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Abstract

In this thesis we explore several physics scenarios based on the Minimal
Supersymmetric Standard Model (MSSM) and its extension in terms of R-
parity violation. We derive predictions for, and analyse results from, the
ongoing experiments at the Large Hadron Collider (LHC). The important
role played by statistics and parameter scanning techniques in analysis of
large parameter spaces is emphasized.

We investigate a class of models where the superpartners of the Higgs and
electroweak bosons, the charginos and neutralinos, are nearly degenerate in
mass. When R-parity is conserved, this degeneracy can potentially make the
lightest chargino long-lived on the timescales of collider physics. However,
through a Bayesian analysis of the relevant parameter space, we find that
this possibility is disfavoured by current data. In models where R-parity
violating interactions are included, supersymmetric particles can decay to
final states involving only Standard Model particles. We demonstrate that a
small chargino–neutralino mass difference in this case may lead to interesting
signals in LHC searches, including resonances of three charged particles.

Although the first run of the LHC produced no clear sign of physics
beyond the Standard Model, some small, yet intriguing, excesses have been
observed in the data. We investigate whether two excesses seen by the CMS
and ATLAS experiments in searches for dileptons, jets and missing energy can
be interpreted as early hints of supersymmetry. After taking into account the
null-results of other LHC searches, we find that the supersymmetric scenarios
considered are not viable explanations of the observed excesses.
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Chapter 1

Introduction

As of writing this thesis, the second run of the Large Hadron Collider (LHC)
has just started. For the first time in history we are colliding particles at
a center-of-mass energy of 13 TeV — and we are doing so at an impressive
rate. The first LHC run, with collisions taking place at 7 and 8 TeV, brought
some truly remarkable results, with the discovery of the Higgs boson in 2012
as the crowning achievement.

Supersymmetry has long been one of the most promising theories for
physics beyond the Standard Model. Yet, despite having performed a large
number of complementary searches, the LHC experiments have not found
any clear evidence for the existence of supersymmetric particles in the 7 and
8 TeV data. However, with higher energies the experiments will now be able
to probe even further into the parameter space of supersymmetric theories.
Time, and a lot of hard work, will eventually tell us what — if anything —
is hiding there.

This thesis explores a few of the many possible ways in which supersym-
metry may show up in LHC searches. In particular, the first two papers
focus on scenarios where a small mass difference between the lightest char-
gino and neutralino may determine the expected collider phenomenology. In
the latter two papers we investigate whether two small, yet interesting, ex-
cesses observed in LHC searches for dileptons, jets and missing energy can
be interpreted as early hints of a supersymmetry signal.

We consider in some detail the methods used to derive predictions from
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the typically large parameter spaces of supersymmetric theories. On the one
hand, theoretical assumptions can be used to narrow down the parameter
space, with the idea of naturalness being one important example. On the
other hand, we can investigate large parameter spaces probabilistically in
parameter scans, typically requiring powerful sampling algorithms and effi-
cient computer codes for calculating model predictions. We will discuss both
foundational and practical aspects of this approach.

The remainder of the thesis is organized as follows. In Chapter 2 we
introduce supersymmetry and its realization in the form of supersymmetric
field theories. This is followed by an introduction to the Minimal Supersym-
metric Standard Model in Chapter 3. In Chapter 4 we turn to the topic of
naturalness and its role as a guiding principle for exploring supersymmetric
scenarios. As much of the work presented in this thesis is linked to statistics,
we devote Chapter 5 to a discussion of statistical inference and parameter
scanning, giving special emphasis to Bayesian methods and their interpret-
ation. Part of the work behind this thesis has been to contribute to the
development of GAMBIT, a new tool for performing statistical fits to particle
physics theories. In Chapter 6 we discuss some of the practical challenges re-
lated to such analyses, and describe the approach we have taken with GAMBIT
to overcome these challenges. Finally, in Chapter 7 we summarize the papers
this thesis is based on. The published papers follow at the end.
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Chapter 2

Supersymmetry

In this chapter we review the concept of supersymmetry. We start in Sec-
tion 2.1 by presenting the algebra that defines supersymmetry, and illustrate
a few central physical consequences. In Section 2.2 we connect these ideas to
current problems in particle physics, motivating why supersymmetry might
be relevant for physics at the energies of present day experiments. Sec-
tion 2.3 concerns how to construct supersymmetric field theories. Finally,
in Section 2.4, the phenomenologically important topic of supersymmetry
breaking is discussed. For a more thorough treatment of the topics covered
in this chapter, we refer the reader to Refs. [1–3].

2.1 The superalgebra

Relativistic field theories are invariant under the spacetime transformations
of the Poincaré group, which is defined as the group of all transformations of
the form

xμ → x′μ = Λμ
νxν + aμ, (2.1)

that leaves invariant the spacetime interval (x − y)2. Here Λμ
ν represents a

Lorentz transformation and aμ a constant translation. The generators of this
group, Mμν for Lorentz transformations and Pμ for translations, satisfy the
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Poincaré algebra:

[P μ, P ν ] = 0, (2.2)
[Mμν , P ρ] = i(gνρP μ − gμρP ν), (2.3)

[Mμν , Mρσ] = i(gνρMμσ + gμσM νρ − gνσMμρ − gμρM νσ). (2.4)

The idea of supersymmetry originated in the late sixties and early sev-
enties from attempts to find non-trivial extensions to the Poincaré group.
Through the work of, amongst others, Coleman, Mandula [4]; Golfand, Likht-
man [5]; and Haag, Lopuszanski, Sohnius [6], it became clear that this could
only be accomplished by allowing anticommutators in Lie algebras, so-called
superalgebras, and further, that supersymmetry represents the most general
such extension possible. Here we consider N = 1 supersymmetry, where a
single set of four supersymmetry generators are introduced through a two-
component Weyl spinor Qa and its Hermitian conjugate (Qa)† ≡ Q†

ȧ. The
supersymmetric extension to the Poincaré algebra is then given by the anti-
commutation relations

{Qa, Qb} = {Q†
ȧ, Q†

ḃ
} = 0, (2.5)

{Qa, Q†
ȧ} = 2(σμ)aȧPμ, (2.6)

and the commutation relations

[Qa, P μ] = [Q†
ȧ, P μ] = 0, (2.7)

[Qa, Mμν ] = 1
2(σμν)a

bQb, (2.8)

[Q†
ȧ, Mμν ] = 1

2(σμν)ȧ
ḃQ†

ḃ
. (2.9)

Here σμ, σμν , and the related σμ, σμν , are constructed from the regular Pauli
matrices σi as follows:

σμ = (1, σi), σμ = (1, −σi), (2.10)
σμν = i

2(σμσν − σνσμ), σμν = i
2(σμσν − σνσμ). (2.11)
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To illustrate the nature of the supersymmetry generators, we consider
the case of a state |m, j3〉 of mass m and spin j3 along the z axis. For the
rotation generator J3 = M12, Eq. (2.8) reads

[Qa, J3] = 1
2(σ3)a

b
Qb. (2.12)

Specializing to the Q1 generator, we have

[Q1, J3] = 1
2Q1, (2.13)

meaning that
J3Q1 |m, j3〉 = (j3 − 1

2)Q1 |m, j3〉 . (2.14)

Thus, Q1 has the effect of lowering j3 by 1
2 . This illustrates the more general

result that the supersymmetry generators alter the spin of a state by ±1
2 ,

transforming fermions into bosons and vice versa. Also, the fact that the
supersymmetry generators commute with P μ, Eq. (2.7), implies that states
related through a supersymmetry transformation have identical mass,

PμP μQa |m, j3〉 = m2Qa |m, j3〉 . (2.15)

The single-particle states that transform into each other via some com-
bination of the Qa and Q†

ȧ operators are called superpartners. These states
combine in supermultiplets that form irreducible representations of the super-
symmetry algebra, with each supermultiplet containing an equal number of
fermionic and bosonic degrees of freedom. As the supersymmetry generators
also commute with gauge transformations, all particles in a supermultiplet
will have identical gauge quantum numbers.

Of course, among the particles of the Standard Model, there are no
fermion–boson pairs with identical mass and gauge quantum numbers. Thus,
supersymmetry must be a broken symmetry in Nature’s current vacuum
state, a topic we return to in Section 2.4.
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2.2 Motivations

There are several good reasons to expect supersymmetry to be relevant for
physics at the TeV energy scale. The most important motivation comes from
the hierarchy problem of the Standard Model, which we will focus on here.

In the Standard Model, the only fundamental scalar is the Higgs doublet
field Φ, and the corresponding scalar potential is given by

V = μ2Φ†Φ + λ(Φ†Φ)2. (2.16)

For μ2 < 0 this potential obtains a degenerate minimum away from the ori-
gin, with the consequence that the gauge symmetry of the Standard Model
is broken in the vacuum state. The energy scale of electroweak physics is de-
termined by the vacuum expectation value v of the neutral Higgs component.
If we minimize V and require agreement with the experimentally determined
value v ≈ 174 GeV, we obtain the relation

v =
√

−μ2

2λ
≈ 174 GeV. (2.17)

However, the bare mass parameter μ2 receives loop corrections δμ2 that
are quadratically divergent in the loop momentum cut-off Λ. For instance, a
fermion f with a coupling λf to the Higgs field generates a one-loop contri-
bution

(δμ2)one-loop,f = −|λf |2
8π2 Λ2 + O

(
m2

f ln Λ
mf

)
. (2.18)

Similarly, a scalar s with a Higgs coupling λs gives rise to a contribution

(δμ2)one-loop,s = λs

16π2 Λ2 − O
(

m2
s ln Λ

ms

)
. (2.19)

In the Standard Model, such scalar loops are due to the quartic self-interaction
in Eq. (2.16). The cut-off Λ is interpreted as the energy scale where new
physics must be taken into account.

Now, using the loop-corrected Higgs potential, the minimization relation
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in Eq. (2.17) becomes

v =
√

−μ2
eff

2λeff
=

√
−(μ2 + δμ2)

2λeff
≈ 174 GeV. (2.20)

If the theory is to remain perturbative, λeff cannot be much larger than unity.
Consequently, if Λ is much larger than the electroweak scale of ∼ 102 GeV,
the above relation can only be satisfied by choosing the bare Lagrangian
parameter μ2 to be of order Λ2, and tune its value to almost exactly cancel
δμ2. This amount of parameter fine-tuning is regarded as highly unnatural,
and taken as a sign that the Standard Model cannot remain valid up to very
high scales. We will discuss the naturalness concept in much greater detail
in Chapter 4.

The fermion and scalar loop corrections in Eqs. (2.18) and (2.19) have
opposite signs. This provides a clue that a symmetry relating fermions and
bosons may solve the hierarchy problem by facilitating a natural cancellation
of the divergent diagrams. Supersymmetry provides exactly this symmetry.
Due to the balance of fermionic and bosonic degrees of freedom in a super-
symmetric theory, every fermion f will have two scalar superpartners f̃ , with
masses mf̃ = mf . Further, because they are part of the same supermultiplet,
their couplings to the Higgs turn out to be related through |λf |2 = λf̃ . This
ensures the exact cancellation of loop contributions from f and f̃ to all orders
in perturbation theory,

(δμ2)f+f̃ = 0. (2.21)

Similarly, the divergent loop corrections due to Standard Model bosons are
exactly cancelled by their fermionic superpartners.

When supersymmetry is broken, as it must be, we have mf̃ �= mf . How-
ever, the cancellation of quadratic divergences still holds,1 as illustrated by
the one-loop results in Eqs. (2.18) and (2.19) where the Λ2 terms are inde-
pendent of the masses. We are left with a contribution where the leading

1Here we are assuming that supersymmetry is only softly broken, see Section 2.4.1.
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term only depends logarithmically on Λ,

(δμ2)f+f̃ ∝ (m2
f − m2

f̃ ) ln Λ
mf̃

. (2.22)

The dependence on m2
f̃

implies that the superpartner mass scale cannot be
too large if this solution to the hierarchy problem is to avoid fine-tuning.
This constitutes the main motivation for expecting superpartners to appear
around TeV energy scales.

Another popular argument for TeV-scale supersymmetry comes from the
running of the three gauge couplings with the renormalisation scale. If su-
perpartners are introduced around the TeV scale, the running is modified in
such a way that it may allow for a unification of all three couplings around
the scale ΛGUT ∼ 1016 GeV.

Finally, the strongest observational evidence we currently have for physics
beyond the Standard Model is the existence of dark matter. Supersymmetric
theories can provide several viable dark matter candidates, including the
neutralino, a mass eigenstate of the superpartners of the B, W 3 and Higgs
bosons; and the gravitino, the superpartner of the graviton in supergravity
theories.

2.3 Supersymmetric field theories

The construction of supersymmetric field theories is usually accomplished
using the language of superfields, with one superfield per supermultiplet.
Superfields are defined as functions on a superspace, constructed by extending
spacetime with a set of four anticommuting, or “fermionic”, coordinates. In
this formalism, the regular spacetime dependent Lagrangian is generated
by integrating the superspace Lagrangian over the fermionic coordinates, a
process which ensures that only supersymmetry-invariant terms survive.

However, this formalism necessitates the introduction of a certain amount
of mathematical machinery. Since the focus of this thesis is on the phenomen-
ological aspects of supersymmetry, we here choose the less elegant, but more
explicit, formulation in terms of regular spacetime dependent fields. In do-
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ing this we follow the presentations given in Chapter 3 of Martin [1] and
Chapters 3–5 of Aitchison [2].

2.3.1 Chiral supermultiplets

We start by considering the supersymmetric theory of chiral supermultiplets.2
Each supermultiplet, labeled by an index i, contains a complex scalar field φi

and a left-handed Weyl spinor ψi. Being a complex two-component object,
ψi represents four real degrees of freedom. However, the equations of motion
will eliminate two of these, meaning that on-shell the degrees of freedom of
ψi are balanced by the two bosonic degrees of freedom in φi, as required by
supersymmetry. To balance the degrees of freedom also off-shell, we intro-
duce an unphysical complex scalar field Fi, known as an auxiliary field, with
the simple Lagrangian density Lfree,F = F ∗

i Fi. This implies that Fi has mass
dimension 2 and vanishes on-shell, with the equations of motion simply being
Fi = F ∗

i = 0. The non-interacting part of the Lagrangian is then given by

Lfree,chiral = −∂μφ∗
i ∂μφi + iψ†

i σ
μ∂μψi + F ∗

i Fi, (2.23)

where all spinor indices have been suppressed and repeated supermultiplet
indices i should be summed.

We parametrize the supersymmetry transformation X → X + δεX of
a field X by a constant, infinitesimal Weyl spinor parameter εα of mass
dimension −1

2 . This will allow scalar and spinor fields to transform into each
other, as terms ∼ εαψα will be scalar objects of mass dimension 1, while
terms ∼ εα∂μφ will be spinors of mass dimension 3

2 .
The free-field Lagrangian in Eq. (2.23) is invariant under the supersym-

metry transformations

δφi = εψi, δφ∗
i = ε†ψ†

i , (2.24)
δ(ψi)α = −i(σμε†)α∂μφi + εαFi, δ(ψ†

i )α̇ = i(εσμ)α̇∂μφ∗
i + ε†

α̇F ∗
i , (2.25)

δFi = −iε†σμ∂μψi, δF ∗
i = i∂μψ†

i σ
με, (2.26)

2Chiral supermultiplets are also commonly referred to as scalar or matter supermul-
tiplets.
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where repeated spinor indices have been suppressed. From the above trans-
formations it follows that the commutator of two supersymmetry transforma-
tions, parametrized by ε and ε′, is another symmetry transformation, namely
a translation:

(δε′δε − δεδε′)X = i(−εσμε′† + ε′σμε†)∂μX, (2.27)

for any field X in the supermultiplet.

Next, we extend the Lagrangian to also include renormalizable interac-
tion terms for the supermultiplet fields. It turns out that this part of the
Lagrangian can be fully determined by a holomorphic function W of the
scalar fields φi,

W = Liφi + 1
2Mijφiφj + 1

6yijkφiφjφk, (2.28)

where both Mij and yijk are symmetric under interchange of the supermul-
tiplet indices. This function is known as the superpotential. The most general
form of the interaction Lagrangian satisfying supersymmetry and renormal-
izability can now be expressed as

Lint =
(

−1
2Wijψiψj + WiFi

)
+ c.c., (2.29)

where Wi and Wij are determined through W as

Wi = δW

δφi

= Mijφj + 1
2yijkφjφk,

Wij = δ2W

δφiδφj

= Mij + yijkφk.

(2.30)

Due to the terms WiFi and W ∗
i F ∗

i in Eq. (2.29), the equations of motion
for the auxiliary fields now become Fi = −W ∗

i and F ∗
i = −Wi, meaning

that Fi and F ∗
i can be expressed in terms of the scalar fields. The complete
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Lagrangian then becomes

Lchiral = Lfree + Lint

= − ∂μφ∗
i ∂μφi + iψ†

i σ
μ∂μψi

− 1
2

(
Wijψiψj + W ∗

ijψ
†
i ψ

†
j

)
− V (φ, φ∗),

(2.31)

where V (φ, φ∗) = WiW
∗
i is the scalar potential.

2.3.2 Gauge supermultiplets

We now turn to gauge, or vector, supermultiplets. These contain a real
vector field Aa

μ for a massless gauge boson, and a Weyl spinor field λa for the
fermionic superpartner, referred to as the gaugino. The a index labels the
gauge fields according to the adjoint representation of the respective gauge
group. Due to the gauge transformation, an off-shell gauge field Aa

μ represents
only three degrees of freedom. Thus, in order to balance the four degrees of
freedom of the off-shell gaugino field, we must introduce an auxiliary real
scalar field Da.

Given a gauge group with structure constants fabc, the gauge transform-
ations of the supermultiplet fields are given by

Aa
μ → Aa

μ + ∂μΛa + gfabcAb
μΛc, (2.32)

λa → λa + gfabcλbΛc, (2.33)
Da → Da + gfabcDbΛc, (2.34)

where Λa is an infinitesimal transformation parameter and g is the gauge
coupling. The gauge-invariant Lagrangian for these fields is then

Lgauge = −1
4F a

μνF μνa + iλ†aσμ∇μλa + 1
2DaDa, (2.35)

with F a
μν being the usual field strength tensor, and ∇μλa the covariant de-
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rivative of λa introducing interactions with the Aa
μ fields,

F a
μν = ∂μAa

ν − ∂νAa
μ + gfabcAb

μAc
ν , (2.36)

∇μλa = ∂μλa + gfabcAb
μλc. (2.37)

This Lagrangian is left invariant under the supersymmetry transformations,

δAa
μ = − 1√

2
(
ε†σμλa + λ†aσμε

)
, (2.38)

δλa
α = i

2
√

2
(σμσνε)αF a

μν + 1√
2

εαDa, (2.39)

δDa = i√
2

(
−ε†σμ∇μλa + ∇μλ†aσμε

)
. (2.40)

From these transformation laws it can be shown that a commutator of two
supersymmetry transformations satisfy a relation analogous to Eq. (2.27).

2.3.3 Supersymmetric gauge theory

We can now construct a complete supersymmetric gauge theory with both
chiral and gauge supermultiplets. Since supersymmetry and gauge trans-
formations commute, the members Xi = φi, ψi, Fi of a chiral supermultiplet
must all transform in the same way under a gauge transformation,

Xi → Xi + igΛa(T aX)i. (2.41)

Here T a are the generators of the group in the representation under which
X transform, for instance the fundamental representation. As usual, to re-
store gauge invariance, derivatives of the matter fields must be replaced by
covariant derivatives involving the vector fields Aa

μ,

∇μφi = ∂μφi − igAa
μ(T aφ)i, (2.42)

∇μφ∗
i = ∂μφ∗

i + igAa
μ(φ∗T a)i, (2.43)

∇μψi = ∂μψi − igAa
μ(T aψ)i. (2.44)

We must further consider all other possible renormalizable interactions
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between the members of the chiral and the gauge supermultiplets. This
introduces two new terms (φ∗

i T
aψi)λa and λ†a(ψ†

i T
aφi) representing “super-

symmetrized gauge interactions”, i.e., interactions between the gauginos and
the chiral fields. A third term, (φ∗

i T
aφi)Da, combines with the 1

2DaDa term
in Lgauge to generate a four-scalar term in the scalar potential once the auxil-
iary Da field is eliminated through its equation of motion, Da = −g(φ∗

i T
aφi).

From the requirement that the total Lagrangian must be invariant under su-
persymmetry, the couplings for all these terms turn out to be given by the
gauge coupling g. Further, the supersymmetry transformations for the chiral
supermultiplet in Eqs. (2.24)–(2.26) must be modified to take into account
gauge interactions,

δφi = εψi, (2.45)
δ(ψi)α = −i(σμε†)α∇μφi + εαFi, (2.46)

δFi = −iε†σμ∇μψi +
√

2g(T aφ)iε
†λ†a. (2.47)

Combining the above results with Lchiral and Lgauge, we arrive at the complete
Lagrangian for a renormalizable supersymmetric gauge theory:

L = − ∇μφ∗
i ∇μφi + iψ†

i σ
μ∇μψi

φ, ψ kinetic terms,
φφA(A), ψψA interactions

− 1
4F a

μνF μνa + iλ†aσμ∇μλa A, λ kinetic terms,
A3, A4, λλA interactions

− 1
2

(
Wijψiψj + W ∗

ijψ
†
i ψ

†
j

) ψ mass terms,
φψψ interactions

− √
2g(φ∗

i T
aψi)λa − √

2gλ†a(ψ†
i T

aφi) φψλ interactions

− WiW
∗
i − 1

2g(φ∗
i T

aφi)2 φ mass terms,
φ3, φ4 interactions

(2.48)

Here the last line corresponds to the scalar potential, −V (φ, φ∗). For theories
based on a direct product of several gauge groups, for instance the SU(3)c ×
SU(2)L × U(1)Y symmetry of the Standard Model, all terms involving a
summation over the representation index a should be repeated for each group.

A supersymmetric gauge theory is fully determined by the field content,
the superpotential W and the fields’ gauge transformations. The requirement
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of gauge invariance will constrain what parameters in W are allowed to be
non-zero. First, tadpole terms, Liφi, are only allowed if φi is a gauge singlet.
Further, superpotential mass terms of the form Mijφiφj can only appear if
the representations that φi and φj transform under are conjugates of each
other. Finally, the Yukawa terms, yijkφiφjφk, require that the fields φi, φj

and φk transform under representations that can combine to a gauge singlet.
The fact that the superpotential simultaneously determines the φψψ

Yukawa terms through Wij and “half” the scalar potential through Wi, en-
sures some of the important properties we have already associated with su-
persymmetric theories. First, that the same Mij or Yukawa parameters enter
in the mass terms of both the scalars and the fermions, so that the mem-
bers of each supermultiplet are mass degenerate. Second, that the same set
of couplings yijk enter linearly in φψψ interactions and quadratically in φ4

interactions, explaining the coupling relation |λf |2 = λf̃ that ensured the
cancellation of quadratic divergences in Section 2.2.

2.4 Supersymmetry breaking

As already noted, supersymmetry must be a broken symmetry at present en-
ergies; otherwise, superpartners mass degenerate with the Standard Model
particles would have been discovered long ago. If we believe supersymmetry
to be an exact symmetry of the fundamental theory, the symmetry must be
broken spontaneously, that is, that the vacuum state is not invariant under
the symmetry of the theory. This implies that there must be degenerate
vacuum states, transforming among themselves under supersymmetry trans-
formations.

To determine the conditions for spontaneous supersymmetry breaking we
therefore start by examining the vacuum state |0〉. From the connection
between the supersymmetry generators and Pμ in Eq. (2.6) we find that the
Hamiltonian operator can be expressed as

H = P 0 = 1
4

(
Q1Q

†
1̇ + Q†

1̇Q1 + Q2Q
†
2̇ + Q†

2̇Q2

)
. (2.49)
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If the vacuum is invariant under supersymmetry, we must have

Qa |0〉 = Q†
ȧ |0〉 = 0, (2.50)

implying that H |0〉 = 0. Thus, as long as supersymmetry is preserved there
will be zero vacuum energy. Keeping in mind that the Hamiltonian in general
must satisfy H ≥ 0, the converse argument then becomes our criterion for
spontaneous supersymmetry breaking: if there is a positive vacuum energy,
supersymmetry is necessarily broken.

For a positive vacuum energy to be guaranteed independent of kinetic
contributions to H, the scalar potential V (φ, φ∗) must have a positive va-
cuum expectation value, 〈0|V |0〉 > 0. From the equations of motion for the
auxiliary fields Fi and Da, the potential can be written as

V = −WiW
∗
i − 1

2g(φ∗
i T

aφi)2 = F i∗Fi + 1
2

∑
a

DaDa, (2.51)

where we in the last term have made explicit the sum over all relevant gauge
groups. Models for spontaneous supersymmetry breaking can therefore be
classified as either “F -term” or “D-term”, depending on in which part of the
potential the non-zero expectation value lives.

However, even if supersymmetry is spontaneously broken, the tree-level
particle masses are connected. In particular, a weighted sum over tree-level
squared-mass eigenvalues known as the supertrace, STr(m2), can be shown
to vanish in theories of non-anomalous gauge symmetries:

STr(m2) ≡ ∑
j

(−1)2j(2j + 1)Tr(m2
j) = −2gTr(T a)Da = 0. (2.52)

Here m2 is the total squared-mass matrix of the Lagrangian and m2
j is the

squared-mass matrix for spin-j particles. This has the consequence that,
given only the known particles of the Standard Model and spontaneous sym-
metry breaking, the tree-level masses of some superpartners should be smaller
than the corresponding mass terms in the Standard Model, which is very dif-
ficult to reconcile with observations. Another difficulty is the fact that the
renormalizable supersymmetric Lagrangian in Eq. (2.48) does not contain
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any φλλ term that can turn into a tree-level mass term for gauginos if the
scalar field acquires a vacuum expectation value.

In general it seems difficult to spontaneously break supersymmetry us-
ing fields that are coupled at tree-level to the supermultiplets of the known
particles. The usual assumption is therefore that the vacuum expectation
value needed to break supersymmetry is generated in a hidden sector of fields
with minimal direct interactions with the visible sector of known fields. If
the effects of symmetry breaking are mediated from the hidden to the visible
sector via non-renormalizable interactions or loop processes, phenomenolo-
gically viable superpartner masses can be generated despite the tree-level
restrictions mentioned above.

Among the most studied frameworks for supersymmetry breaking are
Planck-scale-mediated supersymmetry breaking (PMSB) and gauge-mediated
supersymmetry breaking (GMSB). In the PMSB scenario it is assumed that
the interaction connecting the hidden and visible sectors is due to new physics
related to gravity at the Planck scale, ΛPl ∼ 1018 GeV. Given an F -term
vacuum expectation value 〈F 〉 in the hidden sector, the expected scale of the
mediated symmetry-breaking effects is then ∼ 〈F 〉

ΛPl
. In the GMSB approach,

one assumes the existence of a set of messenger fields in the form of new
chiral supermultiplets, which are charged under the gauge group of the visible
sector. If the messenger fields also couple to the vacuum expectation value
〈F 〉 of the hidden sector, mass terms for the visible sector can be generated at
one-loop for gauginos and two-loop for the chiral scalars. The characteristic
scale for these terms is then ∼ α

4π
〈F 〉

Λmess
, where α

4π
is a loop factor for the

relevant gauge group and Λmess is the mass scale of the messenger fields.

2.4.1 Soft supersymmetry breaking

In lieu of a preferred model for exactly how supersymmetry ends up being
broken, we can take the bottom-up approach of “parametrising our ignor-
ance”: We add terms to the Lagrangian that explicitly violate supersym-
metry and treat the coefficients of these terms as free model parameters.
Any specific model for supersymmetry breaking should imply some pattern
on the space of these parameters, something we can hope to uncover through
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experiments.
Of course, if we naively add any supersymmetry-breaking term to our

Lagrangian, we end up spoiling all the properties that made low-scale su-
persymmetry attractive in the first place. In particular, we want to preserve
the cancellation of quadratic divergences that allowed us to solve the hier-
archy problem in Section 2.2. We therefore only allow so-called soft-breaking
terms, which do not generate quadratically divergent contributions, with a
total mass dimension for the interacting fields of 3 or less. The complete set
of such possible soft terms is

Lsoft = − 1
2Mλaλa

− 1
6aijkφiφjφk + 1

2bijφiφj + tiφi + c.c.

− (m2)ijφ
∗
jφi

− 1
2cijkφ∗

i φjφk + c.c., (maybe soft)

(2.53)

where c.c. denotes the complex conjugation of all terms on the corresponding
line. The M terms, repeated for each gauge group, will give masses to the
gauginos, while the (m2)ij and bij terms provide additional mass terms for the
scalars. The aijk and cijk terms are couplings of three scalar fields. In the case
where one field acquires a vacuum expectation value, they will turn into mass
terms for the remaining fields. However, the cijk terms are denoted “maybe
soft” as they may lead to quadratic divergences if the theory contains a chiral
supermultiplet which is a singlet under all gauge symmetries. These terms
are often ignored as most models of supersymmetry breaking predict them
to be negligible. Finally, the tadpole term tiφi is only allowed if φi is a gauge
singlet. Taken together, the set of additional mass terms in Lsoft will allow
for realistic mass splittings between known particles and their superpartners.

Several of the parameters introduced in Lsoft are heavily constrained by
experiments. In particular, complex phases and parameters that are non-
diagonal in the supermultiplet indices will often lead to predictions of CP-
violation and flavour-changing neutral currents in conflict with observations.
A realistic model of supersymmetry breaking must therefore be able to ex-
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plain why these terms should be small.
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Chapter 3

The Minimal Supersymmetric
Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is a supersymmetric
extension of the Standard Model containing the minimal number of new fields
required to make such a theory viable. It forms the theoretical framework
for much current research on supersymmetry phenomenology, including the
work presented in this thesis, where we include some phenomenologically
interesting extensions. In this chapter we provide a brief introduction to the
MSSM, giving special emphasis to topics relevant for subsequent chapters.
A more detailed introduction to the MSSM can be found in Refs. [1, 2, 7].

3.1 Field content
To construct a supersymmetric theory based on the SU(3)c×SU(2)L×U(1)Y

gauge symmetry of the Standard Model, all the known particles must be
placed in appropriate supermultiplets. The supermultiplets are then com-
pleted by postulating the existence of new supersymmetric particles, collect-
ively called sparticles.

A list of all the supermultiplets of the MSSM is given in Table 3.1. The
Standard Model leptons and quarks are, together with their scalar superpart-
ners, members of chiral supermultiplets. For the left-handed fermions, the
supermultiplets are organized in the SU(2)L doublets Qi and Li, while the
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right-handed fermions live in the SU(2)L singlet supermultiplets ūi, d̄i and ēi.
Here i is an index running over the three generations of the Standard Model.
It is conventional to only use left-handed chiral supermultiplets when formu-
lating the theory. We therefore use the conjugates of right-handed fields in
the ūi, d̄i and ēi supermultiplets. The scalar components of the quark and
lepton supermultiplets are referred to as squarks and sleptons, or collectively
as sfermions. The gauge supermultiplets g, W and B respectively contain the
Standard Model gluons, W bosons and B boson, along with their fermionic
superpartners, the gluinos, winos and the bino.

For the Higgs sector, matters are a little more complicated. In the Stand-
ard Model, with the Higgs doublet Φ = (φa, φb), mass terms for the upper
components of fermion SU(2)L doublets are generated from Yukawa interac-
tions involving the conjugated Higgs field through Φ̃ = (φ∗

b , −φ∗
a). As we have

seen in Chapter 2, in a supersymmetric theory, Yukawa terms for the chiral
fermions originate from the superpotential. However, the superpotential is
a holomorphic function of the scalar fields, meaning that it cannot depend
on the conjugated fields. We therefore need two Higgs doublets, Hu and Hd,
for generating mass terms for the upper and lower components of SU(2)L

doublets, respectively. Also, having two Higgs doublets is required to ensure
cancellation of gauge anomalies in the electroweak sector. The scalar Higgs
fields live in chiral supermultiplets along with their fermionic superpartners,
the higgsinos.

3.2 R-parity

In the Standard Model, the requirements of gauge invariance and renormal-
izability rule out any Lagrangian terms that can violate baryon number (B)
or lepton number (L). As we will see in the next section, this “accidental”
symmetry is no longer present in supersymmetric theories. This may have
severe consequences for the viability of supersymmetric models, as there are
strong experimental limits on the rates of B- and L-violating processes. In
particular, searches for proton decay through the process p → l+π0 (l = e, μ),
in which both baryon and lepton number is violated by one unit, has set a
lower limit on the lifetime of the proton of ∼ 1034 years [8], which translates
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Supermultiplet scalars fermions vectors SU(3)c SU(2)L U(1)Y

Qi (ũiL, d̃iL) (uiL, diL) 3 2 1
6

ūi ũ∗
iR u†

iR 3̄ 1 −2
3

d̄i d̃∗
iR d†

iR 3̄ 1 1
3

Li (ν̃iL, ẽiL) (νiL, eiL) 1 2 −1
2

ēi ẽ∗
iR e†

iR 1 1 1

Hu (H+
u , H0

u) (H̃+
u , H̃0

u) 1 2 1
2

Hd (H0
d , H−

d ) (H̃0
d , H̃−

d ) 1 2 −1
2

g g̃ g 8 1 0
W W̃ 1,2,3 W 1,2,3 1 3 0
B B̃ B 1 1 0

Table 3.1: The chiral and gauge supermultiplets in the Minimal Supersym-
metric Standard Model. The index i = 1, 2, 3 runs over the three generations
of quarks and leptons.

to stringent bounds on any interactions that allow this process.
In the MSSM, B- and L-violating Lagrangian terms are avoided by pos-

tulating an additional discrete symmetry: All interactions are required to
conserve a multiplicative quantum number called R-parity, defined as

PR = (−1)3(B−L)+2s, (3.1)

where s is the particle spin. From this definition it follows that the known
Standard Model particles and the additional MSSM Higgs bosons have PR =
+1, while the sparticles all have PR = −1.

Besides protecting against problematic interaction terms, requiring R-
parity conservation (RPC) has some important phenomenological implica-
tions. First, that sparticles must be created and annihilated in pairs. Second,
that sparticles decay to states with an odd number of lighter sparticles. And
third, that the lightest supersymmetric particle (LSP) must be absolutely
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stable, with the consequence that all sparticle decay processes eventually
end with the LSP.

The fact that the stable LSP so far has avoided detection implies that it
should have zero electric and colour charge. This ensures the basic properties
required for it to be a viable dark matter candidate. For instance, this is the
case for the neutralino, which we discuss in Section 3.6. Since a stable, at
most weakly-interacting particle will pass unseen through particle detectors,
most collider searches for supersymmetry are based on event signatures with
a large imbalance in the conserved momentum, so called missing energy.

Going beyond the MSSM, an alternative to postulating R-parity con-
servation is to allow also the B- and L-violating terms in the Lagrangian.
This approach is referred to as R-parity violation (RPV). The assumption
is then that there should be some structure on the space of the new coup-
lings, explaining why large violations of baryon and lepton number have not
been detected. In particular, allowing only either B- or L-violating terms
will render the proton stable, since the decay process violates both quantum
numbers.

When R-parity violation is allowed the lightest sparticle is no longer ab-
solutely stable. In order to explain dark matter, we then need an LSP whose
interactions are highly suppressed, leading to a lifetime longer than the age
of the universe. This can arise naturally in supergravity theories.1 Here the
gravitino, which becomes massive as a result of supersymmetry breaking,
has interactions that are suppressed by the Planck scale. Another possible
supersymmetric dark matter candidate with naturally suppressed interac-
tions is the axino. Being the superpartner of the axion, a hypothetical scalar
arising within the Peccei–Quinn solution to the “strong CP problem” [9], it
has interactions suppressed by the Peccei–Quinn scale fa ∼ 10−11 GeV.

1Supergravity theories are based on local supersymmetry transformations, meaning
that the transformation parameter εα introduced in Section 2.3.1 is taken to be a function
of spacetime.
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3.3 Superpotential
The superpotential for the MSSM is given by

WMSSM = μHuHd + yu
ijũ

∗
iRQ̃jHu − yd

ij d̃
∗
iRQ̃jHd − ye

ij ẽ
∗
iRL̃jHd, (3.2)

where Hu, Hd, Q̃ and L̃ are the scalar SU(2)L doublets for the corresponding
supermultiplets, all listed in the second column of Table 3.1. All colour and
weak isospin indices have been suppressed.2 By comparing the expression
in Eq. (3.2) to the general superpotential in Eq. (2.28), we first note that
WMSSM does not contain any tadpole term, since there are no total gauge
singlets in the theory. Next, we see that we only have a single term of
the general form Mijφiφj, namely the “μ term” μHuHd. From the third
line in Eq. (2.48) we see that this term will appear in the Lagrangian as
a mass term for the higgsinos. The remaining terms are all of the general
form yijkφiφjφk. When the neutral components of Hu and Hd obtain vacuum
expectation values through electroweak symmetry breaking, these terms will,
among other things, generate the familiar mass terms and CKM mixings for
the Standard Model fermions.

It is worth pointing out that, given the above superpotential, the only new
Lagrangian parameter introduced by supersymmetrizing the Standard Model
is the higgsino mass parameter μ. On the other hand, the terms contained in
WMSSM are not sufficient to explain electroweak symmetry breaking. From
the last line in Eq. (2.48) it follows that WMSSM implies the following Higgs
squared-mass terms in the scalar potential:

V (φ, φ∗) 
 |μ|2
(
|H0

u|2 + |H+
u |2 + |H0

d |2 + |H−
d |2

)
. (3.3)

As this contribution is non-negative and has a minimum when the neut-
ral fields vanish, we will not obtain a symmetry-breaking potential. Thus,
electroweak symmetry breaking in the MSSM requires scalar potential con-
tributions from the soft supersymmetry breaking terms.

2If we write out all indices in, for instance, the second term, we get
(yu

ij)(ũ∗a
iR)(Q̃ja)α(Hu)βεαβ . Here i = 1, 2, 3 is the generation index, a = 1, 2, 3 is the

SU(3)c colour index, and α, β = 1, 2 are SU(2)L weak isospin indicies contracted using
the εαβ antisymmetric tensor with ε12 = 1.
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If we allow R-parity violation the superpotential is extended by

WRPV = μ′
iL̃iHu + 1

2λijkL̃iL̃j ẽ
∗
kR + λ′

ijkL̃iQ̃j d̃
∗
kR + λ′′

ijkũ∗
iRd̃∗

jRd̃∗
kR, (3.4)

where the first three terms violate lepton number and the last term violates
baryon number. Many of the new couplings introduced here are strongly
constrained by experiments. In particular, the limit on the proton lifetime
implies that products of the λ′ and λ′′ couplings involving the first generation
quarks must be highly suppressed.

3.4 Soft-breaking terms

Following the general structure of Eq. (2.53), we now break supersymmetry
by adding to the MSSM Lagrangian the set of soft-breaking terms allowed
by gauge invariance and renormalizability:

LMSSM,soft = − 1
2

(
M1B̃B̃ + M2W̃

aW̃ a + M3g̃
ag̃a + c.c

)

−
(
au

ijQ̃iHuũ∗
jR − ad

ijQ̃jHdd̃∗
jR − ae

ijL̃iHdẽ∗
jR + c.c

)
− (m2

u)ijũ
∗
iRũjR − (m2

d)ij d̃
∗
iRd̃jR − (m2

e)ij ẽ
∗
iRẽjR

− (m2
Q)ijQ̃

†
iQ̃j − (m2

L)ijL̃
†
i L̃j

− m2
Hu

H∗
uHu − m2

Hd
H∗

dHd − (bHuHd + c.c).

(3.5)

For the chiral fields, colour and weak isospin indices have been suppressed.
In LMSSM,soft we note in particular that the first line provide mass terms
for the bino, winos and gluinos, while the last line contain additional Higgs
mass terms that can help generate the scalar potential needed for electroweak
symmetry breaking.

The gaugino mass parameters M1,2,3, three-scalar couplings au,d,e
ij , and

sfermion mass matrices m2
u,d,e,Q,L are all generally complex valued, although

the sfermion mass matrices are required to be hermitian. The Higgs mass
parameters m2

Hu
and m2

Hd
are real, while bij, and the μ parameter in the

superpotential, can be taken to be real by appropriate complex rotations of
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the Higgs supermultiplet fields. In total, after having chosen a basis that
removes as much freedom as possible, the MSSM Lagrangian contains 105
new real-valued parameters.

So while the supersymmetry-preserving part of the MSSM only intro-
duced a single new parameter, our parametrization of supersymmetry break-
ing has left us with what at first may look like a model without much predict-
ive power. However, as noted in Section 2.4.1, there are strong experimental
limits on most of the new parameters due to their potential role in flavour-
changing and CP-violating processes. As an example, consider a scenario
with a sizeable off-diagonal element (m2

e)21 in the slepton mass matrix. The
term (m2

e)21ẽ
∗
2Rẽ1R = (m2

e)21μ̃
∗
RẽR then allows for mixing between the selec-

tron and the smuon. Through a slepton–gaugino loop, this may induce the
flavour-changing process μ → eγ, which so far has not been observed ex-
perimentally.3 Similar contributions can come from off-diagonal elements in
(m2

L)ij and ae
ij.

In light of the stringent experimental constraints, and in the interest
of reducing the number of free parameters, a set of assumptions is usually
employed on the space of the soft-breaking parameters: First, the slepton
and squark mass matrices are taken to be diagonal,

(m2
x)ij = diag(m2

x̃1 , m2
x̃2 , m2

x̃3), x = u, d, e, Q, L. (3.6)

This is the expected result if the mechanism responsible for breaking super-
symmetry is flavour-blind. Further, as there is a one-to-one correspondence
between the three-scalar terms in LMSSM,soft and the three-scalar Yukawa
terms in the superpotential, the corresponding couplings are assumed to be
related through three proportionality parameters Au

0 , Ad
0 and Ae

0:

au
ij = Au

0yu
ij, ad

ij = Ad
0yd

ij, ae
ij = Ae

0y
e
ij. (3.7)

Finally, the gaugino mass parameters and three-scalar couplings are all taken

3The current best limit on the branching ratio is BR(μ → eγ) < 5.7 × 10−13 at the
90% confidence level [10].
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to be real,

Im(M1) = Im(M2) = Im(M3) = Im(Au
0) = Im(Ad

0) = Im(Ae
0) = 0, (3.8)

to avoid introducing large CP-violating phases. The sfermion mass paramet-
ers in Eq. (3.6) are automatically real due to the hermiticity of the underlying
mass matrix.

It is important to note that the above assumptions are enforced at the,
usually high, energy scale where the free parameters are defined. When the
parameters are evolved down to the electroweak scale using the Renormal-
ization Group Equations (RGE), the relations in Eqs. (3.6) and (3.7) are
generally broken due to corrections from Yukawa interactions. However, as
the Yukawa couplings are large only for the third generation, the three-scalar
couplings and off-diagonal mass matrix elements for the first two generations
remain small also at the weak scale. Further, the RGE running does not
introduce any new CP-violating phases. The above set of assumptions can
therefore protect against dangerous flavour-changing and CP-violation also
after RGE running has been taken into account.

3.5 Summary of parameters

Given the assumptions in Eqs. (3.6)–(3.8), the number of free soft-breaking
parameters is reduced to 24. Thus, including the μ parameter from the
superpotential, we end up with a 25-dimensional MSSM parameter space.
The Higgs sector then has four real Lagrangian parameters: μ, m2

Hu
, m2

Hd

and b. By requiring that the electroweak symmetry breaking in the MSSM
reproduces the observed electroweak scale, either (m2

Hu
, m2

Hd
) or (|μ|, b) can

be traded against the precisely measured MZ and the unknown ratio of the
vacuum expectation values for H0

u and H0
d , denoted tan β ≡ vu/vd. This

effectively reduces the number of free MSSM parameters by one. When
(m2

Hu
, m2

Hd
) are eliminated, the b parameter is often replaced by a parameter

m2
A = 2b/ sin 2β.

We can now summarize the 24 most common input parameters for phe-
nomenology studies in the MSSM:
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Gaugino mass parameters:
M1, M2, M3.

Trilinear couplings:
Au

0 , Ad
0, Ae

0.

Higgs parameters:
tan β, m2

Hu
, m2

Hd
, sgn(μ)

or tan β, μ, b

or tan β, μ, m2
A.

Squark mass parameters:
m2

Q̃1
, m2

Q̃2
, m2

Q̃3
,

m2
ũ1 , m2

ũ2 , m2
ũ3 ,

m2
d̃1

, m2
d̃2

, m2
d̃3

.

Slepton mass parameters:
m2

L̃1
, m2

L̃2
, m2

L̃3
,

m2
ẽ1 , m2

ẽ2 , m2
ẽ3 .

3.6 The neutralino and chargino sector

The higgsinos and electroweak gauginos play a central role in all the work
presented in this thesis. We therefore end our brief tour of the MSSM with
a closer look at this sector.

In the general supersymmetric Lagrangian in Eq. (2.48) we find interac-
tions between gauginos and chiral supermultiplet members of the form

L 
 −√
2g(φ∗

i T
aψi)λa − √

2gλ†a(ψ†
i T

aφi). (3.9)

Let the fields φi, ψi belong to one of the Higgs supermultiplets, and take φi
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to be the neutral scalar component, φi = H0
u,d. Once φi acquires a vacuum

expectation value, the terms in Eq. (3.9) will turn into mass-mixing terms for
the λa and ψi fields. Therefore, due to electroweak symmetry breaking, we
can expect mixing between the electroweak gauginos and the higgsinos. The
only constraint comes from the unbroken U(1)em symmetry, which ensures
that only fields of equal electric charge can mix.

The neutral electroweak gauginos B̃ and W̃ 3, here denoted as B̃0 and W̃ 0,
will mix with the neutral higgsinos H̃0

d and H̃0
u to form four mass eigenstates

χ̃0
i called neutralinos. If we define a vector χ̃0 in the gauge eigenstate basis,

χ̃0 =

⎛
⎜⎜⎜⎜⎝

B̃0

W̃ 0

H̃0
d

H̃0
u

⎞
⎟⎟⎟⎟⎠ , (3.10)

the relevant mass terms in the Lagrangian can be combined as

LX̃0,mass = −1
2(χ̃0)T Mχ̃0χ̃0 + c.c., (3.11)

where the mass matrix Mχ̃0 is

Mχ̃0 =

⎛
⎜⎜⎜⎜⎜⎝

M1 0 − 1√
2g′vd

1√
2g′vu

0 M2
1√
2gvd − 1√

2gvu

− 1√
2g′vd

1√
2gvd 0 −μ

1√
2g′vu − 1√

2gvu −μ 0

⎞
⎟⎟⎟⎟⎟⎠ . (3.12)

In addition to the mixing terms discussed above, we recognize the M1 and
M2 gaugino mass parameters from the soft-breaking terms in Eq. (3.5), and
the higgsino mass parameter μ originating from the μHuHd term in the su-
perpotential, Eq. (3.2).

To find the neutralino mass eigenstates χ̃0
i and the corresponding masses

mχ̃0
i
, we determine the unitary matrix N that diagonalizes Mχ̃0 ,

N∗Mχ̃0N−1 = diag(mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
). (3.13)
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The mass eigenstates are then given by

χ̃0
i = Ni1B̃

0 + Ni2W̃
0 + Ni3H̃

0
d + Ni4H̃

0
u, (3.14)

conventionally labeled i = 1, 2, 3, 4 according to increasing mass.
From electroweak symmetry breaking we have that the vacuum expecta-

tion values vu and vd must be related to the Z boson mass as

(v2
u + v2

d) = v2 = 2M2
Z

g2 + g′2 , (3.15)

which implies that all the mixing elements in Mχ̃0 are proportional to MZ .
Thus, when the magnitudes of M1, M2 and μ are large compared to MZ , the
mixing terms typically play a minor role. In this limit the composition of
the neutralino states is determined by the hierarchy of the mass parameters.
For instance, if |M1| < |M2| � |μ|, we will have χ̃0

1 ≈ B̃0, χ̃0
2 ≈ W̃ 0 and

χ̃0
3,4 ≈ 1√

2(H̃0
d ± H̃0

u), with masses similar to the respective parameters.
The charged winos W̃ ∓ = 1√

2(W̃ 1 ∓ iW̃ 2) and the charged higgsinos
H̃+

u and H̃−
d will similarly mix to form charged mass eigenstates known as

charginos. With the gauge eigenstate basis

χ̃± =

⎛
⎜⎜⎜⎜⎝

W̃ +

H̃u
+

W̃ −

H̃−
d

⎞
⎟⎟⎟⎟⎠ , (3.16)

the chargino mass terms become

LX̃±,mass = −1
2(χ̃±)T Mχ̃±χ̃± + c.c., (3.17)

with a mass matrix

Mχ̃± =

⎛
⎜⎜⎜⎜⎝

0 0 M2 gvd

0 0 gvu μ

M2 gvu 0 0
gvd μ 0 0

⎞
⎟⎟⎟⎟⎠ . (3.18)
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By diagonalizing this matrix, and using the relations gvd =
√

2 cos βMW and
gvu =

√
2 sin βMW , we find that the chargino mass eigenvalues are given by

mχ̃±
1,2

= 1
2

(
|M2|2 + |μ|2 + 2M2

W

)

∓1
2

√
(|M2|2 + |μ|2 + 2M2

W )2 − 4 |μM2 − M2
W sin2 β|2.

(3.19)

If |μ| and |M2| are much larger than MW , and taking for example |M2| < |μ|,
the above expression reduces to

mχ̃±
1

� |M2| − M2
W

μ
sin 2β, (3.20)

mχ̃±
2

� |μ| + M2
W

μ
sin 2β, (3.21)

and the states are given by χ̃±
1 ≈ W̃ ± and χ̃±

2 ≈ H̃+
u /H̃−

d .
We note that mass degeneracies are expected between the lightest neut-

ralinos and charginos, when their masses are dominantly set by either M2

or μ, so-called wino and higgsino scenarios. Such scenarios are the focus of
Papers 1 and 2 of this thesis.
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Chapter 4

Naturalness considerations

Over the past few decades, the concept of naturalness has emerged as an
important guiding principle in the search for theories that go beyond the
Standard Model. In the context of this thesis, naturalness is of interest for
several reasons: First, it forms the basis for the hierarchy problem of the
Standard Model, perhaps the most widely recognized motivation for TeV-
scale supersymmetry. Second, within models of Natural SUSY, which we
study in Paper 1, naturalness is further used as a principle for formulating
more predictive models from the full parameter space of the MSSM. Finally,
as we employ Bayesian methods in Papers 1 and 2, it is worth highlighting
the fundamental connection between naturalness arguments and Bayesian
reasoning.

4.1 Naturalness in particle physics

Historically, the criterion of naturalness in relation to particle physics theories
has been formulated in several different, but related, ways.1 In 1979, Susskind
stated that naturalness requires

the observable properties of a theory to be stable against minute
variations of the fundamental parameters. [12]

1We refer the reader to Ref. [11] for an interesting historical and sociological analysis
of the role played by the “naturalness narrative” in particle physics.
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Around the same time, ’t Hooft formulated a naturalness criterion concern-
ing small parameters and symmetries, stating that a dimensionless theory
parameter

is allowed to be much smaller than unity only if setting it to zero
increases the symmetry of the theory. If this does not happen, the
theory is unnatural. [13]

For the purpose of the present discussion we will adopt an understanding of
naturalness rather similar to Susskind’s formulation, namely that a theory
is unnatural if it requires fine-tuned cancellations of large numbers in order
to obtain predictions in agreement with observation. In this sense, if the
Standard Model remains valid up to very high energies, e.g. the Planck scale
ΛPl ∼ 1018 GeV, it is a highly unnatural theory since, in order to predict a
physical Higgs mass at the electroweak scale, the bare Higgs mass parameter
must be tuned to cancel radiative corrections of the size of ΛPl.

To avoid such — from a naturalness perspective, catastrophic — fine
tuning, some new physics is required in order to modify the theory and sta-
bilize the theoretical predictions at a lower energy scale. Underlying this
argument is the concept of effective field theory, where physics at high en-
ergies only appear as effective couplings when the theory is studied at lower
energies.2 A classic example is Fermi theory, in which the charged current
of weak interactions is treated as an effective four-fermion coupling. Just
as this approximation breaks down at energies comparable to the W mass,
every effective theory comes with a cut-off scale Λ, representing the highest
momentum scale where the theory remains valid.

The history of particle physics has seen several examples where a physical
prediction, which in an effective theory approach had a divergent dependence
on the cut-off Λ, turned out to be tamed by the discovery of new particles.
One such example is the mass difference between the K0

L and K0
S mesons.

When computed in Fermi theory valid at the energy scale of the kaon mass,

2See Ref. [14] for a discussion of the connection between naturalness arguments and
effective field theory, and the limitations that follow from it.
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sans any quarks besides u, d and s, the prediction is

mK0
L

− mK0
S

mK0
L

= G2
F f 2

K sin2 θc

6π2 Λ2. (4.1)

Here GF is the Fermi coupling constant, fK is the kaon decay constant and
sin θc is the Cabibbo angle. To avoid the need for fine-tuned cancellations,
the expression in Eq. (4.1) should not be (much) larger than the observed
value of 7 × 10−15. This implies an upper bound on Λ of Λ < 2 GeV. Thus,
a postulated absence of fine-tuning predicts that some new physics affecting
the kaons should appear below this energy scale. In this case, the answer
was provided by the discovery of the charm quark at mc ≈ 1.3 GeV.

On the other hand, there are cases where Nature seems to care little
about our naturalness criterion. One important example is the cosmological
constant, whose scale is constrained by observations to be around 10−3 eV.
Our current understanding of particle physics is clearly valid to much higher
energies than this, and yet the predictions we obtain for the vacuum energy
diverges with the cut-off.3

4.2 Natural supersymmetry

As seen in Section 2.2, the introduction of superpartners provides a solu-
tion to the big hierarchy problem in the Standard Model. However, we are
left with a “little hierarchy problem”, coming from the tension between the
electroweak scale and the sparticle mass scale, MSUSY .

One manifestation of this tension appears when we require that elec-
troweak symmetry breaking in the MSSM agrees with observations: The
vacuum expectation values vu and vd of the neutral Higgs fields H0

u and H0
d

3As we saw in Section 2.4, a vanishing vacuum energy is a prediction of unbroken super-
symmetry, and we could therefore hope to solve this problem in supersymmetric models.
However, when supersymmetry is broken the predicted scale for the vacuum energy is the
mass scale of the superpartners, meaning that even with TeV-scale supersymmetry we are
still left with a huge discrepancy relative to the observed value.
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should, at tree-level, be related to the observed Z boson mass as

M2
Z = 1

2(g2 + g′2)(v2
u + v2

d), (4.2)

where v2
u + v2

d = v2 ≈ (174 GeV)2. Requiring that this corresponds to a
minimum of the scalar potential generates a relation between MZ and the
relevant MSSM parameters. Recalling that tan β = vu/vd and expanding in
large tan β, the tree-level relation is

M2
Z = − 2(m2

Hu
+ |μ|2) + 2

tan2 β
(m2

Hd
− m2

Hu
) + O(1/ tan4 β).

= − 2(m2
Hu

+ |μ|2) + O(1/ tan2 β).
(4.3)

Thus, the terms on the right-hand side must combine to give the correct value
for MZ . Since m2

Hu
is a parameter in the soft supersymmetry-breaking part

of the MSSM Lagrangian, its scale is expected to be MSUSY . Consequently,
μ must also be of the order of MSUSY . However, μ is a parameter in the
supersymmetry-respecting part of the Lagrangian, and there is no a priori
explanation in the MSSM for why its scale should be correlated with that of
the soft-breaking terms. This has become known as the “μ problem”, and
has inspired model building beyond the MSSM.

Assuming that an explanation can be found for why μ is at MSUSY ,
Eq. (4.3) still leaves us with the fine-tuning problem of having parameters
at MSUSY cancel to produce MZ at the weak scale. This has lead to the
development of Natural SUSY models [15], based on the criteria that the
amount of fine-tuning in Eq. (4.3) be kept as low as possible. In general, this
is accomplished by ensuring that m2

Hu
and μ do not become too large.

Although Eq. (4.3) should be modified by higher-order corrections, which
in fact help to alleviate the fine-tuning somewhat [16], we use it here to
summarize what has become the standard set of phenomenology predictions
for Natural SUSY models.

First, as μ is the higgsino mass parameter, Natural SUSY models predict
light higgsinos. In terms of the mass eigenstates of the electroweak gauginos,
this implies that, unless either M1 or M2 is also small, the two lightest neut-
ralinos and the lightest chargino will all be dominantly higgsino and have
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masses of similar size.
Second, m2

Hu
receives radiative corrections at the one-loop level from

the soft-breaking parameters m2
Q3 , m2

U3 and At governing the masses of the
stops and the left-handed sbottom. It is therefore reasonable to expect these
squarks to be rather light in scenarios with low fine-tuning.

Third, the gluino mass parameter M3 enters in two-loop corrections to
m2

Hu
. Thus, gluinos are not expected to be too heavy in a Natural SUSY

scenario either. This is especially relevant for LHC phenomenology, as gluinos
are among the sparticles receiving the most stringent constraints from LHC
searches.

Based on a quantified measure for what amount of fine-tuning is regarded
as acceptable, a topic which we will discuss in the next section, approximate
upper bounds on the sparticle masses can be derived. A recent study along
these lines is Ref. [17], which for a MSSM scenario finds that higgsinos should
be lighter than ∼ 600 GeV, stops and the left-handed sbottom should be
lighter than ∼ 1 TeV, and gluinos lighter than ∼ 1.4 TeV. Also, the upper
bound on winos is found to be similar to that of gluinos, but this is somewhat
less relevant for LHC physics due to the much lower production cross section.
The other sparticles are less constrained by naturalness arguments.

The above set of general predictions typically form the starting point for
phenomenological studies of Natural SUSY models, including our analysis
of the Natural SUSY parameter space in Paper 1. However, it has been
shown that such “naturalness bounds” on sparticle masses may heavily de-
pend on the details of the underlying model, especially the question of what
is considered to be the fundamental parameters, and at what scale these are
defined, see e.g. Refs. [17,18] and references within. In particular, in [18] it is
shown that having light stops is not necessarily a robust prediction of scen-
arios with low fine-tuning. For instance, in models with a unified scalar mass
parameter m0 at high scales, the low-scale value of m2

Hu
relevant for Eq. (4.3)

may depend very weakly on m0, meaning that a large value for m0 can give
heavy stops without leading to much fine-tuning. Also, the prediction of
a light average stop mass may be weakened if other sources of fine-tuning
besides Eq. (4.3) are taken into account. For example, in a MSSM scenario
with relatively light stops, a certain amount of tuning of the stop mixing
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parameters is necessary to obtain a predicted Higgs mass of ∼ 125 GeV. We
will come back to some of the problems related to naturalness bounds on
sparticles in the next section.

4.3 Measuring fine-tuning

Exactly how unnatural or fine-tuned is a given model? For addressing this
question, several fine-tuning measures have been constructed and applied
in the literature, e.g. see Refs. [19–22]. Here we present the widely used
Barbieri–Giudice measure: Let {θi} be the set of model parameters. For each
parameter θi, the sensitivity of the predicted M2

Z to infinitesimal variations
in θi is quantified as

Δθi
≡ ∂ ln M2

Z

∂ ln θi

= θi

M2
Z

∂M2
Z

∂θi

. (4.4)

The overall fine-tuning Δ for a point in the model’s parameter space is then
determined by the most sensitive parameter,

Δ = max
i

{|Δθi
|}. (4.5)

To illustrate in what sense this is a measure of fine-tuning, we consider
the case of the μ parameter. From Eq. (4.3), taking μ positive and m2

Hu

negative, we find that Δμ is given by

Δμ = −4μ2

M2
Z

≈ 2μ2

μ2 − |m2
Hu

| . (4.6)

Rearranging this expression, we get
√

|m2
Hu

|
μ

=
√

1 − 2
Δμ

� 1 − 1
Δμ

, (4.7)

where the last step assumes Δμ > 2. Thus, a sensitivity measure of, for
instance, Δμ = 100 would correspond to μ and

√
|m2

Hu
| being equal to an

accuracy of ∼ 1%. Note that, for simplicity, we have here worked directly
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with the parameters at the low energy scale. If the model is defined in terms
of parameters at some high scale, the low-scale parameters in Eq. (4.3) should
be regarded as functions of these, and the sensitivity should be calculated in
terms of the high-scale parameters.

Many analyses of Natural SUSY scenarios are based on first defining what
upper bound Δmax on the fine-tuning measure is regarded as acceptable,
and from this derive bounds on the theory parameters and sparticle masses.
The sparticle mass limits quoted in the previous section were all based on
Δmax = 100. But, as emphasized in [17] from which these limits were taken,
such results should be interpreted only as rough indications.

One reason for this is the wide range of choices and caveats connected with
the use of naturalness measures: First, any study of naturalness is inherently
model-dependent. Since correlations among parameters, or the lack thereof,
is precisely what determines the value of a fine-tuning measure, working with
the full MSSM parameter space is no less model-dependent than choosing a
more constrained model. A related concern is the question of exactly what
set of parameters to include in the fine-tuning analysis. In particular, should
Standard Model parameters such as the top Yukawa coupling be included?
Also, should other potential fine-tunings, such as the Higgs mass prediction,
be taken into account? Finally, there is the question of what fine-tuning
measure to choose; the Barbieri–Giudice measure presented here is only one
of several suggested in the literature.

Another, and more fundamental, reason for why parameter and sparticle
limits based on naturalness bounds should be interpreted with care, is the
fact that the definition of naturalness itself has no well-defined statistical
interpretation. Even though naturalness can be quantified using sensitiv-
ity measures such as Δθi

, these measures cannot — by themselves — tell
us anything about the viability of the model being studied. However, as
the question of how natural a model is ultimately concerns how convincing
we find the model to be, a possible solution to the interpretation problem
can be found in Bayesian statistics, which provides a well-defined statistical
framework for posing exactly these kinds of questions. Therefore, we will
revisit the topic of naturalness in Section 5.2, after having introduced the
basic concepts of Bayesian statistics.
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Chapter 5

Statistics

In physics we construct mathematical models to explain, or at least describe,
how nature works. The success of a model depends on how well it agrees
with past measurements and its ability to predict the outcomes of future
experiments. When confronting models with observations, we seek to answer
questions of two basic categories: hypothesis testing and parameter estima-
tion.

In hypothesis testing we ask whether the predictions of our model are
consistent with observations. The model can be a theory with a set of free
parameters, or a fully specified scenario, such as a single point in the para-
meter space of that theory. In questions of parameter estimation we make
the assumption that the overall theory is correct, and then try to determine
what values for the free parameters are preferred by the data.

Hypothesis testing and parameter estimation are central topics of statist-
ical inference. Broadly speaking, statistical inference is inverted probability
theory: Whereas probability theory is mainly concerned with predicting out-
comes for random variables given a known model, statistical inference is the
attempt to pin down the correct model based on a set of known outcomes.
This close connection to probability theory has given rise to two different
approaches, based on different interpretations of probability: frequentist and
Bayesian statistics.

In Section 5.1 we review some of the basic differences between frequent-
ist and Bayesian statistics. We devote the most attention to the Bayesian
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approach, as it forms the basis for the methods used in Papers 1 and 2. In
Section 5.2 we take another look at the concept of naturalness, this time
from a Bayesian point of view. Finally, in Section 5.3 we discuss parameter
scanning, and in particular the nested sampling algorithm used in Papers 1
and 2. For a general introduction to Bayesian methods, see Refs. [23,24].

5.1 Frequentist and Bayesian statistics

In the frequentist interpretation, probability is defined in terms of the relative
frequencies of outcomes in the limit of infinitely many repeated trails. That
is, if nA is the number of trails with the outcome A and N is the total number
of repeated trails, the probability P (A) for outcome A is

P (A) = lim
N→∞

nA

N
. (5.1)

Thus, probabilities can only be meaningfully assigned to outcomes of a repeat-
able and random process. For parameter estimation and hypothesis testing,
this means that the questions we are allowed to ask are such that probabil-
istic statements always refer to quantities that are expected to vary randomly
upon (hypothetically) repeated measurements.

As an example, consider a model with a single free parameter θ, pre-
dicting a probability density function (p.d.f.) f(x; θ) for some observable x.1
Assuming that our model is correct, measurements of x can be used to estim-
ate the true value of the parameter θ. The result of such an analysis is often
presented as an interval (θmin, θmax) said to contain the true parameter with
a given confidence, e.g. 95%. This does not mean that there is a 95% chance
that the true parameter value is contained in this exact interval — it either
is or it is not. Rather, it means that if we could repeat the entire experiment
many times, each time constructing a confidence interval in a similar way,
the true value of θ should be contained in 95% of these intervals. That is, the
probabilistic statement refers to the interval limits since they are functions

1For simplicity, we will use the abbreviation p.d.f. also when the observable in question
is discrete, although probability mass function is the more correct terminology for such
cases.
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of the data and therefore proper random variables in the frequentist sense.
We find the same principle at play in the case of hypothesis testing, where

we ask whether a given model is consistent with the observed data. In order
to quantify the deviation between the data set {x1, x2, . . . , xn} and the model
expectations, we define a measure q(x1, x2, . . . , xn) called the test statistic.
Being a function of the data, the value of q is itself regarded as a random
variable with an associated p.d.f., g(q), whose form depends on the data p.d.f.
and the definition of q(x1, x2, . . . , xn). In most practical applications g(q)
must be determined from Monte Carlo simulation or by assuming the validity
of some limit where the distribution of q is known analytically. A common
example of the latter is when the data is assumed to be Gaussian distributed,
xi ∼ N (μi, σ2

i ), and q is defined as q = ∑
i(xi−μi)2/σ2

i , in which case g(q) will
be a χ2 distribution. Once the distribution of q is determined, we calculate
qobs from the observed data and interpret this as a sample drawn from g(q).
If qobs is sufficiently far out in the tail of g(q), meaning that the observed data
show a surprisingly large deviation from the model expectations, the model
is rejected.2 Thus, as for parameter estimation, our conclusion is based on
interpreting a function of the observed data probabilistically based on how
we expect this quantity to vary for repeated experiments.

Before moving on to Bayesian statistics we take the time to introduce the
likelihood as it is one of the most important quantities in both frequentist
and Bayesian analysis, and central to all the work presented in this thesis.
The likelihood describes how the predicted probability for the observed data
varies as a function of the model parameters. Consider a model with two free
parameters θ1 and θ2, predicting a joint p.d.f. f(x, y, z; θ1, θ2) for three ob-
servables x, y and z. To obtain the likelihood we simply insert the observed
data set {xobs, yobs, zobs} into f(x, y, z; θ1, θ2) and interpret the resulting ex-
pression as a function of θ1 and θ2:

L(θ1, θ2) = f(xobs, yobs, zobs; θ1, θ2). (5.2)

Often the observables can be regarded as independent, in which case the

2A common criterion for rejecting the model is that the probability contained in the
tail of g(q) outside qobs, i.e. the p-value, is less than 5%.
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joint p.d.f. can be factorized as fx(x; θ1, θ2)fy(y; θ1, θ2)fz(z; θ1, θ2), leading
to a similarly factorized likelihood function. For parameter estimation, the
likelihood can be used to construct confidence intervals and obtain point
estimates, such as the maximum likelihood estimator (θ̂1, θ̂2) found by max-
imising L over the (θ1, θ2) space. In hypothesis testing the likelihood often
serves as the basis for constructing the test statistic.

Although L(θ1, θ2) is constructed from a p.d.f., it is important to note
that it cannot be interpreted as some sort of p.d.f. for the parameters. First,
this would not be defined in the frequentist approach. Second, the likelihood
function generally does not have the properties required by a p.d.f., as the
functional dependence of L on the parameters (θ1, θ2) will not be the same
as the dependence of f on (x, y, z). The distinction between a likelihood
and a p.d.f. is important to make as likelihood functions are often described
by referring to the form of the underlying p.d.f. For example, the Poisson
distribution

f(n; ν) = νne−ν

n! (5.3)

is a discrete function of the observable n, while the corresponding Poisson
likelihood L(ν) is a continuous function of ν.

If we are only interested in making inferences about one of the parameters,
θ1, the other parameter θ2 is regarded as a nuisance parameter and we seek to
eliminate it from our analysis. Several approaches exist, but for frequentist
analyses in high-energy physics the most common solution is to maximize
L(θ1, θ2) over θ2 for each point in θ1, producing what is known as the profile
likelihood

Lp(θ1) = L(θ1,
ˆ̂
θ2). (5.4)

The double hat notation indicates that the maximisation over θ2 is condi-
tional on the value of θ1.

We now turn to Bayesian statistics, which employs a very different in-
terpretation of probability. Here the probability P (A) is defined as a degree
of belief in hypothesis A or a state of knowledge about hypothesis A. Thus,
probability is no longer based on the concept of repeatable trails, and this
greatly extends the range of problems that can be treated in a probabilistic
manner. In fact, starting from an axiomatic approach to plausible reasoning,
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the rules of probability theory can be derived [25], implying that the math-
ematics of probability theory is well suited for the sort of reasoning under
uncertainty that is so central to scientific research. This wider interpreta-
tion of probability allows us to ask probabilistic questions concerning models
and the values of physical parameters, such as “What is the probability for
sub-TeV sparticles in the MSSM, given the available information?”. In a fre-
quentist framework this question is nonsensical as it does not involve any
repeatable experiment.

The central tool of Bayesian statistics is the well-known Bayes’ theorem,

P (A|B) = P (B|A)P (A)
P (B) , (5.5)

which expresses the probability of A given B, P (A|B), in terms of the prob-
ability for B given A and the unconditional probabilities for A and B. Being
a direct consequence of the sum and product rules of probability theory, this
theorem is equally valid in both the frequentist and Bayesian interpretation.
But if we replace A with some hypothesis H and B with some data D, and
condition all probabilities on any background information I, we arrive at a
formulation of the theorem that is only valid in — and completely central to
— the Bayesian approach:

P (H|D, I) = P (D|H, I)P (H|I)
P (D|I) . (5.6)

The left-hand side of this equation, P (H|D, I), is called the Bayesian
posterior probability or simply the posterior, and it is the central quantity we
wish to obtain in a Bayesian analysis. It represents our degree of belief in
the hypothesis after confronting it with some new data D.

On the right-hand side, the first factor in the nominator, P (D|H, I), rep-
resents the probability for obtaining the observed data under the assumption
that H is true. When interpreted as a function of H, this is simply the like-
lihood introduced above, and it is through this quantity that the physical
predictions of H enter the equation.

The second factor in the nominator, P (H|I), is known as the prior prob-
ability (or simply the prior) and is the source of much heated debate between
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frequentists and Bayesians. It expresses our degree of belief in the hypothesis
based on background information alone, i.e. prior to taking the data D into
account. Thus, Eq. (5.6) can be understood as a prescription for how we
should update our degree of belief in H in light of new data, i.e., how to
go from P (H|I) to P (H|D, I). While the prior provides a way of including
additional information in our inference, it at the same time raises difficult
questions regarding how exactly this information should be encoded, and
whether it is acceptable that priors can differ from one person to the next.
In some sense, having to deal with these difficulties is the price to pay for
the wider probability interpretation of Bayesian statistics. We will return to
these questions in subsequent sections.

The denominator of Eq. (5.6), P (D|I), is referred to as the Bayesian
evidence. It corresponds to the expression in the nominator marginalized
over all possible realisations of H. If we are considering a discrete set of
mutually exclusive hypothesis, Hi, for instance different values of a discrete
parameter, marginalisation amounts to calculating the sum

P (D|I) =
∑

i

P (D|Hi, I)P (Hi|I), (5.7)

where the set of possible hypothesis must be exhaustive, ∑
i P (Hi|I) = 1.

More often, H will represent a given point in a space of continuous para-
meters, such as the parameter space of the MSSM. In this case the prior
and posterior probabilities in Bayes’ theorem become p.d.f.’s, and the mar-
ginalisation sum in Eq. (5.7) turns into an integral over the entire parameter
space of the model. Since the dependence on the model parameters is in-
tegrated out, the evidence does not affect the shape of the posterior p.d.f.
across the parameter space. This means that for parameter estimation pur-
poses it is nothing more than a constant ensuring the proper normalisation
of the posterior p.d.f. On the other hand, the evidence takes center stage in
applications of Bayesian hypothesis testing.

For an illustration of Bayesian parameter estimation, consider a model
with a single free parameter θ, being confronted with a set of measurements
D. If we rewrite Eq. (5.6) using a more compact notation, the posterior p.d.f
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for θ can be expressed as

P (θ|D) = L(θ)π(θ)
Z . (5.8)

Here P (θ|D) is the posterior, L(θ) is the likelihood, π(θ) denotes the prior
and Z is the evidence, given by

Z =
∫

L(θ)π(θ) dθ. (5.9)

Despite the simplified notation it should be kept in mind that all the above
quantities are conditioned on the overall model being true, as well as any
background information. (In Bayesian statistics, truly unconditional prob-
abilities are hard to come by.)

The most complete way of presenting results in Bayesian inference is to
present the posterior distribution directly. However, it is often necessary to
condense the result down to a point estimate or interval for the parameter of
interest. The mean, median or maximum of P (θ|D) are commonly used point
estimates, while for intervals we construct what is called a credible interval.
This is simply any interval (θmin, θmax) that contains a given fraction p of the
posterior probability:

p =
θmax∫

θmin

P (θ|D) dθ. (5.10)

As this requirement is not enough to uniquely determine the interval, a com-
mon additional requirement is to choose the interval such that it maximizes
the posterior p.d.f. inside the interval.

When the posterior is a joint p.d.f. for several parameters, e.g. P (θ1, θ2|D),
the concept of a credible interval generalizes to a credible region in the higher-
dimensional parameter space. If θ2 is an uninteresting nuisance parameter
that we want to eliminate, the fact that the posterior is a p.d.f. implies that
integration over θ2 is the natural procedure:

Pθ1(θ1|D) =
∫

P (θ1, θ2|D) dθ2. (5.11)

In many applications we are more interested in the posterior of some func-
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tion of model parameters rather than the posterior of the model parameters
themselves. This is the case in Papers 1 and 2, where we mainly focus on
posterior distributions for observables such as particle masses and lifetimes.
For illustration, consider a function f(θ) of some model parameter θ. Our
task is now to perform a change of variable in the posterior from θ to f .
Since the value of f is uniquely determined by the value of θ, a p.d.f. for f

conditional on θ takes the simple form of a delta function. This is of course
independent of any data D, allowing us to express the joint posterior in the
space of f and θ as

P (f, θ|D) = P (f |θ, D)P (θ|D)
= δ(f(θ) − f)P (θ|D).

(5.12)

To obtain the posterior for f we now simply marginalize over the parameter
θ,

P (f |D) =
∫

δ(f(θ) − f)P (θ|D) dθ. (5.13)

Thus, the posterior for f(θ) is obtained by weighting all values of f by the
posterior probability for the corresponding value(s) of θ.

In numerical studies we often work with a set of samples drawn from
P (θ|D) rather than with the distribution itself. Equations (5.12) and (5.13)
then tell us that the posterior for f can be approximated in the following way:
First we determine where our samples fall in the (f, θ) space by calculating
fi = f(θi) for each sample θi. Then we marginalize over θ by histogramming
the samples in terms of f only. This simple procedure readily generalizes to
situations with multiple parameters and observables.

Finally, we consider Bayesian hypothesis testing. So far the hypothesis H

in Eq. (5.6) has referred to one out of many possible realisations, e.g., a point
in the parameter space of some overall theory T assumed to be true. In this
case, the Bayesian evidence P (D|I), which we more properly should have
denoted P (D|T, I), could be calculated by marginalising over all possible H,
as shown in Eqs. (5.7) and (5.9). If we now turn to the case where the theory
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T itself is the hypothesis under study, Bayes’ theorem becomes

P (T |D, I) = P (D|T, I)P (T |I)
P (D|I) , (5.14)

where we recognize that the evidence P (D|T, I) now appears in the nomin-
ator. However, the denominator P (D|I) is now problematic: As long as we
have not specified any alternative theories to T , the only well-defined value
for P (D|I) is the trivial case P (D|I) = P (D|T, I)P (T |I) with the “certainty
prior” P (T |I) = 1, which, of course, also leads to a posterior P (T |D, I) = 1.
Thus, Bayes’ theorem tells us that we cannot asses how well a hypothesis
agrees with data without having at least one well-defined alternative hypo-
thesis.

Hypothesis testing within the Bayesian framework is therefore a question
of model comparison: Given two models T1 and T2, the central quantity is
the posterior odds,

P (T1|D, I)
P (T2|D, I) = P (D|T1, I)

P (D|T2, I)
P (T1|I)
P (T2|I) , (5.15)

representing our relative degree of belief between the two models after the
data D is taken into account. On the right-hand side, P (T1|I)/P (T2|I) is the
prior odds, while P (D|T1, I)/P (D|T2, I) is the evidence ratio, usually called
the Bayes factor, which encodes how the new information contained in the
data should update our relative degree of belief. Analogous to how a set of
conventional p-values are used to draw conclusions in frequentist hypothesis
testing, the results of Bayesian model comparison are often interpreted using
Jeffreys’ scale, see Ref. [26].

5.1.1 Subjective beliefs and objective frequencies?

The debate between the frequentist and Bayesian view on probability and
statistical inference is a long and at times heated one, and we cannot do it
full justice here. Still, as the work presented in this thesis makes use of both
approaches, a few comments are in order.

As a degree of belief can differ from person to person, critics of the
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Bayesian approach argue that this interpretation of probability leads to an
unacceptable level of subjectivity in Bayesian inference. In particular, having
to include a prior belief for the hypothesis under study is seen as problem-
atic. The Bayesian response to this criticism comes in two main flavours:
The subjective Bayesian approach prefers to fully embrace the subjective
nature of Bayesian priors, arguing that the application of a subjective prior
simply reflects what we all do when interpreting data anyway. The Bayesian
formalism simply forces us to be honest about any assumptions.

The other response has taken the approach of developing objective rules
and principles for how priors should be assigned. Under this objective Bayesian
approach, a difference in assigned prior should only arise from a difference in
background information; the objectivity of the method is ensured as long as
two people with identical information assign identical priors [24]. We come
back to some of the results of this approach when discussing prior assignment
in the next section.

An interesting question is what happens when the tools of Bayesian in-
ference are employed on a problem where all information is of a purely fre-
quentist type. For instance, consider an experiment that measures a forward-
backward symmetry in particle collisions. We are interested in determining
the long-run relative frequency f of forward events,

f = lim
N→∞

nF

N
, (5.16)

where nF is the number of forward events and N denotes the total number
of events. In frequentist terms this is of course nothing but the probability
for a forward event, P (F ). Our only piece of prior information is the simple
observation that there are only two possible outcomes per event: forward or
backward. Based on this information alone a flat prior is assigned to f . In
Jaynes [24] a similar example is worked out in detail. The result is that, after
observing nF forward events in N events total, the posterior distribution for
f is given by

P (f |nF , N) = (N + 1)!
N !(N − nF )!f

nF (1 − f)N−nF . (5.17)
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The f value of maximum posterior probability, i.e. the long-run relative fre-
quency with the highest degree-of-belief, is f = nF /N , in perfect agreement
with frequentist reasoning. The mean value for f , which is often a better
estimator for small samples, is given by

f̄ = nF + 1
N + 2 . (5.18)

This turns out to be identical to the central value of a frequentist confidence
interval for the same problem. The +1 and +2 terms can be understood from
the fact that our prior knowledge told us that both outcomes actually are
possible, which amounts to the information contained by two “prior events”,
one of which was forward. If we did not even know this much, our prior
should not have been flat.

We can also consider a different question: In the limit of N → ∞, nF /N →
f , that is when the frequentist probability for forward events is known from
an infinite number of observations, what is the probability for observing
mF forward events in the next M trails? The posterior distribution for
P (mF |M, f) turns out to be the binomial distribution. Thus, in the case
of “pure” frequentist knowledge, the degree of belief one should assign to
the outcome mF is precisely the same as the probability a frequentist would
calculate.

The above examples suggest that if relative frequencies are all we care
about, a Bayesian and a frequentist analysis can reach very similar, and at
times identical, conclusions. Arguing from the Bayesian point of view, Jaynes
states that

this equivalence shows why it is so easy to confuse the notion of
probability and frequency, and why in many problems this confu-
sion does no harm. [24](p. 578)

Regardless of whether there is any underlying confusion, it seems plausible
that at least part of the scepticism towards Bayesian methods may come
down to habit: When most of the problems we work on are those in which
relative frequencies and degrees of belief behave similarly, it is perhaps easy
to conclude that relative frequencies is the preferred basis for all inference.
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Returning to the case where the Bayesian analysis includes background
information of any type, we can ask to what extent the assigned prior will af-
fect the resulting posterior p.d.f. This degree of prior dependence will depend
on the strength of the data and we can investigate it by repeating the ana-
lysis with a different assigned prior. A large variation between the resulting
posteriors tells us that the current data are not strong enough to dominate
our prior information, and that any conclusions based on these data should
be interpreted with care, regardless of analysis method. The other extreme
case is when the information in the data completely dominates the prior. For
instance, this would be the case if we were determining the mass of a new
particle in the range 100 – 1000 GeV, and the likelihood from the experiment
was a peak with a width of a few GeV. Unless we had very strong prior
information, any reasonable prior should be approximately flat over such a
small interval, meaning that the shape of the posterior would be completely
determined by the shape of the likelihood. In this limit of overwhelming data,
the different questions asked by the frequentist and the Bayesian approach
will end up giving very similar answers, even if they technically should still
be interpreted differently. This is not an argument for or against either stat-
istical approach, but for physicists it may be reassuring to know that if we
are successful enough in gathering data, our knowledge about nature should
ultimately not depend on our choice of statistical philosophy.

5.1.2 Objective priors

For the work presented in this thesis we are following the objective Bayesian
approach to assigning prior probability distributions. In short, this means
that priors are assigned according to a set of principles for how information,
or the lack thereof, should be encoded in a probability distribution.

The simplest principle is what is known as transformation group invari-
ance, and is an extension of the principle of insufficient reason dating back
to Bernoulli in 1713 [27]. It is applicable when we have no information about
a parameter apart from what role it plays in our theory. The principle holds
that the prior should be invariant under any transformation that is con-
sidered irrelevant to the problem. For a location parameter, e.g. the mean
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of a Gaussian distribution, performing a coordinate translation x′ = x + a

should not affect our prior degree of belief. We therefore require that the
prior p.d.f. π(x|I) satisfies

π(x|I) dx = π(x + a|I) d(x + a). (5.19)

Since d(x + a) = dx, this reduces to the requirement

π(x|I) = π(x + a|I), (5.20)

which means that π(x|I) must be a uniform p.d.f. We often refer to this as
a flat prior.

Another important class of parameters is scale parameters, for example
the standard deviation of a Gaussian distribution. Scale parameters are
dimensionful parameters that introduce a definite scale in the problem. For
the work presented in this thesis, a scale parameter will typically be some
Lagrangian mass parameter m. Ignorance as to what is the correct scale for
m implies that our prior should not change under a scaling m′ = cm. The
requirement on our prior p.d.f. then becomes

π(m|I) dm = π(cm|I) d(cm)
= π(cm|I) c dm,

(5.21)

which is satisfied if π(m|I) has the form π(m|I) ∝ 1/m. A simple change
of variable shows that this corresponds to π(log(m)|I) being uniform and we
therefore call this a log prior.

Technically, both flat and log priors are what is called improper priors in
that they do not integrate to unity. Such priors are still used in Bayesian ana-
lysis as they can produce proper normalized posterior p.d.f.’s given that the
likelihood falls off quickly enough. However, all models studied in this thesis
are motivated by their possible relevance for physics at the LHC, meaning
that the mass scale must be in the GeV–TeV range. The problem of improper
priors can therefore be overcome simply by setting hard cuts on the allowed
parameter ranges. For instance, for a mass parameter m we will typically
construct a prior that has the shape of a log prior on some range (mmin, mmax)
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and is 0 everywhere else. In a Bayesian analysis such limiting of the allowed
parameter ranges are formulated in terms of the parameter priors, but as
illustrated by our analyses in Papers 3 and 4, similar choices must be made
in a frequentist analysis.

In the above cases our lack of information combined with the invariance
requirement was enough to uniquely determine the shape of the prior p.d.f.
But how should we assign priors to parameters that we know should satisfy
some set of constraints? This will be the case for standard model parameters
such as the Z mass, for which we know the mean μMZ

and variance σ2
MZ

.
Any valid prior π(MZ |I) should therefore satisfy

E[(MZ − μMZ
)2] =

∫
(MZ − μMZ

)2π(MZ |I) dMZ = σ2
MZ

. (5.22)

One possible approach for uniquely determining the prior is that of maximum
entropy due to Jayens [28]. The basis of this approach is the use of Shannon
entropy as a measure for information, with higher entropy corresponding to
less information. As the name suggests, the maximum entropy approach tells
us to choose the prior that maximize entropy while still satisfying the given
constraints. In other words, we seek the prior that adds the minimum amount
of extra a priori information. For the common case where all we know is a
mean and variance, such as for MZ , it turns out that the maximum entropy
prior is nothing but the Gaussian distribution,

π(MZ |I) = 1
σMZ

√
2π

exp
[
−(MZ − μMZ

)2

2σ2
MZ

]
. (5.23)

From a Bayesian perspective, the common application of Gaussian p.d.f.’s in
inference problems can therefore be justified on the grounds that it is the
most conservative description of our state of knowledge, given that all we
know is a mean and variance. For a review of the topic of objective priors,
see Ref. [29].
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5.2 Naturalness from a Bayesian perspective

We can now return to the concept of naturalness introduced in Chapter 4. As
the Bayesian framework allows us to ask probabilistic questions at the level of
the entire parameter space of a model, it has been suggested that the starting
point for an analysis of naturalness should simply be the probability for the
observed data in the model [30]. This is nothing but P (D|T, I). Interpreted
as a function of D, this is the so-called prior predictive probability, that is,
the a priori probability for the data D, given that the model is true. If we
take D to represent the actual observed data and interpret P (D|T, I) as a
function of the model T , it becomes the Bayesian evidence for the model T

provided by the data D.3
The above approach to naturalness seems to agree well with our intuition:

The Standard Model (SM) is a highly unnatural theory because the extreme
fine-tuning required in Eq. (2.20) implies that only an exceedingly narrow
range of parameter values will predict a value for v close to the observed value,
v ≈ 174 GeV. Given that we had no a priori reason to prefer exactly this
range of parameter values, P (v = 174 GeV|SM, I) will turn out vanishingly
small.

The dynamics captured by the Bayesian evidence can be further illus-
trated if we express it as a marginalization over the model parameter space,

P (D|T, I) =
∫

L(θ)π(θ) dθ, (5.24)

where we have used the simplified notation for the likelihood and prior in-
troduced in Eq. (5.9). We see that the evidence becomes large only when
there is reasonable agreement between predictions and observations, that
is, a sizeable likelihood L(θ), over a region of parameter space containing
a significant fraction of prior probability π(θ) dθ. This also means that the
evidence represents a formalized version of Occam’s razor : Given comparable
agreement with data, a model in which the prior probability is spread across
a huge parameter space will obtain smaller evidence compared to a model

3Note that when interpreted as a function of T , P (D|T, I) is no longer a probability.
The situation is exactly analogous to how a parametrized p.d.f. becomes a likelihood
function when viewed as a function of the parameters.
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with fewer parameters or a more focused prior distribution.
Interestingly, the Bayesian evidence also contains within it the Barbieri–

Giudice sensitivity measure defined in Eq. (4.4) [31]. To illustrate this, we
consider the case where our model T is the MSSM. Denoting as θi all MSSM
parameters except μ, the evidence is given by a marginalization over the
MSSM parameter space:

P (D|T, I) =
∫∫

L(θi, μ)π(θi, μ) dθi dμ. (5.25)

What is usually done in MSSM studies is to use the precise measurement
of MZ to solve for one theory parameter, often μ. A more formal Bayesian
approach is to rather include the MZ measurement in the likelihood on equal
footing with all other measurements. Approximating the likelihood contri-
bution from MZ by a delta function, we can write

L(θi, μ) = δ(MZ(θi, μ) − Mobs
Z )Lrest(θi, μ), (5.26)

where Mobs
Z is the measured Z boson mass and Lrest(θi, μ) is the remaining

part of the likelihood function. Further, we take the parameter priors to be
independent and choose a log prior for μ,

π(θi, μ) = π(μ)π(θi) ∝ 1
μ

π(θi). (5.27)

If we now perform a change of integration variable from μ to MZ in Eq. (5.25)
and carry out the integration over MZ , we find

P (D|T, I) ∝
∫

Lrest(θi, μZ)π(θi)
1

|Δμ|μZ

dθi, (5.28)

where μZ is the μ value that predicts the observed Mobs
Z for a given θi. We

see that the Barbieri–Giudice sensitivity measure for μ appears, through the
Jacobian, as a suppression factor in the evidence. In [30] it is shown that
the Barbieri–Giudice measure is actually a special limit of a more general
sensitivity measure automatically appearing in the Bayesian approach.

If we accept that naturalness can be described by the Bayesian evidence,
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what evidence values should we regard as acceptable? As it turns out, this
is not a well-defined question. Since the evidence is a p.d.f. when viewed
as a function of the data D, it is a dimensionful quantity whose value will
depend on our parametrisation of the data. As we saw when discussing model
comparison in Section 5.1, the Bayesian evidence for a model T1 can only be
meaningfully interpreted relative to the evidence for an alternative model T2,
that is, through the Bayes factor,

B12 = P (D|T1, I)
P (D|T2, I) . (5.29)

Thus, from the Bayesian point of view, we should not attempt to asses the
naturalness of individual models, but rather compare the evidence for com-
peting models through Bayesian model comparison, for which Jeffrey’s scale
provides a conventional guide for drawing conclusions.

5.3 Exploring parameter spaces
One of the most common tasks of high-energy phenomenology is to identify
the most interesting parameter regions within some theory. Usually, what is
meant by “interesting parameter regions” is regions of parameter space that
are preferred by comparison to current data; this is the interpretation we will
assume below. But parameter regions can also be regarded as interesting for
other reasons, such as the prediction of special experimental signatures or a
high expected sensitivity for some future experiment. Papers 1 and 2 touch
on aspects of the former, while an example of the latter can be found in [32].
In any case, the underlying task is that of parameter estimation.

The basic challenge in parameter estimation problems is to explore the
likelihood function across the model’s parameter space. Once we know this
function we can start making inferences about the preferred parameter values.
For a frequentist analysis inferences will be based on the likelihood alone,
while a Bayesian analysis will combine the likelihood with the prior p.d.f. to
make inferences based on the posterior p.d.f.

In all but the simplest cases parameter estimation problems have to be
treated numerically, meaning that we also need to worry about whether we
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can explore the parameter space with sufficient accuracy. If the likelihood is
computationally cheap and the model only has a few free parameters, we can
easily evaluate the likelihood over a dense grid of points covering the entire
parameter space. All else being equal, an increase in the computational
cost of the likelihood must be compensated by a decreased density of grid
points, resulting in a less accurate description of how the likelihood function
behaves. How large the grid spacing can be without severely affecting our
results depends on how quickly the likelihood varies across parameter space.
Our analysis in Paper 4 illustrates the simple grid scan approach for a model
with only two free parameters.

When the number of parameters increase, the grid scan method quickly
falls victim to the “curse of dimensionality”: If n is the desired number of
evaluation points per parameter and d is the dimensionality of the parameter
space, the required number of likelihood evaluations is nd. For models with
more than a few parameters this quickly becomes computationally intract-
able. The same applies if we instead of a grid scan choose to sample the
parameter space randomly.

The solution to this problem is to realize that we do not need to know the
behaviour of the likelihood with high accuracy across the entire parameter
space. In order to determine the preferred parameter values we only need
to accurately explore regions where the likelihood is reasonably high. The
challenge then becomes one of optimization: how to identify and explore
these parameter regions with the required accuracy, using as few likelihood
evaluations as possible.

In determining the algorithm best suited for solving this problem, two
factors turn out to be of special importance: First, the likelihood will often
be multimodal, as separate regions in parameter space can give predictions
that are in comparable agreement with the data. Also, when Monte Carlo
methods are used for simulation or integration, false local maxima can occur
due to statistical fluctuations. Second, the gradient of the likelihood is usu-
ally not known and can only be approximated through additional likelihood
evaluations. Such complications imply that Monte Carlo-based sampling al-
gorithms are better suited than deterministic ones. A probabilistic sampling
method will be less prone to getting stuck in the region of a local likelihood

56



maxima, and the algorithms generally do not rely on knowing the gradient.
For the analyses in Papers 1 and 2 we have used the Monte Carlo-based
technique of nested sampling as implemented in the MultiNest package [33].
We present this algorithm in the next section.

5.3.1 Nested sampling and the MultiNest algorithm

The nested sampling algorithm due to Skilling [34] was developed to solve
the computationally difficult problem of evaluating the Bayesian evidence Z
in models with multidimensional parameter spaces,

Z =
∫

L(Θ)π(Θ) dΘ, (5.30)

where Θ is vector notation for a collection of parameters. As noted previ-
ously, the evidence is mainly of importance for model comparison studies.
But as a by-product of nested sampling we also obtain a set of parameter
space samples Θi drawn according to the posterior p.d.f. P (Θ|D), and this
makes the technique suitable also for parameter estimation studies. It is for
this purpose that nested sampling has been used in Papers 1 and 2.

The starting point of nested sampling is the introduction of a new variable
called the prior mass, ξ, defined by

dξ = π(Θ) dΘ, (5.31)

such that
ξ(λ) =

∫
L(Θ)>λ

π(Θ) dΘ. (5.32)

That is, the prior mass is the amount of prior probability contained within
the region(s) of parameter space where the likelihood is greater than some
value λ, see Fig. 5.1. This means that ξ(λ) is a decreasing function of λ,
from ξ(0) = 1 to ξ(Lmax) = 0. The inverse function, which conventionally is
denoted L(ξ),4

L(ξ(λ)) ≡ λ, (5.33)
4Note that L(ξ), taking the scalar argument ξ, should not be confused with L(Θ),

which depends on the vector argument Θ.
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L(θ)
π(θ)

ξ(λ)

L = λ

θ

Figure 5.1: The prior mass ξ(λ) is the integrated prior p.d.f. π(θ) over the
region of parameter space where the likelihood L(θ) is greater than λ.

tells us the value for the likelihood contour that contains a given prior mass
ξ.

The reason for introducing the prior mass is that the multidimensional
evidence integral in Equation (5.30) now can be expressed as a one-dimensional
integral over ξ:

Z =
1∫

0

L(ξ) dξ. (5.34)

If we can obtain a set of ordered samples ξi along with the corresponding
likelihood values L(ξi), the above integral can be solved by standard methods
of numerical integration. The name “nested sampling” derives from the way
in which this set of samples is obtained:

1. Draw a set of N “live points” Θj according to the prior distribution
π(Θ).

2. Evaluate the corresponding likelihoods Lj = L(Θj).

3. Discard the point with the lowest likelihood, Θdiscard.
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4. Pick a new point Θnew from π(Θ) under the constraint L(Θnew) >

L(Θdiscard).

5. Repeat from step 3.

By iteratively replacing the point of lowest likelihood by a new point with
higher likelihood, the entire set of live points will gradually move towards
regions of higher likelihood. Thus, the discarded points will form a set of
samples of increasing likelihood,

0 < L1 < L2 < . . . . (5.35)

If ξi is the amount of prior mass contained within the likelihood contour
of Li, the likelihood samples will correspond to samples decreasing in prior
mass,

1 > ξ1 > ξ2 > . . . . (5.36)

This is exactly the sort of ordered sampling in ξ and L(ξ) that we wanted for
evaluating the integral in Equation (5.34) numerically. However, the exact
values ξi are not known and must be approximated.

The relation dξ = π(Θ) dΘ implies that sampling parameter points ac-
cording to π(Θ) will correspond to a uniform sampling in ξ. The additional
sampling constraint L(Θnew) > L(Θdiscard) ensures that the prior mass as-
sociated with the new sample is less than the prior mass for the discarded
sample, ξnew < ξdiscard. Thus, at the beginning of iteration i we have N

samples uniformly distributed on the interval (0, ξi−1). The prior mass ξi as-
sociated with the next point to be discarded is therefore a random variable,

ξi = ti ξi−1, (5.37)

where ti follows the p.d.f. f(t) for the largest of N numbers drawn uniformly
from [0, 1]:

f(t) = NtN−1. (5.38)

Since we start by sampling from the entire prior mass, ξ0 = 1, we can express
ξt as

ξi = ti ti−1 . . . t1, (5.39)
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or in terms of ln ξi,

ln ξi = ln ti + ln ti−1 + · · · + ln t1. (5.40)

From the p.d.f. in Equation (5.38) we find the expectation value and variance
for ln t to be

μln t = − 1
N

,

σ2
ln t = 1

N2 .
(5.41)

We can now approximate ln ξi by5

ln ξi ≈ − i

N
±

√
i

N
. (5.42)

Based on this approximation the prior mass ξi contained within the contour
of Li is assumed to be

ξi = exp
[
− i

N

]
. (5.43)

With known values for both the likelihood and prior mass at each itera-
tion we can approximate the evidence integral in Equation (5.34). After M

iterations we have

Z ≈
M∑

i=1
Liwi =

M∑
i=1

Li
1
2(ξi−1 − ξi+1), (5.44)

where the weight wi = 1
2(ξi−1 − ξi+1) represents the unique slice of prior

mass associated with the likelihood value Li, here chosen according to the
trapezoidal rule. The sampling algorithm stops when the largest possible
contribution ΔZ from the current set of live points is negligible compared
to the estimate in Eq. (5.44). The uncertainty in the final estimate for Z
is dominated by the approximation made in Eq. (5.42). For a discussion of
this, see Ref. [23].

Once the evidence Z has been determined, the complete set of parameter
space samples Θi, discarded points and live points, can be turned into a

5Where nothing sinister is meant by
√

i.
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set of posterior samples by assigning each sample a posterior weight pi in
accordance with Bayes’ theorem in Eq. (5.8):

pi = Liwi

Z (5.45)

These samples can then be used for further analysis, as outlined in Section
5.1.

The most challenging part of the original nested sampling algorithm is
how to efficiently sample the prior distribution under the additional hard
likelihood constraint L(Θnew) > L(Θdiscard). If new samples are drawn from
the entire prior distribution the acceptance rate will decrease steadily as the
likelihood constraint grows stronger. Mukherjee et al. improved on this by
constraining new samples to be drawn from an ellipsoid containing the set of
live points [35]. To tackle multimodal distributions, Shaw et al. introduced
clustering algorithms to assign one ellipsoid to each cluster of live points [36].
Feroz and Hobson further improved on this approach and released an imple-
mentation in the form of the Fortran package MultiNest [33, 37].
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Chapter 6

Parameter scans in high-energy
physics

In this chapter we will focus on how parameter estimation analyses are per-
formed in the context of high-energy physics phenomenology. In addition
to parameter estimation we will frequently make use of the terms parameter
scan, highlighting the exploration of the parameter space, and global fit,
emphasising the comparison of model predictions to a wide range of experi-
mental observables.

We start by outlining a typical scan setup in Section 6.1, before consider-
ing some of the limitations of current global fits in Section 6.2. In Section 6.3
we present the Global And Modular Beyond the Standard Model Inference
Tool (GAMBIT), an ongoing project that aims to overcome these limitations.
We focus in particular on one aspect of the GAMBIT project, namely how to
make the best possible use of existing physics tools. As part of this effort,
we have developed a new tool called BOSS, which we present in Section 6.4.

6.1 A vanilla scan setup
The first component of any parameter scan is the algorithm responsible for
exploring the parameter space. As discussed in Section 5.3, for simple mod-
els with only a few free parameters this can be accomplished by choosing
points to lie on a grid or simply pick points at random, i.e. according to
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a flat probability distribution. More sophisticated algorithms are needed
to efficiently explore higher-dimensional parameter spaces, with the nested
sampling algorithm presented in Section 5.3.1 being one alternative.

Once a specific parameter point has been chosen our model is fully spe-
cified. Our next task is to determine the value of the likelihood function at
the given point. As long as the observables considered, Oi, are statistically
independent, the total likelihood can be expressed as a factorized composite
likelihood,

L(Θ) =
∏

i

LOi
(Θ). (6.1)

The p.d.f., and consequently also the likelihood, for an observable depends
not only on the underlying theory, but also on the assumptions and uncer-
tainties that go into the experimental measurement. In some cases informa-
tion about the likelihood function is published when a new measurement is
presented, see e.g. Ref. [38], but often we are forced to assume a likelihood
function based on the nature of the observable and measurement. When all
we know about a measured quantity is a central value with error estimates,
we usually assume a gaussian likelihood, with a width determined by combin-
ing experimental and theoretical uncertainties. For event count observables a
Poisson likelihood is typically assumed, while upper or lower limits are often
treated using, possibly smeared, step functions.

The factorisation of the total likelihood in Eq. (6.1) makes it easy to
arrange the calculations of the different LOi

factors in order of increasing
computational expense. This way, if one of the easily computable predictions
is in huge disagreement with observations, we can simply assign a very small
likelihood value to the parameter point — effectively discarding it — and
not waste time on the more expensive calculations. A related issue is that
of unphysical points in the parameter space, for instance supersymmetric
models with no electroweak symmetry breaking, for which further predictions
are unreliable or simply not calculable. Such points are usually discarded
right away, thus representing an additional factor

Lphysical(Θ) =
⎧⎨
⎩1 if Θ is physical

0 if Θ is unphysical,
(6.2)
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in the total likelihood, or a similar requirement on the Bayesian prior.
To illustrate a typical, but far from exhaustive, chain of likelihood cal-

culations we consider the study of a supersymmetric model. First the mass
spectrum must be calculated, as it forms the basis for most other model
predictions. Common tools for this purpose are SOFTSUSY [39], IsaJet
[40], SuSpect [41] and SPheno [42, 43], often supplemented by a tool like
FeynHiggs [44–48] for more detailed calculations of the Higgs sector. Next
follows observables that are relatively cheap to compute, such as decay rates
(SUSY-HIT [49]), flavour physics observables (SuperIso [50, 51]) and various
electroweak precision observables (FeynHiggs, MicrOMEGAS [52]). The com-
putational expense related to the relic density of dark matter (DarkSUSY [53],
MicrOMEGAS) can vary greatly depending on the number of possible coanni-
hilation processes considered. If included, computationally heavy observables
such as NLO cross sections (Prospino1 [58]) and simulated collider searches
(Pythia [59, 60], HERWIG++ [61]) are done last.

6.2 Limitations of current global fits

In order to carry out a complete global fit, the scanning algorithm and all the
observable calculations must be combined in a joint framework. There exists
a few public tools for accomplishing this, most notably Fittino [62] and
SuperBayes [63,64]. In addition, many groups develop their own fitting tools
which are not released publicly, with MasterCode [65] being one important
example. However, all the above mentioned tools are subject to one or more
of the following limitations: First, they are typically designed to study only a
small subset of New Physics models, with constrained SUSY scenarios being
the most common. Second, relating to the previous section, the fitting codes
are often strongly linked to a chosen set of theory tools for calculating the
model predictions. This makes it difficult for a user to replace or add tools in
the likelihood calculation chain. Finally, there is usually a limited selection of
available scanning algorithms, with variations of nested sampling or Markov

1When only coloured sparticle production is considered, the tool NLL-fast [54–57]
provides a fast alternative combining pretabulated results from Prospino with NLL re-
summation of soft gluon emission in interpolation tables.
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Chain Monte Carlo being the most common. So while the above mentioned
scanning packages are efficient in performing the analyses they were designed
for, their applicability beyond this is limited by a lack of modularity and
flexibility.

For the work presented in this thesis we developed a private Python-
based scanning code where every external tool is associated with a separate
Python module. This module is responsible for running the external code
as an independent executable and manage all input and output. With this
setup it is straightforward to add, remove or rearrange tools in the likelihood
calculation chain. However, this modularity comes at the cost of reduced
code efficiency and flexibility: Most communication of data must proceed
via the reading and writing of files, which is much slower than handling data
in memory. And since the possibility of interaction with the external tools
is limited, one often finds that new executables must be written when the
requirements of the analysis change.

A situation where most analyses rely on privately developed scanning
tools may in the long term have some negative consequences for the field as
a whole. Much valuable research time can be wasted on “reinventing the
wheel”, when possibly better solutions already exist. This may lead to the
adoption of unnecessarily coarse approximations in the likelihood calculation
chain, either to compensate for a scanning tool of suboptimal efficiency, or
simply because little time is left to improve the physics calculations. Another
important cause for concern is that reproducibility is likely to suffer when
the tools used can differ substantially between analyses.

6.3 GAMBIT
In 2012 the Global and Modular Beyond the Standard Model Inference Tool
(GAMBIT)2 collaboration was founded. With GAMBIT we aim to create an
open-source fitting tool that improves significantly on the above mentioned
limitations. The collaboration currently consists of 26 members from both
the experimental and theoretical side of particle and astroparticle physics,
and the first results are scheduled for release in the second half of 2015.

2http://gambit.hepforge.org/
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One of the main features of GAMBIT is a very general treatment of theoret-
ical models. This allows for performing global fits in any New Physics model,
not just variations of SUSY. Models can either be defined from scratch, or
as a subset of an already implemented model, similar to how the CMSSM is
related to the MSSM.

The design of GAMBIT is based on an overarching idea of modularity at all
levels. Scanner algorithms, likelihood calculations and external tools should
all be replaceable without having to make fundamental changes to GAMBIT it-
self. At the top level, GAMBIT consists of a set of independent modules called
Bits, that all connect and communicate via a central Core module. There is
a ScannerBit responsible for running the sampling algorithm, while physics
modules such as ColliderBit, DarkBit, FlavBit and HiggsBit take care
of calculating physics observables. All modules are written in C++ and the
user is free to add, modify or remove modules as desired.

To ensure the desired code modularity, the modules are never directly
coupled together, but communicate by presenting the rest of GAMBIT with
a set of required inputs, called requirements, and a list of possible outputs,
called capabilities. For instance, DarkBit may need to know the mass of
the Higgs, mH , in order to perform its calculations. It therefore lists mH

as a requirement. By checking the list of capabilities, the Core ensures that
mH is provided by one of the other modules, and sets up the necessary
communication. Thus, each individual module remains indifferent to exactly
how its requirements are fulfilled, as this is the responsibility of the Core.

6.3.1 Interfacing multiple physics tools

There exists a multitude of specialized tools for computing physics observ-
ables in particular models of New Physics, and new tools are continuously
being developed. Any global fit package must therefore find a way to inter-
face to these tools, in order to make use of them in the likelihood calculations.
In Section 6.2 we described two different solutions to this problem: The first
was to choose a limited set of external tools and link them directly with the
main scanning code. This approach allowed for efficient communication of
data but lacked modularity. In the second approach, all tools were called as
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Figure 6.1: Screen capture of the backend system in GAMBIT.

independent programs. While providing much more modularity, this solution
suffered in terms of efficiency.

The approach taken in GAMBIT share many similarities with the use of
plug-ins in modern software. External physics tools, in GAMBIT referred to as
backends, are provided as shared libraries3 that GAMBIT load, use and unload
at run-time. Known as dynamic loading, this allows for efficient communica-
tion of data via memory, while at the same time ensuring that GAMBIT itself
can function without any particular backend.

Similar to how the physics modules list what input they require from
other modules, they can also request information from external tools by
specifying a set of backend requirements. It is then up to the Core to check
that a backend able to provide this information is connected to GAMBIT. As
an example, DarkBit may list the relic density of dark matter as a backend
requirement, which can then be fulfilled by connecting external tools like
DarkSUSY or MicrOMEGAS to GAMBIT’s backend system. Figure 6.1 shows a
screen capture from GAMBIT listing information on what backends the user
currently has connected.

3On Linux systems the file extension .so is often used for shared libraries, while on OS
X the .dylib extension is common.
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6.3.2 Dynamic loading of backends

A shared library appears to other programs as a collection of connection
points called symbols. These typically refer to functions or variables in the
library that are accessible from the outside. When GAMBIT loads the library
and specifies a symbol, it obtains a pointer to the underlying function or
variable, which can then be used on more or less equal footing with any
internal part of GAMBIT.

On UNIX-based systems, dynamic loading is managed via the dl library.
This library provides a basic set of functions for working with shared libraries:
dlopen, which loads the shared library into memory; dlsym, which obtains
the pointer for a given symbol; and dlclose, which unloads the shared library
from memory. The pointer provided to GAMBIT by the dlsym function is of
unspecified type, or, in C terminology, a pointer to type void, meaning that
GAMBIT must cast the pointer to the correct type before using it.

The main piece of information a user must provide to GAMBIT in order to
successfully connect a backend is therefore a map between symbols and the
corresponding types. This is accomplished through the use of a pair of mac-
ros, BE_FUNCTION and BE_VARIABLE, defined in GAMBIT. Here we illustrate
the use of BE_FUNCTION with an example: Consider a shared library written
in C, containing a function matrixElement with the following signature:

double matrixElement (int , int);

If the library is built using a C compiler, the library symbol referring to this
function will be identical to the function name. If a C++ compiler is used,
the symbol will typically be a mangled version of the function name, where
the exact structure of the symbol depends on the compiler. Using the GNU
C++ compiler we get the symbol “_Z13matrixElementii”. The necessary in-
formation is then provided to GAMBIT via the BE_FUNCTION macro as follows:

BE_FUNCTION ( matrixElement , double , (int , int),
" _Z13matrixElementii ", " matrixElement ")

The last argument, “matrixElement”, is what a GAMBIT module must list as
its backend requirement in order to be connected to this function. Similarly,
the BE_VARIABLE macro can be used to connect to a variable in a shared
library.
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6.3.3 Reverse engineered plug-ins: dynamic loading of
classes

Typically, physics libraries written in C or some version of the FORTRAN lan-
guage present the user with an interface that is fundamentally just a collec-
tion of functions and variables of standard types. The functionality provided
by the dl library, itself written in C, is therefore sufficient to make full use
of these libraries. However, for libraries written in C++ the situation can
become much more complicated.

One of the defining differences between C and C++ is the introduction
of classes in C++. Most C++ libraries define a number of classes unique to
that particular library. The intended workflow is usually that a user first
creates variables, or instances, of these classes, and then performs operations
on, and extracts information from, these instances. 4

This poses a problem when a C++ code is to be used via dynamic loading,
as class definitions are not accessible through the shared library system of
symbols. Thus, even if GAMBIT loads the library into memory using dlopen, it
will in general remain useless as all the library classes are unknown to GAMBIT.
The naive solution to this would be to include all the relevant classes as part of
the GAMBIT source code. However, this would simply reintroduce the problem
we are trying to solve, as GAMBIT would start depending on the library, and
possibly its dependencies again, just in order to build properly. Further, this
approach could easily lead to name clash problems when multiple external
libraries are connected, since GAMBIT would have no way of controlling the use
of class names and namespaces. So, if we want the user to be able to connect
a large number of external physics tools without increasing the complexity
of building GAMBIT, this naive solution is clearly not viable.

A lot of modern C++ software allow for the use of plug-ins to extend
the functionality of the main application. Although the plug-ins make use
of C++ classes, they are dynamically loaded by the main application at
run-time. How is this achieved? The secret lies in the C++ concept of
polymorphism. A base class is used to define a class interface by declaring a

4Concepts similar to C++ classes have existed in the FORTRAN language since FORTRAN90,
but the user interface of FORTRAN-based high-energy physics tools are rarely based on these
language features. We therefore focus on the C++ case.
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set of virtual member functions. These are functions for which the signature
is defined, but where the actual implementation is expected to be overridden
in classes that inherit from the bass class. Based on this “interface class”, a
whole range of new derived classes can be constructed. Each of these classes
provide a unique implementation for the set of virtual member functions.
The result is thus a whole family of classes that all adhere to a common
interface defined by the base class.

To illustrate the idea, consider a base class called Polygon containing a
virtual member function calculateArea. From this base class we may define
two derived classes, Triangle and Square. Both classes should contain a
calculateArea member function, but their implementations of this function
would differ.

In plug-in systems the main application provides the base class, while
plug-ins are supposed to provide the specialized derived classes. Since the
class interface is settled, the main application can be built on the assumption
that any future class passed in from a plug-in will have the predefined set of
member functions.5 The actual implementations of these member functions
will be contained in the plug-in shared library, which can be dynamically
loaded at run-time. For the main application to be able to request class
instances from the plug-in, so-called factory functions are defined in the
plug-in. These are simply functions that return a pointer to a newly created
class instance.

The fundamental difference between a plug-in system as described above
and the problem we face in GAMBIT is this: For a normal plug-in system,
the main application is developed first and all plug-ins are developed later,
adhering to the predefined interface. With GAMBIT it is the other way around:
There already exists a number of C++ physics tools, and we would like turn
them into plug-ins, or backends, for GAMBIT. Thus, given a C++ library with
a set of classes defined, we must reverse-engineer the surrounding parts of a
plug-in system, such as base classes and factory functions. For this purpose
we have developed a tool called BOSS, which we introduce next.

5Technically, in the main application any instance of an unknown derived class is in-
terpreted as an instance of the known base class.
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6.4 BOSS: a Backend-On-a-Stick Script.
The Backend-On-a-Stick Script (BOSS) is a Python-based tool for accomplish-
ing the following task: Given the C++ source code of some library, make the
required modifications and additions to the library in order to allow its classes
to be dynamically loaded from GAMBIT. Starting from a list of classes that
the user would like to load, the main steps of BOSS can be summarized as
follows:

1. Parse and analyse the original source code, and ensure that the reques-
ted classes can be loaded successfully.

2. Make the necessary modifications to the original source code.

3. Generate additional source code, including factory functions for all
loaded classes.

4. Determine what the library symbols for the newly created factory func-
tions will be, and summarize this in a file for GAMBIT.

5. Move all generated files to their correct locations inside the original
source tree and within GAMBIT.

After BOSS has finished, the user builds a shared library from the modified
source code and connects it to GAMBIT in the usual way.

Due to the complexity of the C++ language, parsing of C++ source code
is highly non-trivial. For this task, BOSS employs the open-source tool GCC-
XML [66], which produces a representation of the source tree in the form of an
XML file. GCC-XML itself is based on the open-source GCC compiler. The XML
file produced by GCC-XML forms the basis on which BOSS can further analyse
the library source code.

To explain the process in a bit more detail, we consider the simplest
possible example, namely that of a backend library containing a single class
X, shown in Fig. 6.2. As described in the preceding section, a requirement for
dynamically loading a library class is that it derives from a base class defining
the class interface in terms of virtual member functions. This base class must
be common to both the library and the main application. One of the first
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Backend GAMBIT

class X

Figure 6.2: The starting point is a backend library containing a class not
known to GAMBIT.

tasks of BOSS is therefore to determine what the member functions of class
X are, and construct a base class with a corresponding set of virtual member
functions. We name this base class Abstract_X, since C++ classes containing
virtual functions are generally known as abstract classes. BOSS makes several
additions to the source code for the original class X. However, the single most
important change is to insert the newly generated Abstract_X class in the
inheritance list for X, such that Abstract_X takes the role of a base class for
X.

The next step for BOSS is to generate source code for factory functions to
be included in the backend library. One such function is generated for each
constructor in class X. These factory functions construct a new X instance
and return its pointer. On the GAMBIT side, this pointer can be interpreted
as a pointer to an Abstract_X instance. When this step is done, we have
established the basic requirements for imitating a plug-in system, illustrated
in Fig. 6.3.

With the basic plug-in structure in place, GAMBIT is able to retrieve a
pointer to an X instance and call its member functions. However, there are
still a number of problems and inconveniences with this system, most of
which are related to one of two limitations: First, we are forced to work with
a pointer to a class instance instead of directly with the instance itself, and
new instances must be created via the factory functions. This marks a depar-
ture from how a user would typically work with the original library, and may
cause problems when passing in function arguments or returning function
results. Second, there is no way of accessing class member variables directly.
This would be no problem for library codes that make use of “getter” and
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Backend GAMBIT

class Abstract X

class X

factory X∗

class Abstract X

Abstract X∗

Figure 6.3: The basic requirements needed to set up a plug-in structure is an
abstract base class common to both the backend and GAMBIT, and a factory
function in the backend library for returning pointers to class instances.

“setter” member functions for accessing variables, but far from all libraries
follow this convention. When multiple library classes are to be loaded, fur-
ther complications typically arise, especially relating to type conversions of
function arguments and return types.

Ideally, a user that is familiar with the original library should be able to
access its functionality in a familiar way from within GAMBIT , without having
to understand the intricacies of plug-in systems or worry about such problems
as outlined above. With BOSS we therefore try to construct a solution that
will reproduce the user interface of the original library, making the transition
from using the original library directly to using it as a GAMBIT backend as
smooth as possible. To accomplish this, we introduce what we call wrapper
classes.

A wrapper class is basically a container for the pointer to the original
class instance, constructed to provide a more familiar interface to the user.
In our simple example, the wrapper class corresponding to class X is called
Wrapper_X, and holds a pointer of type Abstract_X. Although we use the
name Wrapper_X here to distinguish it from the original class X, in GAMBIT the
wrapper class is given the name of the original class. Each constructor in
Wrapper_X is connected to a factory function that provides the Abstract_X
pointer, see Fig. 6.4. Thus, instead of calling the factory function directly and
keep working with a pointer, the user can create an instance of Wrapper_X
by calling constructors, similar to how the original library would be used.
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Backend GAMBIT

class Abstract X

class X

class Wrapper X

(Abstract X∗)

factory X∗

class Abstract X

class Wrapper X

(Abstract X∗)

Figure 6.4: To present the user with a more familiar interface, BOSS intro-
duces a wrapper class for each original class. A wrapper class holds a pointer
to an instance of the original class, used to call member functions from and
perform operations on.

Further, Wrapper_X contains member functions that imitate the function
signatures of the original member functions, which are ultimately called using
the contained Abstract_X pointer.

Through a system of helper functions inserted by BOSS into the original
class, we can populate the wrapper class with references to the class member
variables. When the type of the variable is a standard C++ type, known in
both the library and GAMBIT, this is all we need in order to reproduce the
original interface of how the variables are accessed. However, if class X con-
tains a member variable that is an instance of another library class, say class
Y, we can reproduce the original class interface by letting Wrapper_X have
an instance of Wrapper_Y as a member variable. The Wrapper_Y instance
would then hold a pointer pointing to the original Y member variable.

With the above infrastructure in place, class instances can be constructed
and used in the usual way from within GAMBIT. Existing code that makes use
of the original library will therefore require little modification before it can be
used in GAMBIT. However, it is important to remember that the wrapper class
a GAMBIT user is provided with is not the original class itself, but rather an
“outer shell” used to reconstruct the original user interface. If a user wants to
extend or subclass a library class, this should be done in the original library
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itself, before running it through BOSS and connecting it to GAMBIT.
In addition to requesting a set of classes to load, the user can also provide

BOSS with a list of global library functions that GAMBIT should connect to. If
such a function makes use of a library class as return type or argument type,
BOSS will insert into the library an accompanying wrapper function, which
rather uses the corresponding wrapper class. This ensures that the original
library interface can be preserved also when global library functions are used
from GAMBIT. The BE_FUNCTION macro calls required by GAMBIT to connect
to these functions are automatically generated by BOSS.

BOSS is currently capable of providing dynamic loading of most “vanilla”
C++ classes. Still, there are several scenarios that the current version cannot
deal with properly. In such cases BOSS will generate a wrapper class where
the problematic elements of the original class are left out, providing the user
with a restricted class interface. Some of the current main limitations of
BOSS are related to the use of template classes and functions, arrays con-
taining instances of a library class, and function pointers. However, these
problems can sometimes be worked around by small additions to the original
library code, such as introducing “getter” and “setter” functions instead of
working directly with an array. Some of the current limitations of BOSS are
due to limitations in GCC-XML. As GCC-XML was recently succeeded by a new
tool CastXML [67], future versions of BOSS will likely be based on CastXML,
with the expectation that this will help extend the functionality of BOSS.

BOSS is currently developed in connection to the GAMBIT backend sys-
tem, and the first public version of BOSS will be released as part of the first
GAMBIT release. But the ability to turn existing C++ libraries into plug-ins
may prove useful also for other projects where modularity and efficiency are
important factors. In the future BOSS may therefore be considered for release
as a public tool independent of GAMBIT.
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Chapter 7

Summary of thesis results

Supersymmetric models with a small mass difference between the lightest
neutralino and chargino can give rise to some interesting signatures at the
LHC. In Paper 1 this scenario is explored within a Natural SUSY model
with R-parity conservation, while Paper 2 studies the possible consequences
of having a small chargino–neutralino mass splitting in models where R-
parity is violated. Both analyses employ a Bayesian parameter scan, using
the MultiNest algorithm introduced in Section 5.3.1. In Paper 1 the res-
ulting posterior distribution constitutes the main result, while the posterior
distribution obtained from the scan in Paper 2 more serves as a basis for
further phenomenological study.

In Papers 3 and 4 we shift our attention to a couple of interesting, albeit
fairly small, excesses reported in CMS and ATLAS searches for dileptons, jets
and missing energy. The two papers follow similar outlines: First, we define
a simple SUSY model capable of explaining the excesses in question. Next,
a parameter scan is performed in order to map out the model’s predictions
across parameter space, both for the search where the excess is observed and
for other relevant SUSY searches. As the number of free parameters is kept
at a minimum, the models studied in these two papers can be explored using
grid scans. Finally, the scan result is used in a frequentist assessment of the
viability of the proposed model.
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7.1 Choice of statistical approach

It is worth commenting on the differences between the two first and the
two latter papers in terms of the statistical methods used. In the first two
papers, the fundamental question asked in the statistical analysis is that of
parameter estimation, or rather, phenomenology prediction: Assuming that
the overall theory is true, what are the probable phenomenological scenarios?
This question fits naturally within a Bayesian approach.

Furthermore, these two papers deal with high-dimensional parameter
spaces, meaning that efficiency in the exploration of the parameter space
is key. Fundamentally, Bayesian parameter estimation depends on the integ-
ral of the posterior p.d.f. over some region of parameter space. A reasonable
answer can therefore be obtained even though the exact best-fit parameter
point may be missed by the scan. In contrast, the frequentist profile likeli-
hood approach to parameter estimation is based on comparing the likelihood
value at each point to the likelihood value of the global best-fit point. This
dependency on accurately determining the best-fit point renders the approach
more computationally challenging when dealing with high-dimensional para-
meter spaces. A comparison of the Bayesian and frequentist approach in the
context of parameter scans with MultiNest can be found in Ref. [68].

The parameter estimation analyses of the first two papers both start from
the assumption that the underlying theory is correct. Thus, such analyses can
only tell us what parameter regions the current data prefer relative to the
rest of the model’s parameter space. But independent of other parameter
regions, should a given parameter point be excluded in light of the data?
This is the question asked by the statistical analyses in Papers 3 and 4,
where we reinterpret a set of collider searches within two supersymmetry
scenarios. Here we perform a frequentist hypothesis test for each point in
the parameter space of the model. One practical reason for preferring the
frequentist approach in this case is that it simplifies the comparison of our
results to those presented in the original experimental analyses.

In Paper 3 the hypothesis test simply consists of comparing the predicted
signal yields for a set of collider searches to the corresponding observed upper
limits. A parameter point is regarded excluded if it predicts a signal yield
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greater than the observed limit for at least one of the searches. This is
a common approach in phenomenology analyses investigating the level of
tension between a proposed model and a set of experimental searches. It is
also an intuitive approach, as it nicely illustrates how different experimental
analyses exclude different regions of the model parameter space. However, at
the level of individual parameter points, the exact statistical interpretation
of this procedure is not entirely clear. For instance, if a parameter point
fails one out of several independent tests, all performed at the 95% C.L., we
cannot conclude that a single test combining all the data would exclude the
point at the 95% C.L. In Paper 4 we use the same approach to establish a
tension between the proposed model and the observations, but then extend
the analysis by combining all the data and derive well-defined exclusion limits
in the parameter space of the model.

7.2 LHC signals from light charginos

In the MSSM, the most important dimensionful parameters of the elec-
troweak gaugino sector are the bino mass, M1; the wino mass, M2; and
the higgsino mass parameter, μ. As seen in Section 3.6, if M2 or μ is the
smaller of the three parameters, a small mass difference Δm between the
lightest neutralino and the lightest chargino is expected. The exact size of
this mass splitting is an important factor for determining what type of col-
lider signals to expect. If R-parity is conserved and the neutralino is the
LSP, a small chargino–neutralino mass splitting may lead to a relatively long
lifetime for the chargino. Thus, the chargino can potentially show up as a
metastable charged particle, producing displaced vertices or kinked tracks in
the detector. In Paper 1 we ask the question of whether this is an expected
signal in models of Natural SUSY.

If, on the other hand, R-parity is not conserved, the chargino can po-
tentially decay to final states with three Standard Model particles. When
the chargino is either lighter than, or only slightly heavier than, the lightest
neutralino, these decays can have substantial branching fractions, making
them interesting as potential collider signatures. This is the possibility we
explore in Paper 2.
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The aim of Paper 1 is to perform Bayesian parameter estimation on a Nat-
ural SUSY subset of the MSSM parameter space, focusing on the posterior
distribution for the chargino–neutralino mass difference, and, following from
that, the expected chargino lifetime. The analysis adopts a conventional in-
terpretation of naturalness in terms of the Barbieri–Giudice sensitivity meas-
ure discussed in Section 4.3.

The complete list of free parameters, and their prior distributions, is given
in Table 1 of Paper 1. Most notably, |μ| and the soft breaking mass para-
meters for the third generation squarks are restricted to lie below 1 TeV.
Parameters with less impact on the naturalness of the model are allowed
wider prior ranges. Log priors are used for all dimensionful SUSY paramet-
ers. In Paper 1 this is argued based on the connection to the Barbieri–Giudice
sensitivity measure demonstrated in Section 5.2. However, as seen in Sec-
tion 5.1.2, a more general argument for using log priors for dimensionful
parameters is that it represents ignorance as to what is the preferred scale.
The Standard Model parameters are assigned gaussian priors, since here we
have prior information in the form of measurements. Sleptons and first and
second generation squarks are decoupled by fixing the corresponding mass
parameters at 3 TeV.

The likelihood function for the scan is constructed based on a combination
of experimental measurements and limits on sparticle masses. The measured
observables include the W boson mass, MW ; the Higgs boson mass, mh; the
two branching ratios BR(Bs → μμ) and BR(bs → sγ); and the branching
ratio for B → τν normalized to the Standard Model prediction, R(B → τν).
The MSSM parameter space contains the possibility that the chargino is
lighter than the neutralino, as demonstrated by Kribs et al. [69]. To allow
the scan to explore this scenario, the dark matter relic density is not included
in the likelihood function. The existence of dark matter can be explained
by assuming that the gravitino is the actual LSP, with the lightest of the
chargino and neutralino being the effective LSP on detector timescales.

A set of 95% C.L. sparticle mass limits is applied as hard cuts. Care
is taken not to include experimental limits that are based on assumptions
incompatible with our choice of free parameters, such as GUT-inspired rela-
tions for the gaugino mass parameters. Due to the computational expense
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Figure 7.1: The posterior distribution in the plane of the chargino–neutralino
mass difference, Δm, and the mass of the lightest neutralino, mχ̃0

1
. The black

and white contours show 68% and 95% Bayesian credible regions, respect-
ively. The right panel depicts the same posterior distribution, but focused
on the region of small Δm values.

of LHC simulations and the size of the parameter scan, we do not include
LHC sparticle searches in the scan likelihood. As argued in the paper, this is
not expected to significantly impact our conclusions concerning the region of
small chargino–neutralino mass differences. Nevertheless, having to leave out
LHC simulations from the scan is suboptimal, and it is exactly this sort of
limitation that GAMBIT, and in particular the ColliderBit module, aims to
improve on. The complete list of constraints included in the scan likelihood
is given in Tables 2 and 3 of Paper 1. In general, the chosen set of constraints
should be regarded as conservative.

The possibility of having a chargino lighter than the neutralino is shown
to be disfavoured by the 95% credible region, as seen in Fig. 7.1 depicting
the joint posterior distribution for the chargino–neutralino mass difference
and the mass of the lightest neutralino. This result can be traced back to
an interplay between the Higgs mass constraint, preferring larger values for
tan β, and the LEP and Tevatron sparticle mass limits.
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Figure 7.2: The posterior distribution of the chargino lifetime. Also shown
are the subsamples with a lightest neutralino that is dominantly bino (green),
higgsino (magenta) and wino (brown).

The strongest chargino–neutralino mass degeneracy occurs for scenarios
where the lightest chargino and neutralino are predominantly wino, that is
when M2 < |μ|, |M1|. In this case, the dominant contribution to Δm can
come from loop processes involving gauge bosons [70, 71]. The typical size
of this contribution is α2MW /4π ∼ 200 MeV, explaining the peak in the
posterior distribution around these Δm values. The importance of this effect
is enhanced by the Higgs mass constraint, as the tree-level contribution to
Δm decreases with increasing tan β in the wino limit.

The fact that the wino-limit loop contribution to Δm typically is slightly
larger than the pion mass has an important impact on the lifetime of the
chargino, as it keeps the decay channel χ̃±

1 → χ̃0
1π

± open. As a consequence,
there is only a small posterior probability for chargino lifetimes longer than
∼ 10−10 s. This can be seen in Fig. 7.2, where we also indicate the subset of
posterior samples where the lightest neutralino is dominantly bino, higgsino
or wino. These three neutralino scenarios give rise to three modes in the
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posterior distribution for the chargino lifetime. In the higgsino limit, one
expects mass differences larger than a few GeV, leading to expected lifetimes
shorter than ∼ 10−15 s. Finally, when the lightest neutralino is dominantly
bino, a chargino–neutralino degeneracy is not generally expected, leading to
even shorter chargino lifetimes.

The preference for lifetimes shorter than ∼ 10−10 s means that charginos
that are long-lived on detector timescales is not to be expected. Still, lifetimes
of this magnitude, which corresponds to typical decay lengths of the order of
1 cm, may give rise to a significant number of events with kinked tracks. In
Fig. 7.3 (left) we show the posterior distribution in the plane of the chargino
lifetime and mass, overlaid with the excluded region from an ATLAS search
for kinked tracks [72]. The search excludes part of the parameter space where
the mass degeneracy is most severe, which, as shown in Fig. 7.2, corresponds
to a scenario with a wino-dominated neutralino. In this limit, the chargino–
neutralino mass splitting decreases with increasing |μ|. Thus, the most mass
degenerate scenarios are expected to be associated with higher levels of fine-
tuning. This is illustrated in the right panel of Fig. 7.3, where we show the
joint posterior distribution of the chargino lifetime and the Barbieri–Giudice
fine-tuning measure introduced in Section 4.3.

The results of Paper 1 show that, within a Natural SUSY subspace of
the MSSM, the possibility of having a chargino lighter than the neutralino is
disfavoured, and detector-stable charginos is not an expected signature. Also,
given the model studied here, a signal in future searches for long-lived charged
particles would point towards a wino-dominated chargino and neutralino.

Paper 2 explores the possible consequences of having a small chargino–
neutralino mass splitting in a scenario where the following trilinear R-parity
violating operators are included in the superpotential:1

W 
 λijkLiLjĒk + λ′
ijkLiQjD̄k + λ′′

ijkŪiD̄jD̄k. (7.1)

Considering gauge symmetries this gives a total number of 45 new couplings.
In particular, we investigate possible LHC signals from charginos decaying

1We here adopt the superfield notation used in the paper. In Eq. (3.4) the same
superpotential terms are given in the notation of regular scalar component fields.
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Figure 7.3: Posterior distribution of the chargino lifetime versus mass (left)
and fine-tuning measure (right). The black and white contours show 68% and
95% Bayesian credible regions, respectively. The red contour is an overlaid
limit from an ATLAS search for kinked tracks [72].

to three SM fermions in processes involving the above operators.
A Bayesian parameter scan is used to identify interesting parameter re-

gions. The list of free parameters and their prior distributions is found in
Table 1 of Paper 2. For the main scan, log priors are chosen for all dimen-
sionful SUSY parameters. A smaller scan based on flat priors is used to
investigate the prior dependence of the scan results.

Due to the large number of possible RPV couplings, they are not included
as free parameters in the scan. Rather, we take the posterior samples res-
ulting from the scan as a starting point, introduce a single dominant RPV
operator, and then recalculate the chargino decay rate and branching ratios.
For the resulting posterior distributions to be valid, we must assume that
the predictions for the observables included in the scan likelihood are not
strongly dependent on the given RPV operator.

The constraints going into the scan likelihood function are listed in Table 2
of Paper 2. As for Paper 1, no LHC simulations are included. Further,
direct sparticle mass limits from collider searches that rely on large amounts
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of missing energy are not generally applicable in a RPV scenario, as the
amount of missing energy expected will depend on the size and nature of the
dominant RPV coupling.

In order to concentrate the scan on parameter regions where the chargino–
neutralino mass difference Δm is small, we include in the scan likelihood the
hard requirement that Δm < 1 GeV. Since this constraint does not originate
from an experimental measurement, it can equally well be interpreted as an
extra condition on the prior parameter distributions, in particular for μ, M1

and M2. As seen in Paper 1, requiring the chargino–neutralino mass splitting
to be less than 1 GeV amounts to a preference for the lightest neutralino and
chargino to be dominantly wino or higgsino, with the wino scenario being the
most probable. The arbitrariness in the choice of this Δm requirement may
seem to complicate the interpretation of the posterior distributions resulting
from the scan. However, the bound we impose on Δm is in principle no
different from other assumptions imposed to reduce the full MSSM parameter
space down to a more manageable size.

We study the chargino branching ratios after including a single dom-
inant RPV operator. For each point in the posterior sample we take the
value of the RPV coupling to be the upper bound as given in [73]. For in-
stance, for the L1L2Ē1 operator, the upper bound on the coupling λ121 is
λ121 < 0.049 × mẽR

100 GeV , coming from charged-current universality. The res-
ulting joint posterior distributions for Δm and the most important chargino
branching ratios are shown in Fig. 7.4. The top panels show the R-parity
conserving decays to the lightest neutralino plus leptons (left) or hadrons
(right). For the hadronic decay, the dominant decay mode is χ̃±

1 → χ̃0
1π

±.
The bottom panels depict the two most important RPV decay channels. The
RPC modes dominate for Δm values down to the pion threshold, Δm ∼ mπ.
For even smaller values of Δm, direct RPV chargino decays become import-
ant, with similar branching ratios for the e+μ+e− and νeνμe+ final states.
Similar results are found for the other LiLjĒk operators.

Lowering the chosen λ value will reduce the decay widths for the RPV
processes, affecting the branching ratios in the region Δm ∈ (0, mπ), where
RPV and RPC processes compete. Also, as the RPV decay processes proceed
via a sfermion propagator, the decay widths fall as m−4

f̃
with increasing
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Figure 7.4: Posterior distribution of Δm versus branching ratio for the rel-
evant chargino decay modes in a scenario with a dominant L1L2Ē1 RPV
operator. The 68% and 95% C.R. contours are shown in black and white,
respectively.
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sfermion mass. On the other hand, the RPV decay widths depend on the
chargino mass as m5

χ̃±
1

while the RPC widths only depend on Δm3, so the
relative importance of the RPV processes will increase for higher chargino
masses.

The results for the LiQjD̄k operators are similar: Below the pion threshold,
the RPV decays to the l+

i dj d̄k and ν+
i uj d̄k final states dominate, with ap-

proximately equal branching ratios for the two processes. For the ŪiD̄jD̄k

operators, however, we find that the RPV decay modes are typically greatly
suppressed even for Δm values below the pion mass. This is due to the pref-
erence for heavy squarks following from the Higgs mass constraint, leading
to a large propagator suppression in the RPV processes.

Considering the relatively weak set of constraints going into the scan
likelihood, the resulting posterior distributions are expected to exhibit some
prior dependence. Repeating the scan using flat priors for the dimensionful
SUSY parameters, we find that the posterior probability for scenarios with
large RPV branching ratios increases slightly. With a wider range of probable
chargino and sfermion masses, the scaling of RPV widths with these masses
become more important, with the net result that the RPV decays can dom-
inate also into the region where the chargino–neutralino mass difference is
larger than the pion mass.

Thus, assuming a scenario with a small chargino–neutralino mass split-
ting, there are regions of the preferred parameter space where the chargino
decays dominantly through RPV processes. These decays can produce inter-
esting collider signatures, in particular lll and lqq final states.

We also study the prospects for observing RPV chargino decays at the
13 TeV LHC. We devote the most attention to the LiLjĒk operators, as
this is where one can expect the strongest deviations from signals previously
studied in the context of neutralino RPV decays [74]. In particular, the
LiLjĒk operators allow the chargino to decay via a sneutrino propagator to
a final state of three charged leptons. Still, significant amounts of missing
energy can be expected from neutrinos originating from the decay of the
other chargino or neutralino in the event, and possibly from tau decays in
scenarios where the dominant RPV coupling involves the third generation.

Chargino and neutralino pair production and subsequent decay is simu-
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lated for selected benchmark parameter points, details are found in Table 3
of Paper 2. In order to properly illustrate the distribution shapes, 106 events
are generated for each point. The total yield is normalized to an integ-
rated luminosity of 1 fb−1. Assuming a dominant RPV operator of the
LiLjĒk type, events are required to contain at least three isolated leptons
with pT > 70, 20, 20 GeV and a missing transverse energy Emiss

T > 100 GeV.
Figure 7.5 shows the resulting trilepton invariant mass distributions for

the operators L1L2Ē1, L1L2Ē3, L2L3Ē2 and L1L3Ē3 (top left to bottom
right), using a benchmark parameter point with mχ̃±

1
= 526 GeV and Δm =

0.18 GeV. Table 4 of Paper 2 contains the values assumed for the various
RPV couplings. The most important Standard Model backgrounds, shown
in Fig. 7.5, are expected to come from diboson and tt̄ production [75]. The
NLO cross section for chargino and neutralino pair-production is 49.9 fb for
this parameter point [76].

The eeμ triplet resulting from chargino decays through the L1L2Ē1 op-
erator produces a clear resonance peak at the chargino mass.2 For operators
involving the third generation, the trilepton distributions is more smeared
out due to the presence of either hadronically or leptonically decaying taus,
but still these distributions show identifiable features such as end points and
kinks. Given the low expected background and sizeable production cross
section, the benchmark point studied here clearly represents a possibility for
an early discovery at the 13 TeV run of the LHC. But also in a less optim-
istic scenario, with a smaller RPV coupling or a reduced cross section due to
heavier charginos and neutralinos, the peak in the eeμ distribution and the
features in the other distributions are promising tools for discovering these
scenarios at the LHC. With enough statistics, a detailed comparison of kin-
ematical distributions can help identify which RPV operator is dominating,
and also whether the signal is mainly due to RPV decays of neutralinos, or
a combination of chargino and neutralino RPV decays.

Since the charge of light-quark jets cannot easily be determined experi-
mentally, the expected LHC signals from charginos decaying through LiQjD̄k

operators are mostly similar to that of neutralinos decaying via the same op-

2For a dominant L1L2Ē2 operator, a similar peak would of course be found in the eμμ
distribution.
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Figure 7.5: Trilepton invariant mass distributions obtained from processes
involving the L1L2Ē1 (top left), L1L2Ē3 (top right), L2L3Ē2 (bottom left)
and L1L3Ē3 (bottom right) operators. For each solid line, the thin dashed
line of the same colour shows the dominant Standard Model background. A
τ in the lepton triplet refers to a jet from a hadronically decay tau lepton.
All distributions are normalized to an integrated luminosity of 1 fb−1.
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erator. One exception worth pointing out is that for a dominant LiQ3D̄k

operators, a neutralino lighter than the top quark will always decay to νibd̄k,
while a chargino can decay to a libd̄k final state, where the combination of
a charged lepton and a b-tag can improve detectability. As for LiQjD̄k op-
erators, chargino decays via dominant ŪiD̄jD̄k operators will produce the
same signals as for neutralino decays, except possibly when third generation
quarks are involved.

In sum, Paper 2 shows that direct decays of charginos through RPV oper-
ators can be important in scenarios with chargino–neutralino mass degener-
acy, and that for a dominant operator of the LiLjĒk type the expected signals
can differ greatly from that of neutralino decays. Also, a detailed study of the
kinematics and flavour content of a signal can provide important information
on the flavour structure of the underlying realisation of supersymmetry.

7.3 Intriguing excesses in dilepton searches

Based on the data collected during the first run of the LHC, the CMS and
ATLAS experiments have both reported interesting excesses in searches for
dileptons, jets and missing energy [77,78]. While the CMS excess is consist-
ent with a kinematic edge in the dilepton invariant mass spectrum around
mll ∼ 79 GeV, the excess seen by ATLAS is found on the Z-peak of the
dilepton spectrum. An interpretation of the excess in one search as a possible
New Physics signal may therefore be in tension with the lack of a correspond-
ing excess in the other search, but as the details of the two analyses differ, the
severity of this tension depends on the specific New Physics scenario. How-
ever, to asses the validity of a New Physics explanation of either dilepton
excess, it is important to also take into account the results of other collider
searches for which deviations from the Standard Model can be expected. In
Papers 3 and 4 we carry out such analyses for two SUSY models that may
explain the excesses in respectively the CMS and ATLAS dilepton searches.

The CMS dilepton search requires events to contain a pair of opposite-sign
same flavour (OSSF) leptons (e or μ) with pT > 20 GeV and pseudorapidity
|η| < 1.4 (“central” region) or 1.6 < |η| < 2.4 (“forward” region). At least
two jets are required, where the jets are reconstructed using the anti-kT
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Figure 7.6: The golden cascade decay.

algorithm [79], with the jet radius parameter set to R = 0.5. For events with
exactly two jets, a missing transverse energy Emiss

T > 150 GeV is required,
while for events with three or more jets this requirement is lowered to Emiss

T >

100 GeV. The dominant Standard Model backgrounds are tt̄ production and
Drell-Yan production of γ∗/Z.

The resulting data is analysed in two different ways: First, a search for
a kinematic edge in the dilepton invariant mass spectrum is performed by
fitting the data to a model combining a background shape with a right-
triangular signal shape. Such a triangular signal in the dilepton mass spec-
trum is a classic prediction of SUSY models where the two leptons originate
from subsequent two-body steps in a sparticle decay chain, with the interme-
diate sparticle being the corresponding slepton. CMS finds that for events
where both leptons fall within the central pseudorapidity region, the model
that best fits the dilepton spectrum contains a contribution with a signific-
ance of 2.4σ, and with the kinematic edge located at mll = 78.7 ± 1.4 GeV.
Second, a simpler counting experiment is performed for the three dilepton
mass regions 20 < mll < 70 GeV, 81 < mll < 101 GeV, and mll > 120 GeV.
For the lower mass window, and still with both leptons in the central pseu-
dorapidity region, an excess of 130+48

−49 events over the background expectation
is observed, corresponding to a local significance of 2.6σ.

Paper 3 investigates whether this excess can be explained in a simple
SUSY model with the production of a pair of first or second generation
squarks, one of which decays via the much studied “golden cascade” depicted
in Fig. 7.6. Additional jets can come from the decay of the second squark,
for instance through q̃ → χ̃0

1q, and from initial and final state radiation.
We investigate a model where the only free parameters are the soft-mass
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parameters for the sparticles participating in the golden cascade scenario.
The squark masses are governed by a common first- and second-generation
mass parameter mq̃, while for the two lightest neutralinos we take the bino
mass M1 and wino mass M2 as free parameters. A common mass parameter
ml̃R

is used for the right-handed sleptons of the first two generations, with
the corresponding left-handed mass parameter ml̃L

set to ml̃L
= 2ml̃R

. The
remaining sparticles are decoupled by setting their soft-mass parameters to
3500 GeV, except the gluino mass which is set to 1600 GeV. Finally, the
trilinear couplings are set to zero and tan β is fixed at tan β = 10. All
dimensionful parameters are specified at the scale √

mt̃1mt̃2 .

This leaves a model with four free soft-mass parameters: mq̃, M1, M2 and
ml̃R

. We constrain this parameter space using the two pieces of information
provided by the CMS analysis, namely the position of the kinematic edge
in the mll spectrum and the overall signal yield in the counting experiment.
From energy-momentum conservation, the edge position mmax

ll giving the
maximum invariant mass predicted by the golden cascade, can be expressed
in terms of the slepton and neutralino masses,

mmax
ll =

√√√√(m2
χ̃0

2
− m2

l̃
)(m2

l̃
− m2

χ̃0
1
)

m2
l̃

. (7.2)

Thus, by choosing mass values for the slepton and one of the neutralinos,
the other neutralino mass can be determined by requiring that the predicted
mmax

ll equals the edge position inferred in the CMS fit. In terms of the
input mass parameters, we accomplish this by scanning the plane of ml̃R

and
Δm = M2 − ml̃R

, and for each point determine M1 from the mmax
ll constraint

using a modified version of SOFTSUSY.

With the decay kinematics in the last steps of the cascade fixed by the
neutralino and slepton masses, the squark mass parameter mq̃, which controls
the production cross section, can be determined by requiring a given signal
yield. This is done efficiently using an iterative procedure, relying on the fact
that the event selection efficiency, determined by Monte Carlo simulation of
the CMS search, varies much more slowly as a function of mq̃ compared to
the production cross section.
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Figure 7.7: The regions of parameter space in the plane of ml̃R
and

Δm = M2 − ml̃R
that predict a signal yield equal to the 95% CL lower

bound on the CMS dilepton signal. The corresponding physical squark mass
mq̃ is given by the colour map.

In sum, by scanning only the two parameters M2 and Δm and employing
the above mentioned techniques for determining M1 and mq̃, we can identify
the regions in the full four dimensional input parameter space that provide
a given number of expected signal events, and produce a mll edge at the
observed value.

However, we find that the entire parameter space consistent at the 95%
CL with the golden cascade interpretation is in conflict with other searches.
To illustrate this, for each point in the M2, Δm plane, we choose mq̃ to
be so large that the expected signal yield corresponds to the 95% CL lower
bound on the observed signal. Lower values of mq̃ will only lead to a higher
production cross section, and thus be even more in tension with the null
results of other searches. The region of parameter space identified by this
scan is shown in Fig. 7.7. For Δm > 0, that is when M2 > ml̃R

, the next-
to-lightest neutralino is dominantly wino. Thus, the decay to left-handed
sleptons is preferred as long as it is kinematically allowed. This is the case
in region A of Fig. 7.7. In region B this decay channel is no longer available,
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so the χ̃0
2 decays through a right-handed slepton. The slope of the line

separating regions A and B is due to our choice of taking ml̃L
= 2ml̃R

.
In region C, where Δm < 0, it is the lightest neutralino which is wino-
dominated. Squark masses as high as 1200 GeV are allowed by the scan. For
higher squark masses the predicted signal yield is less than the observed 95%
CL lower bound across the entire plane of M2 and Δm.

The set of parameter points plotted in Fig. 7.7 are passed through our
simulations of other relevant collider searches: an ATLAS search for jets and
Emiss

T [80], the ATLAS dilepton search mentioned at the beginning of this
section, a CMS search for multilepton events [81], and an ATLAS search for
stop pair production with two leptons in the final state [82]. We find that all
parameter points consistent with the golden cascade interpretation predict
a signal yield above the observed upper bound for at least one of the other
searches, as illustrated in Fig. 7.8. The strong sensitivity of the ATLAS stop
search to the golden cascade scenario was first pointed out in [83]. In our
scan, all but seven points are excluded by this constraint alone.

In summary, while the golden cascade scenario is in itself a straightfor-
ward explanation of the CMS dilepton excess, in its simplest realization it
is in tension with several other supersymmetry searches at the LHC. By re-
peating the above analysis under varying assumptions, e.g. increasing the
gluino mass or changing the ratio between ml̃L

and ml̃R
, we find that this

conclusion is insensitive to the specific parameter relations chosen.
The CMS dilepton excess has also been studied in a MSSM scenario with

cascade decays initiated by bottom squark production [84]. However, also
this scenario is in tension with other LHC sparticle searches, as shown in [83].
Some possible non-MSSM interpretations of the CMS excess can be found in
Refs. [85–87].

The other dilepton excess is seen in an ATLAS search requiring events
to contain two leading OSSF leptons with pT > 25, 10 GeV, at least two jets
with pT > 35 GeV and |η| < 2.5, a missing energy of Emiss

T > 225 GeV,
and a total transverse energy HT > 600 GeV. The further requirement
81 < mll < 101 GeV ensures that the invariant mass of the lepton pair
is constrained to the region around the Z-peak in the dilepton spectrum.
Jets are reconstructed using the anti-kT algorithm with R = 0.4. Using this
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Figure 7.8: The regions of parameter space excluded by the searches “ATLAS
jets pTmiss” (green) [80], “ATLAS off-Z” (magenta) [78], “CMS 4-lepton”
(gray) [81], and “ATLAS stop” (yellow) [82].

set of selection criteria, a total of 29 events are observed. With an expected
background from Standard Model processes of 10.6 ± 3.2 events, the result
amounts to an excess of 3.0σ local significance.

ATLAS interprets this result in a general gauge mediation (GGM) model
where a light gravitino is the LSP providing the missing energy [88]. In
this scenario, the observed excess can potentially be explained by a decay
chain starting from a gluino decay producing jets and a higgsino χ̃0

1 NLSP.
With the neutralino subsequently decaying to Z plus gravitino, the required
signature can be obtained for events where the Z decays leptonically (e+e−

or μ+μ−). In Paper 4 we investigate whether the ATLAS interpretation is
still viable when other SUSY searches are taken into account.
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The only free parameters of the model are the gluino mass parameter
M3, the higgsino mass parameter μ, and tan β. The gravitino is effectively
taken to be massless to ensure prompt neutralino decays. The two remaining
gaugino mass parameters are set to M1 = M2 = 1.5 TeV and all sfermions
are decoupled by setting mf̃ = 4.5 TeV. All dimensionfull parameters are
defined at the scale √

mt̃1mt̃2 ∼ 4.5 TeV.
The branching ratio for χ̃0

1 → ZG̃ is close to 100% for small values of
tan β, and then decreases with increasing tan β due to stronger competition
from the processes χ̃0

1 → hG̃ and χ̃0
1 → γG̃. Thus, if the predicted signal rate

is to remain unchanged, an increase in tan β must be compensated by an in-
creased production cross section through a lower gluino mass. We investigate
tan β = 1.5 and tan β = 30.

As long as the necessary jets are produced, the exact decay chain from
the gluino down to the higgsino χ̃0

1 is not important for the ATLAS dilepton
search.3 However, this part of the decay chain plays a crucial role in de-
termining what predictions the model makes for other SUSY searches. In
particular, a large production of third-generation quarks can be expected
due to the higgsino nature of the χ̃0

1 and the slightly heavier χ̃0
2 and χ̃±

1 . The
most important gluino branching ratios are shown in Fig. 7.9 as functions of
the gluino–neutralino mass difference Δm for tan β = 1.5 (solid lines) and
tan β = 30 (dashed lines), with the gluino mass fixed at mg̃ = 900 GeV. A
significant production of top quarks is expected for mass differences down
to Δm ∼ 350 GeV. As this will lead to additional leptons from leptonic top
decays, searches for multilepton final states are relevant for constraining the
parameter space of the model. However, given the small branching ratios
for W and Z decaying to leptons, for a large fraction of events there will be
no isolated leptons with significant pT . Thus, searches for zero-lepton final
states can also constrain the model. In particular, this is important in the
region Δm < 350 GeV, where the main source of leptons with significant pT

is the Z-boson from the decay χ̃0
1 → ZG̃.4

We perform two grid scans of the (μ, M3)-plane, one for tan β = 1.5 and
3Electroweak production alone is not feasible.
4Additional leptons can come from off-shell W ’s and Z’s produced in the decays of the

χ̃0
2 and χ̃±

1 down to χ̃0
1, but these leptons will typically be soft due to the O(1) GeV mass

differences among the higgsino states.
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Figure 7.9: Branching ratios for the most important gluino decays as func-
tions of Δm = mg̃ − mχ̃0

1
for tan β = 1.5 (solid lines) and tan β = 30

(dashed lines). The gluino mass is set to mg̃ = 900 GeV.

one for tan β = 30. At each parameter point we simulate the same set of
SUSY searches as was used in Paper 3, except that for the ATLAS and CMS
dilepton searches and the CMS multilepton search, the relevant signal regions
are now those sensitive to the leading dilepton pair coming from a decaying Z.
The region in the (mχ̃0

1
, mg̃)-plane preferred by the ATLAS dilepton excess at

the 95% CL is determined using a Poisson likelihood profiled over a Gaussian
background uncertainty. Similarly, 95% CL exclusion limits are determined
for the other searches. The results are shown in Fig. 7.10 for tan β = 1.5
(left) and tan β = 30 (right). The region preferred by the ATLAS dilepton
search is the bright band marked ATLAS_onZ. The CMS search for multilepton
final states, in the figure referred to as CMS_multilepton, is mainly sensitive
to the regions of large gluino–neutralino mass differences, while the ATLAS
search for zero-lepton events, ATLAS_jMET, excludes regions where this mass
difference is smaller. The overall interpretation of the result is similar to
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Figure 7.10: The region in the (mχ̃0
1
, mg̃)-plane preferred by the ATLAS

dilepton search at the 95% CL (lighter band, marked ATLAS_onZ), compared
to the 95% CL exclusion regions from the other searches. Results are given
for tan β = 1.5 (left) and tan β = 30 (right). The white diamond markers in
the left-hand plot correspond to two benchmark points used in the ATLAS
dilepton analysis [78].

that of the result in Paper 3: The entire parameter space consistent at the
95% CL with a signal interpretation of the excess is in tension with at least
one of the other searches.

A combined 95% CL exclusion limit in the (mχ̃0
1
, mg̃)-plane is derived

from a joint likelihood function including all searches. The result is given in
Fig. 7.11, where the white and black contours are the limits for tan β = 1.5
and tan β = 30, respectively. The colour map depicts the predicted signal
yield for the ATLAS dilepton search for tan β = 1.5. All regions predicting
more than 6 expected signal events are excluded.

In conclusion, Paper 4 shows that a GGM model with light gluinos, higgsi-
nos and gravitinos cannot provide a satisfactory explanation of the ATLAS
dilepton excess. In particular, when the probability for final-state leptons is
increased due to production of top quarks, the constraints from multilepton
searches are strong. On the other hand, without such an enhanced probabil-
ity for lepton production, the model is in conflict with searches for zero-lepton
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Figure 7.11: The 95% CL exclusion curves in the plane of mχ̃0
1

and mg̃ for
tan β = 1.5 (white) and tan β = 30 (black). The region below each contour
is excluded. For tan β = 1.5, the predicted signal yield for the ATLAS
dilepton analysis is given by reference to the colour bar on the right. The
dotted contours show the exclusion limits obtained upon varying the NLO
production cross section up or down by 20%, as an estimate for the systematic
uncertainty.

final states.
The ATLAS dilepton excess has also been interpreted in several other

models, e.g. see Refs. [89–92]. In particular, the authors of [91] demonstrate
that the excess can be explained by 500–700 GeV squarks decaying through
a ∼ 350 GeV bino χ̃0

3 down to higgsino neutralinos around 150–200 GeV.

7.4 Summary

Motivated by naturalness arguments, attractive dark matter candidates and
the prospect for high-scale unification of the strong and electroweak forces,
supersymmetry has long been one of the most promising theories for phys-
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ics beyond the Standard Model. The breaking of supersymmetry, as para-
metrized in the MSSM, introduces a vast range of possible realisations of
supersymmetry at the TeV scale. In order to derive experimentally testable
predictions for the LHC and other experiments, well-motivated theoretical as-
sumptions must be combined with smart and efficient numerical exploration
of the parameter space. The latter aspect has become even more important
in light of the non-discovery of supersymmetry during the first run of the
LHC, as theorists have been forced to consider increasingly general models.

In this thesis we emphasize the role statistical methods and their in-
terpretation play in this research program. The high dimensionality of the
MSSM parameter space necessitates the use of probabilistic scanning tech-
niques. Thus, any conclusions we draw concerning what the likely and less
likely physical scenarios are, will be conditional on the underlying statistical
interpretation of the method. We may also need to pay attention to statist-
ical foundations if we use the concept of naturalness as a theoretical guiding
principle.

Paper 1 touches on several of the above points. Here we perform a
Bayesian analysis of the parameter space in a Natural SUSY scenario. In
this subset of the MSSM parameter space the mass difference between the
lightest chargino and neutralino can be small, possibly leading to a detectable
LHC signal in the form of long-lived charginos. However, our analysis finds
that this scenario does not seem probable in light of existing experimental
constraints.

In Paper 2 we move beyond the MSSM by allowing also R-parity violating
interactions. This opens up a large number of possible processes by which
sparticles can decay to final states with only Standard Model particles. Most
studies of the collider phenomenology of R-parity violation have focused on
the decay of the lightest neutralino. We show that in regions of parameter
space where the chargino–neutralino mass difference is small, direct R-parity
violating decays of the chargino may be dominant. This scenario may give
rise to unusual detector signatures, such as a resonance of three charged
leptons.

Although no evidence for supersymmetry, or indeed any physics beyond
the Standard Model, have been found so far at the LHC, several smaller
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excesses have been observed in the data. It is interesting to investigate
whether such excesses point towards some specific New Physics scenario.
In Papers 3 and 4 we study two recent excesses seen in CMS and ATLAS
searches for dileptons, jets and missing energy. The CMS excess, which hints
at the presence of a kinematical edge in the dilepton spectrum, is analysed
in a scenario where the two signal leptons originate from subsequent steps
in a supersymmetric cascade decay. While this can provide a fairly minimal
explanation of the excess, the model is found to be ruled out by other LHC
searches for supersymmetry.

The ATLAS search observes an excess of events on the Z-peak of the
dilepton spectrum, and interprets this result in a supersymmetry scenario
where additional Z bosons arise from the decay of a neutralino down to a
light gravitino. In Paper 4 we show that this interpretation of the excess
is excluded when the null-results of other searches are taken into account.
However, other possible explanations for these two excesses have been sug-
gested in the literature. With the second run of the LHC under way, we
should soon know whether these excesses are due to interesting physics or
simply random fluctuations in the data.

Finally, much of the work behind this thesis has been devoted to the
collaborative development of GAMBIT and the related tool BOSS, both soon
to be publicly released. With GAMBIT we hope to provide the high-energy
physics community with a powerful open-source tool for extracting as much
information as possible from the results of ongoing and future experiments,
regardless of whether the data point towards supersymmetry or something
completely different.
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