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Abstract

Modern light sources and circular colliders employ large numbers of high-intensity particle
bunches in order to achieve high luminosity. The electromagnetic coupling of bunches via
resonant structures causes coherent instabilities at high beam currents. Achieving high
luminosity requires the control of such unstable motion. Feedback control is challenging
due to wideband nature of the problem with up to 250 MHz bandwidths required. This
thesis presents digital signal processing architectures and diagnostic techniques for control
of longitudinal and transverse coupled-bunch instabilities.

Diagnostic capabilities integrated into the feedback system allow one to perform fast
transient measurements of unstable dynamics by perturbing the beam from the controlled
state via feedback and recording the time-domain response. Such measurements enable one
to thoroughly characterize plant (beam) dynamics as well as performance of the feedback
system.

Beam dynamics can change significantly over the operating range of accelerator currents
and energies . Here we present several methods for design of robust stabilizing feedback
controllers. Experimental results from several accelerators are presented.

A new baseband architecture for transverse feedback is described that compactly im-
plements the digital processing functions using field-programmable gate array devices. The
architecture is designed to be software configurable so that the same hardware can be used

for instability control in different accelerators.
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Chapter 1

Introduction

In this work we will consider electron and positron circular accelerators and storage rings.
These accelerators have many applications ranging from high-energy physics to materials
science to protein crystallography. In all cases particle beam intensity is critically impor-
tant. Coupled-bunch instabilities are an important limitation to increasing beam currents.
Such instabilities exist in each of three possible beam motion coordinates. When the beam
current crosses the instability threshold the noise-driven position or energy oscillations grow
to large amplitudes. Large motion amplitudes often cause beam loss due to the particles
encountering some aperture within the machine. Sometimes the growth of instability may
saturate and the beam may stay in the ring. However, large oscillations degrade the per-
formance of the machine whether it is the luminosity of a collider or the brightness and
spectral purity of a synchrotron light source.

Initially the problem of coupled-bunch instabilities was solved by keeping beam current
below the instability threshold. The next step in control of coupled-bunch instabilities
was to apply active stabilization (feedback) to the most prominent instability eigenmodes
thus enabling one to operate the machine above the threshold current. This approach was
sufficient when the number of unstable eigenmodes was relatively small and the accelerator
operated not far above instability threshold. With time the number of individual bunches
of charged particles increased and with it the number of unstable eigenmodes. Modern
storage rings are designed to operate far above the threshold - the Advanced Light Source
at LBNL has design current of 400 mA while the instability threshold is 40 mA. In such
accelerators feedback is commonly used to extend the thresholds by 10-20 times. At some

point per-mode feedback became unpractical. Due to many unstable eigenmodes modern



2 CHAPTER 1. INTRODUCTION

machines require all-mode feedback stabilization to operate at design currents.

This dissertation presents new methods for control of longitudinal coupled-bunch insta-
bilities. The work is organized to logically present the feedback control development cycle.
This cycle starts from developing an analytical model of the plant and the feedback hard-
ware as presented in Ch. 2. In the next chapter (Ch. 3) methods for measuring open and
closed-loop behavior of the system and techniques for extracting model parameters from
such measurements are described. These techniques enable one to characterize in detail
the unstable coupled-bunch eigenmodes as shown in Ch. 4. In order to accurately model
the closed-loop behavior one needs to know both the plant (the beam) and the feedback
system. Chapter 5 introduces techniques for thorough measurement of the feedback channel
properties. Taken together, chapters 4 and 5 provide the necessary framework for creating
an accurate off-line system model. Such a model provides a way to test and parameter-
ize feedback controller designs paving the way for the optimization-based controller design
methods described in Ch. 6.

Finally, Chapter 7 describes a new signal processing hardware architecture which would
provide processing and diagnostic capabilities needed to extend the feedback control meth-
ods shown in this thesis to transverse coupled-bunch instabilities.

In the following sections the work will be introduced chapter by chapter and the new

contributions will be identified.

1.1 Coupled-bunch instabilities and feedback control

This chapter introduces the basic concepts of storage rings and longitudinal beam dynamics.
The qualitative and quantitative descriptions of longitudinal focusing and particle motion
to large extent follow those developed by M. Sands in ”The Physics of Electron Storage
Rings: an Introduction” [1]. Small motion of the bunch centroid near the equilibrium is
shown to be that of a harmonic oscillator. Next, the effect of bunch-to-bunch coupling on
this motion is described and the commonly encountered driving impedances are presented.

Changes in the accelerator parameters as well as interactions with the RF systems
affect both the beam motion parameters and its dynamics. The most important dynamics
modifiers are discussed in Sec. 2.5.

Next the coupled-bunch instabilities and bunch-by-bunch feedback control are analyzed

as a multi-input multi-output (MIMO) dynamic system. From this analysis we develop



1.2. TRANSIENT DIAGNOSTICS 3

important model reductions which enable one to predict the behavior of an N x N MIMO
system where N ranges from 120 to 1746 using a single-input single-output (SISO) model.

Finally, this chapter presents a detailed description of a programmable bunch-by-bunch
longitudinal feedback system developed by a multi-laboratory collaboration and currently
in use at 5 accelerators. Such systems were used to obtain all of the measurements presented
in this thesis as well as to implement the novel feedback control algorithms developed in

this work.

1.2 Transient diagnostics

In this chapter beam diagnostic techniques based on transient motion recording are de-
scribed ranging from steady-state (closed-loop) data recording to externally excited grow /damp
experiments.

The main new contribution presented here is the estimation of the complex eigenvalue
from the exponentially growing or decaying oscillatory motion. Before this work there ex-
isted methods developed by S. Prabhakar for estimating the exponential growth or damping
rates by considering the envelope of the motion [2] and for estimating the oscillation fre-
quency from phase-space trajectories [3]. Since these extract the real (growth or damping
rate) and the imaginary (oscillation frequency) parts of the eigenvalue separately informa-
tion is lost in the process. Using only the amplitude of the transient to estimate the growth
rate discards the phase information. Similarly, extracting oscillation frequency from the
phase angle of the transient disregards the amplitude. The new method utilizes joint esti-
mation by fitting growing or damping oscillatory waveform to the data. This technique uses
the bandpass nature of the harmonic oscillator response to filter out noise. Consequently,
reliable eigenvalue estimation is made possible when the noise levels are high.

Growth and damping measurements made at high beam currents - and showing the
fastest instability growth rates as well as the fastest feedback damping - are most important
in the feedback system characterization and controller design. In a coupled-bunch feedback
system actuator saturation restricts the controllable range of beam motion amplitudes. High
feedback gains commonly used result in the limit being relatively close to the system noise
floor (2 to 3 times). Combined with fast exponential growth and damping rates this means
that most important measurements are made at the high noise levels and benefit greatly

from the new eigenvalue estimation method.
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1.3 Beam dynamics measurements

Here we develop techniques for beam dynamics parameterization using the eigenvalue mea-
surement technique described in the previous chapter. The most basic characterization
approach is that of eigenvalue locus which maps out the positions of modal eigenvalues as a
function of beam current. Such mapping is a valuable guide for the feedback designer since
it defines the performance requirements for the feedback system. Furthermore, combining
the eigenvalue locus with the feedback loop model developed in the next chapter allows one
to predict the closed-loop behavior of the system.

In this chapter, in addition to measuring the dependence of the eigenvalues on the
beam current, other parametric dependencies are explored. Using the eigenvalues extracted
from the growth measurements as well as from the other transient diagnostics we illustrate
methods for estimating parameters of the higher-order mode impedances. Such estimation is
very important from the longitudinal feedback point of view for several reasons. Knowing
the dependence of the driving impedance on environmental and operating factors such
as cavity temperature gives user a way to minimize the instability growth rates. Such

knowledge also helps extrapolate the measured growth rates to the new operating regimes.

1.4 Feedback loop characterization

In chapter 4 we concentrated on the open-loop part of the transient diagnostic measure-
ments. In this chapter we use both the open and closed-loop measurements to verify and
refine a linear discrete-time model of the longitudinal feedback system.

Several important new contributions are presented here. A thorough loop model for
the longitudinal feedback system in the eigenmode coordinate system introduced here is
critical for development of control algorithms. However any model of a physical system
must be verified to insure the agreement between the system and its model. In this chapter
a quantitative method is developed for comparison of the feedback system model and the
real system. The method provides a measure of error between the model and the system
which, in turn, can be used to adjust the model for better matching.

In any physical system one unavoidably encounters parasitic effects. This is especially
true for a bunch-by-bunch feedback system with its broadband processing. In this chapter
mathematical analysis of the most important parasitic effects is presented and substantiated

by the beam and feedback measurements.
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1.5 Longitudinal feedback controllers

This chapter presents the most important contribution of the whole thesis - methods for
designing longitudinal feedback controllers. We should not forget that the feedback system
is there to reliably stabilize the beam, not just collect beam diagnostic data. From that
point of view the work presented in the earlier chapters was done to enable one to design
practical feedback controllers.

Two methods for controller design are presented in this chapter: frequency-domain
design and model-based. Both of these approaches use numeric optimization to generate a
feedback controller filter.

Applications of these methods are presented as several case studies for three different
accelerators: the Advanced Light Source (ALS), DA®NE collider in Italy, and BESSY-
II light source in Germany. Each of these machines presents a unique feedback control
problem. In each case the performance requirements established in beam and feedback loop
characterization are posed as a controller design problem and feedback filters are generated.
All of these designs have been tested in their respective accelerators and test measurements

are presented to confirm the expected operation.

1.6 Transverse baseband processing architecture

Baseband feedback signal processing architecture presented in Ch. 2 is limited to control
of longitudinal coupled-bunch instabilities. However modern storage rings require active
wideband feedback in all three dimensions: two transverse and one longitudinal. A universal
programmable architecture with diagnostics has been proven to be an excellent coupled-
bunch instabilities solution. Here a new design is presented which significantly extends the
capabilities of the present system. In this chapter algorithms for data demultiplexing are

presented as well as possible control filter and diagnostic architectures.



Chapter 2

Coupled-bunch instabilities and

feedback control

Basic concepts related to the longitudinal beam dynamics and coupled-bunch instabilities
are introduced in this chapter. We start from describing the general layout of a storage ring.
Next, concepts of longitudinal focusing and bunching are introduced. Equations governing
the motion of the bunches of particles are shown as well as the effects of bunch-to-bunch
coupling via electromagnetic fields. Next the driving terms of the longitudinal coupled-
bunch instabilities are discussed in Sec. 2.3. Interaction of the accelerating RF cavity
and the beam plays an important role in determining longitudinal beam dynamics and is
presented in Sec. 2.4. Next, the most important factors that influence the longitudinal beam
dynamics and motion parameters are presented in Sec. 2.5. In Secs. 2.6 and 2.9 the linear
system models are developed for the longitudinal coupled-bunch instabilities and practical
feedback topologies are defined. Finally, in Sec. 2.10 the design of the bunch-by-bunch

digital programmable feedback system is presented.

2.1 Circular accelerators

A block diagram of a typical storage ring is shown in Fig. 2.1. Bunches of charged particles
injected into a storage ring are steered into ”circular” orbit by the magnetic guide field. The
guide field has focusing properties in the transverse plane defined by radial or horizontal
axis and the vertical axis. The focusing leads to transverse (betatron) oscillations about

the design orbit. Charged particles radiate energy under radial acceleration - so called
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Figure 2.1: Block diagram of a storage ring

synchrotron radiation. In each revolution particle loses some of its energy by this process.
This energy loss is compensated in one or more radio frequency (RF) cavities. In addition
to restoring the energy lost to the synchrotron radiation periodic accelerating field in the
cavities creates longitudinal focusing.

Let us first qualitatively examine the longitudinal focusing effect. In Fig. 2.2 the electric
field in the accelerating cavity is shown as a function of time. Times of arrival of bunches of
particles are also marked. Dashed line shows the energy Uy lost by a particle at the nominal
energy Fy in a single turn. Particles passing RF cavity at time 7 gain energy E(7) = eV (1)
where e is the charge of the electron. There are two time points within the RF period where
particles will gain exactly the energy lost to synchrotron radiation. Particles at the design
energy complete a revolution in time 7y. The RF frequency is chosen in such a way that
there is an integer number (called harmonic number h) of RF periods Ty¢ in one revolution,

ie.

To = NI}t
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Synchronous particles

TI‘GV

Figure 2.2: Electric field in the RF cavity as a function of time. Times of arrival of
synchronous particles are marked by green circles.

As a result, a particle at the nominal energy will gain exactly Uy on every turn. Without ex-
ternal perturbations the particle would continue sampling RF waveform at Tp intervals each
time gaining exactly the energy lost during that revolution. Perturbations of longitudinal
position or energy lead to particle gaining in the cavity more or less energy than Uy. Out
of the two time points where energy gain is Uy, only the one with the negative slope of the
accelerating field is the stable point. That is the shape of the RF potential near the stable
point creates a restoring force for the particle with time of arrival (longitudinal position)
error and causes the particle to arrive closer to the stable point in the consecutive turn.
That stable point is marked on Fig. 2.2 as 74, so called synchronous time. Particles that
pass through the cavity at times 75 + kTt are called synchronous particles. The maximum
number of the bunches of synchronous particles that can be stored in the ring is given by

the harmonic number A.

Let us examine what happens if a particle arrives earlier than the synchronous time.
It will gain more energy than it lost in one turn. Highly relativistic particles (above the
transition energy) at higher than nominal energy take a longer path around the ring [1,

page 73]. Thus, with each revolution, its time of arrival will shift closer to the synchronous
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time. Similarly, a particle arriving late will take a shorter path and will get closer to the
synchronous time as well. Slope of the accelerating field at 75 creates a potential well causing
the particles to execute synchrotron oscillations around the synchronous time. We will call

this potential well the RF bucket in which particles can be stored.

Longitudinal focusing groups injected particles near synchronous time points creating
bunches of particles. The harmonic number of the ring defines how many synchronous
points exist within a single revolution and, therefore, how many bunches can be stored in

the ring.

Now we will derive the equations of motion for synchrotron oscillations. Let ¢ be the
energy deviation of a particle from the nominal energy Ey. Energy lost by a particle to
radiation in one turn is a function of its energy U,.q(Ep + €). For small energy deviations

we can write

Urad(EO + 6) = Urad(E()) + EUrad(Eo) =Up+ EUrad(Eo) (2.1)

Energy deviation of a particle is related to the change in the path length [ around the ring

by the momentum compaction factor « as follows [1, page 75]

L,
L T E

where L is the path length for a particle of nominal energy.

Let us observe the motion of the particles at a fixed point in the ring. We will start with
a particle that has arrives time 77 later than the synchronous particle. On the next turn its
time of arrival error will change depending on its energy deviation. For energy deviation e

path is lengthened by [. Thus

l €
Tg—le—Za—To
C E()

where c is the speed of light. This change in the time of arrival has been observed in one

revolution therefore the rate of change in 7 is
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dr €
N 2.2
i~ "B (22)
Now consider the energy change of the above particle over one revolution:
de = EV}f(TS + T) - Urad(EO + E)
Again, this change is observed over one turn, so that
de _ eVig(ms + 7) — Uraa(Eo + €)
dt Ty
Linearizing RF voltage near Vi¢(7s) and substituting Eq. 2.1 we get
de . eTVer(Ts) - EUrad(EO) (23)

dt T,

Combining Eqgs. 2.2,2.3 we get an equation of motion for a damped harmonic oscillator

P4 2d, 7 4 Wit =0 (2.4)
d. — Urad(EO)
" 2Ty
aeVrf(TS)
g =] =TS 2.
w FoTh (2.5)

where d,. is the radiation damping rate and w; is the synchrotron frequency.

The equation of motion derived above describes a stable system. When perturbed either
in energy or longitudinal position the particle executes an exponentially decaying oscillation
around the nominal point. So far we have considered the motion of a single particle. However
in the physical machine many particles are stored in the same RF bucket. The center-of-
mass behavior of the stored bunch follows the same dynamics that were derived for a single
particle. In the next section we will describe coupling mechanisms through which motion
of one bunch can affect other bunches in the ring. This coupling is the root cause of the

longitudinal coupled-bunch instabilities.
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Figure 2.3: Electromagnetic field is excited in the resonant structure by bunch n. The field
persists in the structure consistent with the quality factor of the excited resonance and can
act on the bunches in the following RF buckets.

2.2 Beam Dynamics

Bunches of charged particles passing through the vacuum chamber of a storage ring leave
behind electromagnetic fields. These fields (wake fields) affect the energy of the following
bunches providing a bunch-to-bunch coupling mechanism. This is graphically illustrated in
Fig. 2.3.

If we monitor electric fields and bunch arrivals within the structure we will observe the

sequence of events illustrated in Fig. 2.4.

When bunch passes through the structure is excites an electromagnetic field which
persists for some time after the bunch passage. That time is defined by the damping times
(related to the resonance quality factors that will be introduced in Sec. 2.3) of the excited
resonant modes. In the accelerating RF cavities parasitic resonances can have damping
times in hundreds of revolutions. The oscillating field is sampled by the following bunches,
eg. n+1and n+ 2 in Fig. 2.4. If we now apply a modulation to the arrival time of
bunch n that will produce a phase modulation of the voltages sampled by the following
bunches. Therefore bunch n is now coupled to the following bunches. Since the other
bunches also create the wake fields they couple to bunch n closing the feedback loop. For

certain combinations of the resonant frequencies and bunch currents the overall system
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becomes unstable and bunch oscillations will grow to large amplitudes limited either by

non-linearities or beam loss.

The theory of coupled-bunch instabilities is well developed [4, 5]. Here we will present the
most important analysis results which link the characteristics of the unstable longitudinal

motion to the Fourier transform of the wake function known as coupling impedance.

The longitudinal wake function W”(t) is defined as the integrated longitudinal compo-
nent of the electric field experienced by a test charge passing through the vacuum chamber
a time t later than the particle that excites the field. The field is integrated over an entire

turn. Longitudinal impedance Z!l(w) is defined as

Zl(w) = / - wlye=“tar = /0 - wltye=tat (2.6)

—00

The impedance is hermitian, that is Z(—w) = Z*(w) where * denotes complex conjugate as
it is a Fourier transform of a real function. This property will be quite important in the
following section when we will consider the effect of the longitudinal impedance on beam

stability and system eigenvalues.

So far we have considered as a longitudinal coordinate of the bunch its time of arrival

bunch n bunch n+1 bunch n+2

¢

Time

Figure 2.4: Oscillatory electric field excited in the structure by bunch n is sampled by
bunches arriving in the structure afterwards.
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error 7 measured relative to the synchronous time. In practice it is more convenient to use
a linearly related coordinate - phase deviation at the RF frequency defined as ¢ = wy7.
Using phase error as a coordinate normalizes the motion to the RF frequency of the ring.
The new coordinate carries information on the absolute amplitude of the motion. That is
an oscillation amplitude of 20 ps can be large or small depending on the RF frequency.
However when expressed as 1 degree at RF it is clearly a small oscillation. Consequently
motion amplitudes can be compared between accelerators with different RF frequencies.

The bunch motion in a storage ring can be projected onto an orthonormal basis which
will define the eigenmodes. If the ring filling pattern is even, i.e. it has rotational symmetry
(for N filled bunches rotation by h/N RF buckets leaves the same buckets filled), the
coordinate transformation is the discrete-time finite duration Fourier transform (DFT) given
by

1 N-1 )
Sﬁl(t) _ N Z ¢n(t)e—z27rln/N (27)

n=0

The above transforms the motion in bunch domain ¢, () to the motion in the eigenmodal
domain ¢;(t). We will call the eigenmodal basis for an even filling pattern the even-fill
eigenmode (EFEM) basis. In this work the variables in the EFEM basis will be denoted as
Z (x in the bunch basis) except for the phase for which we use ¢ in the EFEM basis and ¢
in the bunch basis.

The motion of bunch k oscillating in mode [ is given by
Cbk(t) — €j27rkl/N(pl(t)

pit) = AeMt

where A; is the modal eigenvalue [6]. If there is no longitudinal impedance affecting mode

[ its unperturbed eigenvalue is given by

A = —d, + juws (2.8)

When longitudinal impedances are introduced they result in eigenvalue shift A; [4, 2]
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ﬂaefrzflo

—  T%Jefr0 ||eff
A Fohw, 7 (lu}Q+w5) (29)
1 o
eff
ZIef () = warfpzz_oo(pro—|—w)Z”(pro—|-w) (2.10)

where fif = 1/T¢ is the frequency in the accelerating cavities, Iy is the average (DC)
beam current, wy = 27 /Ty is the revolution frequency, and Zll(w) is the total longitudinal
impedance. Here we assume that the bunch length is much smaller than the wavelengths
of the wake fields driving coupled-bunch instabilities.

For small oscillations the beam samples the longitudinal impedance at the RF frequency.
Such sampling aliases the impedance into the frequency band from 0 to f;f/2. Summation
over p in Eq. 2.10 describes aliasing of the longitudinal impedance into the frequency range
from DC to fyr. The aliased impedance Z leff sampled at the upper synchrotron sideband
of the [th revolution harmonic defines the modal eigenvalue shift )\;. If one wanted to
restrict Eqgs. 2.9-2.10 to the frequencies below the Nyquist frequency f;/2 one could replace
ZIE 1wy + ws) by ZIF((N — 1wy — ws) for | > N/2. However the original representation

is more common in the analysis of longitudinal coupled-bunch instabilities [6, 7, 8, 9].

2.3 Driving terms

Longitudinal impedance Z ”(w) defined in Eq. 2.6 is computed from the wake field inte-
grated over the whole ring. This includes contributions from many resonators and broad-
band impedances. In a physical machine there are usually several dominant resonances
which define the unstable eigenmodal structure. Most often these resonances occur in the
accelerating RF cavities. The longitudinal impedance of such a cavity consists of the fun-
damental mode and the higher order modes (HOMs). The fundamental mode is designed
to be resonant at the RF frequency of the ring while the frequencies of the higher order
modes are not controlled during cavity design and depend on the geometry of the cavity.
Let’s consider the effect of the impedance near a given revolution harmonic on the
longitudinal stability. The impedance near wipy, = pwyr + lwp revolution harmonic (p is
integer) affects two eigenmodes: [ and N —[. According to Eq. 2.9, the eigenvalue of mode [
is affected by the longitudinal impedance at the upper synchrotron sideband of wiy. Passive

(lossy) wake fields result in the impedance with positive real part, that is R(Zll(w)) > 0 for
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w > 0. From Egs. 2.9-2.10 we see that real part of A; has a shift in value proportional to
the real part of the impedance at wiy,p + ws. That shift moves EFEM [ toward instability.
Since longitudinal impedance is hermitian there is a contribution of the above impedance
to ZIleff at —wimp + ws. Due to frequency scaling effective impedance for that mode will
have negative real part since R(Zll(—w)) = R(Zll(w)) > 0. Thus longitudinal impedance
near pw;t + lwo drives EFEM [ unstable, but acts to stabilize eigenmode N — [.

2.3.1 Higher order mode impedances

Often it is useful to parameterize resonant modes in cavity-like structures. Longitudinal

impedance of such modes can be expressed as

_ Rs
1+ jQw/wr — wr /]

Z(w) (2.11)
where w, is the resonance center frequency R; is the shunt impedance, and Q is the quality
factor. Another important parameter of the resonator is the 3 dB bandwidth defined as the
difference between upper and lower frequencies at which the absolute value of the impedance
is reduced by 3 dB relative to the peak value Rs. For resonators with () > 1 the bandwidth

is given by

Wr
Whw = —+

Q

To help analyze the effect of higher-order mode impedances on longitudinal stability
we will introduce the classes of narrowband and wideband resonances. The quality fac-
tor @ in Eq. 2.11 determines the width of the resonance. Traditionally resonators are
considered narrowband if @Q > 1 and wideband if ) ~ 1. In this context we will define
narrowband /wideband resonator grouping by comparing resonator bandwidth to the ring
revolution frequency wg. Resonances with the bandwidth smaller than the revolution fre-
quency are narrowband and all others - wideband. The two classes call for slightly different
control techniques.

Effect of a narrowband resonance on longitudinal stability depends on the tuning of

its center frequency. Placing the peak of the resonance midway between two revolution
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Figure 2.5: Normalized magnitudes of two impedances: narrowband and wideband. The
narrowband resonator has the bandwidth of w(/8 and the wideband one - 4wy. Both reso-
nances are tuned midway between two revolution harmonics.

harmonics reduces the resultant instability growth rates. The effect is strongest for the
very narrow resonances and becomes less pronounced as the bandwidth increases. For
the borderline case of wyy, = wy optimal tuning halves the shift of the real part of the
eigenvalue relative to the worst-case shift which occurs when peak of the resonance is placed
at the upper synchrotron sideband of a revolution harmonic. Narrowband HOMs of the
accelerating cavities are commonly tuned by adjusting the temperature of the structure
[7, 9]. In some cases cavities are equipped with a separate tuner antenna coupled to the
strongest HOMs [10].

Wideband resonances provide less tuning flexibility - when HOM bandwidth is 4wq the
difference between eigenvalue shift for best and worst tuning is only 6%. Such HOMs cannot
be "hidden” between revolution harmonics and always present an effective impedance on
the order of w, Ry /wys. For this reason the wideband HOMs require careful attention during
accelerator design. The effective impedance presented by these modes must be within the
feedback damping limits. The difference between narrowband and wideband resonators is
illustrated in Fig. 2.5.

To summarize, narrowband impedances can be controlled via combination of resonant

frequency tuning and active feedback while with wideband resonators one has to rely solely
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on active feedback.

2.3.2 Fundamental mode impedances

The fundamental mode of the accelerating cavity rarely causes longitudinal instabilities
even though it presents a large longitudinal impedance. The secret here is in the tuning of
the cavity resonant center frequency below the RF frequency. Such tuning is used for two
reasons. First, it is used adjust the matching of the cavity with beam to the RF generator.
Usually the center frequency of the cavity is tuned so that current reflected to the generator
is in phase with generator current (resistive loading). Second, tuning the cavity below
the RF frequency ensures that the fundamental impedance does not cause instability of
the lowest-frequency mode - also called Robinson instability. Impedances at both upper
and lower synchrotron sidebands of the RF frequency contribute to the effective impedance
for EFEM 0. The upper sideband figures in the expression with positive sign (unstable)
while the lower one has negative sign (stable). When the resonance is tuned below the RF
frequency the impedance at the lower sideband is larger than that at the upper one. Thus
such tuning guarantees that EFEM 0 is stable. However there are some cases when the
impedance of the fundamental mode of the RF cavity can drive longitudinal coupled-bunch
instabilities - we will consider two such possibilities here.

The first case is that of a storage ring with large circumference. Such a ring has low
revolution frequency. The impedance of the fundamental mode sampled at wys — wy + ws
excites eigenmode N — 1. The effect is amplified if the RF system is heavily beam loaded,
that is the average beam current is large in comparison to the generator current in the RF
cavity. Beam loading will be discussed in more detail in Sec. 2.4. Heavy beam loading
requires large detuning of the accelerating cavity and, therefore, increases the impedance
driving eigenmode N — 1. In some cases the detuning can be equal to or larger than the
revolution frequency [11]. Then the EFEM N — 1 is driven by the full shunt impedance of
the accelerating cavity. To operate in this regime the RF system must be equipped with
feedback loops aimed at reducing the impedance presented to the beam [12, 13].

The second case is that of parked cavities. Often there are more accelerating cavities
installed in the ring than can be or need to be powered by RF generators. The unused
cavities must be detuned away from the RF frequency or its harmonic (for the harmonic
RF system). Such detuning of the cavities is called parking. Optimal parking of the cavity

is midway between two revolution harmonics to minimize the impedance that affects the
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beam. When many cavities are parked at the same frequency the cumulative impedance at
the nearby revolution harmonics can be large enough to drive coupled-bunch instabilities.
The effect of the harmonic RF cavities is amplified by the high resonant frequency - see the
scaling factor in Eq. 2.10. One such case will be considered in Ch. 4. There is a method
to minimize the effect of parked cavities. This technique is applicable when the number of
parked cavities is even. Then parking half of the cavities at wyf — wpark and the other half
at wrf + wpark reduces the effective longitudinal impedance. For illustration suppose that
Wpark = 2.5wp that is the cavities are parked between two and three revolution harmonics

away from the RF. Then from Eq. 2.10 we get for the effective impedance for EFEM 2

ff 1 *
Z%'e = w—f[(wrf + 2w + u)S)Z{| (wrf + 2w + ws) — (wrf — 2wp — ws)Zél (Wit — 2w — ws)]
Iy
4wy + 2w 4
~ %Z“ (wrs + 2wp + w) & EZ” (wrf + 2wo + wy) (2.12)
rf

Fortunately, for the large rings, where the effect of the parked cavities is most noticeable
due to narrow revolution harmonic spacing, the harmonic number is high as well making

the impedance reduction in Eq. 2.12 very effective.

2.4 Interaction with the RF system

So far we have developed the longitudinal dynamics using the notion that the RF voltage
is provided by a perfect voltage source. In practice the RF accelerating voltage is created
by injecting drive currents into the RF resonant cavity. However drive current is not the
only input into the cavity. Beam current is the second current source driving the resonator.
Consequently the voltage in the accelerating cavity is a result of the total drive current
equal to a sum of generator and beam currents. As shown in Sec. 2.1 the voltage in the
cavity determines longitudinal dynamics. That is, the beam current source is affected by
the voltage in the cavity while that voltage depends on the beam current. This creates a
feedback mechanism which can modify the parameters of the longitudinal beam dynamics
as well as the dynamics proper. When beam current is small relative to the generator
current - called light beam loading - the effect of the interaction between the beam and
the RF system is weak. In this case the voltage in the cavity is in most part determined

by the constant generator current. However heavy beam loading with the beam current
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Figure 2.6: Schematic of the RF cavity model with two input currents and feedback loops

being comparable to or larger than the generator current creates strong interaction which
significantly modifies longitudinal motion parameters and dynamics for the low-frequency
eigenmodes (with mode numbers near 0 or N-1).

Here we will use the Pedersen model [14, 15] to characterize the small-signal behavior of
the beam and RF system. In this model the cavity is represented by an equivalent parallel
RLC circuit driven by two currents: generator current fG and beam current Ig. This
model is schematically illustrated in Fig. 2.6. The RF system in addition to the RF power
generator usually includes additional feedback loops. These can be narrowband amplitude
and phase loops that maintain the cavity voltage amplitude and phase at the RF frequency
or broader bandwidth feedback to improve system stability margins [15].

The driving current phasors are evaluated at the RF frequency. For short bunches in
the lepton storage rings |f B| = 2[y. From here on we will use Iz to represent |f B|. In the

Laplace domain the impedance of the cavity is given by

20Rs

Z(8) = 59—
() s2+20s + w?

(2.13)

where 0 = w,./2Q is the damping time of the cavity. Note that Eq. 2.13 transforms into
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e

Figure 2.7: Steady-state vector diagram of accelerating cavity currents and voltages

Eq 2.11 with the substitution s = jw.

The beam loading is characterized by the dimensionless parameter Y = Ip/I; where
I;, is the generator current required to produce the same cavity voltage without beam load

and with the cavity resonance tuned to w,s. From the steady-state vector diagram shown

in Fig. 2.7 relating I B fg, and cavity voltage Ve one gets the following relationship

tan ¢y — tan ¢y — Y cos ¢p
L= 14+ Ysingp

(2.14)
where ¢, is the loading angle between the cavity voltage and the generator current, ¢p is

the synchronous phase angle, and ¢ is the cavity impedance angle. For efficient utilization
of the power source loading angle is usually maintained constant and close to 0. To achieve

that according to Eq. 2.14 the magnitude of the cavity impedance angle has to increase
when Y increases - more obvious if we rewrite that equation as

tan ¢z = tan ¢r, + Y (tan ¢, sin ¢ + cos ¢ )
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This implies that the tangent of the cavity impedance angle has to change linearly with
beam current to keep the loading angle constant. Angle ¢, is adjusted by changing the
center frequency of the cavity. The detuning of the cavity resonance is given by wp =
Wy — Wy = otan¢yz.

The effect of RF cavity impedance on longitudinal dynamics falls outside the framework
developed in Section 2.2 due to several factors limiting the applicability of eigenvalue pertur-
bation analysis. First, the cavity fundamental impedance produces large eigenvalue shifts
comparable to the eigenvalue itself. Second, the high-Q fundamental impedance depends
strongly on the frequency. Shift of the eigenvalue modifies the frequencies at which the
beam samples the impedance. Due to this the straightforward application of Egs. 2.9-2.10
results in large errors.

Using the small-signal model developed in [13, 14, 16] we can compute the Laplace
domain closed-loop poles of the system that includes both the beam and the RF. In Fig. 2.8
a block diagram of the model is shown. The diagram shows propagation of amplitude and
phase modulations of beam current - variables ap and pp - to the amplitude and phase
modulations of the cavity voltage through four transfer functions: GZ, GGB;, Gfa, and
Gfp. The effective phase of the cavity voltage py., excites the dipole mode beam dynamics
represented by the transfer function Bj(s). The RF side of the interaction is omitted
here. The resulting model is valid if RF feedback loops have bandwidth much smaller than
synchrotron frequency. When wideband feedback is present the complete model has to be
examined since the wideband RF feedback loops will affect the longitudinal dynamics.

The transfer functions in the model are obtained by considering propagation of small-
signal cavity input current modulations to the cavity voltage. For the resonant cavity with

impedance given by Eq. 2.13 these functions are:

o +wh +os
(s+0)2+w?

- _ . wps
Gpa(S) - Gap(s) (s+0)2—|—w%

Gpp(s) = Gaals) =

The transfer functions from I and fG are obtained by geometrically projecting modulations
of these vectors to I7. The beam dynamics transfer function B (s) includes the dynamics
of all coupled-bunch eigenmodes. When fundamental impedance mostly interacts with the

lowest-frequency beam mode we use the following function
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Figure 2.8: Block diagram of the beam cavity interaction
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By computing the relevant transfer function at the given beam current and RF config-
uration we obtain a closed-loop model of beam-cavity interaction and can analyze various
dynamic properties of the system such as response to RF generator noise or interaction with

longitudinal feedback.

2.5 Dynamics modifiers

Here we will discuss effects such as beam loading, energy ramping, etc. that modify the
longitudinal behavior of the beam relative to the model developed in Section 2.2. These
important phenomena strongly affect the longitudinal motion parameters and the perfor-
mance of the stabilizing feedback. We will start the discussion from the effect of the beam

loading on eigenmode 0.
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Figure 2.9: Root locus for the dominant closed-loop pole of the cavity-beam mode 0 system
at the ALS. The pole is plotted as a function of beam current in the 0 mA to 400 mA range
in 8.1 mA steps.

2.5.1 Beam loading of the RF cavity and mode 0 frequency shift

In the previous section we described the interaction of the beam and the RF system. This in-
teraction most strongly affects the lowest-frequency eigenmode (closest to the RF frequency)
- mode 0. As the RF cavity is detuned with increasing beam current the impedance driving
mode 0 changes. From the eigenvalue perturbation model described in Sec. 2.2 we expect
the eigenvalue shift of EFEM 0 to be proportional to Z”(wrf + wg) — Z”*(wrf — ws). The
detuned RF fundamental impedance has a large negative imaginary part. Thus we expect
a downward shift in the mode 0 oscillation frequency. Precise changes in the dynamics are
available from a small-signal model described in Sec. 2.4. Applying the model to the case
of the Advanced Light Source we obtain the closed-loop pole locations shown in Fig. 2.9.
The root locus shows that mode 0 oscillation frequency shifts from 11.8 kHz nominal
synchrotron frequency to 4.8 kHz at 400 mA beam current. The large frequency shift has
been also observed at other accelerators with heavy beam loading - for example, in DA®NE

positron ring the frequency shift is from 33 kHz to 11 kHz at 1 A.
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The large frequency shift of mode 0 changes the interaction of the beam dynamics and
active longitudinal feedback system and places additional constraints on feedback controller

design.

2.5.2 Energy ramping

Not all storage rings are equipped with the full energy injection system. That is the energy
provided by the injection accelerator is lower than the desired operating energy of the ring.
Charge can be stored in the ring only when the nominal and injection energies are closely
matched. These contradicting requirements give rise to energy ramping technique. In this
method the ring optics is initially configured for the injection energy and the ring is filled to
the full operating current. Next the magnetic lattice is modified to slowly raise (ramp) the
ring energy to the desired value. The ramping process is reversed when injection is needed
again.

Energy ramping affects longitudinal dynamics in several ways. Both synchrotron fre-
quency ws and modal eigenvalue shift \; depend on the beam energy. From Eq. 2.5 we see
that synchrotron frequency changes as 1/ V'E. Modal oscillation frequency is given by the
imaginary part of the modal eigenvalue A; = A® + )\; and the modal growth rate - by the
real part. From Eqs. 2.8,2.9 we have

2
@ = () = ws m§(2||03(1w0 + wy))
ohws
2
_ _ Tae rfIO ||eff
op = R(N) =—d,+ “Eohws R(Z"" (lwo + ws))

where w; and o; are the oscillation frequency and the exponential damping rate of EFEM
[. Substituting ws from Eq. 2.5 and assuming that effective impedance changes little with

the changes in synchrotron frequency we get

1
w = ws(l+ L.fo%(z”‘ﬁ(mo +w?)) (2.15)
—Vit
1
op = —dy+ws Wfr.f O§R(Z”eff(lw0 + w?)) (2.16)
— Vit
where w? is the zero-current synchrotron frequency at the injection energy. From these
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equations we see that when energy is ramped up the modal oscillation frequency has the
same scaling as the synchrotron frequency. Reduction in the oscillation frequency expands
the feedback controller bandwidth requirement with wideband controllers presenting bigger
design challenge. A positive side effect of energy ramping is the reduction of the induced

growth rates according to Eq. 2.16.

2.5.3 High harmonic RF systems

A high harmonic RF system is used to apply a voltage to the beam at a harmonic of the ring
RF frequency. Such system can be active - powered by an external generator, or passive -
harmonic voltage is generated by the beam current. A harmonic RF system can be used to
modify the longitudinal potential well and, consequently, to lengthen or shorten the bunch
size.

High harmonic RF systems are often used in the storage rings for improving beam
lifetime and for introducing Landau damping for controlling longitudinal coupled-bunch
instabilities [17, 18, 19]. In storage rings with dense electron bunches and moderate nominal
energy the beam lifetime is often determined by large-angle intrabeam (Touschek) scattering
[10]. Higher harmonic RF system provides a way to stretch the bunches and lower the charge
density thereby improving the lifetime.

The higher harmonic RF system generates an accelerating voltage in addition to the
main RF system. The additional voltage modifies the longitudinal potential well depending
on the relative phase between the two RF systems. By adjusting the relative phase one can
narrow or widen the potential well and change the longitudinal bunch size [20)].

Let us consider the RF voltage seen by the beam when both main and harmonic RF

systems are operational. It is given by [10, 21]

V(1) = Vigsin(wy (7 + 75)) + Vi sin(nwye (7 + 7)) (2.17)

where V}, is the voltage in the harmonic cavities, 7, is the phase of that voltage seen by
a synchronous particle, and n is the integer RF harmonic.

Introduction of the harmonic voltage not only changes the bunch length but also the
synchrotron frequency. In bunch lengthening mode the slope of the total RF voltage at the
synchronous phase is reduced and so is the synchrotron frequency. When V}, is held constant

lower wy causes increased eigenvalue shifts according to Eq. 2.9. The same longitudinal
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impedances result in faster growth rates making the feedback stabilization more difficult.

In many cases due to budget constraints the harmonic RF system is passive. In this case
there is no external generator and the harmonic voltage is generated by the beam itself.
Desired relative phase of the harmonic voltage is adjusted by harmonic cavity tuning. In
this configuration the harmonic voltage is dependent on beam current. For the fixed cavity
tuning Vj, o Iy. This causes the synchrotron frequency to change with beam current. A
stabilizing feedback controller for such a system must be adaptive or be able to handle
significant changes in plant dynamics. In fact, most of the advanced controller design
methods described in Chapter 6 were brought to life by the installation of the third harmonic
passive RF system at the ALS [19, 22, 23].

2.6 Beam model as a multi-input multi-output system

In order to design a stabilizing feedback controller for the longitudinally unstable storage
ring we need to build a model of our unstable system. In Section 2.2 we considered dynamics
of an unstable eigenmode as a second-order harmonic oscillator, characterized by the modal
eigenvalue A. The real part of the eigenvalue is the growth or damping rate of the mode
while the imaginary part is the oscillation frequency.

The undamped natural frequency of a second-order system is defined as [24, page 72]

wp = \/w12+al2

The following differential equation derived using Eqgs. 2.4 and 2.7 governs the motion of
an EFEM

@1+ 2019, + wipr =0 (2.18)

To stabilize the above system we need a way to affect the internal dynamics, i.e. an
actuator. Since longitudinal coupled-bunch dynamics of the ring are defined by the electric
field in the accelerating RF cavities and modified by the parasitic wake fields it is natural
to stabilize the system using longitudinal electric field. Let’s consider an actuator (kicker)
that creates a longitudinal electric field such that a bunch of charge ¢ gains energy qu(t).

Let vy, (t) be the kick of bunch n and ©;(t) be the same kick transformed to the EFEM basis.
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Then Eq. 2.18 becomes

. . QeWrf
2 2o = ——— 0yt 2.19
At 2Pt wio = o oy (t) (2.19)
By taking a Laplace transform we get a transfer function from the kicker voltage to beam
phase
. @l(s) oewss 1
Gi(s) = = (2.20)

Vi(s) BTy s% + 20y + w?
The overall beam system has N eigenmodes so that it can be represented as a MIMO hnear

system with N inputs and N outputs. The input vector V and the output vector <I> are
related by the transfer matrix G(s):

—
/\

_ G(s)V

By definition the eigenmodes are linearly independent, therefore G(s) is a diagonal

matrix of the following form:

Go(s) 0 0
G(s) = (:) Glz(s) (:) (2.21)
0 0 Grn-1(s) |

2.7 Earlier work in coupled-bunch instability control

Feedback control of coupled-bunch instabilities has been extensively studied and described
in literature. Control architectures ranging from mode-by-mode [25] to bunch-by-bunch
[26, 27, 28] have been explored and their performance documented. Within author’s research
group H. Hindi performed extensive analysis and modeling of coupled-bunch instability
control addressing beam model measurements [29], optimal LQG controller design [30] and

performance of optimal and simplified controllers [31].
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Figure 2.10: Generalized block diagram of a feedback control system

2.8 Feedback control: an introduction

In general, the objective in a feedback control system is to make some output of a dynamic
system behave in a desired way by manipulating the input of that system. A general block-
diagram of such a system is shown in Fig. 2.10. The system consists of the physical system
(plant) the output of which we want to control. The output signal y is measured by the
sensors and sent to the controller. The control objective might be to keep y small (or close
to some constant value) - this is defined as a regulator problem. A different objective is to
make plant output y follow some reference signal r - a servomechanism problem. Controller
in Fig. 2.10 can be a regulator - then input r is omitted - or a servo. In any case controller
determines the error between plant output and desired value and, based on the knowledge
of plant dynamics, computes the control output u. The control signal is then applied to the
plant via actuators.

The plant is subject to external disturbances which affect the output y. As one of the
performance criteria of the control system one can consider the reduction of the transfer

gain from external disturbance input to plant output.

2.9 Feedback control of coupled-bunch instabilities

The longitudinal coupled-bunch instability is a regulator problem aimed at keeping bunch
phase excursions from the synchronous position small. In this case the control problem is
that of stabilization since the plant is open-loop unstable. In order to design a feedback con-
troller we need to chose our sensors and actuators. A good choice driven by sensitivity and

implementation feasibility is to measure bunch phase error relative to synchronous phase.
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A good actuator choice is an electromagnetic structure that applies a longitudinal electric
field to the beam. In the previous section coupled-bunch instabilities were formulated as a
MIMO linear system. In practice it is more convenient to observe bunch signals at a single
point in the ring. Consequently the sensor and controller outputs are multiplexed at Ty¢.
Such multiplexing defines the bandwidth requirements for the actuator and the sensor. Ac-
cording to the Nyquist criterion in order to independently measure and correct individual
bunches both the sensor and the actuator must have bandwidth of at least f;f/2. Note, that
in modeling we will still use the multi-input multi-output model since sequential sampling
instead of simultaneous does not significantly change the model. The difference between
the two sampling schemes is Ty — Ty between the first and last bunches. During that time

longitudinal position changes very little due to the fact that ws < wy.

In order to stabilize the system described by the transfer matrix in Eq. 2.21 we need
to apply feedback to the unstable eigenmodes. Feedback systems which act only on the
unstable eigenmodes - so called mode-by-mode systems - do exist and utilize the properties
of the bunch spectrum which separate the different eigenmodes in the frequency domain
[32, 33, 25]. The drawback of such systems is that they are designed for a particular unsta-
ble eigenmode spectrum. Consequently these feedback systems are not portable between
different accelerators. Another operational difficulty is that changes in ring components,
such as installation of new RF cavities, require feedback hardware redesign. In a general
case one would like to design a system that allows independent control of each eigenmode.
In the EFEM basis such system has a diagonal transfer matrix. Unfortunately in the physi-
cal world longitudinal motion is observed in the bunch basis and the real-time conversion to
the EFEM basis is impractical. A feedback system that has independent eigenmode control
results in a fully populated feedback matrix, that is correction signal for a given bunch
depends on the motion of all bunches. Such a system is very computationally intensive.
An obvious simpler topology is a bunch-by-bunch feedback in which the correction signal
for a given bunch depends only on the motion of that bunch. Then the feedback matrix is
diagonal in the bunch basis. This layout is illustrated in Fig. 2.11. The feedback system
shown here is not only diagonal, but also acts equally on all bunches. Such system can be

described by the following transfer matrix
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Figure 2.11: Block diagram of the beam and the bunch-by-bunch feedback system

H(s)= | S 0 = H(s)Iy (2.22)

where Iy is N x N identity matrix. An important property of such a feedback is invariance
under coordinate transformations. Let coordinate transformation T be the transformation
from bunch to EFEM basis. Elements of matrix T are given by the definition of the DFT
in Eq. 2.7. Note that in the following discussion exact nature of the transformation matrix

is unimportant as long as it is nonsingular. Then we have

Yl
Il
—

<
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b = TF
G = TGT!
H = THT! (2.23)

If we substitute the expression for the feedback matrix from Eq. 2.22 into Eq. 2.23 we get

H=TH(s)INT ' = H(s)TT ' = H(s)Iy =H (2.24)

This shows that uniform bunch-by-bunch feedback is invariant under coordinate transfor-
mations. A system that applies identical feedback to each bunch applies the same feedback
to each eigenmode. If the feedback is resistive, i.e. it only modifies the real part of the
plant pole, its action will shift all eigenvalues along the real axis by the amount dependent
on the loop gain. For the negative resistive feedback eigenvalues shift left and at some gain
setting all of them are shifted to the left half plane (LHP) resulting in a stable closed-loop

System.

An important property of Eq. 2.24 is that it holds true even for asymmetric ring fill
patterns. As long as there is a linear coordinate transformation from the bunch coordinates
to the eigenmodes the uniform bunch-by-bunch feedback results in the same feedback being

applied to the eigenmodes of the uneven fill.

Let us consider a single-input single-output system consisting of an eigenmode plant and
a feedback system. The open-loop transfer function for eigenmode [ is given by K;G;(s)H(s)
where K is the loop gain parameter. In a physical feedback system with realizable transfer
function and transport delays there will be some maximum loop gain K*** above which
the closed-loop system becomes unstable. There is also a minimum gain K lmin below which
the system is unstable. For unstable eigenmodes this minimum gain is positive while for
the stable ones it is negative corresponding to positive feedback. To achieve longitudinal
stability one has to configure each eigenmode so that K lmin < Kj < K", With the uniform
bunch-by-bunch feedback there is a single adjustable loop gain since the same feedback is

applied to each eigenmode. Then for the overall system stability we need

max KM < mlin K
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Figure 2.12: Fragments of a root loci for a) an unperturbed (stable) eigenmode with pole at
—d, +iws. The open-loop poles of the system are marked by x. b) an unstable eigenmode.

The above inequality requires that there is a range of loop gains where all unstable plant
modes are stabilized and no eigenmodes are driven to instability by too high a gain. Usually
this is not a limitation since difference between the eigenvalues of the stable and unstable
modes is much smaller than the unperturbed eigenvalue. Let’s consider the root locus for
an unstable eigenmode with feedback. The locus starts from the unstable pole and moves to
the LHP. If we substitute a stable eigenmode the starting point is shifted by a small amount
without strongly changing the overall locus. This effect is illustrated in Fig. 2.12 for two
eigenmodes - one with eigenvalue of —d, + iws and another one with unstable eigenvalue
A, estimated on the basis of experimental measurements. Both root loci are plotted for the
same range of loop gains. In this case the unstable eigenmode has narrower stability range

than the unperturbed mode.

In general, arbitrary eigenmode feedback can achieve better damping since feedback can
be optimized on the per-mode basis. In practice, for the systems of relatively weakly coupled
oscillators (eigenvalue shifts are small) the restrictions of the bunch-by-bunch feedback do
not limit system performance. Only when the mode-to-mode differences between eigenvalues
are large relative to the unperturbed eigenvalue the bunch-to-bunch feedback becomes a

limitation.
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2.10 Digital bunch-by-bunch feedback system

A programmable system was developed to control longitudinal instabilities in the ALS
storage ring and PEP-IT and DA®NE colliders [34] - it has since been installed and operated
at SPEAR, BESSY-II and the PLS [35, 36].

The system to be described here uses bunch-by-bunch digital signal processing to gener-
ate feedback correction signal. Since this is a diagonal bunch-by-bunch system it is sufficient
and complete to consider its operation as a feedback loop around any one bunch. Fig. 2.13
shows a conceptual block diagram of such a feedback loop. Longitudinal position of a bunch
is measured in the front-end detector and digitized by the analog-to-digital converter (ADC).
Signal of a single bunch is digitized at the revolution frequency. In this feedback system we
take advantage of the fact that longitudinal oscillations are slow relative to the revolution
frequency, so a bunch oscillating at the synchrotron frequency takes many revolutions to
complete one period. Longitudinal bunch motion observed on every turn is oversampled
and one can reduce the sampling rate (downsample) without significantly affecting the per-
formance of the feedback system [37]. Downsampling is done by processing one out of every
Nygs samples - Ngg is called downsampling factor. Downsampling factor is chosen so that
there are 4 to 6 samples per synchrotron oscillation period. Table 2.1 shows the revolution
and synchrotron frequencies for several accelerators as well as the downsampling factors
being used. After downsampling the bunch signal is processed by a digital signal processor
(DSP) using discrete filtering process such as finite impulse response (FIR) or infinite im-
pulse response (IIR). The computed actuator signal (kick) is sent to the holdbuffer. The

function of the holdbuffer is to maintain the kick value for a given bunch between updates.

Other driving terms and Sensor noise
external disturbances

Bunch k¥ |————] Detector 4@

Digital filter Downsampler
DSP l, N, ds

Kicker

DAC |-a—| Holdbuffer |-a— t— ADC |-

Figure 2.13: One bunch slice of a digital bunch-by-bunch feedback system
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Table 2.1: Longitudinal feedback configuration parameters for several installations

Machine PEP-IT BESSY-II ALS DA®NE
Bunch crossing rate, MHz 238 500 500 368
Number of bunches 1746 400 328 120
Revolution frequency, kHz 136 1250 1524 3067
Synchrotron frequency, kHz 6 8 12 33
Downsampling factor 6 29 31 11
Bunch sampling rate, kHz 22 43 49 272

If one were to produce actuator signal only once per downsampling period the feedback
gain would be reduced by approximately 1/Ngs. Holdbuffer output is converted to an ana-
log signal by the digital-to-analog converter (DAC) and applied to the bunch via back-end

modulator and the kicker.

2.10.1 System architecture

The feedback processing channel is implemented in a mix of VXI and VME modules. The
following modules are implemented in the VXI format: timing, front-end, downsampler,
holdbuffer, and back-end. VME module list consists of the interface board and the DSP
board. The overall architecture is illustrated in Fig. 2.14. Next we will consider functionality

of each system module.

Timing module

This module receives the RF master oscillator signal and the revolution clock (fiducial).
The fiducial signal is first synchronized to the RF clock. Every revolution the timing
module counts the number of RF clock edges between the fiducials. If the counted value
differs from the programmed number of bunches one of the two error bits is set - missing
or extra fiducial. Additional functionality in this module includes programmable bucket
trigger signals and temperature monitoring. Due to high density of the ECL logic on the
VXI modules thermal management and monitoring is critical for stable system operation.
The modules are equipped with multiple temperature sensors which are monitored via the
timing module. The temperature signals are compared to the adjustable trip limits and
if these are exceeded VXI power supply is turned off to prevent overheating. The control

system polls the temperature readings at 1 Hz rate for operator information.
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Figure 2.14: Overall feedback system block diagram showing different modules and the
interconnect buses. Bunch data transmission from the downsampler to the interface boards
and from the interface boards to the holdbuffer via 1.3 Gbps links is not shown.

Front-end module

Front-end module houses most of the analog signal processing involved in measuring longi-
tudinal bunch positions. Some relatively bulky functions, notably the comb generator, are
housed in the system oscillator chassis described later. In spite of that we will present here

the complete front-end analog signal processing chain.

Bunches passing through the button beam position monitor (BPM) structure generate
capacitively coupled (differentiated) fast pulses at the output electrodes [38]. The signals
from all four electrodes are summed to reduce sensitivity to transverse beam position and
passed through a comb generator filter. This filter is a passive stripline structure which
produces a series of uniformly spaced pulses (burst) from a single input pulse [39]. The
repetition rate of the burst is chosen to be the T;/6 so that the output signal is bandpass
filtered around 6 f,r. The number of pulses is set to 4 producing a 2/3 of the RF bucket long
burst. This burst is mixed with the sixth harmonic of the RF frequency locked to the master

oscillator. Phasing of the RF-derived carrier is adjusted to produce phase detection - the
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output signal for bunch m with current i,, is proportional to i,,sing,,. For small oscillations
around synchronous phase the phase detector output is close to i,,¢.,,. The baseband pulse
produced in this manner has a flat top lasting 2/37}; which minimizes sensitivity of the
system to sampling clock jitter and synchronous phase shifts which change the time of
arrival of the bunch and the timing of the phase detector output. The output of the double-
balanced mixer is low-pass filtered to eliminate 12f.¢ as well as carrier leakage.

Front-end module includes several service functions in addition to the broadband phase
detection. These are phase servo loop, RMS detector, and system oscillator digital interface.
The phase servo loop integrates the phase-detector output signal and adjusts the phase
shifter in the carrier path to maintain zero DC at the output. The loop helps to eliminate
DC offsets due to synchronous beam phase drifts. The front-end broadband RMS detector

is monitored by the control system and provides information about system stability.

Downsampler

The downsampler module is a programmable stream processor operating on a basic unit
of four samples - a group. The downsampling sequence is defined in the random-access
memory (RAM) by a series of 32-bit words - a program. The address of the RAM is driven
by two counters: the group counter and the turn counter. The group counter is incremented
at fyr/4 and is synchronized to the ring fiducial signal. The turn counter is controlled by
the downsampler program. At the end of each turn a bit is set in the program to increment
the counter. After Nys revolutions the counter is reset to 0. The address into the RAM
defines the group of four bunches and the turn in the downsampling sequence. At each
address the program word defines the operation to be performed on the particular group on
that turn. One can ignore the group or direct it to one of the four possible 1.3 Gbps serial
links. Each link can be connected to a VME bus mastering interface board within a separate
VME backplane. The interface board accesses up to five four-processor DSP modules which
perform the feedback computation. The downsampler program word includes bits to select
the physical link for the data as well as the logical number of the DSP module to send the
data to. Additional bits are used to define the address in the holdbuffer memory (discussed
below), generate holdbuffer control signals and to control program flow. Definitions of the
bits making up the downsampler program word are shown in Table 2.2.

The program for the downsampler is generated based on several inputs. The system

configuration - map of available DSP boards and links is used to schedule the transactions.
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Table 2.2: Bit definitions in the downsampler program word
| Bits | Definition |

0:4 DSP buffer pointer
5:7 DSP base address
8 Link 0 enable

9 Link 1 enable

10 Link 2 enable

11 Link 3 enable
12:13 | Reserved

14 Holdbuffer stop bit
15 Holdbuffer start bit
16:26 | Holdbuffer address
27:28 | Reserved

29 Increment turn count
30 Clear turn count
31 Halt

The goal is defined by a sampling pattern consisting of all groups to be processed. Normally
the pattern will include all groups except for a small ion-clearing gap. Program generation
constraints include the minimum time between accesses to one link and the DSP processing

time.

Interface board

Data from the downsampler module arrives to the interface board within a VME back-
plane. The interface board is equipped with 1.3 Gbps link receiver and transmitter. The
transmitter is used to send the DSP output to the holdbuffer module. The interface board
exchanges information with the DSP boards in a VME read-modify-write cycle. During
this transaction the feedback output for the previous group is read out and the new data
for the current group of 4 is sent to the DSP board. Bunch data is transferred as four 8-bit
wide samples for a total of 32 bits. Address field in the read-modify-write transaction is
made up from the base address of the DSP board and the additional information - DSP
buffer address, filter and exception bits.

Together with group data the downsampler sends some service information on the serial
links. The holdbuffer address is sent to the interface board which forwards it to the hold-
buffer with the correction data obtained from the DSP board. DSP buffer address provides
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a unique group number for a given DSP board. Two filter bits are sent to all DSPs and are
used to select one of 4 sets of feedback coefficients. This capability can be used to adapt the
system to changes in beam dynamics. It is also utilized to trigger diagnostic measurements.
A single exception bit is sent to only one DSP. Within the downsampler it is defined by
a register value holding the bunch number of interest. This provides a way to modify the

feedback processing for a single bunch.

DSP board

A DSP board is populated with four AT&T 1610 DSPs running at 25 ns cycle time. Each
byte of the 32 bit VME bus is connected to the upper eight bits of the parallel input/output
(PIO) port of one DSP via a simple interface and the lower eight bits of the PIO receive DSP
buffer address from the VME address bus. DSP1610 processors are paired with 32 Kbyte
dual-port memories - a total of 4 per board - used to download the filter algorithm to the
DSPs and to exchange data between DSPs and the backplane controller. During system
operation the VME bus is in continuous use and cannot be utilized for control or diagnostics
of the DSP boards. Each DSP board is equipped with the VME subsystem bus (VSB)
interface used to control the DSP1610 processors as well as access the diagnostic memory.
The dual-port memory is routinely used to make beam diagnostic measurements without
interrupting the feedback process.

DSP processors execute a tight, hand-optimized processing loop which computes FIR
or IIR filter output based on programmable coefficients. The code executes 12-tap FIR
computation including data I/O and synchronization in 1675 ns. The host can use the
dual-port memory to reload the filter coefficients to the DSP while the feedback process is
running. Coefficient table is first loaded into the memory and then an interrupt is issued
to the DSP which then copies the new coefficients to the on-chip RAM. This is an invasive
process which interrupts feedback action for a short period of time on the order of 200-
300 ps. Only one DSP board is reloaded at a time, so that feedback control is removed
from only a small part of all bunches. This technique allows one to modify the feedback

controller on-line without disturbing beam stabilization.

Holdbuffer

Functionality of the holdbuffer centers around a block of static RAM (SRAM) large enough
to hold data for all of the groups in the ring. The SRAM is being continuously read out at
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sequential addresses incremented at the group rate of fif/4. From each location correction
values for a group of four bunches are sent to the DAC and converted to analog signal at
the RF frequency after parallel to serial conversion. Holdbuffer SRAM has 4 ns cycle time
which allows two access transactions per 8 ns group cycle at 500 MHz RF frequency. When
kick data is received from the serial link it is written to the holdbuffer SRAM at the address
indicated by the holdbuffer address sent from the downsampler via interface board. Each
group gets updated once per downsampling period. The kick value is read out on every

turn and applied to the bunch between updates - it is being "held”.

Back-end

Output signal of the holdbuffer DAC has baseband spectral structure with largest com-
ponents in the DC to f;f/2 band. Longitudinal kickers typically have bandpass response
centered near 1 GHz. The kick signal has to be translated in frequency to efficiently drive
the kicker. This is accomplished in the back-end module. Baseband kick signal amplitude
modulates a carrier signal to produce the kicker drive. Carrier signal used in this system is
a quadrature phase shift keying (QPSK) modulated waveform at an odd multiple of fi¢/4.
Different installations use QPSK carriers at 9/4 f,; (PEP-II, ALS), 11/4f,¢ (BESSY-II), and
13/4fx (DA®NE, PLS). At the first glance this seems to be an odd frequency choice, but
there are several strong reasons to select such a frequency. Suppose carrier frequency is an
RF harmonic. Optimal timing of a bunch relative to the kick voltage is at the peak. The
following bunch arrives at the peak of the carrier as well due to the Ty periodicity. Due
to the finite bandwidth of the back-end processing channel and the kicker there is residual
kick from the preceding bunch when the new one passes through the kicker. The residual
kick is at the peak and produces unwanted coupling between the bunches. Now consider
the 9/4f,¢ carrier. The kick from the preceding bunch is sampled at a zero crossing by the
following one therefore the coupling is minimal. However one cannot use such continuous
wave (CW) carrier directly since timing bucket 0 on a positive peak we will get zero voltage
for buckets 1 and 3, and negative voltage for bucket 2 due to the quarter-period phase shift
over Ty¢. To solve this problem the carrier is phase-modulated with —90 degrees phase shift
(QPSK) every RF period.

Another reason for using QPSK carrier modulation is that it equalizes the feedback gain
for different eigenmodes as shown in [40]. Yet another motivation is that this modulation

scheme allows to center the kicker response away from the RF harmonic where the beam
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has significant power, reducing the power deposited in the kicker structure from the beam.

Back-end module generates QPSK carrier from 9/4 f,¢ and modulates it with the hold-
buffer output signal. Additional functionality on the module includes optical ”woofer” link,
back-end RMS power monitoring, and programmable attenuation of the output signal. The
"woofer” link is a low-pass filtered version of the holdbuffer output used to modulate the
ring RF system reference phase. This "woofer” path uses the RF system as a high-gain
low-frequency kicker - analogous to an audio woofer channel. The "woofer” functionality
is extensively used to help stabilize PEP-II rings which are equipped with wideband RF

system capable of affecting approximately 10 lowest frequency eigenmodes.

Additional components

In addition to the modules described above, a longitudinal feedback system includes system
oscillator chassis, VXI and VME/VSB slot-0 processors, programmable delay lines, power
amplifiers, and diagnostic equipment.

System oscillator chassis generates carrier signals used in both the front-end and the
back-end. Sixth harmonic of the RF frequency is generated in a 24x frequency multiplier
driven by the fi¢/4 signal. The multiplier combines PLL stage with a cavity-filtered step
recovery diode multiplier in order to minimize the output phase noise. The QPSK carrier
at 9/4, 11/4, or 13/4 is produced by exciting a step recovery diode with f,/4 and filtering
around the necessary harmonic. Front-end comb generator is also located in the system
oscillator. Another important function in this chassis is a fake beam generator. Using a
step recovery diode a simulated bunch signal is generated with repetition rate every four
buckets. The fyf/4 carrier at the input of the diode can be phase modulated at a several
kHz frequency to simulate longitudinal oscillations. A set of coaxial RF switches is used to
select between real and fake beam signals. These switches are controlled from the front-end
module using a dedicated digital interface. The interface also includes several status signals
such as carrier multiplier PLL lock status and output RF signal detectors.

Each VME and VXI backplane in the longitudinal feedback system is equipped with
a slot-0 processor. These single board computers (SBCs) use VME and VSB buses to
configure and monitor the feedback modules. The VXI crate is controlled by a National
Instruments VXIcpu-030 SBC based on Motorola 68030 processor. VME/VSB backplanes
are managed by Force CPU-40 or Motorola MVME166. All slot-0 controllers run VxWorks

real-time operating system and use Experimental Physics and Industrial Control System
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(EPICS) software for operator interface. Each SBC is linked to the outside world by the
Ethernet connection.

Programmable delay lines are used in both the front and the back ends to adjust signal
timing. In the front end a delay line is placed directly before the ADC input and allows
one to adjust the timing of the bunch signal relative to the sampling clock. In the back-
end a delay line is located between the modulator output and the power amplifier input.
This device provides adjustment of the kick signal relative to the bunch which samples the
voltage in the kicker gap. The delay lines are controlled via GPIB interface from the VXI
slot-0 controller. GPIB is also used to configure and monitor the MilMega solid-state power
amplifiers. The interface allows one to turn amplifiers on and off and to monitor forward
and reflected power levels and the fault status.

Several diagnostic instruments such as FFT and spectrum analyzers are also controlled
via GPIB. These devices are used in automated timing procedures which determine the

optimal settings for the front and back end delay lines.



Chapter 3
Transient diagnostics

Measurements of parameters of the unstable longitudinal beam dynamics present special
challenges and are vital parts of feedback system configuration and maintenance. In the
open-loop configuration there are several possible situations - the beam may be oscillating
longitudinally with amplitudes sufficient to cause nonlinear saturation of the exponential
growth, or the beam may be lost when oscillation amplitudes exceed some aperture. In either
case the open-loop measurement provides little information on the small-amplitude beam
dynamics which determine the performance of the feedback. In the closed-loop configuration
the motion is normally damped to the noise floor and little information can be gained from
the beam signals. Certainly one can measure the closed-loop transfer function by exciting
the system at a summing input and observing the response at some point in the loop.
However to extract beam dynamics exact knowledge of the feedback loop transfer function
is needed. In addition determining all the unstable modes of interest requires numerous
network analyzer sweeps at each revolution harmonic from 0 to fy¢/2.

In order to avoid these problems we developed a family of transient diagnostic techniques.
In these techniques the system is perturbed and the response is recorded by the feedback
system. The longitudinal coordinates of all bunches are sampled and can be recorded in
the digital memory for tens of thousands of turns. The individual measurement of the
instantaneous phase of each bunch, in conjunction with the long time record of motion is
a very powerful source of information about the beam dynamics and machine impedances.
The frequency resolution available in these long recordings allows measurement of modal
oscillation frequencies with resolution of a few Hz, while sampling all revolution harmonics

over the full RF bandwidth. A single transient measurement without external excitation
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Figure 3.1: Time sequence of a transient diagnostic measurement.

can provide information about the fastest unstable eigenmodes. To study slower unstable
or even stable modes narrowband or wideband external excitation is applied.

The general time sequence of events for such a measurement is presented in Fig. 3.1.
The diagnostic measurement starts upon a software or a hardware trigger. The software
trigger is normally used to acquire beam data under operator control. It is also possible to
configure the external software to periodically trigger acquisition of the longitudinal beam
motion. The hardware trigger is used when the recording needs to be synchronized to
events external to the feedback system such as the injection process or manipulation of
other feedback loops, e.g. transverse bunch-by-bunch feedback.

The trigger event causes the feedback system to switch the active coefficient set of the
control filter and enter the hold-off period. The hold-off delay provides a way to position the
recording window with respect to the longitudinal transient. For the open-loop grow/damp
measurement (filter 1 has zero gain) growth of the unstable motion starts after the trigger
event. The time before the motion rises sufficiently above the noise floor of the digitized
signal depends on the feedback loop gain and the growth rates. The adjustable hold-off
period is used to delay the recoding until the motion reaches detectable amplitudes. In
cases when the growth rates are large no hold-off delay is used and data acquisition starts
immediately after the trigger.

Once the hold-off delay elapses the feedback system starts recording input beam motion

in the dual-port memories attached to each DSP. A programmable coefficient set switch
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breakpoint divides the acquired data into two parts measured under different feedback
conditions. For the open-loop grow/damp the first part is the open-loop (growth) transient
and the second part is the closed-loop (damping) transient. Upon filling all of the available
dual-port memory with acquired data the recording stops and the data can be read out
via control bus. After the recording has stopped the DSPs continue providing feedback
corrections using the original control filter and the transient measurement can be triggered
again.

This transient diagnostic interrupts the normal feedback process for a precisely con-
trolled period of time. There is some risk of losing feedback control if the beam motion
grows to large amplitudes in the open-loop portion of the transient. When the feedback
loop closes large beam motion saturates the feedback correction signal and the effective
loop gain drops. If the reduced gain is insufficient to overcome the instability growth rates,
the oscillations continue to grow and the feedback control is lost. If this occurs the beam
current must be subsequently reduced to the point where the feedback damping becomes
larger than the instability growth rates to recover control. In most cases the risk of losing
control can be minimized by conservatively selecting the breakpoint timing as well as the

hold-off delay and then iteratively adjusting these parameters.

3.1 Types of transient diagnostics

Here we will concisely discuss each of the distinct transient diagnostics. Every technique is

tailored to the measurement of a particular set of beam parameters.

3.1.1 Closed-loop recording

This is a widely used measurement technique and for a very good reason - this diagnostic
is completely non-invasive. In this case the coefficient set 1 is the same as set 0. Thus the
feedback control conditions are not affected by this measurement and there is no chance of
adversely influencing the beam. Several important parameters are measured in this diagnos-
tic. First, this technique is used to verify the feedback control and measure the steady-state
motion within the loop. Second, the recording can be used to compute the steady-state
actuator effort and check for saturation. Third, bunch-by-bunch currents and synchronous
phases can be extracted from the same data set. Asymmetric fill patterns excite longitudi-

nal impedances at the multiples of the revolution frequency. These asymmetric fills produce
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Figure 3.2: Average (top) and RMS (bottom) of bunch data recorded in PEP-IT LER at
1732 mA.

a resulting voltage transient which shifts individual bunch synchronous phases, generating
the so called gap transient. From bunch currents and synchronous phases impedances at the

multiples of the revolution frequency can be extracted as we will demonstrate in Sec. 4.2.2.

A closed-loop recording is illustrated in Fig. 3.2 showing average and RMS values for
the bunch data in PEP-II LER. The mean positions of bunches are non-zero due to the
synchronous phase transient. Using the record one can check for proper centering of the
transient within the ADC input range. Low RMS amplitude of motion reflects good control
of unstable modes and is determined by the feedback gain and external noise. From the
same data we extract bunch-by-bunch currents and synchronous phases as illustrated in
Fig. 3.3. Bunch phases are determined relative to the phase of the master oscillator so

there is an overall DC offset from the physical synchronous phases.
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Figure 3.3: Bunch-by-bunch currents (top) and phases (bottom)

3.1.2 Grow/damp measurement

Another fundamental measurement is the grow/damp. In this measurement the feedback
conditions are modified during the transient. A traditional choice of filter 1 is a zero gain
filter which results in an open-loop measurement before the coefficient switch breakpoint. In
the open-loop conditions unstable modes grow exponentially due to noise and the feedback
system records the motion of the bunches during the transient.

In some cases the expected growth rates are very high and opening the feedback loop
even for a short time is considered risky. Then a modified grow/damp measurement is used
with filter 1 configured to provide feedback control at a reduced gain. This experiment
does not directly quantify the instability growth rates. These can be estimated using the
knowledge of filters 1 and 0 and by comparing the growth rates measured with filter 1 to
the damping rates determined directly from the second portion of the transient.

Conversely, when the growth rates are very slow one might use positive feedback for
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filter 1 as a way to excite the motion to a measurable level.

3.1.3 Driven grow/damp measurement

Stable eigenmodes can be characterized by driving the mode of interest to a measurable
oscillation level before the transient. In this case a function generator is configured to
output a sine wave at the frequency corresponding to the upper synchrotron sideband of
the I-th revolution harmonic in order to excite EFEM [. The excitation signal is given by
Asin((lwg + ws). The signal is applied to the inverting input of the feedback ADC (in this
case used as a summing junction). The amplitude of the excitation is adjusted to achieve
steady-state motion significantly above the noise floor of the ADC. Too large an amplitude
can lead to saturation of the output kick and must be avoided. The excitation signal is
amplitude modulated by the general-purpose TTL output of one of the DSP processors.
The effect of the modulation is to turn off the excitation during data acquisition. The
resulting data set provides information about the open and closed-loop damping rates of

the selected eigenmode.

3.1.4 Injection transient

An injection transient is an example of a measurement synchronized to the external trigger
signal, in this case the injection system clock. The goal of such a measurement is to record
the bunch motion after charge is injected into the bucket. Such a measurement can be
used to quantify the phase and energy errors in the injection system. Complete analysis of
the data is complicated since the motion is not limited to centroid oscillations. Injection
into an unfilled or empty bucket produces mostly centroid energy and position oscillations.
If the bucket is partially filled the motion after injection is a superposition of motions of
existing and newly injected charges. The feedback system measures the centroid longitudinal
position and, thus, provides incomplete information about the distribution of particles in
the longitudinal phase space. More detailed studies of the injection transients are made

possible by the use of a streak camera [41].

3.2 Projection onto the even-fill eigenmode basis

The feedback system records the motion of all bunches in a transient measurement. The raw

data provides information about the instabilities in the bunch basis. Since analysis of the
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motion is much simpler in the eigenmode basis a coordinate transformation is needed. As
shown in Ch. 2 the transformation from the bunch coordinates to the EFEM basis is a DFT.
This transformation is efficiently computed using the fast Fourier transform (FFT). However
the transformation has to be applied to a vector of bunch positions sampled simultaneously.
The longitudinal feedback uses a single pickup and the bunches are observed sequentially
over the period of one revolution. In addition data is recorded with downsampling so that
a given bunch is sampled once in a downsampling period consisting of multiple turns. Thus
the bunch data must be time aligned before applying the FFT. In addition we bandpass
filter the bunch signals around the synchrotron frequency and convert the measured real
trajectories to complex signals. The conversion is accomplished using the Hilbert transform

and provides estimates of the phase-space motion trajectories [3].

3.3 Estimation of modal eigenvalues

As shown in the previous section from a grow/damp measurement we obtain the complex
trajectories of the even-fill eigenmodes. Next we would like to estimate underlying system
dynamics that determine the motion. In each transient there are two distinct segments:
growth (open-loop) and damping (closed-loop). In the open-loop case, as shown in Sec-
tion 2.6, motion is defined by a single complex pole. Position of that pole is the modal
eigenvalue A. For the closed-loop we will assume that system dynamics are dominated by a
single complex pole, i.e. the motion is still described by a complex exponential. Thus, for

both parts of the transient measured trajectories follow the analytical function

y(t) = ae™ + e, + ie;

where a is the complex factor describing modal magnitude and phase at ¢ = 0, A is the
complex eigenvalue, €, and ¢; are Gaussian-distributed measurement noises. Measurement
consists of complex samples yi, k = [0, N — 1] taken at times t; = kTs. Such a measurement
is illustrated in Fig. 3.4 showing real and imaginary parts of the open-loop trajectory of mode
233 at the ALS. Our goal is to estimate values of a and A such that some distance function
between analytical exponential and g is minimized. Let’s write noise-free trajectory as a

function of real parameters
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Figure 3.4: Trajectory of mode 233 at the ALS during a growth transient.

fe(z) = mgeel@itioa)te (3.1)
a = x3e
A = x1+ixs

A convenient choice of a distance function is sum of squares:

N-1
L(z) =Y |fu(z) — il
k=0

Minimization of L(z) was implemented using quasi-Newton line search method [42].

In order to improve the optimization efficiency the gradient of the distance function was
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computed:

N-1
VL(z) = 2 AR(fe(x) — yr)R(V fr(2)) + S(fi(@) — yr)S(V fr(2))}
k=0

trfr ()
ity fr(2)

e(@1tize)ty+izy

ifr()

Vi(z) =

Unfortunately function L(z) has many local minima. For example its behavior versus

x2 is shown in Fig. 3.5. In order for the numerical optimization to converge on the global
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minimum, starting point 2 must be carefully chosen. The following method has been
developed to estimate the starting point. The growth rate () is estimated by doing a
linear least-squares fit to In |yg|. Oscillation frequency is obtained by examining the FFT
of the transient and choosing the location of the peak of the magnitude as z9. An obvious
choice for an estimate of amplitude and phase is yg. However for slow growth transients
that measurement is dominated by noise and has little relationship to the phase of the
exponential. A better estimate is again obtained from the FFT. The sequence given in

equation Eq. 3.1 has the following transform

1— eNTS (z1+i(z2—wm))

F(wpy) = xz3e™ 1 — oTs (@1 +i@a—wm))
2mm
= =0,1,...,. N -1
UJm NTS ) m bl ) )

Let w; be the location of the peak of the magnitude of the FFT. Then zo — w; = 0.

Consequently amplitude and phase are estimated as the polar coordinates of

. 1 — eTst
xze'™ = F(wy) c

1— eNTSx(l)
Numeric optimization provides us with & that minimizes the distance function. It is
important to know the accuracy of that estimate. Let us consider Taylor series expansion

up to quadratic term of the distance function L(z) at . At a minimum VL(Z) = 0, so that

L(z) = L(%) %;&Ekéa}z (2 — &) (21 — &) + -+ -

Disregarding higher-order terms we can express the covariance matrix for the least-

squares estimate as [43]
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where H(z) is the Hessian matrix of the distance function defined as

_ 9%L(x)
N c%zkaxl

Hy(x)

Standard deviation of Zj is given by \/Vii. Elements of the Hessian are given by

PL(r) 33 l% <8fk(a:)) 0 (8fk(x)> FRUA(@) — )R (asz(x)>
k

00Ty, O0xm Oxy, 00z,
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In Fig. 3.6 estimation of the eigenvalues is shown for a grow/damp transient taken at the
ALS. The feedback is off during the first 15 ms of the transient and unstable mode 233 grows
due to noise. Next feedback turns on and starts damping the unstable motion. Absolute
value of the error is plotted to demonstrate that fx(Z) and yi agree in both magnitude
and phase. In this section we’ve made an assumption that measurement noise is Gaussian-
distributed. In order to verify this assumption we will examine the residual errors for the
above fit. Figure 3.7 presents a histogram of the real parts of the residuals for the damping
part of the transient in Fig. 3.6. It shows excellent agreement with the scaled Gaussian
probability density function with variance computed from the residuals.

Joint estimation of growth rate and oscillation frequency has several advantages over
techniques presented in [2, 3] that separately estimate each quantity. Exponential fitting
to the envelope of motion has large errors when noise levels are high. Joint estimation is
frequency-selective and, as a result, is less sensitive to noise. Conversely, when phase angle
of the transient is used to determine the oscillation frequency, useful signal-to-noise ratio

information contained in the amplitude is discarded.
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Chapter 4
Beam dynamics measurements

Coupled-bunch instabilities must be carefully characterized to be successfully controlled. As
we showed in Ch. 3 a digital bunch-by-bunch feedback system provides a powerful tool in
the analysis of these instabilities. The ability to quickly measure the complex eigenvalues of
the unstable modes allows one to map the dependence of these eigenvalues on the operating
conditions. One of the most important dependencies is the relationship of the growth rates
and oscillation frequencies of the EFEMs to the beam current. This relationship defines
the required performance of the longitudinal feedback system. The range spanned by the
imaginary parts of the eigenvalues must be contained within the bandwidth of the feedback
controller. Similarly, the growth rates define the minimum gain of the feedback.

Positions of the eigenvalue A; as a function of beam current Iy trace a curve in the
complex plane. We will call this curve an eigenvalue locus based on its similarity to the
root locus plot widely used in the analysis of the feedback systems. The shape of the
eigenvalue locus depends on many factors. In the simplest case it is a straight line defined
by Eq. 2.9. This is true if both the synchrotron frequency and the effective impedance are
independent of beam current. However both of these parameters can change with beam
current. As we will show in Ch. 6 for accelerators with high-harmonic passive RF systems
the synchrotron frequency changes significantly with beam current. The effective impedance
can also change due to shifts in the higher-order mode (HOM) frequencies. These shifts are
driven by the changes in the resonator temperatures, RF cavity tuner positions, and other
effects. In accelerators with broadband RF feedback loops designed to control fundamental
impedances of the RF cavities [11], the performance of these loops varies with beam current

causing changes in the effective impedance Zlleff.
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In general, the functional form of the eigenvalue locus is not known. For the purposes of
the feedback controller design as well as feedback simulation having the exact dependence
is not critical. If the range of the operating currents of the accelerator is sampled with
reasonable density one can interpolate the eigenvalue locus using a low-order polynomial.
This technique is presented in Sec. 4.1. However in some cases the functional form is
known and can be used to characterize the effective impedance. This brings us to the
second important task in the beam dynamics measurements - identifying and quantifying
impedances that excite coupled-bunch instabilities.

Stable and reliable operation of coupled-bunch feedback is usually achieved via a com-
bination of several methods. These include impedance control in the design stage of the
accelerator components, selection of the feedback hardware (sensors, power amplifiers, kick-
ers), optimization of the control algorithms, and impedance management during machine
operation. Impedance management is defined as optimally tuning the resonances to min-
imize the induced growth rates of the coupled-bunch instabilities. Resonances include the
fundamental impedances of the RF cavities influenced via cavity tuners, parasitic HOMs
controlled by the resonator temperature or dedicated tuner, and other impedances. In or-
der to optimize the tuning of a resonator we need a way to measure the dependence of its
impedance on the control parameter. In Sec. 4.2 we will present two methods for character-
izing the complex impedances and optimizing their tuning with respect to the longitudinal

growth rates.

4.1 Measurement of the eigenvalue locus

Measurements of the eigenvalue locus have several applications. The locus serves as a
foundation of the controller design process by defining the required specifications. Once
the controller is designed, the eigenvalue locus is used to test the design and predict the
performance in the physical system. Information about the effective impedance can be
extracted from the eigenvalue locus.

Sec. 3.3 described how the complex eigenvalue is estimated based on the data from a
grow/damp transient. Here we will use multiple transients taken at different beam currents
to determine the eigenvalue locus. Figure 4.1 shows the growth rates and oscillation fre-
quencies for EFEM 214 in the ALS versus beam current. Linear fits to the data are shown

in both cases. Combining the real and imaginary parts into a complex eigenvalue we obtain
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Figure 4.1: a) Plot of measured growth rates of EFEM 214 in the ALS versus beam current.
First-order polynomial fit is shown as well; b) EFEM 214 oscillation frequency as a function
of beam current.

the locus plot shown in Fig. 4.2. At any given beam current Iy one obtains the full beam
model from the locus value A;(Iy) while the current provides the necessary information to
compute the loop gain. As a result modeling feedback system performance becomes possible

over the full range of beam currents.

By considering the derivatives of the real and imaginary parts of A;(Ip) with respect to
current we can estimate the effective impedance. In fact, the impedance can be estimated
from a single eigenvalue measurement. However using the slope information we avoid errors
due to the uncertain knowledge of the synchrotron frequency and the radiation damping.
In addition, the derivative is a natural way to use multiple data points in order to reduce
the measurement error. This technique is not directly applicable to the locus presented in
Fig. 4.2 due to the effect of the high harmonic cavities in the ALS on the synchrotron fre-
quency. Results obtained by applying this technique to the BESSY-II data will be presented
in Sec. 4.3.2.

As mentioned before, the locus is not necessarily a straight line. As an example we
will examine EFEM 240 in the BESSY-II. In this set of measurements two passive third
harmonic RF cavities were tuned in. As a result the synchrotron frequency changes with
beam current and the overall dependence of the oscillation frequency on the beam current
is nonlinear. Figure 4.3 shows the eigenvalue locus for this mode. The dependence of the

oscillation frequency on beam current is fit with the second-order polynomial, while the
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Figure 4.2: Eigenvalue locus for EFEM 214 in the ALS. Polynomial fit is used to plot the
locus line from 0 to 400 mA. Measured complex eigenvalues are shown as well.

growth rate is fit with a linear model.

4.2 Measurement of driving impedances

The interaction of charged particles in a storage ring or circular accelerator with the ring
impedance determines many important accelerator dynamics parameters. Single and multi-
bunch instabilities are the result of interactions of the bunches with the impedance of the
machine, and achieving high stored currents requires knowledge and control of the ring
components which produce the dominant narrow-band impedances. Traditionally longitu-
dinal impedances in an accelerator have been studied using both bench measurements of the

accelerator components as well as beam-based measurements. There are several laboratory
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Figure 4.3: Eigenvalue locus for EFEM 240 in the BESSY-II. Polynomial fits are used to
plot the locus line from 0 to 400 mA.

techniques to measure impedances of physical components based on propagating pulses on
wires through structures, and on measurements of transfer functions of structures as fer-
rite beads or conducting needles are moved within a cavity volume [44, 45]. Beam-based
impedance measurement techniques exist as well. The integrated longitudinal impedance of
a circular machine can be measured via the shift in synchronous phase vs. current of a single
test bunch [46, 47]. By varying bunch length in such measurements one can estimate the
parameters of the broad-band equivalent impedance [48, 49]. However such techniques do
not resolve individual higher-order modes. Information about these modes is very important
for predicting the thresholds of collective instabilities and for configuring accelerator and
feedback systems to stabilize the beam. Beam-based techniques are an important adjunct to
numerical calculations and lab bench measurements of RF cavities and components, in that

they can measure the actual installed impedance, which is strongly influenced by coupling
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ports, parasitic components, and environmental factors which can be difficult to include in

simulations or lab tests.

Frequency-resolved information about the impedance can be extracted from a measure-
ment of the beam transfer function (BTF) [50, 51]. However such a measurement can only
be performed below the instability threshold. In addition network analyzer sweeps have to
be repeated for each unstable mode making the BTF approach slow and cumbersome for
machines with large numbers of coupled-bunch modes. Yet another method for character-
izing the impedance is through observation of cavity coupling probe signals excited by the
beam [52]. This approach allows determination of the center frequencies and quality factors
of resonant modes, but the coupling of these resonances to the beam is measured only qual-
itatively. That is, resonances that do not couple to the beam will not be excited, however
the effect of the excited resonances on the beam is not clear from such a measurement. In
addition, certain resonances within the RF cavity may be weakly coupled to the probe.

In this chapter we present several beam-based longitudinal impedance measurement
techniques. These multi-bunch techniques measure the effective longitudinal impedance as
a function of frequency in a sampling bandwidth up to the RF frequency. This effective
impedance represents a sum of physical impedance components in the frequency bands N fy¢
to (N + 1) fi shifted to DC to f;f band and summed (the aliasing process). By comparing
the effective (aliased) impedance to the bench measurements of the accelerator components
various higher-order mode resonators can be identified and their complex impedance (and

parameters such as center frequency and Q) measured.

In Sec. 4.2.1 we describe how impedances can be estimated based on coupled-bunch in-
stability measurements. The relation between impedances and synchronous phase transients

is explored in Sec. 4.2.2. The experimental results are presented in Sec. 4.3.

4.2.1 Estimation of longitudinal impedances from coupled-bunch modal

eigenvalues

In Chapter 2 we presented the relationship between the longitudinal impedance and the

coupled-bunch eigenvalue. Recall that the eigenvalue shift of mode [ is given by

raefily
N Teehlo pers (0 4o, 11
1 Fohuws (lwo + ws) (4.1)
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Once the eigenvalues of the unstable modes A are measured via a grow/damp transient
it is possible to extract the effective (aliased) impedance vs frequency according to Eq. 4.1.
The aliased beam-derived impedance, combined with knowledge about the impedances from
bench measurements of ring components may then be properly assigned as an unaliased
impedance vs. frequency.

The periodic filling pattern of the beam samples the resonances at the upper synchrotron
sidebands of revolution harmonics creating a periodic sampling grid. Wideband impedances
are thus sampled at multiple points since they excite multiple eigenmodes. Consequently,
for the wideband resonators a single measurement can be sufficient to estimate the three
defining parameters: resonant frequency, quality factor, and shunt impedance. Narrowband
resonances are sampled by these eigenvalue measurements at a low number of points spaced
by wg. Thus it is necessary to move the resonant center frequency with finer resolution
to fully resolve and measure the impedance parameters. This adjustment of the center
frequency can be achieved via adjustment of cavity temperature or via motion of a dedicated
tuning probe. Some of the techniques described here are best suited to the measurement of

the narrowband impedances while other methods are better for the wideband cases.

4.2.2 Longitudinal wake potential and impedance from measured syn-

chronous phase transients

For the cases when ring fill pattern is uneven additional information about the impedance
can be obtained from analyzing the dependence of synchronous phases on bunch currents.
Previous work by Prabhakar [53] presents the relationship between the bunch currents,
impedances, and synchronous phases. This work is applicable to fill patterns where all
buckets are populated, however unevenly. For empty buckets, synchronous phase is not
measurable. Theoretically one can define the steady-state synchronous phase for empty
buckets, for example as that of a test particle of infinitesimally small charge. However
physical measurement of that sort is infeasible. Empty buckets (gaps) are present in most
uneven fill patterns and here we will extend the analysis of synchronous phase transients to
such fills.

Synchronous phase variations are caused by the beam excitation of the longitudinal
impedances at the revolution harmonics. The effect is illustrated in Fig. 4.4 showing 4
bunches with bunch 0 having much larger charge than others. Bunch 0 excites an oscil-

latory wake field. The synchronous phases of the following bunches shift by the amount
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Figure 4.4: Effect of the wake field on the synchronous positions of the bunches. The
sketch shows the synchronous positions (spaced by Ty¢) by green dashed lines, while the
bunch arrivals are indicated by the red stems. The height of these stems is proportional to
bunch charge. A large bunch (at time 0) produces a decaying sinusoidal wake field. The
equilibrium positions of the following small bunches (near times 1, 2, and 3) are altered
according to the wake field sampled by the bunches.

proportional to the wake potential sampled at times t = kTy¢ (for small shifts). Let us define
i and ¢, kK = 0,1,..., N — 1 as vectors of bunch currents and steady-state synchronous

phases respectively. Then according to [53] we have

-N

= 1.7}
|[Vecos(¢9)]

n

Py,

AR i ZI((mN + n)wo) (4.3)

m=—00
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where ®,, and I,, are DFTs (Discrete Fourier Transforms) of ¢ and ij respectively, V.
is the peak RF cavity voltage and ¢! is the synchronous phase in absence of wake fields.
Summation in Eq. 4.3 is analogous to that in Eq. 2.10 and describes aliasing of the longitu-
dinal impedance into the 0 to w,y band. However in this case unlike Eq. 2.10 longitudinal
impedance is not scaled by the frequency since in this case we are considering the equilibrium
mode.

Let us define set U as follows: m € U if and only if i, # 0 (set of RF bucket numbers
with non-zero stored charge). In the following discussion we will assume that a measurement

of ¢, is available for all m € U. By definition of inverse DFT

1 h—1 .
P = 77 > Ppel?wt (4.4)
n=0

Let us define N x N matrix T~1 as follows

1 6 n—
Tl = Neﬂ”Tl(k_l),n: 1,....,Nk=1,...,N

Then Eq. 4.4 can be written as gz_g =T 3. Combining this with Eq. 4.2 we get

- -N -
? T Wt (42)
A = T diag(I) (4.6)

Equation 4.5 describes an N x N linear system of equations with complex coefficients
and unknowns. Since ¢ is measured only for m € U, equations described by rows of matrix
A with indexes outside set U are not defined. In addition it is evident from Eq. 4.6 that
elements of Zt corresponding to weakly excited components of I are not well defined. We
will choose threshold level Iipreshold tO separate large components of I. Selection of the
threshold is dependent of the signal-to-noise ratio in the measurement of bunch currents
and synchronous phases as well as the values of N, V., and ¢%. Let us define set V such
that k € V if and only if |Ix| > Linreshola (set of revolution harmonic numbers with sufficient

excitation). Defining matrix AYY as consisting of rows U and columns V of matrix A we
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can write

. ~N

_ Uv 71
W = Veos@ > 2V 4.7

In the DFT of bunch currents DC term (Ij) is the largest, so it is always included
in V. Also, as mentioned in section 4.2.1 impedance is hermitian, so that Z,i = Z;r\}k_k.
Equation 4.7 can be rewritten as a real linear system of M equations with My, unknowns,
where My and My are sizes of of sets U and V respectively. Since only a few frequencies
are strongly excited by the fill pattern we normally have My, <« M. Thus we have an
overdetermined system of equations. Solving that system in the least-squares sense we

obtain ZT/

4.3 Experimental results

We will illustrate impedance characterization techniques described above with measure-
ments performed at the Advanced Light Source and BESSY-II.

4.3.1 ALS measurements

The goal of the first measurement is to quantify the HOM impedances of the two 500 MHz
main RF cavities installed at the ALS. Past longitudinal instability measurements have
determined that there are two dominant EFEMs, modes 205 and 233, excited by the
impedances in the main RF cavities [2]. Using the lab bench measurements made on the
spare cavity identical to the ones installed in the ring mode 205 had been identified as driven
by the T'My11 longitudinal mode at 812 MHz. Mode 233 has two potential driving HOMs,
at 2.353 GHz and 2.853 GHz [54]. The aliased effective impedance for ALS, as determined
from the bench measurements, is illustrated in Fig. 4.5'. The three abovementioned reso-
nances in the main RF cavities are marked as well as a strong HOM at 2324 MHz in the
bunch-lengthening third harmonic cavities.

Due to technical limitations it is only possible to fill 320 RF buckets at the ALS. All
of the transient measurements described here were taken with 320 equally filled buckets

followed by a gap of 8 RF buckets. Since the gap is small the eigenmodes of the fill are

!Courtesy of John Byrd
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Figure 4.5: Real part of the aliased longitudinal impedance obtained from the laboratory
bench measurements. Z1¢7f between 250 MHz and 500 MHz is folded into 0 to 250 MHz
range and shown in yellow.

close to those of an even-fill>. A group of instability measurements was made in order to
quantify the measurement noise. From 17 independent growth transients at 80 mA total
beam current we find Ag33 = (0.43 4+ 0.02) — (3.36 £ 0.02)j ms~!. Both the real and the
imaginary parts of eigenvalue shift have very small standard deviations. The errors are due
to the measurement noise and the variations in operating conditions of the accelerator that

cause changes in the growth rates.

In order to characterize the frequency dependence of the impedance we shifted the cen-
ter frequencies of the cavity HOM resonances by changing the temperature of the cavity. In
these measurements we swept the cavity temperature set-point in 11 steps over a range of
15°C. At each point the temperature was allowed to stabilize and the open-loop eigenvalues
of the unstable modes were measured using the transient grow-damp technique. During the

sweep of each cavity the temperature of the other cavity was held constant. In Fig. 4.6

2 According to Eqs. 7.10-7.13 in [6] diagonal coupling matrix of an even fill is modified in this case with
off-diagonal entries that are 8/320 = 1/40 of the magnitude of the on-diagonal entries. Resulting difference
between the eigenvalues of the uneven and even fills is negligible.



66 CHAPTER 4. BEAM DYNAMICS MEASUREMENTS

2.5 I
— 233 —fit
o o 233 - data
— 205 —fit
2r 8 o 205 - data ||
‘TT\
1))
E1l5 .
(0]
©
S
= 1 ]
o
©

o
o

11.85

11.8

11.75

H

[ =
o2} =
a1 ~

Frequency (kHz)

11.6

11.55

11. 5 | | | | |
30 32 34 36 38 40 42 44 46 48

Temperature (°C)

Figure 4.6: Growth rates (top) and oscillation frequencies (bottom) of modes 205 and 233
in main RF cavity 2 normalized to I, = 100 mA.

the growth rates and oscillation frequencies of modes 205 and 233 are plotted versus tem-
perature of cavity 2. As the total beam current changes during the experiment, all of the

measurements were scaled to a reference current I.of (100 mA) as follows:
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I
Mo = Ot d)ZE
[re
whoo= (wm— S)Imf—l—ws

where )\, is the measured growth rate, w,, is the measured oscillation frequency, and I, is

the beam current during the transient measurement.

The expected effect of changes in cavity temperature is to change the center frequency
wy of the narrowband HOMs [7, 9]. Since the relative change in frequency is small the

relationship between cavity temperature and center frequency is linear of the form

wr(T) = WT(TQ) + K(T — T()) (48)

where Tj is the arbitrary reference temperature and K is the temperature to frequency
conversion gain. The measurements presented above agree well with this model. However
these measurements do not provide a means to distinguish between the two possible HOMs
at 2.353 and 2.853 GHz as the source of the aliased impedance. To resolve this ambiguity
the ring was filled with a single bunch while a cavity probe signal was monitored on a
spectrum analyzer. We observed that change of cavity temperature had very small effect on
the magnitude of the revolution harmonics excited within the 2.353 GHz resonance while the
amplitude of the probe signal at 2.853 GHz revolution harmonic scaled with temperature
in agreement with the growth rate measurements. This leads to two conclusions. First, the
resonance measured in the temperature scan is at 2.853 GHz. Second, we can consider the

impedance presented by the 2.353 GHz HOM as constant when temperature is changed.

Once the HOM has been identified we can determine the shunt impedance R, from the
Ar,. However, in order to quantify the quality factor () we need to determine the dependence
of the resonator center frequency w, on the cavity temperature. We will use the relationship
presented in Eq. 4.8 and select the reference temperature Ty to correspond to the center
frequency of the HOM at the upper synchrotron sideband of the 233rd revolution harmonic
above Swy (critical temperature as defined in [7]). In this case the induced growth rate is

largest at Tp. Equation 4.8 becomes
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wr = wasz+ws+ K(T —1Tp)

w33 = 5wrf—i—233w0

In order to measure K a single bunch in the ring was filled to a nominal per bunch charge
and the cavity probe signal at wo33 was measured at two temperatures, 77 and 75. At the
cavity temperature 717 the ring RF frequency was increased by Aw so that the probe signal
magnitude equaled that measured at T5. The temperature to frequency conversion gain K

can then be computed as

wgggAw

K= msaw
wyt(To —T1)

Let us consider the eigenvalue of mode 233, Aszs3. From Egs. 2.8,2.9, and 2.10:

Aozz = A%+ Aoz = —d + jws + dexs +
raefily lers
thijs Zy g53 amz (233wo + ws)
dwyf + w
Zé'%];é a(w) = 7; ; Zg.ss?, oy (Bwrf + w)
I
R
Z” —_ S
2.853 GHz (W) 1+ iQw o — wr o))

where Aeyt is mode 233 eigenvalue shift due to impedances other than 2.853 GHz resonance
in the cavity of interest. We can parameterize As33 as a function of 5 real variables: Ry,
Q, To, Re(Aext), Im(Aext). Using nonlinear least-squares estimation we extract parameter
values. Figure 4.7 shows the measured and fitted growth rates and oscillation frequencies

for the main RF cavity 1.

Additionally we compared the impedance parameters with the cavity probe measure-
ments taken with a single bunch fill. The signal level at ws33 and neighboring revolution
harmonics excited by the beam is measured with the spectrum analyzer. These measure-
ments spanning 3 different temperatures were normalized for current and scaled to Ty using

the measured temperature to frequency coefficient K. In Fig. 4.8 the cavity probe signal
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Figure 4.7: Least-squares fit to the measured growth rates (top) and the measured coherent
frequency shifts (bottom) versus resonator center frequency for cavity 1.

is shown to have good agreement with the magnitude of the impedance extracted from the

transient measurements.

In Table 4.1 results for both cavities are summarized. Data from numerical computations
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Figure 4.8: Cavity 1 probe signal measured on the spectrum analyzer and the magnitude
of the 2.853 GHz impedance.

and bench measurements of a spare RF cavity are included [45, 55]. Both numerical model-
ing and bench measurements have large errors in their estimates of the shunt impedances 3.
As for the center frequency, error of bench-based measurement is quite small, only 600 kHz.
However this degree of accuracy is insufficient for prediction of the coupled-bunch insta-
bility growth rates as well as determination of the optimal cavity operating temperatures.
Note that characteristics of the 2.853 GHz resonances in two cavities differ significantly.
The cavities have RF windows of different designs which can cause variations in the R/Q
values. Additionally, the mode in question is close to the beam pipe cut-off frequency and
is strongly affected by the evanescent coupling of the fields in the cavity out the beam pipe
aperture. The beam pipe attached to each cavity is different and can also lead to changes in
the R/Q. Both of the above effects, while not definitive, can cause the observed differences
in R/Q.

Using growth rates vs. RF cavity temperature results it is possible to optimize operating
temperatures of the main RF cavities. Since temperatures affect the transverse impedances
as well as longitudinal impedances, mapping growth rates in horizontal and vertical planes
is necessary for a full understanding of the tradeoff. Results in all 3 planes have to be
compared with the damping rates generated by the feedback systems in order to select the

operating temperatures.

3In the bench measurement the shunt impedance is computed by multiplying the measured @Q value by
the R/Q calculated by URMEL modeling
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Since transverse growth rates have not been characterized, we have defined for each
cavity a range of temperatures where longitudinal growth rates do not change significantly.
As seen in Fig. 4.6 there are two such ranges for cavity 2, 32 °C' to 36 °C' and 45 °C to
48 °C'. The lower range of temperatures is not a good choice for machine operation due to
closeness to mode 205, so the higher temperature range was selected. Within this range the
temperatures have additionally been optimized empirically based on the performance of the
transverse feedback systems. Based on these optimizations cavity 1 was set to 46.5°C' and

cavity 2 to 45.5°C for nominal ALS operation.

At the selected temperatures we can estimate the relative contribution of the four dif-

ferent resonances driving mode 233. The growth rate can be expressed as follows:

1 raef2l leff 2.3 . lleff 2.8
— = A = VA ’ A ‘
p— Re(A233) Fohw. Re( 1 + 43 +

deff 2.3 + deff 2.8) . dr
1 1 1 1

where 7933 is the growth time of EFEM 233, 7'12'3 and 7'22'3 are the contributions to the

growth time from the 2.353 GHz HOM in cavities 1 and 2 respectively. Similarly 72% and

748 are the contributions from the 2.853 GHz resonances in the main RF cavities.

Using extracted fit data we find:
5g = 0.06ms™!

Table 4.1: Extracted impedance parameters for ALS main RF cavities compared to results
of numerical computation using URMEL-T and bench measurements of a spare cavity

Cavity 1 2 URMEL  Spare
F,, GHz 2.8532 2.8532 2.8081  2.85375
Ty, °C 38.614+0.07 41.3240.04 - -
R, kQ 55 =+ 2 97 +3 379 -
Q, x10° 2142 24+ 2 80.9 4

R/Q, Q 2.6 +0.2 4.0=£0.3 4.7 -
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1
53 = 0.13 ms_l
5"
1 1
—F —= = 0.37ms!
7_12_34—7_223 ms

As evident from these numbers at the optimized cavity temperatures the contribution to
the growth rate of the 2.853 GHz impedance is 1/2 of the effect of the 2.353 GHz impedance.

4.3.2 BESSY-II measurements

These measurements were aimed at quantifying longitudinal impedances at BESSY-II [56].
The machine was filled with 350 uniformly filled consecutive bunches out of 400 to a current
of 165 mA. A series of 15 transient grow/damp experiments was conducted over a period
of 10 minutes. During the measurements the machine configuration remained unchanged
except for the current decaying to 154 mA. There are three unstable EFEMs seen in the data:
281, 396, and 397. According to Eq. 2.9 complex longitudinal impedances can be extracted
from the measured growth rates and oscillation frequencies. However these measured values
are offset by Ag. Since the eigenvalue shift is small relative to the nominal synchrotron
frequency wg, errors in measurement of w, cause large systematic errors in the imaginary

part of the extracted impedance. This difficulty can be avoided if we consider the derivative

E?Im(Al) . E?Im()\l) .
dly N oy
2
TACTrt lleff
Fohio, Im(Z"7 (lwy + wy)) (4.9)

A least-squares fit to the oscillation frequency component returns two coefficients: slope
and offset. The slope will be used to extract the imaginary part of the impedance according
to Eq. 4.9. The offset part corresponds to the nominal synchrotron frequency. In Fig. 4.9
oscillation frequencies and least-squares fits are plotted for the three unstable modes. Data
for mode 281 indicates a very small imaginary part of the impedance (zero slope). At
the same time modes 396 and 397 have significant imaginary impedances of opposite signs.
Table 4.2 shows coefficients of the linear fits. All three fits agree on the estimate of w,. Using
the slope information to compute the imaginary part of the impedance and the growth rates

for the real parts we get:



4.3. EXPERIMENTAL RESULTS 73

Table 4.2: Coefficients of the linear fits to the oscillation frequencies vs. beam current

Mode Slope, Hz/mA  Offset, Hz
281 0+0.3 7411 4 46
396 3.43+0.16 7434 £ 26
397 -2.2440.11 7380 + 18

ZUT — (63.2£8.1) + (04 94)j kQ
ZVIT = (59.0 +3.3) + (1115 + 53)5 k)
Z0IT = (59.6 +£3.7) — (726 £ 36)5 k)

In BESSY-II there are four third harmonic RF cavities that are designed to improve
beam lifetime. During the above measurements center frequencies of all four cavities were
tuned between 3w, — 4wy and 3wy — 3wy (parked). Our impedance measurement for modes
396 and 397 correlates well with the impedance of the parked cavities. Since for both modes
the impedance is sampled far from the resonance, the imaginary component is much larger
than the real one. The larger imaginary part seen at mode 396 indicates that some of
the cavities are parked closer to the fourth revolution harmonic below 3f.;. Knowing the
original frequencies of these impedances allows us to compute the unaliased longitudinal

impedance:

ll
Z396
ll
Z397

(19.7 £ 1.1) + (373 £ 18)j kQ
(19.9 4 1.2) — (243 £ 12);j kQ

As described in Sec. 4.2.2 we can estimate the impedance by analyzing the synchronous
phase transient. In this case we estimate the impedance sampled at the revolution harmonics
rather than at their upper synchrotron sidebands. However for the high-Q resonance parked
between two revolution harmonics there is little change over the wg interval. In Fig. 4.10 the
synchronous phase transient in BESSY-II is presented. Top graph shows bunch-by-bunch
currents with 350 consecutive buckets filled nearly equally. The periodic excitation of the

impedance from the fill with gap generates oscillatory behavior of the synchronous phases
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Figure 4.9: Measurements of open-loop oscillation frequencies of three unstable modes and
least-squares linear fits to the data. Data for mode 396 shows positive slope of frequency
change with beam current indicating positive imaginary part of the impedance according
to Eq. 4.9, for mode 281 - nearly zero imaginary part, while mode 397 shows negative
imaginary impedance (negative slope).

shown in the bottom plot. Solving Eq. 4.7 in the least-squares sense we obtain the aliased

impedances. Least-squares estimate of the synchronous phases is also shown in Fig. 4.10 for
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Figure 4.10: Bunch-by-bunch currents (top) and synchronous phases (bottom) extracted
from BESSY-II dataset.

comparison with experimental data. Using 15 BESSY transient measurements described

above we get the following values:

Zhoe = (35+22)+ (344 4 14)5 kQ
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Zyr = (2246)— (233 +£15)5 kQ

These values show reasonable agreement with the results obtained from the growth rates
and tune shifts. The two methods of measuring the impedance can be used together in order
to determine unaliased frequencies. This is possible due to the fact that during aliasing into
Zleff the impedance is scaled by resonant frequency, while in ZT it is unscaled. Thus, from
the ratio of Zll¢ff to Z1 we can estimate the frequency of the physical impedance. From

Eq. 2.10 we have (assuming that one physical impedance dominates the aliased function)

|Z||6ff| (PN + 396)wo
396 Neo
24T 396wy

Pexp = =
|Z§96 | 400wo

| Zhgs (4.10)

Since p in Eq. 4.10 is an integer by definition, comparison above indicates that the
physical impedance is at 2w,t + 396wy = 3wys — 4wy. This conclusion agrees perfectly with

the expected position of the parked third-harmonic cavities.

4.4 Summary

In this chapter the eigenvalue locus has been defined. We presented a locus measurement
method based on the growth transient data acquired by the longitudinal feedback systems.

We have also demonstrated two new methods for measuring the impedance of accelerator
components using transient diagnostic capabilities of the DSP-based longitudinal feedback
systems. The essential feature of these methods is the use of the data sets of bunch motion
coordinates sampled over long time intervals. In one approach impedance is computed via
measurements of complex eigenvalues of the unstable coupled-bunch modes. The second
method extracts the impedance from the relationship between bunch-by-bunch currents and
steady-state synchronous phases. The methods extend the capabilities of laboratory bench
measurements by quantifying the physical impedances as installed in the accelerator. De-
pendence of the impedances on operating conditions such as temperature or tuner position
can be extracted and used to select optimal working points. By comparing information
obtained from growth transients with the analysis of the synchronous phase transients for

uneven fills it is possible to determine the spectral position of the driving impedance.
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There are certain limitations on the applicability of these methods. Transient measure-
ment depends on the beam being unstable for it relies on growing modes of oscillation to
quantify the impedances. Measurement of stable modes is possible via external excitation,
but is relatively noisy due to the slow transients involved. Synchronous phase transients can
be reliably observed only for large impedances. In addition, only a few revolution harmon-
ics are usually excited by the Fourier components of the bunch current distribution. Both
techniques sample the impedances at the spacing of the rotation frequency. Consequently
for the measurement of the narrowband resonances a controlled way to shift the resonator
center frequency is needed. For the cases when only one of the two techniques is applicable

additional information is needed to determine unaliased spectral locations.



Chapter 5
Feedback loop characterization

In order to operate the feedback system efficiently it is important to know the feedback loop
dynamics and be able to model the dynamics off-line. In Chapter 2 we developed a model
for the longitudinal coupled-bunch instabilities and the digital feedback system. In this
chapter the model will be extended to include the detailed models of the sampling process,
feedback processing, loop gains and transport delays. Characterization of the beam and
the feedback system will be presented using techniques described in Ch. 3. The feedback
loop system identification will be demonstrated with the measurement results from several

storage rings.

5.1 Feedback system model

The model of a digital bunch-by-bunch feedback system was presented in Sec. 2.10. In that
model we considered a one bunch slice of the full system. Such model is conceptually simple
since it replaces a MIMO system by a SISO one. However the motion of a given bunch is
a linear combination of multiple eigenmodes and is not easily modeled. To get around
this problem we will use the property of the bunch-by-bunch feedback system derived in
Sec. 2.9. That derivation showed that a bunch-by-bunch feedback system is invariant under
coordinate transformations. Thus we can replace the bunch dynamics in our model with
the single eigenmode dynamics. The block diagram for the overall system model is shown
in Fig. 5.1. The sampling of the bunch signal here happens at the downsampled rate. After
feedback computation a zero-order hold (ZOH) is created by the holdbuffer action. All cable
and processing delays are lumped together in a single block following ZOH. If the pickup

78
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Figure 5.1: Single mode feedback model

and the kicker are right next to each other the overall delay must be close to an integer
multiple of the revolution time so that the pickup signal from a given bunch generates the
kick signal acting on that same bunch. In practice the locations of the BPM and the kicker
can be quite arbitrary and so can be the loop delay.

All of the loop gains have been coalesced into gyg. These gains include the front-end

gain in counts/deg, the back-end gain in V/count, and the beam transfer function gain in

degrees/V. The overall equation for g is as follows

Vmax % 27T()é€fr2f « 36OG(fo[bunch 360aevmafoe[bunchfr2f

90 = o8 Eoh o 128Eoh

The first term in the product is the gain from DAC counts to the voltage on the beam,
the second term is the transfer function gain in rad/V and the third term is the front-end
gain based on the calibration factor G in counts/degree/mA. The back-end gain assumes
optimal setup where full-scale signal at the DAC produces fully saturated power amplifier
output. The amplifier power together with the shunt impedance of the kicker structure gives
us the maximum kick voltage [57]. Transfer function parameters o; and w; are determined by

the eigenvalue of the unstable mode. There is an arbitrary complex loop gain parameter ge'?
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used to match the model to the physical system. This gain parameter is used to account for
variations in gain and phase nonlinearities of various components over the operating band
of fr¢/2. Here we assume that the gain and phase for a given eigenmode are constant, that
is the changes over the modal bandwidth around lwg + w; are negligible. This assumption
is justified since these parameters vary smoothly over the full f,f/2 bandwidth. Changes in

a much narrower modal bandwidth are necessarily small.

5.2 Feedback loop characterization

Once the simulation model of the feedback loop is defined two important questions need
to be answered. First, is the model behavior consistent with that of a physical system?
Second, if there are differences between the physical system and the model, how does one
match the model to the system? In this section both of these questions will be addressed
in detail.

Comparison of the feedback system to the off-line model is based on the grow/damp
measurements. A properly configured grow/damp measurement provides information about
one or more fastest growing eigenmodes in both open-loop and closed-loop configurations.
Using the analysis techniques described in Ch. 7 one can parameterize the motion in either
case using a complex exponential function. This parameterization produces two eigenvalues:
open and close-loop ones with complex conjugate pairs implied. Thus the dynamics in both
cases are reduced to those of a second-order linear system. For the open loop case this
description is perfectly adequate since the small-signal behavior of an eigenmode is properly
described by a complex conjugate pole pair. However in the closed-loop configuration the
system is more complicated and the complete model will contain many poles. If there is
one strongly dominant pole - that is the pole with damping time much slower than the
damping times of other poles - second-order description can still be used. In this case the
dynamic behavior of other poles settles very quickly relative to the damping transient of the
dominant pole. In some cases there will be several poles with comparable damping times.
The resultant damping transient can be strongly non-exponential and the second-order
parameterization will break down.

Fortunately pole positions of the closed-loop system can be adjusted by changing the
loop gain or, more invasively, by changing the feedback controller dynamics. For the purpose

of establishing the model one can reconfigure the feedback so that there is one dominant
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closed-loop pole. Measurements of the closed-loop dynamics are then consistently described
by the second-order parameterization. Once the model is created, however, one would like to
verify the feedback performance in the worst-case conditions, that is at the highest possible
stored current (which generates the fastest growth rates) and with the optimal feedback
system setup. The optimal configuration of a stabilizing feedback system is the one that
produces maximum damping of the closed-loop poles. In many cases that leads to multiple
poles with identical or very similar damping making impossible model extraction described
in Ch. 3. Future work on this subject could extend the model parameterization by using

system identification methods.

Above we described a method to quantitatively compare the physical system to our
model provided that there is one dominant closed-loop pole. If the two poles being compared
are different we need to modify the model to agree with the measurements. For that purpose
we use the complex loop gain. A single grow/damp measurement is not sufficiently reliable
to verify the model since one can almost always match two complex numbers using two
parameters controlling the model. To avoid these issues we verify system model based on
a large set of grow/damp measurements using different feedback controller responses. Two
sets of closed-loop poles are matched using numerical optimization in a two dimensional
space with the two parameters being the absolute value and the phase of the complex loop

gain. The goal function is defined as follows:

2 Pex — Pmodel (97 ¢) 2

Pex + Pmodel (97 gb) - 2/\l

M
flg,0) =)

k=1

For each of M measurements we consider the distance between measured pole pex and
modeled pole ppoqel normalized by the average distance of these two poles from the open-
loop eigenvalue. The normalization compensates for the necessarily larger measurement
errors in the high-gain configurations which significantly shift the open-loop pole. This
can be represented geometrically as shown in Fig. 5.2. When taken on its own the error
magnitude \ﬁ] does not tell us whether the error is acceptably small or unacceptably large.
On the other hand, if the error is normalized to the magnitude of the feedback effect on
the system - the very effect we are trying to quantify - it becomes a relative measure. For a
single measurement error of 1 or 100% (|D| = |C|) is obviously large. Normally after model

complex gain optimization we expect the errors under 0.2.
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Figure 5.2: Geometric representation of the error function. Average distance of the two
closed-loop poles (measured and modeled) from the open-loop pole is given by vector C.
Error function contribution for one measurement is given by |D|/|C.

Next we will illustrate the feedback loop characterization methods with measurements

from several accelerators starting from the Advanced Light Source.

5.2.1 ALS results

The loop characterization experiment at the ALS performed at relatively low currents in
the range of 69-76 mA consists of 16 individual grow/damp measurements. To make sure
that the agreement is independent of a particular controller multiple feedback controllers
were used. To generate these controllers standard FIR filters based on a sampled sine
wave were used. Variation of controller characteristics was achieved by changing the phase
shift of the sampled sinusoid resulting in changes of the controller phase response at the
synchrotron frequency. In all measurements eigenmode 233 driven by the impedances in
the main RF cavities grew significantly above the noise floor. The following results are
obtained by analyzing and modeling the motion for that eigenmode.

In Fig. 5.3 a histogram of error values is shown for the above 16 measurements. Op-
timized loop gain is 1.54 + 0.02 and loop phase is —1.0 £ 0.9 degrees. A gain larger than
unity indicates that the power amplifier is being over-driven and will reach full output
power at the DAC setting below full scale. From these measurements we also extract the
parameters for other unstable eigenmodes. Model optimization for the EFEM 212 driven
by the impedances in the third harmonic cavities produces the gain of 1.20 + 0.04 and the

phase of 13.1 + 1.9 degrees. The complex loop gain difference between the two eigenmodes
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Error (%)

Figure 5.3: Histogram of relative errors for ALS feedback loop characterization experiment

points to non-ideal behavior of some feedback loop components and was later traced to an
unterminated monitor port sending back a significant reflection.

In the experiment the controller phase was swept over 100 degrees and we can present
the results as a function of that parameter. To do so requires making one assumption.
Changing controller phase produces some variation of controller gain at the synchrotron
frequency. In addition the beam current decays during the experiment. To meaningfully
present the results we need to normalize for these variations in the loop gain. We will
assume that the pole shift from open to closed loop scales linearly with loop gain. This
assumption is valid unless the gain is very high or the gain changes over a wide range. In
our case the gain changes by only 7 dB. Normalized pole shifts are presented in Fig. 5.4.
The real parts of vectors A and B are plotted as the damping rate shift while the imaginary
parts give us the frequency shift. The plot shows that both the real and the imaginary parts
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Figure 5.4: Shifts in damping rate and oscillation frequency between open and closed loop
states (real and imaginary parts of the pole shifts respectively).

of the closed-loop poles are well estimated by the model. The experiment as well as the
model confirm that optimal damping is achieved when the feedback path phase shift (from
y(t) to u(t) in Fig. 5.1) is 90 degrees. This results in resistive damping with zero frequency

shift between open and closed loop configurations.

5.2.2 DAO®ONE results

A similar set of measurements has been performed at the DA®NE collider in order to verify
the system model to be used in controller design. At beam currents from 53 to 90 mA 11
grow/damp transients were recorded. The accelerator was filled with 20 bunches with 4 RF
bucket spacing leaving a gap of 1/3 of the ring. In Fig. 5.5 results of matching the model
to the measurements for EFEM 21 are shown. The numerical optimization returned loop

gain of 1.04 & 0.03 and phase of —1 4 2 degrees.



5.2. FEEDBACK LOOP CHARACTERIZATION 85

1
)

©

N

— Model
o Experiment

|
o
o

I
I =
= (o]

Damping rate shift (ms

150 -100 -50 0
Controller phase (degrees)

-100

-200 @

-300
0 5 10 15 -150 -100 -50 0

Error (%) Controller phase (degrees)

Oscillation frequency shift (Hz)

Figure 5.5: Loop characterization results for DA®NE positron ring.

In the electron ring it is possible to uniformly fill all 120 RF buckets. Loop charac-
terization was done for the three fastest-growing eigenmodes: 21, 89, and 101. Table 5.1
shows the model reconstruction results. This installation shows relatively little gain vari-
ation. There is some phase nonlinearity, however its better characterization requires more

grow/damp measurements to reduce the statistical uncertainty.

Table 5.1: Complex gain parameters for three EFEMs in DA®NE e~ ring

Mode Gain Phase
21 0.91+£0.04 —-94+42.7
89 0.84+0.04 3.6+26
101 1.0+0.1 2.7+6.3
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Table 5.2: Complex gain parameters for three EFEMs in BESSY-II

Mode Gain Phase
281 1.04+£0.04 —-5.442.0
396 1.31£0.02 —-1.6=£0.8
397 1.234+0.03 —-2.1+1.3

5.2.3 BESSY-II results

As described in Sec. 4.3.2 BESSY-II has three unstable eigenmodes: 281, 396, and 397.
Feedback plant characterization results for these EFEMs are based on the same set of
measurements presented in Sec. 4.3.2. Extracted loop gains and phases are presented in
Table 5.2. Three eigenmodes show much less variation of the loop phase than the two
modes measured in the ALS. Gain differences have not been investigated further since the
measured 2 dB difference between modes 281 and 396 is much less than stability margin of
the BESSY-II feedback system.

5.3 Parasitic effects

It is evident from the previous section that a physical feedback system deviates from an
ideal model, sometimes in a significant manner. Here important mechanisms that can cause
these deviations will be explored. Some of these effects are easier to analyze in the time
domain while others are best visualized in the frequency domain. One mechanism that can
cause non-ideal loop response is bunch-to-bunch coupling in the analog front and back-end

channels. We will start from analyzing this parasitic effect in the time domain.

5.3.1 Bunch-to-bunch coupling

To analyze the coupling in the front-end processing consider the impulse response of that
channel - closely recreated by its response to a single-bunch fill - as sampled by the ADC.
The ideal front-end would produce a signal in only one ADC sample per turn leaving
neighboring samples at their noise floor level. Finite rise and fall times, filter ringing,
and reflections all lead to non-zero signals appearing in additional samples. Let’s define
signal levels in the filled sample and the following parasitic ones as zg,x1,...,xx. If the

ideal front-end transfer function has only the first element non-zero, the coupled case can
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be considered as the ideal channel followed by the coupling transfer function. Coupling
transfer function is that of an FIR filter with coefficients 1,z /xg,...,xx/xo. Since the
ADC is timed for maximum response in zg we have z,, < zg,m = 1,..., K. In fact, in a
properly working channel x,, < xg. Once the distortion transfer function is determined one
can compute the response at lwg—+w; to find the effect of the coupling on the EFEM [. Since
significant coupling lasts only for a few RF periods and the FIR response is dominated by the
first (unity) coefficient, the frequency response of this parasitic effect does not have sharp,
narrowband features comparable to the width of the synchrotron response. Consequently, a
single complex gain characterizes well the effect of front-end coupling on the feedback loop
dynamics for a given eigenmode.

Analysis of parasitic coupling in the back-end channel is identical to the above descrip-
tion of the front-end coupling with one difference. In the back-end case the beam samples
the kicker voltage rather than the ADC sampling the beam-derived signal. This sampling
establishes the distortion FIR filter.

5.3.2 Shifts in synchronous phase

In a sampled system - especially a system with dual samplers - it is important to maintain
timing alignment of the sampling clocks and the analog signals being sampled. For longitu-
dinal feedback systems described here sophisticated timing procedures have been developed
for both sampling points, that is the ADC in the front-end and the beam sampling the
kicker voltage in the back-end [58]. Unfortunately there are uncontrollable effects that shift
the timing during system operation. Let us consider the mechanisms that can cause these
shifts and the effect of the latter on the feedback loop transfer function.

There are many causes for the synchronous timing shifts, some of which move all bunches
identically (common-mode shifts) and others which produce differential bunch-to-bunch
shifts. Poor RF cavity phase regulation, setpoint changes due to operator action, mis-
phasing of multiple RF stations - all of these cause common-mode synchronous phase (and
time) shifts. Differential shifts are caused by beam loading transients described in detail
in Sec. 4.2.2. Common mode and differential shifts cause distinctly different problems
in longitudinal feedback system operation. While common-mode shifts can be avoided by
adhering to proper operating procedures and maintaining RF cavity phase regulation loops,
the differential shifts can be reduced only via fill unevenness reduction, higher RF voltage,

or driving impedance reduction. The above actions are usually infeasible due to other ring
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operating requirements as well as high costs.

Bunch timing shifts considered here are of the +15 degrees@ f,¢ order. The reason for
such a range lies in the acceptance range of the feedback front-end. Since the detection
frequency is 6 X fyf the range is 15 degrees at the RF frequency. Larger timing shifts make
the feedback system completely inoperable and are not considered here. For a storage ring

with 500 MHz RF frequency these shifts correspond to 483 ps timing shifts.

Front-end sensitivity

In case of the ADC we are concerned with the relative timing of the ADC sampling clock and
the baseband phase detector output. ADC clock is derived from the ring master oscillator
and is stably phase locked to that reference. The phase detector output is driven by the
beam, thus changes in the synchronous timing appear directly as timing shifts of this signal.
Two effects are caused by the beam timing shifts in the front-end. First, the phase of the
6 X fi¢ burst changes relative to the carrier resulting in a DC offset and lower detector
gain. Common mode shifts are eliminated in the channel via phase servo loop as described
in Sec. 2.10.1. However differential shifts do modify the loop gain from bunch to bunch.
Second, the baseband pulse is shifted relative to the ADC clock. Since the main pulse has
flat top, timing shifts within ~ T,¢/2 have little effect. However shifts in timing modify
the way the reflections and filter ringing is sampled by the ADC (in the following buckets).
This changes the front-end distortion FIR transfer function and, consequently, the phases
and gains across the processing band. Normally in the front-end bunch-to-bunch coupling
is very small, with the distortion transfer function close to unity. Timing shifts in this case

can be neglected.

Back-end sensitivity

As mentioned earlier, in the back-end the beam samples the voltage in the kicker. The
sampled waveform is at the QPSK carrier frequency of 9, 11, or 13 times f,f/4. Nominally
beam is timed to sampled a peak of the kicker voltage. Shift in bunch arrival time slides the
sampling point along the kick waveform. On one hand timing shifts have less effect in the
back-end than in the front-end simply due to the ratio of the carriers used. For example,
if the QPSK carrier is at 9f,¢/4, gain reduction due to the timing shift of ¢ degrees at RF
frequency is cos(2.25¢)/cos(6¢) times less in the back-end. On the other hand the effect

is more significant due to several reasons. First, the back-end does not have phase servo
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loop to reject common-mode timing shifts. These shifts simultaneously affect all bunches
and can produce significant loop transfer function changes. Second, in the back-end timing
shifts cause not only gain reduction but also a loop phase change. Thus synchronous phase
variations act to erode both gain and phase stability margins. Systems running at the
highest loop gains suffer most from these variations. Note that feedback systems often can
handle much smaller simultaneous changes in loop gain and phase than the changes of each
parameter separately [59, page 1-23].

We will illustrate the effects of back-end timing shifts with measurements made at the
Advanced Light Source. Longitudinal feedback system there uses a drift-tube kicker design

[57]. Analytical response of such kicker is given by the following expression

Vaopsk
Vkik = Rslqpsk = Rs Q50
nsin(2n=2-) .z 0 1w )2
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Figure 5.6: Simulated ALS kicker response for single-bunch excitation. The kick is timed
to the bunch with ~ 2.5 ns arrival time. Two adjacent buckets at +2 ns are shown as well.
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where n is the number of drift-tubes per kicker and Z; is the impedance of a drift-tube.
Fig. 5.6 shows the analytically computed kicker voltage for a single-bunch (2 ns long) QPSK
burst excitation. The bunch in the center of the waveform is timed perfectly - at the largest
peak. QPSK modulation places adjacent bunches at zero crossings minimizing the coupling
between bunches.

To check this model we measured response of the physical kicker at the ALS. The mea-
surement was done using a single bunch in the ring to sample kicker voltage. Single bucket
kick was generated by the feedback system. The kick was modulated at the synchrotron
frequency to maximize coupling to the beam. Back-end delay line was swept over a 10 ns
range with 25 ps steps. At each setting the amplitude of bunch oscillation was measured
in the front-end using an FFT spectrum analyzer. This measurement is identical to the
back-end timing procedure [58] with the exception of the large sweep range. As a result
we get rectified kicker response to a QPSK burst. Using the knowledge of the oscillatory
nature of the original waveform it is possible to "unwrap” the measurement. The results are
shown in Fig. 5.7. Note the additional ringing in the experimental measurement, most likely

introduced by a mismatch in the power distribution network between the power amplifier

x 10
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o
3

Voltage (au)
o
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Figure 5.7: Measured ALS kicker response.
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Figure 5.8: FIR distortion filter response when bunch timing advanced 75 ps. Zero dB gain
corresponds to nominal back-end response.

and the kicker.

Now let us qualitatively examine what happens when bunch timing shifts from optimal
point. The center bunch ”slides” off the peak and samples a lower kick voltage. At the
same time adjacent bunches move off zero crossings creating bunch-to-bunch coupling. By
sampling the single-bucket kicker response at the appropriate points we get the coefficients
for the 3-tap FIR distortion filter. In Fig. 5.8 the frequency response of such a filter is
shown for the case when bunch timing is advanced 75 ps. Phase shift in the modal range
of 200-250 is most significant with main RF cavity impedances driving modes 205 and 233
and with harmonic cavities exciting EFEMs 212-218. Changes in loop gain and phase are
unacceptably large for the system running very close to stability margins. These issues will
be further discussed in Ch. 6.

An experimental measurement of back-end timing shift effects was made at the ALS.
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Figure 5.9: Feedback loop gain and phase dependence on back-end timing for EFEM 233

To simulate the timing shifts back-end delay line was offset from the nominal position.
At each setting multiple grow/damp measurements were made at beam currents around
80 mA. From these measurements we extracted EFEM 233 loop gain and phase for that
particular timing. The results are compared in Fig. 5.9 with gains and phases computed
using 3-tap FIR distortion model. The FIR gains were scaled by 1.63 to match extracted
values, similarly, FIR phases were shifted by -1.9 degrees. The measurements agree very
well with the simulation - possibly agreement could be refined by using measured kicker
QPSK response.

5.3.3 Effect of power stage transfer function

In building longitudinal feedback system a lot of care is taken to ensure proper broadband

response of the processing channel. Output power amplifier is a challenging part of that
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Figure 5.10: Measurement of the AM-to-PM conversion in the ALS TWT amplifier. Re-
sponse for the 0.25 drive level is shifted relative to the full-scale response by 60 ps which
corresponds to 24 degrees at the excitation frequency of 1125 MHz.

response simply because of high power required (200 to 500 W) and broad 250 MHz band-
width. Standard transfer function measurements can be used to verify the bandwidth and
phase linearity. Another important characteristic is the transient response of the device
which is not necessarily measured by the classic swept sine network analyzer. For the tran-
sient response once can use AM modulated signals using network analyzer to verify correct

carrier and sideband reproduction.

At the Advanced Light Source a 200 W traveling wave tube (TWT) amplifier had been
used at the output of the feedback system (the amplifier has been replaced since by a
solid-state GaAs device for various reasons). Such amplifiers have AM-to-PM conversion

characteristics, that is changing input signal amplitude causes changes in the phase shift
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through the device. To characterize the extent of AM-to-PM conversion we performed back-
end timing sweeps at different drive levels. In Fig. 5.10 two such sweeps are shown, at full-
and quarter-scale drive levels. There is an obvious shift between the two curves quantified
by comparing the two unwrapped sinusoids as 24 degrees at 1125 MHz. This is equivalent
to a 60 ps timing shift and will affect the response of the feedback. Fortunately, since the
system timing is performed at the full-scale drive level the back-end is correctly phased at
maximum output. Phase shift with decreasing amplitude leads to higher steady-state kick

level than would be achievable with a better amplifier.



Chapter 6

Longitudinal feedback controllers

6.1 Recursive digital filters

In this chapter we will discuss the design of feedback controllers intended to stabilize
coupled-bunch instabilities. These controllers will be implemented as discrete-time sys-
tems. An important class of discrete-time processing structures consists of the structures

described by linear constant-coefficient difference equations, e.g.

yln] = aox[n] + arzin — 1] 4+ agzn — 2] (6.1)
y[n] +byln—1] = apx[n]+ ar1zin — 1] (6.2)

where z[n] is the input sequence and y[n] is the output one. These difference equations can
be represented graphically by block diagrams. Such diagrams for Eqs. 6.1-6.2 are shown in
Fig. 6.1.

The block diagrams point to an important distinction between two classes of systems
defined by difference equations. Equation 6.1 defines a filter without feedback, i.e. output
signal depends only on a finite number of the input sequence terms. For the system defined
by Eq. 6.2 y[n] depends also on the past values of the output. It can be shown that in such
a structure the output is a function of an infinite number of past inputs for b # 0.

In general all discrete filters can be separated into these two distinct classes, finite
and infinite impulse response. Finite impulse response (FIR) filters are implemented by

networks without feedback. As a result, the length of the impulse response of such a filter

95
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Figure 6.1: (a) Block diagram corresponding to Eq. 6.1; (b) Block diagram corresponding
to Eq. 6.2

is determined by the number of the delay elements. When feedback terms are added to the
filter network it is possible to obtain infinitely long impulse responses (IIR). This means that
for the same number of memory elements a filter with feedback allows the implementation
of more complex responses. However such flexibility comes at a price. As for any system

with feedback, the designer of the IIR filters needs to worry about stability.

A convenient tool in the analysis of the FIR or IIR filters is the z-transform. It is defined

for sequence z[n] as

X(z) = Z zn]z™" (6.3)

Taking z-transform of Eq. 6.2 we get



6.2. IMPLEMENTATION-SPECIFIC PERFORMANCE OPTIMIZATION 97

Y +b27'Y = apX + a2t X (6.4)

where X and Y are the z-transforms of the corresponding sequences. Rearranging the terms

in Eq. 6.4 we get the relationship between X and Y or the system function

Y ap+ajzt
HE =% =Tt

In general, for an IIR or FIR system H(z) is given by

H(z) = Zé\;o a2 "
1+ 300 bzt

For an FIR system M is equal to 0. Expressing the system function as a ratio of

(6.5)

polynomials in z provides a simple way to check for the stability of an IIR system. Such a
system is stable if all of the roots of the denominator polynomial (poles) are contained within
the unit circle. Rewriting Eq. 6.5 in terms of its poles and zeros (roots of the numerator

polynomial) we get

N

1) =0 ] =" (6.6)
n=1 n

Now the stability requirement can be expressed as |p,| < 1. There are no restrictions
on the zeros of the system function.

If the z-transform is evaluated on the unit circle, i.e. for z = ¢! Eq. 6.3 becomes
equivalent to the discrete-time infinite duration Fourier transform. Thus, to obtain the

transfer function of a system one has to evaluate the system function on the unit circle:

H(Q) = H(z)

|z=eiQ

6.2 Implementation-specific performance optimization

Ultimately all of the controller design methods result in a specification of the feedback fil-

ter system function. Performance of the feedback depends on the way that these system
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y[n]

Figure 6.2: Direct form II realization of a second-order section

functions get implemented. For a given difference equation there are many possible imple-
mentation topologies differing in efficiency, quantization sensitivity, and noise performance.
For the DSP-based system considered here IIR filtering was implemented using a cascade
of second-order sections. A cascade of second-order sections has been selected for its insen-
sitivity to coefficient quantization and computational efficiency [60, pages 300-344]. Due
to memory and execution time constraints the maximum number of sections was set to 6.
Thus, the search space for the controller design methods includes at most 12 poles and 12
zeros. Each second-order section (SOS) was implemented in the direct form II. Topology
of such implementation is illustrated in Fig. 6.2. All computation is done using 16 bits for
both data and coefficients. Coefficients are represented in the Q14 format that is with two
bits to the left of the binary point. In such representation coefficients can span from —2 to
2 —2714, The reason for such a choice becomes clear if we examine the relationship between

the coefficients and roots of a second-order polynomial.

For a denominator polynomial defined by 22 + b1z + by and its two roots p; and py we

have:

= —(p1 + p2)
= pP1p2

(z = p1)(z — p2) = 2* = (p1 + p2)z + prp2 = { Zl (6.7)
2

Since for a stable IIR filter poles must be within the unit circle we get
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bi] = |p1+p2| < o1l + |p2] <2
|ba

Ip1||p2| < 1

Therefore poles of any stable filter can be implemented in direct form II with coefficients

smaller than 2.

Input and output samples are 8 bits wide while the ITR computation is done with 16 bits
of resolution. Alignment of the input data within the 16 bit word is driven by a trade-off
of two parameters: dynamic range and roundoff noise. If we leave empty bits in the upper
part of the 16 bit word, a filter can support very large gains before saturating. However
roundoff noise is introduced at the level of the LSB of the input. Leaving free bits in the
lower part of the word cuts down the roundoff noise, but also reduces the dynamic range.
In our implementation we chose place the 8 bit input word in bits 4 through 11 leaving 4
bits below and above. In this case roundoff noise is kept at % of the input LSB and the

node values within the SOS cascade can be 16 times the full-scale input level.

Starting from specification of a controller by 12 poles and 12 zeros we first need to
group poles into 6 pairs. There is no ambiguity in pairing complex poles since they occur
in conjugate pairs. No constraints are placed on the pairings of the real poles. Similarly
complex zeros are paired unambiguously. Since real zeros can occur outside the unit circle,
certain combinations of zeros can lead to large coefficients a; and as. These are represented
in the Q14 format so the large values will have to be scaled down to the [—2,2 — 27!4]
range reducing the gain of the section. Since the overall gain has to be maintained at
the design value, reduced gain of one section requires increased gains elsewhere, possibly
amplifying the quantization noise. From Eq. 6.7 we see that we need to concentrate on
reducing the product of the paired zeros. Thus we sort all real zeros by absolute values and
sequentially pair largest ones with the smallest. Such pairing minimizes the range of values

of the coefficients a1 and ay for all sections with real zeros.

In implementing a filter we will need to define a distance in z-plane between pole and
zero pairs. When both pairs are complex we will define the distance between a pole and
a zero in the upper half-plane. When poles, zeros or both are real, we will use minimum

distance between the two sets:
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D =min|py, — z,|, m=1,2n=1,2 (6.8)
mn

Our distance definition for complex pairs is equivalent to that given in Eq. 6.8 for the real

pairs. Thus we will use Eq. 6.8 for all distance computations.

The next step in defining the implementation is to combine pole and zero pairs into
second order sections. We follow a variant of the rule presented in [61] that suggests
sequentially pairing the largest magnitude pole with the zero closest to it in the z-plane.

Complex poles have equal magnitudes and for real poles we use the larger absolute value.

We modified the rule by selecting first a zero pair closest to zero frequency, i.e. to the
point z = 1. That pair is combined with the minimum magnitude pole pair. The need for
this modification will become obvious if we consider typical signal levels for the feedback
system in operation, for example at the ALS. Feedback controllers there are normally con-
figured with the in-band gains of 25-50 so that an input oscillation amplitude of 2-4 counts
produces a full scale 8 bit output correction signal. At the same time the amplitude of the
synchronous phase transient which appears as DC position of each bunch is around 100
counts. Since we desire to provide high gain for small signals riding on the large DC offsets
it is important to remove the DC before any amplification takes place. Notice that in the
direct form II pole response is computed first, followed by the zeros. If a pair of poles close
to DC is chosen for the first section and these poles provide DC gain of more than 16 we risk
saturating the processing before DC rejection takes place. Choosing a small magnitude pole
pair minimizes this risk. This is still an imperfect solution since there are pole placements
that can lead to saturation. One could escape DC saturation by selecting the pole pair
most distant from z = 1. However such pole pair could be close to unit circle and provide
high gain at some other frequency. Since in the first section DC is not yet removed such
a strategy is likely to lead to saturation. Another way to avoid these risks is to sacrifice
one SOS to DC rejection placing both poles at the origin. Then one section later on would
need to have both zeros at the origin. This approach is wasteful since by eliminating a sec-
tion one can reduce processing time with a possible improvement in control performance.
Yet another way to alleviate DC saturation problems is to use transposed direct form II
structure for the second-order section. Block diagram of such an implementation is shown

in Fig. 6.3. Notice that computation of zeros is done first, solving the abovementioned DC
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Figure 6.3: Transposed direct form II realization of a second-order section

saturation issues.

Another DC rejection issue stems from numerical truncation. In our ITR implementation
result of the final accumulation is truncated by retaining upper 16 bits of the 32 bit word.
Thus, a small negative DC term gets truncated to the LSB of the 16 bit word. If DC poles
are placed after DC zeros that error can be amplified. Let’s consider an example with real

poles and zeros:

(2 — 0.999)(z — 0.999)

H@E) = 5 008)z =099

At DC we expect to have H(1) = 0.0025. Let’s consider the layout where the zeros
precede the poles and the input signal is constant at —100 counts. After quantizing the
coefficients we expect the output of the zero section to be 0.00006 before the truncation.
After the 32-to-16 bit conversion we get —0.0625. Passing that through the pole section we
get output of —287 counts instead of expected —0.25. Limiting the filter output to 8 bits
results in DC saturation. If the poles and zeros are swapped saturation happens during
pole computation. Even though there is no universal solution to this problem, controllers

encountered in practice rarely need to have poles so close to DC. In addition one can confine



102 CHAPTER 6. LONGITUDINAL FEEDBACK CONTROLLERS

the poles to a circle of radius smaller than unity limiting the gain of a single pole.

Once the first SOS is configured, the rest is paired according to the rule quoted above .
Next we define the order in which these sections occur. Two possible choices are presented in
[61]: sorting by increasing or decreasing pole magnitudes. Sorting by increasing magnitudes
provides better overall saturation behavior while the other choice leads to lower roundoff
noise. Since in our implementation roundoff noise is much smaller than the LSB of the

input word we chose to sort the poles by increasing magnitudes.

6.3 Frequency-domain controller design

In this approach to feedback controller design we start from specifying a desired frequency-
domain complex transfer function. Then a recursive digital filter is designed to approximate
such a transfer function. Filter design problem has been extensively studied and there many
approaches to solving it [62, 63, 64, 65, 66]. Traditionally these methods concentrate on
approximating the magnitude of the desired transfer function. In cases where the phase
response is considered the goal is obtaining a linear phase characteristic or, equivalently,
a constant delay through the filter. The magnitude of the resulting delay is usually not
important as long as it is constant. In our case the task is more demanding since in general
for the wideband control filters we desire constant phase shift within the control bandwidth.
Since there are delays in the loop associated with sampling as well as transport delays, we
need to provide a positive slope of phase versus frequency, i.e. negative delay. Obviously
negative delay cannot be a characteristic of a causal system. However it is possible to

approximate phase behavior of a negative delay within a limited bandwidth.

6.3.1 Problem formulation

Let Hy(Q2) be the desired complex transfer function where Q is the digital frequency of a
sampled system. For the sampling interval T digital frequency is related to physical one as
Q = wTs. Transfer functions are defined on the set (4 : 0 < Q < 7). Let vector A consist of
n parameters defining an infinite impulse response (IIR) filter and H (A, ) be the transfer
function of that filter.

In order to determine how well H (A, Q) approximates Hy(2) we need to define a distance
function. A common choice is a weighted L, norm defined for two real-valued functions
fi(x) and fa(x) on a set X as:
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iy = { [ Welaw - pwra) (69)

where W (x) is a positive weighting function. Since in our case functions are complex-valued,
Eq. 6.9 has to modified. An obvious choice is to consider |H (A, Q) — Hy(2)|. However such
a distance function has a single weighting function. In controller design we need to be able
to weight independently magnitude and phase. For example, within control bandwidth one
needs both magnitude and phase of H(A, ) to approximate the desired response. Outside
the control band, only magnitude response needs to be optimized. These considerations

lead to a choice of two distance functions: weighted norms of magnitude and phase errors.

™ 1/p
i, = {9 - rwpo) (6.0
0

™ 1/q
i@l = { [ Waolzma9) - a)dn) (6.11)

If we define the overall distance function as a linear combination of |[LM(A)|, and
|L?(A)||, our approximation problem is reduced to minimization of a real-valued function
of n real parameters. In order to avoid numerical integration we will approximate the norms

in Egs. 6.10-6.11 by summations:

h
vz
=

I
M=

W () (| H (A, Q)| — [Ha(S%)])*

B
Il
—

W () (LH (A, Q) — LHa())*

M=

L§,(A) =

B
Il
—

Here we take advantage of a fact that a global minimum of ||L(A)||2, is also a global
minimum of HL(A)ng Note that the above formulation does not require the points € to
be evenly spaced. One important requirement on the maximum spacing of the frequency
points is that significant features of both transfer functions do not fall between the samples.
For example, if there is a sharp resonance or notch between two frequency samples, it will

not affect the distance function indicating that frequency sampling is too coarse.

Overall distance function can be expressed as
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L(A) = BLY(A) + (1 — B)LS,(A) (6.12)

where parameter § € [0, 1] controls relative weights of the phase and magnitude errors.

Now let us consider the parameterization of the controller system function. We desire a
stable controller, thus it is important to be able to easily check for stability. Since a system
is stable if all of its poles are within the unit circle, parameterization of Eq. 6.6 seems to be
the obvious choice. However in physical implementation filter coefficients must be real, so
complex poles or zeros must occur in conjugate pairs. This requirement naturally leads to
selecting a second-order section as a unit of cascade implementation. Then Eq. 6.5 can be

written as

22 + a1nz + azn

6.13
22 + ban + b2n ( )

Ns
H(z) = go H

n=1

In this case parameter vector A is given by

A = (ai1,a12,b11,b12, . . ., a1, A2, b1k, bok, - - -, Go) (6.14)

As stated above we need a way to check for stability. Due to coefficient quantization
poles just inside unit circle can become unstable in the physical system. In addition, a pole
near the unit circle causes a gain peak within a section. To avoid these problems we will
require all filter poles to lie within the disk of radius p, p < 1. For each second-order section

this requirement translates into three linear inequality constraints:

by < p?
pby — by < p?
—pby — by < p?

For efficient numerical minimization it is important to be able to compute analytically
the gradient of the distance function. Partial derivatives of the distance function in Eq. 6.12

with respect to parameters (Aj, Ay, ..., Aan,+1) are given by
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OL(A) _ 0Ly (4) L, (A)
0A,, B 8214m +(1 —5) 8A
M K
al];#f:l) = 2]9];1 War(Que) (| H (A, Q)| — |Hd(Qk)|)2p—1a’Ha(+;fw
¢
Pl 2q i War(Sw)(LH(A, Q) — [Hd(Qk))%—lM

OAm A,

k=1

For the parameterization of the filter system function given in Eq. 6.13 we have

1
a1n,a2n,9)}5
= lool H { P(bin, ban, 2)
N N
5 (1 —agy)sin 5 (1 —byy)sinQ
(H(A,Q) = /H t — t
( > ) ( Z arctan (1 + a2n) cos ) + aip, nz arctatt (1 + bgn) cos 2+ b1y,

n=1

2+ ay, + age
H(A,Q)| = ) =
|H(A,Q) |H(e™)] = |90|H e29+b1n+b2ne

n=1

where

P(ay,a2,Q2) =1+ a% —I—ag + 2a9 cos 22 + 2a1 (1 + ag) cos

Then partial derivatives of the magnitude and the phase of the transfer function at a

frequency §2 are given by

3‘H(em)’ _ ’H(em)’2a1m + 2(1 + agp,) cos
8alm 2P(alm7 a2m, Q)

B|H ()] _ ]H(em)]2a2k + 2 cos 202 + 2ayy, cos €2
Oasm 2P(a1m7 A2m s Q)

3‘H(em)’ _ _‘H(em)‘lem + 2(1 + boyy,) cos 2
b1, 2P (b1, bam, §2)

O|H ()] _ —\H(em)\%zk + 2 cos 2€2 4 2byy, cos Q2
Obom 2P (b1, bam, §2)

0/ H (™) (agm — 1)sin Q

Oaim P(aim, azm, )
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O/H(e"Y)  sin2Q+ ayp,sin
8a2m - P(alm, A2m, Q)

OLH (") (bopm — 1)sinQ
Obim  Plbim, bom, Q)

OLH(e®Y)  sin2Q + byy, sin Q)
0bam, ~ P(bim, bam, Q)

The approximation problem can then be set up as a nonlinear minimization with linear

inequality constraints and solved using Sequential Quadratic Programming [42].

6.3.2 Specifying desired response

One of the most significant difficulties of the controller design lies in specifying desired
transfer function. There are several objectives that have to be met by Hy(€2). First of all,
it needs to stabilize longitudinal dynamics for all possible accelerator operating parameters.
Second, as described in Section 6.2, Hy(£2) must provide DC rejection. Third, broadband
noise as well as power line harmonics present in the input signal have to be suppressed.
Model developed in Chapter 4 describes beam dynamics as an unstable harmonic oscilla-
tor. A controller of such a plant can be implemented as a differentiator [24, 67]. Advantages
of such a controller include insensitivity to resonant frequency and DC rejection. Consider

the beam model as follows:

_ 490
Gls) = §2 —2X\s + w?

With controller H(s) = Ks closed-loop characteristic equation becomes

C(s) = 5% + (go K — 2\)s +w?

Thus differentiator feedback acts to stabilize the system independent from w?. However
gain of such a controller rises linearly with frequency leading to actuator saturation. Transfer
function of differentiator has constant 90 degree phase shift at all frequencies, i.e. zero delay.
Discrete-time controller cannot replicate such response due to signal processing delays as

well as delay due to the zero-order hold.
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Figure 6.4: Magnitude and phase of a transfer function of a band-limited differentiator

In specifying desired response we chose to approximate the differentiator transfer func-
tion in a band-limited fashion. Let us consider feedback loop model developed in Chapter 4
as illustrated in Fig. 5.1. Our desired transfer function Hy(£2) should result in band-limited
differentiator dynamics between y(t) and wu(t). If longitudinal oscillation frequency is ex-
pected to be in the range wg; to wge we define control band to extend by wgyara below and
above. Desired transfer function from y(t) to u(t) is shown in Fig. 6.4. Here wi = wq1 —Wguard
and wo = wg2 + Weuard- Magnitude of the transfer function is linear with frequency within
the control band and zero elsewhere. Phase response is 90 degrees in band. Phase response

outside the control band is undefined since transfer function magnitude is zero.

Once desired continuous-time transfer function Hy, (iw) has been defined we can com-
pute the discrete-time transfer function Hy(£2). In order to obtain that function we need
to divide the continuous time function by the transfer functions of the zero-order hold and

the delay. These are given by

. Q
H,,(Q) = e‘mpsinc(%)

Hdolay (Q) = e_iQTd/TS
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Magnitude of the resulting transfer function is amplified at the high frequencies to com-
pensate for the zero-order hold. In-band phase response is then a negative group delay of
—(T5/2 + Ty).

Useful insight into the optimization process can be gained by factoring controller system
function into minimum-phase and all-pass components. As described in Section 6.1 transfer
function is stable and causal if all of the poles lie within the unit circle. Transfer function
H(z) is minimum-phase if 1/H (z) is stable and causal. In other words, both poles and zeros
of minimum-phase transfer function lie within the unit circle. System is called all-pass if the
magnitude of its transfer function is unity at all frequencies. All-pass systems have equal
numbers of poles and zeros related as p,, = 1/2}. Thus a stable and causal all-pass system
has all of its zeros outside the unit circle. Consequently one can represent any stable and

causal system function H(z) as a product of minimum-phase and all-pass functions:

H(z) = Huin(2) * Hap(2)

here Hp,in(z) contains the poles and zeros of H(z) that lie inside the unit circle and zeros
that are conjugate reciprocals of the zeros of H(z) located outside the unit circle. Then
H,p(z) contains the zeros of the H(z) that lie outside the unit circle. In the product poles
of Hap(z) cancel conjugate reciprocal zeros of Hpyin(z) resulting in the original transfer

function. Group delay of H(2) can be expressed as

grd[H(e'")] = grd[Huin(e"?)] + grd[Hap(e')]

A general property of an all-pass system is that grd[Hap(€*?)] > 0 at all frequencies [60,
page 238]. Thus if the goal of the optimization was in minimizing group delay, resulting
transfer function would be minimum phase. However since we require certain phase shift
within the control band optimum filters can be non-minimum-phase. One can separate
phase response error into two parts: DC (mean error) and AC. Larger group delay will
increase the AC part of the error. However if the resulting filter has zero mean phase
deviation from H4(2), overall error can be smaller.

In the next three subsections three controller designs will be presented. These designs
were created for three different accelerators: ALS, DA®NE, and BESSY-II. In each of these
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machines longitudinal coupled-bunch dynamics varies as a function of several parameters
such as beam current, beam energy, main and third-harmonic RF system configurations.

There variations are different in each case requiring unique controller designs.

6.3.3 ALS

SLAC designed DSP-based longitudinal feedback systems have been commissioned at ALS,
BESSY-II, DA®NE, PEP-II, PLS using finite impulse response (FIR) filters. The filters
were sufficient to control longitudinal instabilities in all machines listed above. The ALS
system was used successfully with an FIR filter for a period of 5 years.

In June 1999 a third harmonic RF system consisting of 5 passive cavities was installed
at the ALS. Following the installation the original FIR feedback filter had difficulties main-
taining longitudinal control over the operating range of currents and energies. We made a
series of instability studies to identify the effects that caused the loss of control. From these
studies we determined several problem areas. Let us consider them one by one starting

from the most significant.

Synchrotron frequency shifts

The most important effect we observed is the change of synchrotron frequency with beam
current and energy. The third harmonic RF system at the ALS is passive, that is, it is
powered by the beam. Since the harmonic voltage V}, in Eq. 2.17 scales linearly with beam
current, the slope of the RF voltage at the synchronous phase changes as a function of
current. The slope decreases monotonically as the beam current Iy increases. According
to Eq. 2.5 synchrotron frequency is proportional to the square root of that slope. Over a
range of values of the beam current from zero to full design current of 400 mA synchrotron
frequency changes significantly.

Measurements of the mode 233 oscillation frequencies as a function of current are shown
in Fig. 6.5 for two conditions: without and with third harmonic cavities. Data without third
harmonic cavities was taken on the 28th of May of 1998. Using a linear fit we estimate the
frequency shift over the 400 mA range as 413 Hz. In the second case, with third harmonic
cavities the shift in frequency is much larger over the same range of currents reaching
3322 Hz.

In the ALS one has to take into account the shift in the longitudinal oscillation frequency

with beam energy in addition to the synchrotron frequency shift due to the third harmonic
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Figure 6.5: Measured oscillation frequencies for the EFEM 233 in the ALS. a) Measurements
taken on 5/28/1998 (before third harmonic cavities were installed) at the 1.5 GeV nominal
energy. Frequency shift over the 400 mA range is 413 Hz. b) Measurements taken on
3/27/2000 with 2 third harmonic cavities tuned in and 3 cavities tuned away from 3 f¢
(parked). At 1.5 GeV frequency shift is 3322 Hz between 0 and 400 mA. When ring energy
is ramped to 1.9 GeV oscillation frequency drops further to 7.6 kHz.

cavities. The Advanced Light Source is often operated with energy ramping from the
injection energy of 1.5 GeV to 1.9 GeV. As shown in Sec. 2.5.2 changes in ring energy lead
to significant changes in longitudinal dynamics. From Eq. 2.15 we see that energy ramping
from FEj to F; lowers the modal oscillation frequency by a factor of \/FE;/Ep. As shown in
Fig. 6.5 oscillation frequency drops from 9 kHz to 7.6 kHz after ramping.

The effect of these frequency shifts on the longitudinal feedback is best understood if we
consider the transfer function of the ALS FIR feedback controller illustrated in Fig. 6.6. Let
us examine the change in the transfer function between 12 kHz and 7.6 kHz. There is little
difference in the gain with the lower frequency being 0.4 dB higher. However phase changes
from —90 degrees at 12 kHz to —23 degrees at 7.6 kHz. For resistive damping controller
should have phase shift of —90 degrees - at 7.6 kHz FIR controller is mostly reactive.

Ignoring reactive tune shifts and resulting changes in dynamics we estimate that at 7.6 kHz
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Figure 6.6: Transfer function of the ALS 6 tap FIR filter. The left plot shows the magnitude
of the transfer function and the right - the phase. The nominal synchrotron frequency of
12 kHz is marked by the green circles while the shifted oscillation frequency of 7.6 kHz is
marked by the red crosses.

feedback gain drops by cos(90—23) =~ 0.4 ~ —8 dB. Even this optimistic estimate of the gain
change is sufficient to make the system unstable since feedback is normally configured for a
damping margin of 2 when closed-loop damping rate is equal to the open-loop growth rate.
In that configuration gain drop of 6 dB will result in the closed-loop damping rate of 0 with
further gain reduction leading to instability. For a more rigorous test we can compute the
closed-loop damping rate as a function of modal eigenvalue. Using the measurements of the
eigenvalues versus beam current and energy we construct the open-loop eigenvalue curves
on the complex plane with the beam current as an independent variable. Then, closed-loop
dominant pole for each open-loop eigenvalue is computed using the system model described
in Ch. 5. In Fig. 6.7 both open-loop and closed-loop poles are shown for the 1.5 GeV and
1.9 GeV beam energies. Note that the real part of the closed-loop pole approaches zero at
400 mA and 1.9 GeV bringing the system close to instability. At that point small variations

in the growth rates or feedback gain can lead to loss of beam control.

Mode 0 tune shifts

An additional complication in operating bunch-by-bunch longitudinal feedback at the ALS
comes from the large tune shift experienced by the even-fill eigenmode 0 - the lowest-

frequency mode of motion in which all bunches move in phase. This eigenmode is strongly
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Figure 6.7: Open and closed loop dominant poles for beam currents ranging from 0 to
400 mA. The points where open-loop and closed-loop curves meet are at zero current (re-
sulting in zero feedback gain). From those points beam current increases monotonically
along each curve. The closed-loop poles were computed using 6 tap FIR filter.

affected by the fundamental impedances of the main RF cavities. Normally center frequen-
cies of the RF cavities are tuned below w,s. Such tuning guarantees stability of mode 0 - so
called Robinson stability [68]. Tuning of the RF cavities is a function of beam current as it
is used to compensate for the beam loading [68]. Let’s consider the effect of cavity detuning

on the eigenvalue of mode 0. According to Eq. 2.9 the eigenvalue shift is given by

i1
Ao = ;;fhfw(: [(wrf + ws)Z”(wrf + Ws) - (wrf - ws)Z”*(wrf - Ws)]
raefily

thws

Q

[Z”(wrf + Ws) - Z”*(er - Ws)] (6.15)
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Figure 6.8: Mode 0 open-loop eigenvalues in ALS vs. beam current from 0 to 400 mA in
8.14 mA steps.

In practice the eigenvalue shift is larger than predicted by the above equation due to the
large magnitude of the shift. In Fig. 6.8 mode 0 eigenvalues computed using Eq. 6.15 and
the small-signal Pedersen model introduced in 2.4 are plotted vs. beam current. Note that
large RF cavity detuning has two effects: reduction of the damping rate % = R(Ag) and
increase of the tune shift (Ag). As the ring is filled with charge mode 0 tune is shifted to
lower frequencies. It is known from the operational experience at the ALS as well as from
simulations that oscillation frequency of mode 0 shifts from 12 kHz (nominal synchrotron
frequency) to 4 kHz at 400 mA [69]. If we examine the transfer function of the FIR controller
shown in Fig. 6.6 we see that at 4 kHz the phase shift is 30 degrees or 120 degrees away
from the optimal resistive damping phase. Therefore the FIR controller provides positive

rather than negative feedback for mode 0. The effect has been noted before the installation
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of the third harmonic cavities as seen in the larger than expected level of phase noise at

high currents [69].

When the third harmonic cavities were added several effects combined to make the
stability of mode 0 a significant limitation to the operation of the machine. First, as
described in the previous section, third harmonic cavities lower the frequencies of all modes.
As mode 0 shifts below 4 kHz positive feedback effect of the FIR controller is enhanced. For
example, from 4 kHz to 3 kHz phase response moves from 30 degrees to 45 while the gain
drops by 2 dB. At the phase of 30 degrees anti-damping gain is scaled by cos(90 —30) = 0.5
which at 45 degrees it is cos(90 —45) = 0.707 or 3 dB higher. Thus overall gain is increased
by 1 dB by shifting the frequency from 4 kHz to 3 kHz. Second, large frequency shifts of the
other EFEMs necessitated increase in the overall controller gain - thereby increasing positive
feedback applied to mode 0. Third, third harmonic cavities are tuned above 3w,s to obtain
bunch lengthening. Such tuning has two consequences: reduced damping and slight positive
tune shift of mode 0. This effect has not been quantitatively analyzed to determine whether
mode 0 stability is improved or impaired by these counteracting influences. However the
combination of the three effects described above has been sufficient to drive mode 0 to

instability.

Synchronous phase transients and feedback gain limitations

Due to user requirements ALS operates with a large gap in the fill pattern. As described
in Ch. 4 uneven fill pattern excites the impedances at the revolution harmonics. Resulting
wake fields shift the equilibrium positions of the bunches producing a synchronous phase
transient. Such a transient strongly affects the operation of the longitudinal feedback system
via several mechanisms. As described in Ch. 2 front-end phase detection is performed using
a double-balanced mixer with the carrier frequency of 6f.s. The detected signal (at the
input of the ADC) for bunch k is Gy sin(6¢y). This expression assumes that the phase
of the carrier is adjusted in such a way that the signal of a bunch with its centroid at
synchronous position is perfectly in phase with the carrier. For small oscillations of the

bunch centroid detected signal is

T ~ 6Gf0ik¢k (616)
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The situation changes if there are differences in the synchronous position from bunch to
bunch. Then the carrier cannot be adjusted to be in phase with the signals of different
bunches, at best we can aim for zero average phase error. Consequently some bunches will
be in phase which the carrier and others will be offset. If we denote equilibrium phase of
bunch k relative to the average of the synchronous phase around the ring as ¢, then we

can write for the ADC input

2y, = Gioig sin(6¢y,) = Gioig, sin(6(dy + dr)) (6.17)

where q@k is the motion of bunch k& about the synchronous phase. For small oscillation

amplitudes we can rewrite Eq. 6.17 as

zp ~ Gl sin(G(Ek) + 6Gieiy, COS(6(Z§]€)(ZA5]€ (618)

Consider the above equation for the bunch signal in phase with the carrier. Then gz@k =0
and Eq. 6.18 reduces to Eq. 6.16. Non-zero synchronous position ¢, has two effects. First
of all, the detection gain is reduced by cos(6¢y). Second, ADC input signal contains a DC
offset of Giei sin(6¢y).

The gain reduction due to the synchronous phase transient is a function of beam current
since the wake voltage is excited by the beam current. At low beam currents both the
transient and the gain reduction are small. However as the current increases the magnitude
of the synchronous phase transient goes up and the feedback gain is reduced for some of
the bunches. Figure 6.9 shows the synchronous phase transient in the ALS measured using
the LFB facilities as well as the front-end gain multiplier due to the transient. Gain for
the bunches at the extremes of the transient is reduced by 30 to 40%. Remember that the
feedback system uses gain scaling linearly with beam current to combat the linear increase
in the growth rates. Synchronous phase transient results in the feedback gain scaling less
than linearly. Thus at some current feedback gain will become insufficient to control the
coupled-bunch growth rates. Fortunately, for the ALS this deviation from linearity is only
5% at 400 mA for the phase transient similar to the one shown in Fig. 6.9. However tuning
in more third harmonic cavities (only two out of five are actively tuned in in the above data
set) will increase the magnitude of the synchronous phase transient as well as accelerate the
nonlinear gain loss. In addition to the gain reduction in the front-end there is gain lowering

in the back end since part of the bunches arrives in the kicker out of phase with the kick
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Figure 6.9: Effect of the synchronous phase transient on the front-end gain. This mea-
surement was taken at the ALS at 1.5 GeV, 397 mA. a) Bunch-by-bunch currents showing
252 filled RF buckets. b) Equilibrium phases of the bunches relative to the phase detector
carrier in degrees at RF frequency. ¢) Front-end gain reduction resulting from the non-zero
equilibrium phases. Bunches with offsets near zero in plot b) have gain multipliers near 1
(little reduction) while the bunches at the extremes of the transient lose 30 to 40% of the
front-end gain.

waveform. However back-end operates at the much lower frequency (9/4fi¢ vs. 6ff), so the
gain reduction is a smaller effect. At the same time, as shown in Ch. 5, mis-timed back-end
kick on the bunches with non-zero equilibrium phase produces some feedback loop phase

shift for those bunches further reducing feedback effectiveness.

The second effect introduced by the synchronous phase transients is the DC offset of the
bunch signal at the ADC input. This offset depends on the equilibrium phase and current of

the bunch. Offsets over the whole ring behave similarly to the synchronous phase transient
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as illustrated in Fig. 6.9. These offsets limit the allowable feedback front-end gain Gf,.

If the amplitude of the synchronous phase transient is small, the gain is limited by the
noise level in the front-end circuitry. Empirical rule for setting G, has been to make RMS
noise of the digitized signal equal one ADC count. Such a gain for the advanced light source
was Gg, = 202 counts/mA. At that gain setting with nominal per bunch current of 1.5 mA
4 degrees of motion would saturate the ADC input. This saturation is not a concern in
the operation since digital signal processing section of the LFB normally operates with gain
much larger than unity, so its output saturates long before the input. Now consider a case
when the synchronous phase transient is large, on the order on 20 degrees peak-to-peak.
Then some bunches have +10 degree offsets and some - —10 degrees. At the high front-end
gain of 202 counts/mA ADC input signal for these bunches and for all other bunches with
offsets more than 4 degrees will be saturated all the time. To operate the feedback system
with such a transient the gain has to be lowered. If we define 4,0, as the nominal per
bunch current, ¢may as the amplitude of the transient and émin as the minimum oscillation

amplitude we would like to detect without ADC saturation, we get for the front-end gain

128
Tnom Sln(6(¢_5max + ngin))

For the ALS with inom = 1.5 mMA, dmax = 10 degrees, ngin = 2 degrees we get Gg =

Gfe =

(6.19)

90 counts/mA - a reduction in gain of 7 dB.

This significant reduction in the available front-end gain has to be compensated by the
gain increase elsewhere in the processing chain if the damping is to be maintained at the
same level. There are two places where one can realistically achieve this gain increase: digital
signal processing section and the output power stage. Theoretically, one could also modify
the feedback kickers for higher shunt impedance or increase their number. However that
path is less desirable due to the expense and the prolonged machine down time required to
install these vacuum components. As for the output power stage, wideband power amplifiers
in the 1-1.125 GHz range are quite expensive and only increase the loop gain by the square
root of total power increase. Thus we are faced with the desire to increase the digital
gain. Avoiding saturation of the output signal by the input and ADC quantization noise is
quite challenging due to the combination of large gain and wide bandwidth required of the

controller.
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Figure 6.10: Transfer function of the ALS IIR controller designed using frequency-domain
method

Increases in growth rates with reduction in synchrotron frequency

Another side effect of the reduction in the synchrotron frequency is the increase of the growth
rates. If we examine Eq. 2.9 it is clear that the growth rates are inversely proportional to
ws. Since synchrotron frequency decreases linearly with beam current (Fig. 6.5) growth
rates increase faster than linearly. That nonlinearity accounts for the slight curvature in

the open-loop poles plot in Fig. 6.7.

Controller design

We will describe here the feedback controller designed to longitudinally stabilize the ALS
over the full range of beam currents and energies. Design was carried out using the
frequency-domain optimization procedure. The transfer function of the controller is shown
in Fig. 6.10. In selecting the weighting vectors for magnitude and phase emphasis was
placed on achieving the phase response. Notice that the controller is wideband relative to
the span of modal oscillation frequencies of 7-12 kHz. Maintaining the transfer phase near
—90 degrees over a wide range of frequencies provides necessary damping for the combina-
tions of modal growth rates and oscillation frequencies encountered at the ALS. In addition
this design, named landau_41, has phase shift of —3 degrees at 4 kHz and, therefore, has
a much smaller positive feedback effect on mode 0 than the FIR controller. The filter is

implemented in a cascade of 6 second-order sections for a total of 12 poles and 12 zeros.
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Its pole-zero map is illustrated in Fig. 6.11. Absence of poles near the unit circle results in

high saturation margins throughout the cascade.

This controller design has been shown to provide ample damping of the unstable HOMs.
Plot of the dominant closed-loop poles of the beam-feedback system obtained from the model
is shown in Fig. 6.12. Note that this design provides large stability margins (fast damping)
both at 1.5 and 1.9 GeV.

The landau_41 controller has been used in the normal operation of the longitudinal
feedback at the ALS from January 2000. A grow/damp measurement illustrating the per-
formance of this controller is presented in Fig. 6.13. In this measurement three eigenmodes
grow to the measurable amplitudes: 213, 217, and 233. Modes 213 and 217 are driven by
the HOMs in the third harmonic cavities. One of these two modes is driven by the HOMs
in the two beam powered harmonic cavities, while the other mode is due to the three
parked cavities. Note the open-loop modal oscillation frequencies are down to 7.5 kHz for
these modes - result of synchrotron frequency decrease with both beam loading and energy
ramping. Damping rate provided by the feedback is slightly lower than that expected from
Fig. 6.12. The discrepancy is caused by the gain reduction effects due to the synchronous

phase transients which are not modeled in computing the closed-loop poles.

Imaginary axis

Real axis

Figure 6.11: Poles and zeros of the ALS controller
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Figure 6.12: Open-loop and dominant closed-loop poles for the ALS IIR controller

The unfortunate feature of the landau 41 controller is large gain at low frequencies (1-
4 kHz). Since controller phase more than 90 degrees away from the resistive feedback setting
this results in certain amount of positive feedback for mode 0. As loop gain increases one
approaches instability of that eigenmode while lowering the gain leads to loss of stabilization
of other eigenmodes. Thus, the system has a limited region of loop gains resulting in
stability. Experiments at the ALS show that the range of acceptable gains varies between
6 and 8 dB.

In general, any practical feedback controller will have a limited range of allowable gains.
The lower limit is dictated by the stability of the closed-loop system while the upper is either
a stability or a noise saturation limit. That is, as the gain is increased either the system
becomes unstable or the feedback output saturates with sensor or quantization noise. The
size of the gain window is an important factor in the operation of the accelerator. Larger

gain window makes it possible to retain feedback control independent from the variations in
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Figure 6.13: A grow/damp transient measurement at the ALS, 377 mA, 1.9 GeV, landau 41
controller.
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Figure 6.14: Transfer function of the alsFD3 IIR controller designed to avoid excitation of
mode 0

the growth rates of unstable modes as well as changes in the feedback gain. In this respect,
controller 1andau 41 has a relatively small gain window which adversely affects robustness
of the longitudinal feedback at the ALS. The upper limit of the window is defined by
stability of mode 0 and we can try to improve the robustness by changing the response
of the controller to damp mode 0. Remembering that without feedback mode 0 is stable
another approach becomes feasible - rolling off the gain of the controller so that eigenvalue
of mode 0 is only weakly affected.

The latter approach was used to design another feedback controller for the ALS, design
named alsFD3 - referring to a frequency-domain (FD) design with 3 second-order sections.
The frequency response of the controller is shown in Fig. 6.14. Note that the gain of the
controller falls rather quickly below the lower control frequency of 7 kHz. Down at 4 kHz
this controller has a gain of 12 dB - much lower than the 32 dB for 1andau 41. The design
has been tested at the Advanced Light Source and the measured open and closed-loop poles
as well as the model-predicted curves are shown in Fig. 6.15. The tests indicate that the
controller provides sufficient damping of the coupled-bunch modes inducing the damping
rates on the order of the open-loop growth rates (approximately 6 dB gain margin). The
phase response of the alsFD3 is not as well controlled as that of landau_41. However within
the frequency band of interest deviation from resistive feedback is minor, with reactive
frequency shifts not exceeding 50 Hz. At higher currents some controller saturation is

evident when the measured damping rates start falling short of the values expected from
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Figure 6.15: Measured open and closed-loop poles for mode 214 in the ALS. Model predic-
tion of the closed-loop values is made using a linear fit to the measured open-loop eigenval-
ues.

the model.

As described earlier, the main goal of the new design is to avoid excitation of strongly
tune-shifted eigenmode 0. In order to verify that the goal was achieved we compared the
performance of the new controller with the existing design. Beam motion was recorded with
the feedback system in the steady-state closed-loop situation. Measurements were taken at
nearly the same beam current (395 and 400 mA) with each of the controllers in a 276 bunch
fill pattern. The fill pattern was chosen as one of the standard ALS operating patterns with
significant mode 0 problems. In Fig. 6.16 quadratically averaged bunch spectra for the two
cases are plotted on the same axis. Data for the landau_41 shows mode 0 motion excited

to the level of 0.6 ADC counts at 4.8 kHz. The new design shows very little motion in that
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Figure 6.16: Bunch spectra quadratically averaged for the two IIR controller designs. Large
mode 0 motion at 4.8 kHz excited by the landau_41 controller is not present in the spectrum
of the new alsFD3 design. Narrowband peaks above 10 kHz are due to the external noise
signals present at the input of the ADC. Since the two controllers operate at different
downsampling factors and, consequently, different bunch sampling frequencies, the external
signals are aliased differently. In each case the same number of 5 narrow lines appears in
the spectrum.

frequency band confirming its better performance with respect to eigenmode 0.

6.3.4 DAOINE

Longitudinal feedback problem at DA®NE is very different from that at the ALS. There
are no high harmonic cavities in this machine and the change in the synchrotron frequency
over the operating range of currents is very small, going from 33 kHz at 1 mA to 32.5 kHz

at 800 mA. However the beam loading of the main RF cavities is quite strong and leads to
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Figure 6.17: Frequency response of the DA®NE electron ring longitudinal feedback con-
troller.

a significant shift in the frequency of mode 0 going to 11 kHz at 1 A beam current. Due to
its wideband response standard 6-tap FIR filter interacts with mode 0 driving it unstable.
Several solutions have been tested before the ITR design was introduced.

The first method used higher center frequency of the FIR filter as a way to reduce
controller gain at low frequencies. This approach partially alleviated the problem - partially
since achievable gain reduction is limited by the shallow slope of the magnitude response vs.
frequency. The second approach developed at DA®NE is based on using a dedicated mode
0 feedback. Using the RF system power amplifier (klystron) as an actuator the system
provides additional damping of mode 0 sufficient to combat the effect of the LFB.

Design of the IIR controller used the approach described in the previous subsection
- rolling off the gain of the feedback controller so that mode 0 is weakly affected by the
feedback. Mode 0 oscillation frequency changes in a continuous fashion from the nominal
synchrotron frequency near zero current to the low value at the high current. Thus beam
”samples” the response of the feedback controller over that range of frequencies. Roll off of
the controller gain is accompanied by the fast change in the controller phase which can lead
to instability of mode 0 if there is insufficient Robinson damping at that frequency of mode
0 (determined by the detuning of the RF cavities). Range of frequencies where gain of the
controller is rolled off was selected based on the results of simulations of mode 0 frequency
and damping [70].

In Fig. 6.17 the frequency response of the DAPNE electron ring controller is shown.
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Figure 6.18: Open and closed-loop eigenvalues for mode 21 using DA®NE electron ring
controller. Model based curves are plotted for beam currents from 0 to 600 mA. Three data
points were taken at 381, 409, and 546 mA.

Magnitude response of this controller is very narrowband. The lower cut-off starts at 29 kHz
(=3 dB) and is below —20 dB at 25 kHz. According to the calculations and the simulation
mode 0 damping peaks between 22 and 18 kHz oscillation frequency depending on the
tuning angle of the RF system. Thus the controller shown here has little chance of exciting
mode 0 instability. Shallower cut-off at high frequencies starts at 36 kHz and is at —20 dB
at 43 kHz. The narrowband structure (7 kHz —3 dB bandwidth) of the controller rejects the
sensor and quantization noise thus better utilizing actuator power. Phase shift in the control
band of 32.5 to 33.5 kHz is near 90 degrees with only 6 degrees of variation. Phase slope
does get steeper at the edges of the control band. Damping performance of the controller is

illustrated in Fig. 6.18 for the beam currents from 0 to 600 mA. Gain margin is nearly 12 dB
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Figure 6.19: Frequency response of the BESSY-II longitudinal feedback controller.

as far as gain reduction is concerned. This performance is achieved at relatively low DSP
gain peaking at 12 dB in-band leading to excellent noise performance of the closed-loop

system. This controller has been successfully used in the day-to-day operation of DAO®NE.

6.3.5 BESSY-II

Longitudinal feedback control problem in the BESSY-II is similar to that in the ALS. There
are 4 third harmonic cavities installed in the BESSY-II ring used for improving the lifetime.
The third harmonic RF system is passive and, therefore, powered by the beam. As shown
earlier, passive high-harmonic RF system causes changes in the synchrotron frequency as
a function of current. The standard FIR controller has a limited control range due to the
linear phase slope within the passband. An IIR controller has been designed using the
frequency-domain method to provide resistive damping in the frequency band from 8 kHz
nominal synchrotron frequency down to 4 kHz expected oscillation frequency of the unstable
higher-order modes at the 400 mA beam current. Response of the controller implemented
in 6 second-order sections is shown in Fig. 6.19.

The design was tested at beam currents up to 350 mA with two high-harmonic cavities
actively powered and the remaining two parked. Omnly two cavities were used due to the
technical (tuner) problems with the other half of the third harmonic RF system. As a result
we observed oscillation frequencies shifting only to 6.8 kHz. Throughout the achievable

operating range of the machine the IIR controller provided sufficient damping with the
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Figure 6.20: Open and closed-loop eigenvalues of mode 240 in BESSY-II using the IIR
feedback controller. Model based curves are evaluated for beam currents up to 400 mA.
Designation CLx refers to a set of measurements as well as modeling of the closed-loop
system with 6 dB lower loop gain.

estimated gain margin of 11 dB at 400 mA. Eigenvalues of the EFEM 240 in both open and

closed-loop configurations are shown in Fig. 6.20.

6.4 Model-based design

The main disadvantage of the frequency-domain design method presented in the previous
section is that the result is only as good as the goal transfer function specified by the
designer. In other words, the optimization distance function is not directly dependent on
the closed-loop stability of the beam-feedback system. As the experience with the frequency-

domain design grew this shortcoming of the optimization procedure became quite obvious.
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In order to alleviate this deficiency a new optimization method described here has been

developed.

Positions of the poles of the closed-loop system are the natural indicators of the stability.
We will consider here a discrete-time model consisting of the discretized harmonic oscillator
(the beam) and the feedback controller - the model that was developed in Ch. 5. The
damping rate of a given pole in the z-plane is given by In|p|. Stable poles are within the

unit circle, that is

Ip] <1=In|p| <0

In this optimization technique we will evaluate the closed-loop poles for a set of beam models
defined by their eigenvalues spanning the desired range of growth rates and oscillation
frequencies. By selecting the least damped pole (with the largest In |p|) we get the worst-
case measure of the closed-loop stability with the given controller. The value of the damping
rate can be used as a distance function for a numeric minimization procedure resulting in a
minimax type of optimization. Using only the damping rate is insufficient, however, since
such a distance function can lead to unacceptably large gains outside the frequency band

determined by the eigenvalues of the our set of beam models.

We will make a simplifying assumption while selecting the set of beam models. As
shown in the previous section, the set of the eigenvalues of interest forms a curve in the
s- or z-plane. The independent variable is the beam current causing changes in the real
and imaginary parts of the modal eigenvalues. In addition loop gain changes proportionally
with beam current. Thus each point on the eigenvalue curve has a well-defined parameter
set consisting of the real part of the eigenvalue (growth rate), imaginary part (oscillation
frequency), beam current and loop gain. Unfortunately specifying this set requires many
grow/damp measurements and the specifications change depending on the tuning conditions
of the RF systems. To simplify the problem we will define the eigenvalue set using only
4 parameters: maximum beam current I, largest expected growth rate at that current
Ymax, and the minimum and maximum oscillation frequencies over all beam currents wpin
and wpmax. The all the eigenvalues in the set lie on the piece of a straight line parallel to the

imaginary axis defined by
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§R(A) =  Ymax

%(A) S [wmim Wmax]

To define the finite set we will sample the above curve in some manner. In this sampling
it is important not to leave large inter-point spaces so that the system stability could not
be compromised between the two points. As the loop gain we will select the gain at the

largest beam current.

This simplification is reasonable if one assumes that feedback damping scales linearly
with the loop gain. Since growth rates and loop gain are linear with current, a system

stable at the largest current is stable at all beam currents.

The minimax optimization method is illustrated in the sketch shown in Fig. 6.21. The
open-loop poles are determined as described above. On the first iteration the closed-loop
poles are evaluated for each of the 6 beam models. In reality there are more poles than
shown in the sketch - here we only show the least damped pole (dominant pole) for each
closed-loop system. Based on the damping rate the circled pole is selected for optimization.
At some later point a snapshot of dominant poles shows a different arrangement of the poles
and a different pole used for optimization. At the end the minimax optimization leads to

equal damping of the dominant poles.

6.4.1 Optimization problem formulation

Let us mathematically define the goal function used in this optimization. We will start
from defining N beam plants as described above. For each of these plants we will compute
the closed-loop poles in the z-plane for the feedback controller specified by the parameter
vector A. Let P(A) be a set of all computed poles for N closed-loop systems. Then the
least damped pole in that set has damping given by max {ln |p|} ,p € P(A). The distance
function L(A) will be a linear combination of the above damping and the function g(A)
reflecting the gain of the controller outside the [wiin, Wmax] band. g(A) is computed by first
defining a set of discrete frequencies VW which sample the bands where we would like to

maintain low controller gain e.g. DC and low frequencies. Then we have
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Figure 6.21: A sketch of the open and closed-loop poles in the s-plane for the model-based
optimization

1
9(A) = = > wiH(A, Q)|
Nw sy
where Nyy is the number of elements in W, w; is the weight associated with discrete
frequency Q. In other words g(A) is the weighted average of the the magnitude of the

controller transfer function. This choice is by no means unique - one can select other

functions, such as sum of squares, for gain-limiting. Overall distance function is given then
by

L(A) = ﬁgl(%{ln Ipl} + (1= B)g(A) (6.20)
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where parameter (3 € [0, 1] controls the relative weights of the in band damping and the out

of band gain.

The numerical optimization was implemented using the simplex search algorithm (Mat-
lab function fminsearch()) [42], selected since it does not use numerical or analytic gra-
dients. This feature is helpful in ensuring the convergence of the the optimization given
that the problem is not continuous. In addition to the distance function minimization we
need to guarantee the stability of the controller by confining the poles to a circle of radius
p. The constraints are implemented as steep ”walls” in the distance function by modifying
Eq. 6.20 as follows

Le(A) = L)+ 10° Y Pl iggn(ip ) + 1) (6.21)

Dy 2P

where D(A) is the set of all controller poles and sgn(z) is the signum function defined as

1 x>0
sgn(z) =4 0 =0
-1 =<0

If all controller poles are within radius p the right hand side of Eq. 6.21 reduces to L(A).
Otherwise a large penalty is added for each pole violating the boundary. Coefficient 10° is

chosen as being much larger than the values of L(A) in a practical optimization.

Controller parameterization A used in this optimization is different from that used in
the frequency-domain design and described in Eq. 6.14. In this case we implemented A as

follows

A= (ri,r2,...,TN,$1,P2,...,6N,C0,01,...,02N)

where rp and ¢ are the polar coordinates of the k-th pole and ag through asp are the

numerator coefficients. The overall controller transfer function is given by
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Figure 6.22: Frequency response of the ALS dccut?2 feedback controller.
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6.4.2 ALS results

Controller named dccut2 was designed for the ALS using the model-based optimization
technique. The specification called for the control band from 6.5 to 12 kHz. The transfer
function of this controller is shown in Fig. 6.22. The sharp gain roll-off below 5 kHz is used
to avoid affecting mode 0 stability. Positions of the open-loop eigenvalues used in the design
as well as the modeled closed-loop dominant poles are shown in Fig. 6.23. The optimization
does a very good job of equalizing the damping of the closed-loop poles. Reactive tune
shifts are not constrained in this optimization and can be quite large - note 1.6 kHz shift
at 12 kHz oscillation frequency.

The dccut2 controller has been tested at the ALS. The open and closed-loop eigenvalues
are plotted in Fig. 6.24. Achieved damping is much lower than expected based on Fig. 6.23.
The reduction is due to the fact that the design model was based on a different feedback
configuration. Measurements were taken on a reconfigured hardware with 6 dB lower gain
and 10 degrees of phase shift. As a result damping rates have very little margin and the
system became unstable at beam currents above 340 mA.

The testing results pinpoint the main problem with this optimization method. Since
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Figure 6.23: Open-loop eigenvalues and the modeled closed-loop dominant poles for the
dccut?2 controller. Continuous lines show the behavior within the design control band while
the dashed lines illustrate the performance just outside that band. Note that the damping
(real part) of the poles within the control band is well equalized by the optimization. Some
reactive tune shift is seen in the difference in vertical positions of the edges of the open and
closed-loop lines.

the design is done by only considering the damping of the closed-loop system resulting
controllers can have significant reactive effects. Controller performance is then strongly
dependent on the feedback loop characteristics being the same as those used in optimization.
In other words, model-based designs can suffer from small phase and gain margins. Let’s
consider what happens if the damping is achieved with a reactive angle of 60 degrees. In the
optimization process the gain reduction of cos 60 = 0.5 is compensated by making the gain
at that frequency factor of two larger. If in the physical feedback system a loop phase shift
of 10 degrees occurs feedback gain drops by cos 70/ cos 60 = 0.68 rather than cos 10 = 0.98.

This reduction is usually coupled with significant increase in reactive tune shifts. As a
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Figure 6.24: Open and closed-loop eigenvalues of mode 233 in the ALS measured with
dccut?2 controller. The measurements span the range of currents from 66 to 300 mA while
the model curves are shown from 0 to 400 mA.

result, small changes in the feedback system lead to instability.

6.5 Summary

In this chapter we’ve presented two controller design methods. Both of these techniques are
based on the numeric optimization and generate a controller specification as a stable IIR
filter of predetermined order.

In practical use the frequency-domain controller design method produces optimal ap-
proximations of the goal transfer function. The method is computationally efficient and

enables the user to explore multiple goal functions. The main weakness of this approach, as
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pointed out in Sec. 6.4, is that the resulting controller is only as good as the goal transfer
function since the method does not utilize the dynamic model of the beam and the feedback
system.

The second design algorithm is based on such a model and uses closed-loop pole loca-
tions as a cost function. However this method is much slower than the frequency-domain
optimization and, more importantly, does not address the question of robustness of the
resulting designs.

Experience with the above methods suggests that good practical controllers could be de-
signed using H-infinity approach which allows one to optimize robustness under parametric

perturbations of the plant, the sensor, and the actuator.



Chapter 7

Transverse baseband processing

architecture

7.1 Introduction

Modern circular accelerators operate above the coupled-bunch instability threshold. Such
operation requires special passive and active measures to damp the unstable motion. Among
passive methods are techniques of tuning troublesome impedances away from revolution har-
monics [7, 9]. Another passive instability damping approach is based on designing fill pat-
terns that couple unstable and stable modes [6]. Active damping using electronic feedback
provides stability when passive methods are not sufficient. When the number of unstable
modes is small and well known it is possible to design a mode-by-mode system that provides
feedback gain only at the frequencies of the known unstable modes. However this approach
is ill suited to cases when the number of unstable modes is large. Additionally, mode-by-
mode system has to be modified if the machine impedance changes, e.g. when RF cavities
or insertion devices are altered. An bunch-by-bunch feedback system acts independently
on all the bunches. Such a system providing identical damping for each bunch is equivalent

to a mode-by-mode system with the same damping on all modes.

Thus, a bunch-by-bunch feedback provides control of unstable coupled-bunch motion
independently of the modal structure of the exciting impedance. A system proposed here
carries an additional advantage of being easily adaptable to different accelerators due to

the programmable baseband processing architecture.

137
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In contrast to the all analog processing implemented for the ALS, BESSY-II, and PEP-
II transverse systems, this DSP-based proposal uses and extends the beam and system
diagnostic functions as well as system commissioning tools that were developed for the

PEP-II longitudinal systems.

7.2 Overall system architecture

A block diagram of a bunch-by-bunch feedback system is shown in Fig. 7.1. As shown in
the diagram there are three main blocks: analog front-end, baseband digital processing and
analog back-end.

The main function of the front-end is to detect the motion of the bunches in the ap-
propriate plane, longitudinal or transverse. It outputs pulse-amplitude modulated (PAM)
signal that is sampled by the ADC. Pulse shape defines the sensitivity of the system to the
shifts in clock timing or in the beam synchronous phase. Additional functionality can in-
clude orbit rejection to avoid saturating the ADC, servo circuitry in heterodyned detectors
to correctly phase the carrier to the beam signal, monitoring outputs, etc. Experience with
the longitudinal feedback systems at PEP-II, ALS, and BESSY-II indicates that integrated
system diagnostics, such as the ”fake-beam” generator, are extremely useful in signal path
testing and adjustment. Such a generator simulates bunch signals seen at the bunch po-
sition monitor (BPM) outputs and can be modulated to include synchrotron or betatron
motion. Diagnostic and controller development techniques described in Chapters 3, 4, 5,

and 6 rely heavily on ability of the feedback system to record long beam motion sequences

From BPMs To the kicker

Detector gain/phase control, orbit rejection
Analog front-end Analog back-end

ADC, baseband digital
PAM bunch-by-bunch signal signal processing, DAC PAM correction signal

Figure 7.1: Block diagram of complete system
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while manipulating feedback parameters.

The next block in the processing chain is the baseband digital signal processing. This
module samples the PAM signal supplied by the front-end. Each bunches’ position samples
are processed using a digital filter. There are several objectives the above filter must achieve.
First of all it has to provide proper phase shift at the coupled-bunch oscillation frequency
for resistive damping of unstable motion. Second, user must be able to set the gain of the
system. Rejection of the DC component of bunch motion is important since this component
often exceeds the magnitude of coupled-bunch motion and can saturate the output. Filter
output signal is converted by the DAC at the bunch crossing rate. DSP also has to provide
some form of adjustable delay in order to apply correction to the right bunch.

Output of the DSP module is fed to the back-end. There baseband signal is modulated
to place it within kicker bandwidth. After power amplifiers output signal is applied to the
beam through a kicker.

7.3 Baseband DSP

In this chapter I will concentrate on the description of the baseband signal processing
architecture. Block diagram of the proposed system is shown in Fig. 7.2. Input PAM signal
is sampled at the bunch crossing rate. Resulting data stream is demultiplexed to bring down
the processing rate. Output of the demultiplexer is sent to a number of processing modules.
Computed correction samples are combined by the multiplexer into a bunch crossing rate
stream which is then sent to the DAC. In this design ADC and DAC are assumed to be 8
bit wide.

7.3.1 Sampling and demultiplexing

The industry-standard front-panel data port (FPDP) interface has been selected to carry
data between modules. This interface is 32 bit wide so 4 samples can be transferred over
one link simultaneously. Maximum clock rate for FPDP is specified as 40 MHz. For 500
MSPS system at least 4 links are needed (500/4/40 = 3.125).

Standard serial-to-parallel demultiplexing illustrated in Fig. 7.3 imposes a severe lim-
itation on the ring harmonic number. Since bunch data on every turn has to be sent to
the same processing element, ring size has to be an integer number of samples processed

in parallel. With 4 links harmonic number will be limited to multiples of 16. This is
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Processing module

Processing module

Sampler & Multiplexer &
demultiplexer DAC

Processing module

Processing module

Figure 7.2: Block diagram of baseband processing section

very severe indeed: out of 6 machines supported by SLAC longitudinal feedback (PEP-II,
ALS, DA®NE, BESSY-II, PLS, SPEAR-3) [36] only one has harmonic number divisible
by 16. A feedback system using standard demultiplexing into 24 channels is being built
for Sincrotrone Trieste and Swiss Light Source since both machines have acceptable har-
monic numbers [71]. The KEK B-factory feedback systems use demultiplexing by 16 and

are limited to the multiple of 16 harmonic numbers.

In order to get around this limitation a new demultiplexing scheme is proposed here.
I will call this approach ”uneven stepping”. Basic idea of uneven stepping is to vary the
size of parallelized transaction. If, instead of always sending N samples through parallel
links, we allow IV and N — 1 samples to be sent, then any harmonic number h above some
minimum A, can be handled by this system. Below the minimum some harmonic numbers
cannot be supported. Let’s prove the above statement and determine h.;, as a function of

N. Define K as the total number of parallel transactions per revolution.

h
K=|——
7
If K transactions of N — 1 samples are used, we will have some number of bunches M

left over. M is defined as the remainder of dividing h by N — 1:
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8| |78| |62| |46| |30 |14

01234... 8 | pemultiplexer [ 128 L 9] [79] [63] [47] [31] [15]
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Serial byte stream Parallel output links

Figure 7.3: Standard demultiplexing for h=86. Notice that bunches do not end up in the
same processing channel on the next turn
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If, however, M transactions are IN samples wide, we get

(K—M)N-1)+M«N=K(N—-1)+M=h (7.1)

Therefore this algorithm allows one to match any harmonic number. Now let us derive
hmin- For Eq. 7.1 to be valid we need (K — M) > 0. Thus

K-M>0=K>M
min(K) = max(M) =N — 2

. h Rmin _
mm({N_lJ) =N _1 =N -2

hmin = (N = 1)(N = 2)

Selecting N = 16 gives Ay, = 210. This is more than 120 which is harmonic number
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Figure 7.4: Uneven stepping demultiplexing for h==86. Parallel transactions of width 16
and 14 are used. Compare to Fig. 7.3 for turn-by-turn sample alignment.

for one of the target machines, DA®NE. However 120 is evenly divisible by 15, so it can be
matched. Another possible approach is to limit harmonic numbers to be only even. Then
using transaction sizes of 16 and 14 samples any even h larger than 84 is achievable. This
approach is additionally attractive since it avoids clocking data through the demultiplexer
at full bunch crossing rate. With dual clock/dual-output ADC clock rates can be kept to
half the full bunch crossing rate.

Figure 7.4 illustrates the uneven stepping demultiplexing. In this example h = 86 is
matched using transactions of 14 and 16 samples. Computations can be done in the % basis.

Thus we get

h% :43;N% =8
M% =rem(43,7) =1
Ki—M:=5

Five transactions of width 14 and one 16 sample wide are needed for proper matching.

As shown in Fig. 7.4 bunches are sent to the same processing channels on each turn.
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7.3.2 Signal processing and diagnostics

As described previously sampled data is sent over FPDP links to signal processing modules.
For the 14/16 uneven stepping maximum clock rate of the samples on the link is given by
500 MHz/14 = 35.7 MHz. Evaluation of various options lead to the processing architecture
based on Xilinx DSP Core. Data from an input FPDP link is directed to 4 Xilinx Virtex
field-programmable gate array (FPGA) chips. Each chip handles one out of four samples
from the link.

FPDP features

FPDP links use TTL level 32-bit wide data bus [72]. Data is strobed using PECL differential
clock with 40 MHz maximum clocking rate. There are several handshaking signals as well
as a frame synchronization signal. This signal can be used to send fiducial information to
the processing modules. Additionally there are two general-purpose I/0 lines per link. One

of these lines can be used as a trigger bit for transient measurements.

Signal processing

Figure 7.5 illustrates internal FPGA architecture for a 5 tap FIR filter. FIFO blocks are
used to store past samples. For processing multiple bunches length of each FIFO block has
to be set equal to the number of bunches handled by the chip. Using example illustrated
in Fig. 7.4 we conclude that each chip processes 6 bunches except the last two FPGAs
each of which only handles one bunch. Adjustable length FIFOs would allow to reconfigure
the system through software for operation with a particular harmonic number, while fixed
length delays would require separate FPGA layouts for each machine. Shift gain block
shown at the output is a barrel shifter for controlling the loop gain in 6 dB steps.

All addition blocks in the drawing include saturation in order to maintain correct feed-
back phase in presence of large input signals. Similarly, shift gain includes output saturation.

For a feasibility test an evaluation system has been built using Xilinx XC4085XLA
FPGA chip. Signal processing architecture similar to the one shown in Fig. 7.5 has been
implemented and tested at 40 MHz processing rate.

Filter layout illustrated is not the only one possible. Flexibility of FPGA-based design
allows various FIR and IIR structures to be implemented. Main limitation to the size and

complexity of the processing structure comes from cell count of the FPGA and routing
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Figure 7.5: Signal processing architecture within a single FPGA

restrictions.

Diagnostics

Figure 7.5 illustrates some of the diagnostic features of the DSP modules. Diagnostic
requirements are based on the experience with longitudinal DSP-based feedback [73, 74].

Here is a list of desired diagnostic features in the DSP module:
e Input data acquisition
e Arbitrary output waveform generation with bunch-by-bunch control
e Changing filter coefficients on the fly

e Transient diagnostics:
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Table 7.1: Data acquisition and playback

‘ S2 ‘ S1 | Function | Applications |

Off | Off | Feedback off, drive off Recording growing transient, feedback off on
a given bunch for tune measurement

Off | On | Feedback off, drive on System timing, open-loop transfer function

On | Off | Feedback on, drive off Normal operation, damping transient record-
ing, closed-loop recording

On | On | Feedback on, drive on Transfer function measurement, closed-loop
transfer function

— Grow/damp

— Single-bunch tune measurement
e Closed-loop transfer function

e Open-loop transfer function

Data acquisition and waveform playback functions are controlled by the memory in-
terface block. Partitioning memory in two sections will allow simultaneous recording and
playback as needed for transfer function and tune measurements. Two switches S1 and S2
control the output of the FPGA. Table 7.1 lists possible settings of switches S1 and S2 and
resulting functionality. In physical implementation S2 can be eliminated since setting filter
coefficients to all zeros will achieve the same goal.

Filter coefficients will be kept in two register banks. Each bank can be updated by the
software when it is not used by the real-time processing. Bank select can be generated by
multiple sources, e.g. filter bit from FPDP link, software, bunch-by-bunch register. Let’s
consider these one by one. Filter bit carried by the FPDP link allows one to record data for
all bunches simultaneously. Software control of this bit within the demultiplexer module
provides unsynchronized grow/damp measurement capability. Additionally this bit can be
hardware-synchronized to enable simultaneous grow/damp measurements in both transverse
planes as well as injection transient measurements. Under software control coefficients can
be switched for modification of the online filter during system tuning or in adaptive control
mode. Bunch-by-bunch register has one bit per each bunch processed by the FPGA. This

feature allows modification of feedback parameters for a given bunch or a set of bunches.
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Figure 7.6: Trigger block

Trigger controls of data recording, playback and filter select are very similar. All of
them are based on a programmable pulse generator with a multiplexed edge-sensitive trigger.
There are several parameters that can be independently controlled within each trigger block.
Figure 7.6 shows a possible layout of such a block and indicates controllable parameters.
Since controls of recording, playback and filter select are independent, many experimental

configurations can be defined.

In diagnostic measurements recording data for each bunch on every turn provides com-
plete information on beam dynamics. However at 500 MSPS acquisition rate system will
produce very large data sets. In grow/damp measurements length of the transient is deter-
mined by the growth and damping times of unstable modes. For most machines these times
are in the 0.1-10 ms range. If the system can record 20 ms worth of data, even the slowest
growth and damping times can be measured. This requires 10 MB of memory available for
data acquisition. With a little margin 1 MB per FPGA satisfies this requirement. If we
assume that all groups are 14 samples wide (worst case), then a total of 14 MB of data can

be acquired.
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However in many cases recording data on every turn is redundant. Since the oscillation
frequency is well known (the tune) and the envelope of motion is relatively slow, details of
the motion can be reconstructed from undersampled data. Thus in acquisition data can be
downsampled. There are several benefits of downsampling in this context. For the fixed
duration of the transient much less data has to be handled. Conversely, long transients can
be captured using all the memory.

Note that downsampling only extends to the diagnostic functions. Feedback control is
still computed on every turn. However one could use downsampling in the feedback path,
for example in a longitudinal feedback application.

Downsampled transverse diagnostics have been done using existing longitudinal feedback
systems at PEP-IT and ALS. These experiments successfully demonstrated the feasibility of
the approach and provided experience on advantages and limitations of such diagnostics.

Let’s investigate downsampling process in more detail and determine limitations driving
downsampling factor selection. Let us consider motion of a single bunch with one even-fill

eigenmode growing exponentially.

z(t) = eMsinw,t (7.2)

Taking Fourier transform of the above signal we get

Wy

X(jw) = w2 + A2 — 2\ jw — w?

(7.3)

If the signal is sampled at the downsampling rate M the following sequence is obtained

zs[n] = z(nT,) = " sin(w, Tyn)

where Ty, = MTy and Tj is ring revolution time. The Fourier transform of this sequence is

related to the Fourier transform of the continuous-time signal as

o 1 & w27k
X(e) = = 3 X(GE -
5 e —oo s s

) for —m<w<w (7.4)
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Figure 7.7: Aliasing during sampling. Spectral components in frequency regions drawn in
the same line styles are summed together. Arrows show aliasing of high frequency compo-
nents to baseband.

This equation describes aliasing of the continuous-time signal during sampling. The
process is graphically illustrated in Fig. 7.7. Under certain conditions one can reconstruct
X (jw) from X(e’*). These conditions are well-known for the case when X (jw) has low-pass
form. Then reconstruction will be perfect for X (jw) such that X (jw) = 0 for |w| > 7/T5
Now we will formulate similar conditions for the bandpass X (jw). Since z(t) is a real
function its Fourier transform is Hermitian, i.e. X(—jw) = X*(jw). Thus, to avoid adding
non-zero components in Eq. 7.4 we need to have X (jw) = 0 everywhere, except for one

frequency band €;, where

1

T T J

In this case we would be able to perfectly reconstruct continuous-time signal from its
samples. However from Eq. 7.3 it is obvious that the spectrum is non-zero at all frequencies.
Therefore some errors will be introduced in reconstructing the signal. In order to quantify
these error let us consider the magnitude of the spectrum |X(jw)|. This second-order

function has one maximum:

. . 1
maxe X (ju)| = [X(j&)| = -
O = /w2 — \?

Let us define integer [ such that
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w e

If we define spectral attenuation level R we can determine frequencies wgr where | X (jw)]

falls below | X (jw)|/R.

Wi = Vw2 — N2 £ D, VR — 1 (7.5)

For A <« w, we can simplify the above as

WR N wy £2\WR2 -1

Notice that for large R Eq. 7.5 only has one real root. That is due to the fact that

| X(0)] = ﬁ Thus

X
m =X (0)

R )| w%—l—)ﬁwﬁ
\

T 2w, | 2A

In order to minimize reconstruction errors downsampling factor should be selected so

that peak of the signal spectrum is placed at the center of the frequency band €2;. Thus

7l . T
T, Y7 or,
m2l+1)
—_ L =
2MTh

Given desired downsampling rate M we can compute nearest optimal rate M as follows

[ = round F <2MT0w — 1)]

2 T

m(20 +1)
2Tow

M = round
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For a given attenuation level R one can determine maximum downsampling rate Mp

such that at the edges of the aliasing band spectrum magnitude is below 1/2AR. We have

A(WR) ~4ANWR2-1<

s

Mp< — 1
B> TV RE -1

These calculations are all done for the ideal case of motion described in Eq. 7.2. The

MRgTy

same applies to the damping transient since the only difference between the two spectra is
in phase component. However in a real machine there are factors that need to be taken into
consideration when selecting downsampling factor. First of all, one has to take into account
coherent and incoherent tune shifts which widen the required bandwidth. Additionally, tune
shifts with amplitude have to be considered. Another factor is synchrotron modulation
sidebands on the transverse signals. Large level of longitudinal motion will add to the
aliasing. Finally, effect of the wideband noise needs to be counted since downsampling

sums broadband noise from multiple frequency bands.

7.3.3 Multiplexing

Feedback bunch-by-bunch corrections are computed from the bunch samples. These correc-
tions are to be assembled together in a single data stream feeding output DAC. This task
is accomplished by the multiplexer module as shown in Fig. 7.2.

Another function multiplexer has to perform is buffering. Data from the demultiplexer
is sent out in real-time, so there are two different transaction durations, long and short
corresponding to N and N — 1 wide transactions. Due to pipeline delays within processing
it is possible that several wide transactions are sent to the multiplexer at short transaction
timing. Conversely, there will be the same number of narrow transactions arriving at long
intervals.

Let’s consider demultiplexing scheme of 14 and 16 sample groups described in sec-
tion 7.3.1. Transaction timing is shown in Fig. 7.8. Data cycles from the demultiplexer
module to the signal processing boards are shown on the top. Cycles 6, 7, 8, and 9 are
16 sample wide (wide transactions) while other cycles are 14 sample wide (narrow trans-
actions). In the middle are data cycles from signal processing boards to the multiplexer.

Since processing is clocked by the input FPDP, timing of the cycles is identical to the ones
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Fromdemux | 0 |1 (2| 3|45 6 7 8 9 |10|11|12|13 |14

To mux ol1|2|3|4| 5|6 | 7| 8 |9|10|11]|12|13]14

From FIFO o|1|2|3|4|5]| 6| 7|8 | 9 |10|11|12|13]|14

Time

Figure 7.8: Transaction timing with one cycle processing delay

on the top. However due to the processing delay of one cycle there is mismatch in trans-
action width and timing. For example, transaction 5 is narrow, but has long timing while
transaction 9 is wide and has short timing. For this configuration having a FIFO filled with
one cycle will solve the problem. The bottom row shows transaction reads from the FIFO.
When transaction 5 is written into the FIFO, demultiplexer fetches transaction 4 from the
FIFO and starts outputting it. When that is done, transaction 5 is fetched from the FIFO.
That will happen 2 RF clocks before transaction 6 is written into the FIFO. Thus FIFO
will be empty for a short period (2 clocks). Similarly it will empty on each cycle until

transaction 11 is written.

In order to quantify the nominal depth of the FIFO let’s consider a worst-case scenario.
This is when processing delay is more than the number of wide transactions. Let’s define
K as the number of wide transactions. Then initially K narrow transactions are sent to the
FIFO with long timing. If N is the size of the wide transaction, then K (N —1) samples are
written to the FIFO and KN are read in that period. Thus FIFO should have K sample
reserve. For N and N —1 uneven stepping we can have at most max(rem(h, N—1)) = N —2
wide transactions. Therefore keeping one transaction in the FIFO (at least N — 1 samples)
is sufficient since the largest reserve required is N — 2 samples. Similar argument applies to

the uneven stepping with NV and N — 2 sample transactions.

An additional function the multiplexer is required to perform is digital delay. This is
needed to allow alignment of the feedback output with the beam. This delay should cover a
range of one revolution to compensate all possible sensor/kicker placements and interconnect
delays. Buffering FIFO described above can support this function. By adjusting the read
clock delay relative to the revolution fiducial signal with RF clock cycle granularity one can
move the feedback output with the same granularity. Then maximal depth of the FIFO
defines the largest delay achievable. For 14/16 sample transaction design a 256 word FIFO
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(256 x 128) provides up to 3584 sample delay. Since the FIFO is clocked at the FPDP rates,
it can be easily implemented using CMOS technology.



Chapter 8

Conclusions and future research

directions

8.1 Summary

This work mainly focused on the problem of the feedback control of the longitudinal coupled-
bunch instabilities. In Chapter 2 the general framework of the problem was presented, a
linear dynamic model of the unstable motion and multiple factors that affect the parameters
or the dynamics of this model were described. The same chapter gave a detailed description
of a longitudinal bunch-by-bunch feedback system used for all of the measurements and

feedback control developments presented in this thesis.

Chapters 3, 4, and 5 described several new techniques developed to thoroughly and
accurately characterize the dynamic system - the beam and the overall feedback loop. These
techniques were illustrated with many measurements from several accelerators showing the

wealth of information these methods provide.

In the following chapter, Ch. 6, two methods for designing longitudinal feedback con-
trollers were presented. Applications of these methods to three accelerators, each with
unique control requirements, were shown. Measurements verifying correct operation of the
resulting designs were also presented.

In chapter 7 a new design of a programmable baseband processing channel was intro-
duced. This design extends the control and diagnostic features of the existing longitudinal

feedback system to all three dimensions.
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8.2 Main new contributions

A significant part of this thesis was brought to life by a desire to effectively control coupled-
bunch instabilities in the ALS after the third harmonic cavities were added to the ring. The
search for feedback controller architectures capable of robustly stabilizing the longitudinal
motion led to the development of a thorough system model and required careful parametric
mapping of instabilities. Inevitable failures of intermediate controller designs led to the
realization that the overall system had small stability margins further eroded by the loop
parasitics. In order to create a robust controller, analysis of parasitic effects in the feedback
loop and experimental verification of such analysis was necessary. Finally, the search for

better controllers culminated in the development of two optimization-based design methods.

The new method for extracting the complex eigenvalue from an exponentially growing
or damping modal oscillation is a foundation for all the beam and feedback characterization
techniques presented in this thesis. Since these techniques most often require multiple
measurements to obtain accurate results, a fast and reliable way to analyze grow/damp

measurements is essential.

Another important new contribution presented in this work is the development of a
thorough mathematical model of the longitudinal feedback system. Such a model is critical
for development and testing of feedback controllers. In this thesis the model has been
developed and verified against the physical system. In the iterative process of controller
design it is important to understand the causes of failures to maintain stability. A detailed
analysis of the most significant parasitic effects, such as bunch-to-bunch coupling, bunch
synchronous phase shifts, etc., has been presented here. Such analysis also serves as a guide
for the future feedback channel designs helping to chose front-end detection and kick signal

modulation methods.

As indicated earlier, one of the most important new developments presented in this work
is the optimization-based IIR controller design methodology. The two techniques presented
here use numerical optimization to meet the specified feedback requirements such as control
bandwidth, overall gain, etc. These design methods have been successfully used to produce
feedback controllers for three accelerators: ALS, DA®NE, BESSY-II.
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8.3 Promising research directions

The research work that has been presented in this thesis is by no means complete. Here I will

outline several promising new research directions starting from the transient diagnostics.

A significant limitation of the existing transient grow/damp diagnostic is the sensitiv-
ity to the modal growth rates. During the measurement the feedback loop is open for a
predefined period of time. If the bunch oscillations grow very large during that period the
feedback may be unable to damp the motion and the feedback control will be lost. Choosing
the duration of the open-loop section is difficult since the final motion amplitude depends
on both the growth rates of the unstable modes and the initial modal amplitudes (due to the
noise excitation) when the feedback is turned off. Since the growth rates depend strongly
on environmental variables such as resonator temperatures it is impossible to determine in
advance the optimal growth transient duration. In this situation one must err on the side
of caution and use conservatively short time intervals. As a result, captured transients are

lower in amplitude and closer to the noise floor making eigenvalue estimation more difficult.

A promising method for addressing this problem is automatic growth termination. In
this technique one would turn on the feedback automatically when the beam motion grew to
significant amplitudes. Unfortunately using the input motion signals is difficult due to DC
offsets and out-of-band noise. However, the feedback system is already equipped with the
necessary signal - the controller output. If the feedback loop is opened at the output of the
controller all one has to do is observe the kick signal requested by the controller. When that
signal approaches DAC saturation the loop should be closed to maintain feedback control.
Such an approach implicitly scales the transient cut-off point to the existing feedback loop
gain.

If automatic growth termination method is implemented it opens the way for addressing
another shortcoming of the existing grow/damp technique. In order to get a reliable mea-
surement of both open and closed-loop eigenvalues one needs to record several transients,
usually from 5 to 10. This is to eliminate errors due to growth rate variations and initial con-
ditions dependence especially significant for the fast transients. At the same time the fast
transients rarely use all of the recording time available, most often occupying from one-tenth
to one-quarter of the record. If transient measurements are automated several grow/damps
can be performed in series thus cutting down the number of separate experiments that need

to be performed. In addition, taking several measurements in quick succession helps avoid
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the problems with beam current decaying between the transients.

The eigenvalue extraction method described in Ch. 3 assumes that the modal motion is
adequately described by a second-order model. This assumption is true for the open-loop
case when the motion is small. However in a closed-loop situation there can be multiple
system poles with similar damping times. In fact, configuring a longitudinal feedback
system for maximum damping usually results in two poles close in frequency and with the
same damping. In this case closed-loop transient might not be an exponentially decaying
oscillation and the eigenvalue extraction can fail. Sometimes the damping transient is
well fit by the second-order response since one pole is excited to a much lower amplitude
than the pole nearest the open-loop oscillation frequency. However even in this case the
extracted eigenvalue cannot be used for comparisons with the system model with multiple
poles. To avoid this problem one can consider using more sophisticated system identification
techniques to extract the closed-loop system model. For example, it is possible to measure
the modal closed-loop transfer function using DSPs to add an excitation signal to the
feedback output signal and to record the response of the beam. The excitation sequence
would have to be designed to correctly place the power in the spectrum taking into account

the sensitivity of the plant to different frequencies.

In this thesis to analyze bunch motion we always projected it into the EFEM basis.
Unfortunately the ring filling patterns most often encountered in practice are uneven. In
some cases the unevenness is small and does not significantly perturb the EFEM analysis.
However in many situations even-fill eigenmodes are not suitable for analyzing the motion.
It is important to develop methods to compute the uneven fill eigenmodes. Theoretically,
such computation is possible but it requires precise knowledge of the impedance seen by the
beam and of the bunch currents. Such information is rarely available making that approach
impractical. Some of my recent research (still unpublished) uses linear combinations of
EFEMSs to reconstruct the uneven fill eigenmodes. This method has been successfully
applied to the analysis of data from BESSY-II and PEP-II but will benefit from further

development.

Feedback controller design methods presented in this work have certain limitations and
further work in this direction is quite important. Significant advances in controller design
could be made by applying the tools of p-synthesis and optimal H., control.

Diagnostic methods presented in this work are absent from the existing transverse bunch-

by-bunch feedback systems. Implementation of the processing architecture described in
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Ch. 7 will significantly extend the reach of these diagnostics.
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