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Abstract

Modern light sources and circular colliders employ large numbers of high-intensity particle

bunches in order to achieve high luminosity. The electromagnetic coupling of bunches via

resonant structures causes coherent instabilities at high beam currents. Achieving high

luminosity requires the control of such unstable motion. Feedback control is challenging

due to wideband nature of the problem with up to 250 MHz bandwidths required. This

thesis presents digital signal processing architectures and diagnostic techniques for control

of longitudinal and transverse coupled-bunch instabilities.

Diagnostic capabilities integrated into the feedback system allow one to perform fast

transient measurements of unstable dynamics by perturbing the beam from the controlled

state via feedback and recording the time-domain response. Such measurements enable one

to thoroughly characterize plant (beam) dynamics as well as performance of the feedback

system.

Beam dynamics can change significantly over the operating range of accelerator currents

and energies . Here we present several methods for design of robust stabilizing feedback

controllers. Experimental results from several accelerators are presented.

A new baseband architecture for transverse feedback is described that compactly im-

plements the digital processing functions using field-programmable gate array devices. The

architecture is designed to be software configurable so that the same hardware can be used

for instability control in different accelerators.
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Chapter 1

Introduction

In this work we will consider electron and positron circular accelerators and storage rings.

These accelerators have many applications ranging from high-energy physics to materials

science to protein crystallography. In all cases particle beam intensity is critically impor-

tant. Coupled-bunch instabilities are an important limitation to increasing beam currents.

Such instabilities exist in each of three possible beam motion coordinates. When the beam

current crosses the instability threshold the noise-driven position or energy oscillations grow

to large amplitudes. Large motion amplitudes often cause beam loss due to the particles

encountering some aperture within the machine. Sometimes the growth of instability may

saturate and the beam may stay in the ring. However, large oscillations degrade the per-

formance of the machine whether it is the luminosity of a collider or the brightness and

spectral purity of a synchrotron light source.

Initially the problem of coupled-bunch instabilities was solved by keeping beam current

below the instability threshold. The next step in control of coupled-bunch instabilities

was to apply active stabilization (feedback) to the most prominent instability eigenmodes

thus enabling one to operate the machine above the threshold current. This approach was

sufficient when the number of unstable eigenmodes was relatively small and the accelerator

operated not far above instability threshold. With time the number of individual bunches

of charged particles increased and with it the number of unstable eigenmodes. Modern

storage rings are designed to operate far above the threshold - the Advanced Light Source

at LBNL has design current of 400 mA while the instability threshold is 40 mA. In such

accelerators feedback is commonly used to extend the thresholds by 10-20 times. At some

point per-mode feedback became unpractical. Due to many unstable eigenmodes modern

1
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machines require all-mode feedback stabilization to operate at design currents.

This dissertation presents new methods for control of longitudinal coupled-bunch insta-

bilities. The work is organized to logically present the feedback control development cycle.

This cycle starts from developing an analytical model of the plant and the feedback hard-

ware as presented in Ch. 2. In the next chapter (Ch. 3) methods for measuring open and

closed-loop behavior of the system and techniques for extracting model parameters from

such measurements are described. These techniques enable one to characterize in detail

the unstable coupled-bunch eigenmodes as shown in Ch. 4. In order to accurately model

the closed-loop behavior one needs to know both the plant (the beam) and the feedback

system. Chapter 5 introduces techniques for thorough measurement of the feedback channel

properties. Taken together, chapters 4 and 5 provide the necessary framework for creating

an accurate off-line system model. Such a model provides a way to test and parameter-

ize feedback controller designs paving the way for the optimization-based controller design

methods described in Ch. 6.

Finally, Chapter 7 describes a new signal processing hardware architecture which would

provide processing and diagnostic capabilities needed to extend the feedback control meth-

ods shown in this thesis to transverse coupled-bunch instabilities.

In the following sections the work will be introduced chapter by chapter and the new

contributions will be identified.

1.1 Coupled-bunch instabilities and feedback control

This chapter introduces the basic concepts of storage rings and longitudinal beam dynamics.

The qualitative and quantitative descriptions of longitudinal focusing and particle motion

to large extent follow those developed by M. Sands in ”The Physics of Electron Storage

Rings: an Introduction” [1]. Small motion of the bunch centroid near the equilibrium is

shown to be that of a harmonic oscillator. Next, the effect of bunch-to-bunch coupling on

this motion is described and the commonly encountered driving impedances are presented.

Changes in the accelerator parameters as well as interactions with the RF systems

affect both the beam motion parameters and its dynamics. The most important dynamics

modifiers are discussed in Sec. 2.5.

Next the coupled-bunch instabilities and bunch-by-bunch feedback control are analyzed

as a multi-input multi-output (MIMO) dynamic system. From this analysis we develop
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important model reductions which enable one to predict the behavior of an N × N MIMO

system where N ranges from 120 to 1746 using a single-input single-output (SISO) model.

Finally, this chapter presents a detailed description of a programmable bunch-by-bunch

longitudinal feedback system developed by a multi-laboratory collaboration and currently

in use at 5 accelerators. Such systems were used to obtain all of the measurements presented

in this thesis as well as to implement the novel feedback control algorithms developed in

this work.

1.2 Transient diagnostics

In this chapter beam diagnostic techniques based on transient motion recording are de-

scribed ranging from steady-state (closed-loop) data recording to externally excited grow/damp

experiments.

The main new contribution presented here is the estimation of the complex eigenvalue

from the exponentially growing or decaying oscillatory motion. Before this work there ex-

isted methods developed by S. Prabhakar for estimating the exponential growth or damping

rates by considering the envelope of the motion [2] and for estimating the oscillation fre-

quency from phase-space trajectories [3]. Since these extract the real (growth or damping

rate) and the imaginary (oscillation frequency) parts of the eigenvalue separately informa-

tion is lost in the process. Using only the amplitude of the transient to estimate the growth

rate discards the phase information. Similarly, extracting oscillation frequency from the

phase angle of the transient disregards the amplitude. The new method utilizes joint esti-

mation by fitting growing or damping oscillatory waveform to the data. This technique uses

the bandpass nature of the harmonic oscillator response to filter out noise. Consequently,

reliable eigenvalue estimation is made possible when the noise levels are high.

Growth and damping measurements made at high beam currents - and showing the

fastest instability growth rates as well as the fastest feedback damping - are most important

in the feedback system characterization and controller design. In a coupled-bunch feedback

system actuator saturation restricts the controllable range of beam motion amplitudes. High

feedback gains commonly used result in the limit being relatively close to the system noise

floor (2 to 3 times). Combined with fast exponential growth and damping rates this means

that most important measurements are made at the high noise levels and benefit greatly

from the new eigenvalue estimation method.
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1.3 Beam dynamics measurements

Here we develop techniques for beam dynamics parameterization using the eigenvalue mea-

surement technique described in the previous chapter. The most basic characterization

approach is that of eigenvalue locus which maps out the positions of modal eigenvalues as a

function of beam current. Such mapping is a valuable guide for the feedback designer since

it defines the performance requirements for the feedback system. Furthermore, combining

the eigenvalue locus with the feedback loop model developed in the next chapter allows one

to predict the closed-loop behavior of the system.

In this chapter, in addition to measuring the dependence of the eigenvalues on the

beam current, other parametric dependencies are explored. Using the eigenvalues extracted

from the growth measurements as well as from the other transient diagnostics we illustrate

methods for estimating parameters of the higher-order mode impedances. Such estimation is

very important from the longitudinal feedback point of view for several reasons. Knowing

the dependence of the driving impedance on environmental and operating factors such

as cavity temperature gives user a way to minimize the instability growth rates. Such

knowledge also helps extrapolate the measured growth rates to the new operating regimes.

1.4 Feedback loop characterization

In chapter 4 we concentrated on the open-loop part of the transient diagnostic measure-

ments. In this chapter we use both the open and closed-loop measurements to verify and

refine a linear discrete-time model of the longitudinal feedback system.

Several important new contributions are presented here. A thorough loop model for

the longitudinal feedback system in the eigenmode coordinate system introduced here is

critical for development of control algorithms. However any model of a physical system

must be verified to insure the agreement between the system and its model. In this chapter

a quantitative method is developed for comparison of the feedback system model and the

real system. The method provides a measure of error between the model and the system

which, in turn, can be used to adjust the model for better matching.

In any physical system one unavoidably encounters parasitic effects. This is especially

true for a bunch-by-bunch feedback system with its broadband processing. In this chapter

mathematical analysis of the most important parasitic effects is presented and substantiated

by the beam and feedback measurements.
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1.5 Longitudinal feedback controllers

This chapter presents the most important contribution of the whole thesis - methods for

designing longitudinal feedback controllers. We should not forget that the feedback system

is there to reliably stabilize the beam, not just collect beam diagnostic data. From that

point of view the work presented in the earlier chapters was done to enable one to design

practical feedback controllers.

Two methods for controller design are presented in this chapter: frequency-domain

design and model-based. Both of these approaches use numeric optimization to generate a

feedback controller filter.

Applications of these methods are presented as several case studies for three different

accelerators: the Advanced Light Source (ALS), DAΦNE collider in Italy, and BESSY-

II light source in Germany. Each of these machines presents a unique feedback control

problem. In each case the performance requirements established in beam and feedback loop

characterization are posed as a controller design problem and feedback filters are generated.

All of these designs have been tested in their respective accelerators and test measurements

are presented to confirm the expected operation.

1.6 Transverse baseband processing architecture

Baseband feedback signal processing architecture presented in Ch. 2 is limited to control

of longitudinal coupled-bunch instabilities. However modern storage rings require active

wideband feedback in all three dimensions: two transverse and one longitudinal. A universal

programmable architecture with diagnostics has been proven to be an excellent coupled-

bunch instabilities solution. Here a new design is presented which significantly extends the

capabilities of the present system. In this chapter algorithms for data demultiplexing are

presented as well as possible control filter and diagnostic architectures.



Chapter 2

Coupled-bunch instabilities and

feedback control

Basic concepts related to the longitudinal beam dynamics and coupled-bunch instabilities

are introduced in this chapter. We start from describing the general layout of a storage ring.

Next, concepts of longitudinal focusing and bunching are introduced. Equations governing

the motion of the bunches of particles are shown as well as the effects of bunch-to-bunch

coupling via electromagnetic fields. Next the driving terms of the longitudinal coupled-

bunch instabilities are discussed in Sec. 2.3. Interaction of the accelerating RF cavity

and the beam plays an important role in determining longitudinal beam dynamics and is

presented in Sec. 2.4. Next, the most important factors that influence the longitudinal beam

dynamics and motion parameters are presented in Sec. 2.5. In Secs. 2.6 and 2.9 the linear

system models are developed for the longitudinal coupled-bunch instabilities and practical

feedback topologies are defined. Finally, in Sec. 2.10 the design of the bunch-by-bunch

digital programmable feedback system is presented.

2.1 Circular accelerators

A block diagram of a typical storage ring is shown in Fig. 2.1. Bunches of charged particles

injected into a storage ring are steered into ”circular” orbit by the magnetic guide field. The

guide field has focusing properties in the transverse plane defined by radial or horizontal

axis and the vertical axis. The focusing leads to transverse (betatron) oscillations about

the design orbit. Charged particles radiate energy under radial acceleration - so called

6
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Figure 2.1: Block diagram of a storage ring

synchrotron radiation. In each revolution particle loses some of its energy by this process.

This energy loss is compensated in one or more radio frequency (RF) cavities. In addition

to restoring the energy lost to the synchrotron radiation periodic accelerating field in the

cavities creates longitudinal focusing.

Let us first qualitatively examine the longitudinal focusing effect. In Fig. 2.2 the electric

field in the accelerating cavity is shown as a function of time. Times of arrival of bunches of

particles are also marked. Dashed line shows the energy U0 lost by a particle at the nominal

energy E0 in a single turn. Particles passing RF cavity at time τ gain energy E(τ) = eV (τ)

where e is the charge of the electron. There are two time points within the RF period where

particles will gain exactly the energy lost to synchrotron radiation. Particles at the design

energy complete a revolution in time T0. The RF frequency is chosen in such a way that

there is an integer number (called harmonic number h) of RF periods Trf in one revolution,

i.e.

T0 = hTrf
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U0

Synchronous particles

Trf

t

τs

Erf

Trev

Figure 2.2: Electric field in the RF cavity as a function of time. Times of arrival of
synchronous particles are marked by green circles.

As a result, a particle at the nominal energy will gain exactly U0 on every turn. Without ex-

ternal perturbations the particle would continue sampling RF waveform at T0 intervals each

time gaining exactly the energy lost during that revolution. Perturbations of longitudinal

position or energy lead to particle gaining in the cavity more or less energy than U0. Out

of the two time points where energy gain is U0, only the one with the negative slope of the

accelerating field is the stable point. That is the shape of the RF potential near the stable

point creates a restoring force for the particle with time of arrival (longitudinal position)

error and causes the particle to arrive closer to the stable point in the consecutive turn.

That stable point is marked on Fig. 2.2 as τs, so called synchronous time. Particles that

pass through the cavity at times τs + kTrf are called synchronous particles. The maximum

number of the bunches of synchronous particles that can be stored in the ring is given by

the harmonic number h.

Let us examine what happens if a particle arrives earlier than the synchronous time.

It will gain more energy than it lost in one turn. Highly relativistic particles (above the

transition energy) at higher than nominal energy take a longer path around the ring [1,

page 73]. Thus, with each revolution, its time of arrival will shift closer to the synchronous
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time. Similarly, a particle arriving late will take a shorter path and will get closer to the

synchronous time as well. Slope of the accelerating field at τs creates a potential well causing

the particles to execute synchrotron oscillations around the synchronous time. We will call

this potential well the RF bucket in which particles can be stored.

Longitudinal focusing groups injected particles near synchronous time points creating

bunches of particles. The harmonic number of the ring defines how many synchronous

points exist within a single revolution and, therefore, how many bunches can be stored in

the ring.

Now we will derive the equations of motion for synchrotron oscillations. Let ε be the

energy deviation of a particle from the nominal energy E0. Energy lost by a particle to

radiation in one turn is a function of its energy Urad(E0 + ε). For small energy deviations

we can write

Urad(E0 + ε) = Urad(E0) + εU̇rad(E0) = U0 + εU̇rad(E0) (2.1)

Energy deviation of a particle is related to the change in the path length l around the ring

by the momentum compaction factor α as follows [1, page 75]

l

L
= α

ε

E0

where L is the path length for a particle of nominal energy.

Let us observe the motion of the particles at a fixed point in the ring. We will start with

a particle that has arrives time τ1 later than the synchronous particle. On the next turn its

time of arrival error will change depending on its energy deviation. For energy deviation ε

path is lengthened by l. Thus

τ2 − τ1 =
l

c
= α

ε

E0
T0

where c is the speed of light. This change in the time of arrival has been observed in one

revolution therefore the rate of change in τ is
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dτ

dt
= α

ε

E0
(2.2)

Now consider the energy change of the above particle over one revolution:

δε = eVrf(τs + τ)− Urad(E0 + ε)

Again, this change is observed over one turn, so that

dε

dt
=

eVrf(τs + τ)− Urad(E0 + ε)
T0

Linearizing RF voltage near Vrf(τs) and substituting Eq. 2.1 we get

dε

dt
=

eτ V̇rf(τs)− εU̇rad(E0)
T0

(2.3)

Combining Eqs. 2.2,2.3 we get an equation of motion for a damped harmonic oscillator

τ̈ + 2dr τ̇ + ω2sτ = 0 (2.4)

dr =
U̇rad(E0)
2T0

ωs =

√
−αeV̇rf(τs)

E0T0
(2.5)

where dr is the radiation damping rate and ωs is the synchrotron frequency.

The equation of motion derived above describes a stable system. When perturbed either

in energy or longitudinal position the particle executes an exponentially decaying oscillation

around the nominal point. So far we have considered the motion of a single particle. However

in the physical machine many particles are stored in the same RF bucket. The center-of-

mass behavior of the stored bunch follows the same dynamics that were derived for a single

particle. In the next section we will describe coupling mechanisms through which motion

of one bunch can affect other bunches in the ring. This coupling is the root cause of the

longitudinal coupled-bunch instabilities.
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Resonant structure

Vacuum chamber

nn+1n+2

Figure 2.3: Electromagnetic field is excited in the resonant structure by bunch n. The field
persists in the structure consistent with the quality factor of the excited resonance and can
act on the bunches in the following RF buckets.

2.2 Beam Dynamics

Bunches of charged particles passing through the vacuum chamber of a storage ring leave

behind electromagnetic fields. These fields (wake fields) affect the energy of the following

bunches providing a bunch-to-bunch coupling mechanism. This is graphically illustrated in

Fig. 2.3.

If we monitor electric fields and bunch arrivals within the structure we will observe the

sequence of events illustrated in Fig. 2.4.

When bunch passes through the structure is excites an electromagnetic field which

persists for some time after the bunch passage. That time is defined by the damping times

(related to the resonance quality factors that will be introduced in Sec. 2.3) of the excited

resonant modes. In the accelerating RF cavities parasitic resonances can have damping

times in hundreds of revolutions. The oscillating field is sampled by the following bunches,

e.g. n + 1 and n + 2 in Fig. 2.4. If we now apply a modulation to the arrival time of

bunch n that will produce a phase modulation of the voltages sampled by the following

bunches. Therefore bunch n is now coupled to the following bunches. Since the other

bunches also create the wake fields they couple to bunch n closing the feedback loop. For

certain combinations of the resonant frequencies and bunch currents the overall system
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becomes unstable and bunch oscillations will grow to large amplitudes limited either by

non-linearities or beam loss.

The theory of coupled-bunch instabilities is well developed [4, 5]. Here we will present the

most important analysis results which link the characteristics of the unstable longitudinal

motion to the Fourier transform of the wake function known as coupling impedance.

The longitudinal wake function W ‖(t) is defined as the integrated longitudinal compo-

nent of the electric field experienced by a test charge passing through the vacuum chamber

a time t later than the particle that excites the field. The field is integrated over an entire

turn. Longitudinal impedance Z‖(ω) is defined as

Z‖(ω) =
∫ ∞

−∞
W ‖(t)e−iωtdt =

∫ ∞

0
W ‖(t)e−iωtdt (2.6)

The impedance is hermitian, that is Z(−ω) = Z∗(ω) where ∗ denotes complex conjugate as

it is a Fourier transform of a real function. This property will be quite important in the

following section when we will consider the effect of the longitudinal impedance on beam

stability and system eigenvalues.

So far we have considered as a longitudinal coordinate of the bunch its time of arrival

bunch n bunch n+2n+1bunch

Time

Figure 2.4: Oscillatory electric field excited in the structure by bunch n is sampled by
bunches arriving in the structure afterwards.
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error τ measured relative to the synchronous time. In practice it is more convenient to use

a linearly related coordinate - phase deviation at the RF frequency defined as φ = ωrfτ .

Using phase error as a coordinate normalizes the motion to the RF frequency of the ring.

The new coordinate carries information on the absolute amplitude of the motion. That is

an oscillation amplitude of 20 ps can be large or small depending on the RF frequency.

However when expressed as 1 degree at RF it is clearly a small oscillation. Consequently

motion amplitudes can be compared between accelerators with different RF frequencies.

The bunch motion in a storage ring can be projected onto an orthonormal basis which

will define the eigenmodes. If the ring filling pattern is even, i.e. it has rotational symmetry

(for N filled bunches rotation by h/N RF buckets leaves the same buckets filled), the

coordinate transformation is the discrete-time finite duration Fourier transform (DFT) given

by

ϕl(t) =
1
N

N−1∑
n=0

φn(t)e−i2πln/N (2.7)

The above transforms the motion in bunch domain φn(t) to the motion in the eigenmodal

domain ϕl(t). We will call the eigenmodal basis for an even filling pattern the even-fill

eigenmode (EFEM) basis. In this work the variables in the EFEM basis will be denoted as

x̂ (x in the bunch basis) except for the phase for which we use ϕ in the EFEM basis and φ

in the bunch basis.

The motion of bunch k oscillating in mode l is given by

φk(t) = ej2πkl/Nϕl(t)

ϕl(t) = AeΛlt

where Λl is the modal eigenvalue [6]. If there is no longitudinal impedance affecting mode

l its unperturbed eigenvalue is given by

Λ0 = −dr + jωs (2.8)

When longitudinal impedances are introduced they result in eigenvalue shift λl [4, 2]
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λl =
παef2rfI0
E0hωs

Z‖eff(lω0 + ωs) (2.9)

Z‖eff(ω) =
1

2πfrf

∞∑
p=−∞

(pNω0 + ω)Z‖(pNω0 + ω) (2.10)

where frf = 1/Trf is the frequency in the accelerating cavities, I0 is the average (DC)

beam current, ω0 = 2π/T0 is the revolution frequency, and Z‖(ω) is the total longitudinal

impedance. Here we assume that the bunch length is much smaller than the wavelengths

of the wake fields driving coupled-bunch instabilities.

For small oscillations the beam samples the longitudinal impedance at the RF frequency.

Such sampling aliases the impedance into the frequency band from 0 to frf/2. Summation

over p in Eq. 2.10 describes aliasing of the longitudinal impedance into the frequency range

from DC to frf . The aliased impedance Z‖eff sampled at the upper synchrotron sideband

of the lth revolution harmonic defines the modal eigenvalue shift λl. If one wanted to

restrict Eqs. 2.9-2.10 to the frequencies below the Nyquist frequency frf/2 one could replace

Z‖eff(lω0 + ωs) by Z‖eff((N − l)ω0 − ωs) for l ≥ N/2. However the original representation

is more common in the analysis of longitudinal coupled-bunch instabilities [6, 7, 8, 9].

2.3 Driving terms

Longitudinal impedance Z‖(ω) defined in Eq. 2.6 is computed from the wake field inte-

grated over the whole ring. This includes contributions from many resonators and broad-

band impedances. In a physical machine there are usually several dominant resonances

which define the unstable eigenmodal structure. Most often these resonances occur in the

accelerating RF cavities. The longitudinal impedance of such a cavity consists of the fun-

damental mode and the higher order modes (HOMs). The fundamental mode is designed

to be resonant at the RF frequency of the ring while the frequencies of the higher order

modes are not controlled during cavity design and depend on the geometry of the cavity.

Let’s consider the effect of the impedance near a given revolution harmonic on the

longitudinal stability. The impedance near ωimp = pωrf + lω0 revolution harmonic (p is

integer) affects two eigenmodes: l and N − l. According to Eq. 2.9, the eigenvalue of mode l

is affected by the longitudinal impedance at the upper synchrotron sideband of ωimp. Passive

(lossy) wake fields result in the impedance with positive real part, that is �(Z‖(ω)) > 0 for



2.3. DRIVING TERMS 15

ω > 0. From Eqs. 2.9-2.10 we see that real part of Λl has a shift in value proportional to

the real part of the impedance at ωimp + ωs. That shift moves EFEM l toward instability.

Since longitudinal impedance is hermitian there is a contribution of the above impedance

to Z‖eff at −ωimp + ωs. Due to frequency scaling effective impedance for that mode will

have negative real part since �(Z‖(−ω)) = �(Z‖(ω)) > 0. Thus longitudinal impedance

near pωrf + lω0 drives EFEM l unstable, but acts to stabilize eigenmode N − l.

2.3.1 Higher order mode impedances

Often it is useful to parameterize resonant modes in cavity-like structures. Longitudinal

impedance of such modes can be expressed as

Z‖(w) =
Rs

1 + jQ[ω/ωr − ωr/ω]
(2.11)

where ωr is the resonance center frequency Rs is the shunt impedance, and Q is the quality

factor. Another important parameter of the resonator is the 3 dB bandwidth defined as the

difference between upper and lower frequencies at which the absolute value of the impedance

is reduced by 3 dB relative to the peak value Rs. For resonators with Q � 1 the bandwidth

is given by

ωbw =
ωr
Q

To help analyze the effect of higher-order mode impedances on longitudinal stability

we will introduce the classes of narrowband and wideband resonances. The quality fac-

tor Q in Eq. 2.11 determines the width of the resonance. Traditionally resonators are

considered narrowband if Q � 1 and wideband if Q ≈ 1. In this context we will define

narrowband/wideband resonator grouping by comparing resonator bandwidth to the ring

revolution frequency ω0. Resonances with the bandwidth smaller than the revolution fre-

quency are narrowband and all others - wideband. The two classes call for slightly different

control techniques.

Effect of a narrowband resonance on longitudinal stability depends on the tuning of

its center frequency. Placing the peak of the resonance midway between two revolution
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Figure 2.5: Normalized magnitudes of two impedances: narrowband and wideband. The
narrowband resonator has the bandwidth of ω0/8 and the wideband one - 4ω0. Both reso-
nances are tuned midway between two revolution harmonics.

harmonics reduces the resultant instability growth rates. The effect is strongest for the

very narrow resonances and becomes less pronounced as the bandwidth increases. For

the borderline case of ωbw = ω0 optimal tuning halves the shift of the real part of the

eigenvalue relative to the worst-case shift which occurs when peak of the resonance is placed

at the upper synchrotron sideband of a revolution harmonic. Narrowband HOMs of the

accelerating cavities are commonly tuned by adjusting the temperature of the structure

[7, 9]. In some cases cavities are equipped with a separate tuner antenna coupled to the

strongest HOMs [10].

Wideband resonances provide less tuning flexibility - when HOM bandwidth is 4ω0 the

difference between eigenvalue shift for best and worst tuning is only 6%. Such HOMs cannot

be ”hidden” between revolution harmonics and always present an effective impedance on

the order of ωrRs/ωrf . For this reason the wideband HOMs require careful attention during

accelerator design. The effective impedance presented by these modes must be within the

feedback damping limits. The difference between narrowband and wideband resonators is

illustrated in Fig. 2.5.

To summarize, narrowband impedances can be controlled via combination of resonant

frequency tuning and active feedback while with wideband resonators one has to rely solely
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on active feedback.

2.3.2 Fundamental mode impedances

The fundamental mode of the accelerating cavity rarely causes longitudinal instabilities

even though it presents a large longitudinal impedance. The secret here is in the tuning of

the cavity resonant center frequency below the RF frequency. Such tuning is used for two

reasons. First, it is used adjust the matching of the cavity with beam to the RF generator.

Usually the center frequency of the cavity is tuned so that current reflected to the generator

is in phase with generator current (resistive loading). Second, tuning the cavity below

the RF frequency ensures that the fundamental impedance does not cause instability of

the lowest-frequency mode - also called Robinson instability. Impedances at both upper

and lower synchrotron sidebands of the RF frequency contribute to the effective impedance

for EFEM 0. The upper sideband figures in the expression with positive sign (unstable)

while the lower one has negative sign (stable). When the resonance is tuned below the RF

frequency the impedance at the lower sideband is larger than that at the upper one. Thus

such tuning guarantees that EFEM 0 is stable. However there are some cases when the

impedance of the fundamental mode of the RF cavity can drive longitudinal coupled-bunch

instabilities - we will consider two such possibilities here.

The first case is that of a storage ring with large circumference. Such a ring has low

revolution frequency. The impedance of the fundamental mode sampled at ωrf − ω0 + ωs

excites eigenmode N − 1. The effect is amplified if the RF system is heavily beam loaded,

that is the average beam current is large in comparison to the generator current in the RF

cavity. Beam loading will be discussed in more detail in Sec. 2.4. Heavy beam loading

requires large detuning of the accelerating cavity and, therefore, increases the impedance

driving eigenmode N − 1. In some cases the detuning can be equal to or larger than the

revolution frequency [11]. Then the EFEM N − 1 is driven by the full shunt impedance of

the accelerating cavity. To operate in this regime the RF system must be equipped with

feedback loops aimed at reducing the impedance presented to the beam [12, 13].

The second case is that of parked cavities. Often there are more accelerating cavities

installed in the ring than can be or need to be powered by RF generators. The unused

cavities must be detuned away from the RF frequency or its harmonic (for the harmonic

RF system). Such detuning of the cavities is called parking. Optimal parking of the cavity

is midway between two revolution harmonics to minimize the impedance that affects the
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beam. When many cavities are parked at the same frequency the cumulative impedance at

the nearby revolution harmonics can be large enough to drive coupled-bunch instabilities.

The effect of the harmonic RF cavities is amplified by the high resonant frequency - see the

scaling factor in Eq. 2.10. One such case will be considered in Ch. 4. There is a method

to minimize the effect of parked cavities. This technique is applicable when the number of

parked cavities is even. Then parking half of the cavities at ωrf − ωpark and the other half

at ωrf + ωpark reduces the effective longitudinal impedance. For illustration suppose that

ωpark = 2.5ω0 that is the cavities are parked between two and three revolution harmonics

away from the RF. Then from Eq. 2.10 we get for the effective impedance for EFEM 2

Z
‖eff
2 =

1
ωrf

[(ωrf + 2ω0 + ωs)Z
‖
1 (ωrf + 2ω0 + ωs)− (ωrf − 2ω0 − ωs)Z

‖∗
2 (ωrf − 2ω0 − ωs)]

≈ 4ω0 + 2ωs
ωrf

Z‖(ωrf + 2ω0 + ωs) ≈ 4
h
Z‖(ωrf + 2ω0 + ωs) (2.12)

Fortunately, for the large rings, where the effect of the parked cavities is most noticeable

due to narrow revolution harmonic spacing, the harmonic number is high as well making

the impedance reduction in Eq. 2.12 very effective.

2.4 Interaction with the RF system

So far we have developed the longitudinal dynamics using the notion that the RF voltage

is provided by a perfect voltage source. In practice the RF accelerating voltage is created

by injecting drive currents into the RF resonant cavity. However drive current is not the

only input into the cavity. Beam current is the second current source driving the resonator.

Consequently the voltage in the accelerating cavity is a result of the total drive current

equal to a sum of generator and beam currents. As shown in Sec. 2.1 the voltage in the

cavity determines longitudinal dynamics. That is, the beam current source is affected by

the voltage in the cavity while that voltage depends on the beam current. This creates a

feedback mechanism which can modify the parameters of the longitudinal beam dynamics

as well as the dynamics proper. When beam current is small relative to the generator

current - called light beam loading - the effect of the interaction between the beam and

the RF system is weak. In this case the voltage in the cavity is in most part determined

by the constant generator current. However heavy beam loading with the beam current
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Figure 2.6: Schematic of the RF cavity model with two input currents and feedback loops

being comparable to or larger than the generator current creates strong interaction which

significantly modifies longitudinal motion parameters and dynamics for the low-frequency

eigenmodes (with mode numbers near 0 or N-1).

Here we will use the Pedersen model [14, 15] to characterize the small-signal behavior of

the beam and RF system. In this model the cavity is represented by an equivalent parallel

RLC circuit driven by two currents: generator current �IG and beam current �IB . This

model is schematically illustrated in Fig. 2.6. The RF system in addition to the RF power

generator usually includes additional feedback loops. These can be narrowband amplitude

and phase loops that maintain the cavity voltage amplitude and phase at the RF frequency

or broader bandwidth feedback to improve system stability margins [15].

The driving current phasors are evaluated at the RF frequency. For short bunches in

the lepton storage rings |�IB | = 2I0. From here on we will use IB to represent |�IB |. In the
Laplace domain the impedance of the cavity is given by

Z(s) =
2σRs

s2 + 2σs+ ω2r
(2.13)

where σ = ωr/2Q is the damping time of the cavity. Note that Eq. 2.13 transforms into
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Figure 2.7: Steady-state vector diagram of accelerating cavity currents and voltages

Eq 2.11 with the substitution s = jω.

The beam loading is characterized by the dimensionless parameter Y = IB/IL where

IL is the generator current required to produce the same cavity voltage without beam load

and with the cavity resonance tuned to ωrf . From the steady-state vector diagram shown

in Fig. 2.7 relating �IB, �IG, and cavity voltage �VC one gets the following relationship

tanφL =
tanφZ − Y cosφB
1 + Y sinφB

(2.14)

where φL is the loading angle between the cavity voltage and the generator current, φB is

the synchronous phase angle, and φZ is the cavity impedance angle. For efficient utilization

of the power source loading angle is usually maintained constant and close to 0. To achieve

that according to Eq. 2.14 the magnitude of the cavity impedance angle has to increase

when Y increases - more obvious if we rewrite that equation as

tanφZ = tan φL + Y (tan φL sinφB + cosφB)
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This implies that the tangent of the cavity impedance angle has to change linearly with

beam current to keep the loading angle constant. Angle φZ is adjusted by changing the

center frequency of the cavity. The detuning of the cavity resonance is given by ωD =

ωr − ωrf = σ tanφZ .

The effect of RF cavity impedance on longitudinal dynamics falls outside the framework

developed in Section 2.2 due to several factors limiting the applicability of eigenvalue pertur-

bation analysis. First, the cavity fundamental impedance produces large eigenvalue shifts

comparable to the eigenvalue itself. Second, the high-Q fundamental impedance depends

strongly on the frequency. Shift of the eigenvalue modifies the frequencies at which the

beam samples the impedance. Due to this the straightforward application of Eqs. 2.9-2.10

results in large errors.

Using the small-signal model developed in [13, 14, 16] we can compute the Laplace

domain closed-loop poles of the system that includes both the beam and the RF. In Fig. 2.8

a block diagram of the model is shown. The diagram shows propagation of amplitude and

phase modulations of beam current - variables aB and pB - to the amplitude and phase

modulations of the cavity voltage through four transfer functions: GB
aa, GB

ap, GB
pa, and

GB
pp. The effective phase of the cavity voltage pVeff

excites the dipole mode beam dynamics

represented by the transfer function B1(s). The RF side of the interaction is omitted

here. The resulting model is valid if RF feedback loops have bandwidth much smaller than

synchrotron frequency. When wideband feedback is present the complete model has to be

examined since the wideband RF feedback loops will affect the longitudinal dynamics.

The transfer functions in the model are obtained by considering propagation of small-

signal cavity input current modulations to the cavity voltage. For the resonant cavity with

impedance given by Eq. 2.13 these functions are:

Gpp(s) = Gaa(s) =
σ2 + ω2D + σs

(s+ σ)2 + ω2D

Gpa(s) = −Gap(s) =
ωDs

(s+ σ)2 + ω2D

The transfer functions from �IB and �IG are obtained by geometrically projecting modulations

of these vectors to �IT . The beam dynamics transfer function B1(s) includes the dynamics

of all coupled-bunch eigenmodes. When fundamental impedance mostly interacts with the

lowest-frequency beam mode we use the following function
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Figure 2.8: Block diagram of the beam cavity interaction

B1(s) =
ω2s

s2 + 2drs+ ω2s

By computing the relevant transfer function at the given beam current and RF config-

uration we obtain a closed-loop model of beam-cavity interaction and can analyze various

dynamic properties of the system such as response to RF generator noise or interaction with

longitudinal feedback.

2.5 Dynamics modifiers

Here we will discuss effects such as beam loading, energy ramping, etc. that modify the

longitudinal behavior of the beam relative to the model developed in Section 2.2. These

important phenomena strongly affect the longitudinal motion parameters and the perfor-

mance of the stabilizing feedback. We will start the discussion from the effect of the beam

loading on eigenmode 0.
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Figure 2.9: Root locus for the dominant closed-loop pole of the cavity-beam mode 0 system
at the ALS. The pole is plotted as a function of beam current in the 0 mA to 400 mA range
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2.5.1 Beam loading of the RF cavity and mode 0 frequency shift

In the previous section we described the interaction of the beam and the RF system. This in-

teraction most strongly affects the lowest-frequency eigenmode (closest to the RF frequency)

- mode 0. As the RF cavity is detuned with increasing beam current the impedance driving

mode 0 changes. From the eigenvalue perturbation model described in Sec. 2.2 we expect

the eigenvalue shift of EFEM 0 to be proportional to Z‖(ωrf + ωs) − Z‖∗(ωrf − ωs). The

detuned RF fundamental impedance has a large negative imaginary part. Thus we expect

a downward shift in the mode 0 oscillation frequency. Precise changes in the dynamics are

available from a small-signal model described in Sec. 2.4. Applying the model to the case

of the Advanced Light Source we obtain the closed-loop pole locations shown in Fig. 2.9.

The root locus shows that mode 0 oscillation frequency shifts from 11.8 kHz nominal

synchrotron frequency to 4.8 kHz at 400 mA beam current. The large frequency shift has

been also observed at other accelerators with heavy beam loading - for example, in DAΦNE

positron ring the frequency shift is from 33 kHz to 11 kHz at 1 A.



24 CHAPTER 2. COUPLED-BUNCH INSTABILITIES AND FEEDBACK CONTROL

The large frequency shift of mode 0 changes the interaction of the beam dynamics and

active longitudinal feedback system and places additional constraints on feedback controller

design.

2.5.2 Energy ramping

Not all storage rings are equipped with the full energy injection system. That is the energy

provided by the injection accelerator is lower than the desired operating energy of the ring.

Charge can be stored in the ring only when the nominal and injection energies are closely

matched. These contradicting requirements give rise to energy ramping technique. In this

method the ring optics is initially configured for the injection energy and the ring is filled to

the full operating current. Next the magnetic lattice is modified to slowly raise (ramp) the

ring energy to the desired value. The ramping process is reversed when injection is needed

again.

Energy ramping affects longitudinal dynamics in several ways. Both synchrotron fre-

quency ωs and modal eigenvalue shift λl depend on the beam energy. From Eq. 2.5 we see

that synchrotron frequency changes as 1/
√

E. Modal oscillation frequency is given by the

imaginary part of the modal eigenvalue Λl = Λ0 + λl and the modal growth rate - by the

real part. From Eqs. 2.8,2.9 we have

2l = 
(Λl) = ωs +
παef2rfI0
E0hωs


(Z‖eff(lω0 + ωs))

σl = �(Λl) = −dr +
παef2rfI0
E0hωs

�(Z‖eff(lω0 + ωs))

where 2l and σl are the oscillation frequency and the exponential damping rate of EFEM

l. Substituting ωs from Eq. 2.5 and assuming that effective impedance changes little with

the changes in synchrotron frequency we get

2l = ωs(1 +
πfrfI0

−V̇rf

(Z‖eff(lω0 + ω0s)) (2.15)

σl = −dr + ωs
πfrfI0

−V̇rf
�(Z‖eff(lω0 + ω0s)) (2.16)

where ω0s is the zero-current synchrotron frequency at the injection energy. From these
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equations we see that when energy is ramped up the modal oscillation frequency has the

same scaling as the synchrotron frequency. Reduction in the oscillation frequency expands

the feedback controller bandwidth requirement with wideband controllers presenting bigger

design challenge. A positive side effect of energy ramping is the reduction of the induced

growth rates according to Eq. 2.16.

2.5.3 High harmonic RF systems

A high harmonic RF system is used to apply a voltage to the beam at a harmonic of the ring

RF frequency. Such system can be active - powered by an external generator, or passive -

harmonic voltage is generated by the beam current. A harmonic RF system can be used to

modify the longitudinal potential well and, consequently, to lengthen or shorten the bunch

size.

High harmonic RF systems are often used in the storage rings for improving beam

lifetime and for introducing Landau damping for controlling longitudinal coupled-bunch

instabilities [17, 18, 19]. In storage rings with dense electron bunches and moderate nominal

energy the beam lifetime is often determined by large-angle intrabeam (Touschek) scattering

[10]. Higher harmonic RF system provides a way to stretch the bunches and lower the charge

density thereby improving the lifetime.

The higher harmonic RF system generates an accelerating voltage in addition to the

main RF system. The additional voltage modifies the longitudinal potential well depending

on the relative phase between the two RF systems. By adjusting the relative phase one can

narrow or widen the potential well and change the longitudinal bunch size [20].

Let us consider the RF voltage seen by the beam when both main and harmonic RF

systems are operational. It is given by [10, 21]

V (τ) = Vrf sin(ωrf(τ + τs)) + Vh sin(nωrf(τ + τh)) (2.17)

where Vh is the voltage in the harmonic cavities, τh is the phase of that voltage seen by

a synchronous particle, and n is the integer RF harmonic.

Introduction of the harmonic voltage not only changes the bunch length but also the

synchrotron frequency. In bunch lengthening mode the slope of the total RF voltage at the

synchronous phase is reduced and so is the synchrotron frequency. When Vh is held constant

lower ωs causes increased eigenvalue shifts according to Eq. 2.9. The same longitudinal
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impedances result in faster growth rates making the feedback stabilization more difficult.

In many cases due to budget constraints the harmonic RF system is passive. In this case

there is no external generator and the harmonic voltage is generated by the beam itself.

Desired relative phase of the harmonic voltage is adjusted by harmonic cavity tuning. In

this configuration the harmonic voltage is dependent on beam current. For the fixed cavity

tuning Vh ∝ I0. This causes the synchrotron frequency to change with beam current. A

stabilizing feedback controller for such a system must be adaptive or be able to handle

significant changes in plant dynamics. In fact, most of the advanced controller design

methods described in Chapter 6 were brought to life by the installation of the third harmonic

passive RF system at the ALS [19, 22, 23].

2.6 Beam model as a multi-input multi-output system

In order to design a stabilizing feedback controller for the longitudinally unstable storage

ring we need to build a model of our unstable system. In Section 2.2 we considered dynamics

of an unstable eigenmode as a second-order harmonic oscillator, characterized by the modal

eigenvalue Λ. The real part of the eigenvalue is the growth or damping rate of the mode

while the imaginary part is the oscillation frequency.

The undamped natural frequency of a second-order system is defined as [24, page 72]

ωl =
√

22
l + σ2l

The following differential equation derived using Eqs. 2.4 and 2.7 governs the motion of

an EFEM

ϕ̈l + 2σlϕ̇l + ω2l ϕl = 0 (2.18)

To stabilize the above system we need a way to affect the internal dynamics, i.e. an

actuator. Since longitudinal coupled-bunch dynamics of the ring are defined by the electric

field in the accelerating RF cavities and modified by the parasitic wake fields it is natural

to stabilize the system using longitudinal electric field. Let’s consider an actuator (kicker)

that creates a longitudinal electric field such that a bunch of charge q gains energy qv(t).

Let vn(t) be the kick of bunch n and v̂l(t) be the same kick transformed to the EFEM basis.
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Then Eq. 2.18 becomes

ϕ̈l + 2σlϕ̇l + ω2l ϕl =
αeωrf
E0T0

v̂l(t) (2.19)

By taking a Laplace transform we get a transfer function from the kicker voltage to beam

phase

Ĝl(s) =
Φ̂l(s)
V̂l(s)

=
αeωrf
E0T0

1
s2 + 2σls+ ω2l

(2.20)

The overall beam system has N eigenmodes so that it can be represented as a MIMO linear

system with N inputs and N outputs. The input vector �̂
V and the output vector �̂Φ are

related by the transfer matrix G(s):

�̂Φ = Ĝ(s)�̂V

By definition the eigenmodes are linearly independent, therefore Ĝ(s) is a diagonal

matrix of the following form:

Ĝ(s) =




Ĝ0(s) 0 . . . 0

0 Ĝ1(s) . . . 0
...

...
. . .

...

0 0 . . . ĜN−1(s)




(2.21)

2.7 Earlier work in coupled-bunch instability control

Feedback control of coupled-bunch instabilities has been extensively studied and described

in literature. Control architectures ranging from mode-by-mode [25] to bunch-by-bunch

[26, 27, 28] have been explored and their performance documented. Within author’s research

group H. Hindi performed extensive analysis and modeling of coupled-bunch instability

control addressing beam model measurements [29], optimal LQG controller design [30] and

performance of optimal and simplified controllers [31].
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Figure 2.10: Generalized block diagram of a feedback control system

2.8 Feedback control: an introduction

In general, the objective in a feedback control system is to make some output of a dynamic

system behave in a desired way by manipulating the input of that system. A general block-

diagram of such a system is shown in Fig. 2.10. The system consists of the physical system

(plant) the output of which we want to control. The output signal y is measured by the

sensors and sent to the controller. The control objective might be to keep y small (or close

to some constant value) - this is defined as a regulator problem. A different objective is to

make plant output y follow some reference signal r - a servomechanism problem. Controller

in Fig. 2.10 can be a regulator - then input r is omitted - or a servo. In any case controller

determines the error between plant output and desired value and, based on the knowledge

of plant dynamics, computes the control output u. The control signal is then applied to the

plant via actuators.

The plant is subject to external disturbances which affect the output y. As one of the

performance criteria of the control system one can consider the reduction of the transfer

gain from external disturbance input to plant output.

2.9 Feedback control of coupled-bunch instabilities

The longitudinal coupled-bunch instability is a regulator problem aimed at keeping bunch

phase excursions from the synchronous position small. In this case the control problem is

that of stabilization since the plant is open-loop unstable. In order to design a feedback con-

troller we need to chose our sensors and actuators. A good choice driven by sensitivity and

implementation feasibility is to measure bunch phase error relative to synchronous phase.



2.9. FEEDBACK CONTROL OF COUPLED-BUNCH INSTABILITIES 29

A good actuator choice is an electromagnetic structure that applies a longitudinal electric

field to the beam. In the previous section coupled-bunch instabilities were formulated as a

MIMO linear system. In practice it is more convenient to observe bunch signals at a single

point in the ring. Consequently the sensor and controller outputs are multiplexed at Trf .

Such multiplexing defines the bandwidth requirements for the actuator and the sensor. Ac-

cording to the Nyquist criterion in order to independently measure and correct individual

bunches both the sensor and the actuator must have bandwidth of at least frf/2. Note, that

in modeling we will still use the multi-input multi-output model since sequential sampling

instead of simultaneous does not significantly change the model. The difference between

the two sampling schemes is T0 − Trf between the first and last bunches. During that time

longitudinal position changes very little due to the fact that ωs � ω0.

In order to stabilize the system described by the transfer matrix in Eq. 2.21 we need

to apply feedback to the unstable eigenmodes. Feedback systems which act only on the

unstable eigenmodes - so called mode-by-mode systems - do exist and utilize the properties

of the bunch spectrum which separate the different eigenmodes in the frequency domain

[32, 33, 25]. The drawback of such systems is that they are designed for a particular unsta-

ble eigenmode spectrum. Consequently these feedback systems are not portable between

different accelerators. Another operational difficulty is that changes in ring components,

such as installation of new RF cavities, require feedback hardware redesign. In a general

case one would like to design a system that allows independent control of each eigenmode.

In the EFEM basis such system has a diagonal transfer matrix. Unfortunately in the physi-

cal world longitudinal motion is observed in the bunch basis and the real-time conversion to

the EFEM basis is impractical. A feedback system that has independent eigenmode control

results in a fully populated feedback matrix, that is correction signal for a given bunch

depends on the motion of all bunches. Such a system is very computationally intensive.

An obvious simpler topology is a bunch-by-bunch feedback in which the correction signal

for a given bunch depends only on the motion of that bunch. Then the feedback matrix is

diagonal in the bunch basis. This layout is illustrated in Fig. 2.11. The feedback system

shown here is not only diagonal, but also acts equally on all bunches. Such system can be

described by the following transfer matrix
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Figure 2.11: Block diagram of the beam and the bunch-by-bunch feedback system

H(s) =




H(s) 0 . . . 0

0 H(s) . . . 0
...

...
. . .

...

0 0 0 H(s)



= H(s)IN (2.22)

where IN is N ×N identity matrix. An important property of such a feedback is invariance

under coordinate transformations. Let coordinate transformation T be the transformation

from bunch to EFEM basis. Elements of matrix T are given by the definition of the DFT

in Eq. 2.7. Note that in the following discussion exact nature of the transformation matrix

is unimportant as long as it is nonsingular. Then we have

�ϕ = T�φ
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�̂v = T�v

Ĝ = TGT−1

Ĥ = THT−1 (2.23)

If we substitute the expression for the feedback matrix from Eq. 2.22 into Eq. 2.23 we get

Ĥ = TH(s)INT−1 = H(s)TT−1 = H(s)IN = H (2.24)

This shows that uniform bunch-by-bunch feedback is invariant under coordinate transfor-

mations. A system that applies identical feedback to each bunch applies the same feedback

to each eigenmode. If the feedback is resistive, i.e. it only modifies the real part of the

plant pole, its action will shift all eigenvalues along the real axis by the amount dependent

on the loop gain. For the negative resistive feedback eigenvalues shift left and at some gain

setting all of them are shifted to the left half plane (LHP) resulting in a stable closed-loop

system.

An important property of Eq. 2.24 is that it holds true even for asymmetric ring fill

patterns. As long as there is a linear coordinate transformation from the bunch coordinates

to the eigenmodes the uniform bunch-by-bunch feedback results in the same feedback being

applied to the eigenmodes of the uneven fill.

Let us consider a single-input single-output system consisting of an eigenmode plant and

a feedback system. The open-loop transfer function for eigenmode l is given byKlĜl(s)H(s)

where Kl is the loop gain parameter. In a physical feedback system with realizable transfer

function and transport delays there will be some maximum loop gain Kmax
l above which

the closed-loop system becomes unstable. There is also a minimum gain Kmin
l below which

the system is unstable. For unstable eigenmodes this minimum gain is positive while for

the stable ones it is negative corresponding to positive feedback. To achieve longitudinal

stability one has to configure each eigenmode so that Kmin
l < Kl < Kmax

l . With the uniform

bunch-by-bunch feedback there is a single adjustable loop gain since the same feedback is

applied to each eigenmode. Then for the overall system stability we need

max
l

Kmin
l < min

l
Kmax
l
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Figure 2.12: Fragments of a root loci for a) an unperturbed (stable) eigenmode with pole at
−dr+ iωs. The open-loop poles of the system are marked by ×. b) an unstable eigenmode.

The above inequality requires that there is a range of loop gains where all unstable plant

modes are stabilized and no eigenmodes are driven to instability by too high a gain. Usually

this is not a limitation since difference between the eigenvalues of the stable and unstable

modes is much smaller than the unperturbed eigenvalue. Let’s consider the root locus for

an unstable eigenmode with feedback. The locus starts from the unstable pole and moves to

the LHP. If we substitute a stable eigenmode the starting point is shifted by a small amount

without strongly changing the overall locus. This effect is illustrated in Fig. 2.12 for two

eigenmodes - one with eigenvalue of −dr + iωs and another one with unstable eigenvalue

Λx estimated on the basis of experimental measurements. Both root loci are plotted for the

same range of loop gains. In this case the unstable eigenmode has narrower stability range

than the unperturbed mode.

In general, arbitrary eigenmode feedback can achieve better damping since feedback can

be optimized on the per-mode basis. In practice, for the systems of relatively weakly coupled

oscillators (eigenvalue shifts are small) the restrictions of the bunch-by-bunch feedback do

not limit system performance. Only when the mode-to-mode differences between eigenvalues

are large relative to the unperturbed eigenvalue the bunch-to-bunch feedback becomes a

limitation.
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2.10 Digital bunch-by-bunch feedback system

A programmable system was developed to control longitudinal instabilities in the ALS

storage ring and PEP-II and DAΦNE colliders [34] - it has since been installed and operated

at SPEAR, BESSY-II and the PLS [35, 36].

The system to be described here uses bunch-by-bunch digital signal processing to gener-

ate feedback correction signal. Since this is a diagonal bunch-by-bunch system it is sufficient

and complete to consider its operation as a feedback loop around any one bunch. Fig. 2.13

shows a conceptual block diagram of such a feedback loop. Longitudinal position of a bunch

is measured in the front-end detector and digitized by the analog-to-digital converter (ADC).

Signal of a single bunch is digitized at the revolution frequency. In this feedback system we

take advantage of the fact that longitudinal oscillations are slow relative to the revolution

frequency, so a bunch oscillating at the synchrotron frequency takes many revolutions to

complete one period. Longitudinal bunch motion observed on every turn is oversampled

and one can reduce the sampling rate (downsample) without significantly affecting the per-

formance of the feedback system [37]. Downsampling is done by processing one out of every

Nds samples - Nds is called downsampling factor. Downsampling factor is chosen so that

there are 4 to 6 samples per synchrotron oscillation period. Table 2.1 shows the revolution

and synchrotron frequencies for several accelerators as well as the downsampling factors

being used. After downsampling the bunch signal is processed by a digital signal processor

(DSP) using discrete filtering process such as finite impulse response (FIR) or infinite im-

pulse response (IIR). The computed actuator signal (kick) is sent to the holdbuffer. The

function of the holdbuffer is to maintain the kick value for a given bunch between updates.

DAC Holdbuffer Digital filter
DSP

Detector
∑∑

ADC

Bunch kKicker

Downsampler
↓ Nds

Other driving terms and
external disturbances

Sensor noise

Figure 2.13: One bunch slice of a digital bunch-by-bunch feedback system
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Table 2.1: Longitudinal feedback configuration parameters for several installations

Machine PEP-II BESSY-II ALS DAΦNE
Bunch crossing rate, MHz 238 500 500 368
Number of bunches 1746 400 328 120
Revolution frequency, kHz 136 1250 1524 3067
Synchrotron frequency, kHz 6 8 12 33
Downsampling factor 6 29 31 11
Bunch sampling rate, kHz 22 43 49 272

If one were to produce actuator signal only once per downsampling period the feedback

gain would be reduced by approximately 1/Nds. Holdbuffer output is converted to an ana-

log signal by the digital-to-analog converter (DAC) and applied to the bunch via back-end

modulator and the kicker.

2.10.1 System architecture

The feedback processing channel is implemented in a mix of VXI and VME modules. The

following modules are implemented in the VXI format: timing, front-end, downsampler,

holdbuffer, and back-end. VME module list consists of the interface board and the DSP

board. The overall architecture is illustrated in Fig. 2.14. Next we will consider functionality

of each system module.

Timing module

This module receives the RF master oscillator signal and the revolution clock (fiducial).

The fiducial signal is first synchronized to the RF clock. Every revolution the timing

module counts the number of RF clock edges between the fiducials. If the counted value

differs from the programmed number of bunches one of the two error bits is set - missing

or extra fiducial. Additional functionality in this module includes programmable bucket

trigger signals and temperature monitoring. Due to high density of the ECL logic on the

VXI modules thermal management and monitoring is critical for stable system operation.

The modules are equipped with multiple temperature sensors which are monitored via the

timing module. The temperature signals are compared to the adjustable trip limits and

if these are exceeded VXI power supply is turned off to prevent overheating. The control

system polls the temperature readings at 1 Hz rate for operator information.
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Figure 2.14: Overall feedback system block diagram showing different modules and the
interconnect buses. Bunch data transmission from the downsampler to the interface boards
and from the interface boards to the holdbuffer via 1.3 Gbps links is not shown.

Front-end module

Front-end module houses most of the analog signal processing involved in measuring longi-

tudinal bunch positions. Some relatively bulky functions, notably the comb generator, are

housed in the system oscillator chassis described later. In spite of that we will present here

the complete front-end analog signal processing chain.

Bunches passing through the button beam position monitor (BPM) structure generate

capacitively coupled (differentiated) fast pulses at the output electrodes [38]. The signals

from all four electrodes are summed to reduce sensitivity to transverse beam position and

passed through a comb generator filter. This filter is a passive stripline structure which

produces a series of uniformly spaced pulses (burst) from a single input pulse [39]. The

repetition rate of the burst is chosen to be the Trf/6 so that the output signal is bandpass

filtered around 6frf . The number of pulses is set to 4 producing a 2/3 of the RF bucket long

burst. This burst is mixed with the sixth harmonic of the RF frequency locked to the master

oscillator. Phasing of the RF-derived carrier is adjusted to produce phase detection - the
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output signal for bunchm with current im is proportional to imsinφm. For small oscillations

around synchronous phase the phase detector output is close to imφm. The baseband pulse

produced in this manner has a flat top lasting 2/3Trf which minimizes sensitivity of the

system to sampling clock jitter and synchronous phase shifts which change the time of

arrival of the bunch and the timing of the phase detector output. The output of the double-

balanced mixer is low-pass filtered to eliminate 12frf as well as carrier leakage.

Front-end module includes several service functions in addition to the broadband phase

detection. These are phase servo loop, RMS detector, and system oscillator digital interface.

The phase servo loop integrates the phase-detector output signal and adjusts the phase

shifter in the carrier path to maintain zero DC at the output. The loop helps to eliminate

DC offsets due to synchronous beam phase drifts. The front-end broadband RMS detector

is monitored by the control system and provides information about system stability.

Downsampler

The downsampler module is a programmable stream processor operating on a basic unit

of four samples - a group. The downsampling sequence is defined in the random-access

memory (RAM) by a series of 32-bit words - a program. The address of the RAM is driven

by two counters: the group counter and the turn counter. The group counter is incremented

at frf/4 and is synchronized to the ring fiducial signal. The turn counter is controlled by

the downsampler program. At the end of each turn a bit is set in the program to increment

the counter. After Nds revolutions the counter is reset to 0. The address into the RAM

defines the group of four bunches and the turn in the downsampling sequence. At each

address the program word defines the operation to be performed on the particular group on

that turn. One can ignore the group or direct it to one of the four possible 1.3 Gbps serial

links. Each link can be connected to a VME bus mastering interface board within a separate

VME backplane. The interface board accesses up to five four-processor DSP modules which

perform the feedback computation. The downsampler program word includes bits to select

the physical link for the data as well as the logical number of the DSP module to send the

data to. Additional bits are used to define the address in the holdbuffer memory (discussed

below), generate holdbuffer control signals and to control program flow. Definitions of the

bits making up the downsampler program word are shown in Table 2.2.

The program for the downsampler is generated based on several inputs. The system

configuration - map of available DSP boards and links is used to schedule the transactions.
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Table 2.2: Bit definitions in the downsampler program word

Bits Definition
0:4 DSP buffer pointer
5:7 DSP base address
8 Link 0 enable
9 Link 1 enable
10 Link 2 enable
11 Link 3 enable
12:13 Reserved
14 Holdbuffer stop bit
15 Holdbuffer start bit
16:26 Holdbuffer address
27:28 Reserved
29 Increment turn count
30 Clear turn count
31 Halt

The goal is defined by a sampling pattern consisting of all groups to be processed. Normally

the pattern will include all groups except for a small ion-clearing gap. Program generation

constraints include the minimum time between accesses to one link and the DSP processing

time.

Interface board

Data from the downsampler module arrives to the interface board within a VME back-

plane. The interface board is equipped with 1.3 Gbps link receiver and transmitter. The

transmitter is used to send the DSP output to the holdbuffer module. The interface board

exchanges information with the DSP boards in a VME read-modify-write cycle. During

this transaction the feedback output for the previous group is read out and the new data

for the current group of 4 is sent to the DSP board. Bunch data is transferred as four 8-bit

wide samples for a total of 32 bits. Address field in the read-modify-write transaction is

made up from the base address of the DSP board and the additional information - DSP

buffer address, filter and exception bits.

Together with group data the downsampler sends some service information on the serial

links. The holdbuffer address is sent to the interface board which forwards it to the hold-

buffer with the correction data obtained from the DSP board. DSP buffer address provides
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a unique group number for a given DSP board. Two filter bits are sent to all DSPs and are

used to select one of 4 sets of feedback coefficients. This capability can be used to adapt the

system to changes in beam dynamics. It is also utilized to trigger diagnostic measurements.

A single exception bit is sent to only one DSP. Within the downsampler it is defined by

a register value holding the bunch number of interest. This provides a way to modify the

feedback processing for a single bunch.

DSP board

A DSP board is populated with four AT&T 1610 DSPs running at 25 ns cycle time. Each

byte of the 32 bit VME bus is connected to the upper eight bits of the parallel input/output

(PIO) port of one DSP via a simple interface and the lower eight bits of the PIO receive DSP

buffer address from the VME address bus. DSP1610 processors are paired with 32 Kbyte

dual-port memories - a total of 4 per board - used to download the filter algorithm to the

DSPs and to exchange data between DSPs and the backplane controller. During system

operation the VME bus is in continuous use and cannot be utilized for control or diagnostics

of the DSP boards. Each DSP board is equipped with the VME subsystem bus (VSB)

interface used to control the DSP1610 processors as well as access the diagnostic memory.

The dual-port memory is routinely used to make beam diagnostic measurements without

interrupting the feedback process.

DSP processors execute a tight, hand-optimized processing loop which computes FIR

or IIR filter output based on programmable coefficients. The code executes 12-tap FIR

computation including data I/O and synchronization in 1675 ns. The host can use the

dual-port memory to reload the filter coefficients to the DSP while the feedback process is

running. Coefficient table is first loaded into the memory and then an interrupt is issued

to the DSP which then copies the new coefficients to the on-chip RAM. This is an invasive

process which interrupts feedback action for a short period of time on the order of 200-

300 µs. Only one DSP board is reloaded at a time, so that feedback control is removed

from only a small part of all bunches. This technique allows one to modify the feedback

controller on-line without disturbing beam stabilization.

Holdbuffer

Functionality of the holdbuffer centers around a block of static RAM (SRAM) large enough

to hold data for all of the groups in the ring. The SRAM is being continuously read out at
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sequential addresses incremented at the group rate of frf/4. From each location correction

values for a group of four bunches are sent to the DAC and converted to analog signal at

the RF frequency after parallel to serial conversion. Holdbuffer SRAM has 4 ns cycle time

which allows two access transactions per 8 ns group cycle at 500 MHz RF frequency. When

kick data is received from the serial link it is written to the holdbuffer SRAM at the address

indicated by the holdbuffer address sent from the downsampler via interface board. Each

group gets updated once per downsampling period. The kick value is read out on every

turn and applied to the bunch between updates - it is being ”held”.

Back-end

Output signal of the holdbuffer DAC has baseband spectral structure with largest com-

ponents in the DC to frf/2 band. Longitudinal kickers typically have bandpass response

centered near 1 GHz. The kick signal has to be translated in frequency to efficiently drive

the kicker. This is accomplished in the back-end module. Baseband kick signal amplitude

modulates a carrier signal to produce the kicker drive. Carrier signal used in this system is

a quadrature phase shift keying (QPSK) modulated waveform at an odd multiple of frf/4.

Different installations use QPSK carriers at 9/4frf (PEP-II, ALS), 11/4frf (BESSY-II), and

13/4frf (DAΦNE, PLS). At the first glance this seems to be an odd frequency choice, but

there are several strong reasons to select such a frequency. Suppose carrier frequency is an

RF harmonic. Optimal timing of a bunch relative to the kick voltage is at the peak. The

following bunch arrives at the peak of the carrier as well due to the Trf periodicity. Due

to the finite bandwidth of the back-end processing channel and the kicker there is residual

kick from the preceding bunch when the new one passes through the kicker. The residual

kick is at the peak and produces unwanted coupling between the bunches. Now consider

the 9/4frf carrier. The kick from the preceding bunch is sampled at a zero crossing by the

following one therefore the coupling is minimal. However one cannot use such continuous

wave (CW) carrier directly since timing bucket 0 on a positive peak we will get zero voltage

for buckets 1 and 3, and negative voltage for bucket 2 due to the quarter-period phase shift

over Trf . To solve this problem the carrier is phase-modulated with −90 degrees phase shift
(QPSK) every RF period.

Another reason for using QPSK carrier modulation is that it equalizes the feedback gain

for different eigenmodes as shown in [40]. Yet another motivation is that this modulation

scheme allows to center the kicker response away from the RF harmonic where the beam
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has significant power, reducing the power deposited in the kicker structure from the beam.

Back-end module generates QPSK carrier from 9/4frf and modulates it with the hold-

buffer output signal. Additional functionality on the module includes optical ”woofer” link,

back-end RMS power monitoring, and programmable attenuation of the output signal. The

”woofer” link is a low-pass filtered version of the holdbuffer output used to modulate the

ring RF system reference phase. This ”woofer” path uses the RF system as a high-gain

low-frequency kicker - analogous to an audio woofer channel. The ”woofer” functionality

is extensively used to help stabilize PEP-II rings which are equipped with wideband RF

system capable of affecting approximately 10 lowest frequency eigenmodes.

Additional components

In addition to the modules described above, a longitudinal feedback system includes system

oscillator chassis, VXI and VME/VSB slot-0 processors, programmable delay lines, power

amplifiers, and diagnostic equipment.

System oscillator chassis generates carrier signals used in both the front-end and the

back-end. Sixth harmonic of the RF frequency is generated in a 24× frequency multiplier

driven by the frf/4 signal. The multiplier combines PLL stage with a cavity-filtered step

recovery diode multiplier in order to minimize the output phase noise. The QPSK carrier

at 9/4, 11/4, or 13/4 is produced by exciting a step recovery diode with frf/4 and filtering

around the necessary harmonic. Front-end comb generator is also located in the system

oscillator. Another important function in this chassis is a fake beam generator. Using a

step recovery diode a simulated bunch signal is generated with repetition rate every four

buckets. The frf/4 carrier at the input of the diode can be phase modulated at a several

kHz frequency to simulate longitudinal oscillations. A set of coaxial RF switches is used to

select between real and fake beam signals. These switches are controlled from the front-end

module using a dedicated digital interface. The interface also includes several status signals

such as carrier multiplier PLL lock status and output RF signal detectors.

Each VME and VXI backplane in the longitudinal feedback system is equipped with

a slot-0 processor. These single board computers (SBCs) use VME and VSB buses to

configure and monitor the feedback modules. The VXI crate is controlled by a National

Instruments VXIcpu-030 SBC based on Motorola 68030 processor. VME/VSB backplanes

are managed by Force CPU-40 or Motorola MVME166. All slot-0 controllers run VxWorks

real-time operating system and use Experimental Physics and Industrial Control System
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(EPICS) software for operator interface. Each SBC is linked to the outside world by the

Ethernet connection.

Programmable delay lines are used in both the front and the back ends to adjust signal

timing. In the front end a delay line is placed directly before the ADC input and allows

one to adjust the timing of the bunch signal relative to the sampling clock. In the back-

end a delay line is located between the modulator output and the power amplifier input.

This device provides adjustment of the kick signal relative to the bunch which samples the

voltage in the kicker gap. The delay lines are controlled via GPIB interface from the VXI

slot-0 controller. GPIB is also used to configure and monitor the MilMega solid-state power

amplifiers. The interface allows one to turn amplifiers on and off and to monitor forward

and reflected power levels and the fault status.

Several diagnostic instruments such as FFT and spectrum analyzers are also controlled

via GPIB. These devices are used in automated timing procedures which determine the

optimal settings for the front and back end delay lines.



Chapter 3

Transient diagnostics

Measurements of parameters of the unstable longitudinal beam dynamics present special

challenges and are vital parts of feedback system configuration and maintenance. In the

open-loop configuration there are several possible situations - the beam may be oscillating

longitudinally with amplitudes sufficient to cause nonlinear saturation of the exponential

growth, or the beammay be lost when oscillation amplitudes exceed some aperture. In either

case the open-loop measurement provides little information on the small-amplitude beam

dynamics which determine the performance of the feedback. In the closed-loop configuration

the motion is normally damped to the noise floor and little information can be gained from

the beam signals. Certainly one can measure the closed-loop transfer function by exciting

the system at a summing input and observing the response at some point in the loop.

However to extract beam dynamics exact knowledge of the feedback loop transfer function

is needed. In addition determining all the unstable modes of interest requires numerous

network analyzer sweeps at each revolution harmonic from 0 to frf/2.

In order to avoid these problems we developed a family of transient diagnostic techniques.

In these techniques the system is perturbed and the response is recorded by the feedback

system. The longitudinal coordinates of all bunches are sampled and can be recorded in

the digital memory for tens of thousands of turns. The individual measurement of the

instantaneous phase of each bunch, in conjunction with the long time record of motion is

a very powerful source of information about the beam dynamics and machine impedances.

The frequency resolution available in these long recordings allows measurement of modal

oscillation frequencies with resolution of a few Hz, while sampling all revolution harmonics

over the full RF bandwidth. A single transient measurement without external excitation

42
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Figure 3.1: Time sequence of a transient diagnostic measurement.

can provide information about the fastest unstable eigenmodes. To study slower unstable

or even stable modes narrowband or wideband external excitation is applied.

The general time sequence of events for such a measurement is presented in Fig. 3.1.

The diagnostic measurement starts upon a software or a hardware trigger. The software

trigger is normally used to acquire beam data under operator control. It is also possible to

configure the external software to periodically trigger acquisition of the longitudinal beam

motion. The hardware trigger is used when the recording needs to be synchronized to

events external to the feedback system such as the injection process or manipulation of

other feedback loops, e.g. transverse bunch-by-bunch feedback.

The trigger event causes the feedback system to switch the active coefficient set of the

control filter and enter the hold-off period. The hold-off delay provides a way to position the

recording window with respect to the longitudinal transient. For the open-loop grow/damp

measurement (filter 1 has zero gain) growth of the unstable motion starts after the trigger

event. The time before the motion rises sufficiently above the noise floor of the digitized

signal depends on the feedback loop gain and the growth rates. The adjustable hold-off

period is used to delay the recoding until the motion reaches detectable amplitudes. In

cases when the growth rates are large no hold-off delay is used and data acquisition starts

immediately after the trigger.

Once the hold-off delay elapses the feedback system starts recording input beam motion

in the dual-port memories attached to each DSP. A programmable coefficient set switch
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breakpoint divides the acquired data into two parts measured under different feedback

conditions. For the open-loop grow/damp the first part is the open-loop (growth) transient

and the second part is the closed-loop (damping) transient. Upon filling all of the available

dual-port memory with acquired data the recording stops and the data can be read out

via control bus. After the recording has stopped the DSPs continue providing feedback

corrections using the original control filter and the transient measurement can be triggered

again.

This transient diagnostic interrupts the normal feedback process for a precisely con-

trolled period of time. There is some risk of losing feedback control if the beam motion

grows to large amplitudes in the open-loop portion of the transient. When the feedback

loop closes large beam motion saturates the feedback correction signal and the effective

loop gain drops. If the reduced gain is insufficient to overcome the instability growth rates,

the oscillations continue to grow and the feedback control is lost. If this occurs the beam

current must be subsequently reduced to the point where the feedback damping becomes

larger than the instability growth rates to recover control. In most cases the risk of losing

control can be minimized by conservatively selecting the breakpoint timing as well as the

hold-off delay and then iteratively adjusting these parameters.

3.1 Types of transient diagnostics

Here we will concisely discuss each of the distinct transient diagnostics. Every technique is

tailored to the measurement of a particular set of beam parameters.

3.1.1 Closed-loop recording

This is a widely used measurement technique and for a very good reason - this diagnostic

is completely non-invasive. In this case the coefficient set 1 is the same as set 0. Thus the

feedback control conditions are not affected by this measurement and there is no chance of

adversely influencing the beam. Several important parameters are measured in this diagnos-

tic. First, this technique is used to verify the feedback control and measure the steady-state

motion within the loop. Second, the recording can be used to compute the steady-state

actuator effort and check for saturation. Third, bunch-by-bunch currents and synchronous

phases can be extracted from the same data set. Asymmetric fill patterns excite longitudi-

nal impedances at the multiples of the revolution frequency. These asymmetric fills produce
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Figure 3.2: Average (top) and RMS (bottom) of bunch data recorded in PEP-II LER at
1732 mA.

a resulting voltage transient which shifts individual bunch synchronous phases, generating

the so called gap transient. From bunch currents and synchronous phases impedances at the

multiples of the revolution frequency can be extracted as we will demonstrate in Sec. 4.2.2.

A closed-loop recording is illustrated in Fig. 3.2 showing average and RMS values for

the bunch data in PEP-II LER. The mean positions of bunches are non-zero due to the

synchronous phase transient. Using the record one can check for proper centering of the

transient within the ADC input range. Low RMS amplitude of motion reflects good control

of unstable modes and is determined by the feedback gain and external noise. From the

same data we extract bunch-by-bunch currents and synchronous phases as illustrated in

Fig. 3.3. Bunch phases are determined relative to the phase of the master oscillator so

there is an overall DC offset from the physical synchronous phases.
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Figure 3.3: Bunch-by-bunch currents (top) and phases (bottom)

3.1.2 Grow/damp measurement

Another fundamental measurement is the grow/damp. In this measurement the feedback

conditions are modified during the transient. A traditional choice of filter 1 is a zero gain

filter which results in an open-loop measurement before the coefficient switch breakpoint. In

the open-loop conditions unstable modes grow exponentially due to noise and the feedback

system records the motion of the bunches during the transient.

In some cases the expected growth rates are very high and opening the feedback loop

even for a short time is considered risky. Then a modified grow/damp measurement is used

with filter 1 configured to provide feedback control at a reduced gain. This experiment

does not directly quantify the instability growth rates. These can be estimated using the

knowledge of filters 1 and 0 and by comparing the growth rates measured with filter 1 to

the damping rates determined directly from the second portion of the transient.

Conversely, when the growth rates are very slow one might use positive feedback for
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filter 1 as a way to excite the motion to a measurable level.

3.1.3 Driven grow/damp measurement

Stable eigenmodes can be characterized by driving the mode of interest to a measurable

oscillation level before the transient. In this case a function generator is configured to

output a sine wave at the frequency corresponding to the upper synchrotron sideband of

the l-th revolution harmonic in order to excite EFEM l. The excitation signal is given by

A sin((lω0 + ωs). The signal is applied to the inverting input of the feedback ADC (in this

case used as a summing junction). The amplitude of the excitation is adjusted to achieve

steady-state motion significantly above the noise floor of the ADC. Too large an amplitude

can lead to saturation of the output kick and must be avoided. The excitation signal is

amplitude modulated by the general-purpose TTL output of one of the DSP processors.

The effect of the modulation is to turn off the excitation during data acquisition. The

resulting data set provides information about the open and closed-loop damping rates of

the selected eigenmode.

3.1.4 Injection transient

An injection transient is an example of a measurement synchronized to the external trigger

signal, in this case the injection system clock. The goal of such a measurement is to record

the bunch motion after charge is injected into the bucket. Such a measurement can be

used to quantify the phase and energy errors in the injection system. Complete analysis of

the data is complicated since the motion is not limited to centroid oscillations. Injection

into an unfilled or empty bucket produces mostly centroid energy and position oscillations.

If the bucket is partially filled the motion after injection is a superposition of motions of

existing and newly injected charges. The feedback system measures the centroid longitudinal

position and, thus, provides incomplete information about the distribution of particles in

the longitudinal phase space. More detailed studies of the injection transients are made

possible by the use of a streak camera [41].

3.2 Projection onto the even-fill eigenmode basis

The feedback system records the motion of all bunches in a transient measurement. The raw

data provides information about the instabilities in the bunch basis. Since analysis of the
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motion is much simpler in the eigenmode basis a coordinate transformation is needed. As

shown in Ch. 2 the transformation from the bunch coordinates to the EFEM basis is a DFT.

This transformation is efficiently computed using the fast Fourier transform (FFT). However

the transformation has to be applied to a vector of bunch positions sampled simultaneously.

The longitudinal feedback uses a single pickup and the bunches are observed sequentially

over the period of one revolution. In addition data is recorded with downsampling so that

a given bunch is sampled once in a downsampling period consisting of multiple turns. Thus

the bunch data must be time aligned before applying the FFT. In addition we bandpass

filter the bunch signals around the synchrotron frequency and convert the measured real

trajectories to complex signals. The conversion is accomplished using the Hilbert transform

and provides estimates of the phase-space motion trajectories [3].

3.3 Estimation of modal eigenvalues

As shown in the previous section from a grow/damp measurement we obtain the complex

trajectories of the even-fill eigenmodes. Next we would like to estimate underlying system

dynamics that determine the motion. In each transient there are two distinct segments:

growth (open-loop) and damping (closed-loop). In the open-loop case, as shown in Sec-

tion 2.6, motion is defined by a single complex pole. Position of that pole is the modal

eigenvalue Λ. For the closed-loop we will assume that system dynamics are dominated by a

single complex pole, i.e. the motion is still described by a complex exponential. Thus, for

both parts of the transient measured trajectories follow the analytical function

y(t) = aeΛt + εr + iεi

where a is the complex factor describing modal magnitude and phase at t = 0, Λ is the

complex eigenvalue, εr and εi are Gaussian-distributed measurement noises. Measurement

consists of complex samples yk, k = [0, N −1] taken at times tk = kTs. Such a measurement

is illustrated in Fig. 3.4 showing real and imaginary parts of the open-loop trajectory of mode

233 at the ALS. Our goal is to estimate values of a and Λ such that some distance function

between analytical exponential and yk is minimized. Let’s write noise-free trajectory as a

function of real parameters
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Figure 3.4: Trajectory of mode 233 at the ALS during a growth transient.

fk(x) = x3e
ix4e(x1+ix2)tk (3.1)

a = x3e
ix4

Λ = x1 + ix2

A convenient choice of a distance function is sum of squares:

L(x) =
N−1∑
k=0

|fk(x)− yk|2

Minimization of L(x) was implemented using quasi-Newton line search method [42].

In order to improve the optimization efficiency the gradient of the distance function was



50 CHAPTER 3. TRANSIENT DIAGNOSTICS

5 5.5 6 6.5 7 7.5

x 10
4

0

2000

4000

6000

8000

10000

12000

x
2
 (rad/s)

L(
x)

Figure 3.5: Fit distance L(x) versus oscillation frequency for simulated transient data with-
out noise. At the global minimum L(x) = 0.

computed:

∇L(x) = 2
N−1∑
k=0

{�(fk(x)− yk)�(∇fk(x)) + 
(fk(x)− yk)
(∇fk(x))}

∇fk(x) =




tkfk(x)

itkfk(x)

e(x1+ix2)tk+ix4

ifk(x)




Unfortunately function L(x) has many local minima. For example its behavior versus

x2 is shown in Fig. 3.5. In order for the numerical optimization to converge on the global
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minimum, starting point x0 must be carefully chosen. The following method has been

developed to estimate the starting point. The growth rate (x01) is estimated by doing a

linear least-squares fit to ln |yk|. Oscillation frequency is obtained by examining the FFT
of the transient and choosing the location of the peak of the magnitude as x02. An obvious

choice for an estimate of amplitude and phase is y0. However for slow growth transients

that measurement is dominated by noise and has little relationship to the phase of the

exponential. A better estimate is again obtained from the FFT. The sequence given in

equation Eq. 3.1 has the following transform

F (ωm) = x3e
ix4
1− eNTs(x1+i(x2−ωm))

1− eTs(x1+i(x2−ωm))

ωm =
2πm

NTs
,m = 0, 1, . . . , N − 1

Let ωl be the location of the peak of the magnitude of the FFT. Then x2 − ωl ≈ 0.

Consequently amplitude and phase are estimated as the polar coordinates of

x3e
ix4 = F (ωl)

1− eTsx0
1

1− eNTsx0
1

Numeric optimization provides us with x̂ that minimizes the distance function. It is

important to know the accuracy of that estimate. Let us consider Taylor series expansion

up to quadratic term of the distance function L(x) at x̂. At a minimum ∇L(x̂) = 0, so that

L(x) = L(x̂) +
1
2

∑
k,l

∂2L(x̂)
∂xk∂xl

(xk − x̂k)(xl − x̂l) + · · ·

Disregarding higher-order terms we can express the covariance matrix for the least-

squares estimate as [43]

V =
2L(x̂)
N − 4

H(x̂)−1
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where H(x) is the Hessian matrix of the distance function defined as

Hkl(x) =
∂2L(x)
∂xk∂xl

Standard deviation of x̂k is given by
√

Vkk. Elements of the Hessian are given by

∂2L(x)
∂xm∂xn

= 2
∑
k

[
�
(

∂fk(x)
∂xm

)
�
(

∂fk(x)
∂xn

)
+ �(fk(x)− yk)�

(
∂2fk(x)
∂xm∂xn

)

+ 

(

∂fk(x)
∂xm

)


(

∂fk(x)
∂xn

)
+ 
(fk(x)− yk)


(
∂2fk(x)
∂xm∂xn

)]

∂2fk(x)
∂xm∂xn

=




x3t
2
k ix3t

2
k tk ix3tk

ix3t
2
k −x3t

2
k itk −x3tk

tk itk 0 i

ix3tk −x3tk i −x3


 e(x1+ix2)tk+ix4

In Fig. 3.6 estimation of the eigenvalues is shown for a grow/damp transient taken at the

ALS. The feedback is off during the first 15 ms of the transient and unstable mode 233 grows

due to noise. Next feedback turns on and starts damping the unstable motion. Absolute

value of the error is plotted to demonstrate that fk(x̂) and yk agree in both magnitude

and phase. In this section we’ve made an assumption that measurement noise is Gaussian-

distributed. In order to verify this assumption we will examine the residual errors for the

above fit. Figure 3.7 presents a histogram of the real parts of the residuals for the damping

part of the transient in Fig. 3.6. It shows excellent agreement with the scaled Gaussian

probability density function with variance computed from the residuals.

Joint estimation of growth rate and oscillation frequency has several advantages over

techniques presented in [2, 3] that separately estimate each quantity. Exponential fitting

to the envelope of motion has large errors when noise levels are high. Joint estimation is

frequency-selective and, as a result, is less sensitive to noise. Conversely, when phase angle

of the transient is used to determine the oscillation frequency, useful signal-to-noise ratio

information contained in the amplitude is discarded.
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Figure 3.6: A transient at the ALS with mode 233 growing and damping. Magnitudes of
the data, fit, and error (|fk(x̂) − yk|) are plotted. Open-loop eigenvalue is estimated as
(240± 3) + (72014± 3)i s−1 while for the closed-loop we get −(173± 2) + (72286± 2)i s−1
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Chapter 4

Beam dynamics measurements

Coupled-bunch instabilities must be carefully characterized to be successfully controlled. As

we showed in Ch. 3 a digital bunch-by-bunch feedback system provides a powerful tool in

the analysis of these instabilities. The ability to quickly measure the complex eigenvalues of

the unstable modes allows one to map the dependence of these eigenvalues on the operating

conditions. One of the most important dependencies is the relationship of the growth rates

and oscillation frequencies of the EFEMs to the beam current. This relationship defines

the required performance of the longitudinal feedback system. The range spanned by the

imaginary parts of the eigenvalues must be contained within the bandwidth of the feedback

controller. Similarly, the growth rates define the minimum gain of the feedback.

Positions of the eigenvalue Λl as a function of beam current I0 trace a curve in the

complex plane. We will call this curve an eigenvalue locus based on its similarity to the

root locus plot widely used in the analysis of the feedback systems. The shape of the

eigenvalue locus depends on many factors. In the simplest case it is a straight line defined

by Eq. 2.9. This is true if both the synchrotron frequency and the effective impedance are

independent of beam current. However both of these parameters can change with beam

current. As we will show in Ch. 6 for accelerators with high-harmonic passive RF systems

the synchrotron frequency changes significantly with beam current. The effective impedance

can also change due to shifts in the higher-order mode (HOM) frequencies. These shifts are

driven by the changes in the resonator temperatures, RF cavity tuner positions, and other

effects. In accelerators with broadband RF feedback loops designed to control fundamental

impedances of the RF cavities [11], the performance of these loops varies with beam current

causing changes in the effective impedance Z‖eff .

55
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In general, the functional form of the eigenvalue locus is not known. For the purposes of

the feedback controller design as well as feedback simulation having the exact dependence

is not critical. If the range of the operating currents of the accelerator is sampled with

reasonable density one can interpolate the eigenvalue locus using a low-order polynomial.

This technique is presented in Sec. 4.1. However in some cases the functional form is

known and can be used to characterize the effective impedance. This brings us to the

second important task in the beam dynamics measurements - identifying and quantifying

impedances that excite coupled-bunch instabilities.

Stable and reliable operation of coupled-bunch feedback is usually achieved via a com-

bination of several methods. These include impedance control in the design stage of the

accelerator components, selection of the feedback hardware (sensors, power amplifiers, kick-

ers), optimization of the control algorithms, and impedance management during machine

operation. Impedance management is defined as optimally tuning the resonances to min-

imize the induced growth rates of the coupled-bunch instabilities. Resonances include the

fundamental impedances of the RF cavities influenced via cavity tuners, parasitic HOMs

controlled by the resonator temperature or dedicated tuner, and other impedances. In or-

der to optimize the tuning of a resonator we need a way to measure the dependence of its

impedance on the control parameter. In Sec. 4.2 we will present two methods for character-

izing the complex impedances and optimizing their tuning with respect to the longitudinal

growth rates.

4.1 Measurement of the eigenvalue locus

Measurements of the eigenvalue locus have several applications. The locus serves as a

foundation of the controller design process by defining the required specifications. Once

the controller is designed, the eigenvalue locus is used to test the design and predict the

performance in the physical system. Information about the effective impedance can be

extracted from the eigenvalue locus.

Sec. 3.3 described how the complex eigenvalue is estimated based on the data from a

grow/damp transient. Here we will use multiple transients taken at different beam currents

to determine the eigenvalue locus. Figure 4.1 shows the growth rates and oscillation fre-

quencies for EFEM 214 in the ALS versus beam current. Linear fits to the data are shown

in both cases. Combining the real and imaginary parts into a complex eigenvalue we obtain
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Figure 4.1: a) Plot of measured growth rates of EFEM 214 in the ALS versus beam current.
First-order polynomial fit is shown as well; b) EFEM 214 oscillation frequency as a function
of beam current.

the locus plot shown in Fig. 4.2. At any given beam current I0 one obtains the full beam

model from the locus value Λl(I0) while the current provides the necessary information to

compute the loop gain. As a result modeling feedback system performance becomes possible

over the full range of beam currents.

By considering the derivatives of the real and imaginary parts of Λl(I0) with respect to

current we can estimate the effective impedance. In fact, the impedance can be estimated

from a single eigenvalue measurement. However using the slope information we avoid errors

due to the uncertain knowledge of the synchrotron frequency and the radiation damping.

In addition, the derivative is a natural way to use multiple data points in order to reduce

the measurement error. This technique is not directly applicable to the locus presented in

Fig. 4.2 due to the effect of the high harmonic cavities in the ALS on the synchrotron fre-

quency. Results obtained by applying this technique to the BESSY-II data will be presented

in Sec. 4.3.2.

As mentioned before, the locus is not necessarily a straight line. As an example we

will examine EFEM 240 in the BESSY-II. In this set of measurements two passive third

harmonic RF cavities were tuned in. As a result the synchrotron frequency changes with

beam current and the overall dependence of the oscillation frequency on the beam current

is nonlinear. Figure 4.3 shows the eigenvalue locus for this mode. The dependence of the

oscillation frequency on beam current is fit with the second-order polynomial, while the
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Figure 4.2: Eigenvalue locus for EFEM 214 in the ALS. Polynomial fit is used to plot the
locus line from 0 to 400 mA. Measured complex eigenvalues are shown as well.

growth rate is fit with a linear model.

4.2 Measurement of driving impedances

The interaction of charged particles in a storage ring or circular accelerator with the ring

impedance determines many important accelerator dynamics parameters. Single and multi-

bunch instabilities are the result of interactions of the bunches with the impedance of the

machine, and achieving high stored currents requires knowledge and control of the ring

components which produce the dominant narrow-band impedances. Traditionally longitu-

dinal impedances in an accelerator have been studied using both bench measurements of the

accelerator components as well as beam-based measurements. There are several laboratory
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Figure 4.3: Eigenvalue locus for EFEM 240 in the BESSY-II. Polynomial fits are used to
plot the locus line from 0 to 400 mA.

techniques to measure impedances of physical components based on propagating pulses on

wires through structures, and on measurements of transfer functions of structures as fer-

rite beads or conducting needles are moved within a cavity volume [44, 45]. Beam-based

impedance measurement techniques exist as well. The integrated longitudinal impedance of

a circular machine can be measured via the shift in synchronous phase vs. current of a single

test bunch [46, 47]. By varying bunch length in such measurements one can estimate the

parameters of the broad-band equivalent impedance [48, 49]. However such techniques do

not resolve individual higher-order modes. Information about these modes is very important

for predicting the thresholds of collective instabilities and for configuring accelerator and

feedback systems to stabilize the beam. Beam-based techniques are an important adjunct to

numerical calculations and lab bench measurements of RF cavities and components, in that

they can measure the actual installed impedance, which is strongly influenced by coupling
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ports, parasitic components, and environmental factors which can be difficult to include in

simulations or lab tests.

Frequency-resolved information about the impedance can be extracted from a measure-

ment of the beam transfer function (BTF) [50, 51]. However such a measurement can only

be performed below the instability threshold. In addition network analyzer sweeps have to

be repeated for each unstable mode making the BTF approach slow and cumbersome for

machines with large numbers of coupled-bunch modes. Yet another method for character-

izing the impedance is through observation of cavity coupling probe signals excited by the

beam [52]. This approach allows determination of the center frequencies and quality factors

of resonant modes, but the coupling of these resonances to the beam is measured only qual-

itatively. That is, resonances that do not couple to the beam will not be excited, however

the effect of the excited resonances on the beam is not clear from such a measurement. In

addition, certain resonances within the RF cavity may be weakly coupled to the probe.

In this chapter we present several beam-based longitudinal impedance measurement

techniques. These multi-bunch techniques measure the effective longitudinal impedance as

a function of frequency in a sampling bandwidth up to the RF frequency. This effective

impedance represents a sum of physical impedance components in the frequency bands Nfrf

to (N + 1)frf shifted to DC to frf band and summed (the aliasing process). By comparing

the effective (aliased) impedance to the bench measurements of the accelerator components

various higher-order mode resonators can be identified and their complex impedance (and

parameters such as center frequency and Q) measured.

In Sec. 4.2.1 we describe how impedances can be estimated based on coupled-bunch in-

stability measurements. The relation between impedances and synchronous phase transients

is explored in Sec. 4.2.2. The experimental results are presented in Sec. 4.3.

4.2.1 Estimation of longitudinal impedances from coupled-bunch modal

eigenvalues

In Chapter 2 we presented the relationship between the longitudinal impedance and the

coupled-bunch eigenvalue. Recall that the eigenvalue shift of mode l is given by

λl =
παef2rfI0
E0hωs

Z‖eff (lω0 + ωs) (4.1)
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Once the eigenvalues of the unstable modes Λ are measured via a grow/damp transient

it is possible to extract the effective (aliased) impedance vs frequency according to Eq. 4.1.

The aliased beam-derived impedance, combined with knowledge about the impedances from

bench measurements of ring components may then be properly assigned as an unaliased

impedance vs. frequency.

The periodic filling pattern of the beam samples the resonances at the upper synchrotron

sidebands of revolution harmonics creating a periodic sampling grid. Wideband impedances

are thus sampled at multiple points since they excite multiple eigenmodes. Consequently,

for the wideband resonators a single measurement can be sufficient to estimate the three

defining parameters: resonant frequency, quality factor, and shunt impedance. Narrowband

resonances are sampled by these eigenvalue measurements at a low number of points spaced

by ω0. Thus it is necessary to move the resonant center frequency with finer resolution

to fully resolve and measure the impedance parameters. This adjustment of the center

frequency can be achieved via adjustment of cavity temperature or via motion of a dedicated

tuning probe. Some of the techniques described here are best suited to the measurement of

the narrowband impedances while other methods are better for the wideband cases.

4.2.2 Longitudinal wake potential and impedance from measured syn-

chronous phase transients

For the cases when ring fill pattern is uneven additional information about the impedance

can be obtained from analyzing the dependence of synchronous phases on bunch currents.

Previous work by Prabhakar [53] presents the relationship between the bunch currents,

impedances, and synchronous phases. This work is applicable to fill patterns where all

buckets are populated, however unevenly. For empty buckets, synchronous phase is not

measurable. Theoretically one can define the steady-state synchronous phase for empty

buckets, for example as that of a test particle of infinitesimally small charge. However

physical measurement of that sort is infeasible. Empty buckets (gaps) are present in most

uneven fill patterns and here we will extend the analysis of synchronous phase transients to

such fills.

Synchronous phase variations are caused by the beam excitation of the longitudinal

impedances at the revolution harmonics. The effect is illustrated in Fig. 4.4 showing 4

bunches with bunch 0 having much larger charge than others. Bunch 0 excites an oscil-

latory wake field. The synchronous phases of the following bunches shift by the amount
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Figure 4.4: Effect of the wake field on the synchronous positions of the bunches. The
sketch shows the synchronous positions (spaced by Trf) by green dashed lines, while the
bunch arrivals are indicated by the red stems. The height of these stems is proportional to
bunch charge. A large bunch (at time 0) produces a decaying sinusoidal wake field. The
equilibrium positions of the following small bunches (near times 1, 2, and 3) are altered
according to the wake field sampled by the bunches.

proportional to the wake potential sampled at times t = kTrf (for small shifts). Let us define

ik and φk, k = 0, 1, . . . , N − 1 as vectors of bunch currents and steady-state synchronous

phases respectively. Then according to [53] we have

Φn =
−N

|Vccos(φ0s)|
InZ

†
n (4.2)

Z†
n =

∞∑
m=−∞

Z‖((mN + n)ω0) (4.3)
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where Φn and In are DFTs (Discrete Fourier Transforms) of φk and ik respectively, Vc

is the peak RF cavity voltage and φ0s is the synchronous phase in absence of wake fields.

Summation in Eq. 4.3 is analogous to that in Eq. 2.10 and describes aliasing of the longitu-

dinal impedance into the 0 to ωrf band. However in this case unlike Eq. 2.10 longitudinal

impedance is not scaled by the frequency since in this case we are considering the equilibrium

mode.

Let us define set U as follows: m ∈ U if and only if im �= 0 (set of RF bucket numbers

with non-zero stored charge). In the following discussion we will assume that a measurement

of φm is available for all m ∈ U . By definition of inverse DFT

φk =
1
N

h−1∑
n=0

Φnej2π
n
N
k (4.4)

Let us define N × N matrix T−1 as follows

T−1
kn =

1
N

ej2π
n−1
N
(k−1), n = 1, . . . , N, k = 1, . . . , N

Then Eq. 4.4 can be written as �φ = T−1�Φ. Combining this with Eq. 4.2 we get

�φ =
−N

|Vccos(φ0s)|
A�Z† (4.5)

A = T−1diag(�I) (4.6)

Equation 4.5 describes an N × N linear system of equations with complex coefficients

and unknowns. Since φ is measured only for m ∈ U , equations described by rows of matrix

A with indexes outside set U are not defined. In addition it is evident from Eq. 4.6 that

elements of �Z† corresponding to weakly excited components of �I are not well defined. We

will choose threshold level Ithreshold to separate large components of �I. Selection of the

threshold is dependent of the signal-to-noise ratio in the measurement of bunch currents

and synchronous phases as well as the values of N , Vc, and φ0s. Let us define set V such

that k ∈ V if and only if |Ik| > Ithreshold (set of revolution harmonic numbers with sufficient

excitation). Defining matrix AUV as consisting of rows U and columns V of matrix A we
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can write

�φU =
−N

|Vccos(φ0s)|
AUV �Z†

V (4.7)

In the DFT of bunch currents DC term (I0) is the largest, so it is always included

in V . Also, as mentioned in section 4.2.1 impedance is hermitian, so that Z†
k = Z†∗

N−k.

Equation 4.7 can be rewritten as a real linear system of MU equations with MV unknowns,

where MU and MV are sizes of of sets U and V respectively. Since only a few frequencies

are strongly excited by the fill pattern we normally have MV � MU . Thus we have an

overdetermined system of equations. Solving that system in the least-squares sense we

obtain �Z†
V .

4.3 Experimental results

We will illustrate impedance characterization techniques described above with measure-

ments performed at the Advanced Light Source and BESSY-II.

4.3.1 ALS measurements

The goal of the first measurement is to quantify the HOM impedances of the two 500 MHz

main RF cavities installed at the ALS. Past longitudinal instability measurements have

determined that there are two dominant EFEMs, modes 205 and 233, excited by the

impedances in the main RF cavities [2]. Using the lab bench measurements made on the

spare cavity identical to the ones installed in the ring mode 205 had been identified as driven

by the TM011 longitudinal mode at 812 MHz. Mode 233 has two potential driving HOMs,

at 2.353 GHz and 2.853 GHz [54]. The aliased effective impedance for ALS, as determined

from the bench measurements, is illustrated in Fig. 4.51. The three abovementioned reso-

nances in the main RF cavities are marked as well as a strong HOM at 2324 MHz in the

bunch-lengthening third harmonic cavities.

Due to technical limitations it is only possible to fill 320 RF buckets at the ALS. All

of the transient measurements described here were taken with 320 equally filled buckets

followed by a gap of 8 RF buckets. Since the gap is small the eigenmodes of the fill are
1Courtesy of John Byrd
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Figure 4.5: Real part of the aliased longitudinal impedance obtained from the laboratory
bench measurements. Z‖eff between 250 MHz and 500 MHz is folded into 0 to 250 MHz
range and shown in yellow.

close to those of an even-fill2. A group of instability measurements was made in order to

quantify the measurement noise. From 17 independent growth transients at 80 mA total

beam current we find λ233 = (0.43 ± 0.02) − (3.36 ± 0.02)j ms−1. Both the real and the

imaginary parts of eigenvalue shift have very small standard deviations. The errors are due

to the measurement noise and the variations in operating conditions of the accelerator that

cause changes in the growth rates.

In order to characterize the frequency dependence of the impedance we shifted the cen-

ter frequencies of the cavity HOM resonances by changing the temperature of the cavity. In

these measurements we swept the cavity temperature set-point in 11 steps over a range of

15◦C. At each point the temperature was allowed to stabilize and the open-loop eigenvalues

of the unstable modes were measured using the transient grow-damp technique. During the

sweep of each cavity the temperature of the other cavity was held constant. In Fig. 4.6

2According to Eqs. 7.10-7.13 in [6] diagonal coupling matrix of an even fill is modified in this case with
off-diagonal entries that are 8/320 = 1/40 of the magnitude of the on-diagonal entries. Resulting difference
between the eigenvalues of the uneven and even fills is negligible.
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Figure 4.6: Growth rates (top) and oscillation frequencies (bottom) of modes 205 and 233
in main RF cavity 2 normalized to Iref = 100 mA.

the growth rates and oscillation frequencies of modes 205 and 233 are plotted versus tem-

perature of cavity 2. As the total beam current changes during the experiment, all of the

measurements were scaled to a reference current Iref (100 mA) as follows:
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λ∗
m = (λm + dr)

Iref
Im

− dr

ω∗
m = (ωm − ωs)

Iref
Im

+ ωs

where λm is the measured growth rate, ωm is the measured oscillation frequency, and Im is

the beam current during the transient measurement.

The expected effect of changes in cavity temperature is to change the center frequency

ωr of the narrowband HOMs [7, 9]. Since the relative change in frequency is small the

relationship between cavity temperature and center frequency is linear of the form

ωr(T ) = ωr(T0) +K(T − T0) (4.8)

where T0 is the arbitrary reference temperature and K is the temperature to frequency

conversion gain. The measurements presented above agree well with this model. However

these measurements do not provide a means to distinguish between the two possible HOMs

at 2.353 and 2.853 GHz as the source of the aliased impedance. To resolve this ambiguity

the ring was filled with a single bunch while a cavity probe signal was monitored on a

spectrum analyzer. We observed that change of cavity temperature had very small effect on

the magnitude of the revolution harmonics excited within the 2.353 GHz resonance while the

amplitude of the probe signal at 2.853 GHz revolution harmonic scaled with temperature

in agreement with the growth rate measurements. This leads to two conclusions. First, the

resonance measured in the temperature scan is at 2.853 GHz. Second, we can consider the

impedance presented by the 2.353 GHz HOM as constant when temperature is changed.

Once the HOM has been identified we can determine the shunt impedance Rs from the

λ∗
m. However, in order to quantify the quality factor Q we need to determine the dependence

of the resonator center frequency ωr on the cavity temperature. We will use the relationship

presented in Eq. 4.8 and select the reference temperature T0 to correspond to the center

frequency of the HOM at the upper synchrotron sideband of the 233rd revolution harmonic

above 5ωrf (critical temperature as defined in [7]). In this case the induced growth rate is

largest at T0. Equation 4.8 becomes
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ωr = ω233 + ωs +K(T − T0)

ω233 = 5ωrf + 233ω0

In order to measure K a single bunch in the ring was filled to a nominal per bunch charge

and the cavity probe signal at ω233 was measured at two temperatures, T1 and T2. At the

cavity temperature T1 the ring RF frequency was increased by ∆ω so that the probe signal

magnitude equaled that measured at T2. The temperature to frequency conversion gain K

can then be computed as

K =
ω233∆ω

ωrf(T2 − T1)

Let us consider the eigenvalue of mode 233, Λ233. From Eqs. 2.8,2.9, and 2.10:

Λ233 = Λ0 + λ233 = −dr + jωs + λext +

+
παef2rfI0
E0hωs

Z
‖eff
2.853GHz(233ω0 + ωs)

Z
‖eff
2.853GHz(ω) =

5ωrf + ω

ωrf
Z

‖
2.853GHz(5ωrf + ω)

Z
‖
2.853GHz(ω) =

Rs

1 + iQ[ω/ωr − ωr/ω])

where λext is mode 233 eigenvalue shift due to impedances other than 2.853 GHz resonance

in the cavity of interest. We can parameterize Λ233 as a function of 5 real variables: Rs,

Q, T0, Re(λext), Im(λext). Using nonlinear least-squares estimation we extract parameter

values. Figure 4.7 shows the measured and fitted growth rates and oscillation frequencies

for the main RF cavity 1.

Additionally we compared the impedance parameters with the cavity probe measure-

ments taken with a single bunch fill. The signal level at ω233 and neighboring revolution

harmonics excited by the beam is measured with the spectrum analyzer. These measure-

ments spanning 3 different temperatures were normalized for current and scaled to T0 using

the measured temperature to frequency coefficient K. In Fig. 4.8 the cavity probe signal
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Figure 4.7: Least-squares fit to the measured growth rates (top) and the measured coherent
frequency shifts (bottom) versus resonator center frequency for cavity 1.

is shown to have good agreement with the magnitude of the impedance extracted from the

transient measurements.

In Table 4.1 results for both cavities are summarized. Data from numerical computations
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Figure 4.8: Cavity 1 probe signal measured on the spectrum analyzer and the magnitude
of the 2.853 GHz impedance.

and bench measurements of a spare RF cavity are included [45, 55]. Both numerical model-

ing and bench measurements have large errors in their estimates of the shunt impedances 3.

As for the center frequency, error of bench-based measurement is quite small, only 600 kHz.

However this degree of accuracy is insufficient for prediction of the coupled-bunch insta-

bility growth rates as well as determination of the optimal cavity operating temperatures.

Note that characteristics of the 2.853 GHz resonances in two cavities differ significantly.

The cavities have RF windows of different designs which can cause variations in the R/Q

values. Additionally, the mode in question is close to the beam pipe cut-off frequency and

is strongly affected by the evanescent coupling of the fields in the cavity out the beam pipe

aperture. The beam pipe attached to each cavity is different and can also lead to changes in

the R/Q. Both of the above effects, while not definitive, can cause the observed differences

in R/Q.

Using growth rates vs. RF cavity temperature results it is possible to optimize operating

temperatures of the main RF cavities. Since temperatures affect the transverse impedances

as well as longitudinal impedances, mapping growth rates in horizontal and vertical planes

is necessary for a full understanding of the tradeoff. Results in all 3 planes have to be

compared with the damping rates generated by the feedback systems in order to select the

operating temperatures.

3In the bench measurement the shunt impedance is computed by multiplying the measured Q value by
the R/Q calculated by URMEL modeling
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Since transverse growth rates have not been characterized, we have defined for each

cavity a range of temperatures where longitudinal growth rates do not change significantly.

As seen in Fig. 4.6 there are two such ranges for cavity 2, 32 ◦C to 36 ◦C and 45 ◦C to

48 ◦C. The lower range of temperatures is not a good choice for machine operation due to

closeness to mode 205, so the higher temperature range was selected. Within this range the

temperatures have additionally been optimized empirically based on the performance of the

transverse feedback systems. Based on these optimizations cavity 1 was set to 46.5◦C and

cavity 2 to 45.5◦C for nominal ALS operation.

At the selected temperatures we can estimate the relative contribution of the four dif-

ferent resonances driving mode 233. The growth rate can be expressed as follows:

1
τ233

= Re(Λ233) =
παef2rfI0
E0hωs

Re
(
Z

‖eff 2.3
1 + Z

‖eff 2.8
1 +

Z
‖eff 2.3
2 + Z

‖eff 2.8
2

)
− dr

=
1

τ2.31
+

1
τ2.81

+
1

τ2.32
+

1
τ2.82

− dr

where τ233 is the growth time of EFEM 233, τ2.31 and τ2.32 are the contributions to the

growth time from the 2.353 GHz HOM in cavities 1 and 2 respectively. Similarly τ2.81 and

τ2.82 are the contributions from the 2.853 GHz resonances in the main RF cavities.

Using extracted fit data we find:

1
τ2.81

= 0.06 ms−1

Table 4.1: Extracted impedance parameters for ALS main RF cavities compared to results
of numerical computation using URMEL-T and bench measurements of a spare cavity

Cavity 1 2 URMEL Spare
Fr, GHz 2.8532 2.8532 2.8081 2.85375
T0,

◦C 38.61 ± 0.07 41.32 ± 0.04 - -
Rs, kΩ 55± 2 97± 3 379 -
Q, ×103 21± 2 24± 2 80.9 4
R/Q, Ω 2.6± 0.2 4.0 ± 0.3 4.7 -
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1
τ2.82

= 0.13 ms−1

1
τ2.31

+
1

τ2.32
= 0.37 ms−1

As evident from these numbers at the optimized cavity temperatures the contribution to

the growth rate of the 2.853 GHz impedance is 1/2 of the effect of the 2.353 GHz impedance.

4.3.2 BESSY-II measurements

These measurements were aimed at quantifying longitudinal impedances at BESSY-II [56].

The machine was filled with 350 uniformly filled consecutive bunches out of 400 to a current

of 165 mA. A series of 15 transient grow/damp experiments was conducted over a period

of 10 minutes. During the measurements the machine configuration remained unchanged

except for the current decaying to 154 mA. There are three unstable EFEMs seen in the data:

281, 396, and 397. According to Eq. 2.9 complex longitudinal impedances can be extracted

from the measured growth rates and oscillation frequencies. However these measured values

are offset by Λ0. Since the eigenvalue shift is small relative to the nominal synchrotron

frequency ωs, errors in measurement of ωs cause large systematic errors in the imaginary

part of the extracted impedance. This difficulty can be avoided if we consider the derivative

∂Im(Λl)
∂I0

=
∂Im(λl)

∂I0
=

παef2rf
E0hωs

Im(Z‖eff (lω0 + ωs)) (4.9)

A least-squares fit to the oscillation frequency component returns two coefficients: slope

and offset. The slope will be used to extract the imaginary part of the impedance according

to Eq. 4.9. The offset part corresponds to the nominal synchrotron frequency. In Fig. 4.9

oscillation frequencies and least-squares fits are plotted for the three unstable modes. Data

for mode 281 indicates a very small imaginary part of the impedance (zero slope). At

the same time modes 396 and 397 have significant imaginary impedances of opposite signs.

Table 4.2 shows coefficients of the linear fits. All three fits agree on the estimate of ωs. Using

the slope information to compute the imaginary part of the impedance and the growth rates

for the real parts we get:
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Table 4.2: Coefficients of the linear fits to the oscillation frequencies vs. beam current

Mode Slope, Hz/mA Offset, Hz
281 0±0.3 7411 ± 46
396 3.43±0.16 7434 ± 26
397 -2.24±0.11 7380 ± 18

Z
‖eff
281 = (63.2 ± 8.1) + (0± 94)j kΩ

Z
‖eff
396 = (59.0 ± 3.3) + (1115 ± 53)j kΩ

Z
‖eff
397 = (59.6 ± 3.7)− (726 ± 36)j kΩ

In BESSY-II there are four third harmonic RF cavities that are designed to improve

beam lifetime. During the above measurements center frequencies of all four cavities were

tuned between 3ωrf −4ω0 and 3ωrf −3ω0 (parked). Our impedance measurement for modes
396 and 397 correlates well with the impedance of the parked cavities. Since for both modes

the impedance is sampled far from the resonance, the imaginary component is much larger

than the real one. The larger imaginary part seen at mode 396 indicates that some of

the cavities are parked closer to the fourth revolution harmonic below 3frf . Knowing the

original frequencies of these impedances allows us to compute the unaliased longitudinal

impedance:

Z
‖
396 = (19.7 ± 1.1) + (373± 18)j kΩ

Z
‖
397 = (19.9 ± 1.2) − (243± 12)j kΩ

As described in Sec. 4.2.2 we can estimate the impedance by analyzing the synchronous

phase transient. In this case we estimate the impedance sampled at the revolution harmonics

rather than at their upper synchrotron sidebands. However for the high-Q resonance parked

between two revolution harmonics there is little change over the ωs interval. In Fig. 4.10 the

synchronous phase transient in BESSY-II is presented. Top graph shows bunch-by-bunch

currents with 350 consecutive buckets filled nearly equally. The periodic excitation of the

impedance from the fill with gap generates oscillatory behavior of the synchronous phases
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Figure 4.9: Measurements of open-loop oscillation frequencies of three unstable modes and
least-squares linear fits to the data. Data for mode 396 shows positive slope of frequency
change with beam current indicating positive imaginary part of the impedance according
to Eq. 4.9, for mode 281 - nearly zero imaginary part, while mode 397 shows negative
imaginary impedance (negative slope).

shown in the bottom plot. Solving Eq. 4.7 in the least-squares sense we obtain the aliased

impedances. Least-squares estimate of the synchronous phases is also shown in Fig. 4.10 for
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Figure 4.10: Bunch-by-bunch currents (top) and synchronous phases (bottom) extracted
from BESSY-II dataset.

comparison with experimental data. Using 15 BESSY transient measurements described

above we get the following values:

Z†
396 = (35± 22) + (344± 14)j kΩ
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Z†
397 = (22 ± 6)− (233 ± 15)j kΩ

These values show reasonable agreement with the results obtained from the growth rates

and tune shifts. The two methods of measuring the impedance can be used together in order

to determine unaliased frequencies. This is possible due to the fact that during aliasing into

Z‖eff the impedance is scaled by resonant frequency, while in Z† it is unscaled. Thus, from

the ratio of Z‖eff to Z† we can estimate the frequency of the physical impedance. From

Eq. 2.10 we have (assuming that one physical impedance dominates the aliased function)

|Z‖eff
396 | =

(pN + 396)ω0
Nω0

|Z†
396| (4.10)

pexp =
|Z‖eff
396 |

|Z†
396|

− 396ω0
400ω0

= 2.2

Since p in Eq. 4.10 is an integer by definition, comparison above indicates that the

physical impedance is at 2ωrf + 396ω0 = 3ωrf − 4ω0. This conclusion agrees perfectly with

the expected position of the parked third-harmonic cavities.

4.4 Summary

In this chapter the eigenvalue locus has been defined. We presented a locus measurement

method based on the growth transient data acquired by the longitudinal feedback systems.

We have also demonstrated two new methods for measuring the impedance of accelerator

components using transient diagnostic capabilities of the DSP-based longitudinal feedback

systems. The essential feature of these methods is the use of the data sets of bunch motion

coordinates sampled over long time intervals. In one approach impedance is computed via

measurements of complex eigenvalues of the unstable coupled-bunch modes. The second

method extracts the impedance from the relationship between bunch-by-bunch currents and

steady-state synchronous phases. The methods extend the capabilities of laboratory bench

measurements by quantifying the physical impedances as installed in the accelerator. De-

pendence of the impedances on operating conditions such as temperature or tuner position

can be extracted and used to select optimal working points. By comparing information

obtained from growth transients with the analysis of the synchronous phase transients for

uneven fills it is possible to determine the spectral position of the driving impedance.
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There are certain limitations on the applicability of these methods. Transient measure-

ment depends on the beam being unstable for it relies on growing modes of oscillation to

quantify the impedances. Measurement of stable modes is possible via external excitation,

but is relatively noisy due to the slow transients involved. Synchronous phase transients can

be reliably observed only for large impedances. In addition, only a few revolution harmon-

ics are usually excited by the Fourier components of the bunch current distribution. Both

techniques sample the impedances at the spacing of the rotation frequency. Consequently

for the measurement of the narrowband resonances a controlled way to shift the resonator

center frequency is needed. For the cases when only one of the two techniques is applicable

additional information is needed to determine unaliased spectral locations.



Chapter 5

Feedback loop characterization

In order to operate the feedback system efficiently it is important to know the feedback loop

dynamics and be able to model the dynamics off-line. In Chapter 2 we developed a model

for the longitudinal coupled-bunch instabilities and the digital feedback system. In this

chapter the model will be extended to include the detailed models of the sampling process,

feedback processing, loop gains and transport delays. Characterization of the beam and

the feedback system will be presented using techniques described in Ch. 3. The feedback

loop system identification will be demonstrated with the measurement results from several

storage rings.

5.1 Feedback system model

The model of a digital bunch-by-bunch feedback system was presented in Sec. 2.10. In that

model we considered a one bunch slice of the full system. Such model is conceptually simple

since it replaces a MIMO system by a SISO one. However the motion of a given bunch is

a linear combination of multiple eigenmodes and is not easily modeled. To get around

this problem we will use the property of the bunch-by-bunch feedback system derived in

Sec. 2.9. That derivation showed that a bunch-by-bunch feedback system is invariant under

coordinate transformations. Thus we can replace the bunch dynamics in our model with

the single eigenmode dynamics. The block diagram for the overall system model is shown

in Fig. 5.1. The sampling of the bunch signal here happens at the downsampled rate. After

feedback computation a zero-order hold (ZOH) is created by the holdbuffer action. All cable

and processing delays are lumped together in a single block following ZOH. If the pickup

78
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Figure 5.1: Single mode feedback model

and the kicker are right next to each other the overall delay must be close to an integer

multiple of the revolution time so that the pickup signal from a given bunch generates the

kick signal acting on that same bunch. In practice the locations of the BPM and the kicker

can be quite arbitrary and so can be the loop delay.

All of the loop gains have been coalesced into g0. These gains include the front-end

gain in counts/deg, the back-end gain in V/count, and the beam transfer function gain in

degrees/V. The overall equation for g0 is as follows

g0 =
Vmax
128

× 2παef2rf
E0h

× 360GfeIbunch
2π

=
360αeVmaxGfeIbunchf

2
rf

128E0h

The first term in the product is the gain from DAC counts to the voltage on the beam,

the second term is the transfer function gain in rad/V and the third term is the front-end

gain based on the calibration factor Gfe in counts/degree/mA. The back-end gain assumes

optimal setup where full-scale signal at the DAC produces fully saturated power amplifier

output. The amplifier power together with the shunt impedance of the kicker structure gives

us the maximum kick voltage [57]. Transfer function parameters σl and ωl are determined by

the eigenvalue of the unstable mode. There is an arbitrary complex loop gain parameter geiφ
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used to match the model to the physical system. This gain parameter is used to account for

variations in gain and phase nonlinearities of various components over the operating band

of frf/2. Here we assume that the gain and phase for a given eigenmode are constant, that

is the changes over the modal bandwidth around lω0 + ωl are negligible. This assumption

is justified since these parameters vary smoothly over the full frf/2 bandwidth. Changes in

a much narrower modal bandwidth are necessarily small.

5.2 Feedback loop characterization

Once the simulation model of the feedback loop is defined two important questions need

to be answered. First, is the model behavior consistent with that of a physical system?

Second, if there are differences between the physical system and the model, how does one

match the model to the system? In this section both of these questions will be addressed

in detail.

Comparison of the feedback system to the off-line model is based on the grow/damp

measurements. A properly configured grow/damp measurement provides information about

one or more fastest growing eigenmodes in both open-loop and closed-loop configurations.

Using the analysis techniques described in Ch. 7 one can parameterize the motion in either

case using a complex exponential function. This parameterization produces two eigenvalues:

open and close-loop ones with complex conjugate pairs implied. Thus the dynamics in both

cases are reduced to those of a second-order linear system. For the open loop case this

description is perfectly adequate since the small-signal behavior of an eigenmode is properly

described by a complex conjugate pole pair. However in the closed-loop configuration the

system is more complicated and the complete model will contain many poles. If there is

one strongly dominant pole - that is the pole with damping time much slower than the

damping times of other poles - second-order description can still be used. In this case the

dynamic behavior of other poles settles very quickly relative to the damping transient of the

dominant pole. In some cases there will be several poles with comparable damping times.

The resultant damping transient can be strongly non-exponential and the second-order

parameterization will break down.

Fortunately pole positions of the closed-loop system can be adjusted by changing the

loop gain or, more invasively, by changing the feedback controller dynamics. For the purpose

of establishing the model one can reconfigure the feedback so that there is one dominant
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closed-loop pole. Measurements of the closed-loop dynamics are then consistently described

by the second-order parameterization. Once the model is created, however, one would like to

verify the feedback performance in the worst-case conditions, that is at the highest possible

stored current (which generates the fastest growth rates) and with the optimal feedback

system setup. The optimal configuration of a stabilizing feedback system is the one that

produces maximum damping of the closed-loop poles. In many cases that leads to multiple

poles with identical or very similar damping making impossible model extraction described

in Ch. 3. Future work on this subject could extend the model parameterization by using

system identification methods.

Above we described a method to quantitatively compare the physical system to our

model provided that there is one dominant closed-loop pole. If the two poles being compared

are different we need to modify the model to agree with the measurements. For that purpose

we use the complex loop gain. A single grow/damp measurement is not sufficiently reliable

to verify the model since one can almost always match two complex numbers using two

parameters controlling the model. To avoid these issues we verify system model based on

a large set of grow/damp measurements using different feedback controller responses. Two

sets of closed-loop poles are matched using numerical optimization in a two dimensional

space with the two parameters being the absolute value and the phase of the complex loop

gain. The goal function is defined as follows:

f(g, φ) =
M∑
k=1

∣∣∣∣2 pex − pmodel(g, φ)
pex + pmodel(g, φ) − 2λl

∣∣∣∣
2

For each of M measurements we consider the distance between measured pole pex and

modeled pole pmodel normalized by the average distance of these two poles from the open-

loop eigenvalue. The normalization compensates for the necessarily larger measurement

errors in the high-gain configurations which significantly shift the open-loop pole. This

can be represented geometrically as shown in Fig. 5.2. When taken on its own the error

magnitude | �D| does not tell us whether the error is acceptably small or unacceptably large.
On the other hand, if the error is normalized to the magnitude of the feedback effect on

the system - the very effect we are trying to quantify - it becomes a relative measure. For a

single measurement error of 1 or 100% (| �D| = | �C|) is obviously large. Normally after model
complex gain optimization we expect the errors under 0.2.
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Figure 5.2: Geometric representation of the error function. Average distance of the two
closed-loop poles (measured and modeled) from the open-loop pole is given by vector �C.
Error function contribution for one measurement is given by | �D|/| �C |.

Next we will illustrate the feedback loop characterization methods with measurements

from several accelerators starting from the Advanced Light Source.

5.2.1 ALS results

The loop characterization experiment at the ALS performed at relatively low currents in

the range of 69-76 mA consists of 16 individual grow/damp measurements. To make sure

that the agreement is independent of a particular controller multiple feedback controllers

were used. To generate these controllers standard FIR filters based on a sampled sine

wave were used. Variation of controller characteristics was achieved by changing the phase

shift of the sampled sinusoid resulting in changes of the controller phase response at the

synchrotron frequency. In all measurements eigenmode 233 driven by the impedances in

the main RF cavities grew significantly above the noise floor. The following results are

obtained by analyzing and modeling the motion for that eigenmode.

In Fig. 5.3 a histogram of error values is shown for the above 16 measurements. Op-

timized loop gain is 1.54 ± 0.02 and loop phase is −1.0 ± 0.9 degrees. A gain larger than

unity indicates that the power amplifier is being over-driven and will reach full output

power at the DAC setting below full scale. From these measurements we also extract the

parameters for other unstable eigenmodes. Model optimization for the EFEM 212 driven

by the impedances in the third harmonic cavities produces the gain of 1.20 ± 0.04 and the

phase of 13.1± 1.9 degrees. The complex loop gain difference between the two eigenmodes
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Figure 5.3: Histogram of relative errors for ALS feedback loop characterization experiment

points to non-ideal behavior of some feedback loop components and was later traced to an

unterminated monitor port sending back a significant reflection.

In the experiment the controller phase was swept over 100 degrees and we can present

the results as a function of that parameter. To do so requires making one assumption.

Changing controller phase produces some variation of controller gain at the synchrotron

frequency. In addition the beam current decays during the experiment. To meaningfully

present the results we need to normalize for these variations in the loop gain. We will

assume that the pole shift from open to closed loop scales linearly with loop gain. This

assumption is valid unless the gain is very high or the gain changes over a wide range. In

our case the gain changes by only 7 dB. Normalized pole shifts are presented in Fig. 5.4.

The real parts of vectors �A and �B are plotted as the damping rate shift while the imaginary

parts give us the frequency shift. The plot shows that both the real and the imaginary parts
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Figure 5.4: Shifts in damping rate and oscillation frequency between open and closed loop
states (real and imaginary parts of the pole shifts respectively).

of the closed-loop poles are well estimated by the model. The experiment as well as the

model confirm that optimal damping is achieved when the feedback path phase shift (from

y(t) to u(t) in Fig. 5.1) is 90 degrees. This results in resistive damping with zero frequency

shift between open and closed loop configurations.

5.2.2 DAΦNE results

A similar set of measurements has been performed at the DAΦNE collider in order to verify

the system model to be used in controller design. At beam currents from 53 to 90 mA 11

grow/damp transients were recorded. The accelerator was filled with 20 bunches with 4 RF

bucket spacing leaving a gap of 1/3 of the ring. In Fig. 5.5 results of matching the model

to the measurements for EFEM 21 are shown. The numerical optimization returned loop

gain of 1.04± 0.03 and phase of −1± 2 degrees.
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Figure 5.5: Loop characterization results for DAΦNE positron ring.

In the electron ring it is possible to uniformly fill all 120 RF buckets. Loop charac-

terization was done for the three fastest-growing eigenmodes: 21, 89, and 101. Table 5.1

shows the model reconstruction results. This installation shows relatively little gain vari-

ation. There is some phase nonlinearity, however its better characterization requires more

grow/damp measurements to reduce the statistical uncertainty.

Table 5.1: Complex gain parameters for three EFEMs in DAΦNE e− ring

Mode Gain Phase
21 0.91± 0.04 −9.4± 2.7
89 0.84± 0.04 3.6± 2.6
101 1.0± 0.1 2.7± 6.3
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Table 5.2: Complex gain parameters for three EFEMs in BESSY-II

Mode Gain Phase
281 1.04 ± 0.04 −5.4± 2.0
396 1.31 ± 0.02 −1.6± 0.8
397 1.23 ± 0.03 −2.1± 1.3

5.2.3 BESSY-II results

As described in Sec. 4.3.2 BESSY-II has three unstable eigenmodes: 281, 396, and 397.

Feedback plant characterization results for these EFEMs are based on the same set of

measurements presented in Sec. 4.3.2. Extracted loop gains and phases are presented in

Table 5.2. Three eigenmodes show much less variation of the loop phase than the two

modes measured in the ALS. Gain differences have not been investigated further since the

measured 2 dB difference between modes 281 and 396 is much less than stability margin of

the BESSY-II feedback system.

5.3 Parasitic effects

It is evident from the previous section that a physical feedback system deviates from an

ideal model, sometimes in a significant manner. Here important mechanisms that can cause

these deviations will be explored. Some of these effects are easier to analyze in the time

domain while others are best visualized in the frequency domain. One mechanism that can

cause non-ideal loop response is bunch-to-bunch coupling in the analog front and back-end

channels. We will start from analyzing this parasitic effect in the time domain.

5.3.1 Bunch-to-bunch coupling

To analyze the coupling in the front-end processing consider the impulse response of that

channel - closely recreated by its response to a single-bunch fill - as sampled by the ADC.

The ideal front-end would produce a signal in only one ADC sample per turn leaving

neighboring samples at their noise floor level. Finite rise and fall times, filter ringing,

and reflections all lead to non-zero signals appearing in additional samples. Let’s define

signal levels in the filled sample and the following parasitic ones as x0, x1, . . . , xK . If the

ideal front-end transfer function has only the first element non-zero, the coupled case can
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be considered as the ideal channel followed by the coupling transfer function. Coupling

transfer function is that of an FIR filter with coefficients 1, x1/x0, . . . , xK/x0. Since the

ADC is timed for maximum response in x0 we have xm < x0,m = 1, . . . ,K. In fact, in a

properly working channel xm � x0. Once the distortion transfer function is determined one

can compute the response at lω0+ωs to find the effect of the coupling on the EFEM l. Since

significant coupling lasts only for a few RF periods and the FIR response is dominated by the

first (unity) coefficient, the frequency response of this parasitic effect does not have sharp,

narrowband features comparable to the width of the synchrotron response. Consequently, a

single complex gain characterizes well the effect of front-end coupling on the feedback loop

dynamics for a given eigenmode.

Analysis of parasitic coupling in the back-end channel is identical to the above descrip-

tion of the front-end coupling with one difference. In the back-end case the beam samples

the kicker voltage rather than the ADC sampling the beam-derived signal. This sampling

establishes the distortion FIR filter.

5.3.2 Shifts in synchronous phase

In a sampled system - especially a system with dual samplers - it is important to maintain

timing alignment of the sampling clocks and the analog signals being sampled. For longitu-

dinal feedback systems described here sophisticated timing procedures have been developed

for both sampling points, that is the ADC in the front-end and the beam sampling the

kicker voltage in the back-end [58]. Unfortunately there are uncontrollable effects that shift

the timing during system operation. Let us consider the mechanisms that can cause these

shifts and the effect of the latter on the feedback loop transfer function.

There are many causes for the synchronous timing shifts, some of which move all bunches

identically (common-mode shifts) and others which produce differential bunch-to-bunch

shifts. Poor RF cavity phase regulation, setpoint changes due to operator action, mis-

phasing of multiple RF stations - all of these cause common-mode synchronous phase (and

time) shifts. Differential shifts are caused by beam loading transients described in detail

in Sec. 4.2.2. Common mode and differential shifts cause distinctly different problems

in longitudinal feedback system operation. While common-mode shifts can be avoided by

adhering to proper operating procedures and maintaining RF cavity phase regulation loops,

the differential shifts can be reduced only via fill unevenness reduction, higher RF voltage,

or driving impedance reduction. The above actions are usually infeasible due to other ring
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operating requirements as well as high costs.

Bunch timing shifts considered here are of the ±15 degrees@frf order. The reason for

such a range lies in the acceptance range of the feedback front-end. Since the detection

frequency is 6×frf the range is ±15 degrees at the RF frequency. Larger timing shifts make
the feedback system completely inoperable and are not considered here. For a storage ring

with 500 MHz RF frequency these shifts correspond to ±83 ps timing shifts.

Front-end sensitivity

In case of the ADC we are concerned with the relative timing of the ADC sampling clock and

the baseband phase detector output. ADC clock is derived from the ring master oscillator

and is stably phase locked to that reference. The phase detector output is driven by the

beam, thus changes in the synchronous timing appear directly as timing shifts of this signal.

Two effects are caused by the beam timing shifts in the front-end. First, the phase of the

6 × frf burst changes relative to the carrier resulting in a DC offset and lower detector

gain. Common mode shifts are eliminated in the channel via phase servo loop as described

in Sec. 2.10.1. However differential shifts do modify the loop gain from bunch to bunch.

Second, the baseband pulse is shifted relative to the ADC clock. Since the main pulse has

flat top, timing shifts within ≈ Trf/2 have little effect. However shifts in timing modify

the way the reflections and filter ringing is sampled by the ADC (in the following buckets).

This changes the front-end distortion FIR transfer function and, consequently, the phases

and gains across the processing band. Normally in the front-end bunch-to-bunch coupling

is very small, with the distortion transfer function close to unity. Timing shifts in this case

can be neglected.

Back-end sensitivity

As mentioned earlier, in the back-end the beam samples the voltage in the kicker. The

sampled waveform is at the QPSK carrier frequency of 9, 11, or 13 times frf/4. Nominally

beam is timed to sampled a peak of the kicker voltage. Shift in bunch arrival time slides the

sampling point along the kick waveform. On one hand timing shifts have less effect in the

back-end than in the front-end simply due to the ratio of the carriers used. For example,

if the QPSK carrier is at 9frf/4, gain reduction due to the timing shift of φ degrees at RF

frequency is cos(2.25φ)/cos(6φ) times less in the back-end. On the other hand the effect

is more significant due to several reasons. First, the back-end does not have phase servo
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loop to reject common-mode timing shifts. These shifts simultaneously affect all bunches

and can produce significant loop transfer function changes. Second, in the back-end timing

shifts cause not only gain reduction but also a loop phase change. Thus synchronous phase

variations act to erode both gain and phase stability margins. Systems running at the

highest loop gains suffer most from these variations. Note that feedback systems often can

handle much smaller simultaneous changes in loop gain and phase than the changes of each

parameter separately [59, page 1-23].

We will illustrate the effects of back-end timing shifts with measurements made at the

Advanced Light Source. Longitudinal feedback system there uses a drift-tube kicker design

[57]. Analytical response of such kicker is given by the following expression

Vkick = RsIQPSK = Rs
VQPSK
50

Rs = 4Zl

{
n sin(2n ω

9frf
)
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Figure 5.6: Simulated ALS kicker response for single-bunch excitation. The kick is timed
to the bunch with ≈ 2.5 ns arrival time. Two adjacent buckets at ±2 ns are shown as well.
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where n is the number of drift-tubes per kicker and Zl is the impedance of a drift-tube.

Fig. 5.6 shows the analytically computed kicker voltage for a single-bunch (2 ns long) QPSK

burst excitation. The bunch in the center of the waveform is timed perfectly - at the largest

peak. QPSK modulation places adjacent bunches at zero crossings minimizing the coupling

between bunches.

To check this model we measured response of the physical kicker at the ALS. The mea-

surement was done using a single bunch in the ring to sample kicker voltage. Single bucket

kick was generated by the feedback system. The kick was modulated at the synchrotron

frequency to maximize coupling to the beam. Back-end delay line was swept over a 10 ns

range with 25 ps steps. At each setting the amplitude of bunch oscillation was measured

in the front-end using an FFT spectrum analyzer. This measurement is identical to the

back-end timing procedure [58] with the exception of the large sweep range. As a result

we get rectified kicker response to a QPSK burst. Using the knowledge of the oscillatory

nature of the original waveform it is possible to ”unwrap” the measurement. The results are

shown in Fig. 5.7. Note the additional ringing in the experimental measurement, most likely

introduced by a mismatch in the power distribution network between the power amplifier
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Figure 5.7: Measured ALS kicker response.



5.3. PARASITIC EFFECTS 91

0 50 100 150 200 250 300 350
−10

−5

0

5

10

Mode number

Lo
op

 p
ha

se
 (

de
gr

ee
s)

0 50 100 150 200 250 300 350
−2

−1.5

−1

−0.5

Mode number

Lo
op

 g
ai

n 
(d

B
)

Figure 5.8: FIR distortion filter response when bunch timing advanced 75 ps. Zero dB gain
corresponds to nominal back-end response.

and the kicker.

Now let us qualitatively examine what happens when bunch timing shifts from optimal

point. The center bunch ”slides” off the peak and samples a lower kick voltage. At the

same time adjacent bunches move off zero crossings creating bunch-to-bunch coupling. By

sampling the single-bucket kicker response at the appropriate points we get the coefficients

for the 3-tap FIR distortion filter. In Fig. 5.8 the frequency response of such a filter is

shown for the case when bunch timing is advanced 75 ps. Phase shift in the modal range

of 200-250 is most significant with main RF cavity impedances driving modes 205 and 233

and with harmonic cavities exciting EFEMs 212-218. Changes in loop gain and phase are

unacceptably large for the system running very close to stability margins. These issues will

be further discussed in Ch. 6.

An experimental measurement of back-end timing shift effects was made at the ALS.
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Figure 5.9: Feedback loop gain and phase dependence on back-end timing for EFEM 233

To simulate the timing shifts back-end delay line was offset from the nominal position.

At each setting multiple grow/damp measurements were made at beam currents around

80 mA. From these measurements we extracted EFEM 233 loop gain and phase for that

particular timing. The results are compared in Fig. 5.9 with gains and phases computed

using 3-tap FIR distortion model. The FIR gains were scaled by 1.63 to match extracted

values, similarly, FIR phases were shifted by -1.9 degrees. The measurements agree very

well with the simulation - possibly agreement could be refined by using measured kicker

QPSK response.

5.3.3 Effect of power stage transfer function

In building longitudinal feedback system a lot of care is taken to ensure proper broadband

response of the processing channel. Output power amplifier is a challenging part of that
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Figure 5.10: Measurement of the AM-to-PM conversion in the ALS TWT amplifier. Re-
sponse for the 0.25 drive level is shifted relative to the full-scale response by 60 ps which
corresponds to 24 degrees at the excitation frequency of 1125 MHz.

response simply because of high power required (200 to 500 W) and broad 250 MHz band-

width. Standard transfer function measurements can be used to verify the bandwidth and

phase linearity. Another important characteristic is the transient response of the device

which is not necessarily measured by the classic swept sine network analyzer. For the tran-

sient response once can use AM modulated signals using network analyzer to verify correct

carrier and sideband reproduction.

At the Advanced Light Source a 200 W traveling wave tube (TWT) amplifier had been

used at the output of the feedback system (the amplifier has been replaced since by a

solid-state GaAs device for various reasons). Such amplifiers have AM-to-PM conversion

characteristics, that is changing input signal amplitude causes changes in the phase shift
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through the device. To characterize the extent of AM-to-PM conversion we performed back-

end timing sweeps at different drive levels. In Fig. 5.10 two such sweeps are shown, at full-

and quarter-scale drive levels. There is an obvious shift between the two curves quantified

by comparing the two unwrapped sinusoids as 24 degrees at 1125 MHz. This is equivalent

to a 60 ps timing shift and will affect the response of the feedback. Fortunately, since the

system timing is performed at the full-scale drive level the back-end is correctly phased at

maximum output. Phase shift with decreasing amplitude leads to higher steady-state kick

level than would be achievable with a better amplifier.



Chapter 6

Longitudinal feedback controllers

6.1 Recursive digital filters

In this chapter we will discuss the design of feedback controllers intended to stabilize

coupled-bunch instabilities. These controllers will be implemented as discrete-time sys-

tems. An important class of discrete-time processing structures consists of the structures

described by linear constant-coefficient difference equations, e.g.

y[n] = a0x[n] + a1x[n − 1] + a2x[n − 2] (6.1)

y[n] + by[n − 1] = a0x[n] + a1x[n − 1] (6.2)

where x[n] is the input sequence and y[n] is the output one. These difference equations can

be represented graphically by block diagrams. Such diagrams for Eqs. 6.1-6.2 are shown in

Fig. 6.1.

The block diagrams point to an important distinction between two classes of systems

defined by difference equations. Equation 6.1 defines a filter without feedback, i.e. output

signal depends only on a finite number of the input sequence terms. For the system defined

by Eq. 6.2 y[n] depends also on the past values of the output. It can be shown that in such

a structure the output is a function of an infinite number of past inputs for b �= 0.

In general all discrete filters can be separated into these two distinct classes, finite

and infinite impulse response. Finite impulse response (FIR) filters are implemented by

networks without feedback. As a result, the length of the impulse response of such a filter

95
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Figure 6.1: (a) Block diagram corresponding to Eq. 6.1; (b) Block diagram corresponding
to Eq. 6.2

is determined by the number of the delay elements. When feedback terms are added to the

filter network it is possible to obtain infinitely long impulse responses (IIR). This means that

for the same number of memory elements a filter with feedback allows the implementation

of more complex responses. However such flexibility comes at a price. As for any system

with feedback, the designer of the IIR filters needs to worry about stability.

A convenient tool in the analysis of the FIR or IIR filters is the z-transform. It is defined

for sequence x[n] as

X(z) =
∞∑

n=−∞
x[n]z−n (6.3)

Taking z-transform of Eq. 6.2 we get
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Y + bz−1Y = a0X + a1z
−1X (6.4)

where X and Y are the z-transforms of the corresponding sequences. Rearranging the terms

in Eq. 6.4 we get the relationship between X and Y or the system function

H(z) =
Y

X
=

a0 + a1z
−1

1 + bz−1

In general, for an IIR or FIR system H(z) is given by

H(z) =
∑N

k=0 akz
−k

1 +
∑M

k=1 bkz
−1 (6.5)

For an FIR system M is equal to 0. Expressing the system function as a ratio of

polynomials in z provides a simple way to check for the stability of an IIR system. Such a

system is stable if all of the roots of the denominator polynomial (poles) are contained within

the unit circle. Rewriting Eq. 6.5 in terms of its poles and zeros (roots of the numerator

polynomial) we get

H(z) = g0

N∏
n=1

z − zn
z − pn

(6.6)

Now the stability requirement can be expressed as |pn| < 1. There are no restrictions

on the zeros of the system function.

If the z-transform is evaluated on the unit circle, i.e. for z = eiΩ Eq. 6.3 becomes

equivalent to the discrete-time infinite duration Fourier transform. Thus, to obtain the

transfer function of a system one has to evaluate the system function on the unit circle:

H(Ω) = H(z)|z=eiΩ

6.2 Implementation-specific performance optimization

Ultimately all of the controller design methods result in a specification of the feedback fil-

ter system function. Performance of the feedback depends on the way that these system
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Figure 6.2: Direct form II realization of a second-order section

functions get implemented. For a given difference equation there are many possible imple-

mentation topologies differing in efficiency, quantization sensitivity, and noise performance.

For the DSP-based system considered here IIR filtering was implemented using a cascade

of second-order sections. A cascade of second-order sections has been selected for its insen-

sitivity to coefficient quantization and computational efficiency [60, pages 300–344]. Due

to memory and execution time constraints the maximum number of sections was set to 6.

Thus, the search space for the controller design methods includes at most 12 poles and 12

zeros. Each second-order section (SOS) was implemented in the direct form II. Topology

of such implementation is illustrated in Fig. 6.2. All computation is done using 16 bits for

both data and coefficients. Coefficients are represented in the Q14 format that is with two

bits to the left of the binary point. In such representation coefficients can span from −2 to
2−2−14. The reason for such a choice becomes clear if we examine the relationship between
the coefficients and roots of a second-order polynomial.

For a denominator polynomial defined by z2 + b1z + b2 and its two roots p1 and p2 we

have:

(z − p1)(z − p2) = z2 − (p1 + p2)z + p1p2 ⇒

 b1 = −(p1 + p2)

b2 = p1p2
(6.7)

Since for a stable IIR filter poles must be within the unit circle we get
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|b1| = |p1 + p2| ≤ |p1|+ |p2| < 2

|b2| = |p1||p2| < 1

Therefore poles of any stable filter can be implemented in direct form II with coefficients

smaller than 2.

Input and output samples are 8 bits wide while the IIR computation is done with 16 bits

of resolution. Alignment of the input data within the 16 bit word is driven by a trade-off

of two parameters: dynamic range and roundoff noise. If we leave empty bits in the upper

part of the 16 bit word, a filter can support very large gains before saturating. However

roundoff noise is introduced at the level of the LSB of the input. Leaving free bits in the

lower part of the word cuts down the roundoff noise, but also reduces the dynamic range.

In our implementation we chose place the 8 bit input word in bits 4 through 11 leaving 4

bits below and above. In this case roundoff noise is kept at 1
16 of the input LSB and the

node values within the SOS cascade can be 16 times the full-scale input level.

Starting from specification of a controller by 12 poles and 12 zeros we first need to

group poles into 6 pairs. There is no ambiguity in pairing complex poles since they occur

in conjugate pairs. No constraints are placed on the pairings of the real poles. Similarly

complex zeros are paired unambiguously. Since real zeros can occur outside the unit circle,

certain combinations of zeros can lead to large coefficients a1 and a2. These are represented

in the Q14 format so the large values will have to be scaled down to the [−2, 2 − 2−14]

range reducing the gain of the section. Since the overall gain has to be maintained at

the design value, reduced gain of one section requires increased gains elsewhere, possibly

amplifying the quantization noise. From Eq. 6.7 we see that we need to concentrate on

reducing the product of the paired zeros. Thus we sort all real zeros by absolute values and

sequentially pair largest ones with the smallest. Such pairing minimizes the range of values

of the coefficients a1 and a2 for all sections with real zeros.

In implementing a filter we will need to define a distance in z-plane between pole and

zero pairs. When both pairs are complex we will define the distance between a pole and

a zero in the upper half-plane. When poles, zeros or both are real, we will use minimum

distance between the two sets:
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D = min
mn

|pm − zn|, m = 1, 2;n = 1, 2 (6.8)

Our distance definition for complex pairs is equivalent to that given in Eq. 6.8 for the real

pairs. Thus we will use Eq. 6.8 for all distance computations.

The next step in defining the implementation is to combine pole and zero pairs into

second order sections. We follow a variant of the rule presented in [61] that suggests

sequentially pairing the largest magnitude pole with the zero closest to it in the z-plane.

Complex poles have equal magnitudes and for real poles we use the larger absolute value.

We modified the rule by selecting first a zero pair closest to zero frequency, i.e. to the

point z = 1. That pair is combined with the minimum magnitude pole pair. The need for

this modification will become obvious if we consider typical signal levels for the feedback

system in operation, for example at the ALS. Feedback controllers there are normally con-

figured with the in-band gains of 25-50 so that an input oscillation amplitude of 2-4 counts

produces a full scale 8 bit output correction signal. At the same time the amplitude of the

synchronous phase transient which appears as DC position of each bunch is around 100

counts. Since we desire to provide high gain for small signals riding on the large DC offsets

it is important to remove the DC before any amplification takes place. Notice that in the

direct form II pole response is computed first, followed by the zeros. If a pair of poles close

to DC is chosen for the first section and these poles provide DC gain of more than 16 we risk

saturating the processing before DC rejection takes place. Choosing a small magnitude pole

pair minimizes this risk. This is still an imperfect solution since there are pole placements

that can lead to saturation. One could escape DC saturation by selecting the pole pair

most distant from z = 1. However such pole pair could be close to unit circle and provide

high gain at some other frequency. Since in the first section DC is not yet removed such

a strategy is likely to lead to saturation. Another way to avoid these risks is to sacrifice

one SOS to DC rejection placing both poles at the origin. Then one section later on would

need to have both zeros at the origin. This approach is wasteful since by eliminating a sec-

tion one can reduce processing time with a possible improvement in control performance.

Yet another way to alleviate DC saturation problems is to use transposed direct form II

structure for the second-order section. Block diagram of such an implementation is shown

in Fig. 6.3. Notice that computation of zeros is done first, solving the abovementioned DC
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Figure 6.3: Transposed direct form II realization of a second-order section

saturation issues.

Another DC rejection issue stems from numerical truncation. In our IIR implementation

result of the final accumulation is truncated by retaining upper 16 bits of the 32 bit word.

Thus, a small negative DC term gets truncated to the LSB of the 16 bit word. If DC poles

are placed after DC zeros that error can be amplified. Let’s consider an example with real

poles and zeros:

H(z) =
(z − 0.999)(z − 0.999)
(z − 0.98)(z − 0.98)

At DC we expect to have H(1) = 0.0025. Let’s consider the layout where the zeros

precede the poles and the input signal is constant at −100 counts. After quantizing the
coefficients we expect the output of the zero section to be 0.00006 before the truncation.

After the 32-to-16 bit conversion we get −0.0625. Passing that through the pole section we
get output of −287 counts instead of expected −0.25. Limiting the filter output to 8 bits
results in DC saturation. If the poles and zeros are swapped saturation happens during

pole computation. Even though there is no universal solution to this problem, controllers

encountered in practice rarely need to have poles so close to DC. In addition one can confine
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the poles to a circle of radius smaller than unity limiting the gain of a single pole.

Once the first SOS is configured, the rest is paired according to the rule quoted above .

Next we define the order in which these sections occur. Two possible choices are presented in

[61]: sorting by increasing or decreasing pole magnitudes. Sorting by increasing magnitudes

provides better overall saturation behavior while the other choice leads to lower roundoff

noise. Since in our implementation roundoff noise is much smaller than the LSB of the

input word we chose to sort the poles by increasing magnitudes.

6.3 Frequency-domain controller design

In this approach to feedback controller design we start from specifying a desired frequency-

domain complex transfer function. Then a recursive digital filter is designed to approximate

such a transfer function. Filter design problem has been extensively studied and there many

approaches to solving it [62, 63, 64, 65, 66]. Traditionally these methods concentrate on

approximating the magnitude of the desired transfer function. In cases where the phase

response is considered the goal is obtaining a linear phase characteristic or, equivalently,

a constant delay through the filter. The magnitude of the resulting delay is usually not

important as long as it is constant. In our case the task is more demanding since in general

for the wideband control filters we desire constant phase shift within the control bandwidth.

Since there are delays in the loop associated with sampling as well as transport delays, we

need to provide a positive slope of phase versus frequency, i.e. negative delay. Obviously

negative delay cannot be a characteristic of a causal system. However it is possible to

approximate phase behavior of a negative delay within a limited bandwidth.

6.3.1 Problem formulation

Let Hd(Ω) be the desired complex transfer function where Ω is the digital frequency of a

sampled system. For the sampling interval Ts digital frequency is related to physical one as

Ω = ωTs. Transfer functions are defined on the set (U : 0 ≤ Ω ≤ π). Let vector A consist of

n parameters defining an infinite impulse response (IIR) filter and H(A,Ω) be the transfer

function of that filter.

In order to determine how wellH(A,Ω) approximates Hd(Ω) we need to define a distance

function. A common choice is a weighted Lp norm defined for two real-valued functions

f1(x) and f2(x) on a set X as:
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‖L‖p =
{∫

X
W (x)|f1(x)− f2(x)|pdx

}1/p
(6.9)

whereW (x) is a positive weighting function. Since in our case functions are complex-valued,

Eq. 6.9 has to modified. An obvious choice is to consider |H(A,Ω)−Hd(Ω)|. However such
a distance function has a single weighting function. In controller design we need to be able

to weight independently magnitude and phase. For example, within control bandwidth one

needs both magnitude and phase of H(A,Ω) to approximate the desired response. Outside

the control band, only magnitude response needs to be optimized. These considerations

lead to a choice of two distance functions: weighted norms of magnitude and phase errors.

‖LM (A)‖p =
{∫ π

0
WM (Ω)||H(A,Ω)| − |Hd(Ω)||pdΩ

}1/p
(6.10)

‖Lφ(A)‖q =
{∫ π

0
Wφ(Ω)|� H(A,Ω)− � Hd(Ω)|qdΩ

}1/q
(6.11)

If we define the overall distance function as a linear combination of ‖LM (A)‖p and
‖Lφ(A)‖q our approximation problem is reduced to minimization of a real-valued function

of n real parameters. In order to avoid numerical integration we will approximate the norms

in Eqs. 6.10-6.11 by summations:

LM
2p(A) =

K∑
k=1

WM (Ωk)(|H(A,Ωk)| − |Hd(Ωk)|)2p

Lφ
2q(A) =

K∑
k=1

Wφ(Ωk)(� H(A,Ωk)− � Hd(Ωk))2q

Here we take advantage of a fact that a global minimum of ‖L(A)‖2p is also a global
minimum of ‖L(A)‖2p2p. Note that the above formulation does not require the points Ωk to
be evenly spaced. One important requirement on the maximum spacing of the frequency

points is that significant features of both transfer functions do not fall between the samples.

For example, if there is a sharp resonance or notch between two frequency samples, it will

not affect the distance function indicating that frequency sampling is too coarse.

Overall distance function can be expressed as
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L(A) = βLM
2p(A) + (1− β)Lφ

2q(A) (6.12)

where parameter β ∈ [0, 1] controls relative weights of the phase and magnitude errors.

Now let us consider the parameterization of the controller system function. We desire a

stable controller, thus it is important to be able to easily check for stability. Since a system

is stable if all of its poles are within the unit circle, parameterization of Eq. 6.6 seems to be

the obvious choice. However in physical implementation filter coefficients must be real, so

complex poles or zeros must occur in conjugate pairs. This requirement naturally leads to

selecting a second-order section as a unit of cascade implementation. Then Eq. 6.5 can be

written as

H(z) = g0

Ns∏
n=1

z2 + a1nz + a2n
z2 + b1nz + b2n

(6.13)

In this case parameter vector A is given by

A = (a11, a12, b11, b12, . . . , a1k, a2k, b1k, b2k, . . . , g0) (6.14)

As stated above we need a way to check for stability. Due to coefficient quantization

poles just inside unit circle can become unstable in the physical system. In addition, a pole

near the unit circle causes a gain peak within a section. To avoid these problems we will

require all filter poles to lie within the disk of radius ρ, ρ < 1. For each second-order section

this requirement translates into three linear inequality constraints:

b2 ≤ ρ2

ρb1 − b2 ≤ ρ2

−ρb1 − b2 ≤ ρ2

For efficient numerical minimization it is important to be able to compute analytically

the gradient of the distance function. Partial derivatives of the distance function in Eq. 6.12

with respect to parameters (A1, A2, . . . , A2Ns+1) are given by
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∂L(A)
∂Am

= β
∂LM

2p(A)
∂Am

+ (1− β)
∂Lφ

2q(A)
∂Am

∂LM
2p(A)

∂Am
= 2p

K∑
k=1

WM (Ωk)(|H(A,Ωk)| − |Hd(Ωk)|)2p−1 ∂|H(A,Ωk)|
∂Am

∂Lφ
2q(A)

∂Am
= 2q

K∑
k=1

WM (Ωk)(� H(A,Ωk)− � Hd(Ωk))2q−1
∂ � H(A,Ωk)

∂Am

For the parameterization of the filter system function given in Eq. 6.13 we have

|H(A,Ω)| = |H(eiΩ)| = |g0|
Ns∏
n=1

eiΩ + a1n + a2ne
−iΩ

eiΩ + b1n + b2ne−iΩ

 = |g0|
Ns∏
n=1

{
P (a1n, a2n,Ω)
P (b1n, b2n,Ω)

} 1
2

� H(A,Ω) = � H(eiΩ) =
Ns∑
n=1

arctan
(1− a2n) sinΩ

(1 + a2n) cos Ω + a1n
−

Ns∑
n=1

arctan
(1− b2n) sinΩ

(1 + b2n) cos Ω + b1n

where

P (a1, a2,Ω) = 1 + a21 + a22 + 2a2 cos 2Ω + 2a1(1 + a2) cos Ω

Then partial derivatives of the magnitude and the phase of the transfer function at a

frequency Ω are given by

∂|H(eiΩ)|
∂a1m

= |H(eiΩ)|2a1m + 2(1 + a2m) cos Ω
2P (a1m, a2m,Ω)

∂|H(eiΩ)|
∂a2m

= |H(eiΩ)|2a2k + 2cos 2Ω + 2a1k cos Ω
2P (a1m, a2m,Ω)

∂|H(eiΩ)|
∂b1m

= −|H(eiΩ)|2b1m + 2(1 + b2m) cos Ω
2P (b1m, b2m,Ω)

∂|H(eiΩ)|
∂b2m

= −|H(eiΩ)|2b2k + 2cos 2Ω + 2b1k cos Ω
2P (b1m, b2m,Ω)

∂ � H(eiΩ)
∂a1m

=
(a2m − 1) sin Ω
P (a1m, a2m,Ω)
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∂ � H(eiΩ)
∂a2m

= −sin 2Ω + a1m sinΩ
P (a1m, a2m,Ω)

∂ � H(eiΩ)
∂b1m

= −(b2m − 1) sin Ω
P (b1m, b2m,Ω)

∂ � H(eiΩ)
∂b2m

=
sin 2Ω + b1m sinΩ
P (b1m, b2m,Ω)

The approximation problem can then be set up as a nonlinear minimization with linear

inequality constraints and solved using Sequential Quadratic Programming [42].

6.3.2 Specifying desired response

One of the most significant difficulties of the controller design lies in specifying desired

transfer function. There are several objectives that have to be met by Hd(Ω). First of all,

it needs to stabilize longitudinal dynamics for all possible accelerator operating parameters.

Second, as described in Section 6.2, Hd(Ω) must provide DC rejection. Third, broadband

noise as well as power line harmonics present in the input signal have to be suppressed.

Model developed in Chapter 4 describes beam dynamics as an unstable harmonic oscilla-

tor. A controller of such a plant can be implemented as a differentiator [24, 67]. Advantages

of such a controller include insensitivity to resonant frequency and DC rejection. Consider

the beam model as follows:

G(s) =
g0

s2 − 2λs+ ω2n

With controller H(s) = Ks closed-loop characteristic equation becomes

C(s) = s2 + (g0K − 2λ)s + ω2n

Thus differentiator feedback acts to stabilize the system independent from ω2n. However

gain of such a controller rises linearly with frequency leading to actuator saturation. Transfer

function of differentiator has constant 90 degree phase shift at all frequencies, i.e. zero delay.

Discrete-time controller cannot replicate such response due to signal processing delays as

well as delay due to the zero-order hold.
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Figure 6.4: Magnitude and phase of a transfer function of a band-limited differentiator

In specifying desired response we chose to approximate the differentiator transfer func-

tion in a band-limited fashion. Let us consider feedback loop model developed in Chapter 4

as illustrated in Fig. 5.1. Our desired transfer function Hd(Ω) should result in band-limited

differentiator dynamics between y(t) and u(t). If longitudinal oscillation frequency is ex-

pected to be in the range ωd1 to ωd2 we define control band to extend by ωguard below and

above. Desired transfer function from y(t) to u(t) is shown in Fig. 6.4. Here ω1 = ωd1−ωguard

and ω2 = ωd2 + ωguard. Magnitude of the transfer function is linear with frequency within

the control band and zero elsewhere. Phase response is 90 degrees in band. Phase response

outside the control band is undefined since transfer function magnitude is zero.

Once desired continuous-time transfer function Hyu(iω) has been defined we can com-

pute the discrete-time transfer function Hd(Ω). In order to obtain that function we need

to divide the continuous time function by the transfer functions of the zero-order hold and

the delay. These are given by

Hzoh(Ω) = e−iΩ/2sinc(
Ω
2π
)

Hdelay(Ω) = e−iΩTd/Ts
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Magnitude of the resulting transfer function is amplified at the high frequencies to com-

pensate for the zero-order hold. In-band phase response is then a negative group delay of

−(Ts/2 + Td).

Useful insight into the optimization process can be gained by factoring controller system

function into minimum-phase and all-pass components. As described in Section 6.1 transfer

function is stable and causal if all of the poles lie within the unit circle. Transfer function

H(z) is minimum-phase if 1/H(z) is stable and causal. In other words, both poles and zeros

of minimum-phase transfer function lie within the unit circle. System is called all-pass if the

magnitude of its transfer function is unity at all frequencies. All-pass systems have equal

numbers of poles and zeros related as pk = 1/z∗k . Thus a stable and causal all-pass system

has all of its zeros outside the unit circle. Consequently one can represent any stable and

causal system function H(z) as a product of minimum-phase and all-pass functions:

H(z) = Hmin(z) ∗ Hap(z)

here Hmin(z) contains the poles and zeros of H(z) that lie inside the unit circle and zeros

that are conjugate reciprocals of the zeros of H(z) located outside the unit circle. Then

Hap(z) contains the zeros of the H(z) that lie outside the unit circle. In the product poles

of Hap(z) cancel conjugate reciprocal zeros of Hmin(z) resulting in the original transfer

function. Group delay of H(Ω) can be expressed as

grd[H(eiΩ)] = grd[Hmin(eiΩ)] + grd[Hap(eiΩ)]

A general property of an all-pass system is that grd[Hap(eiΩ)] > 0 at all frequencies [60,

page 238]. Thus if the goal of the optimization was in minimizing group delay, resulting

transfer function would be minimum phase. However since we require certain phase shift

within the control band optimum filters can be non-minimum-phase. One can separate

phase response error into two parts: DC (mean error) and AC. Larger group delay will

increase the AC part of the error. However if the resulting filter has zero mean phase

deviation from Hd(Ω), overall error can be smaller.

In the next three subsections three controller designs will be presented. These designs

were created for three different accelerators: ALS, DAΦNE, and BESSY-II. In each of these
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machines longitudinal coupled-bunch dynamics varies as a function of several parameters

such as beam current, beam energy, main and third-harmonic RF system configurations.

There variations are different in each case requiring unique controller designs.

6.3.3 ALS

SLAC designed DSP-based longitudinal feedback systems have been commissioned at ALS,

BESSY-II, DAΦNE, PEP-II, PLS using finite impulse response (FIR) filters. The filters

were sufficient to control longitudinal instabilities in all machines listed above. The ALS

system was used successfully with an FIR filter for a period of 5 years.

In June 1999 a third harmonic RF system consisting of 5 passive cavities was installed

at the ALS. Following the installation the original FIR feedback filter had difficulties main-

taining longitudinal control over the operating range of currents and energies. We made a

series of instability studies to identify the effects that caused the loss of control. From these

studies we determined several problem areas. Let us consider them one by one starting

from the most significant.

Synchrotron frequency shifts

The most important effect we observed is the change of synchrotron frequency with beam

current and energy. The third harmonic RF system at the ALS is passive, that is, it is

powered by the beam. Since the harmonic voltage Vh in Eq. 2.17 scales linearly with beam

current, the slope of the RF voltage at the synchronous phase changes as a function of

current. The slope decreases monotonically as the beam current I0 increases. According

to Eq. 2.5 synchrotron frequency is proportional to the square root of that slope. Over a

range of values of the beam current from zero to full design current of 400 mA synchrotron

frequency changes significantly.

Measurements of the mode 233 oscillation frequencies as a function of current are shown

in Fig. 6.5 for two conditions: without and with third harmonic cavities. Data without third

harmonic cavities was taken on the 28th of May of 1998. Using a linear fit we estimate the

frequency shift over the 400 mA range as 413 Hz. In the second case, with third harmonic

cavities the shift in frequency is much larger over the same range of currents reaching

3322 Hz.

In the ALS one has to take into account the shift in the longitudinal oscillation frequency

with beam energy in addition to the synchrotron frequency shift due to the third harmonic
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Figure 6.5: Measured oscillation frequencies for the EFEM 233 in the ALS. a) Measurements
taken on 5/28/1998 (before third harmonic cavities were installed) at the 1.5 GeV nominal
energy. Frequency shift over the 400 mA range is 413 Hz. b) Measurements taken on
3/27/2000 with 2 third harmonic cavities tuned in and 3 cavities tuned away from 3frf
(parked). At 1.5 GeV frequency shift is 3322 Hz between 0 and 400 mA. When ring energy
is ramped to 1.9 GeV oscillation frequency drops further to 7.6 kHz.

cavities. The Advanced Light Source is often operated with energy ramping from the

injection energy of 1.5 GeV to 1.9 GeV. As shown in Sec. 2.5.2 changes in ring energy lead

to significant changes in longitudinal dynamics. From Eq. 2.15 we see that energy ramping

from E0 to E1 lowers the modal oscillation frequency by a factor of
√

E1/E0. As shown in

Fig. 6.5 oscillation frequency drops from 9 kHz to 7.6 kHz after ramping.

The effect of these frequency shifts on the longitudinal feedback is best understood if we

consider the transfer function of the ALS FIR feedback controller illustrated in Fig. 6.6. Let

us examine the change in the transfer function between 12 kHz and 7.6 kHz. There is little

difference in the gain with the lower frequency being 0.4 dB higher. However phase changes

from −90 degrees at 12 kHz to −23 degrees at 7.6 kHz. For resistive damping controller
should have phase shift of −90 degrees - at 7.6 kHz FIR controller is mostly reactive.

Ignoring reactive tune shifts and resulting changes in dynamics we estimate that at 7.6 kHz
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Figure 6.6: Transfer function of the ALS 6 tap FIR filter. The left plot shows the magnitude
of the transfer function and the right - the phase. The nominal synchrotron frequency of
12 kHz is marked by the green circles while the shifted oscillation frequency of 7.6 kHz is
marked by the red crosses.

feedback gain drops by cos(90−23) ≈ 0.4 ≈ −8 dB. Even this optimistic estimate of the gain
change is sufficient to make the system unstable since feedback is normally configured for a

damping margin of 2 when closed-loop damping rate is equal to the open-loop growth rate.

In that configuration gain drop of 6 dB will result in the closed-loop damping rate of 0 with

further gain reduction leading to instability. For a more rigorous test we can compute the

closed-loop damping rate as a function of modal eigenvalue. Using the measurements of the

eigenvalues versus beam current and energy we construct the open-loop eigenvalue curves

on the complex plane with the beam current as an independent variable. Then, closed-loop

dominant pole for each open-loop eigenvalue is computed using the system model described

in Ch. 5. In Fig. 6.7 both open-loop and closed-loop poles are shown for the 1.5 GeV and

1.9 GeV beam energies. Note that the real part of the closed-loop pole approaches zero at

400 mA and 1.9 GeV bringing the system close to instability. At that point small variations

in the growth rates or feedback gain can lead to loss of beam control.

Mode 0 tune shifts

An additional complication in operating bunch-by-bunch longitudinal feedback at the ALS

comes from the large tune shift experienced by the even-fill eigenmode 0 - the lowest-

frequency mode of motion in which all bunches move in phase. This eigenmode is strongly
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Figure 6.7: Open and closed loop dominant poles for beam currents ranging from 0 to
400 mA. The points where open-loop and closed-loop curves meet are at zero current (re-
sulting in zero feedback gain). From those points beam current increases monotonically
along each curve. The closed-loop poles were computed using 6 tap FIR filter.

affected by the fundamental impedances of the main RF cavities. Normally center frequen-

cies of the RF cavities are tuned below ωrf . Such tuning guarantees stability of mode 0 - so

called Robinson stability [68]. Tuning of the RF cavities is a function of beam current as it

is used to compensate for the beam loading [68]. Let’s consider the effect of cavity detuning

on the eigenvalue of mode 0. According to Eq. 2.9 the eigenvalue shift is given by

λ0 =
αefrfI0
2E0hωs

[(ωrf + ωs)Z‖(ωrf + ωs)− (ωrf − ωs)Z‖∗(ωrf − ωs)]

≈ παef2rfI0
E0hωs

[Z‖(ωrf + ωs)− Z‖∗(ωrf − ωs)] (6.15)
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Figure 6.8: Mode 0 open-loop eigenvalues in ALS vs. beam current from 0 to 400 mA in
8.14 mA steps.

In practice the eigenvalue shift is larger than predicted by the above equation due to the

large magnitude of the shift. In Fig. 6.8 mode 0 eigenvalues computed using Eq. 6.15 and

the small-signal Pedersen model introduced in 2.4 are plotted vs. beam current. Note that

large RF cavity detuning has two effects: reduction of the damping rate 1
τ0
= �(λ0) and

increase of the tune shift 
(λ0). As the ring is filled with charge mode 0 tune is shifted to
lower frequencies. It is known from the operational experience at the ALS as well as from

simulations that oscillation frequency of mode 0 shifts from 12 kHz (nominal synchrotron

frequency) to 4 kHz at 400 mA [69]. If we examine the transfer function of the FIR controller

shown in Fig. 6.6 we see that at 4 kHz the phase shift is 30 degrees or 120 degrees away

from the optimal resistive damping phase. Therefore the FIR controller provides positive

rather than negative feedback for mode 0. The effect has been noted before the installation



114 CHAPTER 6. LONGITUDINAL FEEDBACK CONTROLLERS

of the third harmonic cavities as seen in the larger than expected level of phase noise at

high currents [69].

When the third harmonic cavities were added several effects combined to make the

stability of mode 0 a significant limitation to the operation of the machine. First, as

described in the previous section, third harmonic cavities lower the frequencies of all modes.

As mode 0 shifts below 4 kHz positive feedback effect of the FIR controller is enhanced. For

example, from 4 kHz to 3 kHz phase response moves from 30 degrees to 45 while the gain

drops by 2 dB. At the phase of 30 degrees anti-damping gain is scaled by cos(90−30) = 0.5

which at 45 degrees it is cos(90− 45) = 0.707 or 3 dB higher. Thus overall gain is increased

by 1 dB by shifting the frequency from 4 kHz to 3 kHz. Second, large frequency shifts of the

other EFEMs necessitated increase in the overall controller gain - thereby increasing positive

feedback applied to mode 0. Third, third harmonic cavities are tuned above 3ωrf to obtain

bunch lengthening. Such tuning has two consequences: reduced damping and slight positive

tune shift of mode 0. This effect has not been quantitatively analyzed to determine whether

mode 0 stability is improved or impaired by these counteracting influences. However the

combination of the three effects described above has been sufficient to drive mode 0 to

instability.

Synchronous phase transients and feedback gain limitations

Due to user requirements ALS operates with a large gap in the fill pattern. As described

in Ch. 4 uneven fill pattern excites the impedances at the revolution harmonics. Resulting

wake fields shift the equilibrium positions of the bunches producing a synchronous phase

transient. Such a transient strongly affects the operation of the longitudinal feedback system

via several mechanisms. As described in Ch. 2 front-end phase detection is performed using

a double-balanced mixer with the carrier frequency of 6frf . The detected signal (at the

input of the ADC) for bunch k is Gfeik sin(6φk). This expression assumes that the phase

of the carrier is adjusted in such a way that the signal of a bunch with its centroid at

synchronous position is perfectly in phase with the carrier. For small oscillations of the

bunch centroid detected signal is

xk ≈ 6Gfeikφk (6.16)
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The situation changes if there are differences in the synchronous position from bunch to

bunch. Then the carrier cannot be adjusted to be in phase with the signals of different

bunches, at best we can aim for zero average phase error. Consequently some bunches will

be in phase which the carrier and others will be offset. If we denote equilibrium phase of

bunch k relative to the average of the synchronous phase around the ring as φ̄k, then we

can write for the ADC input

xk = Gfeik sin(6φk) = Gfeik sin(6(φ̂k + φ̄k)) (6.17)

where φ̂k is the motion of bunch k about the synchronous phase. For small oscillation

amplitudes we can rewrite Eq. 6.17 as

xk ≈ Gfeik sin(6φ̄k) + 6Gfeik cos(6φ̄k)φ̂k (6.18)

Consider the above equation for the bunch signal in phase with the carrier. Then φ̂k = 0

and Eq. 6.18 reduces to Eq. 6.16. Non-zero synchronous position φ̄k has two effects. First

of all, the detection gain is reduced by cos(6φ̄k). Second, ADC input signal contains a DC

offset of Gfeik sin(6φ̄k).

The gain reduction due to the synchronous phase transient is a function of beam current

since the wake voltage is excited by the beam current. At low beam currents both the

transient and the gain reduction are small. However as the current increases the magnitude

of the synchronous phase transient goes up and the feedback gain is reduced for some of

the bunches. Figure 6.9 shows the synchronous phase transient in the ALS measured using

the LFB facilities as well as the front-end gain multiplier due to the transient. Gain for

the bunches at the extremes of the transient is reduced by 30 to 40%. Remember that the

feedback system uses gain scaling linearly with beam current to combat the linear increase

in the growth rates. Synchronous phase transient results in the feedback gain scaling less

than linearly. Thus at some current feedback gain will become insufficient to control the

coupled-bunch growth rates. Fortunately, for the ALS this deviation from linearity is only

5% at 400 mA for the phase transient similar to the one shown in Fig. 6.9. However tuning

in more third harmonic cavities (only two out of five are actively tuned in in the above data

set) will increase the magnitude of the synchronous phase transient as well as accelerate the

nonlinear gain loss. In addition to the gain reduction in the front-end there is gain lowering

in the back end since part of the bunches arrives in the kicker out of phase with the kick
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Figure 6.9: Effect of the synchronous phase transient on the front-end gain. This mea-
surement was taken at the ALS at 1.5 GeV, 397 mA. a) Bunch-by-bunch currents showing
252 filled RF buckets. b) Equilibrium phases of the bunches relative to the phase detector
carrier in degrees at RF frequency. c) Front-end gain reduction resulting from the non-zero
equilibrium phases. Bunches with offsets near zero in plot b) have gain multipliers near 1
(little reduction) while the bunches at the extremes of the transient lose 30 to 40% of the
front-end gain.

waveform. However back-end operates at the much lower frequency (9/4frf vs. 6frf), so the

gain reduction is a smaller effect. At the same time, as shown in Ch. 5, mis-timed back-end

kick on the bunches with non-zero equilibrium phase produces some feedback loop phase

shift for those bunches further reducing feedback effectiveness.

The second effect introduced by the synchronous phase transients is the DC offset of the

bunch signal at the ADC input. This offset depends on the equilibrium phase and current of

the bunch. Offsets over the whole ring behave similarly to the synchronous phase transient
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as illustrated in Fig. 6.9. These offsets limit the allowable feedback front-end gain Gfe.

If the amplitude of the synchronous phase transient is small, the gain is limited by the

noise level in the front-end circuitry. Empirical rule for setting Gfe has been to make RMS

noise of the digitized signal equal one ADC count. Such a gain for the advanced light source

was Gfe = 202 counts/mA. At that gain setting with nominal per bunch current of 1.5 mA

4 degrees of motion would saturate the ADC input. This saturation is not a concern in

the operation since digital signal processing section of the LFB normally operates with gain

much larger than unity, so its output saturates long before the input. Now consider a case

when the synchronous phase transient is large, on the order on 20 degrees peak-to-peak.

Then some bunches have +10 degree offsets and some - −10 degrees. At the high front-end
gain of 202 counts/mA ADC input signal for these bunches and for all other bunches with

offsets more than 4 degrees will be saturated all the time. To operate the feedback system

with such a transient the gain has to be lowered. If we define inom as the nominal per

bunch current, φ̄max as the amplitude of the transient and φ̂min as the minimum oscillation

amplitude we would like to detect without ADC saturation, we get for the front-end gain

Gfe =
128

inom sin(6(φ̄max + φ̂min))
(6.19)

For the ALS with inom = 1.5 mA, φ̄max = 10 degrees, φ̂min = 2 degrees we get Gfe =

90 counts/mA - a reduction in gain of 7 dB.

This significant reduction in the available front-end gain has to be compensated by the

gain increase elsewhere in the processing chain if the damping is to be maintained at the

same level. There are two places where one can realistically achieve this gain increase: digital

signal processing section and the output power stage. Theoretically, one could also modify

the feedback kickers for higher shunt impedance or increase their number. However that

path is less desirable due to the expense and the prolonged machine down time required to

install these vacuum components. As for the output power stage, wideband power amplifiers

in the 1-1.125 GHz range are quite expensive and only increase the loop gain by the square

root of total power increase. Thus we are faced with the desire to increase the digital

gain. Avoiding saturation of the output signal by the input and ADC quantization noise is

quite challenging due to the combination of large gain and wide bandwidth required of the

controller.
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Figure 6.10: Transfer function of the ALS IIR controller designed using frequency-domain
method

Increases in growth rates with reduction in synchrotron frequency

Another side effect of the reduction in the synchrotron frequency is the increase of the growth

rates. If we examine Eq. 2.9 it is clear that the growth rates are inversely proportional to

ωs. Since synchrotron frequency decreases linearly with beam current (Fig. 6.5) growth

rates increase faster than linearly. That nonlinearity accounts for the slight curvature in

the open-loop poles plot in Fig. 6.7.

Controller design

We will describe here the feedback controller designed to longitudinally stabilize the ALS

over the full range of beam currents and energies. Design was carried out using the

frequency-domain optimization procedure. The transfer function of the controller is shown

in Fig. 6.10. In selecting the weighting vectors for magnitude and phase emphasis was

placed on achieving the phase response. Notice that the controller is wideband relative to

the span of modal oscillation frequencies of 7-12 kHz. Maintaining the transfer phase near

−90 degrees over a wide range of frequencies provides necessary damping for the combina-
tions of modal growth rates and oscillation frequencies encountered at the ALS. In addition

this design, named landau 41, has phase shift of −3 degrees at 4 kHz and, therefore, has
a much smaller positive feedback effect on mode 0 than the FIR controller. The filter is

implemented in a cascade of 6 second-order sections for a total of 12 poles and 12 zeros.
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Its pole-zero map is illustrated in Fig. 6.11. Absence of poles near the unit circle results in

high saturation margins throughout the cascade.

This controller design has been shown to provide ample damping of the unstable HOMs.

Plot of the dominant closed-loop poles of the beam-feedback system obtained from the model

is shown in Fig. 6.12. Note that this design provides large stability margins (fast damping)

both at 1.5 and 1.9 GeV.

The landau 41 controller has been used in the normal operation of the longitudinal

feedback at the ALS from January 2000. A grow/damp measurement illustrating the per-

formance of this controller is presented in Fig. 6.13. In this measurement three eigenmodes

grow to the measurable amplitudes: 213, 217, and 233. Modes 213 and 217 are driven by

the HOMs in the third harmonic cavities. One of these two modes is driven by the HOMs

in the two beam powered harmonic cavities, while the other mode is due to the three

parked cavities. Note the open-loop modal oscillation frequencies are down to 7.5 kHz for

these modes - result of synchrotron frequency decrease with both beam loading and energy

ramping. Damping rate provided by the feedback is slightly lower than that expected from

Fig. 6.12. The discrepancy is caused by the gain reduction effects due to the synchronous

phase transients which are not modeled in computing the closed-loop poles.
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Figure 6.11: Poles and zeros of the ALS controller
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Figure 6.12: Open-loop and dominant closed-loop poles for the ALS IIR controller

The unfortunate feature of the landau 41 controller is large gain at low frequencies (1-

4 kHz). Since controller phase more than 90 degrees away from the resistive feedback setting

this results in certain amount of positive feedback for mode 0. As loop gain increases one

approaches instability of that eigenmode while lowering the gain leads to loss of stabilization

of other eigenmodes. Thus, the system has a limited region of loop gains resulting in

stability. Experiments at the ALS show that the range of acceptable gains varies between

6 and 8 dB.

In general, any practical feedback controller will have a limited range of allowable gains.

The lower limit is dictated by the stability of the closed-loop system while the upper is either

a stability or a noise saturation limit. That is, as the gain is increased either the system

becomes unstable or the feedback output saturates with sensor or quantization noise. The

size of the gain window is an important factor in the operation of the accelerator. Larger

gain window makes it possible to retain feedback control independent from the variations in
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     f) Growth Rates (post−brkpt)

ALS:mar1600/1557:  Io= 377.758mA,  Dsamp= 28,  ShifGain= 0, Nbun= 280,

At Fs: G1= 37.6125,  G2= 0,  Ph1= −67.8755,  Ph2= 0,  Brkpt= 165,  Calib= 5.83.

ALS:mar1600/1557:  Io= 377.758mA,  Dsamp= 28,  ShifGain= 0, Nbun= 280,

At Fs: G1= 37.6125,  G2= 0,  Ph1= −67.8755,  Ph2= 0,  Brkpt= 165,  Calib= 5.83.

ALS:mar1600/1557:  Io= 377.758mA,  Dsamp= 28,  ShifGain= 0, Nbun= 280,

At Fs: G1= 37.6125,  G2= 0,  Ph1= −67.8755,  Ph2= 0,  Brkpt= 165,  Calib= 5.83.

Figure 6.13: A grow/damp transient measurement at the ALS, 377 mA, 1.9 GeV, landau 41
controller.
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Figure 6.14: Transfer function of the alsFD3 IIR controller designed to avoid excitation of
mode 0

the growth rates of unstable modes as well as changes in the feedback gain. In this respect,

controller landau 41 has a relatively small gain window which adversely affects robustness

of the longitudinal feedback at the ALS. The upper limit of the window is defined by

stability of mode 0 and we can try to improve the robustness by changing the response

of the controller to damp mode 0. Remembering that without feedback mode 0 is stable

another approach becomes feasible - rolling off the gain of the controller so that eigenvalue

of mode 0 is only weakly affected.

The latter approach was used to design another feedback controller for the ALS, design

named alsFD3 - referring to a frequency-domain (FD) design with 3 second-order sections.

The frequency response of the controller is shown in Fig. 6.14. Note that the gain of the

controller falls rather quickly below the lower control frequency of 7 kHz. Down at 4 kHz

this controller has a gain of 12 dB - much lower than the 32 dB for landau 41. The design

has been tested at the Advanced Light Source and the measured open and closed-loop poles

as well as the model-predicted curves are shown in Fig. 6.15. The tests indicate that the

controller provides sufficient damping of the coupled-bunch modes inducing the damping

rates on the order of the open-loop growth rates (approximately 6 dB gain margin). The

phase response of the alsFD3 is not as well controlled as that of landau 41. However within

the frequency band of interest deviation from resistive feedback is minor, with reactive

frequency shifts not exceeding 50 Hz. At higher currents some controller saturation is

evident when the measured damping rates start falling short of the values expected from
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Figure 6.15: Measured open and closed-loop poles for mode 214 in the ALS. Model predic-
tion of the closed-loop values is made using a linear fit to the measured open-loop eigenval-
ues.

the model.

As described earlier, the main goal of the new design is to avoid excitation of strongly

tune-shifted eigenmode 0. In order to verify that the goal was achieved we compared the

performance of the new controller with the existing design. Beam motion was recorded with

the feedback system in the steady-state closed-loop situation. Measurements were taken at

nearly the same beam current (395 and 400 mA) with each of the controllers in a 276 bunch

fill pattern. The fill pattern was chosen as one of the standard ALS operating patterns with

significant mode 0 problems. In Fig. 6.16 quadratically averaged bunch spectra for the two

cases are plotted on the same axis. Data for the landau 41 shows mode 0 motion excited

to the level of 0.6 ADC counts at 4.8 kHz. The new design shows very little motion in that
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Figure 6.16: Bunch spectra quadratically averaged for the two IIR controller designs. Large
mode 0 motion at 4.8 kHz excited by the landau 41 controller is not present in the spectrum
of the new alsFD3 design. Narrowband peaks above 10 kHz are due to the external noise
signals present at the input of the ADC. Since the two controllers operate at different
downsampling factors and, consequently, different bunch sampling frequencies, the external
signals are aliased differently. In each case the same number of 5 narrow lines appears in
the spectrum.

frequency band confirming its better performance with respect to eigenmode 0.

6.3.4 DAΦNE

Longitudinal feedback problem at DAΦNE is very different from that at the ALS. There

are no high harmonic cavities in this machine and the change in the synchrotron frequency

over the operating range of currents is very small, going from 33 kHz at 1 mA to 32.5 kHz

at 800 mA. However the beam loading of the main RF cavities is quite strong and leads to
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Figure 6.17: Frequency response of the DAΦNE electron ring longitudinal feedback con-
troller.

a significant shift in the frequency of mode 0 going to 11 kHz at 1 A beam current. Due to

its wideband response standard 6-tap FIR filter interacts with mode 0 driving it unstable.

Several solutions have been tested before the IIR design was introduced.

The first method used higher center frequency of the FIR filter as a way to reduce

controller gain at low frequencies. This approach partially alleviated the problem - partially

since achievable gain reduction is limited by the shallow slope of the magnitude response vs.

frequency. The second approach developed at DAΦNE is based on using a dedicated mode

0 feedback. Using the RF system power amplifier (klystron) as an actuator the system

provides additional damping of mode 0 sufficient to combat the effect of the LFB.

Design of the IIR controller used the approach described in the previous subsection

- rolling off the gain of the feedback controller so that mode 0 is weakly affected by the

feedback. Mode 0 oscillation frequency changes in a continuous fashion from the nominal

synchrotron frequency near zero current to the low value at the high current. Thus beam

”samples” the response of the feedback controller over that range of frequencies. Roll off of

the controller gain is accompanied by the fast change in the controller phase which can lead

to instability of mode 0 if there is insufficient Robinson damping at that frequency of mode

0 (determined by the detuning of the RF cavities). Range of frequencies where gain of the

controller is rolled off was selected based on the results of simulations of mode 0 frequency

and damping [70].

In Fig. 6.17 the frequency response of the DAΦNE electron ring controller is shown.
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Figure 6.18: Open and closed-loop eigenvalues for mode 21 using DAΦNE electron ring
controller. Model based curves are plotted for beam currents from 0 to 600 mA. Three data
points were taken at 381, 409, and 546 mA.

Magnitude response of this controller is very narrowband. The lower cut-off starts at 29 kHz

(−3 dB) and is below −20 dB at 25 kHz. According to the calculations and the simulation

mode 0 damping peaks between 22 and 18 kHz oscillation frequency depending on the

tuning angle of the RF system. Thus the controller shown here has little chance of exciting

mode 0 instability. Shallower cut-off at high frequencies starts at 36 kHz and is at −20 dB
at 43 kHz. The narrowband structure (7 kHz −3 dB bandwidth) of the controller rejects the
sensor and quantization noise thus better utilizing actuator power. Phase shift in the control

band of 32.5 to 33.5 kHz is near 90 degrees with only 6 degrees of variation. Phase slope

does get steeper at the edges of the control band. Damping performance of the controller is

illustrated in Fig. 6.18 for the beam currents from 0 to 600 mA. Gain margin is nearly 12 dB
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Figure 6.19: Frequency response of the BESSY-II longitudinal feedback controller.

as far as gain reduction is concerned. This performance is achieved at relatively low DSP

gain peaking at 12 dB in-band leading to excellent noise performance of the closed-loop

system. This controller has been successfully used in the day-to-day operation of DAΦNE.

6.3.5 BESSY-II

Longitudinal feedback control problem in the BESSY-II is similar to that in the ALS. There

are 4 third harmonic cavities installed in the BESSY-II ring used for improving the lifetime.

The third harmonic RF system is passive and, therefore, powered by the beam. As shown

earlier, passive high-harmonic RF system causes changes in the synchrotron frequency as

a function of current. The standard FIR controller has a limited control range due to the

linear phase slope within the passband. An IIR controller has been designed using the

frequency-domain method to provide resistive damping in the frequency band from 8 kHz

nominal synchrotron frequency down to 4 kHz expected oscillation frequency of the unstable

higher-order modes at the 400 mA beam current. Response of the controller implemented

in 6 second-order sections is shown in Fig. 6.19.

The design was tested at beam currents up to 350 mA with two high-harmonic cavities

actively powered and the remaining two parked. Only two cavities were used due to the

technical (tuner) problems with the other half of the third harmonic RF system. As a result

we observed oscillation frequencies shifting only to 6.8 kHz. Throughout the achievable

operating range of the machine the IIR controller provided sufficient damping with the



128 CHAPTER 6. LONGITUDINAL FEEDBACK CONTROLLERS

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
6400

6600

6800

7000

7200

7400

7600

7800

ℜ (ms−1)

ℑ
 (

H
z)

Model CL    
Model CLx   
Model OL    
Measured CL 
Measured CLx
Measured OL 

Figure 6.20: Open and closed-loop eigenvalues of mode 240 in BESSY-II using the IIR
feedback controller. Model based curves are evaluated for beam currents up to 400 mA.
Designation CLx refers to a set of measurements as well as modeling of the closed-loop
system with 6 dB lower loop gain.

estimated gain margin of 11 dB at 400 mA. Eigenvalues of the EFEM 240 in both open and

closed-loop configurations are shown in Fig. 6.20.

6.4 Model-based design

The main disadvantage of the frequency-domain design method presented in the previous

section is that the result is only as good as the goal transfer function specified by the

designer. In other words, the optimization distance function is not directly dependent on

the closed-loop stability of the beam-feedback system. As the experience with the frequency-

domain design grew this shortcoming of the optimization procedure became quite obvious.
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In order to alleviate this deficiency a new optimization method described here has been

developed.

Positions of the poles of the closed-loop system are the natural indicators of the stability.

We will consider here a discrete-time model consisting of the discretized harmonic oscillator

(the beam) and the feedback controller - the model that was developed in Ch. 5. The

damping rate of a given pole in the z-plane is given by ln |p|. Stable poles are within the
unit circle, that is

|p| < 1⇒ ln |p| < 0

In this optimization technique we will evaluate the closed-loop poles for a set of beam models

defined by their eigenvalues spanning the desired range of growth rates and oscillation

frequencies. By selecting the least damped pole (with the largest ln |p|) we get the worst-
case measure of the closed-loop stability with the given controller. The value of the damping

rate can be used as a distance function for a numeric minimization procedure resulting in a

minimax type of optimization. Using only the damping rate is insufficient, however, since

such a distance function can lead to unacceptably large gains outside the frequency band

determined by the eigenvalues of the our set of beam models.

We will make a simplifying assumption while selecting the set of beam models. As

shown in the previous section, the set of the eigenvalues of interest forms a curve in the

s- or z-plane. The independent variable is the beam current causing changes in the real

and imaginary parts of the modal eigenvalues. In addition loop gain changes proportionally

with beam current. Thus each point on the eigenvalue curve has a well-defined parameter

set consisting of the real part of the eigenvalue (growth rate), imaginary part (oscillation

frequency), beam current and loop gain. Unfortunately specifying this set requires many

grow/damp measurements and the specifications change depending on the tuning conditions

of the RF systems. To simplify the problem we will define the eigenvalue set using only

4 parameters: maximum beam current Imax, largest expected growth rate at that current

γmax, and the minimum and maximum oscillation frequencies over all beam currents ωmin

and ωmax. The all the eigenvalues in the set lie on the piece of a straight line parallel to the

imaginary axis defined by
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�(Λ) = γmax


(Λ) ∈ [ωmin, ωmax]

To define the finite set we will sample the above curve in some manner. In this sampling

it is important not to leave large inter-point spaces so that the system stability could not

be compromised between the two points. As the loop gain we will select the gain at the

largest beam current.

This simplification is reasonable if one assumes that feedback damping scales linearly

with the loop gain. Since growth rates and loop gain are linear with current, a system

stable at the largest current is stable at all beam currents.

The minimax optimization method is illustrated in the sketch shown in Fig. 6.21. The

open-loop poles are determined as described above. On the first iteration the closed-loop

poles are evaluated for each of the 6 beam models. In reality there are more poles than

shown in the sketch - here we only show the least damped pole (dominant pole) for each

closed-loop system. Based on the damping rate the circled pole is selected for optimization.

At some later point a snapshot of dominant poles shows a different arrangement of the poles

and a different pole used for optimization. At the end the minimax optimization leads to

equal damping of the dominant poles.

6.4.1 Optimization problem formulation

Let us mathematically define the goal function used in this optimization. We will start

from defining N beam plants as described above. For each of these plants we will compute

the closed-loop poles in the z-plane for the feedback controller specified by the parameter

vector A. Let P(A) be a set of all computed poles for N closed-loop systems. Then the

least damped pole in that set has damping given by max {ln |p|} , p ∈ P(A). The distance
function L(A) will be a linear combination of the above damping and the function g(A)

reflecting the gain of the controller outside the [ωmin, ωmax] band. g(A) is computed by first

defining a set of discrete frequencies W which sample the bands where we would like to

maintain low controller gain e.g. DC and low frequencies. Then we have
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Figure 6.21: A sketch of the open and closed-loop poles in the s-plane for the model-based
optimization

g(A) =
1

NW

∑
k∈W

wk|H(A,Ωk)|

where NW is the number of elements in W, wk is the weight associated with discrete

frequency Ωk. In other words g(A) is the weighted average of the the magnitude of the

controller transfer function. This choice is by no means unique - one can select other

functions, such as sum of squares, for gain-limiting. Overall distance function is given then

by

L(A) = βmax
P(A)

{ln |p|}+ (1− β)g(A) (6.20)
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where parameter β ∈ [0, 1] controls the relative weights of the in band damping and the out

of band gain.

The numerical optimization was implemented using the simplex search algorithm (Mat-

lab function fminsearch()) [42], selected since it does not use numerical or analytic gra-

dients. This feature is helpful in ensuring the convergence of the the optimization given

that the problem is not continuous. In addition to the distance function minimization we

need to guarantee the stability of the controller by confining the poles to a circle of radius

ρ. The constraints are implemented as steep ”walls” in the distance function by modifying

Eq. 6.20 as follows

Lc(A) = L(A) + 106
∑
D(A)

|pk|
2ρ

(sgn(|pk| − ρ) + 1) (6.21)

where D(A) is the set of all controller poles and sgn(x) is the signum function defined as

sgn(x) =



1 x > 0

0 x = 0

−1 x < 0

If all controller poles are within radius ρ the right hand side of Eq. 6.21 reduces to L(A).

Otherwise a large penalty is added for each pole violating the boundary. Coefficient 106 is

chosen as being much larger than the values of L(A) in a practical optimization.

Controller parameterization A used in this optimization is different from that used in

the frequency-domain design and described in Eq. 6.14. In this case we implemented A as

follows

A = (r1, r2, . . . , rN , φ1, φ2, . . . , φN , a0, a1, . . . , a2N )

where rk and φk are the polar coordinates of the k-th pole and a0 through a2N are the

numerator coefficients. The overall controller transfer function is given by
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Figure 6.22: Frequency response of the ALS dccut2 feedback controller.

H(A, z) =
∑2N

k=0 akz
2N−k∏N

m=1(z − rmeiφm)(z − rme−iφm)

6.4.2 ALS results

Controller named dccut2 was designed for the ALS using the model-based optimization

technique. The specification called for the control band from 6.5 to 12 kHz. The transfer

function of this controller is shown in Fig. 6.22. The sharp gain roll-off below 5 kHz is used

to avoid affecting mode 0 stability. Positions of the open-loop eigenvalues used in the design

as well as the modeled closed-loop dominant poles are shown in Fig. 6.23. The optimization

does a very good job of equalizing the damping of the closed-loop poles. Reactive tune

shifts are not constrained in this optimization and can be quite large - note 1.6 kHz shift

at 12 kHz oscillation frequency.

The dccut2 controller has been tested at the ALS. The open and closed-loop eigenvalues

are plotted in Fig. 6.24. Achieved damping is much lower than expected based on Fig. 6.23.

The reduction is due to the fact that the design model was based on a different feedback

configuration. Measurements were taken on a reconfigured hardware with 6 dB lower gain

and 10 degrees of phase shift. As a result damping rates have very little margin and the

system became unstable at beam currents above 340 mA.

The testing results pinpoint the main problem with this optimization method. Since
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Figure 6.23: Open-loop eigenvalues and the modeled closed-loop dominant poles for the
dccut2 controller. Continuous lines show the behavior within the design control band while
the dashed lines illustrate the performance just outside that band. Note that the damping
(real part) of the poles within the control band is well equalized by the optimization. Some
reactive tune shift is seen in the difference in vertical positions of the edges of the open and
closed-loop lines.

the design is done by only considering the damping of the closed-loop system resulting

controllers can have significant reactive effects. Controller performance is then strongly

dependent on the feedback loop characteristics being the same as those used in optimization.

In other words, model-based designs can suffer from small phase and gain margins. Let’s

consider what happens if the damping is achieved with a reactive angle of 60 degrees. In the

optimization process the gain reduction of cos 60 = 0.5 is compensated by making the gain

at that frequency factor of two larger. If in the physical feedback system a loop phase shift

of 10 degrees occurs feedback gain drops by cos 70/ cos 60 = 0.68 rather than cos 10 = 0.98.

This reduction is usually coupled with significant increase in reactive tune shifts. As a
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Figure 6.24: Open and closed-loop eigenvalues of mode 233 in the ALS measured with
dccut2 controller. The measurements span the range of currents from 66 to 300 mA while
the model curves are shown from 0 to 400 mA.

result, small changes in the feedback system lead to instability.

6.5 Summary

In this chapter we’ve presented two controller design methods. Both of these techniques are

based on the numeric optimization and generate a controller specification as a stable IIR

filter of predetermined order.

In practical use the frequency-domain controller design method produces optimal ap-

proximations of the goal transfer function. The method is computationally efficient and

enables the user to explore multiple goal functions. The main weakness of this approach, as
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pointed out in Sec. 6.4, is that the resulting controller is only as good as the goal transfer

function since the method does not utilize the dynamic model of the beam and the feedback

system.

The second design algorithm is based on such a model and uses closed-loop pole loca-

tions as a cost function. However this method is much slower than the frequency-domain

optimization and, more importantly, does not address the question of robustness of the

resulting designs.

Experience with the above methods suggests that good practical controllers could be de-

signed using H-infinity approach which allows one to optimize robustness under parametric

perturbations of the plant, the sensor, and the actuator.



Chapter 7

Transverse baseband processing

architecture

7.1 Introduction

Modern circular accelerators operate above the coupled-bunch instability threshold. Such

operation requires special passive and active measures to damp the unstable motion. Among

passive methods are techniques of tuning troublesome impedances away from revolution har-

monics [7, 9]. Another passive instability damping approach is based on designing fill pat-

terns that couple unstable and stable modes [6]. Active damping using electronic feedback

provides stability when passive methods are not sufficient. When the number of unstable

modes is small and well known it is possible to design a mode-by-mode system that provides

feedback gain only at the frequencies of the known unstable modes. However this approach

is ill suited to cases when the number of unstable modes is large. Additionally, mode-by-

mode system has to be modified if the machine impedance changes, e.g. when RF cavities

or insertion devices are altered. An bunch-by-bunch feedback system acts independently

on all the bunches. Such a system providing identical damping for each bunch is equivalent

to a mode-by-mode system with the same damping on all modes.

Thus, a bunch-by-bunch feedback provides control of unstable coupled-bunch motion

independently of the modal structure of the exciting impedance. A system proposed here

carries an additional advantage of being easily adaptable to different accelerators due to

the programmable baseband processing architecture.

137
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In contrast to the all analog processing implemented for the ALS, BESSY-II, and PEP-

II transverse systems, this DSP-based proposal uses and extends the beam and system

diagnostic functions as well as system commissioning tools that were developed for the

PEP-II longitudinal systems.

7.2 Overall system architecture

A block diagram of a bunch-by-bunch feedback system is shown in Fig. 7.1. As shown in

the diagram there are three main blocks: analog front-end, baseband digital processing and

analog back-end.

The main function of the front-end is to detect the motion of the bunches in the ap-

propriate plane, longitudinal or transverse. It outputs pulse-amplitude modulated (PAM)

signal that is sampled by the ADC. Pulse shape defines the sensitivity of the system to the

shifts in clock timing or in the beam synchronous phase. Additional functionality can in-

clude orbit rejection to avoid saturating the ADC, servo circuitry in heterodyned detectors

to correctly phase the carrier to the beam signal, monitoring outputs, etc. Experience with

the longitudinal feedback systems at PEP-II, ALS, and BESSY-II indicates that integrated

system diagnostics, such as the ”fake-beam” generator, are extremely useful in signal path

testing and adjustment. Such a generator simulates bunch signals seen at the bunch po-

sition monitor (BPM) outputs and can be modulated to include synchrotron or betatron

motion. Diagnostic and controller development techniques described in Chapters 3, 4, 5,

and 6 rely heavily on ability of the feedback system to record long beam motion sequences

Analog front-end Analog back-end

ADC, baseband digital
signal processing, DAC

Detector gain/phase control, orbit rejection

From BPMs

PAM correction signalPAM bunch-by-bunch signal

To the kicker

Figure 7.1: Block diagram of complete system
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while manipulating feedback parameters.

The next block in the processing chain is the baseband digital signal processing. This

module samples the PAM signal supplied by the front-end. Each bunches’ position samples

are processed using a digital filter. There are several objectives the above filter must achieve.

First of all it has to provide proper phase shift at the coupled-bunch oscillation frequency

for resistive damping of unstable motion. Second, user must be able to set the gain of the

system. Rejection of the DC component of bunch motion is important since this component

often exceeds the magnitude of coupled-bunch motion and can saturate the output. Filter

output signal is converted by the DAC at the bunch crossing rate. DSP also has to provide

some form of adjustable delay in order to apply correction to the right bunch.

Output of the DSP module is fed to the back-end. There baseband signal is modulated

to place it within kicker bandwidth. After power amplifiers output signal is applied to the

beam through a kicker.

7.3 Baseband DSP

In this chapter I will concentrate on the description of the baseband signal processing

architecture. Block diagram of the proposed system is shown in Fig. 7.2. Input PAM signal

is sampled at the bunch crossing rate. Resulting data stream is demultiplexed to bring down

the processing rate. Output of the demultiplexer is sent to a number of processing modules.

Computed correction samples are combined by the multiplexer into a bunch crossing rate

stream which is then sent to the DAC. In this design ADC and DAC are assumed to be 8

bit wide.

7.3.1 Sampling and demultiplexing

The industry-standard front-panel data port (FPDP) interface has been selected to carry

data between modules. This interface is 32 bit wide so 4 samples can be transferred over

one link simultaneously. Maximum clock rate for FPDP is specified as 40 MHz. For 500

MSPS system at least 4 links are needed (500/4/40 = 3.125).

Standard serial-to-parallel demultiplexing illustrated in Fig. 7.3 imposes a severe lim-

itation on the ring harmonic number. Since bunch data on every turn has to be sent to

the same processing element, ring size has to be an integer number of samples processed

in parallel. With 4 links harmonic number will be limited to multiples of 16. This is
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Processing module

Processing module

Processing module

Processing module

DAC

Multiplexer &Sampler &
demultiplexer

Figure 7.2: Block diagram of baseband processing section

very severe indeed: out of 6 machines supported by SLAC longitudinal feedback (PEP-II,

ALS, DAΦNE, BESSY-II, PLS, SPEAR-3) [36] only one has harmonic number divisible

by 16. A feedback system using standard demultiplexing into 24 channels is being built

for Sincrotrone Trieste and Swiss Light Source since both machines have acceptable har-

monic numbers [71]. The KEK B-factory feedback systems use demultiplexing by 16 and

are limited to the multiple of 16 harmonic numbers.

In order to get around this limitation a new demultiplexing scheme is proposed here.

I will call this approach ”uneven stepping”. Basic idea of uneven stepping is to vary the

size of parallelized transaction. If, instead of always sending N samples through parallel

links, we allow N and N − 1 samples to be sent, then any harmonic number h above some

minimum hmin can be handled by this system. Below the minimum some harmonic numbers

cannot be supported. Let’s prove the above statement and determine hmin as a function of

N . Define K as the total number of parallel transactions per revolution.

K =
⌊

h

N − 1

⌋

If K transactions of N − 1 samples are used, we will have some number of bunches M

left over. M is defined as the remainder of dividing h by N − 1:
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Figure 7.3: Standard demultiplexing for h=86. Notice that bunches do not end up in the
same processing channel on the next turn

M = rem(h,N − 1) = h −
⌊

h

N − 1

⌋
(N − 1) = h − K(N − 1)

If, however, M transactions are N samples wide, we get

(K − M)(N − 1) +M ∗ N = K(N − 1) +M = h (7.1)

Therefore this algorithm allows one to match any harmonic number. Now let us derive

hmin. For Eq. 7.1 to be valid we need (K − M) ≥ 0. Thus

K − M ≥ 0⇒ K ≥ M

min(K) = max(M) = N − 2

min
(⌊

h

N − 1

⌋)
=

hmin
N − 1

= N − 2

hmin = (N − 1)(N − 2)

Selecting N = 16 gives hmin = 210. This is more than 120 which is harmonic number
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Figure 7.4: Uneven stepping demultiplexing for h=86. Parallel transactions of width 16
and 14 are used. Compare to Fig. 7.3 for turn-by-turn sample alignment.

for one of the target machines, DAΦNE. However 120 is evenly divisible by 15, so it can be

matched. Another possible approach is to limit harmonic numbers to be only even. Then

using transaction sizes of 16 and 14 samples any even h larger than 84 is achievable. This

approach is additionally attractive since it avoids clocking data through the demultiplexer

at full bunch crossing rate. With dual clock/dual-output ADC clock rates can be kept to

half the full bunch crossing rate.

Figure 7.4 illustrates the uneven stepping demultiplexing. In this example h = 86 is

matched using transactions of 14 and 16 samples. Computations can be done in the h
2 basis.

Thus we get

h 1
2
= 43;N 1

2
= 8

M 1
2
= rem(43, 7) = 1

K 1
2
− M 1

2
= 5

Five transactions of width 14 and one 16 sample wide are needed for proper matching.

As shown in Fig. 7.4 bunches are sent to the same processing channels on each turn.
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7.3.2 Signal processing and diagnostics

As described previously sampled data is sent over FPDP links to signal processing modules.

For the 14/16 uneven stepping maximum clock rate of the samples on the link is given by

500 MHz/14 = 35.7 MHz. Evaluation of various options lead to the processing architecture

based on Xilinx DSP Core. Data from an input FPDP link is directed to 4 Xilinx Virtex

field-programmable gate array (FPGA) chips. Each chip handles one out of four samples

from the link.

FPDP features

FPDP links use TTL level 32-bit wide data bus [72]. Data is strobed using PECL differential

clock with 40 MHz maximum clocking rate. There are several handshaking signals as well

as a frame synchronization signal. This signal can be used to send fiducial information to

the processing modules. Additionally there are two general-purpose I/O lines per link. One

of these lines can be used as a trigger bit for transient measurements.

Signal processing

Figure 7.5 illustrates internal FPGA architecture for a 5 tap FIR filter. FIFO blocks are

used to store past samples. For processing multiple bunches length of each FIFO block has

to be set equal to the number of bunches handled by the chip. Using example illustrated

in Fig. 7.4 we conclude that each chip processes 6 bunches except the last two FPGAs

each of which only handles one bunch. Adjustable length FIFOs would allow to reconfigure

the system through software for operation with a particular harmonic number, while fixed

length delays would require separate FPGA layouts for each machine. Shift gain block

shown at the output is a barrel shifter for controlling the loop gain in 6 dB steps.

All addition blocks in the drawing include saturation in order to maintain correct feed-

back phase in presence of large input signals. Similarly, shift gain includes output saturation.

For a feasibility test an evaluation system has been built using Xilinx XC4085XLA

FPGA chip. Signal processing architecture similar to the one shown in Fig. 7.5 has been

implemented and tested at 40 MHz processing rate.

Filter layout illustrated is not the only one possible. Flexibility of FPGA-based design

allows various FIR and IIR structures to be implemented. Main limitation to the size and

complexity of the processing structure comes from cell count of the FPGA and routing
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Figure 7.5: Signal processing architecture within a single FPGA

restrictions.

Diagnostics

Figure 7.5 illustrates some of the diagnostic features of the DSP modules. Diagnostic

requirements are based on the experience with longitudinal DSP-based feedback [73, 74].

Here is a list of desired diagnostic features in the DSP module:

• Input data acquisition

• Arbitrary output waveform generation with bunch-by-bunch control

• Changing filter coefficients on the fly

• Transient diagnostics:
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Table 7.1: Data acquisition and playback

S2 S1 Function Applications
Off Off Feedback off, drive off Recording growing transient, feedback off on

a given bunch for tune measurement
Off On Feedback off, drive on System timing, open-loop transfer function
On Off Feedback on, drive off Normal operation, damping transient record-

ing, closed-loop recording
On On Feedback on, drive on Transfer function measurement, closed-loop

transfer function

– Grow/damp

– Single-bunch tune measurement

• Closed-loop transfer function

• Open-loop transfer function

Data acquisition and waveform playback functions are controlled by the memory in-

terface block. Partitioning memory in two sections will allow simultaneous recording and

playback as needed for transfer function and tune measurements. Two switches S1 and S2

control the output of the FPGA. Table 7.1 lists possible settings of switches S1 and S2 and

resulting functionality. In physical implementation S2 can be eliminated since setting filter

coefficients to all zeros will achieve the same goal.

Filter coefficients will be kept in two register banks. Each bank can be updated by the

software when it is not used by the real-time processing. Bank select can be generated by

multiple sources, e.g. filter bit from FPDP link, software, bunch-by-bunch register. Let’s

consider these one by one. Filter bit carried by the FPDP link allows one to record data for

all bunches simultaneously. Software control of this bit within the demultiplexer module

provides unsynchronized grow/damp measurement capability. Additionally this bit can be

hardware-synchronized to enable simultaneous grow/damp measurements in both transverse

planes as well as injection transient measurements. Under software control coefficients can

be switched for modification of the online filter during system tuning or in adaptive control

mode. Bunch-by-bunch register has one bit per each bunch processed by the FPGA. This

feature allows modification of feedback parameters for a given bunch or a set of bunches.
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Trigger controls of data recording, playback and filter select are very similar. All of

them are based on a programmable pulse generator with a multiplexed edge-sensitive trigger.

There are several parameters that can be independently controlled within each trigger block.

Figure 7.6 shows a possible layout of such a block and indicates controllable parameters.

Since controls of recording, playback and filter select are independent, many experimental

configurations can be defined.

In diagnostic measurements recording data for each bunch on every turn provides com-

plete information on beam dynamics. However at 500 MSPS acquisition rate system will

produce very large data sets. In grow/damp measurements length of the transient is deter-

mined by the growth and damping times of unstable modes. For most machines these times

are in the 0.1–10 ms range. If the system can record 20 ms worth of data, even the slowest

growth and damping times can be measured. This requires 10 MB of memory available for

data acquisition. With a little margin 1 MB per FPGA satisfies this requirement. If we

assume that all groups are 14 samples wide (worst case), then a total of 14 MB of data can

be acquired.
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However in many cases recording data on every turn is redundant. Since the oscillation

frequency is well known (the tune) and the envelope of motion is relatively slow, details of

the motion can be reconstructed from undersampled data. Thus in acquisition data can be

downsampled. There are several benefits of downsampling in this context. For the fixed

duration of the transient much less data has to be handled. Conversely, long transients can

be captured using all the memory.

Note that downsampling only extends to the diagnostic functions. Feedback control is

still computed on every turn. However one could use downsampling in the feedback path,

for example in a longitudinal feedback application.

Downsampled transverse diagnostics have been done using existing longitudinal feedback

systems at PEP-II and ALS. These experiments successfully demonstrated the feasibility of

the approach and provided experience on advantages and limitations of such diagnostics.

Let’s investigate downsampling process in more detail and determine limitations driving

downsampling factor selection. Let us consider motion of a single bunch with one even-fill

eigenmode growing exponentially.

x(t) = eλt sinωxt (7.2)

Taking Fourier transform of the above signal we get

X(jω) =
ωx

ω2x + λ2 − 2λjω − ω2
(7.3)

If the signal is sampled at the downsampling rate M the following sequence is obtained

xs[n] = x(nTs) = eλTsn sin(ωxTsn)

where Ts = MT0 and T0 is ring revolution time. The Fourier transform of this sequence is

related to the Fourier transform of the continuous-time signal as

Xs(ejω) =
1
Ts

∞∑
k=−∞

X(j
ω

Ts
− j

2πk

Ts
) for − π ≤ ω < π (7.4)
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-2Fs 0-Fs Fs 2Fs Frequency

Figure 7.7: Aliasing during sampling. Spectral components in frequency regions drawn in
the same line styles are summed together. Arrows show aliasing of high frequency compo-
nents to baseband.

This equation describes aliasing of the continuous-time signal during sampling. The

process is graphically illustrated in Fig. 7.7. Under certain conditions one can reconstruct

X(jω) fromXs(ejω). These conditions are well-known for the case when X(jω) has low-pass

form. Then reconstruction will be perfect for X(jω) such that X(jω) = 0 for |ω| ≥ π/Ts

Now we will formulate similar conditions for the bandpass X(jω). Since x(t) is a real

function its Fourier transform is Hermitian, i.e. X(−jω) = X∗(jω). Thus, to avoid adding

non-zero components in Eq. 7.4 we need to have X(jω) = 0 everywhere, except for one

frequency band Ωl, where

Ωl = {ω :
πl

Ts
≤ |ω| < π(l + 1)

Ts
}

In this case we would be able to perfectly reconstruct continuous-time signal from its

samples. However from Eq. 7.3 it is obvious that the spectrum is non-zero at all frequencies.

Therefore some errors will be introduced in reconstructing the signal. In order to quantify

these error let us consider the magnitude of the spectrum |X(jω)|. This second-order

function has one maximum:

max
ω

|X(jω)| = |X(jω̂)| = 1
2λ

ω̂ =
√

ω2x − λ2

Let us define integer l such that
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ω̂ ∈ Ωl

If we define spectral attenuation level R we can determine frequencies ωR where |X(jω)|
falls below |X(jω̂)|/R.

ωR =
√

ω2x − λ2 ± 4λωx
√

R2 − 1 (7.5)

For λ � ωx we can simplify the above as

ωR ≈ ωx ± 2λ
√

R2 − 1

Notice that for large R Eq. 7.5 only has one real root. That is due to the fact that

|X(0)| = ωx
ω2

x+λ
2 . Thus

Rmax =
|X(jω̂)|
|X(0)| =

ω2x + λ2

2λωx
≈ ωx
2λ

In order to minimize reconstruction errors downsampling factor should be selected so

that peak of the signal spectrum is placed at the center of the frequency band Ωl. Thus

πl

Ts
= ω̂ − π

2Ts
π(2l + 1)
2MT0

= ω̂

Given desired downsampling rate M we can compute nearest optimal rate M̂ as follows

l̂ = round

[
1
2

(
2MT0ω̂

π
− 1
)]

M̂ = round

[
π(2l̂ + 1)
2T0ω̂

]
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For a given attenuation level R one can determine maximum downsampling rate MR

such that at the edges of the aliasing band spectrum magnitude is below 1/2λR. We have

∆(ωR) ≈ 4λ
√

R2 − 1 <
π

MRT0

MR <
π

4λT0
√

R2 − 1

These calculations are all done for the ideal case of motion described in Eq. 7.2. The

same applies to the damping transient since the only difference between the two spectra is

in phase component. However in a real machine there are factors that need to be taken into

consideration when selecting downsampling factor. First of all, one has to take into account

coherent and incoherent tune shifts which widen the required bandwidth. Additionally, tune

shifts with amplitude have to be considered. Another factor is synchrotron modulation

sidebands on the transverse signals. Large level of longitudinal motion will add to the

aliasing. Finally, effect of the wideband noise needs to be counted since downsampling

sums broadband noise from multiple frequency bands.

7.3.3 Multiplexing

Feedback bunch-by-bunch corrections are computed from the bunch samples. These correc-

tions are to be assembled together in a single data stream feeding output DAC. This task

is accomplished by the multiplexer module as shown in Fig. 7.2.

Another function multiplexer has to perform is buffering. Data from the demultiplexer

is sent out in real-time, so there are two different transaction durations, long and short

corresponding to N and N − 1 wide transactions. Due to pipeline delays within processing

it is possible that several wide transactions are sent to the multiplexer at short transaction

timing. Conversely, there will be the same number of narrow transactions arriving at long

intervals.

Let’s consider demultiplexing scheme of 14 and 16 sample groups described in sec-

tion 7.3.1. Transaction timing is shown in Fig. 7.8. Data cycles from the demultiplexer

module to the signal processing boards are shown on the top. Cycles 6, 7, 8, and 9 are

16 sample wide (wide transactions) while other cycles are 14 sample wide (narrow trans-

actions). In the middle are data cycles from signal processing boards to the multiplexer.

Since processing is clocked by the input FPDP, timing of the cycles is identical to the ones
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0 1 2 3 4 5 9 11 136 7 8 10 12 14

0 1 2 3 4 5 9 11 136 7 8 10 12 14

From demux

To mux

From FIFO

Figure 7.8: Transaction timing with one cycle processing delay

on the top. However due to the processing delay of one cycle there is mismatch in trans-

action width and timing. For example, transaction 5 is narrow, but has long timing while

transaction 9 is wide and has short timing. For this configuration having a FIFO filled with

one cycle will solve the problem. The bottom row shows transaction reads from the FIFO.

When transaction 5 is written into the FIFO, demultiplexer fetches transaction 4 from the

FIFO and starts outputting it. When that is done, transaction 5 is fetched from the FIFO.

That will happen 2 RF clocks before transaction 6 is written into the FIFO. Thus FIFO

will be empty for a short period (2 clocks). Similarly it will empty on each cycle until

transaction 11 is written.

In order to quantify the nominal depth of the FIFO let’s consider a worst-case scenario.

This is when processing delay is more than the number of wide transactions. Let’s define

K as the number of wide transactions. Then initially K narrow transactions are sent to the

FIFO with long timing. If N is the size of the wide transaction, then K(N −1) samples are
written to the FIFO and KN are read in that period. Thus FIFO should have K sample

reserve. For N and N−1 uneven stepping we can have at most max(rem(h,N−1)) = N−2
wide transactions. Therefore keeping one transaction in the FIFO (at least N − 1 samples)

is sufficient since the largest reserve required is N − 2 samples. Similar argument applies to
the uneven stepping with N and N − 2 sample transactions.

An additional function the multiplexer is required to perform is digital delay. This is

needed to allow alignment of the feedback output with the beam. This delay should cover a

range of one revolution to compensate all possible sensor/kicker placements and interconnect

delays. Buffering FIFO described above can support this function. By adjusting the read

clock delay relative to the revolution fiducial signal with RF clock cycle granularity one can

move the feedback output with the same granularity. Then maximal depth of the FIFO

defines the largest delay achievable. For 14/16 sample transaction design a 256 word FIFO



152 CHAPTER 7. TRANSVERSE BASEBAND PROCESSING ARCHITECTURE

(256×128) provides up to 3584 sample delay. Since the FIFO is clocked at the FPDP rates,

it can be easily implemented using CMOS technology.



Chapter 8

Conclusions and future research

directions

8.1 Summary

This work mainly focused on the problem of the feedback control of the longitudinal coupled-

bunch instabilities. In Chapter 2 the general framework of the problem was presented, a

linear dynamic model of the unstable motion and multiple factors that affect the parameters

or the dynamics of this model were described. The same chapter gave a detailed description

of a longitudinal bunch-by-bunch feedback system used for all of the measurements and

feedback control developments presented in this thesis.

Chapters 3, 4, and 5 described several new techniques developed to thoroughly and

accurately characterize the dynamic system - the beam and the overall feedback loop. These

techniques were illustrated with many measurements from several accelerators showing the

wealth of information these methods provide.

In the following chapter, Ch. 6, two methods for designing longitudinal feedback con-

trollers were presented. Applications of these methods to three accelerators, each with

unique control requirements, were shown. Measurements verifying correct operation of the

resulting designs were also presented.

In chapter 7 a new design of a programmable baseband processing channel was intro-

duced. This design extends the control and diagnostic features of the existing longitudinal

feedback system to all three dimensions.
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8.2 Main new contributions

A significant part of this thesis was brought to life by a desire to effectively control coupled-

bunch instabilities in the ALS after the third harmonic cavities were added to the ring. The

search for feedback controller architectures capable of robustly stabilizing the longitudinal

motion led to the development of a thorough system model and required careful parametric

mapping of instabilities. Inevitable failures of intermediate controller designs led to the

realization that the overall system had small stability margins further eroded by the loop

parasitics. In order to create a robust controller, analysis of parasitic effects in the feedback

loop and experimental verification of such analysis was necessary. Finally, the search for

better controllers culminated in the development of two optimization-based design methods.

The new method for extracting the complex eigenvalue from an exponentially growing

or damping modal oscillation is a foundation for all the beam and feedback characterization

techniques presented in this thesis. Since these techniques most often require multiple

measurements to obtain accurate results, a fast and reliable way to analyze grow/damp

measurements is essential.

Another important new contribution presented in this work is the development of a

thorough mathematical model of the longitudinal feedback system. Such a model is critical

for development and testing of feedback controllers. In this thesis the model has been

developed and verified against the physical system. In the iterative process of controller

design it is important to understand the causes of failures to maintain stability. A detailed

analysis of the most significant parasitic effects, such as bunch-to-bunch coupling, bunch

synchronous phase shifts, etc., has been presented here. Such analysis also serves as a guide

for the future feedback channel designs helping to chose front-end detection and kick signal

modulation methods.

As indicated earlier, one of the most important new developments presented in this work

is the optimization-based IIR controller design methodology. The two techniques presented

here use numerical optimization to meet the specified feedback requirements such as control

bandwidth, overall gain, etc. These design methods have been successfully used to produce

feedback controllers for three accelerators: ALS, DAΦNE, BESSY-II.
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8.3 Promising research directions

The research work that has been presented in this thesis is by no means complete. Here I will

outline several promising new research directions starting from the transient diagnostics.

A significant limitation of the existing transient grow/damp diagnostic is the sensitiv-

ity to the modal growth rates. During the measurement the feedback loop is open for a

predefined period of time. If the bunch oscillations grow very large during that period the

feedback may be unable to damp the motion and the feedback control will be lost. Choosing

the duration of the open-loop section is difficult since the final motion amplitude depends

on both the growth rates of the unstable modes and the initial modal amplitudes (due to the

noise excitation) when the feedback is turned off. Since the growth rates depend strongly

on environmental variables such as resonator temperatures it is impossible to determine in

advance the optimal growth transient duration. In this situation one must err on the side

of caution and use conservatively short time intervals. As a result, captured transients are

lower in amplitude and closer to the noise floor making eigenvalue estimation more difficult.

A promising method for addressing this problem is automatic growth termination. In

this technique one would turn on the feedback automatically when the beam motion grew to

significant amplitudes. Unfortunately using the input motion signals is difficult due to DC

offsets and out-of-band noise. However, the feedback system is already equipped with the

necessary signal - the controller output. If the feedback loop is opened at the output of the

controller all one has to do is observe the kick signal requested by the controller. When that

signal approaches DAC saturation the loop should be closed to maintain feedback control.

Such an approach implicitly scales the transient cut-off point to the existing feedback loop

gain.

If automatic growth termination method is implemented it opens the way for addressing

another shortcoming of the existing grow/damp technique. In order to get a reliable mea-

surement of both open and closed-loop eigenvalues one needs to record several transients,

usually from 5 to 10. This is to eliminate errors due to growth rate variations and initial con-

ditions dependence especially significant for the fast transients. At the same time the fast

transients rarely use all of the recording time available, most often occupying from one-tenth

to one-quarter of the record. If transient measurements are automated several grow/damps

can be performed in series thus cutting down the number of separate experiments that need

to be performed. In addition, taking several measurements in quick succession helps avoid
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the problems with beam current decaying between the transients.

The eigenvalue extraction method described in Ch. 3 assumes that the modal motion is

adequately described by a second-order model. This assumption is true for the open-loop

case when the motion is small. However in a closed-loop situation there can be multiple

system poles with similar damping times. In fact, configuring a longitudinal feedback

system for maximum damping usually results in two poles close in frequency and with the

same damping. In this case closed-loop transient might not be an exponentially decaying

oscillation and the eigenvalue extraction can fail. Sometimes the damping transient is

well fit by the second-order response since one pole is excited to a much lower amplitude

than the pole nearest the open-loop oscillation frequency. However even in this case the

extracted eigenvalue cannot be used for comparisons with the system model with multiple

poles. To avoid this problem one can consider using more sophisticated system identification

techniques to extract the closed-loop system model. For example, it is possible to measure

the modal closed-loop transfer function using DSPs to add an excitation signal to the

feedback output signal and to record the response of the beam. The excitation sequence

would have to be designed to correctly place the power in the spectrum taking into account

the sensitivity of the plant to different frequencies.

In this thesis to analyze bunch motion we always projected it into the EFEM basis.

Unfortunately the ring filling patterns most often encountered in practice are uneven. In

some cases the unevenness is small and does not significantly perturb the EFEM analysis.

However in many situations even-fill eigenmodes are not suitable for analyzing the motion.

It is important to develop methods to compute the uneven fill eigenmodes. Theoretically,

such computation is possible but it requires precise knowledge of the impedance seen by the

beam and of the bunch currents. Such information is rarely available making that approach

impractical. Some of my recent research (still unpublished) uses linear combinations of

EFEMs to reconstruct the uneven fill eigenmodes. This method has been successfully

applied to the analysis of data from BESSY-II and PEP-II but will benefit from further

development.

Feedback controller design methods presented in this work have certain limitations and

further work in this direction is quite important. Significant advances in controller design

could be made by applying the tools of µ-synthesis and optimal H∞ control.

Diagnostic methods presented in this work are absent from the existing transverse bunch-

by-bunch feedback systems. Implementation of the processing architecture described in
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Ch. 7 will significantly extend the reach of these diagnostics.
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