T Available online at www.sciencedirect.com

et ScienceDirect NucLEAR[ 2]
PHYSICS

ELSEVIER Nuclear Physics B 958 (2020) 115120
www.elsevier.com/locate/nuclphysb

Non-perturbative defect one-point functions in planar
N = 4 super-Yang-Mills

Shota Komatsu “*, Yifan Wang "<

& School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA
b Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA
€ Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA
d Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA

Received 27 April 2020; received in revised form 16 July 2020; accepted 20 July 2020
Available online 28 July 2020
Editor: Clay Cérdova

Abstract

The four dimensional N = 4 super-Yang-Mills (SYM) theory exhibits rich dynamics in the presence of
codimension-one conformal defects. The new structure constants of the extended operator algebra consist of
one-point functions of local operators which are nonvanishing due to the defect insertion and carry nontrivial
coupling dependence. We study an important class of half-BPS superconformal defects engineered by D5
branes that share three common directions with the D3 branes and involve Nahm pole configurations for the
SYM fields on the D3 brane worldvolume. In the planar large N limit, we obtain non-perturbative results
in the 't Hooft coupling A for the defect one-point functions of both BPS and non-BPS operators, building
upon recent progress in localization [1] and integrability methods [2,3].

For BPS operator insertions in the SYM with D5-brane type boundary or interface, we derive an effective
two dimensional defect-Yang-Mills (dYM) theory from supersymmetric localization, which gives an effi-
cient way to extract defect observables and generates a novel matrix model for the defect one-point function.
By solving the matrix model in the large N limit, we obtain exact results in A which interpolate between
perturbative Feynman diagram contributions in the weak coupling limit and IIB string theory predictions on
AdSs x § S in the strong coupling regime, providing a precision test of AdS/CFT with interface defects. For
general non-BPS operators, we develop a non-perturbative bootstrap-type program for integrable boundary
states on the worldsheet of the IIB string theory, corresponding to the interface defects in the planar SYM.
Such integrable boundary states are constrained by a set of general consistency conditions for which we
present explicit solutions that reproduce and extend the known results at weak coupling from integrable
spin-chain methods.
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1. Introduction

Quantum field theories are known to exhibit rich dynamics in the presence of co-dimension
one defects such as boundaries or domain walls (interfaces). In particular topological field the-
ories which do not carry any propagating degrees of freedom in the bulk at all, may harbor
nontrivial interactions on the boundary or domain wall. A canonical example of this involves
the three-dimensional Chern-Simons theory on a manifold with boundary and the correspond-
ing (chiral) Wess-Zumino-Witten model (or general rational conformal field theories) on the
boundary [4—6], as a special instance of the anomaly inflow mechanism [7]. More interestingly
is when the bulk theory is also strongly interacting. In such cases, the anomaly arguments alone
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are not enough to pin down the dynamics of the coupled system. Fortunately when the bulk
theory enjoys conformal symmetry, as is often the case for strongly-coupled fixed points of
renormalization-group (RG) flows, there are direct methods to determine the physical observ-
ables non-perturbatively, which broadly speaking belong to the conformal bootstrap program
[8]. This is thanks to an axiomatic definition of the fixed point theory, a conformal field theory
(CFT), in terms of the spectrum of local operators and the operator-product-expansion (OPE) of
correlation functions. The conformal symmetry, crossing symmetry together with unitarity imply
an infinite set of constraints for the spectrum and OPE coefficients (three-point-functions), which
can be explored systematically by bootstrap methods. The bootstrap problem for local operators
and their correlation functions has a natural extension in the presence of boundaries or domain
walls preserving the conformal subalgebra longitudinal to the defect [9-11]. Compared to the
case without the defects, we now have a richer setup with additional structure constants intrinsic
to the defects, known as the defect one-point functions of bulk local operators. Together with the
OPE expansion of the local operators, they determine completely the local correlation functions
in the presence of the conformal defect. Furthermore, these defect one-point functions constrain
the spectrum of local operators that are confined to the world-volume of the conformal defect.
This is achieved for example by studying a different bulk-boundary OPE limit of the two-point
function of bulk local operators that exchanges boundary operators in the intermediate channel
and deriving a crossing equation that relates to the OPE limit of the local operators in the bulk.

In four spacetime dimensions, a large class of strongly coupled fixed points are produced by
RG flows from Yang-Mills theories coupled to matter fields in various representations, which
admit interesting boundary and domain wall dynamics. Among such four-dimensional CFTs, the
N = 4 super Yang-Mills (SYM) holds a special place. On one hand, it shares many features of
the other strongly-coupled gauge theories. On the other hand, the fact that it has the maximal
supersymmetry allows for a number of analytic methods to probe its dynamics, such as super-
symmetric localization [12—14], integrability [15], and superconformal bootstrap (a refinement
of the ordinary bootstrap program outlined above) [8]. Furthermore, via the conjectured holo-
graphic correspondence, observables in the N'=4 SYM in the large N limit are mapped to those
in the type IIB string theory on AdSs x S° and vice versa [16—18], thus providing a channel to
probe and test quantum gravity using field theory methods.

The N =4 SYM is known to host a large family of boundary and interface defects, and
the half-BPS ones have been classified in [19-21]. They correspond to D5- and NS5-branes
(more generally (p, g) five-branes) that share three common directions with the stack of D3-
branes that engineer the SYM. The codimension one defect often contains strongly-coupled
three-dimensional excitations on its worldvolume, which may be described, via the mirror sym-
metry (or mirror duality), by RG flows from a three-dimensional A" = 4 supersymmetric quiver
gauge theory coupled to the SYM [21].!

In this paper, we study the A" = 4 super Yang-Mills in the presence of half-BPS boundary
and interface defects of the D5-brane type, building upon recent progress in supersymmetric lo-
calization [1] and integrability methods [2,3] to extract the basic structure constants, the defect
one-point function (O)p of single-trace local operators in the SYM. Combined with the super-
conformal bootstrap method [9,10], our results provide a way to potentially solve the N = 4
SYM in the presence of these interface defects.

1 See [22] (and also [23]) for a recent study of interacting boundary CFTs in a non-supersymmetric setting, where the
bulk is described by the 4d Maxwell theory.
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From the general discussion in [1], the N'=4 SYM in the presence of half-BPS boundary or
interface defects contains a solvable 2d/1d subsector described by (constrained) two-dimensional
Yang-Mills theory [24] coupled to certain one-dimensional topological quantum mechanics [25],
known as the defect-Yang-Mills (dYM). A large class of defect observables in the SYM that pre-
serve a common supercharge Q have simple descriptions in the dYM sector and their correlation
functions can be extracted using standard two-dimensional gauge theory methods [26-29].> For
the D5-brane interface that interpolate between U(N) and U (N + k) SYM theories for £ > 0,
we determine explicitly the dYM sector in this paper. While the D5-brane interface for k =0
has a simple Lagrangian description, as a transparent interface stacked with a bifundamental
hypermultiplet on its worldvolume, this is not the case when k > O which involve the singular
Nahm pole boundary condition [19]. Thanks to the S-duality of the bulk SYM theory as well as
the related mirror symmetry acting on the boundary conditions (boundary theories), we are able
to derive the one-dimensional topological quantum mechanics corresponding to the D5-brane
interface (boundary) in the dYM. Using two-dimensional gauge theory techniques in the dYM
effective theory, the computation of the defect one-point function (O)p is reduced to a single-
matrix integral. Compared to the simple Gaussian matrix model familiar for SYM, our matrix
model involves a novel single-eigenvalue potential, which comes from the D5-brane defect. By
solving this matrix model in the planar large N limit, we determine the one-point functions (O)p
as exact functions of the ’t Hooft coupling A = N gZ. Expanding the answer in both weak and
strong coupling regimes, our exact result bridges perturbative answers from Feynman diagram
computations in the SYM and holographic results from type IIB string theory on AdSs x S°
where the interface is described by a probe D5-brane along an AdS; x S* submanifold with
k-units of worldvolume flux threading the S 2 factor [32].

The planar NV =4 SYM is integrable which allows for determination of defect one-point
functions using spin-chain methods [15,33]. Local operators and defect observables are repre-
sented by quantum states of the spin chain. In particular the interface defect corresponds to a
matrix product state (MPS) and the bulk local operators correspond to Bethe eigenstates of the
spin chain Hamiltonian. The defect one-point functions (O)p is given by the overlap between
the MPS and Bethe states [33—45]. However, this computation relies on a weak coupling expan-
sion and is not suitable for accessing correlators in the A’ =4 SYM at finite A. In this paper,
we develop a bootstrap-type program for the defect one-point functions at finite A following the
general strategy laid out in [2,3]. We identify the D5-brane interface defect with a integrable
boundary state on the worldsheet of the IIB string theory in the holographic dual, and compute it
non-perturbatively by imposing a set of consistency conditions: the Watson’s equation, boundary
Yang-Baxter equations, and the crossing equation. Knowledge of the integrable boundary states
has powerful consequences: it determines the defect structure constants (O)p for O that are non-
BPS. We provide explicit solutions to the consistency conditions and check that they reproduce
the known results at weak coupling.

The rest of the paper is organized as follows. We start by reviewing half-BPS interface defects
in the N'=4 SYM in Section 2, and determine the dYM sector as well as the corresponding
matrix model for D5-brane interface defects using S-duality and mirror symmetry. In Section 3,
we determine the defect structure constants (O)p of half-BPS operators using the interface ma-
trix model in the large N limit and compare to results from perturbation theory and holographic

2 See also [30,31] for reviews on this subject.
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computations. In Section 4, we present the bootstrap approach to the defect one-point function of
non-BPS operators using integrability. We end by a brief summary and discussion in Section 5.

2. The matrix model for D5-brane interface
2.1. Review of boundary and interface defects in SYM

The 4d N' =4 SYM with gauge group G (its Lie algebra denoted by g) is realized by the
dimensional reduction of the 10d SYM. It is thus natural to write its action in terms of the 10d
fields as

1 1
SsyMz——2/d4x tr| = FynFMYN —wrMpyw). @2.1)
28y 2 ’
R4

Here M =1,2,...,8,9,0 are 10d spacetime indices which splits into 4d spacetime and R-
symmetry (internal) indices (@, /) with u =1,2,3,4 and I =5,...,9,0. The bosonic field
Ay contains the 4d gauge field A, and scalars ®;. The gaugino W transforms as a chiral spinor
of Spin(10) and I'ys = {I"y,, I';} are 10d chiral Gamma matrices. We follow the convention of
[24] for the covariant derivative D =d + A and curvature F =dA + A A A. In terms of its g
components, Ay = A9,T, comes with real coefficients A}, and anti-hermitian generators T,
of g. The trace tr(-, -) is the Killing form of g and is related to the usual trace in a particular
representation R by tr = ﬁ trg, where Tx denotes the Dynkin index of R. For g = su(N), this
is identical to the trace in the fundamental representation tr = trr. Finally the generators 7¢ are
normalized by tr(T,Tp) = —%SQb. We set the four-dimensional theta angle 6 = 0 in this paper.
The superconformal symmetry of the SYM comes from the conformal Killing spinor

e=¢€; +x'T e (2.2)

where €; and €, are constant 16-component spinors that correspond to the Poincaré and confor-
mal supercharges in the superconformal algebra psu(2, 2|4). The superconformal transformation
of the SYM fields is generated by

(SSAM = SFM‘I/ ,

1 1 (2.3)
SeW = EFMNFMNe + EFM@IB“@.

The half-BPS interface or boundary defect along the hyperplane x; = 0 preserve a supercon-
formal subalgebra osp(4|4, R) C psu(2, 2|4). There is a family of such subalgebras related by
inner automorphisms (conjugation) as well as outer-automorphisms (U (1)y) of psu(2, 2|4). Here
we follow [1] and fixes this ambiguity by specifying the supercharges preserved by the defect

Figooes = €5,  T'1gooec =€c. (2.4)
The corresponding half-BPS subalgebra contains the following bosonic algebras
0sp(414,R) D 50(3)s67 ® 50(3)890 D 50(3, 2)cont - (2.5)

Here s50(3, 2)conf is the conformal symmetry along the defect, and s0(3)567 @ 50(3)g90 a maximal
subalgebra of the full s0(6) g symmetry.

The 4d N = 4 vector multiplet naturally decomposes with respect to this 0sp(4|4, R) subal-
gebra into the following 3d N = 4 multiplets
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hypermultiplet : W_, Ay, X;,

. (2.6)
vectormultiplet : W, A2 3.4,7;,
where we have split the gaugino W into
1
vy = 5(116 +Tg90) W, (2.7)
and the six scalar fields ®; as
X; = (Pg, P9, Py), Y; = (Ps5, D, 7). (2.8)

As explained in [19], general BPS boundary conditions for the SYM on the half space x; > 0
are obtained by supersymmetric configurations of the 3d multiplets in (2.6). The generalization
to interface defects is immediate via the (un)folding trick. Below we briefly review the relevant
BPS boundary conditions.

One simple choice involves assigning Dirichlet boundary condition for the 3d vectormultiplet
and Neumann-like boundary condition for the 3d hypermultiplet

1
D5: Ful 0= D1Xi = €l X, XiJl 0= Yily=0 =0, Wil o=0.  (29)

X1=

This is realized by D5-branes along the 234890 directions, intersecting with the D3-branes that
lie along the 1234 directions in the 10d spacetime of type IIB string theory. Thus we refer to such
boundary condition as the D5-type (or generalized Dirichlet). This is also known as the Nahm
(pole) boundary condition for the N =4 SYM since the second equation in (2.9) is the Nahm
equation for X. Near the boundary x; = 0, the solutions to the Nahm equation are given by

t.
Xi=——+ regular terms, (2.10)
X1

for ¢; € g obeying the su(2) commutation rules

[ti, 1] = €ijity . (2.11)
Up to a gauge transformation, #; is specified by a homomorphism p : su(2) — g. For g = u(N),
such a homomorphism is labelled by a partition d = [py1, ..., px] of N with p; > py > --- >

pk > 0. Correspondingly #; takes the form of a block diagonal N x N matrix

i :tiPlX[’l @tiPZXPzea.“@tikaPk, (212)
where each triplet £/ 7
of su(2) and explicitly

withi =1, 2, 3 gives rise to a p;-dimensional irreducible representation

;;’XP:—%Diag[p—1,p—3,...,1—p]. (2.13)
In the D3-D5 setup, the U (N) Nahm pole labelled by the partition d = [py, ..., px] involves k
D5-branes and there are p; D3-branes ending on each of the i-th D5-branes. The trivial Nahm
pole involves N D5-branes and corresponds to the minimal partitiond =[1, 1, ..., 1] with; =0.
This is the familiar Dirichlet boundary condition. The Nahm pole produced by a single D5-brane
is of the regular (principal) type with d = [N].

Another simple half-BPS boundary condition for SYM is defined by assigning Dirichlet
boundary condition for the 3d hypermultiplet and Neumann boundary condition for the 3d vec-
tormultiplet in (2.6)



S. Komatsu, Y. Wang / Nuclear Physics B 958 (2020) 115120 7

NS5: Fiy lg—0=Xi lyj—0=D1Yi ly,—0=0, W_=0. (2.14)

This is realized by an NS5-brane along the 234567 directions and thus we refer to it as the
NSS5-type boundary condition or simply as the Neumann boundary condition for the SYM. Im-
portantly, the D5-type and NS5-type boundary conditions are related by S-duality in the SYM
[21].

The D5-type (2.9) and NS5-type (2.14) boundary conditions can be generalized by introduce
partial gauge symmetry breaking [19]. For a subgroup of the gauge group H C G (which may
not be simple), the corresponding Lie algebra decomposes as

g=haoht (2.15)

into the Lie algebra of H and its orthogonal complement (which may not a Lie algebra). Then
one can consider a mixture of NS5-type boundary condition (2.14) for the components of the
SYM fields in b and D5-type boundary condition (2.9) for the components in h-. This defines
the symmetry breaking boundary condition associate to the subgroup H C G [19].

Finally, the half-BPS boundary conditions defined above lead to interface defects preserving
the same supersymmetry thanks to the (un)folding trick, generated by a Z;-automorphism tgoq
of the superconformal algebra psu(2,2(4) [19]

lfold : (X1, X2, X3, X4) = (—x1, X2, %3, %), (X, V) —> (=X, V). (2.16)

In particular the BPS interfaces in the ' =4 SYM with gauge group G; on one side x; > 0
and another gauge group G» on the other side x; < 0 correspond to BPS boundary conditions
for the SYM with gauge group G x G». For example, the transparent interface in the G SYM
corresponds to unfolding the G x G SYM with the partial symmetry breaking boundary condition
that preserves the diagonal subgroup Ggiag C G x G. Note that the flipping of X in (2.16) ensures
the continuity of the N = 4 vector multiplet across the interface.

2.2. D5-brane interface defect and its S-dual

We now focus on the interface interpolating between the U(N) and U (N + k) SYMs engi-
neered by a single D5 brane with N D3-branes on the left and N + k D3 branes on the right (see
Fig. 1a).’

According to the general discussion in Section 2.1, this corresponds by the (un)folding trick
to the symmetry breaking BPS boundary condition of the U(N) x U(N + k) SYM

U(N) x U(N +k) D U(N)diag 2.17)

specified by NS5-type boundary condition (2.14) for the components of the SYM fields in
U(N)diag and D5-type boundary condition (2.9) for the orthogonal complements. Consequently
we have near the interface x; = 0, the following relations between the U (N + k) fields AL and
the U(N) fields A,

_ R o . ;(_
ai= (%) () X+:( ) @18
* % * 0k * =t

3 We emphasize that unlike in the case without interface defects, here the U (1) part of the U(N) SYM does not
decouple.
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(a) D5-brane interface (b) NS5-brane interface

Fig. 1. Half-BPS interfaces between U(N) and U(N + k) SYMs engineered by a single D5- or NS5-brane, related
by S-duality. Here N =3 and k =2 in the figures above. The horizontal direction is x1. The solid black lines denote
D3-branes in the 1234 directions. The red dotted vertical line denotes a D5-brane extending in the 234890 directions.
The blue circled cross labels an NS5-brane extending in the 234567 directions. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

Here the * labels the components of AJAC, that are unconstrained (regular) at the interface. Note
that due to the Nahm equation in (2.9), the bottom k x k block of X is given by a triplet 7 with

tgz—%Diag[k—1,k—3,...,1—k]. (2.19)
The S-dual of the DS brane interface in the N =4 SYM with complexified gauge coupling
T= % + % is easy to infer from the IIB brane setup. By an S-duality transformation of the IIB

string Z{heory, the D5 brane interface maps to an NS5 brane interface in Fig. 1b. The resulting 4d
theory on the D3-branes consists of two individual 4d SYMs with U(N + k) and U(N) gauge
groups and Neumann boundary conditions, coupled together by a bifundamental hypermultiplet
localized at the interface. The SYM gauge couplings are now at the S-dual value v/ = —%. By
performing a further S-duality transformation on each of the two SYM factors, the U(N) SYM
with coupling 7’ and Neumann boundary condition maps to the U(N) SYM at original gauge
coupling t coupled to a three-dimensional A = 4 SCFT known as the T[SU (N)] theory, sim-
ilarly for the U(N + k) factor where S-duality introduces the coupling to the T[SU (N + k)]
SCFT (see Fig. 2 for the quiver description of these 3d theories). In general the 3d T[G] SCFT
has global symmetries G x GY where GV denotes the Langlands dual of the 4d gauge group.
Here the global symmetries of the T[SU(N)] and T[SU (N + k)] theories are gauged by the
SU(N) and SU (N + k) vector multiplets in the bulk, as well as on the interface along with the
bifundamental hypermultiplet.

Note that T[SU(N)] coupled to the U(N) x U(N + k) bifundamental multiplet defines the
Tik1,..qSU(N + k)] SCFT with SU(N) x SU(N + k) global symmetry. This belongs to a
generalization of the T[G] SCFT by two homomorphisms p and o from su(2) to g, labelled
as T7[G]. When either p or o is the trivial homomorphism, we drop the corresponding sub- or
super-script. In particular the T[G] theory corresponds to trivial p and o. The T7[G] SCFT is
engineered by considering 4dd N =4 G SYM on a segment (suppressing the non-compact R3)
with Nahm pole boundary condition for X labelled by p at one end, and Nahm pole boundary
condition for ¥ labelled by o at the other end, together with an S-duality wall in the middle [21].
By gluing with the 4d G SYM on a half-space with suitable boundary conditions, the coupling
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TISU(N)] N @@
Tl SUN + k)] N+k...@@
potene (O —( DO =)

Fig. 2. The ultraviolet linear quiver descriptions for the 3d N' =4 SCFTs T[SU(N)] and T[SU (N + k)], as well as (the
mirror dual for) the D5-brane interface theory. Each numbered circle node denotes a 3d A/ = 4 vector multiplet for the

correspondence unitary gauge group, and each segment denotes a bifundamental hypermultiplet. The boxed nodes are
not gauged and carry the Higgs branch flavor symmetries of the corresponding SCFTs.

to T/f [G] SCFT induces the S-dual boundary condition for the 4d SYM.* For this reason, the
T;’ [G] SCFT is sometimes referred to as the S-duality transformation kernel. Back to the case
we are interested in here, which is due to a single nontrivial Nahm pole p = [k, 1, 1, ..., 1]. The
relevant 3d defect theory is given by Tix,1,1,...1][SU (N + k)] (see Fig. 2).

.....

2.3. Identifying the defect-Yang-Mills sector

The D5 brane interface preserves the half-BPS algebra osp(4]4). As explained in [1], this sub-
algebra contains the 4d supercharge Q of [24] which squares to a combination of the transverse
rotation M to an two-sphere

3
Sy xa=0, > xP=1, (2.20)

i=1

and the R-symmetry generator Rsq inside 50(6)g.” Furthermore, after mapping the setup to $* by
the stereographic projection, one can carry out the Q-localization of the 4d SYM with a general
half-BPS interface defect. The dynamics of general defect observables in the Q cohomology is
determined by an effective 2d defect-Yang-Mills (dYM) theory on the S%M, which is described
by the constrained 2d Yang-Mills [24] coupled to certain topological quantum mechanics (TQM)
[25] on the equator

3
Stom: x4 =0, x1=0, Y x7=1. 2.21)
i=2

The dYM gives an efficient way to determine defect observables in the Q-cohomology by stan-
dard two-dimensional gauge theory techniques, which oftentimes reduce to computations in

(multi)matrix models.
The details of the dYM will depend on the specific interface. This is especially subtle when
the defect introduces singularities for the SYM fields, such as the Nahm pole for the D5-brane
interface. Here we will circumvent this by two ways to determine the dYM, namely the S-duality

4 See [46] for recent work on the factorization and gluing of supersymmetric partition functions.
5 We follow the convention of [1] for the generators of the superconformal algebra psu(2, 2|4). In particular the s0(6) g
symmetry is generated by R;; with I, J =5,6,...,9,0.
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of the SYM and the mirror dual of the interface (boundary condition). As explained in [21], the
two are closely related which we review below.

Let’s first consider the S-dual configuration in Fig. 1b involving an NS5-brane interface, de-
scribed by two individual SYMs on half-spaces with Neumann boundary conditions and gauge
groups U(N) and U (N + k). The two SYM factors are coupled together just by a bifundamental
hypermultiplet of U(N) x U (N + k) localized at the interface. The invariance of the bulk SYM
under S-duality transformations ensures that the correlation function of defect observables in
the SYM with D5-brane interface is equivalent to that with an NS5-brane interface. A particular
class of observables in the Q-cohomology of the SYM are %—BPS operators on the S%QM [47]

Oj(x;) =tr(x1 P7 + x,D9 +x3d>o+id>g)1. (2.22)

Since these operators (individually half-BPS) are invariant under S-duality [48], their correlators
in the presence of D5- or NS5-brane interface are simply related by

(O 0s)hs = (O, -+ O, Vs » (2.23)

where T/ = —%.

In a later section, we will derive a matrix model for the one point function of the D5-brane in-
terface (O;)ps. For this purpose, it’s convenient to use the S-dual NS5-brane description, which
leads to a simple dYM description which we now present.

Following the general discussion in [1], the Q-cohomology is parametrized by emergent 2d
YM gauge fields A" and A on the two hemispheres H Si with gauge group U(N + k) and
U (N) respectively, as well as the (twisted combination of) hypermultiplet scalars (Q, Q) in the
bifundamental representation of U (N) x U (N + k). The partition function of the dYM is

ZdYM=/DA|HSEDA’|H51DQDQ|S%QMstM(A)*SYM(A/)fsTQM(A’A/’Q*Q).

(2.24)
Stm
Here the YM action Sym(A) is
1 87
SyMA) =——— [ dVetGF)?, ghy=———,
g%{MHS2 g2R? (2.25)

with the field strength F = dA + A A A and similarly for Sym(A') on HS2. The TQM is
described by

Ston =2 [ do 07D} 01 (2.26)

wherei, j=1,...,Nandm,n=1,..., N +k are indices for U (N) and U (N + k) fundamental
representations respectively. The gauge covariant derivative is

(DA, =ds'sn + 85 Alj+ 854" (2.27)

Integrating out the 2d/1d fields in (2.24) as described in [1], we obtain a (two-)matrix model
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2 2
A A@e 3 254 A@)A(@)e & Tt e
Zps = [ [dallda]
N! (N + k)!
U(N) SYM Neumann b.c.  {/(N+k) SYM Neumann b.c. (28)

1
X 9
I—[fvzl I—[f:/:lk 2 cosh(m (a; + o))

U(N)xU (N+k) bifundamental hyper

with measure

N N+k
[da] = (]‘[ daj> . [da]l= (]_[ da,,) ) (2.29)
n=1 n=1

Here A(-) denotes the usual Vandermonde determinant

AR =]]G -z, (2.30)

i<j

while A(-) denotes the one-loop determinant for 3d N = 4 vector multiplets

A(z)zHZsinhn(zi —-2zj). 2.31)
i<j
In writing (2.28), we have made manifest its factorized form, from gluing U (N) and U (N + M)
SYMs with Neumann boundary conditions and coupled together by the bifundamental hyper-
multiplet. Finally, the one point function of the %—BPS operator Oy on the hemispheres H Si
simply amounts to an insertion of Zflv:lk (an)? or ZINZI (a;)” respectively in (2.28) [1].°
In a sense, the dYM presented above from the NS5-brane interface is S-dual to the would-be
dYM that directly descends from the D5-brane description which we do not pursue here directly
due to the singular Nahm pole boundary condition. However it is known that such superconfor-
mal boundary condition has an ultraviolet (UV) description by certain N = 4 supersymmetric
linear quiver gauge theories [21]. This UV Lagrangian is mirror dual to the original interface
theory (boundary condition) since it couples to the bulk A/ = 4 vector multiplets via the 3d mo-
ment map operators on the Coulomb branch, as opposed to the Higgs branch. There is a standard
procedure to identify the mirror dual Lagrangian as explained in [21]. This follows from first
isolating the interface degrees of freedom and bulk-interface couplings by introducing D5 branes
that impose Dirichlet boundary conditions on the 4d vector multiplets away from the interface,
and then implementing the IIB S-duality on this configuration. As reviewed in Fig. 3, carrying
out this procedure, the D5-brane interface between U(N) and U (N + k) SYMs here has a UV
Lagrangian description given by the bottom quiver in Fig. 2. Following [1], one can then localize
the coupled system with this Lagrangian interface theory and obtain a dYM similar to that in
(2.24). The main differences are that the 2d Yang-Mills coupling becomes
2

_2g2 - (2.32)
T

2
8&ym =

6 Asin the case without the interface, the correlation functions of the local operators O are topological [49] and thus
independent of the location of the insertions on the S%M as long as it doesn’t cross the interface at S’}“QM [1].
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—R=RH X EXEXER=R—

(a) Decouple 4d vector multiplets (b) S-dual brane configuration

Fig. 3. The standard procedure to identify the mirror dual for the D5-brane interface. In the left figure, we ungauge the
4d vector multiplets by attaching the individual D3 branes to D5 branes, implementing Dirichlet boundary conditions.
By performing an S-duality transformation, we obtain the brane configuration in the right figure, which gives the mirror
dual quiver description of the D5-brane interface.

and the TQM is now an interacting theory descending from the D5-interface quiver in Fig. 2. We
will not need the explicit form of this dYM description in this paper but we point out that it leads
to a different form of the integrand for the matrix model than in (2.28), though the integrals agree
as expected (see also the next section for explicit formulae).’

2.4. Simplified single-matrix model for D5-brane interface and Nahm pole

In this section we simplify the matrix model (2.28) by explicitly integrating out the U (N + k)
degrees of freedom. The final result is

N 1k 2j—k—1 2
_Cni /[da]A(a)2 [T [ 1= (@i — IJT)e—Sg—% YiLia;

Zps = . : (2.33)
N! ]_[?;1 2coshm(aj + %’)
with
N2+ (N+k)2
47_[ 2 4% k(k712)4(k+1)
Cni=|— et )V G +h), (225

84

where G (z) is the Barnes G-function.

There are several ways to derive (2.33), relying on a generalized Cauchy determinant formula
and repeated Fourier transformations. We present one derivation below which makes clear the
connections to the descriptions of the D5-brane interface by S-duality and mirror symmetry as
explained in the previous section.

7 We also emphasize that the D5-interface quiver here is of the bad type according to the good-bad-ugly classification
in [21]. This means as a stand-alone 3d AN = 4 theory, it is obscure from the quiver what the correct IR description
should be (e.g. there are monopole operators that violate the putative unitarity bound, spontaneous symmetry breaking
etc.). Nevertheless as we will see in the next section, this bad quiver suffices in describing the D5-brane interface defect,
at least at the level of the $3 partition function (which contributes to the interface matrix model).
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We start by rewriting (2.28) using the S-duality kernel Z7ISU@Ml(4, 4"y which acts on the
wavefunction of the U(N) SYM on HS* with Dirichlet boundary condition (after dropping an
unimportant phase factor compared to [1])

2
—“gL% YiLia? Aa)

SYM 2
Zpi (a,gy)=e AQ)’

(2.35)

as

2
1 MA2(,7TISUM] ./ SYM,,/ 2 gﬁ B SYM 167° (2.36)
Il [da'lA“(a)Z (a,a)Zpi " (a', g5) = o oy a—5 |- :
! 84
More explicitly, the S-duality kernel for the U (N) SYM corresponds to the partition function of
the 3d T[SU(N)] SCFT [50,51]

Y pesy (=1l X mocies
N(N=1) ’
i~z A(m)A(e)
where m; and e; are the mass parameters (FI parameters) for the SU(N) x PSU(N) global
symmetries respectively.® Similarly the partition function ZTISUN+0(¢ o) for the T[SU (N +
k)] SCFT defines the S-duality kernel for the U (N + k) SYM.
Consequently the SYM partition function with D5-brane interface (2.28) becomes’

ZT[SU(N)](m,‘, ej) = (2.37)

2
N2+ (N+k)2 —anl N a2
4\ 2 L A@PA@)PA@2A@)? Ad)e G
Zps=|—7 [dallda][da’l[do'] . >
84 (NDZ((N + k) A(a)
3d vector multiplet U(N) SYM Dirichlet b.c.
i T e
1 A(a)e %4
ZTUMN (g, 0"y — - : ZTISUN+0] (g o)
[Tz [T,2; 2cosh( (a/+c},)) Aw)
U(N)xU (N+k) bifundamental hyper U(N+k) SYM Dirichlet b.c.

(2.38)

From the quiver descriptions of the 3d A/ = 4 theories in Fig. 2, we note the following rela-
tion between their S3 partition functions. The T 1,...11[SU (N + k)] theory can be obtained
from gauging the U (N) symmetry of T[SU(N)] and N + k fundamental U (N) hypermulti-
plets,m

ZT[SU(N)]((LQ/)
]_[fv:1 ]_[,11\/:1/‘ 2cosh(m (a; + o)) ’

The mirror quiver of the D5-brane interface theory is obtained from gauging the diagonal
SU(N + k) symmetry of Tjx 1, .1][SU(N + k)] and T[SU (N + k)],

1
ZTet SVAHON g, ) = / [da'|A () (2.39)

.....

8 The mass parameters are subjected to the constraints Y ; m; = ; ¢; =0.

9 1In this section, we use a, a’ and o, @’ to denote eigenvalues of hermitian matrices of rank N and N + k respectively.
10" The global symmetry of the Tjx 1. 1][SU (N +k)] theory is U(N) x SU (N +k). Consequently, the partition function
ZT["»1,-««’1][SU(N+k)](a, «) depends on the overall shifts of a;, unlike in the case of T[SU (N)].
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1
K(“’“)=m / [da'1A(a)? Z 1 iISUNFR (g o1y 7 TISUNTOY (') (2.40)

Therefore, the matrix model in (2.38) can be rewritten as

Zps / [dallda]A(a)*A@)? Zpir(a, §3) K (a, @) Zpir(a, g3) (2.41)

" N!(N +4)!
in accordance with the second dYM description given in the last section, where the D5-brane
interface (before S-duality) is described by coupling to a 3d A/ = 4 quiver theory in the UV with

partition function K (a, o). Below we will derive an explicit form for K (a, @) which leads to
(2.33).

2.4.1. Partition function of Tjx 1,...1][SU (N + k)]
We start by evaluating the partition function for Tjx 1,....1)[SU (N + k)]. From (2.39), we have

. NV=1)
_ y .
ZT[k'lWl][SU(N_Fk)] y :L d / —1)° 2n12j:1%(j)aj
(a, o) N1A@) [a]XS:( Ve
. (2.42)
A(a)
X b
HzN Hyllvilk ZCOSh(j-[(al{ +ap))

where we do not impose ) ;a; =0 or ), a; =0 in the integrand.!! The SCFT has U(N) x
SU(N + k) global symmetry with mass parameters given by a; and oy,

Recall the generalized Cauchy determinant formula in [52] (without constraints on a and
o)

N(N—=1)

(=) T kL A ) A () A )
]_[{Vzl ]_[fqvjlk 2cosh(m(a; + o))

(2.43)
ON.n 2 1_
—det ; 7T (N+k+3 n)ocme ’
) <2cosh(n<an+am)>+e )
where
1 >n,
@ME! m=n (2.44)
0 n<m.

This allows us to simplify (2.42)

I The T[SU(N)] sector only couples to the traceless part of a’, which can be achieved (without the constraint ) ; al( =
0) by shifting a; — alf - ag\, which does not modify the T[SU (N)] partition function as long as ) ; a; = 0. Meanwhile

: N
the trace part of @’ couples nontrivially to the hypermultiplets and allows for an FI term TN X1 9 i the partition
function (2.42), which is equivalent to further relaxing the constraint ) ; a; = 0.
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ZT[k,l,m,l][SU(N'i‘k)](a o)

;D /
S — VAP —mk Y qf (=Dlole iy )
" NA@A(@) U§N
% Z (— I)PNIi_[k< ON.m +e2ﬂ(N+k+%—Wl)Olp(m)9 N 1>
Nl 2cosh 7 (apm) + al,) )
N(N 1
" NA@A(@)

N+k

x Y (=pll- 1)‘/"1’[ [ @rovkstmem

oeSy peESN+k 2COSh7t(ap(J) + a”(])) m=N+1

(2.45)

where in the second equality, we have made a change of variables a; — a,-1(;) and then sent
o — o~ ! in the sum over Sy permutations.
Next we use the Fourier transformation

1 2wixy
— = [ dx—— 2.46
coshmy / * coshmx ( )
—00

for each cosh factors in (2.45) to obtain

ZT[k,l.,,.,l][SU(NJrk)](a )
N'A( )A(a) ZCoshnx,
N+k

x Z Z (—Dlel(=1)lele 2mi Y5 xj @)+l ) 1—[ 2T N+k+ 3 —m)apa)

oeSN peESN+k m=N+1 (247)

N(N 1

/ ]/ kI a] 2mi YL djaj
A(a)A(a) 2cosh7txl
N+k

x Z (— 1)\/7\ 27”2, 1Xj(@p(jy+al) 1_[ e2ﬂ(N+k+2 M)ap(m)

PESN+k m=N+1

after a change of variables x; — x, () and redefining the Sy permutation as p — p - o in the
second equality. The final step is to integrate out the U (N) variables a’, leading to delta functions

ki
H(S(aj+3l+xj), (2.48)
j=1

and doing the x; integrals gives'”

12 The §3 partition function for general T;)’ [G] theories was conjectured and proven for the case G = SU(N) and
o =[1,...,1]in [51] by induction.
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ZT[k,l.“.,l][SU(N‘i‘k)](a )
 NNV-1) n YNk eN+k+1-2m)a 22 Y aja,
i 2 ZpESN+k(_1)|p|e LN+ pm) o271 D1 4j%p(j) (2.49)

A@A@) [T}, 2coshr(a; + 5i)

2.4.2. Partition function of D5-brane interface quiver theory

Let us now study the partition function of the D5-brane interface quiver theory using (2.40).
Plugging in the partition function (2.49) for the Tt 1,. . 1[SU(N + k)] and (2.37) for the
T[SU(N + k)] theories, we have

,,,,,

NWN-1) (N (N+k—1)
i~z (=i 2

= — [ [da']
(N+mmmmmuﬁ;2mmm@+%y/
Z (=D \,0\627” Z{Z:]f “;)(m)“m
PESN+k

—27i SN aied . g NFEE  ONtk+1-2n))
Z (_l)lale Z/-] J a(j) e Zn—N+1 (7(/1),

K(a,a)

OESN+k
. k(k=D)+2Nk
e —

(—i
= N ki [do]
A(a)A(x) ]_[j:1 2coshm(a; + %)
o2 Z,’:f;rll‘a,’nam Z (_1)|o|e—2nizy:1aja(;(j)eﬂ Z,}:];/I\;+1(2N+k+172n)a;(n) .
0ESN 1k

(2.50)

/

p~t(m)
redefined the permutation o — p - 0. Now integrating out the U (N + k) eigenvalues «,, , we get

In the second equality above, we have made the change of variables «), — « and then

. kk=1)+2Nk ‘
K(a,o) _(_l) 2 ZOESNH((_I)G HZI] 8 (am _go(m)) (251)
, A@)A(@) [T}, 2coshr(a; +4)
where
k—1 k=3 1—k
En=(a1,a2,..an,i—— i—— i), (2.52)

Note that the presence of the delta functions in (2.51) is a feature of the bad quiver which is
essential here to provide the expected continuity condition (2.18) for the u(N) components of
the SYM fields.

Plugging the expression (2.51) for K (a, ) into (2.41) together with the hemisphere wave-
functions of the U (N) and U (N + k) SYMs with Dirichlet boundary conditions, and integrating
out the delta functions, would give the single matrix model in (2.33) for the D5-brane interface.
Below we do it in two steps.



S. Komatsu, Y. Wang / Nuclear Physics B 958 (2020) 115120 17

2.4.3. Hemisphere matrix model with Nahm pole boundary condition

As a by-product and also an intermediate step, we can determine the hemisphere wavefunc-
tion of the U (N + k) SYM with the Nahm pole boundary condition labelled by p = [k, 1, ..., 1].
The IR superconformal boundary condition arises from coupling the SYM on half-space (hemi-
sphere) to the mirror quiver theory (last one in Fig. 2) in the UV. The supersymmetric wavefunc-
tion for the Nahm pole is then given by the following matrix model,

ZNahm(@, g3) = / [da]A (@)K (a, @) Zpir(a, g3)

(N —l—k)'
:2n—k—1
=(—i)Vk A@ [T et @) = i 2= [T cp (2 = m) (2.53)
Aa) ]_[N_l 2coshm(aj + %),
_4x2 N 2 4x? k=D EED
2 i=1% 7 24
Xe % e s
This gives
(a)]_[ 11_[ 1(“1_12n = ]) wa?
ZNahm (@, gi) ZC;V,k i= = = 5 (2.54)
A(a )]_[/ 12coshm(a; + %)
with
7 2k(k=1)(k+1)
C;V,k —e 6g§ (_l)NkG(l +k) . (255)

Next the D5-brane interface matrix model is related to (2.54) by gluing with the hemisphere
wavefunction of U(N) SYM with Dirichlet boundary condition

N2+ (N+k)2

4 T
Zps = <_72t> ,/[da]A(a) Zpir(a, g4)ZNahm(a 34) (2.56)
84 N

N2+(N+k)2

which gives (2.33) with Cy x = (47/g3)  *  Clyye
3. Defect one-point function from the D5-brane matrix model

In this section, using the D5-brane interface matrix model (2.33), we compute the one-point
function (Oy)p of the half-BPS operators O; (2.22) inserted at the north pole x,, = (1,0, 0, 0)
on S* with the D5-brane interface defect D along the equator 3 at x; = 0. Since we plan to
compare the field theory results with IIB string theory and integrability methods, we work with
the planar large N limit where the usual ’t Hooft coupling A = ng is held fixed.

The k = 0 case of the D5-brane interface is particularly simple due to the absence of a Nahm
pole in (2.18). The 4d/3d system is simply described by A" =4 U(N) SYM coupled to a 3d
hypermultiplet in the fundamental representation at x; = 0. The corresponding matrix model is
simply "’

13 This matrix model first appeared in [53].
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2 N
/[d | A@7 A(a) . @z,ﬂa}, G.1)

/_1 2coshma;

where we have dropped overall constants in (2.33) which are irrelevant for computing the one-
point functions (O;)p. In [1] the one-point function (O;)p was computed using the above
matrix model in the strong coupling limit to the first nontrivial order in the % expansion for the
k = 0 D5-brane interface defect. The results are in perfect agreement with a probe brane analysis
in IIB string theory on AdSs x S° [54,55], providing a precision test of AdS/CFT in the pres-
ence of interface defects. Here we greatly extend the prior analysis to obtain the planar (O;)p
with exact A dependence for both k =0 and £ > 0. As we will explain, our exact expressions
bridge known weak coupling results from integrability methods and strong coupling answers
from consideration of probe branes in IIB string theory on AdSs x S°.

3.1. The D5-brane interface at k =0

For simplicity of the presentation, below we will first consider the case k = 0 and then gener-
alize to k > 0.

3.1.1. Inserting bulk BPS operators

As explained in Section 2.3, from the defect-Yang-Mills description [1], the defect one-
point function of O; inserted at the north pole of §* is computed by an insertion of the form
ZzN=1 f7(a;) in the matrix model (3.1), where f; is a degree J polynomial in g; that takes into
account potential mixing between the operator O and its lower dimensional cousins on $*. The
eigenvalue integral that we analyze is then given by'*

_(DOy)sym A(a) _s2N 5 2
(©np= (D)sym Z/ l_[da, ]_[ 2coshma; ;fj(a’ ¢’ ’

3.2)

where the expectation value of the interface defect (D)sypm is computed by taking the ratio of Z
and the partition function of SYM without the interface insertion.

As explained in [1,54], the residual 50(3)567 X 50(3)g90 R-symmetry of the half-BPS interface
defect implies that the one-point function (O;)p is only nonzero for even J. This can also be
seen readily from the above matrix model.

A convenient choice of the function fj(a;) is determined by diagonalizing the two-point
function of the operators O using the Gram-Schmidt procedure. As shown in the paper [65],
the result reads

fra)=g |:2TJ (2 >+5J 2] (3.3)
8

14" One can arrive at the same matrix model by doing a different localization computation using the supercharge of [13]
in the N/ = 2 subalgebra 0sp(4|2) of the N'= 4 SYM, taking into account the interface (boundary) defect [56-60] as
well as local operator insertion at the north pole [61,62]. There are two lessons here. One is that the agreement between
the two localization computations is a consequence of the underlying A/ = 4 superconformal symmetry of the theory.
The other is that the matrix model computation we do here has a direct generalization for theories with only N =2
supersymmetry. It would be interesting to explore this further as an extension of extremal correlators in N =2 SCFTs
[63,64] that incorporates interface and boundary defects.
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where g is defined by >

A
g= 4£ , (3.4)
4

and 7, is the Chebyshev polynomial. Note that these single-trace operators are not canonically
normalized. Namely their two-point functions are given by

(0;0))sym=J(2)* . (3.5)
The canonically normalized operators O'}°"™ are defined by
l'l
Onorm (3.6)
22 gj \/_

where the factor i/ is purely a convention we chose to match the result with the results in pertur-
bation theory. After the normalization the two-point function reads

(OO ™5y =2 3.7)

Here 27 should be understood as coming from the R-symmetry polarization vectors (Y - Y)”.
To compute the correlator (3.2), it is simpler to exponentiate the piece describing the local
operator and consider the following matrix model

A(a) N N N
= 22 2.4 N D - 3.8
" /[ MY, 2cosha; xp[ 2g? ;a’ &7 ;fl(a )i| (3.8)

The logarithmic derivative of this partition function gives the normalized ratio

1
(Os)p === g, log 2| (3.9)

gs=0"

3.1.2. Equations for resolvent
We will solve the matrix model (3.8) in the planar large N limit using standard techniques
[66,67]. For this purpose, we introduce a normalized density of eigenvalues

N
p(a—a»z%Zm—a», (3.10)

i=1
and express the integral as

N
dai
Z, = o —N2S, , 3.11
=/ (Ezcoshm)exp[ Selp ] .1

with

1 1
Seulp) = 55 [ dap@a +51 [ dap(@ f@) =5 f dadbp(@p®)logta — by
(3.12)

15 This is the standard notation in the integrability literature, although it is confusing at times.



20 S. Komatsu, Y. Wang / Nuclear Physics B 958 (2020) 115120

Here the last term should be interpreted as the principal value integral. Taking the variation with
respect to p(a) and further taking d,, we get the saddle point equation

%+g1f}(a)=2][dbLb)b (3.13)

Here again, the integral is interpreted as the principal value integral. Namely we have

][ PP _ L[y om) ! ! (3.14)
b 2/ P [a—b+ie+a—b—ie]' ‘

To proceed, we introduce the resolvent

N

1 1 p(b)
R(a) = — = [ db , 3.15
@) N;a—ai / a—>b ( )
which satisfies for e — 0t
1
———[R(a+ie) — R(a—ie)]=pla). (3.16)
2mi

Using (3.16), we can rewrite (3.13) as
a
R(a~|—i6)+R(a—i6)=?—ngf}(a). (3.17)

In addition to this equation, we also need to impose the normalization condition f p(a)da =
1. This is equivalent to imposing that R(a) decays as 1/a at infinity. Thus, to summarize, the
equations we need to solve are

R(a+ie)+R(a—ie)=%+g1f}, (3.18)

R(a)~l a— 00, (3.19)
a

3.1.3. Solving the matrix model

Since we are interested in a small deformation of the Gaussian matrix model by g, we can
assume that the eigenvalue in the large N limit condenses into a single cut [_, (4 ].

Now, consider the following integral

\/(u — ) —po) R@w) (3.20)
2m

W—p)W—p)u—v’

where the contour C encircles the branch cut [ _, 14 ] and u is outside the contour. By deforming
the contour and sending it to infinity, we pick up the contribution from a pole at u = v and get

I=Ru). (3.21

Note that the contribution from infinity can be neglected owing to the asymptotic behavior of
R(u) (3.19). On the other hand, using (3.18), we can evaluate [ alternatively as



S. Komatsu, Y. Wang / Nuclear Physics B 958 (2020) 115120 21

w—p)w—p )R(v+16)+R(v—l€)
27” v—pu)(v—p-) u—v

p,_fze

l‘«+ i€ = )t — i) g%—i—gjf}(v)
i\ W —p)w—p)  u—v

(3.22)

9
pL_flE

which can be converted back to the contour integral

1_55 \/(u—w)(u—u)g%”ff}(”). (3.23)
i\ (v —pp)(v—p-) u—=v

Equating the two expressions, we obtain an integral representation of R(u),

_ _ e AN
R(u)_yg \/(u ) —po) g7+ 80 /5@ .
ari\ WD —po)  u—v

This is just a standard solution for the Riemann-Hilbert problem (3.18).

Gaussian matrix model Now the remaining task is to determine the position of the branch
points w1 . Let us first review how this can be achieved for the Gaussian matrix model, namely
for g; =0 [66,67]. In this case, owing to the parity symmetry of the potential, we can assume
U4 = —p— = u. We then have

RGauss(”)Z 47[“/ _“ o (3.25)

The right hand side can be evaluated simply by deforming the contour to infinity. As a result we
get

1
Ru)=-— | u_—ut—p?|, (3.26)
——
2g v=u V=00

where, as indicated, the first term comes from the pole at v = u while the second term comes
from the pole at infinity. To determine £, we then impose the condition (3.19) on the asymptotic
behavior R(u) ~ 1/u. We thus find u =2g, and

1 1
R = 2g2 (“ v _4g2> T gx) 327

Here x (u) is the Zhukovsky variable, which is commonly used in the literature on integrability.
Its definition is given by

2 _ 2
= <x(u) n L) e x(uy=tEYH 48T (3.28)
(u) 2g
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Infinitesimal deformation We now consider infinitesimal deformation of the eigenvalue poten-
tial in the matrix model

Vi) =5 — -+gf), (3.29)
g g

with g; < 1. Differentiating the equation (3.24) with respect to g;, we get

aR(u) 7§ (—p)w—p) f7() (3.30)
i\ W—pp)w—pu_)u—v .

vdv \/(u—u+)(u—u—)[ doss g }
8m —pP)W—p) [—p)Uu—py)  W—p)u—p_)]|

Since we are interested in a small deformation away from the Gaussian point, we can set p4 =
—u— =2g in the formula and get

¢ 4g2 f](v)
g7=0 4mi —4g2u—v
vdv —4g2 |: g, MUt N g, M— i|
8771 —4g2 [(v—29)(u—2¢) (v+20)u+2g ]

(3.31)

R (u)
gy

To compute these integrals, we express them using the Zhukovsky variables
x=xu), y=x(v). (3.32)

Note that fj(v) takes the following simple form in terms of y as

1 1
f1w) =g’ 2T;(v/2¢) +8,2) =g’ |:2TJ (#) + 81,2] =g’ |:yj + 7 +51‘2:| ;

(3.33)
where we have used the identity 7 (cos6) = cos J@, and dv can be rewritten as
d 1
dv=dyZ —ayg(1- =) . (3.34)
dy y?
As aresult, we get
71 e ) + 1z Ly + =1y J :even
IR (u) x—x- x—19gs M+ T x31 %8s M- :
= e 1 —J) .
gy gs=0 %4—4; [X+18gju++x+13gju ] J :odd
(3.35)

To determine 0,1+, we impose the condition R(u) ~ 1/u. This translates to the following
condition on dg, R(u):

RWI oam?)  u— . (3.36)
9871 lg,=0

‘We then obtain
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Jieven g, pq=—dg,u_=—g' 7, 337)
J odd 8g1M+=8gJu_=—gj+IJ. '
Putting the above together, the derivative of the resolvent is given by
dR =y
L -, (3.38)
agy 27=0 x) x—x

both for even and odd J.

3.1.4. Computation of defect one-point functions
Let us now compute the one-point function in the presence of the interface defect using the
formula (3.9). In the large N limit, the modified partition function Z; is given by

Z;~ e—NZSeff[p]e—Nf %R(u)log(Zcoshnu) , (3.39)

where p(u) and R(u) are saddle point values of the density and the resolvent respectively. By
taking the logarithmic derivative, we get

1 d Setf % du
——0g,logZ; =N——+ P ——0dg, R(u)log(2coshmu). 3.40
0o 108 20 = N2+ (b 2 Ry log( ) (3.40)
Among the two terms on the right hand side, the first term can be decomposed into two contribu-
tions, one coming from the explicit g; dependence of the action and the other coming from the
variation of p, g, p:

dSeft _ 0Seft n 0p 8 Sefr

dg;  9g; 98 dp

——
=0

(3.41)

As indicated, the second contribution vanishes owing to the equation of motion. It turns out that
the first term also vanishes precisely because of our choice of f;:

0 Seff
a8y

du
=-— 5]5 ER(M)JCJ(M) ,
8s=0 (3.42)

%—dx LI B AT 0
= — - .x == .
it x2 gxg Xl T2

In the second line, we expressed the integral in terms of the Zhukovsky variable using the con-
version formula (3.34) and the integration contour is along the unit circle. Therefore, we only
need to compute the second term in (3.40). The result reads

_ du 1 log(2coshmu)
O =—g’ 1]%——7,
(©Onp=-¢ 2ri x! x —x—1

=— JJ5£d4xlo 2coshmw x—}-l
-8 il 08 8 x)]

The residue is clearly zero for J odd thus (O;)p is nonzero only for J even as explained in the
beginning of the section.

(3.43)
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Final result The structure constant of the defect CFT can be computed from (3.43) by dividing
by the square root of the two-point function of the operator O (3.5). The result reads'®

= (Oh™)p = 21/2 \/_75 7 log [2 coshmg (x + 1>i| (3.44)

An alternative expression can be obtained by performing integration by parts and changing the
integration variable x — 1/x:

I I
cs= 21&{ yg 538 ( x2> x” tanh [ng (x + ;)} : (3.45)

We can also compute the expectation value of the interface defect at large N. The result reads

log(D)sym = —— yg log [ZCoshyrg (x + l)} . (3.46)
X

2mix

3.1.5. Weak coupling expansion
The expansion at weak coupling can be obtained straightforwardly by expanding the integral
(3.44). The result for even J reads
s Byl —1
Cemy p B2 (3.47)
©(J+ VT

where Bj is the Bernoulli number.

3.1.6. Strong coupling expansion
To compute the result at strong coupling, we rewrite the integral (for even J) as

/2
= 2—iJ VT [ 9O 00 100 12 coshi2 .
CI="250n ¢ og[2cosh(2rgcosh)] ,
—m/2
n/ (3.48)
i
- _2211/2 / _e_lje (27Tg cosf + log [1 4 e—4ﬂgcose])
—/2

Since the second term in the parenthesis is exponentially suppressed,'’ we simply need to eval-
uate the first term,

_ 4g(-1)/VI
ey~ — 21/271g\/—/ 0 cosh = = ——— (3.49)
27(J2—1)

This is in agreement with the finding in [1].
16 One can in principle expand the logarithm in (3.44) and evaluate the integral term by term. This would lead to an

infinite sum representation of (3.44). However we did not find it particularly useful for the purpose of this paper.
17 Note that cos6 > 0 in the integration range of the integral.
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3.2. Generalization to D5-brane interface at k > 0

The matrix model computation for the k > 0 interface is a straightforward generalization of
what we have done in the previous section. We start with the relevant matrix integrals for k > 0
from (2.33) with the insertion O, on the north pole, dropping (common) unimportant overall
coefficients,

~

—1

0O, = [idal Atay S fap+ Y 1)
= . j l'
" Hj-v:lZcoshn(aj+k71) j=1 Y s=— ksl !
x ]_[ ]_[(a.,—is)efg”fN YL (3.50)
_ k=1 n

S=—=

o]

2 2z N N
D)k =/[da]1_[ =) = l_[ H (aj — is)eignkzN g (3.51)
k j=

N
j=12coshm (aj"'i)x: =

Here we have denoted in red the modifications of the matrix model compared to the k = 0 case.
Note that if the local operator Oy is inserted at the south pole, the only difference would be
dropping the red term in the square bracket above.

In the presence of these extra factors, the logarithmic derivative of the k > 0 interface partition
function receives the following extra contributions

(DOJ)k
O)\p, =
‘O =",
du . . 3.52
= (O0)Dlmodified — Z ¢%8g1R(u)log (u—is)+ Z fr@s) . ( )
s -
=extral =extra2

Here the first term on the RHS comes from modifying the result for k = 0 by taking into account
the shift in coshra; — cosh (7a; + %) in the matrix model (2.33),

dx 1 1\ ki
<o,>D|modiﬁed=§1§—,g l— = ) x/wtanh|mg(x+ =)+ =7 |. (3.53)
2mi X X 2

Using the explicit form of dq, R, the first extra contribution can be evaluated as

k—1

. o
extral=g’J Z ygd_x(l 1>Ll°g[8(()€+x ) — (x5 +x; ))]’

2mi x2 ) x/ x—x—1

k—1

(3.54)

k=1
2
dx 1 1
J
= l—— ,
8 Z 2rixd ( xz) x4+ x-l— (e + 17D
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where x; = x(is). We can evaluate this integral by pushing the contour to infinity, and picking
the residues at poles at x = x;. Then we get

s
extral = —gJ Z x7. (3.55)

~
|

E
extra?2 =gJ Z [xAJ —i—xs_J +81,2] . (3.56)

s
extral + extra2 = gj Z (xsj + 8172> . (3.57)

Taking into account the normalization of the operator, we thus get the following result at large

N:
w _ i’
= (integral + sum) , (3.58)
J 2%\/7
with
. %g(l—x%)xjncoth[ng(x+%)] ke2Z +1,
integral = W : ; X (3.59)
3278 (1 — x_Z) X ntanh[ng(x—i— ;)] ke2Z,
— % J
sum= Y (xs +—5L2) . (3.60)

sm_k=t

7
3.3. Comparisons with results from perturbation theory and holography

3.3.1. Weak coupling expansions
Let us first expand the result (3.58) at weak coupling. The contribution from the integral part
integral to c(Jk) starts at O(g”), while the contribution from the sum starts at O(g~”) which

follows from the expansion

u— & 4.
x(u)=—"="4——— (3.61)
8

Let us now expand c(Jk) up to the subleading order O(g>~/) in order to compare with the per-
turbative results in [37] using Feynman diagrams at tree level and one-loop. For this purpose we
can just focus on the contribution from the sum part.
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Using the following summation identity for the Bernoulli Polynomial B,,(z)

k—1

S g2 (1=K 3.62)
IR S b I @
== 7
we obtain
2 By (A JBj_y (5% k
C;k):_ . ( 2 ) g2 ( 2 )+g281,2— ) (363)
27g1\/7 J+1 J—1 2

This beautifully matches the result in [37].18

3.3.2. Strong coupling expansions and holography

Here we consider the strong coupling limit of the defect one-point function (O;)p, where
we draw connection to computations in IIB string theory on AdSs x S° via the holographic
correspondence [16]. After taking the near horizon limit of the D3-branes, the D5-brane interface
defect that interpolates between the SU(N) and SU (N + k) SYMs maps to a probe D5-brane
wrapping an Ad Sy x S? submanifold in the bulk with k-units of worldvolume flux through the
S2 factor [32].19 The embedding of the submanifold AdSs x $2in AdSs x §° depends on the
spacetime and R-symmetry orientation of the interface defect on the boundary (here we follow
the convention in [1]). The embedding AdSs C AdSs also depends on k [32]. The one-point
function (O;)p, can be computed by standard holographic methods in the bulk which we review
below and match with limits of our exact expression (3.58) in the ’t Hooft coupling A and flux
quanta k.

Large J The strong coupling behavior of the integral part integral was already evaluated
in (3.49). Therefore, we just need to know the strong-coupling behavior of the sum part sum. In
the scaling limit k ~ /A, we can approximate the sum by an integral

2K
sum~ 2g / dzx(igz)’ (3.64)
0
where « is the ratio
wk k
=—=— (3.65)
Vaoo4g

Since each term in the integrand is monotonic in z, we can evaluate them at the edges of the
integration range when J >> 1. As a result, we get

J
sum ~ 2gi” (K+ K2+1) . (3.66)

Since J > 1, this contribution is exponentially larger than the contribution from the integral
integral given in (3.49).

18 Note that the results there are not properly normalized.
19 In the leading large N limit, the interface between the SU(N) and SU (N + k) SYMs is indistinguishable from that
between the U (N) and U (N + k) SYMs which we have studied in previous sections.
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Multiplying the prefactor in (3.58), we see that it reproduces the result computed from the
classical string worldsheet [34]

J
ViZ+1
C(Jk) Y i 2 (3.67)
V2
Finite J For finite J, we can simply perform the integral (3.64) analytically to get
4g [—K +JV1 +K2]
sum= — 14«2 . (3.68)

J2—1

It turns out that the first term cancels the integral term integral given in (3.49) and the final
answer reads

4(—1)7 V1
C(k)z(/c+ 1+K2>J ( )g[ B +K] (3.69)
! 23T (J2 -

The bulk Witten diagram computation of the one-point function c(Jk) was carried out at tree-

level in IIB supergravity in [68] by taking into account interaction vertices on the world-volume
of the probe D5-brane. The result takes the form (see also [1])

2L+ T -2
c,:Cig#/du “ _ (3.70)
2 VaJT(J) ) [(l—/cu)2+u2]1+7

with C; coming from integrating the internal part of the bulk wavefunction over the S2
2

1

Cy= E/dvsz(cose)% -

(=1’
J+1°
The integral can be performed for each integer J analytically. By computing it for various dif-

ferent values and using FindSequenceFunction in Mathematica, we found that the result
is given by

(3.71)

~

x )
/du yr
0 (l—Ku)2+u] +2

(K+ 1+;<) AN )[J+1+(J—1)(/<+\/1+:<)]
2

2]+11‘*(J

(3.72)

Combining all the factors, we get precisely (3.69).
4. Integrable bootstrap for one-point functions
In this section, we focus on the planar limit and study the defect one-point functions from

integrability. The defect one-point functions of non-BPS single-trace operators were studied at
weak coupling in [33—45]. The results for the D5-brane defect exhibit two important features:
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1. They are nonzero only when the single-trace operator corresponds to a parity-symmetric
Bethe state, |u1, —uy, ..., um, —uu), with u’s being the rapidities of the excitations on the
spin chain. ’ ’

2. The results are given by a ratio of two determinants, each of which resembles the so-called
Gaudin determinant [69-72].

As explained in section 6 of [2], these two features imply that the defect one-point functions can
be interpreted as overlaps between an integrable boundary state on the string worldsheet and a
closed string state describing the single-trace operator.

In what follows, we build on this assumption and bootstrap the integrable boundary state at
finite A by imposing a set of consistency conditions.

4.1. General strategy

On the string-theory side, the one-point function in the presence of the D5-brane defect corre-
sponds to a disk worldsheet with a closed-string vertex operator insertion. Viewed differently, it
is an overlap between a closed string state | W), which describes a single-trace operator, and the
boundary state |D), which describes the probe D5-brane in AdS:

(O)p =(D|¥). 4.1

In flat space such overlaps can be computed using the standard 2d CFT techniques. This is not
the case in Ad S5 x S° since the worldsheet theory is strongly-coupled at finite 1. A way to over-
come this problem is to use integrability. To apply integrability, we first gauge-fix the worldsheet
diffeomorphism by choosing the generalized lightcone gauge.”’ In this gauge, the spatial length
of the string is proportional to one of the R-charges of the state (which we denote by J) and
the resulting worldsheet theory is an integrable 2d theory of 8 massive bosons and 8 massive
fermions [74,75].

Assuming the boundary state |D) is an integrable boundary state,”' one can compute the
overlap (4.1) following the strategy laid out in [2,3]:

1. First we consider the overlap for an infinitely long string (D|W)|j— 0. In this limit, the
closed string state |\W) can be described as a collection of “magnon” excitations on the vac-
uum, for instance, as

W) = | X1 (u1) X2 (2) - - - Xpg (upr)) (4.2)

where A;’s are magnons and u;’s are their rapidities. Thus the right hand side of (4.1) is a
function of these rapidities in this limit.
When |D) is an integrable boundary state, the overlap in the infinite volume limit can be
decomposed into two-particle overlaps

(D] X1 (u) X2 (i) (4.3)
where u is a parity-conjugate rapidity of u (see (4.15) for the definition).
20 See [73] fora pedagogical review on the generalized lightcone gauge.

21 The integrable boundary states are defined as the boundary states which are annihilated by (infinitely many) odd-spin
conserved charges [76]. See also [77] for the analysis in integrable spin chains.
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2. Next we bootstrap the two-particle overlap by imposing a set of consistency conditions such
as the global symmetry constraints, the Watson’s equation, boundary Yang-Baxter equations,
and crossing equations. Once determined, the two-particle overlaps allow us to write down
the asymptotic overlap, which includes all the perturbative 1/J corrections.

3. To compute the overlaps at finite J which include corrections nonperturbative in J (called
the wrapping corrections), we first analyze the ground-state overlap (D|2) in the open string
channel, and write down the thermodynamic Bethe ansatz (TBA). A crucial input for writing
down the TBA is the reflection matrix, which can be obtained from the overlap determined in
step 2 by the analytic continuation. From the TBA, we can derive the Fredholm-determinant
representation [78—81] for the ground-state overlap at finite J.

4. Finally, we generalize the result to excited states using the analytic continuation trick pro-
posed by Dorey and Tateo [82].

In this paper, we perform the analysis up to step 2. This is enough for the comparison with weak-
coupling results in the literature since the wrapping corrections kick in only at higher loop orders.
In principle it should be possible to complete the program based on the results in this paper but
we leave it to a future work.

An important new ingredient which was not present in the analysis of [2] is the existence of
excited boundary states (cf. [76]): The D5-brane defect does not correspond to a single boundary
state, but rather corresponds to a set of boundary states, which can be viewed as excited states
of some basic boundary state. In Section 4.6, we show that this feature is essential in order to
reproduce the results in the literature.

4.2. Dynamic psu(2|2) spin chain

Before delving into the actual computation, let us review the integrability description of
closed-string states in AdSs x $3. In the infinite volume limit J — oo, the closed string state is
described by the dynamic psu(2|2) spin chain introduced by Beisert [83,84]. In this description,
each magnon belongs to a bifundamental representation of the centrally-extended psu(2[2)? sym-
metry. The precise relation between the fields in "= 4 SYM and the excitations in the dynamic
spin chain is given by

¢9hP 1> D (A0 J) = (1,0), v s DB Z(AC, 1y =(2,1), w
YOl WA D) = (3/2,1/2), Y W (A% ) =(3/2,1/2), |

where the dotted and undotted indices correspond to the right and the left psu(2|2) respectively
and all the indices take 1 or 2. Here W’s are fermion fields, D%?’s are covariant derivatives, Z
and Z are the complex combination of the two scalars &7 + i g and its conjugate, and ®b°g are
combinations of the other four scalars ®5 ¢ 9 0. AU is the classical dimension and J is the Uu()
R-charge generated by R7g in the full SO (6) g symmetry which we used to define the length of
the string.””

22 7 and Z have +1 and —1 charges for this U (1) symmetry.
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Symmetry Let us now summarize the action of the psu(2|2)? generators on the excitations.
Since the actions of the left and the right psu(2|2)’s are identical, we only write the results for
the left psu(2]2)>3:
1 . 1
Rpl9) = 8pl9) — §5Z|¢’°> . Lgly?) =8519%) — §5§|W’) ;
Q19" =as,1y®) Qs1vP) =be“Peu| 279",
Sald”) =ce®eaglZYP),  SqlyP) =dsflgc) .

4.5)

Here L’s are the Lorentz generators and R’s are the R-symmetry generators while Q’s and S’s
are the supersymmetry and the superconformal generators respectively. The parameters a-d are
functions of the rapidity u of the excitation and are given by

+ . + —
a(u) = /gy , b(u)5§<1—;‘—_>, c(u)Elﬁy, d(u)s“/ig—;C(l—%),

where y satisfies

ly?=i(x™—x"), (4.6)

and x (u) is the Zhukovsky variable (3.28) given by u = g(x + 1/x). The plus and minus super-
scripts denote the shift of the rapidity by i /2, namely f*u) = f(u %i/2).

In addition to these global charges, the dynamic spin chain has three central charges C, P and
K which appear in the anti-commutators of fermionic charges

(0%, 0Fp) =ePew P, (0%.0° }—e e P
(%, g} = ePeapK (8%, 8751 = efPey K .
1 o S . 1
b b b b b b b b
(0%, S"p}=08,L"p + 3R, + Zaa(SﬁC,{Qad, SP 5 =84L% +8/‘;.‘R 0+ 28a8;‘C
4.7
The action of these charges on the excitation |X) reads
1
ClX)= E(ad +be)|X), P|X)=ablZX), K|X)=cdlZ™X). (4.8)
Physically, C is a linear combination of the dilatation D and the R-symmetry charge J,
D—-J
C= 5 4.9)

while P and K correspond to the field-dependent gauge transformations (see e.g. section 3.2 of
[85] for further explanation). The extra insertions of Z and Z —1 are called Z-markers and are
book-keeping devices for the nontrivial coproduct structure of the symmetry algebra [74,83,84,
86]. On the field theory side they simply correspond to an insertion or a removal of the Z-field
which can be moved around using the following rule:

.X+ +1
|Xzi>=<x—_) |ZtXx). (4.10)

23 In what follows, €12 = €12 = —€1p=—¢€j5=1.
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Crossing, mirror and parity transformations The energy and the momentum of the magnon
excitation admit compact expressions in terms of the Zhukovsky variable:

1

114+ == 1 +
Ew=3—5—.  pu=—log i @.11)
1 — —— i X
XX

Owing to the definition of the Zhukovsky variable (3.28), they contain two branch cuts, one for
xT and the other for x~, when viewed as a function of the rapidity . The analytic continuations
across these branch cuts invert the corresponding Zhukovsky variables (x* — 1/x%), and define
analogues of the crossing and the mirror transformations in the relativistic field theory.

Let us first consider the analytic continuation (to be denoted by #%") in which we cross both
of the cuts once. This process transforms the Zhukovsky variables as

xT@?y=1/xtw), X" Wy =1/x"(u). (4.12)

Using (4.11), one can check that this flips the signs of the energy and the momentum. Physically,
this can be interpreted as the crossing transformation, which maps a particle to an antiparticle.
If we instead cross only one of the two cuts, we have either

xT @) =1/xT(u), W) =x"w)), (4.13)
or
W) =x"), X)) =1/x"(), (4.14)

depending on which cut we crossed. These transformations are interpreted as the mirror trans-
formations. They map a particle in the original theory to a particle in the so-called mirror theory
in which the roles of space and time on the worldsheet are swapped.

Yet another important transformation is the parity transformation ¥ — u. This is nothing but
the standard parity transformation on the worldsheet. In terms of the Zhukovsky variables, it is
defined by

xT@)=—x"), x (@) =—xT(u). (4.15)

One can readily check from (4.11) that this flips the sign of the momentum but not of the energy.
4.3. Symmetry constraints on the two-particle overlap

su(2|1)? symmetry 1In the presence of the half-BPS defect, the psu(2]2)? symmetry is broken
down to a subgroup which is an intersection of psu(2|2)? and the defect superconformal symme-
try osp(4]4, R). To understand the structure of this subalgebra, it is useful to place the single-trace
operator at the origin and consider a spherical defect of radius r around it. As explained in Fig. 4,
this configuration manifestly preserves the SO (4)(~ SU (2)?) rotation symmetry, and the U (12
R-symmetry which rotates ®9 ¢ and @5 ¢ in (2.8). Once the fermionic charges are included, these
bosonic symmetries get completed into the su(2|1)? subalgebra whose generators are given by
'RERII—Rzz, Laﬁ, SaaESaa—i-ireaﬁGabQﬁb,
(4.16)

kERll—Rzz, LdB, dezsdd+i76dﬁadeﬁé,
where r is the radius of the spherical defect and o® is a symmetric tensor defined by

011=022=0, o2=0%=1. 4.17)
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D Z
Qs (D9 D Q5 D6 O
L]
£0
(a) Sphereical defect and local operator (b) Scalars and R-symmetry

Fig. 4. The half-BPS defect breaks psu(2\2)2 down to su(2| 1)2. Their bosonic subgroups 51.1(2)2 and u(l)2 are realized
as follows: (a) A spherical defect and a local operator inserted at the origin preserve the SO (4) Lorentz symmetry. (b)
Among the six scalars in " =4 SYM, two of them @ g are used to define the vacuum of the dynamic spin chain, and
three of them &g 9 ¢ acquire nontrivial vacuum expectation values in the presence of the defect. Therefore the residual
symmetry group is U (1)? which rotate @9 ¢ and 5 ¢ (encircled by the dashed curves).

These generators satisfy the following algebras™*:

1
(L7, RI=0, [L%, S;1 =88] — -85Sy,
R, S 1=+S8'y, [R,S%]=-5% (4.18)
(S%. 8?4} = €ape® (K +r2p irR) +i0 (eqy L7 g+ €py L7 )

Note that the central charges P and K always appear in the combination K + r>P + irR, and
the algebra is isomorphic to su(2|1) without central extension.

We now discuss the implication of su(2|1)> symmetry on the two-particle overlap. Explicitly,
we impose””

(DX @ XBB @) =0,  jesu|l), ®su|g. (4.19)

Here A, B and A, B label abstractly the indices carried by the left and right excitations separately.
Owing to the structure of the symmetry algebra su(2[1)?, it is useful to factorize the overlap
into the left and the right parts as

(DIXAA ) X BB (1)) = Fo(u) x @lx @) x B (@) x (dlx @) @) (4.20)

and discuss constraints from the left and the right su(2|1)’s separately. Here Fy is an overall
scalar factor which will be determined later.

Constraints from bosonic symmetry Let us impose the invariance under the bosonic symmetry.
First, from the left SU (2) rotation symmetry, we can constrain the overlaps involving fermions
as

Py @) =€,

4.21)
(1 @)y’ (@) = EIY* (w¢” @) =0.

24 Since the left and the right su(2|1) have the identical structure, here we only write down the commutation relations
for the left part.

25 The integrable boundary states with su(2| 1)2 were analyzed also in [91]. Their boundary state is in the mirror channel
while our boundary state is in the physical channel. Since the non-relativistic worldsheet theories in the mirror and the
physical channels are inequivalent, there seems to be no simple relation between the two boundary states.
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To constrain the overlap of two bosons, we impose the invariance under the U (1) generator
K +r2P + irR. This is equivalent to imposing the invariance under R since the action of
K + r?P annihilates a parity-invariant pair of excitations | X (#) X (#)) as can be verified from
(4.8). We then get

0= IRIp (W' (@) =2(lp" (w)¢' @)).

4.22)
0= (|RI*(w)¢* (i) = —2(0|p* ()¢ () .
Therefore, only nonzero components are the following ones:
PP P> @) = k@), PIP* )" (@) = k-(w). (4.23)

Rule of pulling out Z marker In order to analyze constraints from fermionic generators, we
need to impose by hand a rule of pulling out Z markers from the closed-string state. Roughly
speaking this determines how an insertion and a removal of Z field change the one-point function,
and it is therefore related to the expectation value of the scalar field. For now, we simply assume
the following rule

(D|ZX) = xr—S(Dm , (4.24)

without specifying the value of x;(= x(is)). Note that we multiplied a factor 1/r to account for
the mass dimension of Z.

The value of xg has a clear physical meaning both in the gauge theory and string theory.
On the gauge-theory side, it can be interpreted as an expectation value of the Z field in the
classical background sourced by the interface defect. On the string-theory side, it is a parame-
ter which distinguishes different boundary states and is related to a momentum carried by the
boundary state as we discuss in more detail in section 4.6. There we also show that one can
change the value of x; by considering a bound state of the boundary state and a bulk particle.
This feature turns out to be essential in order to reproduce the results obtained at weak coupling
[39].

Constraints from fermionic symmetry Next we study constraints from the fermionic symmetry.
The fermionic symmetry exchanges bosons and fermions in the dynamic spin chain and thereby
allows us to determine k4 and k_ in (4.23).

Let us first consider the state |¢% («)y¥* (u)). The action of S reads

Sple* )y (i) =ce™ep, |27y (w)y® (i) + 8|6 () $” (i)

+iareg, o SYY (W)Y (@) +ibreg, o€’ ecalg (u) Zo? (i) ,
(4.25)

rebicy, (i n iasb> [0 e @)
Xs
_ _ o, xt
w5 (3 ixsbsb—_) 9 @ @),
X

where b and d are given by b(ir) and d(it), and s? is defined by s' = —s? = 1. Note that here we
have already used the rule (4.24) to pull out Z markers.



S. Komatsu, Y. Wang / Nuclear Physics B 958 (2020) 115120 35

By contracting the state against the boundary state (0|, we obtain
0= (2IS519" )y (i)
0=r8%(L +ia) +064(d+ixp)k_() (a=2b=1), (4.26)

0=—rs4(< —ia) +8%(d—ix,bS)kp(w) (@=1,b=2).

Solving these equations, we get

1— - 14 -
ky (u) = —ir—==, k_(u) = —ir———5=. (4.27)
1+;‘—, 1-— ;‘—,

This determines the two-particle overlaps (4.20) up to an overall factor Fo(u).
4.4. Constraining the scalar factor

Having determined the matrix structure of the two-particle overlap, we next determine Fo(u)
by imposing a set of consistency conditions: Watson’s equation and the crossing symmetry. We
also check that our solution satisfies the boundary Yang-Baxter equations.

String frame and redefinition of the overall factor To impose these constraints, it is more con-
venient to change the definition of the bosonic excitation in the dynamic spin chain as

¢new = Zl/ﬁ‘d’oldzl/4 . (4-28)

The excitations defined in this way are called string-frame excitations [75] while the original ones
are called spin-chain frame excitations. The spin-chain frame is more convenient for the compari-
son with the gauge theory while the string-frame is more natural for the analysis of the dual string
worldsheet. After this change, the two-particle overlap of two scalar gets modified as follows:

9
spin

QI @ @) = pIZ" g0 w2 e @ 2"/

string

(4.29)

xg [xT
g

QI e’ @)|

For later purposes, we rescale the overall factor (from Fp to F') and write the two-particle

overlaps in the string frame as follows>°:

(DIXAA ) BB (1)) = F(u) x @l ) x B @) x @lxAw)x @),

xsz — (x—)2 Eaﬁ

o By —
QY y? @) = = e
2 _ (2 j
1 20Ny xg—(x7) v xTxg (4.30)
Pl we¢~(u)) = lxsx_(x++x_)\/x—_ T

2 _ (x—)2 .
(D|¢2(u)¢l(ﬁ))=_ixs xg—(x7) /i_j x, .

x—(xt 4+x7) =&

26 After this paper came out on arXiv, the paper [87] appeared in which they studied the matrix structures of two-particle
overlaps corresponding to integrable boundary states in the dynamic psu(2|2) spin chain, and obtained a result which
seems consistent with (4.30).
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u u u v v U

(a) Watson’s equation (b) Boundary Yang-Baxter equation

Fig. 5. The Watson’s equation and boundary Yang-Baxter equations. Here u, v, i and v are rapidities of excitations and
their parity conjugates. The black dots in the figures denote the S-matrix of the excitations.

Watson’s equation The first consistency condition is Watson’s equation, which states that one
needs to multiply the S-matrix in order to reorder excitations, see Fig. 5a. Written explicitly, it
says

(DIS| X1 &) = (D| X1 X)) . 4.31)

Note that this is a matrix-valued equation and therefore is an over-constrained system for a single
scalar factor F'(u). Remarkably we found that it reduces to a single constraint on F,

F(u)
F (1)

where Sy is the overall scalar factor for the bulk S-matrix, given by

= So(u, i), (4.32)

xi" —x, 1— 1/)(1_)63_ 1

So(ur, uz) = (4.33)

X —xg'l—l/xfxz_ o2(uy, uz)

where x12 = x(u1,2) and o (u1, uy) is the dressing phase determined in [88]. The equation can
be solved by the following ansatz,

(xt4x7)3 14+ 1/(x7)? opu)
20x5 — x M) (x5 +x7)(1 — 1/ (xsxt))A + 1/(xsx7)) x~ +1/xt o(u, i)’
(4.34)

Fu) =

where op(u) is an undetermined prefactor which we call the boundary dressing phase. At this
point, op can be arbitrary as long as it satisfies

op(u) =opu). (4.35)

Boundary Yang-Baxter equation We next consider the boundary Yang-Baxter equations as de-
picted in Fig. 5b:

(DIS24S34] X1 () X2 (v) X3 (0) Xy (it)) = (D|S13S24| X1 () X2 (0) X3 (V) Xy (i) - (4.36)

Here S;; is the S-matrix between A; and A’;. Checking these equations is a straightforward yet
tedious task. We verified that these equations are satisfied by the solution (4.27), regardless of
the values of F(u) and x;. This provides further support for our assumption that the boundary
state |D) is an integrable boundary state.
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Ll

U U a?r \ u

Fig. 6. The crossing equation for the two-particle overlap. It requires that the overlap for the singlet states (shown in the
figure) is trivial. In general, to write down the crossing equation, one needs to sum over all possible states that form a
single pair X' (i) and X (@%). (This is why the middle two particles in the figure are connected by the curve.) In the case
at hand, by judiciously choosing the external states, it reduces to a simple constraint given in (4.37).

Crossing equation The third constraint is the crossing equation, which requires the overlap to
be trivial when excitations form a singlet state of the centrally-extended psu(2|2)? symmetry.
The singlet state has the same quantum numbers as the vacuum state of the dynamic spin chain
and can be pair-created from the vacuum. Therefore imposing the crossing equation is physically
equivalent to requiring the overlap to be invariant under the vacuum fluctuations. For more de-
tailed discussions, see sections 6 and 7 of [2] (and also [76]). In our case, it boils down to the
following relation (see also Fig. 6):

(DD ) D2 (@)D @) DR W) =1. (4.37)

To compute the left hand side, one has to analyze the four-particle form overlap. Here we
use the assumption that the system is described by an integrable boundary state and factorize
the four-particle overlap into a product of two-particle overlaps. Under this assumption, (4.37)
becomes

2 -2 \2 - 20,42\ 2
xZ—(x7) . x (I —x;(x™)%)
F -4 - - Fa7)| ———————= =1. 4.38
@) (x(x++x)> @) ( (xt+x7) (4.38)
D'i(u)Dﬁ(ﬁ) Dli(ﬁ27)D22(u_2V)

Substituting the expression (4.34) and using the identity”’

! _ 40 R} (4.40)
o, )o@, u=2)  (xt+1/xH)x"+1/x7) \xt+x— )’ '

we can rewrite the crossing equation as follows:

10T —x)? (T 4 1/x)?

72V —
op(w)og(u’) = . 4.41
BUTB ) = T T )2 — 2,2 (40
This can be further rewritten using op (1) = op(u) as
1 (xF —1/x)2(x~ + x4)?
BB ) = G T T (4.42)
xg (T +x)*(x ™ — 1/x5)
27 This relation can be derived from the crossing equation for the dressing phase o (u, v):
1—1/x = x7/xF
oy, un)oul ,up) = (= )2 fxg) (4.39)

A =1/xFx)) A —x /xy)

For details of the derivation, see Appendix G of [2].
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4.5. Solving the crossing equation

We now solve the functional equation (4.42) by applying standard procedures explained in the
review [89].

Minimal solution We first perform the mirror transformation and rewrite (4.42) as

(x+ - l/xx)z(x_ + l/xs)2

v V)= 443
op(u")op”) a2 —x,)2 (4.43)
We then consider the following ansatz (to be called the minimal solution)
4 G(x~,x)G(xt, —1
o) = S XIGOT ), (4.44)
Gt x)G(x™, —1/x5)
and write (4.43) as
(G(x, —1/x)G(1/x, =1/x)PPT (2 = 1/ (x + 1/2)?>" 445

(G(x,x,)G(1/x, x,))P~ P~ (x + x,)?P (x — x5)207!

where D is the shift operator D = £9,. Solutions to this equation can be obtained by dealing with
a simpler equation,

—2D —2D
x — I\ DD T /x4 L\ DD
G(x,y)G(1/x,y) = ( y) ( y) : (4.46)

X Jx
which implies

—op~!

G (v, G(L/x, G (x, /)G (1/x, 1/y) = (1 — v) D07 (u + v) D>
(Tl +iw+v])>
o I‘[l—i(u—v)]) ’

with v = g(y 4+ 1/y) (or equivalently y = x(v)). In the second equality of (4.47), we have used
a series-expansions of the exponents

(4.47)

-2D  2D*
D-D' 1-D2

[ee]
2 D21’l ,
n=1

o - - (4.48)
=— ==Y D,
D-D' 1-D2 2_:1

The functional equation (4.47) can be solved by applying standard techniques of the Riemann-
Hilbert problem (see e.g. [89]). The result reads

1 2 dz dw 1 1
~logG(x,y) =~ — P— log&(z, w), (4.49)
i i 2mi 2rix—zy—w
lzI=1 lw|=1
with
T[l+igz+ 14w+ 1)l
Bz, w) = 8 z s (4.50)

STl —iget+t—w— D)
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The solution (4.49) is valid for |x| > 1 and |y| > 1, and the result for other parameter regions can
be obtained by analytic continuation.

CDD ambiguity Using the minimal solution o™ (1), we can construct infinitely many solu-
tions to the crossing equation by multiplying a factor ocpp(#) which satisfies

ocpp(u) = ocpp(it) , ocpp)ocppU?) = 1. 4.51)

This is an analogue of the Castillejo-Dalitz-Dyson (CDD) ambiguity [90] for the bulk S-matrix.
In particular, for any odd function of the magnon energy foqq4(E), one can verify that ocpp (1) =
efoaa(E) gatisfies the relations (4.51).

As we see later, the choice that reproduces the weak-coupling results in the literature turns out
to be ocpp (1) = 2~ *EW Thus our proposal for the solution to the crossing equation relevant for
the D5-brane interface is

AEW) G(x~,x)G(xT, —1/xy)
G(xT,x)G(x—, —1/x5) "

op(u)=2" (4.52)

Let us now make one remark: The same CDD factor appeared in the analysis of structure
constants of determinant operators in [2,3], and it was interpreted28 as an extra spacetime de-
pendence associated to a conformal transformation which maps the symmetric configuration (in
which operators are at —1, 0 and 1 along a line) to the canonical configuration (in which opera-
tors are at 0, 1 and 00). A similar argument holds also for the defect one-point function. Normally
we consider a planar defect and define the structure constant C by

(Op=—2. (4.53)

where x is the distance between the defect and the operator. However, to apply integrability, it
is more convenient to use a spherical defect with a unit radius and define the structure constant
(to be denoted by C zghem) as the one-point function in that configuration. Analyzing the confor-
mal (and the R-symmetry) transformations which map the two configurations, we find that the
relation between the two structure constants is given by>’

Co= 2_(A_J)Cighere . 4.54)

The factor 27(~) is precisely the origin of the CDD factor in (4.52). In other words, if we
define the structure constant using the spherical defect, we would not need the CDD factor.

Weak coupling expansions We now expand the boundary dressing phase op at weak coupling
in order to perform a comparison with the literature. To do so we assume that the absolute value
of x; is larger than 1: |xg| > 1. The assumption is justified eventually by the match with the
weak-coupling results in the literature.

28 See section 7.5 of [2].
29 Here we have been suppressing the dependence on the R-symmetry polarizations. To reproduce the factor 2~ (A=)
in (4.54), we also need to keep track of the R-symmetry polarizations. See [2] for details.
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Since op is given by (4.52), we need expansions of both G(x, y) and G(x, 1/y) with |x| > 1
and |y| > 1. Let us first discuss the expansion of G (x, y). This can be done by expanding (4.49)
in a power series of 1/x and 1/y as

log G(x, y) i Cr.s
— = - (4.55)
! r,s=1 x"yé
with
2 dzz"! dww* ™!
Crs == 515 i 515 — log &(z, w). (4.56)
i 2mi 2mi
lz|=1 lwl=1
We then use the integral representation of logI',
Oodt 1 —e '@
logI'(2) = / Ver(e-1-125). (4.57)
0
and rewrite (4.56) as
2 ood[ dzzr—l dwws—l e—igt(z+%+w+%) _eigt(z+%—w—%)
CrszT\/_ % : % ; . (4.58)
’ i t 2mi 2mi el —1
0 lz]=1 Jw|=1
To proceed we expand the integrand using
| o
0T = 3" ik 2a), (4.59)
k=—00

and perform the integrals of z and w. As a result we obtain

o
20 -(=D"H Jr(2g1)Js(281)
Crs = lr+—S+1 W 5 (460)
0
where J’s are the Bessel functions. Expanding the integrand in powers of g and performing the
integral, we get

o0
Crs = Z gt 4.61)
n=0

where
A-EFEDH) Cn+r+s—DI2n+r+s)!
Bt gl 4+ )+ +5)!
with ¢, being the zeta function. From (4.55) and (4.61), one can show G(x,y) =1+ O(g*) at
weak coupling.
We next consider G(x, 1/y). Since the magnitude of the second argument is less than 1

(]1/y] < 1), one has to analytically continue the integral representation (4.49). Upon doing so,
the integral picks up a contribution from a pole at w = 1/y. As a result we have

ey =2(=1)"

§2n+r+s P (462)

1
7 log G(x,1/y) = xine(x, ¥) + Xpole (X, ¥) , (4.63)
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with

2 dz 1
Xint(x, y) =~ % o ¢ IOgQﬁ(Z, w),
i 2 2mwi x —z

(4.64)
2 dz
Xpole(X, V)=~ @ —— log&(z, y)
i 2wi x —
lz]=1
By rewriting the integrand, we can further decompose iy into two terms
1 -
Xint(x, y) = =~ 10g G(x, y) = Xint (x) . (4.65)
with
- 1 1
fim(x) = yf ~log®(z. w). (466)
2 2m X—zZw

Iz\ lw|=1
As we already know the expansion of G (x, y), the remaining tasks are to expand xpole and Xint.
Using the integral representation of logI" (4.57), we get
o0

o0
d, _ e
Yoo ) =)0 Km0 =) (4.67)

P
r=1

where dy and ej are given by

o —t 2(1 1" oo—ithz
d, =45 / eT (—(—))/e r(gt)’
0

ir+l te —1)
(4.68)

o
e’ 2(1-(=D" Jr(2g1) Jo(281)

€r =4g8r,]/‘dt7+ ir+1 dt [(et_l) ,

0 0

where v is the rapidity for y, v = g(y + 1/y). Expanding these integrals in powers of g, we get

o 00
d, = Z gr+2nd£n) , e = Zgr—i-Znel({n) , (4.69)
n=0 n=0
with
d(n) = 2d - (—l)r)(_l)"'H \I](2n+r—1)(1 +iv)
T 4 r)lirtl v,
4.7
S | TAE (r=1.n=0). *70)
= (1=(=D") @n+r—=D'2n+r)!
r 2(=D)" T )] Son+r (others) .

Here W™ is the n-th derivative of the Euler digamma function and yg is the Euler-Mascheroni
constant. Therefore log G(x, 1/y) can be expanded up to one loop as

1 482 . 4
lflogG(x,1/y)=7(\IJ(1+lv)+)/E)+(9(g ). 4.71)
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Putting together everything, we get the following expansion of the boundary dressing phase:

1 492
op) =~ | 14+ —2 (W(1 +5) +yr —log2) + O | . 4.72)
4 u? +%

Already at this stage, it is worth pointing out that the one-loop result in (4.72) takes the same
form as the “flux factor” in [39] if we set s = (k — 1)/2. In the following subsections, we make
this heuristic observation into a more concrete statement and show that our results are indeed in
agreement with [39].

4.6. Excited boundary states and comparison with perturbation theory

Having solved the crossing equation, we now make a comparison with the results from per-
turbation theory. We focus on the so-called SU (2) sector (see below), for which the one-loop
results are available [33,34,39]. We leave the comparison in other sectors to a future work.

Two-particle overlap in SU(2) sector In N =4 SYM, we can define subsectors of operators
in which the action of the dilatation operator is closed at all orders in perturbation theory. The
simplest subsector is the so-called SU(2) sector, which consists of operators made out of two
complex scalars. In order to make contact with [33,34,39], we choose the two scalars to be Z and
® with™

@]i +d>22+d>12+<b2]

o= 5 (4.73)
Then the two-particle overlap in this sector, fsy2)(u) = (D|d~>(u)d~>(ﬁ)), is given by
F 2
foow =" (019'6%) + 0l¢%")
, u(u— 1) xt op) (4.74)

X —_— — .
T = D)t ils — ) X o)

Expanding it at weak coupling, we obtain the following expression for \/ fsu) ) fsue) @):

V fsue @) fsuw) @) =

2 Jut@?+ [1 402 } (4.75)
) + .

8 4
(W(1+s)+yve —log2)+ O
s (- L e

Asymptotic overlap With the two-particle overlap at hand, we can write down the asymptotic
overlap formula which includes all the perturbative 1/J corrections. The asymptotic formula is
expected to be exact up to three loops since the correction to the asymptotic formula (called the
wrapping corrections) is known to appear only at four loops.

30 Normally we simply choose Z and ! to define the SU(2) sector. However, the one-point functions in that sector
vanish owing to the matrix structure of the overlap (4.30), and they do not correspond to the setup discussed in [33,34,39].
This is the reason why we have chosen a particular linear combination given in (4.73).
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To rigorously derive the asymptotic formula, one has to go through steps 3 and 4 in Sec-
tion 4.1: Namely we first formulate the TBA, compute the excited-state g-function and finally
take the asymptotic limit J — oo. Such an analysis was done for the structure constants of de-
terminant operators in [2,3]. It was then found that the result is given purely in terms of the
two-particle overlaps and the Gaudin determinants, and has the same universal structure as the
results at weak coupling. Here we assume that this is the case also for the defect one-point func-
tion. Then the asymptotic overlap formula in the SU (2) sector is given by

M2

(Dlu) J _ detG
=(x u u , 4.76
T |y (x5) ml_[:l Sfsu@ wm) fsu) @m) s (4.76)
where |u) is a parity-symmetric Bethe eigenstate with rapidities w = {uy, 1, ..., um,um}, and

det G+ are the Gaudin(-like) determinants whose definitions can be found in e.g. [2,3,329]. The
prefactor xsf comes from the rule for pulling out Z fields (4.24) and is a counterpart of i/ in
(1.13) of [2]. We will later give a more physical interpretation of this factor.

Now to perform a comparison with [39], we set s = (k — 1)/2 and expand (4.76) at weak

coupling. This gives

ow | _ (v ) [/e®0e0 [aa; ,

—— z dnd Fi+ 0 | 4.77)

VO g, 2 0152 | detG—
where Q(u) is the Baxter Q-function

M)2

Q) = H (U = ) = H u® — (4.78)

and IFy. is the flux factor introduced in [39]
k+1

Fr=1+ <‘~IJ (%) +yE—log2)8A, (4.79)

with §A = Z —5—+. The result (4.77) resembles but does not quite agree with the perturba-

tive answer in [39] The main difference is that, while (4.77) is given by a single term, the result
in [39] is a sum of k different terms. In what follows, we show that this mismatch can be resolved
once we take into account the contributions from excited boundary states.

Excited boundary state The two-particle overlap fsy2)(#) given in (4.74) has poles at u =
+i(s — %). As explained in [76], such poles correspond to physical processes in which a particle
gets absorbed by the boundary and changes it to an excited boundary state,’' see Fig. 7. This is
a boundary scattering version of the relation between poles in the S-matrix and bound states.
Excited boundary states can be thought of as bound states of particles and the boundary, and
much like usual bound states of particles, we need to include their contributions in order to obtain
the correct answer. In integrable field theories, the two-particle overlaps for excited boundary

31 In the boundary scattering picture, this is often called the boundary bound state [76]. Such boundary bound states
also play an important role in the analysis of the spectrum on the so-called Z = 0 brane in [91].
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U u

Fig. 7. Poles of the two-particle overlap and excited boundary states. A pole of the two-particle overlap corresponds to
a physical process depicted above, in which a particle gets absorbed by the boundary state and modifies it to an excited
boundary state (shown as a red dashed line). Using this property, one can compute the two-particle overlap for the excited
boundary state by solving the bootstrap axiom given in Fig. 8.

~i(s-})

Fig. 8. The bootstrap axiom for the overlap for the excited boundary state. The overlap for the excited boundary state
(depicted on the right hand side) is given by a product of the bulk S-matrices (the black dots in the figure) and the overlap
for the original boundary state, as shown on the left hand side of the figure.

states can be determined from the bootstrap axiom [76] which is depicted in Fig. 8. In our case,
we can work entirely within the SU (2) sector and the bootstrap axiom gives

Fuay @) =8(=i(s = 3),w)S(—i(s — ). i) fsu@ W), (4.80)

where féU ) (u) = (D'|®w)P(@)) is the two-particle overlap for the excited boundary state
|D’), and S(u, v) is the S-matrix in the SU (2) sector (in the string frame) given by [83,84]

u—v—ixtwx (v) 1

S, v) = u—v+ix (wxt®) (o@,v)?’ (4.81)
We then get’”
, , xt uu—Hu—iGs+Hw+its+1)
Tsu@ ) = i~ D46 — D —iG = I +i6 =2 w
op(u) '

X

o(u,it) (o (u,i(s — 3o (i, i(s — %)))2

Let us make two remarks before moving on. First the simple relation (4.80) is valid only in
the SU(2) sector, in which the S-matrix and the two-particle overlaps are just scalar factors. In
the full 51(2|2)? spin chain, one has to consider a matrix analogue of (4.80), which is pictorially
represented in Fig. 8. As a result, the two-particle overlap for the excited boundary state will have
a different matrix structure from the one for the original boundary state (4.30). Second there is
another important difference between the original boundary state and the excited boundary state.
In the asymptotic overlap formula for |D) (4.76), we had an overall factor x;. Physically this
can be interpreted as a propagation factor ¢/Prdy/ with e/Pbdy = x; being the momentum carried
by the boundary state | D). Since the excited boundary state |D’) is a bound state of |D) and a
particle with u = —i(s — %), the momentum of |D’) is given by

32 Here we used the parity invariance of the dressing phase o (1, v) = o (v, ).
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. 1
xT(—i(s —3))
_ . 1
x(—i(s —3))

This is also consistent with (4.82) in which the overall factor )cs2 is replaced by xszfl

./ .
e'Pody — plPbdy

— x5, (4.83)

The excited-state overlap (4.82) has new poles at u = £i (s — %). Therefore, by using a particle
with rapidity —i (s — %), we can further excite the boundary state. Setting s = @ and repeating
this process until we do not get any new poles, we obtain k different excited boundary states,

which we denote by
D), @=-%1,..., 5. (4.84)
The two-particle overlaps of these states are given by

i 2 =@\
FOw) = D(a)lé(u)é(ﬁ)):fi uw—-5H@r+%) o8 (Gk (u)) |

X7 w2+ (0—41)2)(142 + (0-21)2) o(u,u)
(4.85)
with
k=3
(a) :
o = 4.86
o @) l:[a(u zr)o(u ir) ( )
We can also express a( “ more explicitly as’”
log 5 (u) B B
=X (T xe) — ) = T xan) + X0 xasn) “457)
+ X7, xa) = X (=%, Xa) = X (=X xen) + X (=X, Xacw),
where yx is given by (see e.g. [89,92])
11 Ml +igz+1—w—1y
X0y = yﬁ log (488)
2i 2mx—zy w F[l—zg(z—l———w——)]
Izl lw|=1

The asymptotic overlap for |D,((a)) is simply given by replacing x; and fsy(2) in (4.76) with
F(a)
Xq and f

M/2

2 (@ @, ) detGy
{ufu) asym—(xa) n!:[lfk @) fi @) detG_ (4.89)

Full asymptotic result We now propose that the defect one-point function in the asymptotic
limit is given by a sum of overlaps for the excited boundary states, namely

33 Recall that Xy 18 given by x(is).
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o

o 2Jﬁ P (4.90)
with
W = ; <D’(‘a)'“>=1rk\/Q(%)Q(0) (ﬁog(u )) det G 4.91)
u otgt VIO () AL ) detG :
O (la)Q+(la) et |

Let us make several comments on the formula. Firstly the overall factor 1/2” in (4.90) is
the kinematical factor associated to the R-symmetry polarization. For the comparison with the
weak-coupling results in the literature, it is often convenient to combine it with the factor 1/2M
in the boundary dressing phase ,/]_[m op (i), and rewrite them as>* 1/2L. Secondly 1/«/Z in
(4.90) is the usual factor coming from the cyclicity of the trace. See for instance [93] for further
explanation. Thirdly Ty in (4.91) is a finite-coupling generalization of the transfer matrix of the
Heisenberg spin chain found in the weak-coupling results [34,39]. The main difference from
[34,39] is the factor [ [, &k(a)(um) which starts to contribute at three loops.

Our proposal is in perfect agreement™ with the results at tree level and one loop in the lit-
erature [33,34,39], providing strong evidence for the validity of our bootstrap analysis. It will
be interesting to perform the higher-loop computation in perturbation theory and compare the
results with our predictions.

5. Discussion and conclusion

In this paper, we studied the half-BPS superconformal boundary and interface defects of the
D5-brane type in the A" =4 SYM with U (N) gauge group. Defined by unconventional singular
Nahm pole configurations of the SYM fields, such defects have only been explored to leading
orders in perturbation theory. We presented non-perturbative approaches to this defect CFT prob-
lem based on supersymmetric localization and integrability methods.

Following the localization setup in [1] we have identified the effective 2d defect-Yang-Mills
(dYM) theory that captures general —-BPS defect observables in the N’ =4 SYM with the
D5-brane type boundary or interface defect In particular the dYM contains coupling to a 1d
topological quantum mechanics (TQM) which we obtained from localizing the 3d mirror quiver
gauge theory description of the Nahm pole boundary condition from [21]. Insertions of half-
BPS operators Oy in the SYM with the D5-brane defect translate to insertions of tr(*F ) in
the dYM where F denotes the field strength of the emergent 2d gauge field. From standard

34 Note that J counts the number of Z while M counts the number of ®. Together they give the length of the operator
L=J+M.

3 Precisely speaking the weak-coupling results contain an extra sign factor (—1)L/2 (Note that L is even in order for
the one-point function to be nonzero.) Keeping track of such an overall sign is practically difficult since the formula
contains various square roots, but it would be interesting to clarify this point.
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two-dimensional gauge theory techniques, the latter reduces to a computation in a single matrix
model with a novel matrix potential due to the D5-brane defect. Solving this matrix model in the
large N limit, we obtained exact defect one-point functions (O;)p in the 't Hooft coupling A.
Our non-perturbative answers agree with perturbative Feynman diagram computations at weak
coupling, and provide a precision test of AdS/CFT with interface defect by comparing with the
string theory results on AdSs x § in the strong coupling regime. Going beyond defect observ-
ables protected by supersymmetry, we developed a non-perturbative bootstrap-type approach to
determining the integrable boundary states in the planar N'=4 SYM corresponding to interface
defects, based on recently developed integrability methods of [2,3]. The one-point function of
a single-trace, generally non-BPS, local operator is then given by the overlap between the inte-
grable boundary state and a closed string state corresponding to the local operator. We explicitly
solved the consistency conditions that define the boundary state, namely the Watson’s equation,
boundary Yang-Baxter equation and the crossing equations. By dressing the minimal solution
with appropriate CDD factors, we obtained defect one-point functions of non-BPS operators (in
the SU (2) sector) in the asymptotic limit (large R-charge J) that are in perfect agreement with
previous results from the traditional integrable spin-chain methods at one-loop.

There are a number of future directions worth exploring which we now discuss. First of all,
the 2d dYM we have uncovered for the D5-brane defect captures more general observables of
the SYM preserving a common supercharge beyond the local operators O considered in the
main text (see [1] for the general classification). For example they include correlation functions
that involve genuine defect local operators in the TQM sector, as well as %—BPS Wilson loops
insertions [94,95] that correspond to ordinary Wilson loops in the dYM.

It will be very interesting to complete the integrability program we have outlined in Section 4. 1
by writing down the thermodynamic Bethe ansatz in the open string channel. This will enable
us to reproduce the BPS defect one-point functions computed in this paper from the supersym-
metric localization, and fully determine the non-BPS defect one-point functions at finite 't Hooft
coupling in the planar limit. Combined with the OPE of local operators in the bulk, this gives a
way to extract general non-BPS correlation functions in the defect CFT. Furthermore, boundary
(interface) defect crossing symmetry relates factorization channels of correlation functions that
exchange bulk and defect local operators respectively [9-11,96]. Therefore, by pursuing a de-
fect superconformal bootstrap program, one can try to determine the full spectrum of operators
confined to the defect worldvolume.

Another related direction is to classify the integrable boundary states in accordance with the
general construction of interface defects from a chain of (p, g) 5-branes in IIB string theory
[19]. In this paper, we have focused on the case with a single D5-brane and it is more desirable to
have a general dictionary’® between such 5-brane configurations and integrable boundary states.
Perhaps a hint towards such a dictionary, these general 5-brane interfaces can be constructed
by gluing together a number of the D5-brane interfaces (at various values of k) which we have
studied, together with general SL (2, Z) duality transformations. This gluing picture is succinctly
represented by the matrix model expressions for the defect partition functions using supersym-
metric localization (see Section 2.4). It would be interesting to understand the corresponding
(de)construction of these boundary states on the integrability side.

36 For a certain class of operators living on the interface which can be described by closed spin chains, a similar question
was addressed in [97]. It studied the action of the dilatation operator perturbatively at one loop, and concluded that the
integrability is generally broken for such operators.
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