fashion-MNIST pairwise subsets.

Table 3. Accuracy and difference value of CE-QisoTNS when using L2 regularization at different layers.

Regularization layer None CE QisoTNS CE&QisoTNS
Training accuracy 100% 99.87% 99.93% 99.64%
Test accuracy 99.32% 99.38% 99.30% 99.35%
Difference value A 0.68% 0.49% 0.63% 0.29%

accuracy of the model only increases slightly, which is still not enough to exceed CE-QSBS. Therefore,
CE-QSBS is still the best hybrid classifier in accuracy.

In the models using VINE, the 2D TNQC classifiers still have higher performance. The accuracy of
QisoTNS classifier is 98.69%, higher than the other three classifiers including QSBS(98.63%),
QEPS(98.20%) and QMPS (97.63%). This represents a 17.9% improvement in accuracy compared to
AE-QisoTNS. We can see that QEPS performs slightly less well than the other two 2D TNQCs. This could be
due to the fact that both QisoTNS and QSBS can be identified as isoTNS (or PEPS), they have similar
structures. While QEPS is not a PEPS, its TN has non-vertical indices. Ansitze with similar TN structures
perform similarly. Considering that the dimension of the data used is only 12 x 12, the performance of the
VTNE classifier is already excellent. Among them, VINE-QisoTNS is the best classifier in quantum models.
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Table 4. Performance of VINE-QisoTNS under different virtual bond dimensions of single-layer ansatz.

D 0 2 2 2 2! 2

Parameters 0 132 264 396 528 —
Ansatz depth 0 17 34 51 68 —
Test accuracy 97.88% 98.69% 98.83% 98.70% 98.61% —

We test the performance of the QisoTNS classifier on all MNIST pairwise subset classification tasks and
achieve a test accuracy of over 99% for almost all classifications. In order not to lose generality, we also
perform the same evaluation simulations with another Fashion-MNIST dataset, which is a grayscale image
dataset of clothing. It has the same size, format, number of classes, and dataset partitioning rules as the
MNIST dataset but is more challenging. The best test accuracy of all pairwise classification tasks is shown in
figures 5(e) and (f).

In summary, for RQ1 & 2, we have:

Insight 1. 2D TNQC can improve the accuracy of QCL models, and the variational encoding methods are
more effective than the ordinary methods. Under the premise of using the same number of qubits, QisoTNS
using TN variational encoding improves the accuracy of AE-QMPS baseline model by 18.38% in 49
classification tasks. VTNE-QisoTNS is the best quantum classifier, CE-QSBS is the best classical-quantum
hybrid classifier.

3.2. Classical simulation results of binary classification for RQ3

We want to explore whether the models’ accuracy performances are affected by some TN features of ansitze.
Following the proposal of [11], we use deep quantum circuit to increase the bond dimension of a TN state to
explore the relationship between accuracy and bond dimension. Specifically, starting from the encoded

N
quantum state ® |¢;), we apply a series of layers { U} (t = 1,2,..., L) having the same structure, and finally
i=1

form a TN of D = 2L. In this process, each layer U, is a TN operator with D = 2, and all operators are
contracted to form a TN with a larger bond dimension. Therefore, we can see that compared to classical 2D
TNs, quantum computers require only log, D layers of circuits to construct TNs of bond dimension D, which
alleviates the memory bottleneck problem that exists in classical TNs [11] and allows the construction of
larger scale 2D TNs. We choose VTNE-QisoTNS as an example to measure the performance of the classifier
under different virtual bond dimensions D of single ansatz used in adjustment layers by increasing the
number of layers of TNQC, where the physical bond dimension of ansatz is 2.

As shown in table 4, even if the ansatz virtual bond dimension is 0 (without adding ansatz), the model
can still achieve 97.88% accuracy, which is higher than VINE-QMPS, because the VINE encodes the data
into an isoTNS. As the bond dimension increases, the total parameters of adjustment layers and depth of
single ansatz also increase. When D = 22, VTNE-QisoTNS reaches the best accuracy, but the accuracy
decreases as virtual bond dimension continues to increase, which also happens in classical TNML [19]. This
situation is also similar to classical TNML [19]. Situation above shows the accuracy performance of model
can be affected by some TN features of ansatz, and increasing the virtual bond dimension of ansatz
appropriately can improve the accuracy performance, but this will also increase the circuit depth and the
training difficulty. It is difficult to simulate the circuit with D > 2* in the simulator limited by memory. Note
one will not have this issue for quantum computations.

In summary, for RQ3, we have:

Insight 2. The accuracy performance of the model is affected by some TN features of the ansatz. The
accuracy of the model will first increase and then decrease as the virtual bond dimension of ansatz increases.

3.3. Classical simulation results of multi-class classification for RQ4 & 5

In order to answer RQ4 and enable quantum classifiers to efficiently perform multi-class classification tasks
without the help of classical networks, we combine PQN and VTNE-QisoTNS to construct a multi-class
classifier, the model accuracy performance is tested and compared with classical neural networks. The
principle of this quantum multi-class classifier is that for an input, the same backup is passed to k QNN
with the same architecture but different trainable parameters, resulting in k results, and the serial number of
the largest of the k results is selected as its label. We select all handwritten images containing digits 0-3 from
the MNIST dataset. All images are resized to a size of 8 x 8 to enable normal simulation of the quantum
classifier. Such processing is due to the memory limitations of classical simulators, while quantum computers
can use full-size images to further improve the model performance, and they support multi-classification
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Figure 6. Multi-class classification results. (a) Mean performance of VINE-QisoTNS and CNN classifier on 10 random
initializations on 8 X 8 image test set. (b) Confusion matrix of VINE-QisoTNS for MNIST classification. (c) Confusion matrix of
CNN for MNIST classification.

tasks with more categories. For comparison, we choose the CNN classifier which contains a convolutional
layer, a max pooling layer and a fully connected layer with 512-64-4 neurons. The convolution layer contains
three 3 x 3 kernels with a stride of 1, and it is activated by ReLU. The pooling layer has a pool size of 2 x 2.
The batch size of 10 random initialization training is set to 10, and Adam optimizer is used with a learning
rate of 0.01 until the fifth epoch, after which the learning rate is decreased to 0.001.

Figure 6(a) shows the performance of CNN classifier and VINE-QisoTNS classifier on the same test set.
The VINE-QIisoTNS classifier achieves lower test loss and gives a higher test accuracy of up to 99.18%,
outperforming the CNN classifier which has a test accuracy of 98.79%. This means that 2D TNQC classifier
has certain advantages in performance compared to classical simple classifiers when using identical inputs. In
figures 6(b) and (c), we provide the confusion matrices of two classifiers on test set, which show their specific
differences in classification.

In summary, for RQ4 & 5, we have:

Insight 3. Based on parallel quantum machine learning method for multi-class classification, quantum
classifiers can perform multi-class classification effectively. We use the best VINE-QisoTNS quantum
classifier to build its multi-class version. Compared to classical simple classifiers, the best quantum classifiers
can achieve better accuracy performance on a fair track with the same inputs.

3.4. Noise resilience and running on a quantum computer for RQ6

Tensorcircuit simulator can only simulate up to 30 quantum qubits on our hardware and cannot support
sufficiently deep circuits (e.g. QisoTNS ansatz with D = 2°). It means that it is hard to further expand the
size of 2D TNs and carry out larger-scale tasks using simulator (the largest picture size in our VITNE
simulations is only 12 x 12). And it is difficult to simulate a TN with a higher bond dimension. Some models
are very time-consuming using simulators. Therefore, long training time with simulators, difficulty in scaling
task sizes and simulating TNs with high bond dimensions are all motivations for running these ansitze on
quantum computers. It is necessary to use quantum computers in order to construct larger scale 2D TNQCs
for building QNN models with larger data input dimensions and higher accuracy to reduce training time and
promote their practical benefits. Therefore, the requirements for evaluating the effectiveness and usability of
our methods and models are not only improvements in accuracy performance, but also that the models can
function on real quantum machines as mentioned in RQ6. Noise exists on current NISQ machines, so
algorithms that can truly execute on them should be able to be noise resilient. QCL is expected to be
noise-tolerant for implementation on near-term noisy hardware. In this experiment, we test the impact of
noise on the performance of the proposed model by simulating thermal relaxation noise. Subsequently, we
train the classifier using a backend that simulates IBM Quantum’s real hardware noise model. Finally, the
trained model is deployed on a real quantum computer. Due to the limited number of qubits on quantum
hardware, here we use the VINE-QisoTNS classifier for the classification task on 01 dataset of size 3 X 3 asa
minimal example for testing. While further achievement of practical benefits of 2D TNQC quantum models
requires NISQ devices with further improvements in qubit numbers and fidelity.

Thermal relaxation describes a non-unitary evolution of a high-energy state system that spontaneously
releases energy towards ground state, which originates from the energy exchange between physical qubits and
environment. Thermal relaxation noise causes the quantum system to transition from a pure state to a mixed
state. For the state p of a quantum system, the model describing noise (called channel €) can be expressed as
elp) =>4 Eka,t using Kraus operator, where {E;} are Kraus operators, which need to satisfy the
completeness condition » kE}:Ek =1, and ¢(p) is the quantum state after evolution. The thermal relaxation
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Figure 7. (a) The circuit of VINE-QisoTNS classifier on a lattice of 3 x 3 qubits. It consists of a VINE encoding layer and a 2D
TNQC circuit layer. (b) Effect of thermal relaxation noise on the accuracy of VINE-QisoTNS for 01 classification. The mean
accuracy remains above 97% for thermal relaxation noise with T} > 50us indicating that the model exhibits certain noise
resilience. (c) The qubit-efficient version of the VINE-QisoTNS classifier, qubits gy and g, are measured in the middle of the
circuit and reset to |0) for reuse. (d) The correct classification probability of a single experiment for each test samples.

channel € can be implemented by applying the dephasing channel [35] €, and the amplitude damping
channel [35] ¢, after each unitary, i.e. £(p) = €,(¢4(p)). The Kraus operators of the amplitude damping
channel are

_| ! 0 _ VPa
ool e[t F]

While the Kraus operators of the dephasing channel are

The parameters p, and p, are used to characterize the strength of a quantum channel, with larger values
indicating stronger channel effects and faster degradation of the fidelity of quantum information. In
addition, the thermal relaxation channel can be characterized by the unitary gate duration Ty, the coherence
time T; and dephasing time T, of the qubits. Specifically, p, and p; can be expressed as

_ g 1 (e _
P,=1-¢ Tgl,Pd2><<le (% zfl)). (27)

Our noise model applies thermal relaxation channel to each qubit of each unitary gate in the circuit. To
assess the model’s practical performance on real quantum hardware, we fix the duration of each three-qubit
gate at 450 ns and each two-qubit gate at 250 ns, and set T to 0.7 x T;. We test the model’s performance
with T} ranging from 30 ps to 210 us in 20 us increments, which represents varying levels of noise impact
from high to low. The parameter settings are in line with the real situation of current quantum devices. The
classifier used for testing includes a VINE layer and a 2D TNQC layer, its specific circuit is shown in
figure 7(a).

Figure 7(b) shows the model’s performance on 01 classification task, we see that the best test accuracy
decreases as T decreases, which is due to the increasing noise. As a benchmark, the mean test accuracy
reaches 99.76% under ideal simulated condition. At T} = 210us, p, = 0.0021 and p; = 0.0010 can be
calculated at this time, the test accuracy reaches 99.08%; while at T; = 130 us, which is the current average
level of hardware on IBM Quantum [36], the test accuracy is 98.28%, decreasing by only 1.48% compared to
the ideal state. This indicates that the model can work on current quantum hardware. As the noise increases,
at T = 30 us, for the thermal relaxation noise with p, = 0.0149 and p; = 0.0069, the model’s accuracy
remains at 95.35%, proving that the model has some level of noise resilience.
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Table 5. Classification results of a single experiment versus voting from 501 experiments.

Method Label

Sampling of points 00111101000000011001
Single experiment result 00010001000010011001
Majority vote from 501 results 00111101000000011001

Further, we demonstrate the usability of the model on a real quantum machine. Training a model directly
with a quantum machine is difficult, with system scheduling and shutting down network connections
leading to interruptions in the training process. Therefore, we used Qiskit to train the model in the
FakeNairobi backend simulated with the noise model based on the real hardware ibmq_nairobi in IBM
Quantum and deployed the classifier to the ibmq_nairobi quantum computer. Considering the limited
resources of quantum computing and in order to follow the general rules of machine learning, we randomly
selected 120 data to construct a mini-dataset and divided it into training and test set with a ratio of 5:1. Such
a setup reduces the information leakage and thus more accurately reflects to the performance of the model. A
test set of 20 examples is used to determine accuracy. Using only 100 shots per execution to train for our
circuits having 2 possible results, our model achieves 100% test accuracy on FakeNairobi backend. This
shows that our framework and logits E(x,6) can work using repeated measurements with finite shots
(although 100 < 2%). However, to make the result more stable, the model we finally used on the real machine
was trained using 8192 shots per execution. For each test example in a real quantum computer, the circuit is
set to 8192 shots to obtain results. Due to the limited number of available qubits (only 7), we adopt the
method proposed in [5] and use measure and reset operations to prepare a qubit-efficient scheme for the
circuit in figure 7(a). To be specific, the qubits gy and g3 in the original circuit perform the measurement
operation immediately after applying the last unitary acting on them respectively and are reset to |0), they
will be reused as gg and g,. The specific circuit is shown in figure 7(c). The circuit correctly predicts the class
of 16 out of 20 test data, which is not as expected. One reason for this is that the reset operation has a long
duration of up to 5696 ns, making it the longest operation on the hardware, which brings thermal relaxation
noise beyond expectations. Another reason is that the noise model of the simulation backend is not exactly
the same as the noise on a real quantum computer. The trained model has good robustness to the noise of the
simulator (achieving a test accuracy of 100%), but it cannot fully absorb the effects of other different noises.

To mitigate these two problems, we use the method proposed in [4, 5] to repeat experiments on quantum
circuits and predict labels, one could take a majority vote from 501 experimental results of each test example
to obtain the most probable label.

As shown in table 5, by voting after multiple experiments, all the test samples are correctly classified
compared with only 16 labels correctly predicted by a single experiment (the bold values indicate incorrectly
predicted samples). Figure 7(d) shows the correct classification probability of a single experiment for each of
the 20 test samples, and the average is 0.731. The final classification accuracy of test samples is 100%.

In summary, for RQ6, we have:

Insight 4. 2D TNQC classifiers have some level of noise resilience, which enables them to run and function
on real quantum machines.

4. Discussion

Many QNN s have been proposed, but they are difficult to achieve the accuracy of classical neural networks.
In this paper, motivated by the huge improvement in model accuracy of PEPS classifiers compared to MPS
classifiers in classical TNML, we are committed to applying 2D TN to quantum circuits to extend the
performance boundary of quantum machine learning.

Based on our goals, we want to solve two questions: (1) how to encode 2D TN into quantum circuit for
being applied to QCL just as it does in TNML? (2) How to use 2D TN to improve the accuracy performance
of QCL to meet or even exceed that of classical classifiers?

We come up with solutions to the questions and make the following innovations: (1) it is the first time to
use rigorous mathematical proofs to construct quantum circuits generated by 2D TN operators (including
three 2D TNQC ansitze: QSBS, QEPS and QisoTNS) to evolve the product states into different 2D TN states,
which realizes encoding 2D TN into quantum circuits. These ansitze can be used for quantum machine
learning or solving quantum many-body problems. (2) In this paper, we construct a TNQC supervised
learning framework that transfers TNML from classical to quantum. Based on this framework, we can apply
any circuits encoded by TN to quantum machine learning. (3) We present an adaptive variational encoding
method, which can be combined with convolutional feature map (CE) for hybrid neural networks, and with
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Table 6. The performance comparison between the proposal classifier against others on MNIST.

Acc (%) Subset

Moddl {0,1} 2,7} (3,6} (3,7} {4,9} {0,3,6} {0,2,9} {0,1,2,3}
QF-Net [37] — — 98.27 — — 90.40 — —
QCNN [9, 38] 98.7 — — — — — — —
TRVQC [39] — — — 83.73 — — — —
QMPS [40] 98.77 — — — — — — —
QTTN [5] 99.6 95.7 97.2 94.4 88.0 — — —
QTNN [4] 99.79 97.64 — — — — — —
QMERA [4] 99.87 98.86 — — — — — —
VQTN [6] — 96.92 97.92 — — — 83.36 —
Hybrid TN-VQC [41, 42] — — 99.44 — — 98.0 — —
MERA [43] — — — — — — — 93.0
Our VTNE-QisoTNS 99.95 99.08  99.80 99.17  98.78 99.25 99.17 99.18

two-dimensional tensor networks (VINE) for QNNs. (4) In this paper, we construct and implement 9 novel
2D TN-inspired QCL models based on the TNQC supervised learning framework using the above ansitze
(including QSBS, QEPS and QisoTNS) and encoders (including VAE, CE and VINE). (5) In this paper, we
propose a parallel quantum machine learning method PQN for multi-class classification, and implement a
quantum multi-class classifier. PQN allows quantum classifiers to complete multi-class classification tasks
with high accuracy without using any classical network layer.

To test the effectiveness of the solutions and the performance of the models, we conduct a wide range of
classical simulations and actual experiments which are geared towards answering the following five
questions: (1) can 2D TNQC ansitze and new data encoding methods improve the accuracy performance of
QCL? (2) Which is the best of the new models built with different ansitze and encoders? (3) Whether the
accuracy performances of the models are affected by some TN features of ansitze? (4) Can QCL classifiers be
used for multi-class classification tasks without the aid of classical dense layers? How does it perform? (5)
How do the best quantum classifiers perform compared to classical classifiers? (6) Do our models work on a
real quantum machine?

For these simulations and experiments on the MNIST and Fashion-MNIST datasets, we present the
results of all models and baseline in section section 3, demonstrating the significant improvement of our
approach on baseline. Not only that, our best model achieves the state-of-the-art accuracy performance of
the current QNNs, which extends the performance boundary of quantum machine learning in the field of
image classification. And the best model beats the classical simple CNN on a fair track with the same inputs.
Here, we present in table 6 the performance of various QNN classifiers for image classification, including
quantum versions of MLPs and convolutional neural networks (i.e. QF-Net and QCNN), and several
TN-inspired QNNs. The results of these classifiers contain the best accuracies obtained from simulations
using other automatic differentiation software (Pennylane [44], Tensorflow, etc). Due to the different
datasets used, the difficulty of different classification tasks varies. The data show that our proposed 2D
TNQC classifiers achieve more accurate classification results in the same classification task. The
VTNE-QisoTNS achieves the state-of-the-art performance of TN-inspired quantum classifiers on the
MNIST dataset, and is among the best results of QML methods reported [45].

Additionally, the models are proved to have some resilience to thermal relaxation noise, and a trained
model is successfully executed on ibmq_nairobi quantum computer. It is worth noting that 2D TNQC may
run directly on current several quantum hardware with the same geometric structure [46], which may be a
potential advantage.

Analyzing these results, we get the following Insight: (1) 2D TNQC can improve the accuracy of QCL
models, and the variational encoding methods are more effective than the ordinary methods. Under the
premise of using the same number of qubits, QisoTNS using TN variational encoding improves the accuracy
of AE-QMPS baseline model by 18.38% in 49 classification tasks. VINE-QisoTNS is the best quantum
classifier, CE-QSBS is the best classical-quantum hybrid classifier. (2) The accuracy performance of the
model is affected by some TN features of the ansatz. The accuracy of the model will first increase and then
decrease as the virtual bond dimension of ansatz increases. (3) Based on parallel quantum machine learning
method for multi-class classification, quantum classifiers can perform multi-class classification effectively.
We use the best VINE-QisoTNS quantum classifier to build its multi-class version. Compared to classical
simple classifiers, the best quantum classifiers can achieve better accuracy performance on a fair track with
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the same inputs. (4) The 2D TNQC classifiers have some level of noise resilience, which enables them to run
and function on real quantum machines.

However, there are some problems with 2D TNQC classifiers. First, the quantum version of the 2D TN
we implement is not entirely equivalent to its classical counterpart. The difference lies in the different degrees
of freedom of the parameters between the unitaries applied on the quantum circuit and the tensors in a
classical TN. Using a universal quantum unitary gate can theoretically make the two equivalent, but it is not
clear whether it will improve the classifiers’ performance, and this will result in an exponential increase in the
depth of quantum circuit with respect to the number of qubits, as pointed out in [47]. Second, to exploit the
advantages of the two-dimensional structure, 2D TNQC ansitze requires deeper circuits than 1D TNQC. At
the same time, in order to encode more values, our encoders use N (qubit) x M (layer) to encode M x N
values, which leads to the further deepening of the circuit. Deep circuit leads to higher training costs and may
make it more sensitive to noise. And the model is difficult to fully deploy on current NISQ machines.
Fortunately, these problems will be solved with the increase of available qubits and the improvement of
fidelity in quantum computers.

These issues highlight that there is still much interesting work in researching 2D TNQC. First, the
performance of 2D TNQC classifiers can still be further improved, as the effects of unitary gate
implementations, mixed use of different ansitze, and the sharing of weights between layers on the classifier
have not been studied. These works can be combined with quantum circuit architecture search [48-51], one
could build a search space [48] or a supernet [49] based on 2D TNQC ansitze to automatically seek a
near-optimal classifier architecture. Second, through sensitivity analysis, the architecture and performance of
the model can be optimized to be more robust, and the learning ability of 2D TNQC on graphical spatial
features can be further studied. Third, it could be explored the relationship between the model performance
and TN, including using TN to explain differences in performance across ansitze, discussing the connection
between learning accuracy and some properties of TN ansitze (e.g. bond dimensions or entanglement
entropy), and so on. In addition, exploring TN-inspired quantum circuits based on hardware topology may
be an effective attempt to balance performance and training costs. Such research will facilitate the emergence
of more practical quantum machine learning models. The exploration of TNQC construction will further
promote the development of computational problem-solving methods and variational quantum eigensolvers
[52] in two-dimensional quantum many-body systems.
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