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Abstract
The kicked top is one of the paradigmatic models in the study of quantum chaos
(Haake et al 2018 Quantum Signatures of Chaos (Springer Series in Syner-
getics vol 54)). Recently it has been shown that the onset of quantum chaos
in the kicked top can be related to the proliferation of Trotter errors in digital
quantum simulation (DQS) of collective spin systems. Specifically, the prolif-
eration of Trotter errors becomes manifest in expectation values of few-body
observables strongly deviating from the target dynamics above a critical Trotter
step, where the spectral statistics of the Floquet operator of the kicked top can
be predicted by random matrix theory. In this work, we study these phenom-
ena in the framework of Hamiltonian learning (HL). We show how a recently
developed HL protocol can be employed to reconstruct the generator of the stro-
boscopic dynamics, i.e., the Floquet Hamiltonian, of the kicked top. We further
show how the proliferation of Trotter errors is revealed by HL as the transi-
tion to a regime in which the dynamics cannot be approximately described by
a low-order truncation of the Floquet–Magnus expansion. This opens up new
experimental possibilities for the analysis of Trotter errors on the level of the
generator of the implemented dynamics, that can be generalized to the DQS of
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quantum many-body systems in a scalable way. This paper is in memory of our
colleague and friend Fritz Haake.

Keywords: kicked top, digital quantum simulation, Hamiltonian learning, quan-
tum chaos, Trotter errors

(Some figures may appear in colour only in the online journal)

Preamble: dedication to the memory of Fritz Haake

This paper is dedicated to the memory of Fritz Haake. I remember vividly the Les
Houches summer school 1995, where Fritz was teaching quantum chaos, and I taught
a course on quantum optics in the early days of quantum information. As a younger
generation quantum optics theorist, I had admired Fritz’contribution to theoretical quan-
tum optics, and here we were, having breakfast together and talking physics, when Fritz
pointed up to Mont Blanc and said: we should try to climb it. We spent the morning buy-
ing mountaineering equipment, and next morning we were on top of Mont Blanc, back
to teaching early next day. This was Fritz, an enthusiastic and deep theoretical physi-
cist, and an energetic sportsman, always ready for adventures and pushing limits, from
science to sports. Our friendship continued, not only in off-piste skiing at the Obergurgl
conferences and heli-skiing in Canada, but also in physics. It is now two years ago that
we finished a paper together at the interface of quantum chaos and digital quantum sim-
ulation, and we will report on some newer developments below. Fritz will stay in our
memory, not only as a gifted theoretical physicist and friend, but also as somebody who
saw and lived science as an international effort, where scientists are united by the com-
mon goal and endeavor to discover and understand, building bridges, and beyond any
national boundaries and cultural identities.

–Peter Zoller

1. Introduction

The kicked rotor and the kicked top as periodically driven quantum systems represent paradig-
matic models in studying quantum chaos (see chapter 8 in [1]), which have played a central
role in the discussion of phenomena like quantum localization and relation to random matrix
theory (RMT). In recent collaborative work with Fritz Haake [2] we have pointed out that the
well-studied problem of the transition from regular to chaotic dynamics, as observed in the
kicked top as a function of the driving frequency, sheds new light on and provides a phys-
ical interpretation of Trotter errors in digital quantum simulation (DQS)—a highly relevant
problem in the focus of today’s effort to ‘program’ quantum many-body dynamics on quan-
tum computers. In DQS, the unitary evolution U(t) = e−iHt generated by a Hamiltonian H is
simulated by decomposition into a sequence of quantum gates [3]. This can be achieved via a
Suzuki–Trotter decomposition [4, 5], which approximately factorizes the time evolution oper-
ator in Trotter time steps of size τ (see figure 1(a)). While the ‘correct’ evolution operator
U(t) will emerge in the limit of Trotter stepsize τ → 0, in practice the finite fidelity of quan-
tum gates makes it desireable to take as large Trotter steps as possible [6]. The observation of
references [2, 7, 8] was that the error associated with a finite Trotter step size shows a sharp
threshold behavior: while for a small time step τ < τ ∗ Trotterized time evolution provides a
faithful representation of the desired dynamics, in the regime τ > τ ∗ Trotter errors proliferate.
This behavior is in correspondence to a transition from regular motion to quantum chaos in
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Figure 1. DQS of quantum many-body systems, and quantum dynamics of the kicked
top. (a) DQS considers time evolution with a many-body Hamiltonian H =

∑
i hi, which

is approximated by a series of Trotter blocks Uτ . These are constructed from elemen-
tary gate operations, e.g. {e−iτhi}, so that Uτ =

∏
ie
−iτhi . A single Trotter block can

be expressed as Uτ = e−iHF(τ )τ , where HF(τ ) denotes the Floquet Hamiltonian that, for
sufficiently small τ , can be written as a Floquet–Magnus (FM) expansion (see also
equations (2) and (3)): HF(τ ) = C0 + τC1 + τ 2C2 + · · ·. Here C0 = H is the desired
target Hamiltonian, and the Ck>0 reflect Trotter errors consisting of higher-order com-
mutators of the operators hi according to the Baker–Campbell–Hausdorff formula.
(b) Trotter block in DQS for kicked top dynamics which consists of spin precession
(e−iHxτ ) and non-linear kicks (e−iHzτ ) of a single spin. (c) HL provides an experimen-
tally feasible protocol to reconstruct the Hamiltonian that governs the dynamics in a
DQS experiment up to a given order K in the FM expansion, i.e., H(K)

F =
∑K

k=0 τ
kCk.

The distance between the reconstructed Hamiltonian Hrec and H(K)
F serves as a quanti-

fier to study the Trotter threshold τ ∗ for the transition from regular to chaotic dynamics
(shown here schematically).

Floquet systems when the driving frequency is decreased [9, 10]. While the ultimate goal of
DQS is to simulate complex quantum many-body systems with finite range interactions (see
recent advances in references [11–23]), the features of a Trotter threshold are already visible in
simple models. This leads us back to the kicked top, which—while being intrinsically a single
particle problem (for a ‘large’ spin S)—can also be interpreted as Trotterized time evolution
of a many-body spin-model with infinite range interactions. Thus, the kicked top can serve as
a testing ground, both theoretically and experimentally, for the phenomenology of the Trotter
threshold.

In this work, we discuss the Trotter threshold from the perspective of ‘Hamiltonian learning
(HL)’, and we choose the kicked top as a simple model system displaying pertinent fea-
tures. The discussion is based on the HL framework for the characterization of Trotterized
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DQS of many-body systems developed by us in reference [24],5 which we adapt and extend
here to study the Trotter threshold and the transition to quantum chaos in the kicked top [2].
HL is presently being developed as a new tool in quantum information theory in the con-
text of quantum many-body systems and quantum simulation [25–37]. In the present context,
we can phrase HL as follows: we consider quench dynamics of a many-body spin system,
|ψ(t)〉 = e−iHt|ψ(0)〉, where the system is initially prepared in the state |ψ(0)〉 and evolves
under a (time-independent) Hamiltonian H to a final state |ψ(t)〉 at time t. The goal is to learn
the operator content of H, i.e., a tomographic reconstruction of H from measurements on |ψ(t)〉.
The key to an efficient learning of H from experimental observations is that a physical many-
body Hamiltonian consists of a small (polynomial) number of terms, i.e., the operator content
of H will be limited to one-body, quasi-local two-body terms etc, while the many-body wave
function lives in a Hilbert space of dimension scaling exponentially with the number of con-
stituents. HL thus becomes efficient by having to learn only a sufficiently small number of
coupling coefficients in the Hamiltonians, while testing for presence of additional terms, and
thus verifying the learned Hamiltonian structure with more data. In the following we apply
these ideas to the kicked top, viewed as DQS of a collective spin system.

The kicked top combines precession of the spin S of the top around the x-axis with τ -
periodic non-linear ‘kicks’ around the z-axis, according to the time-dependent Hamiltonian

HKT(t) = Hx + τHz

∑
n∈Z

δ(t − nτ ), (1)

where Hx = hxSx and Hz = JzS2
z/(2S + 1) with quantum angular momentum operators Sμ with

μ = x, y, z. The evolution operator generated by HKT(t) over a single period of duration τ can
be equivalently described in terms of a Floquet operator

Uτ = e−iHzτe−iHxτ ≡ e−iHF(τ )τ , (2)

as illustrated in figure 1(b). The dynamics of the kicked top is quantum chaotic iff the spectral
statistics of Uτ can be described by one of Dysons’s ensembles of random matrices [1]. Indeed,
while RMT was initially applied in physics by Wigner to understand the distribution of nuclear
spectra (see [38] for a review on RMT in nuclear physics), it forms now the basis for the study
of quantum chaos. It is indeed a defining feature of quantum chaotic systems that their spectral
statistics are universal and obey predictions from RMT [1, 39].

Alternatively equation (2) constitutes the elementary gate sequence of a DQS that aims at
approximating the Hamiltonian H = Hz + Hx according to e−iHt ≈ Un

τ=t/n, where t denotes
the total simulation time which is split into n steps of duration τ = t/n. We emphasize that the
accuracy of this approximation does not only depend on the Trotter step τ , but also on the Trot-
ter sequence that can be chosen to compensate Trotter errors up to a given orderO(τ k) [40, 41].
Equation (2) also defines the Floquet Hamiltonian HF(τ ). For sufficiently small τ , the Floquet
Hamiltonian can be written as a FM expansion, i.e., employing Baker–Campbell–Hausdorff
formulas,

HF(τ ) = Hx + Hz + i
τ

2
[Hx, Hz] + · · · (3)

which is a series expansion in the Trotter stepsize τ , written here up to first order, with the
higher order terms taking the form of nested commutators of Hx and Hz (see section 2 below).

5 The protocol developed in [24] further extends to the learning of Liouvillians, for the characterization of dissipative
dynamics.
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The question of convergence of this series is intrinsically connected with the transition from
regular to chaotic dynamics at a specific τ ∗. From a DQS point of view, in the limit τ → 0, the
Floquet Hamiltonian reduces to H = Hz + Hx , as the desired Hamiltonian ‘to be simulated’ on
a quantum device. Higher order terms in τ represent Trotter errors.

While in traditional discussions of DQS, Trotter errors are quantified in terms of Trotter
bounds, ‖Uτ − e−iHτ‖ ≡ O(τ k) [42–44], HL goes beyond in quantifying these errors by learn-
ing terms order by order of the FM expansion in an experimentally feasible protocol [24].
Central to our work below is the toolset built into HL which quantifies errors of an Ansatz
Hamiltonian, e.g., as a truncated FM series equation (3), to represent the experimental HF(τ ).
This will be our key quantifier in studying the Trotter threshold τ∗ (see figure 1(c)). Thus our
work goes significantly beyond references [2, 7, 8], where the Trotter threshold was studied
only for low-order observables. While our discussion below will focus on the kicked top as a
simple model system, we emphasize that the main results and conclusions carry over to char-
acterizing Trotter errors in DQS of quantum many-body systems from many-body models in
condensed matter physics, to quantum chemistry or high energy physics.

This paper is organized as follows. In section 2 we briefly summarize our previous work [2]
on the Trotter threshold of the kicked top. Section 3 provides the main results of the present
work. We will start with a description of HL protocols to learn order by order, up to given
truncation cutoff K, the Floquet Hamiltonian of the kicked top, followed by a discussion of
numerical results illustrating the technique. We conclude with section 4.

2. The Trotter threshold revisited

In preparation for the discussion in section 3 on HL applied to the Floquet Hamiltonian for
the kicked top, we start by reviewing previous work, and, in particular, our collaborative work
with Fritz Haake [2].

2.1. Quantum many-body models and the kicked top

The motivation for the present study is the quantitative characterization of Trotter errors, and
the Trotter threshold in particular, in quantum many-body systems. Therefore, we find it useful
to recall some of the basic features of DQS of quantum many-body systems, which we illustrate
here for 1D spin models, in relation to the kicked top as the model system studied below.

Typical model systems of interest are one-dimensional chains of N spin-1/2 such as the
long-range Ising model with Hamiltonian

H = Hx + Hz, Hx = hx

N∑
i=1

σx
i , Hz = Jz

N∑
i< j=1

σz
iσ

z
j

|i − j|α , (4)

where σμ
i with μ = x, y, z are Pauli operators for spins on lattice sites i = 1, . . . , N. Power-law

interactions with 0 � α � 3 are routinely implemented with trapped-ion quantum simulators
[45]. The kicked top emerges in DQS in the limit α→ 0.

Before proceeding to a study of the kicked top, we recall some of the basic features of Trotter
errors and the Trotter threshold, which have emerged in our previous work. In DQS, time evolu-
tion generated by H is represented by a sequence of elementary quantum gates. This is achieved
through the approximate factorization of the time evolution operator within each Trotter step,
e−iHτ ≈ e−iHzτe−iHxτ : individual terms in the sums in Hx and Hz, respectively, commute with
each other, so that e−iHxτ and e−iHzτ can directly be decomposed into single-spin and two-spin
gates. However, due to the non-commutativity of the components of the target Hamiltonian,
[Hx, Hz] 	= 0, the factorization of the time evolution operator within a single Trotter step is
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exact only in the limit τ → 0, and any finite value τ > 0 leads to the occurrence of Trotter
errors. On the level of the generator of the dynamics, the FM expansion equation (3) suggests
that Trotter errors are perturbatively small in τ . However, a rigorous sufficient condition for
the convergence of the FM expansion [46–48] indicates that the radius of convergence scales
with system size as ∼1/N, which would imply that the FM expansion is not applicable in the
thermodynamic limit N →∞, and puts into question whether Trotter errors can be controlled
in DQS of quantum many-body systems. Addressing this question requires a suitable measure
of Trotter errors. In DQS, quantities of physical interest are typically expectation values of
few-body observables, i.e., (sums of) products of spin-1/2 operators acting on only a few dif-
ferent spins, such as σμ

i , σμ
i σ

ν
j , σμ

i σ
ν
j σ

ρ
k , etc. Therefore, it is natural to quantify Trotter errors in

terms of deviations of expectation values of few-body observables from their target values that
are obtained by time evolution generated by the target Hamiltonian H. For Ising spin chains,
in the limit α→∞ of short range interactions and for 0 � α � 3, such quantitative studies of
Trotter errors of few-body observables were carried out in references [2, 7], respectively. As
we will illustrate with a concrete example below, these studies found sharp threshold behavior,
where Trotter errors remain controlled for small Trotter steps and proliferate for τ larger than
a threshold value τ ∗.

The Trotter threshold was observed consistently over the entire range of values of power-law
interaction exponents α considered. In the limit α→ 0, DQS of the spin model in equation (4)
is directly related to the dynamics of a kicked top: for α = 0, the components of the Ising
Hamiltonian in equation (4) can be cast, in terms of collective spin operators Sμ =

∑N
i=1 σ

μ
i /2,

as Hx ∼ Sx and Hz ∼ S2
z —just as in the Hamiltonian of the kicked top in equation (1). Then,

the collective spin S2 = S2
x + S2

y + S2
z becomes a constant of motion. Consequently, the many-

body Hilbert space with dimension 2N is decomposed into decoupled subspaces of fixed total
spin S, and within each subspace, the Trotterization of equation (4) reproduces the dynamics
of a kicked top of size S. In this sense, the kicked top becomes a single-particle (i.e., a single
collective spin) toy model for the many-body Trotter threshold, where the notion of few-body
observables introduced above to quantify Trotter errors translates to low-order products of spin
operators Sμ. In the following, we give a detailed account of the Trotter threshold in the context
of the kicked top.

2.2. The kicked top and the Trotter threshold

2.2.1. Model system and Magnus expansion. Before we enter a detailed discussion of the
Trotter threshold, we introduce the following extension of the Floquet operator given in
equation (2):

Uτ = e−iHzτe−iHyτe−iHxτ = e−iHF(τ )τ . (5)

This extended Floquet operator, on which our discussion of the Trotter threshold will focus,
corresponds to DQS of a target Hamiltonian H = Hx + Hy + Hz, where

Hμ =
JμS2

μ

2S + 1
+ hμSμ. (6)

The rationale behind this choice of model, as opposed to the model for the kicked top in the
introduction, is explained in appendix A: the key difference between the Floquet operators
in equations (2) and (5) are the absence of time-reversal and geometrical symmetries as well
as resonant driving points in the latter case [1]. We choose Jz as the unit of energy, and, for
concreteness, we fix Jy = 0, Jx = 0.4Jz, hz = hy = 0.1Jz, and hx = 0.11Jz. Further, we note
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that while the FM expansion always takes the form of a power series in the Trotter step size τ ,

HF(τ ) =
∞∑

k=0

τ k Ck, (7)

for the specific case of a three-step Floquet drive in equation (5), the first few terms are
given by

C0 =
∑
α

Hα, (8)

C1 =
i
2

∑
α<β

[Hα, Hβ], (9)

C2 = −
∑
α 	=β

[Hα, [Hα, Hβ]]
12

− [Hx , [Hy, Hz]]
6

− [Hz, [Hy, Hx]]
6

, (10)

where α, β ∈ {x, y, z}.

2.2.2. Quantifying Trotter errors. Among different choices of few-body observables to quan-
tify Trotter errors, a special role is played by the target Hamiltonian itself: for τ → 0, the
Floquet operator in equation (5) reduces to time evolution generated by the time-independent
target Hamiltonian H, and the energy as measured by the expectation value of H becomes a
constant of motion. To quantify the degree to which this conservation law is obeyed in DQS,
we define the simulation accuracy [7, 49]:

QE(nτ ) =
Eτ (nτ ) − E0

ET=∞ − E0
. (11)

Energy is conserved if QE(nτ ) = 0, and the energy at time t = nτ , given by Eτ (nτ ) =
〈ψ(0)|U†n

τ HUn
τ |ψ(0)〉, equals the energy of the initial state, E0 = 〈ψ(0)|H|ψ(0)〉. In contrast,

the value QE(nτ ) = 1 indicates that the system absorbs energy from the time-periodic Floquet
drive and heats up to infinite temperature T = ∞ such that Eτ (nτ ) = ET=∞ = tr(H)/D where
D = 2S + 1 is the Hilbert space dimension.

2.2.3. Trotter threshold. The temporal average QE(t) = 1
nt

∑nt
n=1 QE(nτ ), where nt = 
t/τ� is

the number of Trotter steps corresponding to the simulation time t, is shown in figure 2(a). Here,
the initial state is chosen as a spin coherent state, |θ,φ〉 = eiθ(Sx sin(φ)−Sy cos(φ))|S, Sz = S〉, with
θ = 0.1 and φ = 0.2. At times Jzt � 20, Trotter errors, quantified by the time-averaged sim-
ulation accuracy QE(t), exhibit threshold behavior: while QE(t) increases smoothly for small
values of τ , a sudden jump to the saturation value QE(t) ≈ 1 occurs at Jzτ∗ ≈ 3.5. The Trotter
threshold persists for t →∞, and becomes sharper with increasing spin size S [2]. An analo-
gous Trotter threshold can be observed also for other few-body observables [2], and, as pointed
out above, applies also to one-dimensional spin chains with algebraic [2] and nearest-neighbor
[7] interactions, as well as bosonic models with infinite Hilbert spaces [8]. It should be noted
that generic and sufficiently short-range interacting many-body systems are expected to heat
up indefinitely when subjected to Floquet driving [9, 51, 52], so that the Trotter threshold is
washed out with QE(t) → 1 for any τ > 0 at late times. However, the heating rate is expo-
nentially small in the driving frequency [53–59]. Thus, for given finite simulation run-time,
heating can be suppressed efficiently.

Below the Trotter threshold, Trotter errors remain controlled, i.e., perturbatively small in
τ . In fact, Trotter errors are well-described by a low-order truncation of the FM expansion:
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Figure 2. Trotter threshold and transition to quantum chaos. (a) and (b) The tempo-
ral average of the simulation accuracy equation (11) exhibits threshold behavior for
Jzt � 20 (S = 128 for all lines). For t →∞ and below the threshold, the numerical data
is well-reproduced by the expansion to second order in τ given in equation (12), which is
obtained from time-dependent perturbation theory based on a low-order truncation of the
FM expansion [2]. The Trotter threshold coincides with the onset of quantum chaos: for
τ � τ∗, (c) the adjacent phase spacing ratio equation (13) and (d) the PR equation (14)
converge, for S →∞, to the CUE values rCUE ≈ 0.6 and PRCUE = 1/2 [50], respec-
tively. Below the Trotter threshold the adjacent phase spacing ratio in (c) is governed by
Poisson statistics leading to rPOI ≈ 0.39.

treating corrections to the target Hamiltonian in equation (7) in time-dependent perturbation
theory [2, 7], the long-time average of the simulation accuracy, QE = limt→∞ QE(t), can be
written as a power series in τ :

QE = q1τ + q2τ
2 +O(τ 3), (12)

with, for the parameters chosen for figure 2(a), q1 ≈ 0.007 and q2 ≈ 0.035. The good agree-
ment between this series expansion and the numerical data for τ � τ∗ shows that a low-order
truncation of the FM expansion provides a quantitatively accurate description of the dynamics
of few-body observables well beyond rigorous bounds on the radius of convergence of the FM
expansion.

2.2.4. Breakdown of the FM expansion and onset of quantum chaos. The breakdown of the
FM expansion, signaled by the proliferation of Trotter errors for τ > τ ∗, marks the onset of
quantum chaos. As a first indication for the connection between the divergence of the FM
expansion and quantum chaos, we note that the saturation value QE = 1 at τ � τ∗ is consistently
reproduced by replacing Uτ in each Trotter step by a random unitary matrix. Then, the temporal
average is manifestly equivalent to a Hilbert-space average, which by definition yields the
infinite-temperature value ET=∞.
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More systematically, quantum chaos of the Floquet operator Uτ manifests in statistics of the
eigenphases θn and in localization properties of the eigenvectors |φn〉, which obey the eigen-
value equation Uτ|φn〉 = eiθn|φn〉. In particular, as a defining signature of quantum chaos, the
distribution of spacings of eigenphases θn is described by RMT, and the eigenvectors |φn〉
are delocalized in a basis of eigenvectors of an operator that generates integrable dynamics,
such as the target Hamiltonian. In the following, we study the onset of chaos in the kicked top
via comparison of the eigenphases and eigenstates of the Floquet operator to their respective
RMT predictions. We refer the reader to reference [1] for a comprehensive introduction to the
signatures of quantum chaos.

Eigenphase statistics are conveniently characterized by the average adjacent phase spacing
ratio r [60],

r =
1
D

D∑
n=1

rn, rn =
min(δn, δn+1)
max(δn, δn+1)

, (13)

where δn = θn+1 − θn. This quantity constitutes a measure of the degree of repulsion between
the eigenphases of Uτ , and takes characteristic values for unitaries that are drawn from an
ensemble of RMT. In particular, for the circular unitary ensemble (CUE) of random uni-
tary matrices, the average adjacent phase spacing ratio is given by rCUE = 0.5996(1) [61].
Indeed, this value is reproduced for τ � τ∗ as shown in figure 2(b), giving a clear indication
for quantum-chaotic dynamics beyond the Trotter threshold. At very small values Jzτ � 1/S,
the phase spacing ratio is determined by the target Hamiltonian. The phase spacing ratio drops
to rPOI ≈ 0.39 for 1/S � Jzτ � Jzτ ∗, which signals the absence of level repulsion in crossings
of eigenphases that wind repeatedly around the unit circle, leading to Poisson statistics for the
adjacent phase spacings [2]. In this regime, Trotterization leads to only weak mixing between
the eigenvectors |ψn〉 of the target Hamiltonian, and the Floquet states |φn〉 are in one-to-one
correspondence with the states |ψn〉. This localization of Floquet states in the eigenbasis of the
target Hamiltonian is quantified by the participation ratio (PR),

PR =

( D∑
n,m=1

|〈ψn|φm〉|4
)−1

. (14)

The PR is shown in figure 2(c). The small values of PR at τ � τ∗ indicate a high degree of
similarity between the eigenbases of H and Uτ . For τ � τ ∗, the PR saturates to a large value
that indicates equal absolute overlaps between all eigenstates, as expected for the eigenvectors
|φn〉 of a random matrix Uτ . In this regime, the precise numerical value of the PR is determined
by the corresponding ensemble of RMT. For the CUE, and in the limit D →∞, it is given by
PRCUE = 1/2 [50].

3. Learning the Floquet Hamiltonian HF(τ ) of the kicked top

Previous work, as summarized in section 2, has focused on the Trotter threshold by monitoring
the simulation accuracy QE, PR, and the level spacing ratio of the Floquet operator Uτ . Instead,
the present section will study the phenomenology of the Trotter threshold, and the transition
to quantum chaos, from the view point of learning the Floquet Hamiltonian HF(τ ) in the form
of the FM expansion equation (7), as a function of τ .

Below we first describe the technique of HL (section 3.1), which we then adapt to ‘learn’
the FM expansion of the kicked top. Central to our discussion is the ability of the HL protocol
to provide a quantitative assessment of errors in HL, in particular in learning HF(τ ) with τ

9
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approaching the Trotter threshold τ∗. Corresponding results for the kicked top will be presented
in section 3.2.

3.1. Hamiltonian learning

3.1.1. HL protocols for quantum many-body systems. Recently, HL has been developed as a
technique to efficiently recover an unknown Hamiltonian of an isolated quantum many-body
system via measurements on quantum states prepared in the laboratory. Motivation for HL
is provided by the ongoing development of controlled quantum many-body systems, e.g., as
analog quantum simulators, where HL serves to characterize and thus verify the functioning of
quantum devices. Various methods for recovering the Hamiltonian have been described, from
learning the Hamiltonian from a single eigenstate [25–28], or stationary states [29, 32], or from
observation of short time dynamics [31, 33].

To be specific, we give a brief description of HL in quench dynamics. We focus on HL
as proposed in reference [31] as our discussion below, on learning the Floquet Hamiltonian
HF(τ ), directly builds on this method. Reference [31] considers quench dynamics of an iso-
lated many-body system, |ψ(t)〉 = e−iHt|ψ(0)〉, where an initial state |ψ(0)〉 evolves in time t
according to a time-independent Hamiltonian H to a final state |ψ(t)〉. The task is to recover
the operator structure of H by measuring observables at various times t. The key to an effi-
cient reconstruction is the locality of the physically implemented many-body Hamiltonian.
This means that H can typically be expanded as a sum of few-body operators, and can thus be
specified by a number of coupling parameters that scales at most polynomially in system size
N. In the specific example of the long-range interacting spin-1/2 model discussed in section 2
(see equation (4)), of which the kicked top can be seen as the limit α→ 0, the Hamiltonian is
expressed as a sum of Pauli operators σz

i σ
z
j with coefficients Jz

i, j ∝ Jz
|i− j|α , and depends thus on

O(N2) coupling coefficients, far less than the O(4N) parameters needed to express a generic
operator.

We thus seek to reconstruct the physically implemented Hamiltonian from an Ansatz

H(c) =
∑
h j∈A

c jh j, (15)

specified by a chosen set A = {h j}NA
j=1 of NA = poly(N) few-body Ansatz operators h j, and

depending on coefficients c j, with c denoting the vector of such coefficients, which we want to
determine from experimental measurements. In the context of quantum simulation, the choice
of the Ansatz is based on the target Hamiltonian one seeks to implement on the quantum device,
possibly complemented with additional terms representing deviations from this target Hamil-
tonian, whose presence we want to test. Reference [31] proposes to determine the coefficients
c j that yield the best approximation to the implemented Hamiltonian from the condition of
energy conservation:

〈ψ(0)|H|ψ(0)〉 = 〈ψ(t)|H|ψ(t)〉 ∀ |ψ(0)〉, t. (16)

Imposing energy conservation at the level of the Ansatz H(c) amounts to choosing Ncon > NA
different initial states {|ψi(0)〉}Ncon

i=1 as ‘constraints’, and to minimize the energy differences
|〈ψi(0)|H(c)|ψi(0)〉 − 〈ψi(t)|H(c)|ψi(t)〉| w.r.t. the coefficients. The optimal c, which we denote
with crec in the following, is thus determined as [31]

crec = arg min
c

‖Mc‖
‖c‖ , (17)
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where the elements of the constraint matrix M are given by

Mi, j = 〈ψi(t)|h j|ψi(t)〉 − 〈ψi(0)|h j|ψi(0)〉, (18)

which can be inferred from experimental measurements collected from a series of quan-
tum quenches starting from the chosen states {|ψi(0)〉}Ncon

i=1 . The reconstructed Hamiltonian,
denoted with Hrec ≡ H(crec), is the one that best approximates the implemented H within the
Ansatz space spanned by A, in the sense of energy conservation. Comparison of Hrec with the
target Hamiltonian allows one to assess the quality of the quantum device in simulating the
model of interest. Note that in equation (17) the overall scale of crec remains undetermined, but
there exist efficient ways of determining it (see references [29, 32]).

It is essential that the technique above also provides a way of assessing errors, or confidence
in the reconstructed parameters crec for a given set of experimental data, which are provided
here as correlation functions entering the constraint matrix M. The quantity that one has access
to from HL is the optimal value of the cost function ‖Mc‖ in equation (17),

λ1 =
‖Mcrec‖
‖crec‖ =

√∑
i|〈Hrec〉i,t − 〈Hrec〉i,0|2

‖crec‖ , (19)

with 〈Hrec〉i,t ≡ 〈ψi(t)|Hrec|ψi(t)〉, which measures how well the reconstructed Hamiltonian is
conserved during the dynamics governed by H. In practice, λ1 is calculated as the smallest
singular value of M, which is shown to be equivalent to the minimum of the ‘energy cost-
function’ ‖Mc‖ in equation (17) (see reference [31] and appendix B for details). In section 3.2
below, λ1 will play a key role in our study of the Trotter threshold.

3.1.2. Learning the generator of a Trotter step of the kicked top ‘order by order’ in the FM
expansion. We now extend the HL protocol described above to the learning of the Floquet
Hamiltonian of the kicked top, defined via Uτ = e−iHF(τ )τ with Uτ given in equation (5). As
outlined in the introduction, the kicked top constitutes a particular example of more general
DQS of genuinely many-body systems (see section 2.1), where the HL method proposed here
would acquire its most (experimentally) relevant application.

In this context, we choose to rephrase the kicked top as an ‘experiment’ implementing a
Trotter evolution cycle which is presented to us as a black box. We denote the implemented
Trotter cycle as Uexp

τ = e−iHexp
F (τ )τ , parametrized in terms of the generator Hexp

F (τ ). In an ideal
experiment Hexp

F (τ ) = HF(τ ), but here we wish to infer the operator content of Hexp
F (τ ) from

experimental measurements, for two main reasons. First, in DQS we are interested in learn-
ing the Trotter errors, contained in Hexp

F (τ ) as higher order terms in τ (see FM expansion
equation (7)). Second, in an experimental context there might also be control errors, which will
be reflected in the operator structure of Hexp

F (τ ) deviating from the ideal HF(τ ): the reconstruc-
tion of Hexp

F (τ ) enables the detection of such experimental control errors, and thus a character-
ization of the Trotter block which we can view as a process tomography of the corresponding
quantum circuit6 (see figure 1).

To achieve these goals, we seek for a reconstruction of Hexp
F (τ ) based on the operator Ansatz

Hexp(K)
F (τ ) =

K∑
k=1

τ k Cexp
k , (20)

6 Our discussion ignores errors due to decoherence, i.e., we assume unitary evolution. The procedure can be extended
to the learning of Floquet Liouvillians as it is shown in reference [24].
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formulated as series in τ truncated at order K, i.e., we learn the generator ‘order by order’ by
increasing stepwise K. The operator content of the operators Cexp

k is specified based on our
expectation HF(τ ) (see the Ck in equations (8)–(10)), but might also contain additional terms
whose presence we want to test. Using the notation of the previous subsection, we may rewrite
the Ansatz as

Hexp(K)
F (τ ) =

∑
h j∈AK

c j h j, (21)

with AK denoting the Ansatz set comprising the operator content of the Cexp
k up to order K in

τ . In this notation, A0 is the Ansatz for the operator content of the zeroth order terms, cor-
responding to the generators of the individual gates in Uexp

τ (e.g., the Hμ in equation (5)),
while Ak>0 contains all operators generated by the k-nested commutators of the terms in
A0, with k = 1, . . . , K.

The key quantity representing the quality of our reconstruction is λ1(τ ) introduced in
equation (19), which quantifies the error of our—typically low order in τ—Ansatz in rep-
resenting the ‘experimental’ Trotter block. The structure of the Ansatz (21) and the ability
of measuring λ1(τ ) for different values of τ allows us to (i) discriminate between control
errors (appearing as ‘unwanted’ terms in A0) and Trotter errors (the higher order terms), and
(ii) detect the value of τ ∗ at which these Trotter errors proliferate and quantum chaotic dynam-
ics emerges, corresponding to the stepsize at which our Ansatz (20) fails in approximately
capturing the stroboscopic DQS dynamics. This is in analogy to the schematic figure 1(c)
where λ1(τ ) will become the proxy for the Hamiltonian distance.

Below, we will apply these ideas to the study of the Trotter threshold in the kicked top, using
the behavior of λ1(τ ) as the quantifier signaling the transition from regular to chaotic dynamics
when approaching τ → τ∗.

3.2. Trotter threshold from HL: results for the kicked top

We now present our results for learning the generator Hexp
F (τ ) of the Trotter step as a function

of τ via HL, as a method to detect and characterize the Trotter threshold in an experimentally
feasible protocol. Specifically, we simulate the above protocol for learning the generator of the
kicked top dynamics, imagined here as a DQS implementing the Trotter cycle Uτ defined in
equation (5). In order to illustrate the main ideas, and to compare to the results of section 2,
we consider Uτ without the addition of ‘unwanted’ terms (experimental control errors), i.e.,
Hexp

F (τ ) = HF(τ ), and simulate the HL protocol in absence of measurement noise in the matrix
elements Mi, j of equation (18). To reconstruct HF(τ ), the Ansatz operators h j for the HL pro-
tocol are chosen such that they capture the operator content of the first few orders of the FM
expansion in equation (7). We denote with Ak the set of operators {h j} j corresponding to a
kth-order truncation of the FM series. For the kicked top of the present example, the Ansatz
sets for the first few orders read as7

A0 = {S2
x, Sx, Sy, S2

z , Sz},

A1 = A0 ∪ {SxSy, SySz, SxSz, SxSySz},

7 In general, these operators are not Hermitian and do not directly correspond to observables, and result in the constraint
matrix elements Mi, j being complex. However, the matrix elements Mi, j can be equivalently constructed as the sum
Mi, j = MRe

i, j + i MIm
i, j , where the expectation values in MRe

i, j and MIm
i, j are taken of Hermitian operators hj + h†

j and i(h†
j −

hj), respectively.
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A2 = A1 ∪ {S2
xSy, SyS

2
z , S2

xS2
z , S4

z , S2
xSz, S3

z , SxS2
z , S4

x, S3
x},

containing all the linearly independent products of spin operators coming from the commuta-
tors in equation (8) 8. The elements Mi, j of the constraint matrix M defined in equation (18) are
determined from expectation values of these operators over the states |ψi(nτ )〉 = Un

τ |ψi(0)〉.
To compare to the results of section 2, we choose nτ = 100J−1

z and random coherent states as
initial states: our results are however independent of these specific choices. The Trotter thresh-
old discussed in section 2 will be revealed by measuring λ1 for several values of the Trotter
step τ , keeping the Ansatz Ak fixed as τ is changed. Specifically, the behavior of λ1(τ ) serves
as an indicator of the quality of HL, which is bound to fail for τ > τ ∗ where the dynamics of
the kicked top cannot be approximated by a truncated FM expansion.

The behavior of λ1 as a function of τ is exemplified in figure 3(a) for several Ak. Two
different behaviors are clearly visible, separated by a grey vertical line denoting the estimated
value of τ∗, corresponding to the Trotter threshold discussed in section 2. Let us now describe
these regimes and relate them to the observations presented in section 2.

3.2.1. Pre-threshold regime. For τ < τ ∗ we see that, depending on the Ansatz, λ1 obeys dif-
ferent scaling with τ , i.e., λ1 ∈ O(τ k+1) for a kth-order Ansatz Ak. This behavior of λ1(τ )
confirms that for τ < τ ∗ a low-order truncation of the FM expansion is sufficient to accu-
rately describe the stroboscopic dynamics of the kicked top. Indeed, it is intuitively clear that
an Ansatz Ak capturing only the lowest k orders of HF(τ ) results in a reconstructed Hamilto-
nian Hrec(τ ) =

∑
j crec

j (τ )h j violating energy conservation by terms of order O(τ k+1) during
the stroboscopic dynamics, i.e., ‖Hrec(τ ) − HF(τ )‖ ∈ O(τ k+1). Since λ1 is precisely what cap-
tures how well Hrec(τ ) is conserved (see equation (19)), the scaling of ‖Hrec(τ ) − HF(τ )‖ must
be reflected in that of λ1(τ ), hence λ1 ∈ O(τ k+1). This is also confirmed by the behavior of the
parameter distance ‖cFM − crec‖, shown by the dark red line in figure 3(b), where cFM denotes
the vector of coefficients that are calculated from the analytical FM expansion (truncated to
order k for an Ansatz Ak). As long as τ < τ ∗, ‖cFM − crec‖ remains small and its behavior as
a function of τ reflects that of λ1(τ ).

3.2.2. Trotter threshold. At τ ≈ τ ∗, λ1(τ ) transitions from a O(τ k) behavior to a τ -
independent value. The reason of this transition is the fact that a low-order truncation of HF(τ )
becomes insufficient to accurately describe the dynamics. More precisely, since our HL proto-
col is based on monitoring the dynamics of few-body observables (the h j ∈ Ak) which are
measured in order to construct the matrix M, the onset of the plateau in λ1(τ ) signals the
proliferation of Trotter errors in the dynamics of such observables. The behavior of λ1(τ )
is therefore analogous to that of the simulation accuracy QE(τ ), defined in equation (11),
showing the threshold behavior at the same value τ ∗. In fact, QE(τ ) and λ1(τ ) encode very
similar physical information, in that they both are related to how well energy, as defined by
the time-averaged Hamiltonian in one case and by a low-order truncation of FM expansion in
the other, is conserved. Specifically, it is clear from its definition (equation (19)) that λ1(τ ) can
be seen as a simulation accuracy QE(nτ ) (equation (11)) averaged over several initial states,
upon identifying the energy Eτ with the reconstructed Hamiltonian Hrec(τ ) (up to an overall
normalization). We notice that threshold behavior can be observed also in the parameter dis-
tance defined before, and shown in figure 3(b), as well as in the reconstructed Hamiltonian
parameters which, while showing almost perfect agreement with the analytically determined

8 We typically choose k � S, hence the operators h j are low powers of collective spin operators, which constitute
few-body operators when interpreting the kicked top as an ensemble of spin-1/2 degrees of freedom.
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Figure 3. Reconstruction of Floquet Hamiltonian of kicked top (5). (a) Scaling of
λ1/

√
Ncon with τ , for different Ansätze corresponding to different truncations (different

colors). The Trotter threshold is marked by the vertical shaded line. Inset: dependence
of λ1(τ ) on the spin S of the kicked top. (b) Linear plot of the parameter distance
‖cFM − crec‖ (dark red solid line), with cFM and crec both normalized to one (in units
of Jz), compared to λ1(τ ). (c) Some reconstructed parameters (up to O(τ 3)) compared
to the analytical predictions from the FM expansion (dashed lines). The parameters used
are Jx = 0.4Jz, Jy = 0, hx = 0.11Jz, hy = hz = 0.1Jz. In all plots, we chose D = 2S + 1
random coherent states as initial states for the HL, and evolved the system up to time
100J−1

z .

FM expansion for τ < τ ∗, become essentially random for τ > τ ∗. We show the behavior with τ
of some of the reconstructed parameters in figure 3(c). Furthermore, we observe that the value
of τ ∗ does not strongly depend on the spin size S, as we show in the inset of figure 3(a). This is
consistent with the results of our previous work [2], where we observed that τ ∗ remained finite
even in the classical limit S →∞.

3.2.3. Post-threshold regime. For τ > τ ∗ we observe a constant value of λ1(τ ), indepen-
dently of the Ansatz chosen. As shown in section 2, the regime τ > τ ∗ corresponds to the
chaotic regime where the spectral statistics of Uτ is faithful to RMT. As a consequence, the
value of λ1(τ > τ ∗) shows perfect agreement with the value of λ1 that can be estimated using
RMT. In this sense, λ1(τ ) can be seen as an indicator of the onset of chaos, showing a behavior
similar to the level spacing ratio r and the PR introduced in section 2. Here, the RMT estimate
of λ1 has to be understood as the value that one would obtain when carrying out the HL proto-
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col above with the same Ansatz Ak, but replacing Uτ with a random U drawn from the relevant
matrix ensemble (CUE for the example presented here). We refer the reader to appendix C for
the details of this calculation. In the plots, only the CUE estimate for the zeroth order Ansatz
is shown, corresponding to the horizontal grey dashed line in panels (a) and (b): changing the
Ansatz to reconstruct higher orders of the FM expansion leads to different values for the CUE
estimate, which match with the observed plateaus in the plots.

4. Conclusions and outlook

In the present paper, we have shown how HL can be employed as a method for analyzing
the transition to chaotic dynamics in the kicked top, interpreted here as a DQS of a collec-
tive spin system where this transition manifests itself in the proliferation of Trotter errors for
a certain Trotter step size τ ∗ [2]. In general, our method gives a recipe for interrogating (via
measurements) a quantum device implementing a Trotterized evolution, asking the question:
can the implemented dynamics be approximately described by a time-independent few-body
Hamiltonian? A low-order truncation of the FM expansion constitutes an example of such
a Hamiltonian, whose structure motivates our choice of the Ansatz for HL, and thus of the
measurements performed to interrogate the system. The answer to the question above is pro-
vided by λ1, assessing the quality of the Ansatz: by measuring λ1 as a function of τ one can
detect the value τ ∗ at which a description in terms of a few-body Hamiltonian breaks down,
corresponding to the proliferation of Trotter errors in DQS.

When applied to the kicked top, our protocol requires only the measurement of products of
few collective spin operators, and may be readily implemented in experimental setups where
the kicked top dynamics can be realized. These include existing realizations of the kicked top as
the spin of single atoms [62], nuclear spins [63], composite spins in nuclear magnetic resonance
[64], and collective spins of ensembles of superconducting qubits [65], together with potential
realizations with magnetic atoms [66, 67] and trapped ions [68, 69].

We emphasize that the method presented here applies also to the case of DQS of genuinely
many-body systems [24], of which the kicked top can be seen as a limit where the dynamics,
for suitable initial conditions, admits a description in terms of collective spin operators (see
section 2.1). In view of the experimental applicability of our HL protocol in this more general
context, we conclude by commenting on its relation to the previously proposed signatures of
Trotter threshold and chaos transition in Trotterized dynamics.

First, while we have pointed out a similarity between the physical information encoded
in λ1 and the simulation accuracy QE (see section 3.2.2), we note that there exist a funda-
mental difference between the two. The definition of the simulation accuracy is reliant on the
exact knowledge of the implemented Hamiltonian which, in an experimental setting, may be
unknown or only approximately known. Conversely, the value of λ1 is determined from the
reconstruction of the implemented Hamiltonian, and hence does not rely on previous knowl-
edge of Hamiltonian parameters. Thus, measuringλ1(τ ) simultaneously achieves the goal of (i)
characterizing a DQS in terms of the implemented stroboscopic Hamiltonian, and (ii) detecting
the regime in which Trotter errors on few-body observables are controlled in τ .

Second, we point out that while the PR and level spacing ratio studied in section 2 are stan-
dard ways of probing the notion of quantum chaos, their measurement in the context of general
quantum many-body systems is non-trivial. In this context, we would like to mention recent
advances in this direction [70] based on the use of randomized measurements [71–73]. Con-
versely, although the behavior of λ1 is only an indicator of the onset of chaos, it is measurable
with costs that in general scale polynomially in the system size.
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Finally, we mention that even if the results presented here do not contain any simulated
experimental imperfections nor measurement shot noise, the presented protocol retains its
validity as long as the dynamics of the system can be treated as approximately unitary for the
relevant timescales. Furthermore, via the value of λ1, our method provides means of assessing
the quality of this approximation. A detailed analysis of the influence of measurement noise
and imperfections is beyond the scope of this work, and we refer the reader to reference [24]
for a detailed study of realistic applications of this protocol in many-body DQS.

While the emphasis of the present work has been on connecting the framework of HL with
the regular-chaotic dynamics of the kicked top in the more general context of DQS of many-
body systems, we believe that these concepts and techniques can also be used to shed new light
on quantum chaos in the kicked top per se, a field that has seen Fritz Haake as one of its most
active and brilliant contributors.

Acknowledgments

We thank Lata K Joshi, Markus Heyl, Philipp Hauke, Nathan Langford and Cahit Kargi for
valuable discussions. This work was supported by Simons Collaboration on Ultra-Quantum
Matter, which is a Grant from the Simons Foundation (651440, PZ), the European Union’s
Horizon 2020 research and innovation programme under Grant Agreement No. 817482
(Pasquans), and by LASCEM by AFOSR No. 64896-PH-QC. LMS acknowledges support
from the Austrian Science Fund (FWF): P 33741-N. The computational results presented here
have been obtained (in part) using the LEO HPC infrastructure of the University of Innsbruck.

Data availability statement

The data sets generated and analyzed during the current study are available from the corre-
sponding author on reasonable request.

Appendix A. Variants of the kicked top model

The time-dependent Hamiltonian in equation (1) describes the prototypical and—with Hx

being purely linear and Hz purely quadratic in spin operators—simplest version of the kicked
top capable of global chaos [1]. Simplicity brings about a high degree of symmetry. This is best
discussed in terms of the Floquet operator equation (2): time-reversal covariance of Uτ , which
is expressed through the relation TUτT† = U†

τ where T = eiHxτK and K is complex conjuga-
tion, implies that Uτ belongs to the COE. Further, Uτ is symmetric under rotations by π around
the x axis, RxUτR†

x = Uτ with Rx = eiπSx . Hence, an RMT analysis, e.g., of level spacings, has
to be carried out independently within the subspaces of eigenstates of Uτ that are even and odd
under Rx, respectively. Finally, there are isolated points of even higher symmetry: if hxτ is a
multiple of 2π, then the entire spectrum of Hxτ = hxτSx contains only multiplies of 2π, such
that e−iHxτ = 1 and the Floquet operator reduces to Uτ = e−iHzτ . Consequently, Sz is conserved,
and the dynamics becomes trivially integrable. These points of resonant driving are necessarily
encountered when the driving period τ is varied over a wide range, as we do when we study
the Trotter threshold, and, while being well understood, they somewhat spoil the phenomenol-
ogy of the threshold behavior. Further, in view of the fact that the Trotter threshold occurs in
a variety of models [20], the existence of such resonant driving points may be regarded as an
artefact of the choice of Hx having an equidistant spectrum. Therefore, in reference [2] and in
the main text, we focus on the more generic situation, in which Hx is augmented by a term that
is quadratic in Sx . Further, by adding a term that is linear in Sz to Hz, we rid the Floquet operator
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of geometric symmetries, and thus simplify the RMT analysis. Finally, the RMT analysis of
HL presented in appendix C, while proceeding along the same lines, simplifies considerably
for the CUE as compared to the COE. Hence, to not overburden the presentation of our results
with unnecessary technicalities, we choose to focus on a version of the kicked top without time
reversal symmetry, which is given in equation (5) [1].

Appendix B. Details on the HL protocol of section 3

In this appendix, we provide additional details on the HL protocol explained in section 3.1,
showing how the reconstruction of the Hamiltonian parameters is achieved via singular value
decomposition (SVD). We write the Ansatz H(c) for the Hamiltonian to be reconstructed as
H(c) =

∑NA
j=1 c j h j, specified by a chosen set A of Ansatz operatorsA = {h j}NA

j=1, and we want
to find the optimal coefficients crec by solving

crec = arg min
c,‖c‖=1

Ncon∑
i=1

|〈H(c)〉i,t − 〈H(c)〉i,0|2, (B.1)

with 〈H(c)〉i,t = 〈ψi(t)|H(c)|ψi(t)〉, for a set of Ncon chosen initial states |ψi(0)〉. This is
equivalent to

crec = arg min
c,‖c‖=1

‖Mc‖2, (B.2)

with the constraint matrix M having elements defined in equation (18), and amounts to deter-
mining crec as the right singular vector of M corresponding to the smallest singular value λ1,
that is

Mcrec = λ1w1, (B.3)

where w1 is the corresponding left singular vector with ‖w1‖ = ‖crec‖. This can be seen as
follows: from the SVD of M one writes M = WSV†, with W having NA orthonormal columns
wn (each being an Ncon-component vector), V† having NA orthonormal rows v†

n (each being
an NA-component vector), and S = diag(λ1, . . . ,λNA ), with 0 � λ1 � · · · � λNA . Thus Mc =
WSV†c =

∑
n λn(vn · c)wn, with · denoting the scalar product, which yields

‖Mc‖2 =
∑

n

λ2
n (vn · c)2 � λ2

1(v1 · v1)2 = λ2
1, (B.4)

where the absolute minimum is obtained for c = v1. Thus, crec = v1.

Appendix C. RMT estimate for λ1

In this appendix, we show that for Uτ = U ∈ CUE one can make analytical predictions for
the form of the matrix Q = 1

Ncon
M�M, thereby efficiently estimating the value of the λ1. The

result is in good agreement with the value obtained from our HL protocol for large τ and
large number of driving cycles. We start by calculating the expectation value of the elements
Q j,k =

1
Ncon

∑
i Mi, jMi,k over the CUE as

QCUE
j,k =

1
Ncon

∑
i

EU∈CUE
[
Mi, jMi,k

]
≡ 1

Ncon

∑
i

qCUE
j,k [ρi], (C.1)
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with ρi denoting the chosen initial states for the protocol (which in general can be also mixed).
The result depends on the chosen set {ρi}, and can be calculated analytically in the case con-
sidered in the main text, namely the ρi being coherent states. Expressing the matrix elements
Mi, j as Mi, j = tr(ρih j) − tr(ρiU†h jU)), and using the methods developed in [74], we obtain

qCUE
j,k [ρi] = tr(ρih j)tr(ρihk) − tr(h j)

D tr(ρihk)

− tr(hk)
D tr(ρih j) +

tr(h j)tr(hk)
D2 − 1

+
tr(ρ2

i )tr(h jhk)
D2 − 1

− tr(h jhk)
D(D2 − 1)

− tr(ρ2
i )tr(h j)tr(hk)
D(D2 − 1)

, (C.2)

where D is the Hilbert space dimension, i.e., D = 2S + 1. Since we use pure initial
states, tr(ρ2

i ) = 1. In the case of the kicked top, the Ansatz operators h j are products
of spin operators, and we can use the results of reference [75] to obtain the analytical
expressions for the traces tr(hj) and tr(hjhk). Where μ, ν = x, y, z. The expectation val-
ues tr(ρih j) are easily calculated for the chosen initial states. If we are interested in the
zeroth order terms in the Floquet Hamiltonian (7), we can use the following identities:
〈θ,φ|S|θ,φ〉 = S(sin θ cosφ, sin θ sinφ, cos θ), 〈θ,φ|S2

x|θ,φ〉 = S
(
S − 1

2

)
(sin θ cos φ)2 + S

2 ,
and 〈θ,φ|S2

z |θ,φ〉 = S
4 (1 + 2S + (2S − 1) cos 2θ) with S = (Sx , Sy, Sz). For a large number of

initial states, the sum N−1
con

∑
i can be approximated by an expectation value over the initial

states ensemble (ISE), i.e.,

1
Ncon

∑
i

qCUE
j,k [ρi] ≈ Eρ∈ISE qCUE

j,k [ρ] ≡ Q j,k. (C.3)

which, for coherent states (ISE = CS), is calculated using Eρ∈CS
[
tr(ρh j)

]
= 1

4π

∫
dΩθ,φ〈h j〉θ,φ

and Eρ∈CS

[
tr(ρh j)tr(ρhk)

]
= 1

4π

∫
dΩθ,φ〈h j〉θ,φ〈hk〉θ,φ with 〈h j〉θ,φ = 〈θ,φ|h j|θ,φ〉 and∫

dΩθ,φ =
∫ 2π

0 dφ
∫ π

0 dθ sin θ. Using equations (C.1), (C.2) and (C.3), we can obtain an ana-
lytical expression for the matrix Q which, in the case of Ansatz set A0 = {S2

z , Sz, Sy, S2
x, Sx},

reads as (we show only the non-zero matrix elements)

QS2
z ,S2

z
= QS2

x ,S2
x
=

S(8S3 − 4S2 + 6S − 3)
90

,

QS2
z ,S2

x
= −S(8S3 − 4S2 + 6S − 3)

180
,

QSx ,Sx = QSy,Sy = QSz,Sz =
S(2S + 1)

6
,

from which we estimate the RMT value of λ1, denoted with λRMT, as

λRMT =
√
ε1(Q), (C.4)

where ε1(Q) denotes the lowest eigenvalue of Q. This yields the estimates used in the main
text.

As a final remark we emphasize that, while here we are estimating λ1 as λRMT =√
ε1(EISE,CUE Q), the correct prediction would be λRMT = EISE,CUE

√
ε1(Q). However (i) it is

difficult to make analytical progress in the second case and (ii) the two calculations agree very
well for large Hilbert space dimension D and large number Nini of initial states used. Indeed,
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the variance of the Q j,k over the CUE, VarCUEQ j,k ≡ N−1
con

∑
i VarCUE

[
Mi, jMi,k

]
, which can also

be analytically calculated using the methods in [74], is suppressed in D as O(D−3). Further-
more, the variance of Q j,k over the ISE, estimated as VarISEQ j,k ≡ Varρ∈ISE qCUE

j,k [ρ], results in
random fluctuations of each realization of Q around the mean value Q, which are suppressed
as N−1/2

ini . That is to say, each realization of Q for a given random unitary and a given set of
Ncon random initial states can be written as Q = Q+ RV where RV is a random matrix whose
elements can be approximated as

(RV) j,k ≈ (RV(ξ, ζ)) j,k = ξ

√
VarISEQ j,k

Ncon
+ ζ

√
VarCUEQ j,k,

with ξ, ζ ∼ N (0, 1), if we treat the corrections coming from the statistical fluctuations over
the CUE and ISE as independent and normal distributed random variables. Thus, RV can
be seen as a small perturbation to Q which, in general, has only perturbative effects on its
eigenvalues. In principle, one could achieve a more accurate estimate of λ1 by calculating
λRMT = Eξ,ζ∼N (0,1)

√
ε1[Q+ RV(ξ, ζ)], which can also be done efficiently.
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[18] Salathé Y et al 2015 Phys. Rev. X 5 021027
[19] Barends R et al 2016 Nature 534 222–6
[20] Langford N K, Sagastizabal R, Kounalakis M, Dickel C, Bruno A, Luthi F, Thoen D J, Endo A

and DiCarlo L 2016 Nat. Commun. 8 1715
[21] O’Malley P J et al 2016 Phys. Rev. X 6 031007
[22] Martinez E A et al 2016 Nature 534 516–9
[23] Seetharam K et al 2021 arXiv:2109.13298
[24] Pastori L, Olsacher T, Kokail C and Zoller P 2022 arXiv:2203.15846

19

https://orcid.org/0000-0002-2307-4657
https://orcid.org/0000-0002-2307-4657
https://orcid.org/0000-0001-5882-8482
https://orcid.org/0000-0001-5882-8482
https://orcid.org/0000-0002-0163-7850
https://orcid.org/0000-0002-0163-7850
https://doi.org/10.1038/s41534-019-0192-5
https://doi.org/10.1038/s41534-019-0192-5
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1090/s0002-9939-1959-0108732-6
https://doi.org/10.1090/s0002-9939-1959-0108732-6
https://doi.org/10.1143/PTP.56.1454
https://doi.org/10.1143/PTP.56.1454
https://doi.org/10.1143/PTP.56.1454
https://doi.org/10.1143/PTP.56.1454
https://doi.org/10.1103/physrevb.93.104203
https://doi.org/10.1103/physrevb.93.104203
https://doi.org/10.1126/sciadv.aau8342
https://doi.org/10.1126/sciadv.aau8342
https://arxiv.org/abs/2110.11113
https://doi.org/10.1103/physrevx.4.041048
https://doi.org/10.1103/physrevx.4.041048
https://doi.org/10.1103/physrevb.93.104203
https://doi.org/10.1103/physrevb.93.104203
https://doi.org/10.1103/physreva.71.012307
https://doi.org/10.1103/physreva.71.012307
https://doi.org/10.1126/science.1208001
https://doi.org/10.1126/science.1208001
https://doi.org/10.1126/science.1208001
https://doi.org/10.1126/science.1208001
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nature09801
https://doi.org/10.1007/s11128-011-0303-5
https://doi.org/10.1007/s11128-011-0303-5
https://doi.org/10.1103/physreva.90.022305
https://doi.org/10.1103/physreva.90.022305
https://arxiv.org/abs/1406.4920
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1103/physrevx.5.021027
https://doi.org/10.1103/physrevx.5.021027
https://doi.org/10.1038/nature17658
https://doi.org/10.1038/nature17658
https://doi.org/10.1038/nature17658
https://doi.org/10.1038/nature17658
https://doi.org/10.1038/s41467-017-01061-x
https://doi.org/10.1038/s41467-017-01061-x
https://doi.org/10.1103/physrevx.6.031007
https://doi.org/10.1103/physrevx.6.031007
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://arxiv.org/abs/2109.13298
https://arxiv.org/abs/2203.15846


J. Phys. A: Math. Theor. 55 (2022) 334003 T Olsacher et al

[25] Garrison J R and Grover T 2018 Phys. Rev. X 8 021026
[26] Chertkov E and Clark B K 2018 Phys. Rev. X 8 031029
[27] Qi X L and Ranard D 2019 Quantum 3 159
[28] Hou S Y, Cao N, Lu S, Shen Y, Poon Y T and Zeng B 2020 arXiv:1903.06569
[29] Bairey E, Arad I and Lindner N H 2019 Phys. Rev. Lett. 122 020504
[30] Bairey E, Guo C, Poletti D, Lindner N H and Arad I 2020 New J. Phys. 22 032001
[31] Li Z, Zou L and Hsieh T H 2020 Phys. Rev. Lett. 124 160502
[32] Evans T J, Harper R and Flammia S T 2019 arXiv:1912.07636
[33] Zubida A, Yitzhaki E, Lindner N H and Bairey E 2021 arXiv:2108.08824
[34] Anshu A, Arunachalam S, Kuwahara T and Soleimanifar M 2021 Nat. Phys. 17 931–5
[35] Eisert J, Hangleiter D, Walk N, Roth I, Markham D, Parekh R, Chabaud U and Kashefi E 2020 Nat.

Rev. Phys. 2 382–90
[36] Carrasco J, Elben A, Kokail C, Kraus B and Zoller P 2021 PRX Quantum 2 010102
[37] Bienias P, Seif A and Hafezi M 2021 arXiv:2104.04453
[38] Mitchell G E, Richter A and Weidenmüller H A 2010 Rev. Mod. Phys. 82 2845–901
[39] Guhr T, Müller-Groeling A and Weidenmüller H A 1998 Phys. Rep. 299 189–425
[40] Wiebe N, Berry D, Høyer P and Sanders B C 2010 J. Phys. A Math. Theor. 43 065203
[41] Chen Y A, Childs A M, Hafezi M, Jiang Z, Kim H and Xu Y 2022 Phys. Rev. Res. 4 013191
[42] Suzuki M 1985 J. Math. Phys. 26 601–12
[43] Childs A M and Su Y 2019 Phys. Rev. Lett. 123 050503
[44] Childs A M, Su Y, Tran M C, Wiebe N and Zhu S 2021 Phys. Rev. X 11 011020
[45] Monroe C et al 2021 Rev. Mod. Phys. 93 025001
[46] Casas F 2007 J. Phys. A Math. Theor. 40 15001–17
[47] Moan P C and Niesen J 2008 Found. Comput. Math. 8 291–301
[48] Blanes S, Casas F, Oteo J and Ros J 2009 Phys. Rep. 470 151–238
[49] Bukov M, Heyl M, Huse D A and Polkovnikov A 2016 Phys. Rev. B 93 155132
[50] Ullah N and Porter C E 1963 Phys. Rev. 132 948–50
[51] Lazarides A, Das A and Moessner R 2014 Phys. Rev. E 90 012110
[52] Luitz D J, Lev Y B and Lazarides A 2017 SciPostPhys. 029 1–13
[53] Abanin D A, De Roeck W and Huveneers F 2015 Phys. Rev. Lett. 115 256803
[54] Mori T, Kuwahara T and Saito K 2016 Phys. Rev. Lett. 116 120401
[55] Kuwahara T, Mori T and Saito K 2016 Ann. Phys., NY 367 96–124
[56] Abanin D A, De Roeck W, Ho W W and Huveneers F 2017 Phys. Rev. B 95 014112
[57] Machado F, Kahanamoku-Meyer G D, Else D V, Nayak C and Yao N Y 2019 Phys. Rev. Res. 1

033202
[58] Howell O, Weinberg P, Sels D, Polkovnikov A and Bukov M 2019 Phys. Rev. Lett. 122 010602
[59] Rakcheev A and Läuchli A M 2020 arXiv:2011.06017
[60] Oganesyan V and Huse D A 2007 Phys. Rev. B 75 155111
[61] Atas Y Y, Bogomolny E, Giraud O and Roux G 2013 Phys. Rev. Lett. 110 084101
[62] Chaudhury S, Smith A, Anderson B E, Ghose S and Jessen P S 2009 Nature 461 768–71
[63] Mourik V, Asaad S, Firgau H, Pla J J, Holmes C, Milburn G J, McCallum J C and Morello A 2018

Phys. Rev. E 98 042206
[64] Krithika V R, Anjusha V S, Bhosale U T and Mahesh T S 2019 Phys. Rev. E 99 032219
[65] Neill C et al 2016 Nat. Phys. 12 1037–41
[66] Baier S, Petter D, Becher J H, Patscheider A, Natale G, Chomaz L, Mark M J and Ferlaino F 2018

Phys. Rev. Lett. 121 093602
[67] Chalopin T, Bouazza C, Evrard A, Makhalov V, Dreon D, Dalibard J, Sidorenkov L A and

Nascimbene S 2018 Nat. Commun. 9 4955
[68] Britton J W, Sawyer B C, Keith A C, Wang C C J, Freericks J K, Uys H, Biercuk M J and Bollinger

J J 2012 Nature 484 89–92
[69] Gärttner M, Bohnet J G, Safavi-Naini A, Wall M L, Bollinger J J and Rey A M 2017 Nat. Phys. 13

781–6
[70] Joshi L K, Elben A, Vikram A, Vermersch B, Galitski V and Zoller P 2021 arXiv:2106.15530
[71] Elben A, Vermersch B, Dalmonte M, Cirac J I and Zoller P 2018 Phys. Rev. Lett. 120 050406
[72] Vermersch B, Elben A, Dalmonte M, Cirac J I and Zoller P 2018 Phys. Rev. A 97 023604
[73] Vermersch B, Elben A, Sieberer L M, Yao N Y and Zoller P 2019 Phys. Rev. X 9 021061
[74] Brouwer P W and Beenakker C W J 1996 J. Math. Phys. 37 4904–34
[75] Ambler E, Eisenstein J C and Schooley J F 1962 J. Math. Phys. 3 118–30

20

https://doi.org/10.1103/physrevx.8.021026
https://doi.org/10.1103/physrevx.8.021026
https://doi.org/10.1103/physrevx.8.031029
https://doi.org/10.1103/physrevx.8.031029
https://doi.org/10.22331/q-2019-07-08-159
https://doi.org/10.22331/q-2019-07-08-159
https://arxiv.org/abs/1903.06569
https://doi.org/10.1103/physrevlett.122.020504
https://doi.org/10.1103/physrevlett.122.020504
https://doi.org/10.1088/1367-2630/ab73cd
https://doi.org/10.1088/1367-2630/ab73cd
https://doi.org/10.1103/physrevlett.124.160502
https://doi.org/10.1103/physrevlett.124.160502
https://arxiv.org/abs/1912.07636
https://arxiv.org/abs/2108.08824
https://doi.org/10.1038/s41567-021-01232-0
https://doi.org/10.1038/s41567-021-01232-0
https://doi.org/10.1038/s41567-021-01232-0
https://doi.org/10.1038/s41567-021-01232-0
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1103/prxquantum.2.010102
https://doi.org/10.1103/prxquantum.2.010102
https://arxiv.org/abs/2104.04453
https://doi.org/10.1103/revmodphys.82.2845
https://doi.org/10.1103/revmodphys.82.2845
https://doi.org/10.1103/revmodphys.82.2845
https://doi.org/10.1103/revmodphys.82.2845
https://doi.org/10.1016/s0370-1573(97)00088-4
https://doi.org/10.1016/s0370-1573(97)00088-4
https://doi.org/10.1016/s0370-1573(97)00088-4
https://doi.org/10.1016/s0370-1573(97)00088-4
https://doi.org/10.1088/1751-8113/43/6/065203
https://doi.org/10.1088/1751-8113/43/6/065203
https://doi.org/10.1103/physrevresearch.4.013191
https://doi.org/10.1103/physrevresearch.4.013191
https://doi.org/10.1063/1.526596
https://doi.org/10.1063/1.526596
https://doi.org/10.1063/1.526596
https://doi.org/10.1063/1.526596
https://doi.org/10.1103/physrevlett.123.050503
https://doi.org/10.1103/physrevlett.123.050503
https://doi.org/10.1103/physrevx.11.011020
https://doi.org/10.1103/physrevx.11.011020
https://doi.org/10.1103/revmodphys.93.025001
https://doi.org/10.1103/revmodphys.93.025001
https://doi.org/10.1088/1751-8113/40/50/006
https://doi.org/10.1088/1751-8113/40/50/006
https://doi.org/10.1088/1751-8113/40/50/006
https://doi.org/10.1088/1751-8113/40/50/006
https://doi.org/10.1007/s10208-007-9010-0
https://doi.org/10.1007/s10208-007-9010-0
https://doi.org/10.1007/s10208-007-9010-0
https://doi.org/10.1007/s10208-007-9010-0
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1103/physrevb.93.155132
https://doi.org/10.1103/physrevb.93.155132
https://doi.org/10.1103/physrev.132.948
https://doi.org/10.1103/physrev.132.948
https://doi.org/10.1103/physrev.132.948
https://doi.org/10.1103/physrev.132.948
https://doi.org/10.1103/physreve.90.012110
https://doi.org/10.1103/physreve.90.012110
https://doi.org/10.21468/SciPostPhys.3.4.029
https://doi.org/10.21468/SciPostPhys.3.4.029
https://doi.org/10.21468/SciPostPhys.3.4.029
https://doi.org/10.21468/SciPostPhys.3.4.029
https://doi.org/10.1103/physrevlett.115.256803
https://doi.org/10.1103/physrevlett.115.256803
https://doi.org/10.1103/physrevlett.116.120401
https://doi.org/10.1103/physrevlett.116.120401
https://doi.org/10.1016/j.aop.2016.01.012
https://doi.org/10.1016/j.aop.2016.01.012
https://doi.org/10.1016/j.aop.2016.01.012
https://doi.org/10.1016/j.aop.2016.01.012
https://doi.org/10.1103/physrevb.95.014112
https://doi.org/10.1103/physrevb.95.014112
https://doi.org/10.1103/physrevresearch.1.033202
https://doi.org/10.1103/physrevresearch.1.033202
https://doi.org/10.1103/physrevlett.122.010602
https://doi.org/10.1103/physrevlett.122.010602
https://arxiv.org/abs/2011.06017
https://doi.org/10.1103/physrevb.75.155111
https://doi.org/10.1103/physrevb.75.155111
https://doi.org/10.1103/physrevlett.110.084101
https://doi.org/10.1103/physrevlett.110.084101
https://doi.org/10.1038/nature08396
https://doi.org/10.1038/nature08396
https://doi.org/10.1038/nature08396
https://doi.org/10.1038/nature08396
https://doi.org/10.1103/physreve.98.042206
https://doi.org/10.1103/physreve.98.042206
https://doi.org/10.1103/physreve.99.032219
https://doi.org/10.1103/physreve.99.032219
https://doi.org/10.1038/nphys3830
https://doi.org/10.1038/nphys3830
https://doi.org/10.1038/nphys3830
https://doi.org/10.1038/nphys3830
https://doi.org/10.1103/physrevlett.121.093602
https://doi.org/10.1103/physrevlett.121.093602
https://doi.org/10.1038/s41467-018-07433-1
https://doi.org/10.1038/s41467-018-07433-1
https://doi.org/10.1038/nature10981
https://doi.org/10.1038/nature10981
https://doi.org/10.1038/nature10981
https://doi.org/10.1038/nature10981
https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys4119
https://arxiv.org/abs/2106.15530
https://doi.org/10.1103/physrevlett.120.050406
https://doi.org/10.1103/physrevlett.120.050406
https://doi.org/10.1103/physreva.97.023604
https://doi.org/10.1103/physreva.97.023604
https://doi.org/10.1103/physrevx.9.021061
https://doi.org/10.1103/physrevx.9.021061
https://doi.org/10.1063/1.531667
https://doi.org/10.1063/1.531667
https://doi.org/10.1063/1.531667
https://doi.org/10.1063/1.531667
https://doi.org/10.1063/1.1703771
https://doi.org/10.1063/1.1703771
https://doi.org/10.1063/1.1703771
https://doi.org/10.1063/1.1703771

	Digital quantum simulation, learning of the Floquet Hamiltonian, and quantum chaos of the kicked top
	1.  Introduction
	2.  The Trotter threshold revisited
	2.1.  Quantum many-body models and the kicked top
	2.2.  The kicked top and the Trotter threshold
	2.2.1.  Model system and Magnus expansion.
	2.2.2.  Quantifying Trotter errors.
	2.2.3.  Trotter threshold.
	2.2.4.  Breakdown of the FM expansion and onset of quantum chaos.


	3.  Learning the Floquet Hamiltonian of the kicked top
	3.1.  Hamiltonian learning
	3.1.1.  HL protocols for quantum many-body systems.
	3.1.2.  Learning the generator of a Trotter step of the kicked top `order by order' in the FM expansion

	3.2.  Trotter threshold from HL: results for the kicked top
	3.2.1.  Pre-threshold regime.
	3.2.2.  Trotter threshold.
	3.2.3.  Post-threshold regime.


	4.  Conclusions and outlook
	Acknowledgments
	Data availability statement
	Appendix A. Variants of the kicked top model
	Appendix A. Variants of the kicked top model
	Appendix B.  Details on the HL protocol of section 
	Appendix B. Variants of the kicked top model
	Appendix C.  RMT estimate for 
	Appendix C. 
	ORCID iDs
	References


