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Abstract The focus of this work is centered on determin-
ing whether traversable wormholes admitting Einasto den-
sity profile exist within the framework of f (R, T ) gravity.
Using the Morris–Thorne spacetime, we express the worm-
hole configuration and formulate the anisotropic gravita-
tional equations for a particular linear modified model. After-
wards, by considering two different (constant and variable)
redshift functions, we derive the shape function for worm-
holes and examine its potential stability. The developed func-
tions conform to the necessary conditions and form a connec-
tion between two spacetime regions that are asymptotically
flat. We also examine the viability of resulting wormhole
solutions by verifying their violation with the null energy
conditions. We also investigate the active gravitational mass
and the complexity factor for our solutions. The later quan-
tity is found to be negative near the wormhole throat and
becomes zero when moving away from this point. Further,
various methods of stability analysis are utilized to assess the
developed models. Our results suggest that the constructed
wormhole geometries meet the necessary conditions, thereby
existing within the considered modified gravity.

1 Introduction

Recent discoveries about the cosmic rapid expansion have
driven theoretical physicists to study and decode the mecha-
nisms behind this extraordinary dynamic phenomenon [1,2].
This accelerated expansion has been revealed through obser-
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vations like those of supernova Ia and others, contradicting
previous expectations of a decelerating universe [3–5]. Scien-
tists claimed that the rapid expansion is caused by dark energy
because of its powerful repulsive force. Numerous theoretical
and hypothetical models have been suggested and reviewed
to understand this prodigy. In cosmology, the �-CDM model
is a key framework for elucidating the characteristics of dark
energy. Through this model, one can understand how dark
energy influences the geometric structure of the universe.
This model has made significant progresses in dealing with
various issues, yet it continues to face problems related to
the fine-tuning and cosmic coincidence. The challenge of
dealing with these problems highlights the need for a deeper
insight into gravity, potentially offering new ways to address
existing inconsistencies.

The f (R) theory was initially introduced by Buchdahl in
1970 [6], who altered the action of the general theory of rela-
tivity (GR) by substituting the Ricci scalar R with its generic
function. Researchers employed this framework to study the
attributes of various celestial objects [7–11]. By employing
the f (R)gravity models, a novel perspective on cosmic struc-
ture and gravitational interactions has been emerged, poten-
tially contrasting with GR’s predictions. Bamba et al. [12]
examined the � − CDM like universe in the light of var-
ious models and also investigated some properties of dark
energy. Nojiri and Odintsov [13] confirmed the stability of
f (R) theory through various models which are consistent
with the solar system data to examine unexplained phenom-
ena in the cosmos. Recently, Agrawal et al. [14] studied a par-
ticular cosmological model within this gravity theory by tak-
ing into account an isotropic perfect fluid distribution along
with different forms of the curvature scalar and addressed
the concept of gravitational baryogenesis. This theory has
been modified by Bertolami et al. [15] to include the effect
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of matter-geometry coupling, named the f (R, Lm) theory.
They added the the matter Lagrangian into the functional
f (R) whose impact on certain exotic geometries have been
studied [16].

Another extension of the f (R) framework was introduced
by Harko et al. [17], which included the trace of the energy-
momentum tensor (T ) and resulted in the development of
f (R, T ) gravity. They utilized the metric formalism to estab-
lish the corresponding field equations. Due to the presence of
T , this theory is observed to lack conservation, introducing
an additional force (linked to matter parameters like density
and pressure [18]) that hampers the geodesic trajectories of
test particles in the gravitational field. Singh and Kumar [19]
used the the minimal model of the form R + 2βT with bulk
viscosity to discuss the impact of the second term on cos-
mic expansion for various positive and negative choices of
β. This theory, as explored by Sharif and Zubair [20], has
the potential to reproduce various cosmological phenomena,
including both phantom and non-phantom regimes and �

cold dark matter. Baffou et al. [21] conducted a comprehen-
sive analysis with the help of two different modified models
and discussed them in the cosmological background. They
have done this for both low and high redshift ranges and
found their results to be compatible with observational data.
Tretyakov [22] examined this theory with higher derivatives
of the matter field and explored stability criteria to address
fundamental issues like ghosts and tachyons. A comprehen-
sive review of different astrophysical and cosmological phe-
nomena within this gravity has been done in [23–30]. Naseer
and Sharif [31–35] have also determined multiple acceptable
results in this context.

Current research is concentrating on both the theoreti-
cal and observational explorations of wormhole (WH) struc-
tures. Within the field of topology, WHs serve as connections
between two spacetimes, which may be in the same universe
or in separate universes, via a minimal surface called the
throat. Similar to a metro network within a city that con-
nects various locations, a WH serves to link different regions
across the cosmos. One of the most remarkable characteris-
tics of a WH is its ability to allow traveling in both direc-
tions, as long as the throat remains open. Understanding that
traveling through WH might provide a shortcut within the
spacetime is crucial. The different WH structures include: (i)
an intra-universe, connecting two separate locations within
one universe, and (ii) an inter-universe that links diverse areas
across multiple universes. This idea suggests the existence of
numerous universes, each with distinct properties and physi-
cal laws, potentially linked together by a WH. The term static
is used for a WH whose throat radius remains unchanged
and does not vary with time. The main difference between a
dynamic WH and a static one is that the former has a throat
radius that changes, altering the throat’s width and shape.
Classifying these structures is important due to their possi-

ble utility in theoretical scenarios involving interstellar travel
or communication, as envisioned by astrophysicists.

Wormholes were first conceptualized in the innovative
work of Misner and Wheeler [36,37] and Wheeler [38,39],
aiming to describe how electric charge could be facilitated by
spanning force lines across different spatial asymptotes. The
investigation into the theoretical structure was continued by
Einstein and Rosen [40], who examined its diverse character-
istics. They developed a model namely the Einstein–Rosen
bridge which is a theoretical construct suggesting a route
through the universe. Fuller and Wheeler [41] highlighted
that this bridge displays instability. It was suggested by their
findings that the bridge would collapse [42,43] shortly after
its creation, hindering the traverse of photons. The interaction
of strong gravitational fields and spacetime characteristics
influences this effect. Unfortunately, the Schwarzschild WH
does not possess this characteristic and remains inaccessible
to photons [44]. Morris and his team proposed a method to
maintain the stability of a WH. They suggested that utilizing
a specific type of matter known as “exotic” having repulsive
properties, could effectively counteract the intense gravita-
tional forces and help prevent the collapse of the WH.

In 1988, Morris and Thorne [45] were the first to propose
the theoretical model of static traversable WHs. According to
their proposal, a traversable WH requires a central passage
that is designed to reduce its dimensions. To evaluate WH
stability, matching conditions are used to match the proper-
ties on both sides of the throat [46]. Spherically shaped WHs
have been extensively studied, and their feasibility is depen-
dent on having the exotic matter. It was discovered that the
presence of phantom energy facilitates the construction of
these structures [47,48]. In their analysis, Kavya et al. [49]
studied WH models in the f (R, Lm) framework with several
different shape functions and confirmed that these models
met all the required criteria. After testing various equations
of state on these models, it was found that only some of them
satisfy the flaring-out criterion [50]. Some other interesting
works are [51–60].

Einasto [61] stated that for a model to accurately describe
real-world galactic systems, it must adhere to specific crite-
ria. The initial step involves selecting a descriptive function,
with the density profile being a sensible choice as it provides
the necessary information to derive the gravitational poten-
tial, cumulative mass profile, and surface mass density. For
a model to be physically valid, it must meet several condi-
tions. For instance, the density profile must be non-negative,
finite, and should decrease smoothly towards zero at larger
radii. Additionally, the descriptive functions must be contin-
uous and free of jump discontinuities, and certain moments
of the mass function, such as those defining the systems
effective radius, total mass, and central gravitational poten-
tial, need to be finite. Einasto [61] introduced various effec-
tive families of descriptive functions, including the promi-
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nent Einasto density profile (EDP). This function has been
employed by Einasto [62] to model M31. The same model
was later applied by him [63] to a number of surrounding
galaxies, including M87, the Milky way, M32, and others.
Utilizing the EDP formulation offers a practical approach
for constructing solutions involving dark matter WHs. The
exploration of WH structures through such proposals is gain-
ing more interest to investigate their possible existence.

Analyzing the properties of traversable WHs within the
f (R, T ) theory is the central objective of this paper. We
specifically explore the EDP model that assists in develop-
ing a viable interaction between WHs and dark matter halos.
The article is structured according to the following scheme.
Section 2 highlights the key features of the modified f (R, T )

theory and formulates gravitational equations corresponding
to a minimal modified model. The EDP is explored in detail
in Sect. 3. We then use this model with two different redshift
functions to study WH geometries and explore the violation
of null energy conditions. Section 4 covers the influence of
active gravitational mass, whereas Sect. 5 examines the com-
plexity factor and how it behaves at the WH throat. The stabil-
ity analysis of the resulting models for all specified choices
is presented in Sect. 6. Finally, the last section provides a
summary of our main results.

2 f (R, T ) gravitational theory

The f (R, T ) theory can be expressed by the following action

I =
∫ √−g

[
f (R, T )

16π
+ Lm

]
dx4. (1)

Here, g indicates the determinant of the metric tensor gην

and Lm denotes the matter Lagrangian density. Formulating
the generalized field equations in this extended theory results
in

Gην = 8πT (tot)
ην , (2)

with Gην being the Einstein tensor providing a detailed
description of the self-gravitating spacetime geometry, and
T (tot)

ην represents the fluid configuration inside that geometry.
The later term is defined as follows

T (tot)
ην = 1

fR
(Tην) + T (c)

ην . (3)

The tensors Tην and T (c)
ην in the overhead equation are related

to the conventional fluid configuration and modified correc-
tion terms, respectively. The first factor can be expressed as

Tην = − 2√−g

[
δ(

√−gLm)

δgην

]
�⇒ Tην = gηνLm − ∂Lm

∂gην

.

(4)

Furthermore, the last term in Eq.(3) is characterized by

T (c)
ην = 1

8π fR

[
fT Tην +

{
1

2
( f − R fR) − fT Lm

}
gην

− (gην� − ∇η∇ν) fR + 2 fT g
υ
 ∂2Lm

∂gην∂gυ


]
. (5)

The symbols fR and fT indicate the partial derivatives of
f = f (R, T ) with respect to R and T , respectively. The
D’Alembertian operator, as expressed in the above equation,
is given by � ≡ 1√−g

∂η(
√−ggην∂ν) along with ∇η being

the covariant derivative. Joining together Eqs.(2)-(5), we find

Gην = 1

fR

[
(8π + fT )Tην − (gην� − ∇η∇ν) fR + 1

2
gην

( f − R fR) − fT gηνLm + 2 fT g
υ
 ∂2Lm

∂gην∂gυ


]
. (6)

At this stage, taking into account the Morris–Thorne met-
ric is essential as it characterizes the geometry of WHs. This
is mathematically expressed by

ds2 = −eσ(r)dt2 +
(

1 − H(r)

r

)−1

dr2 + r2

(
dθ2 + sin θdφ2), (7)

where a redshift function is represented by σ(r). Also, H(r)
is the function that represents the geometry of the WH, refers
to the shape function.

The existence of anisotropic fluid distributions in celestial
objects is a major subject of interest among astrophysicists, as
many observations have pointed out differences in principal
pressures due to several influencing factors. Following this,
we assume that the geometry of the WH model is filled by
the anisotropic fluid, with the expression provided as

Tην = (ρ + Pt )UηUν + (Pr − Pt )χηχν + Pt gην. (8)

It is necessary to define several terms at this moment to under-
stand the impact of different factors on the WH geometry. For
instance, ρ indicates the energy density, Pt is the tangential
pressure, and Pr refers to the radial pressure. Additionally,
Uη represents the four-velocity, and χη being the four-vector.

A standard modified model is necessarily required to make
the developed results more meaningful and effective to under-
stand. The literature offers several matter-geometry coupled
f (R, T ) models, both minimal and non-minimal, however,
we choose the following to make our calculation easy. This
is defined as

f (R, T ) = f1(R) + f2(T ) = R + 2βT, (9)

with β being a constant and T = −ρ + Pr + 2Pt . It is
important to mention that this particular selection can help
resolving the issue of the cosmological constant. In recent
works on running vacuum cosmology and scale-dependent
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gravity, an effective constant has been proposed as a potential
means to alleviate the cosmological constant problem [64–
68]. The relationship between the constant � and the Hubble
parameter is given by �e f f ∝ H2 [69]. Additionally, valid-
ity of the term 2βT could lead to novel insights and a deeper
understanding of astrophysical structures [70,71]. Using this
modified functional form, researchers have been able to suc-
cessfully address different phenomena [72–77]. By using Eq.
(6) along with the model (9), the following independent field
equations are produced as

ρ̃ ≡ 8πρ + β

(
3ρ − Pr

3
− 2Pt

3

)
= H ′(r)

8πr2 , (10)

P̃r ≡ 8π Pr − β

(
ρ − 7Pr

3
− 2Pt

3

)
= r2σ ′ − H

(
rσ ′ + 1

)
4πr3 ,

(11)

P̃t ≡ 8π Pt − β

(
ρ − Pr

3
− 8Pt

3

)

= 1

32πr3

[
r
{
2r2σ ′′ + r2σ ′2 − rσ ′(H ′ − 2

)

− 2H ′} − H
(
2r2σ ′′ + r2σ ′2 + rσ ′ − 2

)]
. (12)

Here, ′ = ∂
∂r and the terms along with β result from modify-

ing the action function of GR. From the equations mentioned
above, the explicit expressions for the matter variables can
be calculated as

ρ = 1

48(β + 2π)(β + 4π)r2

× [
2βr(r − H)σ ′′ + βσ ′{r(H ′ + 4

) − 3H
}

+ βr(r − H)σ ′2 + 16(β + 3π)H ′], (13)

Pr = 1

48(β + 2π)(β + 4π)r3

× [
H

{
2βr2σ ′′ + σ ′r

(
βrσ ′ − 21β − 48π

) − 24

× (β + 2π)
} − r

{
2βr2σ ′′ + rσ ′(βH ′ − 20β − 48π

)
+ βr2σ ′2 − 8βH ′}], (14)

Pt = 1

48(β + 2π)(β + 4π)r3

× [
r
{
2(5β + 12π)r2σ ′′ + rσ ′(8(β + 3π) + (5β

+ 12π)b′) + (5β + 12π)r2σ ′2 − 4(β + 6π)H ′}
− H

{
r
(
2(5β + 12π)rσ ′′

+ (5β+12π)rσ ′2+3(β+4π)σ ′)−12(β+2π)
}]

.

(15)

In the next section, we shall derive two different shape
functions by taking into account the EDP model along with
two distinct choices of the redshift parameter and examine
their viability by verifying their consistency with the required
criteria.

3 Einasto density profile

To improve our understanding of the cosmic mysteries, such
as the dark matter halos enveloping galaxy clusters, a more
in-depth study of their attributes is necessary. Research using
cosmological simulations and some other methods shown
that different dark matter halos or galaxy clusters can be accu-
rately described by distinct density models with three key
parameters [78–81]. The EDP model, a three-dimensional
variant of the Sérsic model, is frequently employed to
describe dark matter halos [82,83]. The model is employed
to analyze both the central regions of spiral galaxies and the
brightness of old cosmic structures [84]. This is defined by
[85]

γ (r) ≡ −d ln ρ(r)

d ln r
∝ r

1
n , (16)

where the symbol n refers to the Einasto index which charac-
terizes the particular shape of the EDP model. The following
density profile is derived from the integration of the above
equation as

ln

(
ρ(r)

ρs

)
= −cn

{(
r

rs

) 1
n − 1

}
. (17)

The parameter rs represents the sphere’s radius that includes
half of the total mass, while cn governs rs , ρs = ρs(r), and
ρ0 = ρsecn . The constant cn ensures that ρs defines the radius
surrounding half of the mass. It must be highlighted that
multiple parameterizations of the EDP model have been pro-
posed, each with its unique set of free parameters. In dark
matter-halo realm, a widely used representation has the fol-
lowing form

ln

(
ρ(r)

ρ−2

)
= −2n

{(
r

rs

) 1
n − 1

}
, (18)

when r−2 and ρ−2 represent the radius and density, respec-
tively. Also, the quantity ρ(r) follows a direct proportionality
to r−2 and can be written as

ρ(r) = ρ0e
−( rh )

1
n
, (19)

with h and ρ0 being the scale length and central density
defined by

h = rs
cnn

= r−2

(2n)n
, ρ0 = ρse

cn = ρ−2e
2n . (20)

For the model to accurately reflect real galactic formations,
it must conform to certain standards, such as those related to
mass profile, gravitational potential, and surface mass den-
sity [86]. Choosing the appropriate descriptive functions is
the key to accurately modeling any galactic structure. Con-
sidering the fundamental role of the density profile in these
functions, it becomes the most favorable option in this con-
text. The term ρ(r) must be finite and positive for every possi-
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ble value of r . The function must decrease slowly, converging
towards zero as r grows larger. It is essential for density func-
tions to connect with a system that shows a finite multi-pole
expansion, total mass, and effective radius. To ensure proper
behavior, these descriptive functions should exhibit smooth
transitions and refrain from exhibiting jump discontinuities
or sudden changes. The upcoming analysis will focus on cal-
culating the shape functions by assuming the constant as well
as variable redshift function that may lead to the required WH
models.

3.1 Case 1: constant redshift function

Assuming a constant redshift function is crucial in the study
of traversable WHs as it simplifies the mathematical mod-
eling of these complex structures. This assumption leads to
more tractable equations that can yield analytical solutions,
facilitating a better understanding of the stability and viability
of WH configurations. Furthermore, a constant redshift func-
tion can help in establishing a baseline for comparison with
models that incorporate variable redshifts, ultimately enhanc-
ing the robustness of theoretical predictions in any theory of
gravity. Following this, we assume σ(r) = c0 (with c0 being
a constant) that leads to its vanishing derivatives. Putting this
in Eq. (13), we get

ρ = (β + 3π)H ′(r)
3(β + 2π)(β + 4π)r2 . (21)

Comparing Eqs. (19) and (21) to obtain a differential equation
in terms of the EDP model provides

(β + 3π)H ′(r)
3(β + 2π)(β + 4π)r2 = ρ0e

−( rh )
1
n
, (22)

whose solution gives

H(r) = c1 −
3
(
β2 + 6πβ + 8π2

)
h3nρ0�

(
3n,

(
r
h2

) 1
n
)

β + 3π
,

(23)

with c1 being the constant that can be determined by applying
the condition H(r0) = r0. Using this condition, we obtain

c1 =
3
(
β2 + 6πβ + 8π2

)
h3nρ0�

(
3n,

(
r0
h2

) 1
n
)

β + 3π
+ r0.

(24)

Substituting this back into Eq. (30) results in the following
expression for the shape function as

H(r) =
3
(
β2 + 6πβ + 8π2

)
h3nρ0�

(
3n,

(
r0
h2

) 1
n
)

β + 3π
+ r0

−
3
(
β2 + 6πβ + 8π2

)
h3nρ0�

(
3n,

(
r
h2

) 1
n
)

β + 3π
.

(25)

Figure 1 verifies the condition of asymptotic flatness for
the above shape function and we find the ratio of H(r) to r
approaches zero when r approaches infinity. The other four
conditions are also plotted in the same figure from which
we also observe the fulfilment of the so-called flaring-out
condition. Another requirement for H(r) to be fulfilled is
that it must be less than r for all values of r . The upper right
graph reveals the location of the WH throat at r0 = 0.5,
where the curve H(r)− r crosses the radial axis. Finally, the
resulting matter variables (13)–(15) in terms of the function
(25) are

ρ = 1

h3

[
r3ρ0e

−
(

r
h2

) 1
n
]
, (26)

Pr = 1

2(β + 2π)(β + 4π)r3

[
1

h3(β + 3π)

×
{
β(β + 2π)(β + 4π)r3ρ0e

−
(

r
h2

) 1
n
}

− 1

β + 9.42478

{
3
(
β + 6.28319

)

×
(

0.166667β + h3nρ0(β2 + 18.8496β + 78.9568)�

×
(

3n,
(0.5

h2

) 1
n

)
ρ0 − (

β2 + 18.8496β + 78.9568
)

× �

(
3n,

( r

h2

) 1
n

)
+ 1.5708h3nρ0

)}]
, (27)

Pt = − 1

4(β + 2π)(β + 4π)r3

[
1

h3(β + 3π)

×
{
(β + 2π)(β + 4π)(β + 6π)r3ρ0

× e
−
(

r
h2

) 1
n
}

− 1

β + 9.42478

{
3(β + 6.28319)

× (
0.166667β + h3nρ0

{
(β2 + 18.8496β + 78.9568)�

×
(

3n,
(0.5

h2

) 1
n

)
− (β2 + 18.8496β + 78.9568)

× �

(
3n,

( r

h2

) 1
n

)}
+ 1.5708

)}]
. (28)

Energy conditions are key constraints in theoretical
physics because they influence the distribution of energy and
momentum within the fabric of spacetime. These conditions
are crucial for fully comprehending the interactions between
matter and energy. The universe is made up of several sub-
stances, such as ordinary/baryonic matter, dark and exotic
fluids, and dark energy. Variations in the behavior of each cat-
egory depend on the specific physical conditions under con-
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sideration. Hence, determining the viable geometry proves
to be a considerable challenge for researchers in this field.

Achieving a traversable WH requires violating these con-
ditions. Exotic matter is confirmed to exist when energy con-
straints are violated. The recognized categories include four
types: null (NECs), weak, dominant, and strong. The satis-
faction of NECs has a profound impact on the other bounds
in such a way that failure to meet NECs leads to the violation
of all others. In conclusion, our analysis of WH solutions is
entirely centered on NECs. They are given as [87–91]

ρ + Pr ≥ 0, ρ + Pt ≥ 0.

In Fig. 2, the plots of NECs are illustrated for the solu-
tion (26)–(28) with parameters ρ0 = 2, n = 2, 3, β =
0.5, 1.5, 2.5, 3.5, 4.5, and h = 1. These plots demonstrate
how the conditions respond to different values of the param-
eters. It is found that the NECs are not satisfied, regardless
of the parametric values used. This result highlights a sig-
nificant conclusion that the possible theoretical model for
a traversable WH contains exotic fluid. The significance of
this discovery lies in its potential to impact future scientific
investigations and practical uses in WH physics, setting the
stage for additional exploration and validation.

3.2 Case 2: variable redshift function

Assuming a variable redshift function in the study of
traversable WHs is also crucial. Unlike constant redshift
functions, which imply a uniform gravitational field, variable
redshift functions allow for a more nuanced understanding
of how gravitational effects can change with distance. This
variability can lead to different causal structures and stability
conditions for the WH, influencing the feasibility of travers-
ing these structures. Following this, we adopt the redshift
function as σ(r) = −2λ

r with λ being a free parameter. We
firstly equate Eqs. (10) and (19) to calculate the shape func-
tion, however, the resulting equation becomes so complex
such that it is unable to be solved analytically. So we use
another approach by equating the effective energy density
(13) and (19), resulting in the differential equation expressed
by

H ′(r)
8πr2 = ρ0e

−( rh )
1
n
. (29)

The shape function in the light of above equation has the
following expression

H(r) = c2 − 8πh3nρ0�

(
3n,

( r
h

) 1
n
)

. (30)

The constant c2 can be extracted by applying the condition
H(r0) = r0 given by

c2 = 8πh3nρ0�

(
3n,

(r0

h

) 1
n
)

+ r0, (31)

whose substitution into Eq. (30) results in the ultimate expres-
sion for H(r) as

H(r) = 8πh3nρ0�

(
3n,

(r0

h

) 1
n
)

−8πh3nρ0�

(
3n,

( r
h

) 1
n
)

+ r0. (32)

The behavior of the shape function is illustrated in Fig. 3.
All the conditions involving flaring-out and asymptotic flat-
ness are observed to be fulfilled. Further, the throat is found
to be the same as we already determined in the case of con-
stant redshift, i.e., r = 0.5. The final expressions of fluid
triplet for the shape function (32) are presented as

ρ = e−
(
r
h

) 1
n

(β + 6.28319)(β + 12.5664)r5

×
[(

1.0472βλ + 8.37758rβ + 78.9568r

)

× h3r4ρ0 + βλe
(
r
h

) 1
n

×
{
h3nρ0

(
(1.0472r − 2.0944λ)�

(
3n, 0.5

1
n

(
1

h

) 1
n
)

+ (2.0944λ − 1.0472r)�

(
3n,

(
r

h

) 1
n
))

− 0.0416667λ + (0.0833333λ + 0.0208333)r

}]
,

(33)

Pr = 1

48(β + 2π)(β + 4π)r5

×
[{

16πβr4ρ0(4r − λ)e−
(
r
h

) 1
n + 48λr2(β + 2π)

− 4rβλ2
}

4r − 192

{
r2(1.β + 6.28319)

− 0.166667βλ2 + λr(2.08333β + 12.5664)

}

×
{

0.0625 + h3nρ0π�

(
3n, 0.5

1
n

(
1

h

) 1
n
)

− 3.14159h3nρ0 × �

(
3n,

(
r

h

) 1
n
)}]

, (34)

Pt = 1

48(β + 2π)(β + 4π)r5

×
[

96

{
(β + 6.28319)r2 − (1.66667β + 12.5664)λ2

+ (2.83333β + 18.8496)λr

}

×
{
h3nρ0π�

(
3n, 0.5

1
n

(
1

h

) 1
n
)

− 3.14159h3nρ0
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Fig. 1 Shape function (25) versus r

Fig. 2 NECs for case 1
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× �

(
3n,

(
r

h

) 1
n
)

+ 0.0625

}

+ 4rλ

(
5βλ − 6βr + 12π(λ − r)

)

− 16πr3ρ0 × e
−
(

r
h

) 1
n (

β(2r − 5λ) + 12π(r − λ)

)]
.

(35)

The analysis of NECs is depicted in Fig. 4 by utilizing the
same values of all parameters which are already used in the
case of constant redshift. The plots confirm that the NECs
are unsatisfied across the whole domain, irrespective of the
chosen values for β and n. This non-fulfillment of the NECs
implies that the chosen parameter configuration is crucial
for achieving the a traversable WH model. This points to
the possible limitations, indicating that achieving the desired
WH models could be problematic with alternative parametric
choices or when we are working in other gravity theories.
This illustrates the necessity for continued investigation to
modify these choices to satisfy the criteria for the existence
of a traversable WH.

4 Active gravitational mass

We explore the active gravitational mass related to the dark
matter WHs in this section. Active gravitational mass is
defined within the context of the WH’s geometry, particu-
larly from the throat radius r0 to the outer boundary at radius
r . It is calculated using the following expression

MA = 4π

∫ r

r0

r2ρ(r)dr, (36)

which indicates that the mass increases as one approaches the
throat. This relationship highlights the significant role of the
throat in dictating the gravitational influence of the WH, as
the active mass contributes to the overall gravitational field
experienced in its vicinity. It must be mentioned here that the
active gravitational mass and the complexity factor (which
shall be discussed in the next section) are originally defined
from 0 up to some value of r . However, in the case of WHs, the
lower limit cannot be 0 because this point does not belong to
the manifold. While discussing such hypothetical structures,
this limit becomes r0 to r with r ∈ (r0,∞) to properly define
both the above quantities [92]. We also note that the standard
definition demands r0 = 0, but this case must be discarded
to ensure a finite size of the WH throat.

In the case of constant redshift function, the above mass
can be calculated by using Eq.(26) as

MA = 4π

(β + 2π)(β + 4π)

[
h3nρ0�

(
3n,

(
0.5

h2

) 1
n
)

×
(

β2 + 6πβ + 8π2
)

− h3nρ0�

(
3n,

(
r

h2

) 1
n
)

×
(

β2 + 6πβ + 8π2
)

+ 0.1667(β + 3π)

]
. (37)

However, we obtain much lengthy expression of the mass
function corresponding to the variable redshift and thus
its value is not provided here. The behavior of MA for a
traversable WH analogous to both the cases is shown in Fig. 5
using already chosen values of Einasto index and f (R, T )

model parameter. We observe that the plots initially take the
negative values and then increase when r grows. It is impor-
tant to highlight here that the mass becomes negative near
the WH throat. The occurrence of negative mass in a cer-
tain spatial area implies the existence of exotic matter and a
breach of energy conditions. Such a behavior also confirms
the existence of traversable WH models for both the consid-
ered redshift cases.

5 Complexity factor in wormholes

In 2018, Herrera proposed a comprehensive definition of the
complexity for compact objects exhibiting a static spherical
symmetry [93]. He used the Bel’s idea of splitting the cur-
vature tensor orthogonally and derived some scalars, one of
them was referred to the complexity factor. The formulation
of this factor was based on the systems which are simple
or minimally complex, characterized by isotropic pressure
and uniform energy density. A zero complexity factor char-
acterizes this type of fluid distribution. To analyze different
cosmic stellar solutions, including Bondi and axial metrics,
the complexity factor has been investigated [94–100]. Addi-
tionally, the complexity factor of compact systems coupled
with anisotropic pressure and inhomogeneous energy den-
sity reduces to zero only when their effects cancel each other
[101–108]. For the case of modified f (R, T ) gravity, the
complexity factor is specified in the following manner

YT F (r) = 8π�(1 + β) − 4π

r3

∫ r

r0

r3ρ′(r)dr, (38)

with � = Pr − Pt being the anisotropic pressure. When
putting the values of the fluid triplet (26)–(28) for the case
of constant redshift, we get the following expression

YT F = 2πβ(3β + 6π + 1)

r3(β + 2π)(β + 4π)
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Fig. 3 Shape function (32) versus r

Fig. 4 NECs for case 2

×
[(

β2 + 6πβ + 8π2)hrρ0e
−
(

r
h2

) 1
n
(

r

h2

) 1
n −1

×
(

r

h2

) 3n−1
n + 3

(
β2 + 6πβ + 8π2)h3nρ0�

×
(

3n,

(
r

h2

) 1
n
)

− 3
(
β2 + 6πβ + 8π2)h3nρ0

× �

(
3n,

(
0.5

h2

) 1
n
)

− 0.5(β + 3π)

]
. (39)
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Fig. 5 Active gravitational mass for cases 1 (left) and 2 (right)

Figure 6 depicts the variation of the complexity factor with
respect to the radial coordinate r for case 1. As r extends
towards infinity or moves farther from the WH throat, YT F

is seen to approach zero. With the increase in radial coordi-
nates, YT F reduces towards zero, while the complexity ele-
ment slowly progresses towards the WH throat and becomes
maximum near this point.

On the other hand, the expression for the complexity factor
corresponding to case 2 is not provided due to its lengthy
expression, however, its graphical representation is shown
in Fig. 6 (right plot). The graph shows that the factor YT F

possesses the same behavior as found in case 1.

6 Stability evaluation

Celestial geometries are difficult to study because their per-
sistent response to external disturbances complicates the
extraction of valuable insights. The formulation of scientific
models and the development of reliable hypotheses about
the structure’s evolution can be impeded by these disturb-
ing factors. Evaluating the validity of celestial bodies is sig-
nificantly reliant on their stability, which is fundamental in
selecting which objects deserve a more detailed investigation.
Here,“stability” illustrates the ability of a celestial geometry
to uphold its structure over long timescales even when influ-
enced by external disturbances.

The stability of WH structures is more often analyzed
through quasinormal modes [109,110] as the study of crack-
ing and adiabatic index is valuable for interior solutions.
However, there exist some works in this context that agree
with the exploration of sound speed and cracking approach in
order to analyze the stability of developed WH models [111–
113]. We, therefore, proceed with the later methodologies in
the following subsections to check whether our constructed
solutions are stable or not.

6.1 Causality and cracking

The rate at which sound or pressure waves travel through dif-
ferent materials is known as sound speed. This investigation

focuses on the rate at which these waves propagate through
the WH. The findings show how internal pressure can coun-
teract the gravitational effects present within the WH. To
avoid collapse and maintain stability, a WH requires enough
pressure to counter the effects of gravity. The presence of
internal disturbances might lead to instability in the WH.
Under the causality condition, the speed of sound must be
restricted to the interval [0, 1] [114,115]. The way in which
pressure’s change with respect to density is represented by
the components given below

v2
r = dPr

dρ
, v2

t = dPt
dρ

.

The pressure variations due to internal forces are measured
by the radial component. Also, the other factor assesses the
object’s response to external pressure. Figure 7 displays the
plots of these components, showing the agreeable profile.

The concept of cracking, as introduced by Herrera [116],
is utilized to address inconsistencies in self-gravitating sys-
tems, such as WHs. His study suggests that stability in a
self-gravitating system is maintained when the absolute dif-
ference between the sound speed components lies within the
interval of 0 to 1, such that 0 ≤ |v2

t − v2
r | ≤ 1. The plots in

Fig. 8 show physically valid WH structures for all values of
β and n.

6.2 Adiabatic index

This factor, which yields crucial insights into fluid thermo-
dynamics, is also important for assessing the stability of
celestial systems such as neutron stars, WHs and others. The
energy flow within a spacetime configuration is better under-
stood through this factor. For the system to be stable, the
factor � must be greater than 4

3 . If this limit is not fulfilled,
the system will become unstable [117–120]. Here are the
expressions for this across two distinct directions as

�r = ρ + Pr
Pr

d Pr
dρ

, �t = ρ + Pt
Pt

d Pt
dρ

.
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Fig. 6 Complexity factor for cases 1 (left) and 2 (right)

Fig. 7 Causality for cases 1 (upper) and 2 (lower)

Fig. 8 Cracking for cases 1 (left) and 2 (right)

123



 1187 Page 12 of 14 Eur. Phys. J. C          (2024) 84:1187 

Fig. 9 Adiabatic index for cases 1 (upper) and 2 (lower)

Such a statement may not be promising as the above condition
is necessary but not a sufficient one. Its main drawback is that
it does not include the anisotropic factor in its explicit form,
which plays a fundamental role in the stability of the fluid
distribution. Indeed, according to Chandrasekhar [121], the
condition for the stability of a Newtonian isotropic sphere
is � > 4

3 (for details, see [122]). However, this condition
changes for a relativistic isotropic sphere [122], and more so
for an anisotropic general relativistic (or Newtonian) sphere.
A thorough discussion on the influence of the anisotropy
on the stability of the fluid configuration, in terms of the
adiabatic index was carried on in [123–126]. It was found
that in the Newtonian limit, the unstable range of � is given
by

� <
4

3
−

[
4

3

Pr0 − Pt0
|P ′

r0|r
]
max

,

where the subscript 0 denotes the quantity before perturbation
(in equilibrium). We, therefore, conclude that the pressure
anisotropy in this case may decrease or increase the range
of instability, depending on the sign of the anisotropic fac-
tor. In the post-Newtonian approximation, the corresponding
expression reads

� <
4

3
−

[
4

3

Pr0 − Pt0
|P ′

r0|r
− 8π Pr0r

3|P ′
r0|

]
max

,

indicating that the anisotropic factor remains the same, and
the gravitational term increases the unstable range of � due
to the regenerative effect of the radial pressure.

As shown in Fig. 9, stable WH solutions are attained
because the requisite condition is satisfied in modified
f (R, T ) gravity. The successful formulation of the WH mod-
els in stability tests leads us to conclude that this modified
theory is trustworthy for analyzing WH solutions derived
from both constant and variable redshift functions.

7 Conclusions

This paper is aimed at observing the effect of EDP model on
the possible existence of WH geometries within the frame-
work of modified f (R, T ) theory. We have started our analy-
sis with the introduction of modified theory and developed the
corresponding anisotropic equations of motion using a mini-
mal model. The EDP model has then been taken into account
to discuss the imprints of dark matter halos on the formulat-
ing solutions. After this, we have assume two different cases
of the redshift function such as constant and variable, and
determined their corresponding shape functions. Both shape
functions admitted the integration constants which have been
calculated through the condition H(r0) = r0. The NECs
have also been checked for both models by adopting differ-
ent parametric values. Further, the active gravitational mass,
complexity factor and stability tests have also been discussed
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from which we found some interesting results. The key points
of our investigation are enclosed in the following.

• The shape functions for both cases 1 and 2 meet all
required conditions, including the flatness condition,
which is satisfied for positive values of H (Figs. 1 and 3).
The throat is found to be 0.5 in both cases. The validation
of the shape functions’ criteria confirm their applicability
in deriving WH solutions.

• We have chosen specific parametric values as n = 2, 3,
h = 1, ρ0 = 2, and β = 0.5, 1.5, 2.5, 3.5, 4.5 to further
analyze the NECs and find them in the negative range
(Figs. 2 and 4). The consistent failure of NECs across
various parametric choices suggests that exotic matter is
present in the WH throat. Therefore, the identification of a
traversable WH solution has been achieved successfully.
Also, it is crucial to keep in mind that the existence of WH
structures is contingent upon specific parameter values.
Adjusting these values could lead to a major change in
the observed outcomes.

• The profile of the active gravitational mass is also dis-
cussed. We find this to be negative in certain regions, in
particular, near the throat of WH (Fig. 5). However, this
is not entirely based on the violation of the NECs since
negative densities can lead to positive masses because
what matters is the area under the curve. Furthermore, a
negative mass implies repulsive gravity. But in the cur-
rent scenario, this negative behavior might be occurred
due to two particular shape functions which are derived
by using EDP that provides some key parameters to accu-
rately describe different dark matter halos or galaxy clus-
ters.

• Moreover, we derive the complexity factor through
orthogonal splitting of the Riemann tensor in this modi-
fied theory by following the Herrera’s recently proposed
definition [93]. The inverse trend between radial coordi-
nate and YT F shows that the complexity factor reaches
its maximum near the WH throat and approaches zero as
it moves farther from this point (Fig. 6).

• A comprehensive analysis of the model’s stability is also
performed. Different stability tests have been applied
to the resulting two models and we conclude that each
of them demonstrates stability under all the evaluated
approaches (Figs. 7, 8, 9).

It is important to highlight that the developed results are
found to be consistent with existing works under the assump-
tion of a linear equation of state [16,49,50]. Furthermore, the
results of this study are well-aligned with observations from
other gravity theories, such as GR [127] and f (R) frame-
work [128]. We can reduce our results in GR by substituting
β = 0 in the model (9).

Acknowledgements Baiju Dayanandan acknowledges support from
the Authority of University of Nizwa, Nizwa, Sultanate of Oman.

Funding This research received no external funding.

Data Availability Statement My manuscript has no associated data.
[Authors’ comment: No additional data were analyzed or created as part
of this study.]

Code Availability Statement My manuscript has no associated code/
software. [Authors’ comment: Code/Software sharing not applicable to
this article as no code/software was generated or analysed during the
current study.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. A.G. Riess et al., Astron. J. 116, 1009 (1998)
2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)
3. S. Perlmutter et al., Astrophys. J. 483, 565 (1997)
4. S. Perlmutter et al., Nature 391, 51 (1998)
5. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)
6. H.A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970)
7. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003)
8. Y.S. Song, W. Hu, I. Sawicki, Phys. Rev. D 75, 044004 (2007)
9. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

10. T. Naseer, M. Sharif, Phys. Dark Univ. 46, 101595 (2024)
11. T. Naseer, M. Sharif, Eur. Phys. J. C 84, 554 (2024)
12. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys.

Space Sci. 342, 155 (2012)
13. S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 11,

1460006 (2014)
14. A.S. Agrawal, S.K. Tripathy, B. Mishra, Chin. J. Phys. 71, 333

(2021)
15. O. Bertolami, C.G. Boehmer, T. Harko, F.S.N. Lobo, Phys. Rev.

D 75, 104016 (2007)
16. T. Naseer, M. Sharif, A. Fatima, S. Manzoor, Chin. J. Phys. 86,

350 (2023)
17. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84,

024020 (2011)
18. X.M. Deng, Y. Xie, Int. J. Theor. Phys. 54, 1739 (2015)
19. C.P. Singh, P. Kumar, Eur. Phys. J. C 74, 1 (2014)
20. M. Sharif, M. Zubair, Gen. Relativ. Gravit. 46, 1723 (2014)
21. E.H. Baffou et al., Astrophys. Space Sci. 356, 173 (2015)
22. P.V. Tretyakov, Eur. Phys. J. C 78, 896 (2018)
23. S.K. Maurya, A. Errehymy, D. Deb, F. Tello-Ortiz, M. Daoud,

Phys. Rev. D 100, 044014 (2019)
24. S.K. Maurya, A. Errehymy, K. Newton Singh, F. Tello-Ortiz, M.

Daoud, Phys. Dark Univ. 30, 100640 (2020)
25. P. Rudra, K. Giri, Nucl. Phys. B 967, 115428 (2021)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 1187 Page 14 of 14 Eur. Phys. J. C          (2024) 84:1187 

26. G.A. Carvalho, F. Rocha, H.O. Oliveira, R.V. Lobato, Eur. Phys.
J. C 81, 134 (2021)

27. J.M.Z. Pretel, S.E. Jorás, R.R.R. Reis, J.D.V. Arbañil, J. Cosmol.
Astropart. Phys. 04, 064 (2021)

28. C.Y. Chen, Y. Reyimuaji, X. Zhang, Phys. Dark Univ. 28, 101130
(2022)

29. M. Zubair, Q. Muneer, S. Waheed, Int. J. Mod. Phys. D 31,
2250092 (2022)

30. Y. Feng et al., Phys. Scr. 99, 085034 (2024)
31. T. Naseer, M. Sahrif, Fortschr. Phys. 71, 2300004 (2023)
32. M. Sharif, T. Naseer, Class. Quantum Gravity 40, 035009 (2023)
33. T. Naseer, M. Sharif, Phys. Scr. 99, 035001 (2024)
34. T. Naseer, M. Sharif, Commun. Theor. Phys. 76, 095407 (2024)
35. T. Naseer, M. Sharif, Phys. Scr. 99, 075012 (2024)
36. C.W. Misner, J.A. Wheeler, Ann. Phys. 2, 525 (1957)
37. C.W. Misner, Phys. Rev. 118, 1110 (1960)
38. J.A. Wheeler, Ann. Phys. 2, 604 (1957)
39. J.A. Wheeler, Int. J. Mod. Phys. A 3, 2207 (1988)
40. A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935)
41. J.A. Wheeler, Phys. Rev. 97, 511 (1955)
42. M. Sharif, T. Naseer, Indian J. Phys. 97, 2853 (2023)
43. M. Sharif, T. Naseer, Chin. J. Phys. 85, 41 (2023)
44. R.W. Fuller, J.A. Wheeler, Phys. Rev. 128, 919 (1962)
45. M.S. Morris, L.S. Thorne, Am. J. Phys. 56, 395 (1988)
46. M. Visser, Phys. Rev. D 39, 3182 (1989)
47. S. Sushkov, Phys. Rev. D 71, 043520 (2005)
48. F.S.N. Lobo, Phys. Rev. D 71, 084011 (2005)
49. N.S. Kavya, V. Venkatesha, G. Mustafa, P.K. Sahoo, S.V.D.

Rashmi, Chin. J. Phys. 84, 1 (2023)
50. R. Solanki, Z. Hassan, P.K. Sahoo, Chin. J. Phys. 85, 74 (2023)
51. E. Contreras, P. Bargueño, Int. J. Mod. Phys. D27, 1850101 (2018)
52. F. Tello-Ortiz, E. Contreras, Ann. Phys. 419, 168217 (2020)
53. Z. Hassan, G. Mustafa, P.K. Sahoo, Symmetry 13, 1260 (2021)
54. O. Sokoliuk, Z. Hassan, P.K. Sahoo, A. Baransky, Ann. Phys. 443,

168968 (2022)
55. Z. Hassan, S. Ghosh, P.K. Sahoo, K. Bamba, Eur. Phys. J. C 82,

1116 (2022)
56. A. Errehymy, S. Hansraj, S.K. Maurya, C. Hansraj, M. Daoud,

Phys. Dark Univ. 41, 1012 (2023)
57. A. Errehymy et al., Ann. Phys. 535, 2300178 (2023)
58. A. Rueda, E. Contreras, Ann. Phys. 459, 169540 (2023)
59. A. Errehymy, Phys. Dark Univ. 44, 101438 (2024)
60. A. Errehymy et al., Chin. J. Phys. 89, 56–68 (2024)
61. J. Einasto, Astron. Nachr. 291, 97 (1969)
62. J. Einasto, Astrofizika 5, 137 (1969)
63. J. Einasto, Proceedings of the First European Astronomical Meet-

ing Athens; Stars and the Milky Way System, vol. 2, p. 291 (1972)
64. P.D. Alvarez et al., J. Cosmol. Astropart. Phys. 2021, 019 (2021)
65. J.S. Peracaula, Europhys. Lett. 134, 19001 (2021)
66. C. Moreno-Pulido, J.S. Peracaula, Eur. Phys. J. C 82, 551 (2022)
67. J.S. Peracaula et al., Universe 9, 262 (2023)
68. J.C. Pérez, J.S. Peracaula, Phys. Dark Univ. 43, 101406 (2024)
69. T. Harko et al., Phys. Rev. D 84, 024020 (2011)
70. G.A. Carvalho et al., Eur. Phys. J. C 77, 871 (2017)
71. T.M. Ordines, E.D. Carlson, Phys. Rev. D 99, 104052 (2019)
72. M.J.S. Houndjo, O.F. Piattella, Int. J. Mod. Phys. D 21, 1250024

(2012)
73. M.F. Shamir, Eur. Phys. J. C 75, 354 (2015)
74. M. Sharif, T. Naseer, Ann. Phys. 459, 169527 (2023)
75. T. Naseer, M. Sharif, Fortschr. Phys. 72, 2300254 (2024)
76. M. Sharif, T. Naseer, Phys. Scr. 98, 115012 (2023)
77. M. Sharif, T. Naseer, Eur. Phys. J. Plus 139, 86 (2024)
78. D. Merritt, A.W. Graham, B. Moore, J. Diemand, B. Terzić,
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