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REPORT ON W BOSON MODEL OF WEAK INTERACTIONS WITH MAXIMAL CP VIOLATION 

R.E. Marshak, City College of New york 

~ 1 Introduction 

The Universal (V-A) current-current theory of weak interactions was fom1u­

la ted in 19 5 7 - in the face of several contradictory experiments - and in the ensuing 

fifteen years, the predictions of this current-current model (with the -addition of the 

Cabibbo angle) have been confirmed in an enormous number of leptonic, semi-leptonic 

and hadronic weak processes (l). The first derivation of this current-current theory 
\ 

by Sudarshan and the auth~r(
2

) was based on the principle of chirality invariance for 
I 

spin 1/2 Dirac fields and this was soon followed by Feynman and Gell-Mann's 

derivation (3) on the basis of the non-derivative interaction of two-component Klein­

Gordon spinor fields for spin 1/2 particles. Both derivations of the correct theory 

were carried out within the current-current framework and can only artificially be 

applied to the · semi-weak W nos on-current interaction which can be used to gener­

ate the (V-A) current-current theory in the limit of mw ➔ co (mW is the W boson 

mass). 

Unfortunately, the remarkably successful (V-A) current-current theory has 

one defect - it predicts CP conservation in all weak processes. While the CP vioiatJcn 
. o · · -3 

effects associated with the decay of the K
1 

meson are _small (of the order of 10' ) and 
I . 

it is possible to introduce a phenomenological parameter into the (V-A) current-

current theory·to explain these effects, such an approach tells us very little about 

the origin of CP - violation in weak interactions. 

There is a second major question which must be faced in connection with 

further refinements of the universal (V-A) current-current theory and that ha·s to do 

with t~e very existence of the W boson. Experiment has alrendy demonstrated (4) 
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that if the W boson exists at all, its mass mw :2!: 2 Gev. This large mass explains 
· . . 2• 2 2 
why the experiments carried out until now (with q , < mw where q is the four-

momentum transfer squared) can not decide whether the current-current interaction 

is the basic interactlon (whose fiel<:f-theoretic content must still be delineated 
. . (5) 

through a deeper study of higher order weak interactions and a refined analysl-s 
~ . 2 . 
of lowest order weak interactions for large q ) or whether the current-current inter-

action is itself a second order effect resulting from the more fundamental semi-weak 

Yukawa-type interaction involving the W boson (or bosons). If we adopt the latter 

viewpoint and postulate the existence of a massive W boson (or bosons), we open· 

up the very real possibility of developing a unified theory of GP-conserving and 

GP-violating weak processes on the basis of a single semi-weak W boson-curren·t 

interaction. The strong cubic W boson model o~ weak interactions as developed by 

Okubo and the author{6), is the best example of such a theory and the one whose 

consequences have been most fully explored. The interest of this W boson model 

is further enhanced by the fact that it is the only exta.nt theory which offers any 

hope of explaining the r(lcent KL ➔ 2µ puzzle(?) in a "natural" fashion. 

In what follows we shall describe the essential features of the strong 

cubic W boson model ( ~ 2) and then show how this model can explain both the 

low rate for KL ➔ 2µ. decay and the high rate for KS ➔ 2µ,decay (} 3). Finally, we 

shall summarize other experimental tests of the strong cubic W boson•model ( 9 4). 

,f 2 .·, Strong Cubic W Boson Model 

The strong cubic W boson model of weak interactions arose out of the 

observation that the GP - violating parameter e (which appears in the definition of 

IKL ) = IK2 ) + c IK
1
), with IK

1
) and IK2 ) the CP = +l and GP;,, -1 combinations 

of IK0
) and !R0

) respectively) is of the order(B) of the semi-weak coupling con­

stant g. This line of argument leads to writing down a "pure" GP= -1 semi-weak· 

W boson-current interaction which is capable of duplicating the results of the 
. . 2 

usual CP - conserving N-A) current-current theory in order g (in the limit mw ➔ m) 

aod tho CP-vlolating effects {if.1 KL decay)_ fo order g
3

• ·This can be accomplished 

by P0stulatlng the existence of a triplet. of W bo~ons (9) (with total charge 0) 



interacting strongly among themselves via a cubic interaction· (hence the expression 

"strong cubic W boson rhodel") and writing down a CP = -1 semi-weak interaction 

between this triple_t of W bosons and suitable lepton and hadron currents. 

More explicitly, we assume that the triplet of W bosons (w0
, w-, w+) 

I 
I 

are described by the following Lagrangian: 

J .. - i [o W (a) (x' - o W (a) (x)] [o w· (a) (x) - o W (a) (x) ] 
--0 \.11,1,. µ,\I . \11,1, µ, \/ 

- W (a) (x) W (b) (x) ·W (c) ·] '. 
µ, ' \/ ~ 

where a=l, 2, 3· (corresponding to charges 0, -1, +l), yja) represents the vector 
' µ, 

W boson field, f
0 

is the strong coupling constant for the three W's and 'abc. 
. . 

is the usual antisY)1lmetric tensor. Eq. (1) can be given a more convincin9 origin 
... 

tf we note that a quas~-Yang-Mills approach to the W Lagrangian suggests a new 

-definition for the fields F (a) (x) (note the bars over the W's in the second term): 
. µ, \/ . 

1

F (a) (x) = [a ·.W (a) (x) - o W (a) (x) 7 + if c W,(b) (x) W (~) (x) (2) 
µ.v · µ, v . v µ, J o abc µ. v 

· It i~ easy to · show that if the W (a)fields transformaccording to the triplet repre­
µ, 

sentation of su3., the same will be true of the quasi-Yang-Mills fields F (~) . . µ.v 

The W Lagrangian (1) can thAn be rewritten in terms of th; F (a) fields as<10>: 
. 1,1,\/ 

'al = - t f (a) (x) F (a) (x) - m Z W (a) (x) w<a) (x) (3) 
o µ.v 1,1,v o µ. • µ, 

where :t
0 

is manifestly invariant under sU3 • 

Another important property of Eq. (1) [ and Eq. (3) ] is its invariance 

under the transformation: 

W (a) (x) ➔ ~ W (a) (x) , W .~_a) (x) ➔~ * W (a) (x) 
µ, aµ, ,. aµ, 

where ~a is a complex constant satisfying the cubic equation: 

~ 3 
"'a = 1-

(4) 

(4a) 

-- ·-- ----------- --- --- ---
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The parameters )..a , ).. b , )..c are the cube roots of unity and effectively assign 

' different "cubic parities" to the three W fields. The concept of "cubic parity" 

is basic to the-strong cubic W boson model. 

If we furth.er define the charge conjugation operation for the W field by: . 

·(4b) 

the simplest CP = -1 . total semi-weak interaction which can be written down is 

{e is the Cabibbo angle): 

HS. W. = ig { [ Wµ,(o) (a J~3 + ~ J ! 3 ) 

+ W{-) ( y Jl 2 + 6 .t ) 
µ, _ µ, µ. 

+ W (+) ( y' J 3 
+ 0' i, ) ] - h.c } , µ, µ,1 . . µ, . • (5) 

where a, 13, y, 6, y' and 61 are real coefficients, .t =iey (l+y5)v +i~y (l+y
5
)v µ, µ, e µ, µ, 

is the tota 1 (V-A) charged lepton current .and J~ j (i, j = 1 , 2, 3) is the octet hadron 

current {in tensor notation). Note the coefficient i and the subtraction of the 

hermitian conjugate in Eq. {5): these features account for the CP= -1 property of 

the semi-weak interaction since C and P are defined by virtue of the strong cubic 

self-interaction of the W's. The interaction (5) also possesses the property that 

it is the most general semi-weak interaction which forbids 6 Yc2 (Y J.s the ,hyper­

charge) transitions (ll) to order g2 and g 3 • 
(12) ·. 

It is now possible to show that the first-order effects in g are for-

1bidden by the invariance of Eq. (5) under the "cubic parity" transformation ·(4): 

this forbiddenness extends to any process which is first-order in g and of arbi:..: 

·trary order in e (electric 'charge) and therefore excludes the occurrence of anelectric 

dipole·. moment of the neutron. in thts order.(_l '.3). The first non-vanishing effects 
. . 2 

ln the strong cubic W boson model occur in. order g since a term like · 

( W"(,c) Wv(K))
0 

ls consistent with cubic parity conservation. In this way~ one 
. 2 

cnn derive an effective CP s: +1 current-current interaction ip order g 

(ln the limit rnw ➔ m) which ca_n explain the whole range of CP-const!rving leptonic, 
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semi-leptonic and hadronic weak processes. Indeed, one can fix the coefficients 

2 
in Eq. _(5) by the requfrement that they repr<?duce in order g the results of the 

universal ,Y-A) cur.rent-current weak interaction: 

G ., 
Hw = i I a (x) u (x) 

2 I I.I, if I.I, 
(6) 

where 

Q 1 1 tf µ, (x) = cos fJ J µZ (x) + sin fJ \,3 (x) + ·\i,Cx) (6a) 

· · · 2 2 
is the Cabibbo current and G//z = g /mW • Eq. (6) yields a contribution of 

order g
2 

to purely leptonic processes and g
2

• cos
2 

fJ and g
2 

sin
2 

8 contributions 

to the 6 Y=O and 6 Y=l semi-leptonic weak processes respectively. These features 

are readily recaptured by the iteration of Eq. (5) through the unique choice: 
. . 

6 = 6' = t y = cos fJ , y' = sin fJ (7) 

The choice of ()t and 13) in Eq. (5) can not so .easily be determined by com paring 

the iteration of Eq. (5)-with the g 2 cos e sin e contribution of Eq. (6) to the 

6 Y=l weak hadron processes since we are asked to equate: 

(8) 

Eq. (8) does not yield a simple determination of the coefficients a and 13 since its 

L. H. S. (originating from the W boson model) involves neutral hadron·currents 

exclusively(l4) and its R.H. S. (originating from the current.;..current theory) invol­

ves c;mly charged hadroP currents; consequently, at the present stage of the strong 

cubic W boson theory, the choice of a and 13 is dictated by experiment (we · sha 11 

find below that a ....,13 ~ 1). The structure of the L.H.S. of Eq. (8) has the very 

desirable consequence that the 6 Y=l weak hadron processes automatically obey 

the !::.I=½ rule {I is the isospin) in the W boson theory - in contrast to the artificial 

suppression of the t::.!=3/2 contribution (through octet enhancement or some other 

mechanism) .,:?quired in the current-current theory. 

The CP = -1 semiweak V: boson interaction which is consistent with the 
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CP= + 1 weak current-current interaction thus becomes: 

H • .!SL { [ w<o) (a ·J z· + '3 J '3 ) 
S. W. ff µ µ3 µ3 

+ .wµ(-) (fl c~s e J~ + tµ/./z ) 

+ w<+> (./Tstn 9j 
3 + l.Jrz,)-h.c.} ·· 

µ . . µl ~ 

Eq. (9) will be used to compute the matrix elements following from the W boson 

model. However, it is illuminating to recast Eq. (9) into the form: 

H C lg' s.w. { [ W (o) (a• J z + p•· J 3 
µ µ3 µ3 

(w<-> - w<+>) 1 1 
: µ ___ µ_. ( cos ~ J~2 + sin 8Jµ3 + lµ) 

+ (Vv.u(-~ + ~(+)),.(cos 8Jµ
1
2 - sin 8 Jµ~ ) ] - h.c. } 

rz 
where g' ·= g/✓2 a' ~ ff a , p• = fi p. 'Ire second term now contains the 

interaction of the usual Cabibbo current (consisting of charged hadron and lepton 

currents) with the normalized combination ( w<-) - W (+)) 
. µ µ 

n 

(9) 

In the third term, the orthogonal combination of thew<-) and w(+) fields interacts 
µ µ 

with a purely charged hadron current while in the first term the neutral vector field . 

W(o) interacts with a purely neutral hadron current. It is worth remarking that the µ . . 
combinations of w<-) and W (+) which enter in Eq. (10) a.re ·preciseiy the ones that 
' µ µ 

interact with the electromagnetic field -when one adds this field ·to the quasl-Yang-

Mills Lagrangian (3). This_ places the semi-weak interaction of the VI_ boson 

model on an attractive theoretical foundation. 

The basic difference between the current-current interc1cUon model (6) . . 

iand the strong cubic W boson model first arises in order g
3 

'(in the .W boson model) 

where one encounters a term of the type (W (x) w (x) W>.. (x)) which conserves 
•• .µ V 0 

"cubic parity" and is large because of the strong cubic sclf-coupllng of tho W . 
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boson triplet. Thus, the strong cubic W boson model allows certain weak pro-
. 3 -

cesses to occur in order g which can only occur in the current-current theory in 

4 (. 2)2 , 3 
order g ~ ,Gmw Moreover, the weak processes occurring in order g receive 

;, 

GP= -1 contributions in ,,this order and can exhibit GP"".violation effects under 
. - - 3 

suitable circumstances. When the GP =·-1 g amplitude interferes with the 

- 2 -3 
GP= +lg amplitude, the GP-violating effect will be of the order g ~l O whereas -

if it interferes with a GP= +l ~ g2
en amplitude (a combined weak-electro­

magnetic amplitude), the GP-violating effect can be much larger (gro_ss GP vio"". 

lation(l S)). The GP-violating effect in KL ➔ 2,r decay is an example of the former 

type of interference effect (and was the reason for proposing the strong cubic 

W boson model in the first place) while KL -+ 2µ decay would be an example of 
. -

the .latter type of interference effect. We conclude t _his section with a sketch of 

the calculation for KL ➔ 2,r decay - to indicate the nature of the approximations 

: invoked - and in the next section apply the strong cubic W boson model to·the 
I , • : o 

KL -+ 2 µ. problem. 
0 -

The_ diagram contributing to KL ➔ 2TT' decay is given in Fig. 1 (a similar 

~iagram can be drawn for_KL ➔ ,r+,r-) and the matrix element'following from Eq. (9) is: 

M C (11) 

x ra'f3'y' (p,q,kz)t~tr(q)(Kz(P) 1v!1 ln-(q))(,r-(q) 1v!2 l,ro(kl))(,ro(kz) IA!310> 

W - i 
where 6 "is the W boson propagator, r •~• , is the triple W vertex and V -j and µv a,-y . µ 

i -
A~J are the vector and axial vector hadron currents with suitable tensor indlce_s 

respectively. From symmetry considerations: 

rn'l3''a'' • f(q
2

,q•p,q•k2) [oa'p'(p-q+kz\• - 6
0

,y1 (2p-2q-k2)f +~'y' (p-q) 0 ,-J (12) 

We assume that f (q2 , q • p, q O k2) z f
0 

and, retaining the most divergent contri­

butions, we get 

3A4 g 3 2 M ~ cos 8 sin 8 r. f ·f m K 
- Z56,r2 ;;-r> .o tr 

w 
(13) 
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where f is the pion decay .amplitude. Hence: 
1T 

3 ( A )
4 

I M (KL ➔ 21r) / M (Ks ➔ Z1r) I.::::. lo- , f
0 
~ gJ3 

' w 
Another relation ·between .f and A is derived by calculating the self-mass of the 

' 0 

W boson with ·cubic interaction: using the same approximations for the triple 

'w vertex, one gets: 

or 

3 
6 mw ~ ✓-- 4 l 1r 

f AZ/ 2 
0 11 mw 21T 

These approximate calculations show that the correct order of magnitude of the 

CP-violating amplitud~ for KL ➔ 21r decay can be obtained from the strong cubic 

(14) 

(15) 

(16) 

' -2 
W boson model for a reasonable choice of pa rameters: g ~3x 10 (corresponding 

~ 3. Application of the Stronq Cubic W Boson Mode 1 to KL _. 2 µ, Puzzle 

The strong cuhic W boson model was not invented to explain the recent 

KL-• 2µ. puzzle (7
). It was put forward as the simplest W boson inodel capable 

of providing a uniffed description of both CF-conserving and CP-violating weak 

processes. However, it turns out that the same feature of the mod~l which 

3 
predicts the existence of the CF-violating KL ➔ ?.TT decay in order g also predJcts 

the existence of effective neutral lepton currents in the same order and this, when 

combined with the symmetry properties o{ the model, enables us to understand the 

low rate for KL ➔ Zµ. decay and a much higher rate for Ks ➔ 2µ. decay. This 

interesting prediction of the strong cubic W boson model is now .. examined in some 

detail. 

Let us write in the usual fashion: 

(17a) 

IK8 > = IK1 > + c IK2 > (17b) 

where c ~ c0 ei1r/4 ('t
0 

= 2 x I o-3) and terms of higher order in c have been 
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dropped. It is easy to show that in the "local" approximation(l 6) to the g 3 matrix 

element, the CP= -1 jK2 ) state does not d~cay into 2µ, whereas the CP=+l jK
1

) 

state does. Indeed, the effective CP=-1 g
3 

interaction in the local limit takes 
1 ' ' 

the CP=+;l IK1) state into the CP.= -1 ( So) state of the 2µ, system with the 

amplitude: 

where u and v are the Dirac spinors for the muons and b is computed from the 

diagram in Fig. 2. Using the same approximations made in computing Kr:. ➔ 21r 

decay (see § 2), one obtains: 

b = 2 ff m G Z Sin 8 a fK 
. µ. 

where f+ is the K+ decay amplitude and 

3 ( . A )
2 

z = - ~ f - g cos 
16n o mW 

3 8 ,.., · - -- g cos 9 
- 81r 

[using relation (16)] • The rate becomes: 

l l · l · 1/2 r (K1 ➔ 2~) · = (G sin O A lz I fK m ) (mK - 4m ) · 
' ' I,!, µ 

(<1 ~ 1) 

where we have expressed the decay -rate in Eg, (21) irt terms ofrL = !"'(KL ➔ all) • . . 
It is irnportantto note that the amplituc,ie (18) for K

1 
-+ 2~ is pure 1f!1aginari since 

the diagram in Fig. 2 gives a real contribution and the-i comes · from the fact that 
, · . '·. , .. '•- ' ... · . . 

the CP = -1 part of the interaction is res pe>nsible for this .co11tributlon. It is this . . . . . 

feature which enables {18) to partially ca,ncel_ the. CP = +1 absorptive contribution 

(JB) 

(19) 

(19a) 

(20) 

(7.1) 

to the ampiitude for Kz 4 2µ given by the weak~lectrornagnetfo diagram in Fig. 3. 
. . . . 

Let us be more explicit: we may write the totalamplitudes for KL ➔ 2µ, 

and K
8 
➔ 2µ, as follows: 

M (KL,S ➔ 2µ:!:) = {21,1,:1:ITIKL.~) = (2~\1)TIK2 , 1~+c (2µ*1TIK 112 ) (22) 

. . ± ~ ' 
where the subscripts on µ denote the C.P"' -1 final states of the 1,1. µ system 

respectively. Separating the real ~nd imaginary parts of the amplitudes, we 
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write: 

a:!: = im (21,1,:1: ITT! K2> 

b:I: = im (2µ.:I: IT:1:I Kl ) 

(23) 

c:I: = Re (2µ.:I: IT:1:IK1> 

d:!: = Re (2µ.:I: ITT I Kz) 

where the subscripts :I: on T denote the CP = :I: 1 character of the .effective interaction 

respectively. Using the definitions (23), we get: 

(24) 

where c
0 

= Re (c), c1 = Im (c). The corresponding relations for the Ks ➔ 2µ. ampli- . 

tudes are: 

;m (2µ.:1:IT I Ks) = b:1: + .. C a · 
0 :I: 

Re = C - Ca 
:I: :1 :I: 

. .· •: . 3 
We repeat that 2µ.+ are in a P

0 
state and 2µ._ in a ls state. 

0 

. (25) 

Four of the quantities in Eq. (23), b-:-·, c_, a+, d+, ~nvolve _the CP= -1 
. . 3 

part of the interaction and must be estimated on the basis of the g diagram in.' 

Fig. 2: b_ is precisely the ampl~tude b defined by Eq. (18): c_ z O since mw is 

large: a+.=.:- 0 in the ~oca l limit: d + z O for the same reason as c _. The other four 

quantities, a_, d_, b+, c+ involve t~e CP= +l part of the interaction and must be 
. 2 4 
estimated on the basis of the g e diagram in Fig. 3: a_ is the-quantity computed 

. by Sehgal (l ?) : d _ is the dispersive part of the g2 e 4 contribution and is not ex­

pected to exceed the absorptive part a_ (although a good calculation has not yet 

been carried out as yet): b+ is estimated to be the same order as a_ and the same 

can be said of c +. Inserting our results ~nto Eqs. (24) and (25), we get 
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(all amplitudes are given in units of /rL ): 
. I 

f im 

{ Re 

( 21,1.+ IT I KL ) 

( 2 µ-+ I ~ I KL > 

= -5 7 X 10 c
0 

f im ( 2µ._ IT I KL > = 7 x 1 o-5 
- 3. 5 lz I c 

. 0 

. f Re (21,1._ITIKL) = DL+3.Slz·lc1 

(2µ.+IT/K8 ) = 1x10-
4 

< 2 µ. + I T I Ks > . = n s 

} ;R· me' ( 21,1._ I T / Ks ) 

{ < 21,1. - I T I Ks > 

= - 3.Slzl + ix 10-
4 

c 
0 

= - D C S 0 

.where D1 and Ds.are the real parts of the weak-electromagnetic amplitudes for 

(26) 

(2 7) 

(29) 

KL and Ks deca):' into 2µ. respectivel/18) (via.rthe two-photon mechanism of Fig. 3). 

From Eqs. (26) - (29), we obtain the estimated partial transition rates for 

the 21,1. decays ·of KL and Ks into the CP .= +I (fP
0

) and CP= -l (
1

S
0

) states: 

( ) . -9 -6 r K1 ➔ 21,1.+ ~ s x 1 o . 2 x 1 o . r 
1 

r (K1 ➔ 21,1._)~ (1x 10-5 - 3.S•L4x .I0-3 lzl)r1 

r (Ks ➔ 21,1./ ~ 10-
0

• r1 

r (K5 ➔ z µ. _) ~ 12 I z I 2 r L . 

and hence for the tota 1 rates : 
. 2 

r (KL ➔ 2µ.) -~ (1 x 1 o-5 
- 3 ~ 5 • H/xl o-3 

jz I) rL 

. . 2 
r (Ks ➔ z µ.) ~ 12 I z I r L 

It ts clear from Eqs. (34) and (35) that the K1 ➔ 2µ. puzzle can readily be 

resolved by a suitable choice of tl:2 paramete~ I z I (ilnd therefore· ·of mW.). 

. . -9 
Thus, we can match (34) to the upper limit 1.8 x ·10 for the branching ratio 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) . 
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-3 
B. R. (KL ➔ 2 µ.) by choosing jz I :::::. 5. 5 x 10 (and a fortiori mW = 15 Gev). 

' I • -6 
Inserting this value into (35) yields r, (Ks ➔ 2µ.)/rs:::::. 0.6 x 10 which is 

fairly close t.o Steinberger's upper limit(l 9) 0.8 x 10-6 • It should be emphasized 

that, the predi~ted ~; R. (Ks ➔ 2µ.) is very sensitive to the observed B. R. (KL ➔ 2µ.); 
. -9 . . 

. thus, if B.R. (KL ➔ 2µ.) turned out to be 3 x 10 (a small change in such a difficuJt 

I I 
-3 . 

experi~ent), we would get z :::::. 3 x 10 {mW :::::. 10 . Gev) and the predicted.· 

r (Ks ➔ 2µ.)/rs woul~ be 0.2 x 10-6 • It should also be pointed out that if only 

2 4 
the g e diagram contributes to Ks ➔ 2µ. , the predicted r (K

8 
-:t2µ.)/rs would be 

. -10 ~ 2 x 10 , an extremely sma 11 value; any evidence for a substantially larger 

branching ratio would require a modification of the (V-A) current-cu·rrent theory. 

~ 4. Further Predictions of the Strong Cubic W Boson Model 

We have.'seen that one consequence of the strong cubic W boson model 

is the automat!c prediction of an effective (µ. µ.) current interaction with the Kl 

meson in order g 3 which interferes destfuctively with the weak-electromagnetic 

2 4 
current interaction in order g e for the K1 meson but not for the Ks meson. 

This is a negative sort of triumph and the true test of this model will lie with 

positive confirmation of a variety of predictions for weak processes involving 

the effective inte~action of neutral lepton currents with hadrons in order g 3 and 

the competition, ;.-:here appropriate, with weak-electromagnetic transitions to the 

2 2 ·2 4 
same final states in order g e or g e • Many of the relevant calculations i-11. 

this regard have been given in_ previous papers (6) and only the more interesting 

results will be mentioned here. 

A more perspicuous way to deduce the consequences of the strong cubic 

·w boson model for neutral lepton pair effects -in semi-leptonic processes is to 

derive the local limit (together with first-order corrections (ZO}) for the effective 

neutral lepton current-hadron current interaction. One derives the following 

effective interaction: 
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i ~n a lz I {r At - r/3}. { [i \)e Yx (1 +ys) "e +i e YA (l +ys) e 

+ i-v y,' (l+v5) v +iµY (1+ r )fl] 
µA . IJ, ~ S 

(36) 

- 2 p' [me i <\ (e y Se) + m µ, i aA (µ, y S µ,) ] } 

The fJrst tenn in brackets in (36) is the strict local interaction whereas the second 

tenn is of order _g_ (q i"s the four-momentum transfer); terms of order q
2/m~ (a1:d · 

.2 2 mw r 3 2 ] 7 
mt/ mW) have been neglected. The current LJ:i2 (x) - J.:\.3 (x) = 21 J,;t (x) (in the 

octet notation) is a !::. Y= I, CP = -1 neutral hadronic current which can be written 

in the fonn: 

J~ (x) - A 
7 + 6 V 

7 
A - A A (3 7) 

2 
The parameters /z I, p (we set rJ mK = p - I) and 6 can, in principle, be detennined 

from three experiments and the results then used to make further predictions. How­

ever, in view of the unreliability of the experimental data (and the fact that only 

upper limits are actually known for the releva-nt transition rates), we shall make 

the reasonable assumption that 6 ~ 1 and see whe.ther the estimated values of I z I 
and pare consistent with the present data. 

We can determine I z I from B. R. (K
8 
➔ 2 µ,) if we 'choose that value, . 

lzl ~4x 10-
3

, which most plausibly reconciles B.R. (K
1 
➔ 2µ,) and B.R. (K 8 ➔ 2µ) 

at the present time. A value of pcan then be found from the predicted ratio tor 

B.R. (KS ➔ 2µ,) to B.R. (K+ ➔ ,r+ v~ ), namely: 

B.R. (KS ➔ 2u.) 

( + + -B.R. K ➔ ir ·\Iv) 

. 2 
= 0.23 p 

The experimental upper limit(
2

l) for B. R. (K+ ➔ ,/ v-v) is i .2 x 10-6 and if we 

2 . . 
insert this value into Eq. (38), we obtain p ~ 1.5. The branching ratio 

(38) 

r (K+ ➔ ,r + vv) / r (K+ ➔ ir0 e + ve) itself gives an independent detennination. of lz I 
through the relation: 

r (K+ ➔ ir + v v) = 2 lz 12 

r (K+ ➔ ir O e + v 
e 

(39) 

whence lz I< 3.5 x 10-3 which is of the righ~_magnitude. ~ 
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We now list some predictions for several other interesting K meson decays 
. . . 0 

involving the emission-of a neutral lep,ton pair. Consider the decay KL ➔ ir J, z 
which proceec:Js in order g 3 without violating any symmetries_ of the basic interaction. 

. Z 4 . 
This implies that the· CP = +l g e weak-electromagnetic contribution to this decay . . 

. . 3 . 
may be neglected with respect to the CP = -1 g contribution. The rate for 

K o - 2 o L ➔ -rr . IJ. IJ, decay in~olves p whereas we ca.n neglect this term for KL ➔ ir e e 

decay; we predict (using lz I ~ 3 x 10-3): 

B.R. (KL ➔ ir0 
ee) = 0.41 lz 1

2 z 3 x 10-
6 

r (KL ➔ iro µ P.) 

r (KL ➔ ir0 ee) 
/ 

= 
z 1 + p 

z 

z 
{o.s1 + p · - 1 

pZ + 1 

z . 
- !a_ (0.16 -0.13 ·~ - 0,03~

2
)} 

pZ +l 

(40) 

(41) 

. Z . (ZZ) 
which, for X+ = 0,03, ~ = - 0.6 and p =r-1,5 ,yields the value 0.40 so that the 

- 0 . . -6 
predicted B.R. (KL ➔ ,r 11,P,) z l .Z x 10 . • It would be interesting to have measure-

ments of these rare decay modes of KL. 

The decay.process K+ ➔ ~+ il is more complicated because now the 

CP = +1 weak-electromagnetic amplitude involves one photon {and is therefore of 

order g2 e 2) a.nd is comparable with the CP ~ -1 g 3 amplitude. Estimates of the 

weak-electromagnetic contributions to the branching ratios have been made wit~ 

· the results: 

z z 
(g e ): 

The g3 contributions to K+ ➔ n + J, I.are identical ~1th the corresponding contribu­

tions to K+ ➔ ,r + vv so that .we have [ cf. Eq. (39)] 

B.R. (K+ ➔ ,r + 1,1,n> 5 X 10- 7 
~ 

3 {g ) : 

B,R. ( + + - ) · K ➔ ir ee .z lZ X 10.:, 7 

(42) 

(43) . 

(44) 

(45) 
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If we recall that Eqs. (42} and (43 }·were obtained from absorptive amplitudes and 

that Eqs. (44} and (45} were derived from re,al amplitudes multiplied by i (to repre­

sent the CP= -1 nature of the W boson interaction}, it follows that destructive 

interference may occur between the corresponding amplitudes and thereby reduce 

the at:tual branching rations. This may account for the measured lower upper bound 

+ + · · -6 · + + -6 forB.R. (K .. 1r ee}~0.4xl0 compared to B.R. (K .. 1r \Iv},$ 1.2x 10 • If 

the above estimates are at all reasonable, the strong cubic W boson model would 

also predict gross CP violation effects for these rare decay modes of Kt. )'he 

. 
magnitude of these effects and their mod~of detection have already been d~scussed 

in considerable detail. ( 
15

} In the same paper will be found a discussion of gross 

CP ·violation effects in the related rare decay mode: ·r;+ .. pee as well as in the W 

boson production reaction itself, namely, \I + N .. µ.:. + W + N. In the latter case, 
. µ .. 

the detection of an appreciable transverse pofarization of the muon from the decay-

ing W boson would provide evidence for gross CP violation. 

We conclude our status report on the strong cubic V;I boson model by 

remarking that a search for neutral lepton pairs from decaying bosons or baryons 

3 . . . 
at the g level is of great interest independent of our model. CP violation is, so 

. 3 . 
to speak, a large effect at this (g } level and it .is difficult to believe that this 

departure from the "classical" (V, A} current-cum::nt interaction theory will not 
t . . . . 

. . 3 
reflect itself in the occurrence of _other unexpected phenomena at the same (g ) 

level. 
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