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Abstract

Drifts due to the gradients in, and curvatures of, the heliospheric magnetic field (HMF) play a significant role in the
transport of galactic cosmic rays (GCRs) in the heliosphere. Although this has been well studied for the Parker
HMF, the influence of Fisk-type fields, with their unique geometry, has hitherto received less attention. Here, drift
velocity profiles computed for a Schwadron–Parker hybrid field are compared with those for a purely Parkerian
field. Furthermore, the influence of this field on GCR modulation, as computed with a 3D, ab initio, modulation
model, is investigated. Globally, the differences between the computed intensities are small. Nevertheless, local
measures, such as azimuthal variations in the GCR intensities, show a significant influence of the Schwadron–
Parker hybrid field on GCR transport.

Unified Astronomy Thesaurus concepts: Galactic cosmic rays (567); Heliosphere (711); Interplanetary
turbulence (830)

1. Introduction

The large-scale structure of the heliospheric magnetic field
(HMF) is often approximated using the comparatively simple
model proposed by Parker (1958), in which field lines are
assumed to form Archimedean spirals around the rotation axis
of the Sun. In this model, the HMF consists of a radial and an
azimuthal component, and does not vary azimuthally, except at
the wavy heliospheric current sheet (HCS), across which a
polarity change occurs. Furthermore, the solar wind speed is
assumed to be constant in the original Parker model (however,
see, e.g., the modified field of Burger & Sello 2005), although a
latitude-dependent solar wind speed is sometimes employed
(e.g., Hitge & Burger 2010). While observations have long
suggested that the large-scale structure of the HMF is generally
well approximated by the Parker model, especially near the
ecliptic plane (see, e.g., Neugebauer 1976; Ness & Bur-
laga 2001), Ulysses Fast Latitude Scan (see Wenzel et al. 1990;
Wenzel 1995) observations of high-latitude 26 days variations
in galactic cosmic-ray (GCR) proton intensities in both the
northern and southern hemispheres of the heliosphere (see, e.g.,
Simpson et al. 1995b; Paizis et al. 1999) provided some
motivation to revisit the standard Parker model. This was
because the corotating interaction regions whence these
variations originate (see, e.g., Kóta & Jokipii 1998 and
references therein) simply did not persist to high enough
latitudes (Gosling & Pizzo 1999) to explain this phenomenon,
which also could not be attributed to HCS drift effects, due to
the relatively low tilt angles observed during solar minima.
Furthermore, the observed GCR latitude gradients were also
reported to be significantly lower than expected from prior
modulation studies assuming a standard Parker field (Simpson
et al. 1995a; Heber et al. 1996, 2008), with larger latitude
gradients reported during periods of positive magnetic polarity

(A> 0) than during periods of negative (A< 0) polarity (de
Simone et al. 2011; Gieseler & Heber 2016). It later became
apparent that the recurrent variations and latitude gradients
were related (Zhang 1997; Paizis et al. 1999), with Zhang
(1997) reporting a linear relationship between the amplitudes of
these variations and the latitude gradients of GCR protons. The
apparent interconnectedness of these phenomena implied the
existence of an additional mechanism whereby GCR particles
could be latitudinally transported, which an HMF model with a
significant meridional component, lacking in the Parker model,
could in principle provide.
Fisk (1996) introduced an HMF model to provide an

explanation for the abovementioned recurrent energetic particle
events observed at high latitudes by the Ulysses spacecraft. The
rotational axis Ω is assumed to be separated from the magnetic
axis M by a tilt angle α. The p̂-axis is defined by a magnetic
field line originating from the solar pole (no differential rotation
assumed here) and is separated from the rotational axis by an
angle β, commonly referred to as the Fisk angle. Fisk-type field
lines are assumed to originate from rigidly rotating polar
coronal holes (PCHs) and expand from the photosphere to the
solar wind source surface (SWSS) symmetrically about M. The
differential rotation ω of the field line footpoints on the
photosphere and the super-radial expansion of field lines to the
SWSS cause the Fisk model to display large excursions in
heliographic latitude. The expansions of the field lines form
footpoint trajectories on the SWSS symmetrically about
the p̂-axis.
Several modifications and generalizations of the Fisk HMF

have been suggested in the past. For example, magnetic field
observations from the Ulysses spacecraft reported underwound
magnetic field lines, which prompted Schwadron (2002) to
introduce a generalization of the Fisk field. The underwound
field was correlated with the frequency of corotating rarefaction
regions and showed that the phenomenon is likely influenced
by two factors, namely the motion of footpoints of open
magnetic field lines on the Sun from crossing coronal hole
boundaries and the effect of solar wind shearing in rarefaction
regions. Taking this into account, the Schwadron model was
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further generalized to include a latitude-dependent solar wind
speed (Schwadron & McComas 2003).

Burger & Hitge (2004) introduced a Fisk–Parker hybrid
field, where a standard Parker field is assumed in the ecliptic
plane and changes to a more Fisk-type field with decreasing
colatitude toward the solar pole. The change from Parker to
Fisk-type behavior is done by the use of a transition function
Fs, where β and ω scale with Fs in order for both arguments to
become zero when the field is Parker-like in the ecliptic. Burger
et al. (2008) refined the Fisk–Parker model, which is easier to
implement in numerical modulation models than a pure Fisk
field, but is still a reasonable approximation for the case when
field lines open into the heliosphere, both in the PCHs and at
low latitudes. Note that these Fisk–Parker hybrid fields are
derived assuming a constant solar wind speed. Subsequently,
Hitge & Burger (2010) proposed a similar hybrid field, but now
taking into account the observed latitude dependence of the
solar wind speed during solar minimum, by employing the
abovementioned Schwadron field. Once more, this was done by
employing the latitude-dependent transition function of Burger
et al. (2008).

Steyn & Burger (2020) present a generalization of the Fisk
field, by relaxing the assumption that the differential rotation
rate is a constant fraction of the equatorial rotation rate
(typically Ω/4). Rather, they implement the observed spatially
dependent differential rotation rate of the photosphere as
reported by Snodgrass (1983). Dealing with the differential
rotation in this way removes the need for a transition function
Fs used by Burger et al. (2008), since now the magnetic field
behavior changes naturally from a Parker field in the equatorial
region to a Fisk-type field in the off-ecliptic region. Comparing
the predicted and observed winding angles from in situ
magnetic field measurements from the Ulysses mission, Steyn
& Burger (2020) show that the generalized Fisk field compares
better overall with the observed magnetic field data than the
standard Parker and Schwadron field models. However, since
this model assumes a latitudinal dependence in the differential
rotation rate, it presents challenges for use in the current study.
Furthermore, it can be seen from Steyn & Burger (2020) that
the geometry of this field is very similar to that of the
Schwadron–Parker (SP) hybrid field proposed by Hitge &
Burger (2010). Therefore, in what follows, this study employs
an SP hybrid field with a latitudinal solar wind dependence.

It should be noted that direct observational evidence for
Fisk-type fields has thus far been rather limited and ambiguous.
While some studies report on evidence for such fields from
analyses of Ulysses spacecraft observations of the HMF
(Zurbuchen et al. 1997), others find no evidence of such a
field (Roberts et al. 2007). Forsyth et al. (2002), in their
analysis, also do not find direct evidence for a Fisk-type field,
but point out that the amplitudes of the deviations of the
observations from what is expected of a Parker field could be
too low to detect with the available data and therefore cannot
rule out the presence of such a field, a point further discussed
by Burger et al. (2008) and originally raised by Fisk (2001).
Intriguingly, the 3D time-dependent magnetohydrodynamic
HMF simulations of Lionello et al. (2006) support the possible
existence of an HMF with field lines undergoing latitudinal
excursions, like the Fisk-type field models. More recently,
Steyn et al. (2024) have investigated magnetic field measure-
ments from the Wind and ACE spacecraft to investigate the
coronal sources of L1 solar wind disturbances during three

solar minima epochs, using the Fisk HMF and comparing them
with a standard Parker field tracing and potential field
extrapolations. When the Fisk HMF geometry is assumed,
88% of magnetic field tracings successfully connect solar wind
disturbances observed at L1 to PCHs (which are believed to be
the origins of Fisk-type fields). The locations of the PCHs were
also confirmed in that study by investigating the observed
O7+/O6+ ratios. As such, several studies have attempted to
glean indirect evidence for such fields by way of cosmic-ray
(CR) modulation and transport studies in the presence of these
fields. Several studies have demonstrated that Fisk-type fields
can in principle reproduce both the reduced-latitude gradients
and high-latitude recurrent-intensity variations of GCR protons,
as well as the reported relationship between these two
quantities, for various Fisk-type HMF models (Burger &
Hitge 2004; Burger et al. 2008; Hitge & Burger 2010) as well
as for GCR electrons (Engelbrecht & Burger 2010). Further-
more, Sternal et al. (2011) modeled the transport of Jovian
electrons in the presence of a Fisk-type field and reported that
such a field could also explain the recurrent high-latitude
variations of these low-energy particles. However, after a direct
comparison with Ulysses observations, these authors report that
the amplitudes of these variations could only be reproduced by
assuming a greatly reduced Fisk effect (a finding in agreement
with what was concluded by, e.g., Forsyth et al. 2002). These
studies primarily concerned themselves with the influence of
Fisk-type fields on the diffusion of GCRs, and to date the
influence of the unique geometry of such fields on particle
drifts has not been considered in great detail. This is one of the
aims of the present study.
It should, however, be noted that enhanced latitudinal

transport due to the presence of HMF field lines with
significant meridional components is not the sole mechanism
that has been proposed to explain reduced GCR latitude
gradients. The higher levels of turbulence observed at high
latitudes in the fast solar wind (Jokipii et al. 1995; Bavassano
et al. 2000a, 2000b; Erdős & Balogh 2005) can in principle
lead to higher levels of perpendicular diffusion at these
latitudes relative to the ecliptic plane, by simply enhancing
the perpendicular diffusion coefficient, whether in the radial or
meridional direction. It was demonstrated by Engelbrecht &
Burger (2013), via careful turbulence transport modeling of the
relevant turbulence quantities, that such a meridional enhance-
ment of the isotropic perpendicular diffusion coefficient can
lead to a reduction of the computed GCR proton latitude
gradients to such a degree that these are in reasonable
agreement with spacecraft observations (see also Shen et al.
2021). This agreement, however, only extends to latitude
gradients during periods of positive magnetic polarity, not
negative polarity. It should be noted that Moloto et al. (2019),
using a similar model, also showed that such a model cannot
reproduce the longitudinal GCR intensity variations observed
by Ulysses, due to the lack of azimuthal variations in the
transport coefficients. Furthermore, studies invoking anisotro-
pic perpendicular diffusion, where the meridional perpend-
icular diffusion coefficient is enhanced in some way relative to
the radial perpendicular diffusion coefficient (see, e.g.,
Jokipii 1973; Jokipii et al. 1995), have been able to reproduce
the observed reduced-latitude gradients while employing a
purely Parkerian HMF model (see, e.g., Burger et al. 2000) for
both A> 0 and A< 0. However, the exact enhancement factor
often varies between such studies, seemingly chosen so as to
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achieve agreement with spacecraft data, and it is to be
understood that such an approach also cannot reproduce the
observed high-latitude azimuthal variations in GCR intensities
(see the discussion in Moloto et al. 2019).

The present study also aims to fully incorporate drift effects
due to a Fisk-type field, namely the SP HMF proposed by Hitge
& Burger (2010), into the ab initio GCR modulation model of
Engelbrecht & Burger (2015a), in order to study the influence
of such drift effects on computed GCR proton intensities and
latitude gradients, while also modeling GCR diffusion and
drift, and the turbulence quantities these processes depend on,
in as self-consistent a manner as possible. The following
section is devoted to an in-depth comparative study of the drifts
due to a standard Parker field as well as the drifts due to an SP
field. The section following that will investigate the influence
of these effects on computed GCR intensities and latitude
gradients. The paper closes with a section devoted to a
discussion of the results so acquired.

2. GCR Drifts in the Presence of a SP Hybrid Field

Given a nearly isotropic distribution of CRs and an HMF
given by B


(which, in the present context, may be a Parker or a

Fisk-type field), the average drift velocity of the particle
distribution may be calculated from the expression given by
Isenberg & Jokipii (1979):

k=  ´ ˆ ( )v e . 1d A B


In the expression above, êB denotes a unit vector in the local
direction of the HMF, and the drift coefficient κA is given, for
the weak-scattering case, by Forman et al. (1974):

k
b

= = =^ ( )v
R

pv

qB

P

B3 3 3
, 2A L

where v⊥ is the speed of the particle perpendicular to the HMF,
p is the magnitude of the momentum of the particle, q is the
charge magnitude, and the (maximal) Larmor radius is given by
RL= γmv⊥/(qB), where m is the particle rest mass and γ is the
Lorentz factor. Alternatively, κA may be written in terms of P,
the particle rigidity, and the ratio v/c, denoted by β. It is to be
noted that the drift coefficient given by Equation (2) is only
valid in the weak-scattering limit, when the influence of HMF
turbulence on particle drift is negligible (see, e.g., Engelbrecht
et al. 2022 and references therein).

Furthermore, note that Equation (3) is undefined where
B= 0. Therefore, it cannot be applied at the HCS. In order to
model the drift due to the HCS, a number of models may be
employed. These include the models of Burger (2012) and
Engelbrecht et al. (2019), the latter of which is applied in the
present study (see also the model of Burger et al. 1985 and the
related discussions in Strauss et al. 2012 and Mohlolo et al.
2022). Following Burger (2012), Engelbrecht et al. (2019)
modify the drift coefficient by using a transition function, so
chosen in order to approximate the Heaviside step function,
where k d k ( )fA A, such that

d k k d=  ´ - ´ ( ) ( ˆ ) ˆ ( ) ( )v f e e f , 3d A B A B


where the first term models the HCS drift and the second the
drift due to the gradients in, and curvatures of, the particular
HMF model under consideration. Note that the sign of the unit
vector êB written in Equation (3) is determined by the polarity
of the HMF in the northern hemisphere, with the polarity

inversion across the HCS now being taken into account by the
modified drift coefficient d k( )f A. The transition function is
given by d d= -( ) ( )f S2 1, where S is a higher-order
smoothstep (e.g., Ebert et al. 2002) function:

⎧

⎨
⎪

⎩
⎪

 
d

d
d d d

d d d d d
d

=

<
- +

- + - +
>

( )

( )

4

S

0 if 0;

924 6006 16380
24024 20020 9009 1716 if 0 1;

1 if 1,

13 12 11

10 9 8 7

with d d¢ =  =( ) ( )S S 0 if δ� 0 or δ� 1. Because the
smoothstep function and its derivatives are clamped, no
artificial terms (see the third term of vd


as presented by

Burger 2012) arise due to the application of the chain rule in
calculating the drift velocity (Equation (3)), which have been
shown to influence the transport of GCRs (Kopp et al. 2017).
The quantity δ is defined as

d
q q

= +
-( ) ( )r

R

1

2 4
, 5ns

L

where θns is the latitudinal extent of the HCS, here modeled
using (Kóta & Jokipii 1983)

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

q
p

a= -
W- ( )r

V2
tan tan sin , 6ns

SW

1

where Ω denotes the solar rotation rate, VSW the solar wind
speed, and α the heliospheric tilt angle, chosen here to be equal
to 10° in order to simulate generic solar minimum conditions.
Note that the second term on the right-hand side of
Equation (5) for δ above is larger by a factor of 2 than the
term given by Engelbrecht et al. (2019), due to a typo in that
paper. Due to the manner in which δ is defined, the drift effects
arising from the HCS will only affect CRs within a distance
2RL above and below the HCS. Finally, note that the quantity δ,
being defined in terms of the Larmor radius, naturally results in
an energy dependence for HCS drift effects.
In order to calculate the drift velocity due to the gradient and

curvature drifts, the second term in Equation (3) needs to be
evaluated with a unit vector êB appropriate to the HMF model
under consideration. For a Parker field, this quantity can rather
simply be expressed in terms of the winding angle Ψ as

= Y - Y fˆ ˆ ˆe e ecos sinB r (see, e.g., Burger 2012). In what is to
follow, êB will be calculated directly by dividing the vector
field by its magnitude, such that =ê B BB


. The SP hybrid field

is employed in what is to follow, given by (Hitge &
Burger 2010)

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
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⎡
⎣

w b f
q

w b f

w b q
q

w b q f q

= +
¶
¶

=

= +
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q

f

( ) ] ( )

B A
r

r

r

V

V

B
Ar

rV

B
Ar

rV

d

d

1 sin sin

sin sin

cos sin

sin sin cos sin , 7

r
SW

SW

SW

SW

0
2

2

0
2

0
2

* * *

* * *

* *

* * *

with the differential rotation rate ω
*

= ωFS and Fisk angle
β

*

= βFS written in terms of a latitude-dependent transition
function, given by
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Here, δp= 5.0= δe are constants affecting the gradients of FS,
their values being chosen so as to coincide with those of Burger
et al. (2008) and Sternal et al. (2011), and q = ¢ 80b . The
transition function is solely a function of colatitude, to ensure a
divergence-free HMF (Burger & Hitge 2004; Steyn &
Burger 2020). At colatitudes close to the ecliptic plane, and
directly over the poles, FS= 0 and the resulting HMF is
Parkerian. At intermediate colatitudes, 0< FS� 1, and the field
is more Schwadron (2002)–like. The Fisk angle is here
modeled following, e.g., Burger et al. (2008), such that

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥b q

a
q

a= - - -( ) ( )arccos 1 1 cos
sin

sin
, 9mm

ss

mm
ph

2

2

where qmm
ss denotes the maximum expansion boundary in

heliographic colatitude on the SWSS of the HMF lines
originating from the modeled PCH, and qmm

ph denotes the
photospheric heliomagnetic colatitude of said PCH boundary.
These quantities are here modeled following Burger et al.
(2008). The latitude dependence of the solar wind velocity is
modeled using a standard hyperbolic tangent function, such as
that employed by, e.g., Ferreira et al. (2001) and Hitge &
Burger (2010), and given by

⎧
⎨⎩

q p a j q p
q p a j q p

=

´
- - + +
+ - - - >

-·
[ ( )]
[ ( )]

( )

V 400 km s

1.5 0.5 tanh 8 2 if 2;

1.5 0.5 tanh 8 2 if 2,

10

SW

t

t

1

with jt= 15°, which reproduces the observed latitudinal
dependence of this quantity (Phillips et al. 1995; McComas
et al. 2000).

The reducing influence of turbulence on the drift coefficient,
particularly at higher latitudes, where greater turbulence levels
have been reported, is expected to reduce any signature of a
Fisk-type field in GCR drift velocities and is taken into account
here by using the expression for the turbulence-reduced drift
coefficient derived by Engelbrecht et al. (2017), such that

⎡
⎣⎢

⎤
⎦⎥

k
l d l

= + =^
-

( )vR

R

B

B

v

3
1

3
, 11A

L

L

T A
2

2

2

0
2

1

where d = +B B BT D sl
2

2
2 2 denotes the total (slab+2D) magnetic

variance, and λA is a length scale associated with the above
diffusion coefficient, defined in the same way as a mean free
path (MFP; Shalchi 2009). The reduction factor above now also
depends on the GCR parallel and perpendicular MFPs. These
quantities are modeled using the same expressions employed
by, e.g., Burger et al. (2008), Moloto et al. (2018, 2019),
Engelbrecht & Wolmarans (2020), and Engelbrecht & Moloto
(2021), which have been shown to yield GCR intensities in
reasonable to good agreement with spacecraft observations for

both GCR protons and antiprotons, and are well described in
the cited studies. The parallel MFP expression is derived from
magnetostatic quasilinear theory (see, e.g., Jokipii 1966;
Shalchi et al. 2004) and is given by Teufel & Schlickeiser
(2003):

⎡
⎣⎢

⎤
⎦⎥

l
d p p

=
-

+
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( ) ( )( )
( )s

s

R

k

B

B

R

s s

3

1

1

4

2

2 4
, 12

s2

min

0
2

sl
2

with s= 5/3 being the inertial range spectral index, kmin the
wavenumber at which the inertial range commences, dBsl

2 the
total slab magnetic variance, and =R R kL min. Note that the
above expression implicitly assumes a slab spectral form with a
wavenumber-independent energy-containing range and a
Kolmogorov inertial range. The perpendicular MFP is derived
from the nonlinear guiding center theory (Matthaeus et al.
2003), now assuming a similar 2D turbulence spectral form as
was the case for the parallel MFP with a wavenumber-
independent energy range and a Kolmogorov inertial range,
given by (Shalchi et al. 2004; Burger et al. 2008)

⎡
⎣⎢

⎤
⎦⎥

l a p
n
n

n
n

l
d
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, 13D
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2

0
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2 3
1 3


where the subscript “2D” denotes 2D turbulence quantities,
ν= 5/6 has the Kolmogorov (see, e.g., Burger et al. 2022)
inertial range spectral index, and α2= 1/3 is a parameter
related to the tendency of particles to follow magnetic field
lines, chosen to be the value reported by Matthaeus et al.
(2003) from numerical test-particle simulations. These diffu-
sion and drift coefficients enter into the diffusion tensor in the
Parker (1965) CR transport equation (see Section 3), given in
spherical coordinates by (Burger et al. 2008)
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where the different angles in the above are given by
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with ψ being the winding angle for a 3D HMF such as the SP
field (Equation (7)). From the above, it is evident that the use of
such a HMF will drastically influence the transport of CRs, due
to the latitudinal excursions of the SP HMF lines. Should a
field without a meridional component, such as a Parker HMF,
be employed, the above expression reduces to that presented
by, e.g., Kobylinski (2001), with a more standard definition of
the HMF winding angle (see, e.g., Smith & Bieber 1991).

The basic turbulence quantities, such as magnetic variances,
needed to calculate the diffusion coefficients as well as the
turbulence-reduced drift coefficient are here calculated as in
Engelbrecht & Burger (2015a, 2015b)—that is to say, using
outputs from the two-component Oughton et al. (2011)
turbulence transport model. Although this code employs the
same inner boundary values as proposed by Engelbrecht &
Burger (2013), which were chosen so that the model outputs
were in agreement with higher-latitude Ulysses turbulence
observations, the contribution of pickup-ion-generated turbu-
lence is ignored. This is due to the fact that such turbulent
fluctuations occur at large frequencies (see, e.g., Williams &
Zank 1994) and thus are not expected to influence the transport
of GCR protons at the energies of interest to this study
(Engelbrecht 2017). For more information on turbulence
transport models, the interested reader is invited to consult
Adhikari et al. (2021) and Oughton & Engelbrecht (2021). As
this turbulence transport model is restricted to modeling the
evolution of transverse turbulence quantities, and thus cannot
model the mostly compressive turbulence in the heliosheath
(see, e.g., Fraternale et al. 2022 and references therein), the
present model assumes a boundary at 100 au.

In Figure 1, the length scales used in the calculation of the
turbulence-reduced drift coefficient (Equation (11)) are shown
both as a function of rigidity (left panel) and heliocentric
distance (right panel). The quantities shown include the parallel
and perpendicular MFPs, indicated respectively by the blue and
orange lines, as well as the drift scale, computed in both the
weak-scattering limit and with the drift reduction due to
turbulence taken into account. The weak-scattering drift scale
lA

WS is represented by a black line, while the turbulence-reduced
drift scale lA

TR is represented by a gray line. In the left panel, a
heliocentric distance of 1 au has been assumed. Here, the MFP
consensus values reported by Palmer (1982) are also shown;

for λ∥, the consensus range is indicated by a blue rectangle,
ranging from 0.08 to 0.3 au across the rigidity domain
0.0005GV� P� 5GV. The Palmer (1982) consensus value for
λ⊥ is also shown, as a horizontal orange line (at ∼0.0067 au)
intersecting the perpendicular MFP at approximately 1 GV. In
the right panel, the variation of the aforementioned length
scales with heliocentric distance is shown. The solid lines
represent such quantities computed for a proton rigidity of
1 GV, while the length scales calculated for P= 0.1 GV are
indicated by dashed lines.
For the rigidity-dependent variation of the aforementioned

length scales (the left panel of Figure 1), increases with P are
seen for the quantities λ∥, λ⊥, and λA (computed both in the
weak-scattering limit and with drift reduction due to turbulence
taken into account). The values for λ∥ shown here remain
above the Palmer (1982) consensus values, consistent with the
solar minimum conditions assumed in the present study (e.g.,
Moloto et al. 2018). Furthermore, it is noted that lA

TR

approaches the drift scale computed in the weak-scattering
limit at high proton rigidities. As expected, the diminishing
effect of turbulence on particle drift is most pronounced at low
values of P. In the right panel of Figure 1, depicting the radial
variation of the length scales used in computing the turbulence-
reduced drift coefficient, the quantities computed for a proton
rigidity of 1 GV are indicated by solid lines, while the dashed
lines represent those calculated for P= 0.1 GV. Note that for
1 GV protons, the turbulence-reduced and weak-scattering drift
scales become comparable after a relatively small heliocentric
distance, with the two quantities being indistinguishable
beyond ∼2 au. For 0.1 GV protons, the turbulence reduction
persists up to a greater radial distance of ∼10 au. It is therefore
expected that if the effects of turbulence on particle drifts are
taken into account, a Fisk-type signal in the computed CR
intensities would most likely be seen for higher-rigidity protons
farther away from the Sun.
In what follows, drift velocity profiles for both the Parker

and SP hybrid fields will be compared, initially assuming a
weak-scattering drift coefficient, in order to highlight the
maximum effects due to the latter HMF model, and then
employing a turbulence-reduced drift coefficient in order to
investigate the resulting, potentially more realistic, ameliorated
effects.

Figure 1. The MFPs, Larmor radii, and turbulence-reduced drift scales used in this study, as a function of rigidity at 1 au along with Palmer (1982) consensus-range
values (left panel) and as a function of radial distance in the ecliptic plane at 0.1 GV (dashed lines) and 1 GV (solid lines) in the right panel. See the text for details.
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2.1. Weak-scattering Drift Profiles

In Figure 2, the 2D drift velocity field (calculated from the
radial and latitudinal components of vd


) for 1 GV protons

associated with the Parker HMF (with a latitude-dependent
solar wind speed) is shown and compared with the corresp-
onding drift velocity field as computed for the SP hybrid field
of Hitge & Burger (2010). The drift velocity field computed for
the Parker HMF is shown on the left, while the drift velocity
associated with the SP hybrid HMF is shown on the right. The
features seen for the Parker drift velocity are reminiscent of
those presented by Jokipii & Thomas (1981), with two key
differences: first, the 2D drift speed, calculated from the radial
and latitudinal components of vd


, is indicated in the figure, with

brighter regions corresponding to higher drift speeds (whereas
Jokipii & Thomas 1981 only show the drift trajectories). It is
noted that the drift effects are strongest over the poles of the
Sun and near the HCS. Second, because of the latitudinal
dependence of VSW, defined before, the direction of the overall
drift velocity profile differs somewhat from what would be seen
for a Parker field with a constant solar wind speed. In
particular, the radial component of vd


is seen to be more

significant at midlatitudes (e.g., near θ= 120°), where the
derivative of the solar wind speed is large. Except for such
differences, the drift velocity profile of the Parker HMF is
familiar: the drift is mostly latitudinal and, given A> 0
conditions, is directed from high latitudes toward the HCS.
Along the HCS, protons drift outward, away from the Sun.
Directly over the poles, protons drift toward the Sun. Given
A< 0 conditions, all drift directions would be reversed.

The drift velocity profile of the SP hybrid HMF, shown in
the right panel of Figure 2, differs from vd


as calculated for the

Parker HMF in a number of regards. Such differences are most
pronounced at midlatitudes, where the hybrid field of Hitge &
Burger (2010) is most Fisk-like. In particular, it is noted that
high-∣ ∣vd


structures extend from the polar regions (e.g., consider

the structure found between 20 and 25 au from the Sun,
between colatitudes of 0◦ and 45◦). This feature results from
the Fisk-like geometry of the HMF found at such regions
(Troskie 2024). Furthermore, drift speeds are reduced in the
regions found between the aforementioned high-speed struc-
tures (e.g., between 15 and 20 au from the Sun, from

approximately 15◦–45◦ colatitude). Changes in the direction
of vd

are also clearly noted between the high-speed structures.

Consider the direction of the drift velocity along the radial
spoke at θ= 165°: the drift is mostly latitudinal at the high-
speed structures (e.g., around 17 au), while the radial comp-
onent of vd


is more significant between the aforementioned

structures (e.g., near 20 au). One of the most notable features of
the SP hybrid drift velocity profile is a set of serrated structures
found at colatitudes above and below the HCS (consider the
structures seen between 60◦ and 75◦ as well as 105◦ and 120◦

colatitude). Enhancements in the drift speed are observed along
such structures, and the direction of vd


is seen to be highly

variable. These structures are unique to Schwadron-type fields,
as they arise from the interplay between the latitude-dependent
solar wind speed and the Fisk-like geometry of the hybrid HMF
at such colatitudes (Troskie 2024). Over the poles and near the
ecliptic plane, where the SP hybrid field reduces to the Parker
HMF, it is seen that the drift effects are the same as those seen
for a purely Parker field.
The drift effects discussed above are those arising from the

geometries of the HMF models considered here. These effects,
all of which are seen in the SP hybrid field, result from a
combination of the effects observed for the Parker (1958) and
Fisk (1996) HMF models and a latitude-dependent solar wind
speed (e.g., McComas et al. 2003). However, some drift effects
seen in Figure 2 result from the transition function (Burger &
Hitge 2004; Burger et al. 2008) used in the Fisk–Parker and SP
hybrid fields. For the latter field, these artificial drift effects
include reduced-∣ ∣vd


regions, also associated with changes in the

direction of vd

, seen between the serrated structures found at

midlatitudes. The drift effects arising from the transition
function used in the hybrid Fisk-type fields are discussed in
more detail in Troskie et al. (2023) and Troskie (2024).
In Figure 3, drift speed profiles (calculated from all three

components of vd

) computed for the SP hybrid HMF are shown.

The different panels correspond to meridional projections of
the drift speed profiles at different values of the azimuth: drift
speeds calculated at 0◦ and 90◦ azimuth are shown in the left
and right panels of the top row, respectively, while the bottom-
row panels show ∣ ∣vd


calculated at 180◦ and 270◦. It is

interesting to compare the 2D drift velocity profile of the SP
hybrid HMF (right panel of Figure 2) to the corresponding 3D

Figure 2. 2D drift velocity profiles calculated in the weak-scattering limit for the Parker HMF (with a latitude-dependent solar wind speed, shown on the left) and the
SP hybrid HMF, shown on the right, for A > 0 conditions. A proton rigidity of 1 GV has been assumed.
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drift speed calculated at the same azimuth (the top left panel of
Figure 3), as such a comparison highlights the effect of the
azimuthal component of vd


. In particular, it is seen, for

example, that significant azimuthal drift occurs near the
midlatitude serrations and the high-speed extensions over the
poles, as these features are more prominent when the azimuthal
drift velocity component is included in the calculation of ∣ ∣vd


.

Figure 3 also highlights the azimuthal variation of the drift
effects calculated for the SP hybrid HMF. For example,
consider the high-speed extension found between 15 and 20 au
at f= 0° (top left panel): as the value of f increases, this
structure is seen to decrease in size, with an azimuth-dependent
reduction in its latitudinal extent as well as its width. This
reduction occurs while the structure is seen to move closer to
the Sun (with its heliocentric distance decreasing to under 15 au
at an azimuth of 180◦, shown in the bottom left panel).
Therefore, were the drift velocity profile of the SP hybrid HMF
to be considered in three dimensions, the structures appearing
as high-speed extensions over the poles in 2D would be
revealed to be cross sections of a large high-∣ ∣vd


structure

spiraling from the Sun. The midlatitude serrations are similarly
revealed to be 2D cross sections of 3D spiral structures: with an

increase in the azimuth, a given serration will be seen to move
closer to the Sun, and disappear at a sufficiently small
heliocentric distance. Furthermore, a comparison of the (either
left- or right-column) panels in the top and bottom rows of
Figure 3 reveals that at a given azimuth f1, the drift velocity
profile in the southern hemisphere is a reflection in the ecliptic
plane of the drift velocity profile in the northern hemisphere at
an azimuth f1+ 180°.

2.2. Reducing Factors

Figure 4 shows turbulence-reduced drift velocity profiles
calculated for the (latitude-dependent VSW) Parker (left column)
and SP hybrid (right column) HMF models. In the top row, a
comparatively low proton rigidity of 0.1 GV has been assumed,
resulting in few differences between the drift velocity profiles
computed for the two HMF models; in the bottom row, for
which a proton rigidity of 1 GV has been assumed, the
differences between the Parker and SP hybrid drift velocity
fields are more pronounced, as the turbulence-reduced drift
scale calculated for this proton rigidity is comparable to the
drift scale calculated in the weak-scattering limit. In the

Figure 3. Weak-scattering drift speed profiles for the SP hybrid field, calculated from all components of vd

, with a proton rigidity of 1 GV. The panels are shown at

different values of the azimuth f in order to illustrate the azimuthal dependence of certain drift effects seen for this HMF model, discussed in the text.
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(comparatively low-rigidity) drift velocity profiles shown in the
top row, an especially prominent feature is a set of reduced-∣ ∣vd



radial spokes seen at colatitudes of approximately 70◦ and
110◦, resulting from enhanced levels of turbulence due to
stream-shear effects. Another feature seen in the drift velocity
profiles of both fields at this rigidity is an especially significant
reduction in the drift velocity over the poles: from directly over
the poles to approximately 15◦ and 165◦ colatitude, the changes
in vd


are much less pronounced than the changes observed
across these colatitudes given a proton rigidity of 1 GV (bottom
row), both with regard to the direction and the magnitude of vd


.

For P= 0.1 GV, some drift effects associated with the SP
hybrid HMF remain: the enhancements to ∣ ∣vd


at the midlatitude

serrations discussed earlier, in the context of the weak-
scattering drift velocity fields, are faintly visible, along with
associated directional changes in vd


.

3. CR Transport

Here, the influence of the drift effects discussed above on the
computed GCR intensities and latitude gradients will be
investigated in detail.

3.1. The Modulation Code

The present study employs the 3D, steady-state, stochastic
solver introduced by Engelbrecht & Burger (2015a) of the
Parker (1965) GCR transport equation:

¶
¶

=   - 

+ 
¶

¶

· ( · ) ·

( · ) ( )

K V
f

t
f f

V
f

p

1

3 ln
, 16

sw

sw

where f (r, p, t)= p−2jT is the omnidirectional CR distribution
function (Moraal 2013), incorporating both a standard Parker
HMF, as well as a SP hybrid field, in order to calculate the
GCR differential intensities jT at Earth, as well as the latitude
gradients of these particles. Elements of the diffusion tensor K,
which include diffusion coefficients parallel and perpendicular
to the HMF, as well as the (turbulence-reduced) drift
coefficient, are calculated as described in Section 2 (see
Equation (14)), again employing inputs from the Oughton et al.
(2011) turbulence transport model. The assumed solar wind

Figure 4. 2D turbulence-reduced drift velocity profiles computed for the Parker (with a latitude-dependent solar wind speed) and SP hybrid HMF models, shown in
the left- and right-column panels, respectively. The panels shown in the top row have assumed a proton rigidity of 0.1 GV, while P = 1 GV for the bottom-row panels.
In order to emphasize the effects of turbulence on gradient and curvature drift, the HCS has been removed.
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speed that enters into the terms describing the convection and
adiabatic energy changes of the GCRs in Equation (16) is the
the same as introduced in Section 2, as is the HCS latitudinal
extent. For the sake of model consistency, a model boundary of
100 au is also assumed here. Therefore, as an input boundary
differential intensity spectrum, we employ a fit to Voyager
GCR proton observations near the termination shock proposed
by Moloto et al. (2018), and given as function of particle
rigidity P by

=
+

-

-

( )
( )

( )j
P P

P P
17.0

2.2 2.1
, 17B

p 0
2.4

0
3.0

in units of gigavolts, where P0= 1 GV. Although such an
approach cannot fully take into account the considerable
amount of modulation reported to occur in the heliosheath (e.g.,
Stone et al. 2013), it is nevertheless an improvement on simply
using a full local interstellar spectrum. The GCR latitude
gradients are calculated from the GCR proton differential
intensities jT computed with the abovementioned code,
following the approach of Burger et al. (2008) and Engelbrecht
& Burger (2010), such that

q f q f
q q

=
á ñ á ñ

-
q

f f( )
[ ( ) ( ) ]

( )G r
j r j rln , , , ,

, 18T T2 1

1 2

where θ1= 10° and θ2= 90° colatitude, with a radial distance
of r= 2 au assumed in order to make qualitative comparisons
with Ulysses observations of the same. Note that the angle
brackets denote an azimuthal average of the differential

intensities computed at a particular radial distance and
colatitude. In order to calculate these azimuthal averages,
differential intensities are calculated at 20 evenly spaced
azimuthal angles for N= 10,000 pseudo-particles per energy
bin, which would be appropriate for the calculation of Gθ (see
the discussion of Moloto et al. 2019), and averaged accord-
ingly. It should be noted that no attempt is made here to
reproduce spacecraft observations and that only broad effects
are investigated. As such, only qualitative comparisons with
observations will be made.

3.2. GCR Intensities at Earth

Figure 5 shows the differential intensities for GCR protons
computed at 1 au, at 90◦ colatitude and f= 0°, as a function of
rigidity. Such intensities were calculated for the Parker (with a
latitude-dependent solar wind speed) as well as the SP hybrid
HMF model, with drift effects modeled assuming the Parker as
well as the SP HMF geometry, respectively. The HCS drift
model of Engelbrecht et al. (2019) has been implemented in all
cases, and the boundary spectrum employed in this study
(Equation (17)) is shown as a dashed black line. The intensities
computed for A> 0 conditions are indicated by red or orange,
while those calculated for A< 0 are shown as blue or purple,
and seen to be lower than the A> 0 intensities across most of
the present rigidity domain.
At 1 au in the ecliptic plane, few differences in the GCR

intensities arising from the different HMF models are
discernible. It is seen that the implementation of the SP hybrid
HMF leads to a minor but definite increase in the GCR

Figure 5. Differential intensities computed at Earth for GCR protons at different rigidities. Intensities are shown for A > 0 as well as A < 0 conditions, and were
computed under the assumption of a Parker HMF (with a latitude-dependent solar wind speed), as well as the SP hybrid HMF, with and without appropriate drift
effects. The Engelbrecht et al. (2019) HCS drift model has been implemented in all cases. The GCR boundary spectrum (Equation (17)) is also shown.
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Figure 6. Differential intensities of 1 GV GCR protons, computed at 50◦ colatitude and different values of f, for the Parker (red lines) and SP hybrid HMF models.
For the latter model, the GCR intensities were computed with the combined effects of diffusion and drift taken into account (blue lines), as well as a combination of SP
diffusion and Parker drift effects (purple lines). The left-column panels have assumed A > 0 conditions, while the figures shown in the right column were generated for
A < 0 conditions. The different rows correspond to different heliocentric distances: 2, 10, and 50 au, from top to bottom.
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intensities (relative to those computed for a Parker field) across
the rigidity domain under consideration, for A> 0 as well as
A< 0. It is further noted that the SP hybrid drift velocity profile
has a comparatively small effect on the computed GCR
intensities, but that small differences can be discerned. For
A> 0, it is seen that the GCR intensities computed for a
combination of Parker drift effects and SP hybrid diffusion
effects are higher than those calculated for the Parker HMF and
lower than those computed for the full SP hybrid HMF (that is,
with the hybrid field determining both drift and diffusion
effects), especially near P= 1 GV. At lower rigidities, the
inclusion of SP diffusion effects (in conjunction with the drift
effects due to the Parker HMF) does not result in a discernible
deviation from the GCR intensities computed for the Parker
field. For A< 0, it is seen that the inclusion of SP diffusion
effects results in an increase relative to the GCR intensities
computed for a Parker field, while the implementation of a full
SP hybrid field (that is, both diffusion and drift effects due to
the SP hybrid HMF) results in GCR intensities more
comparable to those computed for a combination of SP
diffusion and Parker drift effects than to the intensities
computed for a full Parker field.

3.3. Azimuthal GCR Intensity Variations

Figure 6 depicts the differential intensities computed for
1 GV GCR protons at different radial distances, as a function of
azimuth f. These intensities were computed at 50◦ colatitude
for the Parker (red lines) as well as for the SP hybrid field, with
the drifts calculated assuming a Parker field geometry (purple
lines) and a full geometry (that is, including transport effects
due to diffusion as well as drift effects calculated assuming a
SP geometry; blue lines). The panels shown in the left and right

columns correspond to positive and negative magnetic
polarities, respectively, and the different rows correspond to
different heliocentric distances (2, 10, and 50 au, from top to
bottom).
As noted in the discussion of Figure 5, the implementation of

the full SP hybrid HMF results in an increase in the GCR
intensities relative to those computed assuming a Parker field,
with a marked azimuthal variation, both for A> 0 and A< 0
conditions. A combination of SP diffusion and Parker drift
effects results in the same variations, as can be seen when SP
drift effects are taken into account, displaying only a relative
decrease in intensities during A> 0. The Parker field leads to
little or no azimuthal variation, as the fluctuations seen in the
figure can be attributed to statistical variations resulting from
the stochastic method used here to solve the Parker transport
equation. As the radial distances increase, the form of the
azimuthal variations resulting from the use of an SP field
changes drastically, reflecting the azimuthal variations to be
found in this HMF model. This is less evident for A< 0
conditions, as the drifts here are predominantly along the
current sheet.
Relative amplitudes, as computed by Zhang (1997), are

another measure of the effect of the SP hybrid HMF on GCR
modulation. At 2 au, given A> 0 conditions, the relative
amplitude computed for the SP hybrid HMF is 4%. It is
interesting to note that these differences are reminiscent of the
recurrent amplitudes reported as 6.1%± 0.1% from Ulysses
data by Zhang (1997), although somewhat smaller.

3.4. Latitude Gradients

The computed GCR proton latitude gradients are shown as
function of rigidity in Figure 7, alongside observations of the

Figure 7. Latitude gradients calculated for both positive (red and orange) and negative (blue and purple) magnetic polarity conditions, as a function of rigidity,
assuming a Parker or a SP HMF. Also shown are the observations reported by Cummings et al. (1987), Heber et al. (1996), and Gieseler & Heber (2016).
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same reported by Cummings et al. (1987), Heber et al. (1996),
and Gieseler & Heber (2016), for both positive and negative
magnetic polarity conditions. For A> 0, the latitude gradients
calculated assuming a standard Parker HMF are close to those
reported by Engelbrecht & Burger (2013) and Moloto et al.
(2019), even though the diffusion coefficients employed here
are different. Although somewhat larger than the observations,
these computed Gθ remain comparable to them, due to the
increased perpendicular diffusion coefficient at high latitudes,
in turn a consequence of the higher turbulence levels over the
poles as modeled here. For A< 0, Gθ computed for a pure
Parker field is negative, but considerably larger in absolute
value than the Gieseler & Heber (2016) observations, similar to
what was reported by Engelbrecht & Burger (2013). The use of
a SP hybrid field leads to latitude gradients reduced in absolute
value relative to those computed assuming a Parker field for
both magnetic polarities. While this brings Gθ closer to the
Heber et al. (1996) observations during A> 0, this is not the
case during A< 0. It is interesting to note, however, that the SP
Gθ for A< 0 fall very close to the value for this quantity
reported by Cummings et al. (1987) for solar cycle 22, given
that the Gieseler & Heber (2016) observations were reported
for the transition of solar cycle 23–24. The use of a Parker field
drift velocity profile when employing a SP HMF does not
greatly affect the computed latitude gradients.

4. Discussion and Conclusions

Not unexpectedly, a SP HMF leads to drift velocity profiles
considerably different to those expected of a purely Parker
field. A distinction, however, needs to be made. Globally, these
profiles are similar, in the sense that both would, for positively
charged particles, lead to drift velocities directed from high to
low latitudes during periods of positive polarity, and vice versa
during periods of negative polarity. Locally, however, SP drift
velocity profiles display latitude- and azimuth-dependent
whorls, with marked striations in the drift speed profiles, in
regions where the SP field is more Schwadron-like. Such
effects, of course, are ameliorated by the reducing influence of
turbulence on drift.

The global similarities, but local differences, between the drift
velocities calculated with the Parker and SP fields are reflected in
their intensities at Earth calculated using a 3D, steady-state,
ab initio GCR modulation code: regardless of magnetic polarity,
1 au GCR intensity spectra calculated employing a Parker field, a
SP field with appropriate drift effects, or a SP field with Parker
drift effects, display only small differences. This is a reflection of
the global similarity of the drift velocity fields when turbulence-
reduced drift coefficients are employed, as GCRs at 1 au have
already experienced what is essentially an integrated sample of
heliospheric conditions.

Local differences play a more significant role when
azimuthal intensity variations at a fixed radial distance are
considered. Here, the use of a SP field leads to GCR intensity
variations not present when a Parker field is employed. While
this is partly due to the azimuthal dependence of the SP field,
and thus the resulting influence of this field geometry on the
diffusion of the GCRs, a significant difference is noted between
the azimuthal intensity variations computed using a SP field
with SP-appropriate drifts versus those computed using a SP
field with Parker-appropriate drifts, especially during A> 0

periods, with larger intensities computed for the former case.
This reflects the local influence of the drifts on such variations.
Intriguingly, the relative amplitudes at 2 au during A> 0 are
qualitatively comparable to, though smaller than, the relative
amplitude reported by Zhang (1997) for protons with rigidities
larger than 0.426 GV.
Relative to the Parker field, the use of the SP field reduces

the GCR proton latitude gradients computed at 2 au, as
expected from previous studies (e.g., Burger & Hitge 2004;
Burger et al. 2008; Hitge & Burger 2010). For A> 0, both
fields yield results close to observations. However, for A< 0,
this is not the case. This implies that another factor, related to
charge-dependent effects, must be at play. Prior studies have
been able to reproduce the observed A< 0 latitude gradients,
using models that assume anisotropic perpendicular diffusion
(e.g., Burger et al. 2000; Shen et al. 2021). Such an assumption,
however, would not explain the charge-sign-dependent dis-
crepancy reported on here. It is interesting to note that the cited
studies employ different forms for the drift coefficient
reduction factor. However, Shen et al. (2021) employ a factor
dependent on turbulence, via the magnetic variance differing
only somewhat from the result of Engelbrecht et al. (2017), but
assume that magnetic variances at high latitudes are smaller
than those at low latitudes (for a given radial distance). From
Ulysses observations, this is not the case (see, e.g., Forsyth
et al. 1996; Bavassano et al. 2000a, 2000b; Erdős &
Balogh 2005). Last, although a solar cycle dependence for
latitude gradients is not expected (see, e.g., Munakata et al.
1999; Morales-Olivares & Caballero-Lopez 2010), it is known
that there can be considerable variation in GCR transport
parameters from one solar minimum/maximum to the next,
due to inherent differences in the large- and small-scale
heliospheric plasma parameters they depend upon (e.g., Duggal
et al. 1983; Storini et al. 1995; de Toma et al. 2010; Zhao et al.
2018; Caballero-Lopez et al. 2019; Li et al. 2021; Burger et al.
2022), which can have a considerable influence on the GCR
intensities (see Moloto et al. 2018; Engelbrecht & Wolmar-
ans 2020). These factors may also influence the computed
latitude gradients and may need to be taken into account when
comparisons with observations taken during different solar
minima, such as those shown in Figure 7, are made. Such a
comparison, alongside a study of the influence of anisotropic
perpendicular diffusion, will be the subject of future work.
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