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position vector in three-dimensional space is written x = (x, y, z).

• Three similar but distinct equality symbols are utilised throughout this thesis: =,

≡ and :=. The canonical “=” symbol denotes a computational equality relation

and serves as an assignment operator. The “≡” symbol indicates an equivalence re-
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√
a2 ,

whereas norms on Euclidean space are denoted using double vertical bars, i.e. for

a vector x = (x1, . . . xn) the L
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Abstract

The focus of this thesis is the exploration of novel theoretical approaches to the pro-

duction and detection of dark matter candidates using laboratory-based electromagnetic

sources. The pursuit of these investigations culminated in the development and applica-

tion of a post-process numeric analysis software, Run:DMC. This code was applied to

the output data of two accelerator simulation packages, namely EPOCH and MEEP, to

calculate the field strengths of particular dark matter candidates – axion-like particles,

dilaton-like particles and dark photons – within these systems. The conclusion of these

analyses found that dark matter candidates can be produced in a variety of experimental

systems within modern laboratories with relatively modest equipment.

Chapter 1 chronicles the amassing of observational evidence supporting the existence

of dark matter, along with the developments of the dark matter candidates of concern for

this thesis and the proposed investigational approaches. Chapter 2 derives and discusses

the theoretical underpinnings and developments of particular dark matter candidates.

Similarly, Chapters 3, 4 and 5 cover the theory of the methodologies and techniques

utilised within this thesis. Chapter 6 presents Run:DMC, the computational code

designed and developed for the purpose of post-process analysing data produced by

simulations to calculate the corresponding dark matter fields. Within this chapter,

relevant theory is derived and the code is applied to several test cases, the results of which

are used to infer its strengths and weaknesses. Chapter 7 focusses on axion-like particle

(ALP) and dilaton-like particle (DLP) production within laser-driven plasma wake field

acceleration. It was found that magnetised plasma wakes are capable of producing both

ALPs and DLPs, however it was also found that the dominant field contributions for

both dark matter candidates derive from the laser pulse driving the wake. Trends across

system parameters were then investigated: ALP production was found to be maximised

when the system is exposed to high strength external magnetic fields which are parallel

to the direction of laser propagation; in contrast, DLPs are relatively unaffected by

13



List of Tables

magnetic field strength or angle. Chapter 8 presents and discusses results of the second

method of dark matter production, namely ALPs and hidden sector photons (HSPs) from

a photonic bandgap lattice (PBL) located within a microwave resonant cavity (MRC).

It was found that magnetised MRCs are suitable mechanisms of laboratory-based dark

matter production, which is capable of being coupled with a PBG to effectively restrict

the applied electric field to a much more localised region than ordinarily possible. Lastly,

Chapter 9 concludes the thesis by uniting all concepts theretofore discussed, summarising

results and suggesting further developments of the presented ideas.
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Chapter 1

Introduction

“The story so far: In the beginning the Universe

was created. This has made a lot of people very

angry and been widely regarded as a bad move.”

— Douglas Adams, The Restaurant at the End of

the Universe

The focus of this thesis is the exploration of two novel schemes of laboratory-based

production and detection of particular dark matter candidates, namely axion-like parti-

cles, dilaton-like particles and dark photons. Both of these schemes propose the utilisa-

tion of light shining through wall methodology as the means of efficient particle detection

from different physical systems, specifically laser wake field acceleration and photonic

bandgap lattices. To date, the main application of particle accelerators to particle physics

research has been in high energy physics, which has proved successful in the discover-

ies of a plethora of subatomic particles. However, the methods explored within this

thesis open the possibility for accelerator-based low energy particle physics research, a

relatively unexplored area of research which potentially holds epochal outcomes. This

introductory chapter considers the above italicised terms with the intention of grant-

ing the reader an understanding of their definitions, conceptual developments and their

advancing of fundamental physics.

1.1 Dark Matter

In his 1922 paper, the Dutch astronomer Jacobus Kapteyn outlined a preliminary “gen-

eral theory of the distribution of masses, forces and velocities” in the Milky Way based

on observations of stellar luminosities [1]. Presented in this paper was one of the first

15



1.1 Dark Matter

models envisaging our galaxy as a flattened distribution of stars rotating about a com-

mon axis; along with an allusion to the potential existence of invisible matter. This

substance could interact gravitationally but would be incapable of emitting, reflecting

or absorbing electromagnetic radiation, coining the term “Dark Matter”.

In modern physics, dark matter is hypothetical additional matter of unknown com-

position in galaxies and the wider Universe whose existence has been inferred by various

astrophysical observations which will be later explained. Characteristically, dark mat-

ter is non-luminous and non-absorbing; the combination of which has made detection

onerous. However, its existence has been inferred through a number of astrophysical

observations and according to recent data, dark matter is thought to comprise 84% of

the mass in the Universe [2, p. 396]. The following outlines the theoretical development

and accumulating observational evidence supporting the existence of dark matter. For a

more complete history, see Jaan Einasto’s Dark Matter or Gianfranco Bertone and Dan

Hooper’s History of dark matter [3, 4].

Some terminology will now be briefly introduced for later use. The rotational velocity

v for a body following a stable Keplerian orbit at radius r is given by v ∝
√

M(r)
r , where

M(r) is the total mass encompassed by the orbit. The nucleus of a galaxy is a compact

central region of high luminosity.

1.1.1 Galaxy Clusters

1.1.1.1 Fritz Zwicky and the Coma Cluster

Arguably the most famous pioneer in the field of dark matter research is the Bulgarian-

born Swiss-American astronomer Fritz Zwicky. In 1933, Zwicky published a paper on

his investigations into the velocity dispersion of galaxies within the Coma cluster [5].

By using the virial theorem, which relates a system’s time-averaged kinetic energy to

its total potential energy, it was possible to calculate the gravitational mass of the

cluster. Notably, this was significantly greater than that observed in the luminosity

of ordinary leuchtende Materie (“glowing matter”); Zwicky attributed the discrepancy

to an unseen dunkle Materie (“dark matter”). Further calculation revealed that the

Coma cluster would be torn apart into 800 individual galaxies without this additional

matter [5, p. 125].

Despite his major discovery, Zwicky’s work garnered little interest by his peers and
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1.1 Dark Matter

dark matter in galaxy clusters was largely overlooked. Undoubtedly, his work was ignored

by many due to his abrasive nature [6].

1.1.1.2 The Bullet Cluster

Situated in the Carina constellation, 3.7 billion lightyears from Earth, 1E 0657-56 is an

astrophysical system formed by the collision of two large galaxy clusters [7, 8]. During

the relatively recent merger, the intergalactic gases within each cluster interspersed, the

interactions from which slowed and heated the gases to the point of X-radiation emission.

In 2002, the Chandra X-ray Observatory measured the X-radiation produced within

1E 0657-56 [9]. From this, they detected the first ever clear evidence of a bow shock in a

galaxy cluster – a nearly discontinuous boundary between regions of different intracluster

medium pressures. However, in the annals of time this would fall secondary to another

observation of the same paper. What they noted was that the shape of the gas cloud

exiting the cluster core resembled that of a bullet, resulting in the coinage of its more

common name, the Bullet Cluster (though technically the Bullet Cluster specifically

refers to the smaller of the clusters).

Two years thereafter, in 2004, the mass distribution of the Bullet Cluster was mea-

sured using weak gravitational lensing [10]. It transpired that the majority of the clus-

ter’s mass was optically non-luminous and located within the intergalactic regions. Fur-

ther, the majority of the mass was found to be situated between the gas – which was

concentrated in the galactic centroid – and the visible galactic matter, as shown in Fig-

ure 1.1. This observed offset was concluded to be clear, direct evidence for the existence

of dark matter. Shortly thereafter, the Chandra Observatory combined their 2002 X-ray

data with the optical and new gravitational lensing observations to place constraints

on dark matter self-interaction [11]. The conclusion of this was that the cross sections

of dark matter self-interaction are very small. From this, they were able to explain

their observation as the dark matter having interpassed relatively unhindered while the

intergalactic gases were heated, thus explaining the spatial offset of observable bary-

onic matter and gravitational lensing. A 2006 analysis of additional data found an 8σ

significance of the spatial offset between the centres of total and baryonic mass [12].

One should note that the Bullet Cluster is not an anomaly, with other clusters such as

MACS J0025.4-1222 providing additional support for the existence of dark matter [13].

The reason for the Bullet Cluster being so dominant a discovery lies in its orientation

17



1.1 Dark Matter

Figure 1.1: NASA composite image of the Bullet Cluster from
X-ray, optical and gravitational lensing data. Non-luminous

baryonic mass is in pink and the putative dark matter in blue.
Image credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.;
Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.;

Lensing Map: NASA/STScI; ESO WFI;
Magellan/U.Arizona/D.Clowe et al.

being planar relative to Earth, thus is easier to observe.

1.1.2 The Galaxy Rotation Problem

In his 1939 doctoral thesis, the American astronomer Horace Babcock reported various

measurements of the galaxy Messier 31 (also known as M31 or Andromeda) [14]. Among

his observations, Babcock noted that the mass-luminosity ratio increased with radial dis-

tance, from 0.001 at 0 arcminutes to 62 at 80 arcminutes, suggesting either additional

mass or reduced luminosity toward the outer reaches. However, he did not regard the

existence of unseen massive matter a possibility, instead attributing the behaviour to ab-

sorption of light by interstellar media or modified dynamics – which he termed “internal

gravitational viscosity” – in the farther extents of the galaxy. Babcock also reported a

plateauing of the angular velocity with radial distance, as shown in Figure 1.2, running

counter to the expected radial drop-off.

On the discovery of this deviation from theory, Babcock concluded that a significant

mass must be present in the galaxy’s exterior, writing:

“[T]he obvious interpretation of the nearly constant angular velocity from a
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1.1 Dark Matter

radius of 20 minutes of arc outward is that a very great proportion of the

mass of the nebula must lie in the outer regions.”

Figure 1.2: Babcock’s plot of stellar angular velocity vs. radial
distance from the galaxy centre of M31 [14].

During the late 1960s and throughout the 1970s, the astronomers Vera Rubin and

Kent Ford measured the rotation curves of stars within spiral galaxies [15]. In a 1970

paper they published results of rotational velocity vs. radial distance from the centre of

the M31 galaxy, indicating a similar trend to Babcock, as can be seen in Figure 1.3.

Figure 1.3: Rubin and Ford’s plot of stellar orbital speed vs.
radial distance from the galaxy centre of M31 [15].

Ten years later, Rubin and Ford, along with their colleague Norbert Thonnard,

published a paper of galaxy rotation curves for 21 Sc classification galaxies; those with

small nuclei, spiral arms and large pitch angles [16]. The conclusion of this research was

that, regardless of the luminosity or size of the galaxy, all showed rotation curves which
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did not fall over radial distance, in contradiction with all gravitational models. From

this, they deduced the existence of significant mass from non-luminous matter at larger

radii, providing further evidence for dark matter.

Collectively, the works by Babcock, Rubin, Ford and Thonnard became known as the

galaxy rotation problem. This problem encompasses the observed discrepancy in mass

profiles between those measured from mass-to-luminosity ratios and those calculated

from rotation curves and the theory of gravity as it was understood.

In 1970, the Australian astronomer and astrophysicist Ken Freeman proposed a solu-

tion to the galaxy rotation problem [17]. Freeman posited that the rotation curve could

be explained through a two-component mass model; galaxies could be composed of a

centrally-concentrated spheroid and an invisible contribution that is distributed expo-

nentially throughout the galaxy – a phenomenon which would later become known as

the dark matter halo. When commenting on the flattened rotational curve of the spiral

galaxy NGC 300, Freeman remarked:

“If the [rotation curve] is correct, then there must be undetected matter

beyond the optical extent of NGC 300; its mass must be at least of the same

order as the mass of the detected galaxy.”

Later, in 1985, the cumulative dark matter halo mass of the galaxy NGC 3198 was

calculated using the observed rotation curve with surface photometry, as shown in Fig-

ure 1.4 [18]. From the result of this they estimated a galactic dark matter composition

at upwards of 83%, concluding:

“Using this curve, we find that the minimum amount of dark matter asso-

ciated with NGC 3198 inside 50 kpc is probably at least 6 times larger than

the amount of visible matter; thus, for the galaxy as a whole.”

However, one should note that this dark matter halo is not a necessity for galacto-

genesis. In April 2019, a team led by Pieter van Dokkum of Yale University published

a paper on the velocity dispersion of NGC1052-DF2, an ultra diffuse galaxy [19]. They

noted that there was little to no dark matter present within the galaxy.

20



1.1 Dark Matter

Figure 1.4: Cumulative mass distributions of galactic
components with radius. The curve labelled “disk” indicates

measured quantities of mass in the observable galactic disk and
the curves labelled “‘normal’ halo” and “‘minimum’ halo” are
estimates of dark matter distribution according to different

theoretical models [18].

1.1.3 The Cosmic Microwave Background

TheWilkinson Microwave Anisotropy Probe (WMAP) was a satellite which was operated

by NASA and Princeton University between 2001 and 2010 [20]. Its purpose was to

measure regional temperature differences in the remnant heat of the Big Bang in the

form of the Cosmic Microwave Background (CMB). The final results of the nine year

data collection period found a baryonic matter density of Ωbh
2 = 0.02223, where h is

Planck’s constant, and a dark matter density of Ωch
2 = 0.1153, indicating that 83.8%

of all matter is dark [21].

The successor to WMAP, the European Space Agency’s Planck spacecraft, was

launched in 2010 with a number of objectives, including improving the resolution of

measurements by its predecessor [22]. By combining the data of multiple measurements,

Planck calculated a baronyic matter density of Ωbh
2 = 0.02227 and a dark matter den-

sity of Ωch
2 = 0.1184, increasing the dark matter abundance ratio inferred by WMAP

to 84.2% [2, p. 388].
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1.1.4 Summary

Combining the considerable evidence presented, over the past century physicists have not

only inferred the existence of dark matter, but also deduced a number of its properties.

Firstly and fundamentally, dark matter must be “dark”, which is to say that it

emits and absorbs negligible levels of electromagnetic radiation. The justification for

this conclusion is elementary: if this were not the case then dark matter would already

have been observed. However, dark matter is not inert to all fundamental forces since

it must be able to interact gravitationally due to those being the methods by which its

existence was inferred.

Since the effects of dark matter were observed in the CMB, one concludes that it

must have been produced during the big bang. Furthermore, dark matter must be stable,

since its effects are still observable, nearly 14 billion years later. Finally, for dark matter

to exist in stable orbit throughout galaxies, its speed must be relatively slow, thus ruling

out the prospect of it being massless. However, this orbital stability is not the only

consideration when discussing the mass ranges of dark matter candidates; depending on

the models used in theorising their existences, these masses can vary by dozens of orders

of magnitude. For example, some dark matter models posit sub-electronvolt hypothetical

elementary particles as their primary candidates, while others prefer much larger objects

which can range from small planets to supermassive black holes.

1.2 The Dark Matter Candidate Menagerie

Since the first evidence hinting the existence of dark matter, a plethora of theories have

arisen in attempts to account for the observations. This section will outline the three

dark matter candidates (DMCs) of interest in this thesis, namely axions, dilatons and

dark photons.

1.2.1 Axions

The axion is a well motivated hypothetical particle which was originally theorised to

explain one of the foremost unanswered questions of modern fundamental physics – the

Strong CP Problem – and has been hailed as a suitable candidate for dark matter.
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1.2.1.1 The Strong CP Problem

Quantum ChromoDynamics (QCD) is the theoretical framework which governs our un-

derstanding of the strong interaction. Within the QCD Lagrangian there exists a term,

colloquially referred to as the “θ term” owing to its leading dimensionless parameter;

Lθ = θ
1

32π2
GaµνG̃

µν
a ,

where G is the gauge field tensor and G̃aµν = 1
2ǫµνρσG

ρσ
a its dual. Whilst this term

conserves charge conjugation, it violates both parity and time inversions, the latter

of which being equivalent to CP violation by the CPT theorem, the latter of which

was initially recognised and formulated by Gerhart Lüders and Wolfgang Pauli, and

further developed by Res Jost [23–26]. Since there is no reason to assume that θ takes

any particular value, one deduces that QCD theory predicts a manifestly observable

violation of CP symmetry. This is a problematic conclusion because there exists no

experimental evidence supporting such a conclusion from any interactions mediated by

the strong force; this apparent contradiction between theory and observation is the

Strong CP Problem. Since the value of θ is a priori unknown, one may näıvely argue

that by naturalness it should take a value of order unity. However, measurement of the

neutron electric dipole moment – which is non-zero by the Strong CP Problem – has

set a stringent constraint on this parameter, narrowing it down to |θ| . 10−10 [27]. The

Strong CP Problem may hence be reformulated as a fine-tuning problem: Why should

θ be so small instead of order unity, as expected by arguments of naturalness?

Among the solutions to this problem include massless quarks and argumentation by

fine tuning i.e. it is what it is because it must be. However, arguably the best motivated

solution is the introduction of a new particle which necessarily solves the Strong CP

Problem: the axion.

1.2.1.2 The Axion Solution

In 1977, the physicists Roberto Peccei and Helen Quinn proposed a new anomalous

global chiral U(1) symmetry on the Standard Model, the eponymic Peccei-Quinn sym-

metry [28, 29]. This would necessarily be spontaneously broken, in such a manner that

it exactly counters the CP violation from QCD, such that the CP symmetry is automat-

ically restored. In the following year, Steven Weinberg and Frank Wilczek noted that

this symmetry breaking was tantamount to promoting the θ parameter to a dynamical

field, thus introducing a new pseudo-Nambu-Goldstone boson, which Wilczek coined the
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axion [30, 31]. During his 2004 Nobel lecture, Frank Wilczek spoke of this coinage; “I

named them after a laundry detergent, since they clean up a problem with an axial

current” [32]. In the same paper in which he coined the axion, Wilczek also calculated

its expected mass to be of order 100 keV c−2.

1.2.1.3 Searches

Over four decades since its original theorisation, the axion yet remains elusive. Initial

axion searches during the late 1970s and early 80s used accelerator- and reactor-based

facilities to explore the predicted mass regions, see e.g. [33–37]. These experiments had

quickly and definitively ruled out the original Peccei-Quinn-Weinberg-Wilczek axion.

However, hope was not lost for the existence of the axion, merely its original for-

mulation. First posited in 1979 by the South Korean physicist Kim Jihn-eui, so-called

invisible axions are still able to resolve the Strong CP problem while instead taking

masses of order electronvolt to sub-electronvolt [38]. Kim’s theory would be incorpo-

rated with a 1980 paper by Mikhail Shifman, Arkady Vainshtein and Valentin Zakharov,

to form the eponymous KSVZ model [39]. Shortly thereafter, a second invisible axion

model came to fruition, the Dine–Fischler–Srednicki–Zhitnitsky (DFSZ) model [40, 41].

The coupling constant of members of the axion family – more often referred to as axion-

like particles (ALPs) – to two photons is given by gaγγ = α
2πfa

(
E
N − 1.92(4)

)
, where α

is the fine structure constant, fa denotes the axion decay constant, and E
N denotes the

ratio of the electromagnetic and colour anomalies of the axial current associated with

the axion [42, §91.2.2]. The KSVZ and DFSZ formulations, which respectively have E
N

values of 0 and 8
3 , are the current contending axion models of concern for this thesis.

Not only do they solve the Strong CP Problem, but they may also account for dark

matter in the Universe [43–45]. Specifically, cosmological invisible axions are theorised

to be charge-neutral, non-relativistic and collisionless, and exist in sufficient quantity to

exhibit observed behaviours [46].

Axion searches can be broadly generalised into three categories: haloscopes, helio-

scopes and laboratory-based optical. Invented for axion detection by Pierre Sikivie in

1983, haloscopes search galactic dark matter halos for signature signals which would

indicate the existence of axions [47]. Within the same paper, Sikivie also proposed helio-

scopes for axion detection, which look to detect axions produced in stars, most commonly

within the solar core. Finally, laboratory-based optical experiments direct laser pulses
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through inhomogeneous magnetic fields which polarise the beam – a non-vanishing result

would indicate the existence of a background axionic field. An example from each of

these categories will now be presented, however readers should note that these are by

no means isolated instances of their respective experimental classes.

ADMX

The Axion Dark Matter eXperiment (ADMX) is a haloscope searching the local galactic

dark matter halo for signals of axionic matter [48]. The operation of haloscopes uses the

theorised behaviour that axions are able to couple to two photons. Through interacting

an axion with an external magnetic field, one is able to stimulate the decay of axions

into photons of frequency corresponding to that of the magnetic field (later covered in

Section 1.3.1), which would result in an observable increase in the cavity’s magnetic

field strength. The ADMX haloscope utilises a narrowband microwave resonant cavity

which is capable of surveying the microwave sector of the electromagnetic spectrum,

bandwidth by bandwidth. By iteratively scanning frequency ranges, ADMX is able to

either exclude axion mass regions or infer their existence through the detection of a signal

at a characteristic frequency. In the words of ADMX co-spokesman Gray Rybka [49], “If

you think of an AM radio, it’s exactly like that [...] We’ve built a radio that looks for a

radio station, but we don’t know its frequency. We turn the knob slowly while listening.

Ideally we will hear a tone when the frequency is right.”

CAST

Situated in Geneva, Switzerland, the CERN Axion Solar Telescope (CAST) [50] is a

modern example of a helioscope which is designed to detect axions streaming from the

Sun. The CAST experiment repurposes a decommissioned test magnet from the Large

Hadron Collider (LHC) to stimulate the decay of solar axions into detectable photons

through the same process as ADMX. The thermal spectrum of solar axions has an average

energy of 4.2 keV, thus placing their decay photons firmly within the X-ray region of

the electromagnetic spectrum [51]. In 2017 the CAST collaboration published results

constraining the mass coupling to gaγγ . 0.66× 10−10GeV−1, and ma . 10−1 eV [52].

PVLAS

Initially proposed in 1991 as a means of measuring quantum electrodynamical effects, the

Polarizzazione del Vuoto con LASer (PVLAS) experiment is a laboratory-based axion

search located in Ferrara University, Italy [53]. The experiment uses a high finesse Fabry-

Perot etalon to investigate a background axion field through measuring the induced
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polarisation of a laser beam directed through a strong inhomogeneous magnetic field

under vacuum. The interaction between the laser and magnetic field photons should

produce axions, which within the KSVZ and DFSZ models are known massive, hence

travel at subluminal speeds in vacuo. As such, once the axion decays back into photons,

one would expect to observe a phase difference in the measured electric field which would

mimic ellipticity. In 2006, the PVLAS collaboration reported a non-vanishing rotation

in the polarisation of their laser beam following 44,000 passes of the magnetic field [54].

From this observation, they deduced the existence of a light, neutral, spin-zero particle

– alluding to the axion – however, they excluded this conclusion two years thereafter

when they failed to replicate the outcome, citing instrumental artefacts as the source of

the original signal [55].

Over the last forty years, numerous experiments have explored various axion models

and decay modes, however – due to the specifics of the equipment – each setup can

only be sensitive to specific domains of mass and coupling. For example, the Compton

wavelength of a particle is inversely proportional to its mass, thus larger detectors are

required to measure smaller particle masses. Further considerations when discussing

the sensitivity of experimental particle physics detection include, but are not limited to,

the effective quality factor of the detector, the types of signal amplifiers and the sys-

tem temperature. The experimentally excluded areas in ALP mass-di-photon-coupling

parameter space are shown in Figure 1.5. In general, ALP masses and di-photon cou-

pling constants are free parameters, thus their pairing may reside anywhere within the

parameter space. However, QCD axion theoretical models (including “invisible” axions)

scale one parameter relative to the other, resulting in the diagonal yellow band, which

incorporates a typical range of E
N values.

Highly sensitive haloscopes, such as ADMX, are able to fine tune their electromag-

netic frequencies for precision measurements over small mass regions, resulting in thin

mass ranges extended over many orders of magnitude of coupling. Meanwhile, less at-

tuned helioscopes, such as CAST, are able to probe much broader mass regions at lower

coupling resolutions.

1.2.2 Dilatons

Generically, the dilaton (also known as the radion) refers to both the scalar field and its

associated hypothetical particle which arise in n > 4-dimensional theories. Mathemat-
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Figure 1.5: Axion exclusion plot in mass-coupling parameter
space [2, p. 822]. QCD axions are constrained to within the

diagonal yellow band. The vertical green columns indicate the
parameter space regions investigated by haloscopes, including
ADMX. The horizontal blue region denotes the cumulative
parameter space volume for helioscope experiments such as

CAST. Further coloured regions illustrate investigation areas for
specific experiments.

ically, the dilaton is the result of redefining a theory from a higher-dimensional space

onto four-dimensional spacetime through a process known as compactification, in the

process generating a pseudo-Nambu-Goldstone boson [56].

1.2.2.1 Searches

From the perspective of particle physics, dedicated experimental dilaton searches are

non-existent and those non-dedicated are scarce afterthoughts. With that said, in 2015

an Israeli team constrained the parameter space in which the dilaton may reside based

upon LHC data and cosmological observations, ultimately concluding that current col-

lider experiments are not yet sensitive enough to directly measure them [57]. However,

there exist recent experimental proposals for dedicated dilaton searches.

A 2015 paper headed by Greek theoretical physicist Asimina Arvanitaki outlined the

potential for atomic clocks to be used in detecting dilatons [58]. According to this paper,

fundamental constants undergo coherent oscillations caused by scalar couplings between

dark matter and the Standard Model at a frequency determined by the mass of the dark

matter candidate. As such, atomic energy levels – which are proportional to the fine

structure constant – would oscillate. Therefore, atomic clocks, with their extremely high
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precisions, could be utilised to search for signature dilatonic signals in these oscillations.

1.2.3 Dark Photons

Since the discovery of the Z boson by the UA2 experiment in 1983, particle physicists

have been interested in the possibility of finding other massive neutral vector bosons,

generally denoted A′ [59]. Located in the dark sector of particle physics – a collection

of yet unobserved hypothetical quantum fields and associated particles – the dark pho-

ton (also called the para-, secluded, heavy or hidden sector photon) is the hypothetical

particle resulting from an additional Abelian U(1) gauge symmetry on the Standard

Model.

The dark photon, denoted γ′, is able to couple to the Standard Model photon at

arbitrarily high energies through the exchange of messenger particles [60]. Further-

more, the dark photon is able to very feebly couple to other Standard Model particles

through this kinetic mixing, consequently inducing minor shifts in charge e′ = ǫe, where

ǫ is a small dimensionless parameter, akin to a coupling constant, and e is the ele-

mentary charge. The dark photon – unlike its Standard Model counterpart – assumes

an arbitrary mass [61], with the current favoured region of experimental interest being

10 to 1000MeV, as evidenced by the exclusion plot in Figure 1.6.

1.2.3.1 Searches

As with ALP searches outlined in Section 1.2.1.3, the particulars of each experiment

are dependent on several factors which are specific to each setup. Laboratory-based

searches for dark photons generally utilise particle accelerator beams to explore a variety

of production and decay modes. The following outlines two such experiments.

BaBar

Initially designed for the detection of CP violation in the B meson system, the BaBar

experiment – named for the B meson and its antiparticle (B̄, pronounced B-bar) –

is based at the Stanford Linear Accelerator Center National Accelerator Laboratory

(SLAC), California, USA [66]. Utilising the SLAC linear electron accelerator and PEP-

II electron storage ring facilities, the BaBar detector houses the collider interaction point,

from which location by-products originate. The collision energy in the centre-of-mass

frame is such that Υ(4S) and B mesons are produced at a very high rate with little

momentum in the laboratory frame, resulting in a short travel distance prior to decay,
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Figure 1.6: Exclusion plot of the hidden sector gauge boson
(A′) in mA′-ǫ space [62]. The large blue-purple region labelled
“SN” denotes the cumulative exclusion zones of supernovae
observations, see e.g. [63, 64]. The grey E137, E141 and E774

zones indicate accelerator beam dump experiments at SLAC and
FermiLab [63,65]. Smaller, more colourful, regions demonstrate

specific experimental investigations.

thus affording high precision measurements. A 2017 paper from the BaBar Collaboration

analysed the four-momenta of by-products from e+e− collisions, in search of events with

missing energy and momentum congruent with the production of an undetected spin-1

particle [67]. The result of this found no evidence for its existence in the mass range

0 . mγ′ . 8GeV for ǫ & 10−3.

APEX

The A′ EXperiment (APEX), based in the Thomas Jefferson National Accelerator Fa-

cility (JLab), Virginia, USA, is a contemporary experiment dedicated to the search for

new vector bosons [68]. The search for these particles utilises the Continuous Electron

Beam Accelerator Facility’s beam to measure various modes of dark photon production

and decay in the electron system, e.g. γ′ → e+e− [69].
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1.3 Light Shining Through Walls

In name, light shining through wall (LSW) methodology appears rather paradoxical:

How does one shine a light through a wall? The underlying premise of this experimental

approach lies with the ability of feebly interacting particles to traverse an absorbing

medium. Once the absorber has been navigated, these particles may decay naturally or

through stimulation, the by-products of which being more readily detected, e.g. photons.

As such, one is able to measure “light” which has originated outside the confines of a

chamber, thus coining the methodology’s moniker.

Since it is known a priori that dark matter candidates must have very slight interac-

tions with ordinary matter, otherwise they would already have been detected, the LSW

technique befits dark matter searches. The basis for these pivots on the dark matter can-

didate having the ability to traverse an otherwise impenetrable absorbing medium, e.g.

the Earth, relatively unimpeded. A number of existing experiments attempt to stimulate

dark matter candidates to decay into photons through the Primakoff effect. For further

information on LSW methodology, see Javier Redondo and Andreas Ringwald’s 2011

paper [70].

1.3.1 The Primakoff Effect

In 1951, the Russian theoretical physicist Henry Primakoff proposed a method of mea-

suring a lower bound for the lifetime of the π0 meson [71]. This method used the fact

that the cross-section for photoproduction of a decaying neutral meson in the Coulombic

field of a heavy nucleus is inversely proportional to its lifetime, illustrated in Figure 1.7,

a process now known as the Primakoff effect.

γ

γ

q

q

π0 γ

γ

Figure 1.7: Schematic of the Primakoff effect.
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Through this phenomenon one can also prompt particles to decay into products which

are potentially easier to detect, e.g. ALPs can be stimulated to decay through coupling

to a virtual photon via a powerful transverse magnetic field, resulting in a single photon

carrying the same four-momentum as the original axion, as shown in Figure 1.8. Since,

classically, magnetic fields are unable to do work, energy is conserved when mac
2 ∼ ~ω

(excluding kinetic energy), thus the resultant photon’s frequency can be used to calculate

the ALP mass.

a

γ∗

⊗

Bext
meson

γ

γ∗

Figure 1.8: Axionic reverse Primakoff effect. A strong external
magnetic field is able to stimulate axion decay into photons.

1.4 Physical Systems and Tools

With the purpose of this thesis being the exploration of novel laboratory-based searches

for dark matter candidates, attention must now turn to the physical systems of interest

and tools to be utilised.

1.4.1 Laser Wake Field Acceleration

Canonically, the inception of Laser Wake Field Acceleration (LWFA) is taken to be John

Dawson and Toshiki Tajima’s 1979 paper in which they proposed a novel method of accel-

erating electrons through the exposing an electron-ion plasma to intense electromagnetic

pulses [72]. However, the idea of utilising a plasma as the medium of acceleration pre-

dated Tajima and Dawson; in his 1956 paper the Soviet experimental physicist Vladimir

Veksler qualitatively described a novel principle of particle acceleration [73].

When an electromagnetically-interacting beam is directed through a plasma, one

transversely drives the plasma electrons outward from the centre through a pondero-

motive (“mass moving”) force while leaving the much heavier ions relatively unper-

turbed, thus establishing a space-charge separation. The central region of positive charge

strongly attracts the peripheral electrons back inward, whereupon they overshoot their
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original positions, pass one another to then reach the opposite extremity to then be

drawn back, repetitio ad nauseam, forming a density perturbation known as a wake field.

Veksler noted that these oscillations within the plasma – a phenomenon first observed

by Lewi Tonks and Irving Langmuir in the late 1920s [74] – held the capacity to gener-

ate electric fields orders of magnitude greater than those available through traditional

resonance accelerators. However, despite the potential of his acceleration methodology,

Veksler recognised that he had not sufficiently developed the theory for experimental

application, writing:

“Although the practical development of the ideas set forth below is still far

from clear in all its details, the author assumes it is possible, by this means,

to approach the problem of constructing accelerators for very high currents

and super-high energies of the order 1012 eV and even more.”

Four years thereafter, the Ukrainian physicist Ya Făinberg explicitly outlined [75] a mech-

anism by which one could accelerate charged particles via plasma oscillations building

upon Veksler’s principle, commenting:

“Veksler very quickly realized the possibilities that might be made available

by the use of an electron-ion plasma for the acceleration of charged particles.”

The combined works of Veksler and Făinberg set up the foundations of wake field

acceleration, however they both envisioned plasma oscillations being driven by a particle

beam. In contrast, Tajima and Dawson proposed a laser-driven wake field accelerator.

By directing an intense short laser pulse at a gas jet, the photons are able to ionise

the constituent atoms, forming a quasi-neutral plasma while simultaneously exciting

oscillations. Correctly phased plasma electrons can then become trapped within this

wake, greatly accelerating them within a short distance, as shown in Figure 1.9.

The intensity of the laser in relation to the plasma discriminates two schemes of

LWFA: either the electrons in the wake field undergo periodic sinusoidal oscillations

(linear regime) or are fully expelled to form a cavity following the pulse (non-linear or

bubble regime). The standing oscillations of the electrons produce a transverse elec-

tric field, whereas their collective oscillatory movements create a longitudinal electric

field. These acceleration gradients are capable of reaching levels of order TeVm−1,
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Figure 1.9: Graphical representation of laser wake field
acceleration. The laser pulse (red ellipse) expels plasma electrons
(green circles) transversely outward, leaving regions of excess
positive charge due to significantly heavier ions (orange circles)

being moved less by the laser. This space charge density
imbalance results in the electrons being attracted back inward,

overshooting equilibrium and forming a stationary wave
comprised of “bubbles” following the laser. Within these bubbles

are powerful alternating electric fields (red and blue arrows)
which can be used for particle acceleration.

with currently realisable strengths of order 100GeVm−1. An introduction to the theory

underpinning LWFA is outlined in Chapter 3.

1.4.2 Photonic Band Gap Lattices

A photonic band gap (PBG) structure is a periodic and/or disordered structure com-

prised of dielectric materials [76]. These dielectric ensembles can be arranged in such a

manner that the flow of electromagnetic radiation within the structure can be controlled.

These manipulations include the localisation of photons to a region and the limitation

of propagation to specific frequency ranges.

The phenomenon of photonic band gaps was first written about in 1887, when Lord

Rayleigh discussed the interesting vibrational properties of one-dimensional periodic

structures [77]. However, the foundational works on modern photonic band gap struc-

tures were two separate 1987 papers by Eli Yablonovitch and Sajeev John [78, 79]. In

both papers the authors drew direct analogies to electronic behaviours in solid state

matter in order to discuss similar phenomena exhibited by photons in dielectric struc-

tures. The generic term for the class of materials to which photonic band gap structures

belong, photonic crystals, was coined by Yablonovitch and Thomas Gmitter in 1989 [80].

The relevant theoretical aspects of photonic band gap lattices are derived in Chapter 4.
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Figure 1.10: Periodic structures in one, two and three
dimensions [81, §1].

1.4.3 Physical Simulation Codes

Until the early twentieth century, the foundations underpinning all physics revolved

around the idea that every physical system can be fully described through deterministic

equations, provided a set of initial conditions. In 1814, the French polymath Pierre-

Simon Laplace articulated this idea through the eponymous Laplace’s demon, writing [82,

p. 4]:

“We ought then to regard the present state of the universe as the effect of

its anterior state and as the cause of the one which is to follow. Given for

one instant an intelligence which could comprehend all the forces by which

nature is animated and the respective situation of the beings who compose it

– an intelligence sufficiently vast to submit these data to analysis – it would

embrace in the same formula the movements of the greatest bodies in the

universe and those of the lightest atom; for it, nothing would be uncertain

and the future, as the past, would be present in its eyes.”

Despite generations of efforts by theorists and mathematicians alike, the complete

description of some physical systems appeared impervious to analytic calculation tech-

niques. Whilst initially obeying deterministic equations, over a sufficiently long duration

these systems diverged in behaviours subject to minute differences in initial conditions.

The time-evolution of these systems were characteristically irregular and non-repeating,

resulting in their being completely unpredictable on a long enough time scale. The

French polymath Henri Poincaré was the first to note this behaviour, remarking [83, p.

397]:

34



1.5 Recapitulation and Hypotheses

“[I]t may happen that slight differences in the initial conditions produce very

great differences in the final phenomena; a slight error in the former would

make an erroneous error in the latter. Prediction becomes impossible and

we have the fortuitous phenomenon.”

Despite this, one is able to approximately model complex systems by discretising the

deterministic equations and iteratively evolving the system in time. This algorithmic

approach makes the application of computers in the simulation of these systems ideal.

The two numerical techniques of note in this thesis are those of Finite Difference and

Particle-in-Cell methodologies, which will be discussed in Chapter 5.

1.5 Recapitulation and Hypotheses

1.5.1 Recapitulation

Nearly a century has passed since initial observations predicated the advent of dark

matter. The models theorised to explain this have been plenty, including such particles

as the axion and dark photon, and despite decades of dedicated searches they have

all either been discredited or remain elusive. These searches often employ light shining

through wall methodology, in which the dark matter candidates traverse an impenetrable

absorber, as a means of suppressing ambient signal.

1.5.2 Hypotheses

The purpose of this thesis is the exploration of two novel schemes of producing and de-

tecting electromagnetically-interacting dark matter candidates through the application

of light shining through wall methodology. The hypotheses in both cases are that the

candidates of interest (a) can be produced, and (b) are able to arrive at the detector

with a flux comparable to that of current best known sources, terrestrial or otherwise.

1.5.2.1 Axions from LWFA

The first proposition comes as an extension to David Burton and Adam Noble’s 2018

paper [84]. The large acceleration gradients found in the wakes of plasma-based acceler-

ators appear to offer passage to the laboratory-based production of axion-like particles

since they are theorised to couple to electric and magnetic fields. As such, by subjecting

the plasma channel to a powerful external magnetic field, one should be able to produce
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1.5 Recapitulation and Hypotheses

these dark matter candidates. By generating these DMCs with a forward momentum,

it is expected that their weakly interacting natures would allow them to negotiate an

otherwise impenetrable barrier. Once traversed, the candidate could then be stimulated

to decay back into photons through the reverse Primakoff effect, as shown in Figure 1.8,

whereupon they could be detected, inferring the particle’s existence as an intermediary.

A proposed experimental schematic is shown in Figure 1.11.

LASER

Magnet

Plasma

B

a

e−

Absorber

B

γ

γ
Detector

Figure 1.11: Schematic of proposed experimental setup using a
plasma-based accelerator with light shining through wall
methodology for the production and detection of ALPs.

1.5.2.2 Dark Photons from PBG Lattices

The second proposition is the application of a microwave resonant cavity for dark photon

production and a photonic band gap lattice for detection optimisation.

One is able to effectively confine the region in which photons of a particular frequency

can reside by periodically spacing a lattice of dielectric resonators. An example of

suitable dielectric resonators are sapphire rods with relative permittivity ǫr ∼ 9 at

room temperature for perpendicularly-polarised electromagnetic radiation in the low-

frequency (∼ 0 to 1013Hz) limit [85], such that the traversal of specific wavelength bands

are disallowed.

In the proposed experimental setup, one would situate a PBG lattice within a mi-

crowave resonant cavity. By introducing a defect to the system through the removal of

rods, one enables the disallowed electromagnetic frequencies to inhabit these enclosed

regions. Consequently, one can apply an electric field at these frequencies to one of the

defects and it will be constrained to a significantly smaller radius than normally. As

earlier mentioned, theory suggests that baryonic photons can kinetically mix into dark

photons, which are feebly interacting. As such, these are able to traverse the band gap

lattice, whereupon reverse mixing can occur. Consequently, by placing an antenna in
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1.5 Recapitulation and Hypotheses

another defect sufficiently distanced from the origin, one would expect to measure the

electric field in excess of that for a system in which the dark photon was not present,

thus inferring its existence as an intermediary. One of the strengths of this methodology

is that the detection of these signals provides unambiguous confirmation of the particle

with a relatively small range of mass values. A schematic of this system is shown in

Figure 1.12.

Ein Eobs
γ′

Figure 1.12: Schematic of proposed experimental setup using a
photonic band gap lattice with light shining through wall

methodology for the production and detection of HSPs. Circular
nodes indicate dielectric rods. The central region devoid of rods

denotes a continuation of the dielectric lattice of arbitrary
distance. The intermediary rods between the defects of emission
and detection provide effective shielding to prevent photons of

particular frequencies from traversing the lattice.
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Chapter 2

Theory: Particles

“Il apparut que, entre deux vérités du domaine réel,

le chemin le plus facile et le plus court passe bien

souvent par le domaine complexe.”

— Paul Painlevé1 [86]

2.1 Axions

2.1.1 The U (1)A Problem

Despite the early success of quantum chromodynamics (QCD) during its development

in the 1960s and early 1970s, in 1975 Steven Weinberg noted a major failure of the

model [88]. In the massless limit, the quark sector of the standard model bisects into

chiral components, those for which the spin vector is aligned with the momentum vector

(right-handed) and those for which these are anti-aligned (left-handed). Under this

assumption of small up-, down- and strange-quark masses, i.e. much lower than the

QCD energy scale mu,d,s ≪ ΛQCD, the QCD Lagrangian has a global unitary chiral

symmetry, the axial U (1) symmetry given by the rotations

qk 7→ eiγ5θqk,

where γ5 ≡ iγ0γ1γ2γ3 is the “fifth” Dirac gamma matrix and θ is a parameter which takes

the same value for all “massless” quark flavours qk ∈ {u, d, s}. This transformation intro-

duces a phase eiθ in the right-handed quarks and a phase e−iθ in the left-handed quarks.

If this symmetry is conserved then one expects to observe a hadronic parity doubling, i.e.

1“It appeared that, between two truths of the real domain, the easiest and shortest path quite often
passes through the complex domain”. A similar later quote is attributed to Jacques Hadamard [87].
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2.1 Axions

the existence of opposite parity states with equal spin values, but to this end no evidence

exists. If instead this symmetry were violated, the result would be the addition of two

new isoscalar 0− bosons. The first of these Weinberg identified as being the π0 meson,

whereas the second was calculated to have an upper mass limit
√
3mπ0 ≈ 240MeVc−2.

However, by that time this region had already been thoroughly investigated and the

closest suitable candidate was the η meson, of mass mη ≈ 548MeVc−2 – twice that

of the theoretical maximum. This prediction, but apparent non-existence, of either a

hadronic parity doubling or an appropriate η particle was dubbed the U (1)A Problem.

2.1.2 The Strong CP Problem

An initial solution to the problem appeared to lie in the axial symmetry’s associated

anomaly (a classical symmetry that is broken within quantum theory) [89–91]. The

divergence of the U (1)-associated axial current Jµ
5 receives quantum corrections from

two gluons, connected to it via a quark triangle loop, as illustrated in Figure 2.1.

µ5a

g

g

µ5a

g

g

Figure 2.1: Graphs resulting in an axial anomaly in the QCD
chiral current. Reproduced from Peskin and

Schroeder [92, §19.3].

The result of these graphs is that the QCD chiral current receives a non-zero diver-

gence [93, §1.1]:

∂µJ
µ
5 =

g2sN

32π2
Gµν

a G̃aµν ,

where N is the number of quark flavours, gs is the strong coupling strength, G is the

gauge field tensor and G̃aµν = 1
2ǫµναβG

αβ
a its dual. From this, one sees that in the mass-

less quark limit under U (1)A transformations qk 7→ eiαsγ5/2qk, the current is invariant.

However, under the same transformation the chiral anomaly also affects the action, S,

in a non-vanishing manner as

δS = αs

∫
d4x ∂µJ

µ
5 = αs

g2sN

32π2

∫
d4xGµν

a G̃aµν .

Noting that the new pseudoscalar density can be written as the total divergence of some

current, i.e.

Gµν
a G̃aµν = ∂µK

µ,
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with [94]

Kµ = ǫµαβγAaα

(
Gaβγ −

gs
3
fabcAbβAcγ

)
,

then by Gauss’ theorem one may integrate the term to remove all terms excepting those

located on surface boundaries.

In the year following Weinberg’s outlining of the U (1)A problem, Gerard ’t Hooft

proposed that, in the presence of instantons2, one is able to preserve the axial symmetry

without the necessity of a new boson, thus solving Weinberg’s U (1)A problem [96–98].

This effectively made the axial rotation not a true symmetry of QCD, despite apparently

holding for the Lagrangian under the limit of massless quarks.

Noting that QCD has a non-trivial vacuum state which is comprised of a superposi-

tion of vacua of winding numbers ν, each belonging to its own homotopy class [99];

|θ〉 =
∑

ν

e−iνθ |ν〉 ,

then one is able to show through path integral methodology that the vacuum-to-vacuum

transition amplitude is given by

+
〈θ|θ〉− =

∑

ν

∫
DAeiSeff[A]δ

(
ν − g2s

32π2

∫
d4xGµν

a G̃aµν

)
,

where DA is the integral measure and Seff [A] = SQCD [A] + θ g2s
32π2

∫
d4xGµν

a G̃aµν is the

effective action [93]. The QCD Lagrangian hence gains a non-vanishing term as a result

of the vacuum topology:

Lθ = θ
g2

32π2
Gµν

a G̃aµν ,

the addition of which begot its own issue. One should note that Gµν
a G̃aµν can be similarly

replaced by FµνF̃µν , where F
µν is the electromagnetic field tensor, which then describes

additional interactions.

Under parity transformations, i.e. spatial coordinate inversion x 7→ −x, the electric

and magnetic fields transform as

E 7→ −E; B 7→ B.

Similarly, under time inversion transformations, i.e. temporal reversal t 7→ −t, the

electromagnetic fields transform as

E 7→ E; B 7→ −B.
2First proposed in 1975 by Alexander Belavin, Alexander Polyakov, Albert Schwartz and Yu Tyupkin

as a means of minimising local actions of Yang-Mills theories, instantons describe the tunnelling between
different degenerate vacua at spatial infinity [95].
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Hence, by the CPT theorem, one sees that the additional θ term of the Lagrangian

violates both spatial inversion and temporal reversal (consequently also charge-parity

inversion by the CPT theorem) symmetries, a result which comes in stark contrast with

the universal evidence that strong interactions conserve these symmetries to extremely

high accuracy [100]. This blatant contradiction between theory and observation is known

as the Strong CP Problem.

The Strong CP Problem is exacerbated when considering the effects of the chiral

symmetry on the θ vacuum, which changes as

eiαQ5 |θ〉 = |θ + α〉 ,

where Q5 is the associated axial charge [101]. Additionally, when expanding the theory

to include weak interactions one gains a further Lagrangian term

Lmass = qiRMijqjL + h.c.,

where qi,j are the quark fields with left- or right-handedness andMij is the quark Yukawa

matrix, which in general may be complex. Consequently, in the full theory the effective

θ parameter shifts as

θ 7→ θ + arg detM.

2.1.3 The Axion Solution

In 1977, when faced with the Strong CP Problem, Roberto Peccei and Helen Quinn

proposed a theory in which the θ parameter became a dynamical variable through an

additional global U(1) chiral symmetry which is spontaneously broken at an unknown

energy scale, the Peccei-Quinn or PQ symmetry [28,29]. The PQ mechanism causes this

θ variable to relax such that its expectation value could take arbitrarily small values,

effectively eliminating Lθ and hence conserving CP symmetry in QCD. In the year fol-

lowing, Steven Weinberg and Frank Wilczek noted that the breaking of the PQ symmetry

introduced a new Nambu-Goldstone boson which Wilczek coined the axion [30,31].

To illustrate how this mechanism resolves the Strong CP Problem, consider the

introduction of a new field which couples to the quark Yukawa matrix via a phase term,

a, to the overall Lagrangian [102, §16.6]:

La = qMe−iaq +
1

2
∂µa∂

µa.
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Through performing an additional U (1)A transformation on the quark fields, the mass

terms multiply to combine the various phase factors:

La = q
(
Mei(θ+arg detM−a)

)
q +

1

2
∂µa∂

µa.

One can therefore encapsulate all CP violating contributions into the axion field through

a shift

a 7→ a+ θ + arg detM.

Due to the inclusion of mass terms in higher order perturbations, the axion is no longer

theorised to be a Goldstone boson, but instead a pseudo-Nambu-Goldstone boson. The

original Peccei-Quinn-Weinberg-Wilczek formulation of the axion was predicted to have

a mass of order [30]

ma ≈ NfmπFπ

2
√
mu +md

√
mumdms

mumd +mdms +msmu

4
√
2
√
GF

sin (2α)
≈ 100 keV c−2,

where Nf is the number of “massless” quark flavours, mu,d,s are respectively the masses

of the up, down and strange quarks, mπ is the pion mass, Fπ ≈ 190MeV, GF is the

Fermi coupling constant and α is an unknown angle. If the axion were to exist with

the mass calculated through Peccei-Quinn theory then it should have been discovered

shortly following its prediction. However, more recent models predict the existence of

axion-like particles with sub-electronvolt masses [38–41].

Below the scale of QCD chiral symmetry breaking, axions are able to minimally

couple to two photons as illustrated in Figure 2.2, the Lagrangian for which is [100]

L ⊃ −1

4
gaγγFµνF̃

µνa = gaγγE ·Ba,

where gaγγ is the axion-photon coupling constant, F is the electromagnetic field tensor

and F̃ its dual.

γ

γ∗

a
gaγγ

Figure 2.2: Axion-photon vertex for theories in which gaγγ 6= 0.

From this, the overall axion Lagrangian is

L =
1

2
∂µa∂

µa− 1

2
m2

aa
2 − 1

4
gaγγFµνF̃

µνa.
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The Euler-Lagrange equation of motion of the axion is hence given by

(
∂µ∂

µ +m2
)
a = −gaγγE ·B,

which one recognises as the inhomogeneous Klein-Gordon equation.

2.2 Dilatons

The dilaton is the particle of a scalar field which derives from n > 4-dimensional theories.

For example, Kaluza-Klein theory was formulated in the first half of the twentieth cen-

tury as a means of unifying general relativity and electrodynamics. In order to achieve

this unification, Theodor Kaluza extended general relativity to five dimensions. The

resulting metric tensor of this five-dimensional spacetime, g̃ab, is given by

g̃ab =



gµν + φ2AµAν φ2Aµ

φ2Aν φ2


 ,

where gµν is the standard four-dimensional metric tensor, Aµ is the canonical electro-

magnetic four-potential and φ is a scalar field which can be identified as the dilaton.

Kaluza made a further ansatz to the fifth dimension, which he coined the cylinder con-

dition. This condition stated that no field is dependent upon the fifth dimension, i.e.

∂5g̃ab = 0, where ∂5 denotes the partial derivative with respect to the fifth dimension.

As a result of the cylinder condition, the additional scalar field φ, can be shown to obey

a non-linear wave equation.

The Einstein-Hilbert action for pure gravity in 5 dimensions reduces, following a

Weyl transformation of gµν , to the Einstein-Hilbert-Maxwell [103, §X.1]:

S =

∫
d4x

√−g
(
M2

pR− 1

4
e
√
3 ℓpϕFµνF

µν − 1

2
gµν∂µϕ∂νϕ

)
,

where ϕ is a scalar field which can be identified as the dilaton, Mp is the Planck mass, R

is the Ricci scalar, ℓp is the Planck length, and Fµν is the canonical electromagnetic field

tensor. Since the integrand is equal to the system Lagrangian, then the Euler-Lagrange

equation of motion for φ becomes

�ϕ =

√
3

4
ℓpe

√
3 ℓpϕFµνF

µν ,

where � ≡ gµν∇µ∇ν , with covariant derivative ∇µ. Defining Φ = e
√
3 ℓpϕ, then

�ϕ =

√
3

4
ℓpΦFµνF

µν .
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Noting that Φ ∼ 1 – but the same cannot necessarily be said for its derivatives – then

�ϕ =

√
3

4
ℓpFµνF

µν ∝ |E|2 − |B|2 ,

from which one concludes the coupling of dilaton-like particles to electromagnetic fields.

It should be noted that mass can be added within the theory through a variety of

mechanisms, which would lead to an inhomogeneous Klein-Gordon formulation.

2.3 The Klein-Gordon Equation

2.3.1 Exposition

The eponymous Klein-Gordon equation is a relativistic second-order wave equation which

was formulated by its namesakes Oskar Klein and Walter Gordon during the mid-1920s.

The equation was initially proposed to describe the dynamics of relativistic electrons,

however it did not account for spin, resulting in its modern interpretation as the equation

of motion for massive spin-0 fields. In its most general form one, the inhomogeneous

(sourced) Klein-Gordon equation for an interacting scalar or pseudoscalar field Ψ of mass

m is given by
(
�+m2

)
Ψ(x) = ̺ (x) ,

where � ≡ ∂µ∂µ denotes the d’Alembertian differential operator, ̺ is the source, and x

indicates the spacetime coordinate. In the cases of the ALPs and DLPs, the source term

derives from the E ·B and E2 −B2 couplings.

2.3.2 Solution to the Inhomogeneous Klein-Gordon equation

One is able to obtain a form of the field Ψ through Green’s function methodology because

the inhomogeneous Klein-Gordon equation is of the form Lu (x) = f (x), where L = L (x)

is a linear differential operator acting on a solution u (x), as the result of a source f (x).

The field can hence be written

Ψ
(
tf ,xf

)
=

∫

Ω
G
(
tf ,xf

∣∣ ts,xs

)
̺ (ts,xs) d

4xs, (2.1)

where the source has compact support Ω, i.e. it is closed and bounded.

The x 7→ k space Fourier transformed inhomogeneous Klein-Gordon equation is

written

¨̃
Ψk + k2Ψ̃k +m2Ψ̃k = ˜̺k,
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where k ≡
√
k · k and ˜̺=

∫∞
−∞ eik·x̺ d3x. The dispersion relation for this can then be

defined by ω :=
√
k2 +m2 such that the inhomogeneous Klein-Gordon equation can be

written as a driven simple harmonic oscillator in k-space;

¨̃
Ψk + ω2Ψ̃k = ˜̺k,

the solution to which is known to be (see Appendix C)

Ψ̃k

(
tf
)
=

∫ tf

−∞

sin
(
ω
(
tf − ts

))

ω
˜̺k (ts) dts.

Inverse Fourier transforming this gives the value at each field point in x-space as

Ψ
(
tf ,xf

)
=

∫ ∞

−∞

∫ ∞

−∞

[
Θ
(
tf − ts

)

(2π)3

×
∫ ∞

−∞
e−ik·(xf−xs)

sin
(
ω
(
tf − ts

))

ω
d3k


 ̺ (ts,xs) dts d

3xs, (2.2)

where Θ (·) is the Heaviside step function. Comparing this with Equation (2.1), one

concludes that the bracketed term is the retarded Green’s function solution to the inho-

mogeneous Klein-Gordon equation G
(
tf ,xf |ts,xs

)
, which can be calculated exactly.

For notational brevity, the spatiotemporal differences will be defined as follows:

T = tf − ts;

X = xf − xs.

Further, to aid in the simplicity of the calculation, the k space coordinate system will

be transformed to spherical polars (k, θ, φ) orientated in such a manner that k · X =

|k| |X| cos (θ), then the differential becomes d3k = k2 sin (θ) dk dθ dφ over intervals




k ∈ [0,∞) ;

θ ∈ [0, π) ;

φ ∈ [0, 2π) .

Using these conventions, the Green’s function can be shown to be

G
(
tf ,xf |ts,xs

)
=

Θ(T )

(2π)2X

∫ ∞

0
2k sin (kX)

sin (ωT )

ω
dk,

where X ≡
√
X ·X . Denoting the integral component I (T,X), then by writing this

so as to absorb the factor of k through the inclusion of a derivative, and exploiting the

45



2.3 The Klein-Gordon Equation

symmetric behaviour of even functions to double the integration interval by introducing

a factor of 1
2 , then

I (T,X) = − ∂

∂X

∫ ∞

−∞

sin (ωT + kX) + sin (ωT − kX)

2ω
dk, (2.3)

where the trigonometric identity sin (α± β) = sin (α) cos (β) ± cos (α) sin (β) has been

used. I (T,X) will now be calculated for the regimes T > X and T < X separately.

However, it should be noted that only T > 0 is necessary for the latter regime due to

the Heaviside function present in Equation (2.2).

2.3.3 T > X

Define T and X in terms of variables such that T > X:




T = λ cosh (ζ)

X = λ sinh (ζ)

with λ > 0 and 0 < ζ < ∞ to avoid negative values of X. Further, as a result of these

definitions, λ =
√
T 2 −X2 .

Writing k = m sinh (ξ), then dk = m cosh (ξ) dξ. Furthermore, by the earlier disper-

sion relation, then ω ≡
√
k2 +m2 = m cosh (ξ) and thus k = ω dξ. Therefore

ωT + kX = mλ cosh (ξ + ζ) ,

from the trigonometric identity cosh (α± β) = cosh (α) cosh (β)± sinh (α) sinh (β).

The Mehler-Sonine representation of the Bessel function of the first kind [104, §10.9.8]

is

Jν (x) =
2

π

∫ ∞

0
sin

(
x cosh (y)− 1

2
νπ

)
cosh (νy) dy.

Using this identity, separately the terms of I (T,X) are hence calculated to be
∫ ∞

−∞

sin (ωT + kX)

ω
dk = πJ0 (mλ) ;

∫ ∞

−∞

sin (ωT − kX)

ω
dk = πJ0 (mλ) .

2.3.4 T < X

As before, define T and X in terms of variables but this time such that T < X:




T = λ sinh (ζ)

X = λ cosh (ζ) .
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Following the same procedure as previously, the first term

∫ ∞

−∞

sin (ωT + kX)

ω
dk =

∫ ∞

−∞
sin
(
mλ sinh

(
ξ′
))

dξ′

where ξ′ = ξ + ζ. Since this is an integral over all space of an odd function, one is

immediately able to conclude that it evaluates to zero, with the same applying for the

second term of the integral.

2.3.5 Evaluating the Integral and Assigning Physical Interpretation

Combining the T > X and T < X cases;

∫ ∞

−∞

sin (ωT + kX) + sin (ωT − kX)

2ω
dk =





πJ0 (mλ) T > X;

0 T < X

≡ Θ(T −X)πJ0 (mλ) ,

then one sees that the integral I (T,X) defined in Equation (2.3) evaluates to

I (T,X) = − ∂

∂X

(
Θ(T −X)πJ0 (mλ)

)
.

Using the differentiation identities [105, §13.1, §18.5]




d

dx
Θ(x) = δ (x) ;

d

dx
J0 (x) = −J1 (x) ,

then the Green’s function becomes

G
(
tf ,xf |ts,xs

)
=

Θ(T )

4πX

[
δ (T −X) J0

(
m
√
T 2 −X2

)

−Θ(T −X)
mX√
T 2 −X2

J1

(
m
√
T 2 −X2

)]
.

Since J0 (0) = 1, when δ (T −X) 6= 0 the first term simplifies, and since X ≥ 0 then

Θ (T −X) subsumes Θ (T ), thus

G
(
tf ,xf |ts,xs

)
=

Θ(T ) δ (T −X)

4πX
− m

4π

Θ(T −X)√
T 2 −X2

J1

(
m
√
T 2 −X2

)
.

Hence, according to Equation (2.2) the field can be written

Ψ
(
tf ,xf

)
=

∫ ∞

−∞
d4xs

(
Θ(T ) δ (T −X)

4πX

−m

4π

Θ(T −X)√
T 2 −X2

J1

(
m
√
T 2 −X2

))
̺ (ts,xs) . (2.4)
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One might now query the physical interpretation of this mathematical result. The

first term of the integral indicates that the contributing source points at spacetime

coordinate (ts,xs) to a field point at
(
tf ,xf

)
are those that are light-like separated, i.e.

tf−ts =
∣∣xf − xs

∣∣; as such, one is able to designate these as “massless” contributions, i.e.

m = 0. The second term, however, finds that all source points located within the past

lightcone, i.e. tf − ts >
∣∣xf − xs

∣∣, contribute and consequently these are the “massive”

contributions, i.e. m > 0. A spacetime diagram illustrating the contributing regions

with corresponding demarcations is shown in Figure 2.3.

xs

ts

m
=
0 m

=
0

m > 0

(tf ,xf )

Figure 2.3: Spacetime diagrammatical representation of source
point contribution regimes for a field point at spacetime

coordinate (tf ,xf ).

2.4 The Dark Photon

Λ

mφ,mϕ

...

mΦ

mΦ′

Figure 2.4: Mass hierarchy

of toy model.

The introduction of a second U (1) gauge group to the

standard model establishes a mechanism by which the

visible gauge sector may mix with some “dark”, or “hid-

den”, gauge sector. One postulates that these sectors are

able to communicate with one another through the ex-

change of messenger particles – often called portal matter

fields – which are charged under both gauge groups.

Consider a toy model composed of two heavy mes-

sengers, denoted Φ and Φ′, which are charged under

both gauge groups. An arbitrary number of fields re-

side solely either in the visible sector (ϕ) or the dark

sector (φ), such that their masses are related by mΦ′ >

mΦ ≫ mϕ ∼ mφ, as shown in Figure 2.4. At a sufficiently high energy scale Λ ≫ mΦ,Φ′ ,

these heavy messenger particles are able to mediate the two gauge sectors through their

exchange, as shown in Figure 2.5. At this scale, the mixing provides kinetic contributions
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to the Lagrangian of the canonical form [61]:

Lkin = −1

4

(
Fµν Bµν

)


Fµν

Bµν


 ,

where Fµν ≡ ∂µAν − ∂νAµ is the visible gauge field tensor with visible sector gauge field

Aµ and Bµν ≡ ∂µA
′
ν − ∂νA

′
µ is the dark sector gauge field tensor with dark sector gauge

field A′
µ.

Dark sector fermion, φ

A′µ

Φ(′)

Aµ

Visible sector fermion, ϕ

Figure 2.5: Heavy messenger particles mediating interactions
between the visible and dark gauge sectors.

In the low-energy scale, i.e. Λ ≪ mΦ,mΦ′ , one sees that the mixing of the visible

and dark sectors can no longer be mediated by the exchange of these messenger particles

at the tree level. Instead, they exist as virtual particles mediating the visible and dark

gauge sectors through 1-loop vacuum polarisation, as shown in Figure 2.6, a process

known as kinetic mixing. The mixing within this regime can be formalised as an effective

interaction extension to the model’s Lagrangian [60]:

Lint = −1

4

(
Fµν Bµν

)


χ11 χ12

χ21 χ22






Fµν

Bµν


 ,

where χ11, χ12, χ21 and χ22 are real gauge coupling parameters, which characterise the

strength of this messenger exchange within and across sectors. One may note from this

form that the kinetic mixing matrix is analogous to the matrices found in mass- and

neutrino flavour mixing.

In general
(
ψ†Oϕ

)†
= ϕ†O†ψ for matrices ϕ, O and ψ, thus

(
ϕ†Oϕ

)†
= ϕ†O†ϕ.

Consequently, if O is anti-Hermitian then
(
ϕ†Oϕ

)†
= −ϕ†Oϕ, hence if ϕ†Oϕ ∈ R then

any anti-Hermitian contribution is zero and one can thus demand symmetry from O

a priori without loss of generality. Therefore, one can symmetrise the kinetic mixing

matrix by writing the off-diagonal coupling parameters as χ12 = χ21 = χ.
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2.4 The Dark Photon

A
Φ(′) A′

(a) Feynman diagram of messenger
particle exchange at high energy scales,

Λ ≪ mΦ,mΦ′ .

A A′
⊗
χij

(b) Feynman diagram of messenger
particle exchange at low energy scales,
Λ ≫ mΦ,mΦ′ ; messenger particles only

exist as virtual particles.

Figure 2.6: Feynman diagrams demonstrating equivalent
messenger particle exchanges between a photon A, and dark

photon, A′, in high and low energy scales.

The Ward-Takahashi identity demonstrates that, without loss of generality, one is

able to renormalise theories which are invariant under single U (1) gauges through a

redefinition of the gauge coupling and rescaling of the field, i.e. for a field Aµ and

coupling e

Aµ 7→ Z
1
2Aµ e 7→ Z− 1

2 e,

where Z is a renormalisation coefficient containing the divergences of the theory [106–

108]. This may be extended to theories incorporating multiple U (1) gauges [109, 110],

allowing one to scale both gauge fields of this model:

Fµν 7→ (1 + χ11)
1
2 Fµν

Bµν 7→ (1 + χ22)
1
2 Bµν

g1 7→ (1 + χ11)
− 1

2 g1

g2 7→ (1 + χ22)
− 1

2 g2,

where g1,2 are respectively the gauge couplings of the visible and dark sectors. Similarly,

the kinetic mixing parameter scales as χ = (1 + χ11)
− 1

2 (1 + χ22)
− 1

2 χ which remains

unchanged to leading order, i.e. χ 7−→
∼

χ, such that the effective Lagrangian can be

written

Leff = −1

4

(
Fµν Bµν

)


1 χ

χ 1






Fµν

Bµν


 .

Furthermore, because the energy scale is a priori unknown, the dark photon may

be massless like its standard model counterpart, or it may gain a mass through the

Stueckelberg or Higgs mechanisms [111–113]. The inclusion of these provides additional

massive term to the effective Lagrangian, which finally becomes:

Leff = −1

4

(
Fµν Bµν

)


1 χ

χ 1






Fµν

Bµν


+

m2
γ′

2
A′

µA
′µ

= −1

4
FµνF

µν − 1

4
BµνB

µν − 1

2
χFµνB

µν +
1

2
m2

γ′A′
µA

′µ, (2.5)
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2.5 The Proca Equation

where mγ′ is the dark photon mass. Consequently, the fundamental unknowns in

dark photon models are its mass and the kinetic mixing strength parameter. String

compactification models estimate this kinetic mixing parameter value in the region

10−12 . χ . 10−3 [114].

The equations of motion governing the gauge fields in this effective theory may be

derived using the Euler-Lagrange equation,

∂L

∂φ
− ∂µ

(
∂L

∂
(
∂µφ

)
)

= 0,

where φ is the field with respect to which the Lagrangian is varied, to be

∂µ (F
µν + χBµν) = 0

∂µB
µν +m2

γ′A′ν = −χm2
γ′∂µF

µν .

Under the change of basis Aµ 7→ Ãµ − χA′
µ, the first equation takes on a homogeneous

Maxwellian form, namely ∂µF̃
µν = 0. However, one may recognise the second equation

as the inhomogeneous Proca equation, which will be further discussed in Section 2.5.

The FµνB
µν term in Equation (2.5) is responsible for the kinetic coupling between

photons and dark photons, which can be made explicit by diagonalising the term through

the change of basis A′µ 7→ Ã′µ − χAµ:

Leff = −1

4

(
1− χ2

)
FµνF

µν − 1

4
B̃µνB̃

µν +
1

2
m2

γ′

(
Ã′

µÃ
′µ − 2χÃ′

µA
µ + χ2AµA

µ
)
.

The Euler-Lagrange equations of motion for this system are given by

((
1− χ2

)
∂µ∂

µ + χ2m2
γ′

)
Aν = χm2

γ′Ã′ν

(
∂µ∂

µ +m2
γ′

)
Ã′ν = χm2

γ′Aν , (2.6)

the latter of which will be used in later analysis.

As a consequence of this result, one is able to see that visible photons act as sources

for dark photons and vice versa. In Section 2.5, it will be discussed how the equation of

motion for dark photons can be solved as four simultaneous Klein-Gordon equations.

2.5 The Proca Equation

Initially derived in 1936 by the Romanian physicist Alexandru Proca as a means of gen-

eralising Maxwell’s equations, the eponymous Proca equation is the equation of motion
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for massive vector bosons [115]. For an arbitrary field B with mass m, it is canonically

written

∂µ (∂
µBν − ∂νBµ) +m2Bν = 0.

By substitution of the field Bµ for the electromagnetic four-potential, Aµ, one can show

that Maxwell’s equations are special cases of the Proca equation, in which m = 0.

Furthermore, one is able to show that the Proca equation is equivalent to a set of four

Klein-Gordon equations in theories which conserve four-current, as demonstrated in

Appendix B, so can be solved as such.

2.6 Conclusion

In this chapter, several dark matter candidates were introduced, namely axion-like parti-

cles, dilaton-like particles and dark photons. Their theoretical underpinnings have been

detailed and their couplings to ordinary matter demonstrated. Additionally, the equa-

tions of motion dictating the kinematics of these particles were presented and discussed.
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Chapter 3

Theory: Laser Wake Field

Acceleration

“[I]n theory, theory and practice are the same. In

practice, they are not.”

— Benjamin Brewster,

Yale Literary Magazine [116]

3.1 Laser Wake Field Acceleration

A plasma is a quasi-neutral state of matter, comprised of positively-charged ions and neg-

atively charged electrons. When subjected to an electromagnetically-interacting driving

beam that is not too powerful, the plasma electrons undergo oscillations which generate

a sinusoidally-varying electric field. The parameters underlying the scheme of laser wake

field acceleration are numerous and stand in delicate balance with one another. In this

section a number of these parameters will be discussed.

3.1.1 Plasma Perturbations and Plasma Frequency

Arguably the most important quantity in all schemes of plasma wake field acceleration

is the plasma (angular) frequency, ωp, which denotes the cyclic rate at which plasma

electrons oscillate. A derivation of the expression for this frequency will now be presented

using electrodynamical perturbation theory.

Maxwell’s equations for a system comprised of an arbitrary number of particle species,
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3.1 Laser Wake Field Acceleration

s, are as follows:

∇ · (ǫ0E) =
∑

s

qsns (3.1)

∇ ·B = 0

∇×E = −∂tB (3.2)

∇×
(

1

µ0
B

)
= ∂t (ǫ0E) +

∑

s

qsnsus,

where qs, ns and us are respectively the charge, number density and velocity of a species

s and E and B are the electric and magnetic fields. Additionally, the equation of motion

for a species of effective mass m∗
s under the influence of electromagnetic fields is given

by the Lorentz-Maxwell force equation:

m∗
sns

(
∂tus + (us ·∇)us

)
= qsns (E+ us ×B) . (3.3)

To approximately model the motion of each species within a plasma, one is able to

write each parameter as a perturbation series, i.e.

Es (t,x) = E0s (t,x) +E1s (t,x) + . . .

Bs (t,x) = B0s (t,x) +B1s (t,x) + . . .

us (t,x) = u0s (t,x) + u1s (t,x) + . . .

ns = n0s + n1s + . . . ,

where zeroth order terms are assumed to be constant, i.e.

{
E0s (t,x) ,B0s (t,x) ,u0s (t,x)

}
= {E0s,B0s,u0s} .

Additionally, one truncates the series to first order by assuming that each successive

order of perturbation is sufficiently small to be neglected, i.e. for a parameter A then

Ap ≫ Aq for perturbation orders p < q. Under these constraints, by assuming that the

system is comprised of only electrons and ions, Equation (3.1) to zeroth order is written

∇ · (ǫ0E0) = qen0e + qin0i,

but since E0 is constant its derivatives evaluate to zero, thus one derives

n0e = − qi
qe
n0i.

Typical plasmas are considered quasi-neutral, meaning that they are macroscopically

neutral but microscopically their constituents may exhibit different regional distribu-

tions. As such, by assuming that qe = −qi, one is able to define a constant ambient
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3.1 Laser Wake Field Acceleration

number density of both the electrons and ions which comprise the plasma:

n0e = n0i ≡ n0.

One may now linearise the Lorentz-Maxwell and Maxwell equations, limiting total

perturbation orders to zeroth and first, as follows:

m∗
sn0

(
∂tu1s + (u0s ·∇)u1s

)
= qsn0 (E1 + u0s ×B1 + u1s ×B0) (3.4)





∑

s

qsn0 = 0

∇ · (ǫ0E1) =
∑

s

qsn1s (3.5)

{
∇ ·B0 = 0

∇ ·B1 = 0

{
∇×E0 = −∂tB0 = 0

∇×E1 = −∂tB1





1

µ0
∇×B0 = ǫ0∂tE0 +

∑

s

qsn0u0s

1

µ0
∇×B1 = ǫ0∂tE1 +

∑

s

qs (n1su0s + n0u1s) . (3.6)

Taking the divergence of Equation (3.6) and using the identity ∇ · (∇×A) = 0

for an arbitrary vector A with Equation (3.5), then one derives the linearisation of the

charged fluid continuity equation:

∑

s

qs∂tn1s + qs∇ · (n0u1s) = 0. (3.7)

Setting B0 = u0s = 0 and taking the time derivative of the continuity equation and

substituting Equation (3.4), then

∑

s

∂2t n1s +
qsn0
m∗

s

(∇ ·E1) = 0.

From this, one can use Equations (3.5) and (3.7) to derive

∑

s

∂2t n1s +
q2sn0
m∗

sǫ0
n1s = 0.
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3.1 Laser Wake Field Acceleration

Assuming that all species are decoupled from one another, i.e. there is no further

ionisation or recombination within the plasma, one then notes that each constituent

species undergoes simple harmonic motion with characteristic angular frequency

ωs =

√
q2n0
m∗

sǫ0
.

One sees that the oscillation frequency for a species is inversely proportional to its mass,

hence the dominant behaviours of plasmas are derived from its electrons since ωe ≫ ωion.

In practice, the relativistic mass increase in the ions due to the driving pulse must be

included in the calculation. As such, substituting the average effective massm∗
s = 〈γ〉ms,

wherems is the rest energy of the species and 〈γ〉 the laser cycle-averaged Lorentz factor,

the characteristic frequency governing a plasma is thus defined as

ωp :=

√
e2n0

〈γ〉meǫ0
.

One also notes that this is independent of the particle oscillation wavelength, resulting

in a group velocity of zero, i.e.
∂ω

∂k
= 0, hence the driving force establishes a stationary

plasma wave.

3.1.2 Refractive Index

The refractive index, η, experienced by electromagnetic radiation is defined as being the

ratio of the speed of light in vacuo, c, to the radiation phase velocity through a medium,

vp, i.e.

η :=
c

vp
,

where the phase velocity is defined as being the ratio of the radiation angular frequency,

ω, to its wavenumber, k, i.e. vp ≡ ω
k .

The dispersion relation for an electromagnetic wave propagating in a cold, collision-

less unmagnetised plasma is given by

ω2 = ω2
p + k2c2.

From the above definitions of phase velocity and refractive index, one concludes

η =

√

1−
(
ωp

ω

)2

.

This equation serves as an accurate representation of the refractive index under the

given caveats, however a more extensive description which incorporates collisions and an
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3.1 Laser Wake Field Acceleration

external magnetic field assumes the form of the Appleton-Hartree equation:

η2 = 1− X

1− iZ −
1
2
Y 2
T

1−X−iZ ± 1
1−X−iZ

√
1
4Y

4
T + Y 2

L (1−X − iZ)2
,

where the terms are defined as follows:

• X =
ω2
p

ω2

• Y = ωB

ω =
√
Y 2
L + Y 2

T

• YL = ωL

ω

• YT = ωT

ω

• Z = ν
ω

• ω = electromagnetic wave angular

frequency

• ωp ≡
√

nee2

〈γ〉meǫ0
= plasma frequency

• ωB = B0|e|
me

= electron gyro-frequency

• ωL = ωB cos (θ)

• ωT = ωB sin (θ)

• ν = electron-ion collisional frequency

• B0 = ambient external magnetic field

strength

• θ = angle between the ambient mag-

netic field vector and direction of

electromagnetic propagation.

A derivation of this can be found in John Ratcliffe’s The Magneto-Ionic Theory &

Its Applications to the Ionosphere [117, §2]. One notes that under the constraints of a

collisionless unmagnetised plasma this reduces to the aforementioned form.

3.1.3 Underdense and Overdense Plasmas

The physics of interactions between a laser and plasmas of varying densities can be

broadly generalising into two regimes: those of underdense and overdense.

When the characteristic timescale of the incoming electromagnetic wave is less than

that of the plasma, the laser pulse is able to propagate through the plasma, i.e. ωlaser >

ωp ⇒ η ∈ R; this is the underdense regime. Per contra, when this is inverted and the

characteristic timescale of the laser is greater than that of the plasma, the waves become

evanescent and the medium is able to absorb or reflect the incoming pulse, akin to an

object bouncing off of a wall, i.e. ωlaser < ωp ⇒ η ∈ C; this is the overdense regime.

The critical density, nc, denotes the boundary between the underdense and overdense

regimes and is defined as being the density corresponding to when the laser and plasma

frequencies are equal, i.e. ωlaser = ωp. As such, it can be shown that the critical density
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3.1 Laser Wake Field Acceleration

is given by

nc =
4π2ǫ0mec

2

e2
1

λ2laser
,

where λlaser is the laser wavelength. Consequently, for efficient electron acceleration in

gaseous plasmas, one wishes to tune the density of the plasma such that the laser pulse

is able to excite a wake, i.e. n0 < nc.

3.1.4 Normalised Laser Amplitude

When discussing the propagation of electromagnetic radiation through underdense plas-

mas, one should first examine the external fields used to excite the wake. Consider the

Lorentz-Maxwell force equation

dp

dt
= q (E+ v ×B) , (3.8)

where p ≡ γmv is the three-momentum of a particle of charge q and mass m travelling

with a velocity v under the influence of an electric field E and magnetic field B, γ ≡
(
1− β2

)− 1
2 is the Lorentz factor, and β ≡ v

c the normalised velocity.

One can ansatz a monochromatic plane wave solution propagating along the z-axis for

the electromagnetic fields, i.e. E = E0 cos (kzz − ωt) êx. In this formulation, from Equa-

tion (3.2), one calculates the corresponding magnetic field to beB = E0
c cos (kzz − ωt) êy,

i.e. ‖B‖ = ‖E‖
c . By introducing the notation to denote the components of a quantity

u transverse to the direction of propagation as u⊥ = u − (u · êz) êz, one is then able

to write

(
dp

dt

)

⊥
=

dp⊥
dt

since
dêz
dt

= 0. Further, since B = B⊥, then the second

parenthesised term in Equation (3.8) can be written (v ×B)⊥ = vzez × B⊥. As such,

the Lorentz-Maxwell equation transverse to the direction of propagation is given by

d

dt
p⊥ = q

(
E⊥ + vz

E⊥
c

)
= q (1− βz)E⊥.

Since vz =
dz

dt
, one can rewrite this

d

dt
p⊥ =

d

dt

(
−qE0

ω
sin (kz − ωt) êy

)
,

thus

p⊥ = −qE0

ω
sin (kz − ωt) êy

is one possible solution. Consequently, the transverse motion for an electron acting

under the influence of a laser pulse has normalised transverse momentum

γβ⊥ = − eE0

mecω
sin (kz − ωt) ,
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3.1 Laser Wake Field Acceleration

which defines the normalised laser amplitude a0 :=
eE0
mecω

. This is the peak amplitude of

the normalised electric field associated with the laser. In other texts this is instead called

the normalised vector potential and written a0 = e‖A‖
mec

, where A is the magnetic vector

potential, which for a plane electromagnetic wave solution has amplitude ‖A‖ = ‖E‖
ω .

Alternatively, writing β =
∥∥∥ p
γmc

∥∥∥, one sees that when a0 > 1 then p > γmc, introducing

a third moniker for a0: the normalised momentum. A consequence of this formulation

is that electrons initially at rest become relativistic with velocities proportional to the

field strength.

3.1.5 Laser Intensity

The cycle-averaged field energy density 〈U〉 of a monochromatic electromagnetic plane

wave with peak amplitude E0 inside a medium of refractive index η is given by [118, §9.3]

〈U〉 = 1

2
η2ǫ0E

2
0 . (3.9)

The intensity of an electromagnetic wave traversing the medium is given by

I = vp〈U〉,

where vp = c
η is the phase velocity of the wave through the medium. Consequently,

using this with the definition for the normalised laser amplitude one is able to write the

intensity as a function of only a0 and the laser wavelength λlaser:

I =
2π2ǫ0m

2
ec

5

e2

(
a0
λlaser

)2

.

3.1.6 Ponderomotive Force

The ponderomotive force, from the Latin “pondus” weight and “motivum”moving cause,

is the force responsible for the setting in motion of massive particles within a plasma.

The formal definition of the ponderomotive force is a contentious issue and a rigorous

derivation of this quantity is beyond the scope of this thesis. However, it is possible to

provide a heuristic derivation based on more detailed analyses. Rigorous contemporary

derivations utilise techniques of Lagrangian and Hamiltonian averaging, thus one is justi-

fied in formulating the ponderomotive force using energetic quantity averages [119–123].

Additionally, as the pondermotive force induces motion of particles within a plasma, one

expects it to vary with the properties of the plasma. Combining these factors, one is

able to exposit the ponderomotive force as the down-gradient of the laser cycle-averaged

energy gain per particle. As the energy gain per particle is the ratio of the energy density
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to the number density of the system prior to excitation, then the simplest dimensionally

correct form of the pondermotive force in terms of these quantities is

Fpond = −∇

〈
U

n0

〉
= − 1

n0
∇〈U〉,

where Fpond denotes the ponderomotive force, U is the energy density of the electromag-

netic field and n0 is the ambient number density of the plasma. From the formulation of

the laser energy field density found in Equation (3.9), one can write the ponderomotive

force resulting from a frequency-matched laser pulse in a plasma as

Fpond = −1

2

ǫ0
n0

∇E2
0 .

Hence, from the definitions of the plasma frequency and normalised laser amplitude, one

derives

Fpond = − e2

2〈γ〉meω2
p

∇E2
0 = −mec

2

2〈γ〉 ∇a20.

From this one sees that electromagnetically-interacting particles are pushed away from

regions of highest laser intensity, thus the ponderomotive force can be seen as the radi-

ation pressure of the laser pulse.

One notes that heavier particles are accelerated less than their lighter counterparts,

resulting in their relatively slow motion, as exhibited in the characteristic frequencies

earlier derived. This difference in mass between the ions and electrons establishes the

space charge separation, thus establishing the wake field. Additionally, because the

ponderomotive force is second-order in the normalised laser amplitude, i.e. Fpond ∝ |a0|2,
low intensity lasers provide very little acceleration since a0 ≪ 1 ⇒ a20 ≪ 1, however high

intensity lasers provide extremely large acceleration gradients because a0 ≫ 1 ⇒ a20 ≫ 1.

Consequently, high intensity lasers are ideal for driving plasma wake fields.

3.1.7 Acceleration Gradient

Core to the purpose of laser wake field acceleration is the ability to accelerate parti-

cles. This is achieved through the establishment of an electric field, also known as the

acceleration gradient, through the driving of a plasma electron stationary wave.

From the definition of the normalised laser amplitude, a0, one is able to derive an

approximate relation for the resultant peak acceleration gradient of a laser-driven plasma

as

E0 ∼
mecωp

e

√
a0 ∝ √

ne .
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As a consequence of this form, one notes that greater intensity lasers result in greater

electric fields. Additionally, greater density plasmas are able to support higher electric

fields. From these, one sees a clear desire for intense lasers and dense plasmas in the

acceleration of a beam of electrons.

3.1.8 Dephasing Length

One of the main limitations to the length of a plasma in LWFA is a phase mismatch

between the accelerated electrons and the wake.

Recall that the dispersion relation for an electromagnetic wave in a cold plasma is

given by

ω2 = ω2
p + c2k2.

From this one is able to calculate the laser’s phase velocity

vp ≡
ω

k
=

√

c2 +
ω2
p

k2

and group velocity

vg ≡ ∂ω

∂k
=

c2√
c2 +

ω2
p

k2

=
c2

vp
.

The phase velocity of a plasma wave driven by a laser pulse is equal to the laser’s

group velocity if the evolution of the pulse during propagation is insignificant [124].

Consequently, the normalised wake velocity is

βwakep ≡
vwakep

c
=
vg
c

=
c

vp
.

Using the earlier derived expression for the laser phase velocity with the definitions of

the plasma and critical frequencies, it follows from
vg
c =

√
1−

(ωp

ω

)2
that

βwakep =

√
1−

(
ne
nc

)
. (3.10)

Since the trapped plasma electrons are accelerated to ultra-relativistic energies, the

normalised velocity tends to unity, i.e.

βe ∼ 1. (3.11)

One sees from Equations (3.10) and (3.11) that the electron velocity is slightly, but

significantly, greater than that of the plasma wave, with the difference becoming more
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pronounced at higher plasma densities. As such, accelerated electrons are able to outpace

the wake, thus placing a fundamental limit on the maximum length of plasma for a driven

plasma at a given density, known as the dephasing length, which will be denoted Ldph.

Electrons are able to gain energy while in the acceleration phase of the wake field,

situated in the latter half of a plasma wavelength. Assuming the plasma electrons get

trapped at the start of the wake’s acceleration phase, they can be accelerated until

caught up by a half plasma wavelength. The dephasing time, tdph, is the time required

for these electrons to travel a distance d =
λp

2 relative to the wake, i.e.

tdph =
d

∆v
=

λp

2c
(
βe − βwakep

) .

From this and Equations (3.10) and (3.11) one sees that the dephasing length Ldph =

ctdph is calculated to be

Ldph ≈ nc
ne
λp ∝ n

− 3
2

e .

As a result of this, one concludes that the length of a laser-driven plasma accelerator

is limited by electron dephasing, which is inversely proportional to the plasma density.

Consequently, one must balance the plasma accelerator length with its density.

3.2 Conclusion

This chapter explored the theory underpinning laser wake field acceleration, a novel

method of particle acceleration which is capable of producing extremely powerful electric

fields. However, efficient application of this methodology requires careful consideration

of how several system parameters must be balanced.
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Chapter 4

Theory: Microwave Resonant

Cavities and Photonic Bandgap

Lattices

“My friend, Jack Hughes, just got a job as a

prosecutor in France...”

— Anonymous

4.1 Microwave Resonant Cavities

4.1.1 Exposition

Resonant cavities belong to a class of closed metal structures called waveguides which

are used to confine electromagnetic fields. The composition internal to these cavities

are typically free space or a dielectric medium. By appropriately pairing the dimensions

of the structure with the frequencies of the electromagnetic fields inside the cavity,

these resonance structures are able to support and reinforce specific bandwidths. For

practical reasons, these cavities typically operate at microwave frequencies, i.e. 300MHz

to 30GHz, where the wavelengths are of order 1mm to 1m. However, the geometry

of the cavities allow them to support multidimensional electromagnetic modes. These

modes are categorised into three classes: Transverse Electric (TE) modes, in which the

electric field is transverse to the direction of propagation, Transverse Magnetic (TM)

modes, in which the magnetic field is transverse to the direction of propagation, and

Transverse ElectroMagnetic (TEM) modes, in which both electric and magnetic fields

are transverse to the direction of propagation. The modes of concern in this thesis are
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4.1 Microwave Resonant Cavities

those in which the magnetic field is transverse to the cavity’s primary axis, namely TM

modes.

4.1.2 Resonant Frequencies

Maxwell’s equations in a medium of permittivity ǫ and permeability µ are given by the

following:

∇ ·E =
ρ

ǫ
(4.1)

∇ ·B = 0 (4.2)

∇×E = −∂tB (4.3)

∇×B = µǫ∂tE+ µj, (4.4)

where E is the electric field, B is the magnetic field and j is the current associated with

a charge density ρ.

By taking the curl of Equation (4.3) and substituting Equation (4.1), one receives a

wave equation for the electric field:

(
∇2 − µǫ∂2t

)
E = ∇

(
ρ

ǫ

)
+ ∂tj. (4.5)

Similarly, taking the curl of Equation (4.4) and substituting Equations (4.2) and (4.3),

one derives a wave equation for the magnetic field:

(
∇2 − µǫ∂2t

)
B = −µ∇× j. (4.6)

It will be assumed that there exist no free charges within the cavity and that the

cavity walls are composed of a perfect conductor. Ohm’s law, which relates the electro-

magnetic current density and electric field within a material, is given by j = σE, where

σ is the material conductivity. Charge carriers within perfect conductors are able to

traverse the medium unabated, otherwise stated that the conductivity tends to infinity,

thus there exists no electric field within the bulk of the cavity walls, i.e. lim
σ→∞

E = j
σ = 0.

By Faraday’s law (Equation (4.3)), one sees that the magnetic field inside the medium

is static, i.e. ∂tB = 0. With the bulk behaviours concluded, one can now turn attention

to the surface.

At the interstice between two dielectric media, one is able to show by field continuity

across the boundary that the components transverse (⊥) and parallel (‖) to the surface
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4.1 Microwave Resonant Cavities

satisfy

ǫ1E1⊥ − ǫ2E2⊥ = Σ

E1‖ −E2‖ = 0

B1⊥ −B2⊥ = 0

1

µ1
B1‖ −

1

µ2
B2‖ = K× n̂,

where Σ is the surface charge density, K is the surface current density and n̂ is the unit

vector normal to the surface. Consequently, there are no tangential electric fields or

parallel magnetic fields at the inner wall boundaries, i.e. E‖ = 0 and B = 0. As such,

the conditions at the inner wall boundaries of the resonant cavity can be chosen to be

E‖ = 0 (4.7)

B⊥ = 0, (4.8)

where the Equation (4.8) denotes the definition of transverse magnetic (TM) propaga-

tion.

For notational brevity, one may combine the set of separate electric and magnetic

fields into a single entity Ψ = {E,B} such that Equations (4.5) and (4.6) can be collec-

tively written
(
∇2 − µǫ∂2t

)
Ψ = 0.

One notes that this a wave equation with phase velocity vp =
1√
µǫ , which has a plane

wave solution

Ψ =
[
C1 sin (k · x± ωt) + C2 cos (k · x± ωt)

]
Ψ̂,

where k is the wavevector, ω the wave angular frequency, Ψ̂ the wave unit vector and

C1,2 are arbitrary constant amplitudes. The wave equation then becomes

(
∇2 + µǫω2

)
Ψ = 0.

Writing k2 ≡ ω2

v2p
= µǫω2, then

(
∇2 + k2

)
Ψ = 0.

In general there are no limitations on the shape of a resonant cavity, however for

mathematical simplicity it will be assumed to have a cylindrical geometry, i.e. a circular-

faced prism of internal radius r and length L running parallel to the z axis with plates

sealing either end, as shown in Figure 4.1.
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x

y

z

r

L

ϕ

ρ

Figure 4.1: Microwave resonance cavity with a cylindrical
geometry.

In cylindrical coordinates (ρ, ϕ, z) the Laplacian operator is given by [105, p. 360]:

∇2 =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂ϕ2
+

∂2

∂z2
.

Assuming the primary axis of the cavity, and hence wave propagation direction, runs

parallel to the z-axis, then one is able to separate the fields into their constituent variable

components, i.e.

Ψ (ρ, ϕ, z) = R (ρ) Φ (ϕ)Z (z) . (4.9)

In this form the partial differential wave equation becomes an ordinary differential

equation:
1

ρR

d

dρ

(
ρ
dR

dρ

)
+

1

ρ2Φ

d2Φ

dϕ2
+ k2 = − 1

Z

d2Z

dz2
.

Since the left- and right-hand sides are independent of one another, but are always equal,

they must both also be equal to some constant,which will be denoted h2:





d2Z

dz2
= −h2Z

1

ρR

d

dρ

(
ρ
dR

dρ

)
+

1

ρ2Φ

d2Φ

dϕ2
+ k2 = h2.

Furthermore, by introducing a temporary variable ℓ2 = k2 − h2 one is able to write the

remaining multi-variate equation

ρ

R

d

dρ

(
ρ
dR

dρ

)
+ ℓ2ρ = − 1

Φ

d2Φ

dϕ2
.
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4.1 Microwave Resonant Cavities

As before, the sides are equal but independent, thus one may introduce a second sep-

aration variable −n2, where the minus sign has been chosen to reflect the expected

oscillatory behaviour. Consequently, the total set of equations governing the wave equa-

tion are 



d2Z

dz2
= −h2Z

d2Φ

dϕ2
= −n2Φ

ρ
d

dρ

(
ρ
dR

dρ

)
+
(
ℓ2ρ2 − n2

)
R = 0.

(4.10)

(4.11)

(4.12)

The general solution to Equation (4.10) is

Z = A sin (hz) +B cos (hz) ,

where A and B are arbitrary constant amplitudes. From boundary condition (4.7),

one sees that at the ends of the cylinder the transverse electric fields vanish, hence
dEx

dx
=

dEy

dy
= 0 and thus, using ∇ · E = 0, then

dEz

dz

!
= 0 at boundaries z ∈ {0, L}.

Substituting the lower bound, one concludes that A = 0, and so by substituting the

upper bound one gets
dZ

dz
(z = L) = −Bh sin (hL), hence h = mπ

L , where m ∈ Z, thus

Z = B cos

(
mπ

L
z

)
. (4.13)

Turning now to the angular components in Equation (4.11), the general solution is

Φ = A′einϕ +B′e−inϕ. (4.14)

This component remains a priori unconstrained, however one may impose a 2π period-

icity in ϕ, i.e. ϕ ≡ 0 (mod 2π), hence one concludes that n ∈ Z.

Using the newly derived parametrised solutions, the radial Equation (4.12) can be

written

ρ2
d2R

dρ2
+ ρ

dR

dρ
+



(
k2 −

(
mπ

L

)2
)
ρ2 − n2


R = 0,

which assumes the form of the Bessel ordinary differential equation [125, §9.1]. Because

one expects the radial function to be regular, i.e. analytic and single-valued, at ρ =

0, one chooses the solution of a Bessel function of the first kind, Jn, with argument√
k2 −

(
mπ
L

)2
ρ, i.e.

R (ρ) = Jn



√

k2 −
(
mπ

L

)2

ρ


 . (4.15)
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Combining Equations (4.13), (4.14) and (4.15), then Equation (4.9) becomes

Ψ (ρ, ϕ, z) = Jn



√

k2 −
(
mπ

L

)2

ρ



[
A′einϕ +B′e−inϕ

] [
B cos

(
mπ

L
z

)]
ẑ.

One is able to amalgamate the parametrised amplitudes into an overall field amplitude

Ψ0, giving an overall general solution

Ψ (ρ, ϕ, z) = Ψ0Jn



√

k2 −
(
mπ

L

)2

ρ


 cos

(
mπ

L
z

)[
c1e

inϕ + c2e
−inϕ

]
ẑ.

Owing to the condition in Equation (4.7), the longitudinal electric field vanishes at

the radial boundaries, i.e. Ez = 0 at ρ = r, thus

Jn



√

k2 −
(
mπ

L

)2

r


 = 0.

Let αnp denote the pth positive zero of Bessel function Jn, then

k2 =

(
αnp

r

)2

+

(
mπ

L

)2

.

However, k2 ≡ ω2

v2p
, hence

ωnpm =
1√
µǫ

√(
αnp

r

)2

+

(
mπ

L

)2

, (4.16)

where m,n ∈ Z and p ∈ N. As such, only particular frequency eigenmodes can form

standing waves within the cavity, the values of which being determined by the cavity

dimensions and internal material composition.

4.2 Photonic Band Gap Structures

Photonic band gap (PBG) structures, also known as photonic crystals, are periodic

crystal-like systems comprised of dielectric media which are capable of controlling the

flow of electromagnetic radiation. By drawing analogies with solid state physics, one is

able to derive a variety of behaviours exhibited by photons within such a lattice.

4.2.1 Preliminaries

Lattices, being periodic structures, have discrete translational symmetries, thus it be-

comes beneficial to introduce a set of primitive lattice vectors ai which define the charac-

teristic lattice periodicity. As such, any shift of integer combinations of these primitive

vectors, i.e. a =
3∑

i=1
niai, where ni ∈ Z, results in a return to the initial conditions.
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Similarly, one benefits from introducing primitive reciprocal lattice vectors bj , which

have units of inverse lengths, and are defined such that

ai · bj = 2πδij .

4.2.2 Electromagnetism as an Eigenvalue Problem

Consider a system comprised of macroscopic, isotropic, non-dispersive dielectric media

of permittivity ǫ (r) = ǫ0ǫr, where ǫ0 is the permittivity in vacua and ǫr ≡ ǫr (r) is

the relative permittivity, and permeability µ (r) = µ0µr, where µ0 is the permeability

in vacuo and µr ≡ µr (r) is the relative permeability. Additionally, the media will be

assumed transparent, i.e. µ, ǫ ∈ R
+. Maxwell’s equations for such a system are written

∇ ·E =
ρ

ǫ

∇ ·B = 0

∇×E = −∂tB (4.17)

∇×B = ∂t (µǫE) + µj, (4.18)

where ρ and j are the free charge and current densities.

In general, the electromagnetic fields may take elaborate forms which would make

the following section needlessly complicated. As such, for the sake of simplicity, the real

fields will be replaced by their complex equivalents and expanded into sets of harmonic

modes of the forms

E (t, r) = E (r) e−iωt

B (t, r) = B (r) e−iωt,

where ω is the angular frequency of a given mode.

Assuming that there are no electromagnetic sources or sinks within the system, i.e.

ρ = j = 0, then by dividing Equation (4.18) by µǫ and taking the curl of the result, one

obtains

∇×
(

1

µǫ
∇×B

)
= −iω∇×E.

Substituting Equation (4.17) to remove the curl term on the right-hand side and using

the relation for the speed of light c = 1√
µ0ǫ0

, then one receives an equation for the

magnetic field, fully decoupled from the electric field:

∇×
(

1

µrǫr
∇×B

)
=
ω2

c2
B. (4.19)
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By a similar methodology, taking the curl of Equation (4.17) and substituting Equa-

tion (4.18), one obtains
1

µrǫr
∇× (∇×E) =

ω2

c2
E. (4.20)

One may note that Equations (4.19) and (4.20) are of the characteristic form for

an eigenvalue problem [105, §8.13], viz. one can define linear eigen-operators Θ̂B =

∇× 1
µrǫr

∇× and Θ̂E = 1
µrǫr

∇×∇× acting on respective eigenfunctions B/E to produce

an eigenvalue ω2

c2
. In this formulation, one is able to deduce a number of properties of

these fields.

Owing to the linearity of Θ̂, any linear combination of solutions is itself a solution.

Additionally, because the permittivity and permeability are real by construction, this

eigen-operator is Hermitian, hence all eigenvalues are real (and hence also positive)

and all modes are mutually orthogonal, i.e.
(
Bi,Bj

)
=
(
Ei,Ej

)
= 0 ∀i 6= j, where

(·, ·) denotes the inner product of two fields. These properties are stated without proof

because they are thoroughly covered in numerous undergraduate textbooks [105, 126,

127].

4.2.3 Bloch’s Theorem

Bloch’s theorem is an early result of quantum theory in the context of solid state physics.

In brief, the theorem states that the wavefunction of an electron, ψj,k, in a perfectly

periodic structure may be written as the product of a periodic function, uj (r), with a

plane wave (cumulatively termed a Bloch wave), i.e.

ψj,k (r) = uj (r) e
ik·r,

where k is the wavevector. However, the same theory holds for photons in regular

photonic crystals, the proof of which follows.

The Fourier integral of an eigenfunction of the electric field may be written

E (r) =

∫
dkE (k) eik·r, (4.21)

where E (k) is the electric field in Fourier space. Writing Equation (4.20) as

∇× (∇×E) =
ω2

c2
µrǫrE, (4.22)

one can expand the permittivity as a Fourier series:

ǫr (r) =
∑

G

ǫr (G) eiG·r, (4.23)
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where G =
3∑

j=1
ℓjbj , with ℓj ∈ Z, is a vector in reciprocal space. Substituting the Fourier

Equations (4.21) and (4.23) into (4.22), one receives

∫
dk


k×

(
k×E (k)

)
+
ω2

c2
µr
∑

G

ǫr (G)E (k−G)


 eik·r = 0.

Since this must hold for all real space r, the integrand must evaluate to zero:

k×
(
k×E (k)

)
+
ω2

c2
µr
∑

G

ǫr (G)E (k−G) = 0. (4.24)

One notes from this that the initial eigenvalue problem is composed only of those Fourier

components that are related by the reciprocal lattice vectors, hence only these compo-

nents are necessary for expressing the eigenfunctions, i.e.

Ek (r) =
∑

G

E (k−G) ei(k−G)·r.

Noting that in general Equation (4.24) has an infinite number of eigenvalues and eigen-

functions, which can be differentiated by a subscript n, then by defining a periodic

function uk (r) =
∑
G

E (k−G) e−iG·r:

Ekn (r) = ukn (r) e
ikn·r.

A similar analysis can be conducted for the magnetic field eigenvalue equation, then by

denoting the period function vkn (r) the magnetic field can be written

Bkn (r) = vkn (r) e
ikn·r.

Consequently, one is able to validly formulate electromagnetic eigenfunctions as Bloch

waves.

4.2.4 Photonic Band Gaps

The systems hitherto considered have been general, however it will now be assumed

that µr ∼ 1 since the purpose of this section revolves around the propagation of electric

fields within a lattice. Additionally, for simplicity the system will be considered one-

dimensional.

The wave equation for the electric field in a dielectric medium is calculated using

Equations (4.17) and (4.18) with the vector calculus identity∇×(∇×E) = ∇ (∇ ·E)−
∇2E:

c2

ǫr
∇2E − ∂2tE = 0.
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As was shown in Subsection 4.2.3, the electric field can justly be modelled as a Bloch

wave, i.e. for an eigenmode n

Ekn (t, r) = ukn (r) e
i(knr−ωnt), (4.25)

where ukn is a periodic function, and kn and ωn are the wavevector and angular frequency

of the eigenmode. Owing to its lattice periodicity, the periodic function can be expanded

in a similar manner:

uk (r) =
∞∑

m=−∞
Em exp

(
i
2πm

a
r

)
,

where Em are Fourier coefficients. Using this then Equation (4.25) can be written

Ekn (t, r) =
∞∑

m=−∞
Em (r) exp

(
i

(
kn +

2πm

a

)
r − iωnt

)
. (4.26)

The relative permittivity of a lattice is periodic in real space, i.e. ǫr (r+ a) = ǫr (r),

hence its inverse is also periodic and can be Fourier expanded as

ǫ−1
r (r) =

∞∑

m=−∞
κm exp

(
i
2πm

a
r

)
, (4.27)

where {κm} are the Fourier coefficients, which are dictated by the geometry of the

dielectric media, and m ∈ Z. Assuming that the nearest neighbouring lattice distances

dominate in this expansion, i.e. m = 0,±1, then

ǫ−1
r (r) ≈ κ0 + κ1 exp

(
i
2π

a
r

)
+ κ−1 exp

(
−i2π

a
r

)
. (4.28)

Substituting Equations (4.26) and (4.28) into the wave equation, one obtains

κ1

(
k +

2π (m− 1)

a

)2

Em−1 + κ−1

(
k +

2π (m+ 1)

a

)2

Em+1

≈
(
ω2
n

c2
− κ0

(
k +

2π (m+ 1)

a

)2
)
Em.

The electric field at a central lattice coordinate, m = 0, is

E0 ≈
c2

ω2
m − κ0c2k2

(
κ1

(
k − 2π

a

)2

E−1 + κ−1

(
k +

2π

a

)2

E1

)

and at the preceding lattice point, m = −1;

E−1 ≈
c2

ω2
m − κ0c2

(
k − 2π

a

)2

(
κ1

(
k − 4π

a

)2

E−2 + κ−1k
2E0

)
.

If ω2
m ∼ κ0c

2k2 then E0 is a dominant contribution to the electric field expansion.

Similarly, if k ∼ π
a then E−1 is an additional dominant contribution. Using these in the
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expansion Equation (4.26) and neglected all other terms, then one obtains a set of two

coupled linear equations:



ω2 − κ0c

2k2 −κ1c2
(
k − 2π

a

)2

−κ−1c
2k2 ω2 − κ0c

2
(
k − 2π

a

)2






E0

E−1


 =



0

0


 .

The non-trivial solutions to this become apparent when the determinant of the preceding

matrix is zero, i.e. ∣∣∣∣∣∣∣

ω2 − κ0c
2k2 −κ1c2

(
k − 2π

a

)2

−κ−1c
2k2 ω2 − κ0c

2
(
k − 2π

a

)2

∣∣∣∣∣∣∣
= 0.

Solving this for the angular frequency, one obtains the dispersion relation

ω± ≈ πc

a

√
κ0 ± |κ1| ±

ac

π |κ1|
√
κ0

(
κ20 −

|κ1|2
4

)(
k − π

a

)2

,

consequently when k ≪ π
a no modes exist within the interval

πc

a

√
κ0 − |κ1| < ω <

πc

a

√
κ0 + |κ1| . (4.29)

This region of disallowed frequencies within the lattice is the photonic band gap. A

diagrammatic representation of this band gap in ω-k space is shown in Figure 4.2.

Band gap

Band gap

k
0

ω

−2π
a

−π
a

π
a

2π
a

ω = ck

Figure 4.2: Dispersion relation for a one-dimensional photonic
lattice with characteristic length a. Disallowed frequencies are

indicated by horizontal grey bands.
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4.2.5 Calculating Dielectric Fourier Coefficients

With the band gap calculated, one notes that the geometrical Fourier coefficients of the

dielectric remain unknown. Reiterating Equation (4.27):

ǫ−1
r (r) =

∞∑

m=−∞
κm exp

(
i
2πm

a
r

)
,

then by inverse Fourier transform one is able to write the coefficients

κ (G) =
1

V0

∫

V0

dr ǫ−1
r exp (−iG · r) ,

where V0 is the volume of the unit lattice cell.

The lattice will be assumed to be comprised of infinite length dielectric rods. For

such a system, the volume element becomes infinite, resulting in all coefficients diverging,

thus one assumes a priori that Gz = 0 such that the lattice reduces to a planar system

transverse to the rods. Denoting the two-dimensionality (2) and transversality ⊥, then

under this regime the coefficients become

κ (G) =
1

V
(2)
0

∫

V
(2)
0

dr⊥ ǫ
−1
r⊥ exp (−iG⊥ · r⊥) . (4.30)

Denoting the rod radius ra, rod relative permittivity ǫa and background permittivity

ǫb, then the permittivity for a unit lattice cell containing a circular dielectric rod is

1

ǫr
=

1

ǫb
+

(
1

ǫa
− 1

ǫb

)
Θ
(
ra − |r⊥|

)
.

Substituting this in Equation (4.30), then

κ (G) =
1

ǫb
δG⊥,0 +

1

V
(2)
0

(
1

ǫa
− 1

ǫb

)∫

V
(2)
0

exp

(
iGr sin

(
θ − π

2

))
Θ
(
ra − |r⊥|

)
r dr dθ,

where r ∈ [0,∞) and θ ∈ [0, 2π). Using the identities [125, §9.1]

cos
(
z sin (θ)

)
= J0 (z) + 2

∞∑

k=1

J2k (z) cos (2kθ)

sin
(
z sin (θ)

)
= 2

∞∑

k=0

J2k+1 (z) sin
(
(2k + 1) θ

)

and [128, §8.511]

exp
(
±iz sin (φ)

)
= J0 (z) + 2

∞∑

k=1

J2k (z) cos (2kφ)± 2i
∞∑

k=0

J2k+1 (z) sin (2k + 1)φ,

then

κ (G) =
1

ǫb
δG⊥,0 +

2π

V
(2)
0

(
1

ǫa
− 1

ǫb

)∫ ra

0
rJ0 (Gr) dr.
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Finally, using the derivative
d

dz

(
zJ1 (z)

)
= zJ0 (z) then one concludes

κ (G) =
1

ǫb
δG⊥,0 + 2f

(
1

ǫa
− 1

ǫb

)
J1 (Gra)

Gra
,

where f = πr2a

V
(2)
0

is the fraction of the unit cell filled by the dielectric. Using this, one

derives the coefficients for a lattice of a-separated circular dielectric rods to be

κ0 =
f

ǫa
+

1− f

ǫb

κ−1 = 2f

(
1

ǫa
− 1

ǫb

)
J1
(
2π ra

a

)

2π ra
a

.

4.2.6 Localising Modes

With the existence of the photonic band gap and its relation to the structure of the lattice

in which it is located established, one may now consider applications of the phenomenon.

One such use is in the altering of the dispersion relation in localised regions through the

introduction of defects within a lattice.

Consider the removal of dielectric scatterers from a periodic structure to form a

local defect. Whilst the band gap structure deriving from the ensemble inhibits the

transmission of electric fields over particular frequency ranges, the lattice spacing in

the region of the defect has been adjusted. Accordingly, the defect is able to support

otherwise forbidden electric field frequencies, with the surrounding lattice acting as a

mirror to confine the radiation. The application of this phenomenon in relation to

the measurement of DMCs become apparent when combined with the aforementioned

microwave resonance cavity. By applying an electric field to a localised defect within

a dielectric lattice at a frequency disallowed by the photonic band gap and measuring

the electric field at a sufficiently shielded distance from the source. An unexpectedly

high field strength would infer the existence of a weakly-interacting intermediary particle

which was able to traverse the lattice, such as ALPs and HSPs.
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Chapter 5

Theory: Computation

“Lone and discarded one! divorced by fate

Far from thy wished-for fellows–whither art flown

Where lingerest thou in bereaved estate

Like some lost star, or buried meteor stone?”

— James Joseph Sylvester,

Excerpt from To a Missing Member of a Family

Group of Terms in an Algebraic Formula

5.1 Finite Difference Methodology

Finite difference methodologies are used to solve ordinary differential equations by ap-

proximating differential operators as difference quotients, allowing one to solve these

differential equations numerically, i.e.

df (x)

dx
≈ f (x+ h)− f (x)

h
.

5.1.1 Derivation

Consider a general function f (x). The value of this function at a difference h away from

an initial value x0 is given by the Taylor series expansion

f (x0 + h) =
∞∑

k=0

f (k) (x0)

k!
hk,

where f (k) (x0) denotes the kth derivative of the function evaluated at point x0. Since

one cannot numerically compute an infinite series, one instead truncates the series after

n terms, encompassing all further terms inside a remainder term Rn, i.e.

f (x0 + h) =

n∑

k=0

f (k) (x0)

k!
hk +Rn (x) . (5.1)
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Truncating this to derivatives of first order, one receives

f (x0 + h) = f (x0) + f ′ (x0)h+R1 (x) ,

which can be rearranged as

f ′ (x0) =
f (x0 + h)− f (x0)

h
− R1 (x)

h
.

Assuming that R1(x)
h is negligibly small, one thus approximates the first derivative of the

function as

f ′ (x0) ≈
f (x0 + h)− f (x0)

h
.

One notes that this is similar to the definition of the derivative of a smooth function,

f ′ (x0) = lim
h→0

f (x0 + h)− f (x0)

h
,

excepting that h is now finite, giving the methodology its namesake. This method can be

extended to higher order derivatives which may be computed recursively, i.e. retaining

only the leading order terms

f (n) (x0) =
f (n−1) (x0 + h)− f (n−1) (x0)

h
− Rn (x)

h
. (5.2)

5.1.2 Accuracy

The remainder term earlier introduced, more formally known as the truncation error,

is the deviation from the exact solution that the quantity being calculated takes in the

limit h→ 0, assuming no other errors. One is able to see from Equation (5.1) that this

truncation error is given by

Rn (x) =
∞∑

k=n+1

f (k) (x0)

k!
hk.

Because h is small by construction, i.e. hp ≫ hq for p < q, when calculating this

truncation error one need only consider the lowest order term in h, i.e.

Rn (x) ≈
f (n+1) (x0)

(n+ 1)!
hn+1.

From recursively applying the relationship from Equation (5.2), one sees that

Rn (x) = O

(
hn+1

)
,

viz. the error associated with a truncation to first order is proportional to h. Conse-

quently, the truncation error is proportional to hn, hence becomes negligible at all orders

in the limit h→ 0.
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5.1.3 Strengths and Limitations

Perhaps the most obvious strength to the finite difference methodology is the ease with

which it may be understood, given a relatively basic background knowledge of calculus.

Additionally, one can see that this method asymptotically approaches a full description

of a system in the limit of the finite difference to zero.

Despite its clear strengths, finite difference techniques are not perfect. Owing to its

pointwise approximations, the finite difference method cannot accurately handle complex

system geometries, such as those with curved boundaries. Additionally, a vanilla finite

difference analysis encounters issues at boundaries since there are no adjacent cells with

which to calculate differences. Perhaps most detrimentally, because of the manner in

which the methodology computes the local differences, the finite difference methodology

struggles greatly with unstructured domains, i.e. those with irregular or non-orthogonal

meshes.

Regardless of the technique’s weaknesses, finite difference methods are often favoured

for calculations in which one can assume a priori that the system does not have a complex

geometry. Additionally, more exotic finite difference schemes are able to circumvent a

number of the drawbacks, such as by adding an padding layer external to the data

domain, thus allowing the calculation at boundary surfaces.

5.2 Particle-in-Cell Methodology

Particle-in-cell (PIC) methodology was developed during the mid 1950s by Frank Harlow

and Martha Evans for use in simulating hydrodynamical systems [129, 130]. The basis

of this technique pivots around the interplay between particles and fields; whereas fields

dictate how particles move, particles influence local field strengths. This reciprocal be-

haviour can be applied algorithmically, facilitating the numeric simulation of non-linear

systems involving the co-interactions of particles and fields. The following subsections

outline the PIC methodology in the context of plasma physics simulations, in which the

particles of interest are the constituent elements of a plasma – namely electrons and ions

– and the fields of concern are those of electromagnetism.
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5.2.1 Motivation

PIC codes are heavily utilised for the simulation of systems which have coupled equa-

tions between particles and fields. Consider an electromagnetohydrodynamical system

comprised of charged particles acting under the influence of electromagnetic fields; its

equation of motion is the Lorentz-Maxwell equation:

ma = q (E+ v ×B) ,

where m and q are respectively the particle mass and charge, a is the acceleration

experienced by the particle which is moving at a velocity v, and E and B are the

electric and magnetic fields. By the continuity equation, one sees that shifts in the

charged particle number density, ρ, induces a current:

∂tρ+∇ · j = 0. (5.3)

This induced current affects the electric and magnetic fields through the Maxwell-

Ampére law

∇×B = ǫµ∂tE+ µj,

where ǫ and µ are the permittivity and permeability of the medium, respectively. How-

ever, the opposite processes are also valid assessments of the system. In reverse, changes

in electromagnetic fields result in a vector current which shifts the charged particle den-

sity through the continuity equation, resulting in the particles experiencing an external

force subject to the Lorentz equation. Accordingly, when simulating magnetohydrody-

namical systems one wishes to iteratively continue this interplay loop between particles

and fields.

5.2.2 System Initialisation

In PIC codes, the computational domain is divided into cells which run parallel to the

coordinate axes, collectively forming what is known as a grid or a mesh. The lines which

separate these cells are known as grid or mesh lines with their intersections being termed

grid or mesh points. Particles are situated inside these cells, giving the methodology

its namesake, with associated momenta – thus inhabiting a six-dimensional (x,p) phase

space – whereas the fields of the system reside along the vertices in a staggered Yee grid

configuration, as shown in Figure 5.1 [131].

Prior to performing any calculations, PIC codes instantiate the grid along with all

particles of the system and assign their corresponding positions and momenta. Fur-
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Figure 5.1: Diagram of a Yee cell. Particles are located within
cells encompassed by faces on which electric fields are defined

and vertices on which magnetic fields are defined.

thermore, PIC codes must ensure initial quasi-neutrality; this is typically conducted

by assuming an initially unperturbed plasma, thus requiring the solving of the Poisson

equation, i.e.

∇2ϕ =
ρ

ǫ
,

where ϕ is the field potential, ρ is the local charge density and ǫ is the permittivity of

the medium. The local charge density is calculated as being the number of particles

contained within a cell divided by the volume of that cell.

5.2.3 Particle Pusher

Charged particles move under the influence of electromagnetic fields, thus the advance-

ment of particles requires the solving of the Lorentz force equation. This equation of

motion for a particle of charge q and mass m travelling at an initial speed v =
dx

dt
under

the influence of an electric field E and magnetic field B may be written

dp

dt
= q (E+ v ×B) ,

where p = γmv is the relativistic 3-momentum. PIC codes typically solve this equation

using finite difference methods. However, the de facto method for propagating a charged

particle is the Boris pusher algorithm, which benefits from conserving phase space vol-

ume [132, 133]. This result is an equivalent formulation of Liouville’s theorem, thus the

total number of systems within the ensemble remains constant.
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5.2.4 Charge Distributions

Owing to the charge continuity exhibited in Equation (5.3), when particles enter or

leave a cell they alter the cell’s charge density, thus inducing a instantaneous current.

The magnitude of this current is determined by the number and sizes of particles which

traverse the boundaries, while the direction is dictated by the cell face through which

the particle(s) pass.

5.2.5 Field Solver

The newly induced current j alters the time-evolution of the electric fields through Equa-

tion (4.4). As such, the result of particle motion is an influence on the local field

strengths. Most commonly these new fields are calculated through a finite-difference

method.

5.2.6 Field Interpolation

Having calculated the electromagnetic fields within the system, these are interpolated to

locations of the particles situated within the cell bounded by the field’s point of origin.

5.2.7 Macroparticles

Macroscopic systems may be comprised of upwards of 1020 particles, each interacting

with one another through a variety of mechanisms. Consequently, it rapidly becomes

infeasible to model exact behaviours of every particle in its entirety, thus one must

find a means of minimising the complexity without relinquishing details of the overall

collective behaviours. The solution to this is to instead model bunches of many real

particles, known as super-particles or macroparticles. Since the equation of motion for

the particles can be written in terms of the mass-to-charge ratio, the macroparticle

trajectory is equivalent to that of the real particles. Additionally, the removal of point-

like particles through modelling macroparticles one is able to circumvent singularities

deriving from Coulombic interactions.

5.2.8 Algorithmic Overview

PIC methodology can be briefly summarised as a cycle of four processes which iterate

at time steps of ∆t:

1. Integration of equations of motion (particle pusher)
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2. Calculate charge distribution at grid points; include losses and gains, e.g. emission

and absorption

3. Integration of field equations on grid (field solver)

4. Interpolation of fields at particle positions

Figure 5.2 shows a brief overview of the PIC methodology.

∆t

Particle pusher

Charge distributions

Field solver

Field interpolation

Figure 5.2: Overview of particle-in-cell methodology.

5.2.9 EPOCH

An example of a modern particle-in-cell implementation is EPOCH (Extendable PIC

Open Collaboration) [134]. EPOCH is developed by a team of computational plasma

physicists headed by Prof. Tony Arber at the University of Warwick and builds upon

an earlier code, Project Plasma Simulation Code (PSC), which was written by Prof.

Hartmut Ruhl of Ludwig-Maximilians-Universität München [135]. EPOCH is written

in Fortran and parallelised using MPI and incorporates such behaviours as collisions,

ionisation and quantum electrodynamical effects.

5.3 Green’s Function Methodology

5.3.1 Background Theory

Green’s functions are a method of solving linear differential equations, i.e. those of the

form

L̂u (x) = f (x) , (5.4)

where L̂ is a linear differential operator which acts only upon the arguments of the

solution u (x), which satisfies boundary conditions on a topological space Ω, and f (x)
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is the source term. The defining equation for the Green’s function G of L̂ is the unique

solution to

L̂G
(
x,x′) = δ

(
x− x′) . (5.5)

From this, one is able to derive the integral equation for the function. Using the sifting

property of the Dirac delta distribution, a general function f (x) : x ∈ Ω can be written

f (x) =

∫

Ω
δ
(
x− x′) f

(
x′) dΩx′ .

Replacing the delta distribution through the defining Equation (5.5), this function can

be rewritten

f (x) = L̂

∫

Ω
G
(
x,x′) f

(
x′) dΩx′ .

Consequently, one can always write the solution u (x) from Equation (5.4) as an integral

of the form

u (x) =

∫

Ω
G
(
x,x′) f

(
x′) dΩx′ . (5.6)

5.3.2 Computation

When calculating the solution for systems in which an analytical expression cannot

be readily obtained, such as those for which the source exhibits non-linear behaviours,

one is able to discretise Equation (5.6) and numerically evaluate the solution through

summation.

This methodology has found application in many systems with boundary condition

problems, systems with complex geometries, and systems built around dispersion. A

select few of these applications will now be presented and discussed.

5.3.2.1 Berger & Lasher (1958)

One of the earliest documented uses of Green’s functions in computation can be found in

J. M. Berger and G. J. Lasher’s 1958 paper [136]. Berger and Lasher outlined how one

could practically utilise Green’s functions to numerically calculate the solution to the in-

homogeneous Poisson’s equation in two spatial dimensions, i.e.

(
∂2

∂x2
+

∂2

∂y2

)
ϕ (x, y) =

f (x, y), at each time step. To this end, a numeric analysis code was developed and ap-

plied on an IBM 704 computer using the Green’s function methodology, which was

capable of correctly calculating the solution to seven of the eight decimal digits carried

by the machine.

83



5.3 Green’s Function Methodology

In this paper, the authors stated several of the advantages of utilising Green’s func-

tion method. These included the ability to calculate solutions in systems with multiple

different inhomogeneous regions, a guaranteed high degree of accuracy in calculating the

solution due to having a “predetermined sequence of arithmetic operations”, and the

flexibility afforded by being capable of choosing the region(s) in which the solution are

calculated.

5.3.2.2 Harwood & Dupère (2012)

A 2012 proceedings by A. Harwood and I. Dupère from the ASME Noise Control and

Acoustics Division Conference reported progress in the application of Green’s functions

in the area of acoustic flows [137]. Hardwood and Dupère identified problems with

canonical techniques for simulating acoustics through aerodynamical systems: disparities

in length scales, excessive computational expense, and restrictions to simple geometries.

In contrast, the authors noted that the application of Green’s functions allows efficient

and accurate calculation of wave propagation and scattering.

Within their paper, Harwood and Dupère develop an approach to numerically cal-

culate solutions to equations of the form

(
∇2 + k2

)
ϕ (x, ω) = q (x, ω)

on arbitrary geometries, where k is the wavenumber, ϕ is the velocity potential, q (x, t)

is the source and it is implied that the temporal component of the solution is harmonic.

5.3.2.3 Mayfield, Gao & Luo (2021)

More contemporaneously, J. Mayfield, Y. Gao and S. Luo’s recent pre-proof journal

paper describes the application of Green’s functions to the numeric simulation of linear

scalar wave equations of the form [138]

∂2u (t,x)

∂t2
= c2 (x)∇2u (t,x) : (t,x) ∈ R

d × (0,∞) .

In this paper, the authors split the appropriate Green’s function into forward- and

backward-propagating components. Following this, the components are approximated by

geometrical optics approximations and propagated using the Huygens-Fresnel principle

to account for diffraction, reflection &c. The main advantage of the methodology noted

by the authors lies in its ability to balance efficiency and accuracy.
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Chapter 6

Run:DMC: A Novel Post-Process

Numeric Analysis Code

“Measure what is measurable, and make measurable

what is not so.”
— Antoine-Augustin Cournot

& Thomas Henri Martin1

Note: For brevity this chapter utilises Heaviside-Lorentz units with ~ = 1 except

where explicitly otherwise stated.

6.1 The Code

6.1.1 Overview

Run:DMC (a neologism combining the software invocation command “Run:” with an

acronym for Dark Matter Candidates) is a post-process analysis software package ca-

pable of calculating the strengths of hypothetical fields from simulation output data

according to associated coupling parameters. It achieves this through the application

of Green’s function methodology to numerically solve the inhomogeneous Klein-Gordon

equation, namely
(
�+m2

)
Ψ = ̺ (t,x). This method facilitates efficient and accurate

calculations in systems for which direct calculation is not possible, i.e. those containing

arbitrarily complex geometries and/or multiple different inhomogeneous source regions.

Run:DMC is written in the julia programming language with additional Python ele-

ments for data reading. It is currently able to utilise output data from the particle-in-cell

1This quote is often misattributed to Galileo Galilei [139].
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(PIC) code EPOCH and the finite difference time domain (FDTD) code MEEP. The ul-

timate objective of Run:DMC is to approach an accurate description of hypothetical

fields for any given system in the asymptotic limit of discrete to continuous spaces, i.e.

through a marked increase in resolution.

This chapter outlines the inner workings of the code, from design decisions through

to the core algorithm and any additional non-standard components. For later reference,

a minimal graphical representation of Run:DMC’s methodology is shown in Figure 6.1.

Each of the process blocks will be expanded upon in following subsections.

Start
Input source

data

Input particle
parameters

Calculate
particle fields

Stop

Figure 6.1: Basic overview of Run:DMC.

6.1.2 Input Source Data

Prior to the undertaking of any calculations, Run:DMC must first be provided the data

pertaining to the system, such as spacetime coordinates as well as any relevant fields.

These data are stored within a dictionary, which indexes through the implementation of

a hash table.

Some behaviours of a given system do not manifest during simulation unless it is run

at a sufficiently high resolution, e.g. those deriving from rapid variations in space or

time. Often the result of these high resolution simulations are the outputs of extremely

large datasets, which would take unreasonable computational resources to analyse. As

such, one cannot expect users to always have manageable sizes of data, thus Run:DMC

has been written with the functionality to reduce the size of the dataset by manually

specified scaling factors.

Furthermore, simulation software may save output data in any number of manners,

whether it be a single large file or multiple small files, SI vs. CGS vs. dimensionless units,

any one of a plethora of file extensions &c. Consequently, one needs to read and store

the data such that analysis of the simulation data is consistent; therefore, Run:DMC

requires that each simulation code has its own particular reader. Each reader must

hence be able to access and downsample simulation output data, as well as normalising
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its units to SI.

Finally, it would be counter-productive to downsample and normalise units of the

source data every time one wished to analyse a simulation’s output. Instead, it is

significantly more efficient to process the source data once and save it to file, to be read

again in potential later analyses. Run:DMC utilises julia’s Serialization package to

serialise processed data to disk.

Accounting for the requirements discussed herein, the “Input source data” stage of

Figure 6.1 can be expanded as shown in Figure 6.2.

Start

Has data
previously been

processed?

Read pro-
cessed data file

Read simu-
lation data

Downsample
data

Normalise data
to SI units

Save processed
data to file

Return source data

Yes

No

Figure 6.2: Flowchart of Run:DMC source data input.

6.1.3 Input Particle Parameters

In physics, every particle has a set of characteristic properties which are afforded to it

by a collection of intrinsic parameter values. The input of these is therefore fundamental

to a code which calculates the corresponding fields of those particles.

Run:DMC parses associated variables of each particle from a configuration file

named “particles”, with the input of properties for each particle being delimited by

begin particle and end particle demarcations. Parameters are defined through an

infix syntax, e.g. variable = value, with a limit of one variable per line. The current

necessary parameters for functionality are the designated particle name and its mass,

which is measured in eV. Additionally, any variable can be input through this method
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– even those not necessary for calculation – allowing one to make notes further to those

required.

Furthermore, one may desire to comment the input file without it being interpreted

by the particle parser. These comments are denoted by a hash (#) character, in line

with that found in BASH, Python, julia &c. Run:DMC’s particle input files are also

whitespace agnostic, allowing for arbitrary spacing and indentation, befitting many user

styles.

A basic example of a valid particle input file is as follows:

# This is a comment

begin particle

name = axion # This is also a comment

mass = 1e-3

note = Hello, world

end particle

6.1.4 Calculate Particle Fields

The capabilities of Run:DMC for the reading of simulation data and loading particle

parameters have been hitherto discussed. However, the most important component of

a numeric analysis code is clearly the numeric analysis. This subsection now considers

the “Calculate particle fields” step of Figure 6.1.

6.1.4.1 Discretisation of the Klein-Gordon Solution

The Klein-Gordon equation solution derived in Equation (2.4) was defined on a smooth

manifold, however, numerical analyses are performed on discrete spaces. As such, the

desired solution for Run:DMC is the equivalent discretised form.

Topological spaces can be classed as discrete or continuous, depending on whether the

coordinate system is countable or uncountable, respectively. This section strives to justly

translate Equation (2.4) from a continuous space to a discrete one for computational

numeric analysis. However, prior to any mathematical trickery, one should immediately

note an issue with direct translation to discrete space for the purpose of computational

numerics: the limits would require an infinite space to be analysed - a process not afforded

by any current technology. If instead one were to assume a priori that the support, i.e.
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the domain on which the field is non-zero, is closed and bounded, then without loss of

generality one can substitute the infinite domain for the support Ω, outside of which the

field is zero, i.e.

Ψ
(
tf ,xf

)
=

∫

Ω
d4xs

(
Θ(T ) δ (T −X)

4πX
− Θ(T −X)

4π
√
T 2 −X2

mJ1

(
m
√
T 2 −X2

))
̺ (ts,xs) .

The discrete analogue for integrals in continuous space are sums which span the same

domain. Using the common notation that permits specifying limits under the Sigma for

an arbitrary numbers of points, and the infinitesimal becoming a unit element of the

discrete space, then a direct translation of integration to summation is written

Ψ
(
tf ,xf

)
=
∑

ts,xs

(
Θ(T ) δ (T −X)

4πX
− m

4π

Θ(T −X)√
T 2 −X2

J1

(
m
√
T 2 −X2

))
̺ (ts,xs) ∆t∆V.

One can directly substitute the continuous variables for their discrete counterparts

because the discrete space is comprised of a subset of the continuous space. However,

another problem now arises in that the Dirac delta function is a Schwartzian distribution

which is only properly defined on a continuous topological space. As such, it is necessary

to translate the Dirac delta to its discrete analogue – the Kronecker delta. This transla-

tion is performed in Appendix A, the result of which is the absorption of the temporal

measure by the delta distribution, i.e.
δKronecker

∆t
= δDirac, finally culminating in the full

discretised equation for the field point:

Ψ
(
tf ,xf

)
=
∑

ts,xs

(
Θ(T )

4πX

δ (T −X)

∆t

−m

4π

Θ(T −X)√
T 2 −X2

J1

(
m
√
T 2 −X2

))
̺ (ts,xs) ∆t∆V, (6.1)

where it is to be understood that δ (x) = 1 if x = 0 and δ (x) = 0 if x 6= 0.

6.1.4.2 Unit Elements

Due to the nature of discretisation, Run:DMC’s core algorithm requires regular use

of unit elements of the system coordinates. These include spatiotemporal elements

δ{t, x, y, z} = {t, x, y, z}n+1−{t, x, y, z}n and the volume element δV = δx×δy×δz. The
simulation software packages employed in this thesis use regularly-spaced spatiotemporal

coordinates, thus these elements need only be calculated once and passed by reference

thenceforth, making their repeated calculation unnecessary. However, it would be a

trivial addition to include the calculation of these elements in situ to accommodate

non-linear coordinate systems, such as those found in some fluid codes, at the cost of

computational efficiency.
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6.1.4.3 Dimensionality

Run:DMC utilises a three-dimensional Green’s function to solve the inhomogeneous

Klein-Gordon equation. In order to apply this methodology in a coherent and valid

manner, one must therefore also have three-dimensional data. However, this is often

not the case in simulations, which may instead model lower-dimensional systems. To

circumvent this issue, the code ensures that the data is of an appropriate dimensionality,

adding dimensions to the data where necessary; this is analogous to considering an

infinitesimally thin rod or sheet existing in a three-dimensional topological space.

In circumstances when the simulation data is less than three-dimensional, the code

compensates for the missing length scales by falling back to those present in lower dimen-

sions. For example, if the simulation data is two-dimensional and lacks a z-dimension

then Run:DMC defines the unit element in z as being the lesser of the unit elements

in x or y, i.e. δz = min (δx, δy). Similarly, if the simulation is one-dimensional and also

lacks a y-dimension then Run:DMC defines the elements in y and z equal to that for x,

i.e. δz = δy = δx. Consequently, Run:DMC is capable of calculating three-dimensional

particle fields from one-, two- and three-dimensional simulation data.

6.1.4.4 The Calculation Algorithm

With the source data of the correct dimensionality and corresponding unit elements de-

termined, Run:DMC is able calculate the particle fields. Fundamentally the algorithm

is required to numerically solve the inhomogeneous Klein-Gordon equation via the earlier

derived integral:

Ψ
(
tf ,xf

)
=

∫ ∞

−∞
d4xs

(
Θ(T ) δ (T −X)

4πX
− m

4π

Θ(T −X)√
T 2 −X2

J1

(
m
√
T 2 −X2

))
̺ (ts,xs) ,

where ̺ denotes the source density, and T = tf − ts and X =
∥∥xf − xs

∥∥ are respctively

the temporal and spatial distances between the field and source points. To accomplish

this, Run:DMC iterates over all field points,
(
tf ,xf

)
, seeking all causally-connected

source points, (ts,xs), i.e. those for which
(
tf − ts

)
−
∥∥xf − xs

∥∥ ≥ 0, as shown in the

past lightcone of Figure 6.3.

“Massless” and “massive” contributions to the Green’s functions are calculated for

each causally-connected field point-source point pairing by

Gm=0

(
tf ,xf |ts,xs

)
=

Θ
(
tf − ts

)
δ
((
tf − ts

)
−
∥∥xf − xs

∥∥
)

4π
∥∥xf − xs

∥∥ (6.2)
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xs
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Figure 6.3: Spacetime diagram indicating source points in the
past lightcone of a field point situated at

(
tf ,xf

)
.

Gm 6=0

(
tf ,xf |ts,xs

)
= −m

4π

Θ
((
tf − ts

)
−
∥∥xf − xs

∥∥
)

√(
tf − ts

)2 −
∥∥xf − xs

∥∥2
J1

(
m

√(
tf − ts

)2 −
∥∥xf − xs

∥∥2
)
,

(6.3)

where the delta function is of the discretised form discussed in Section 6.1.4.1, along

with the source density as defined by corresponding couplings at that location, e.g. for

axions ̺ (ts,xs) = gaγγE (ts,xs) ·B (ts,xs). The total contribution from a single source

point to a single field point is then calculated as being the product of these components,

i.e. Ψ
(
tf ,xf

)
= G

(
tf ,xf |ts,xs

)
̺ (ts,xs) with additional multiplicative element factors

for the spatiotemporal grid of the source, as per Equation (6.1). The total field strength

at this field point is then the sum of all contributions from all causally-connected source

points, i.e. Ψ
(
tf ,xf

)
=
∑
ts,xs

G
(
tf ,xf

∣∣ ts,xs

)
̺ (ts,xs). The code then iterates over all

field points, performing the same calculations, in order to build a description of the

entire field.

6.1.5 Additional Algorithmic Components

6.1.5.1 Singularities

When performing calculations involving reciprocals of system variables, one must be

wary of the possibility for infinities to arise. These singularities typically appear when

either a parameter or difference between parameter elements take a value of zero. Since

the calculation being performed by Run:DMC involves inverse temporal and spatial

differences, i.e. 1

‖xf−xs‖ and 1
√

(tf−ts)
2−‖xf−xs‖2

, these are the potential sources for

infinities.

Due to the massless contributions having a strong dependence on the spatial differ-

ence between source and field points, there is a clear requirement for these gaps to always

be non-zero. There are a number of ways in which this can be achieved, e.g. catching
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spatial differences of zero and substituting for a small constant. The method of resolving

singularities implemented in Run:DMC involves locating the source and field points on

different grids that are staggered by a half source grid length in each dimension, as illus-

trated in Figure 6.4. This offset has the advantage of being characteristic of the system

coordinates, thus is scale-invariant. This also allows for arbitrarily high resolutions in

which the offset can become negligible, thus converging on the true value in the approach

to continuum. Some computational physics methodologies, such as PIC codes, require

interpolation to provide accurate results, however, this has not been implemented into

Run:DMC. This was chosen to balance computational efficiency with result accuracy:

by construction, the source points are evenly spaced from the field points, thus calculated

field strengths will be correctly distributed with a constant difference from the “true”

value, which vanishes at high resolutions without the need for additional interpolation

processes.

y

x

xs xs xs

xs xs xs

xs xs xs

xf

xf

xf

xf

xf

xf

Figure 6.4: Two-dimensional graphical representation of the
offset grid between source points, xs, and field points, xf . Field
points are located on the coordinate grid output by simulation,
whereas source points are located in the centre of each grid cell.

Additionally, the massive contributions involve the combination of spatial and tem-

poral differences. However, since the spatial differences can no longer evaluate to zero,

one need not concern oneself with temporal differences of zero, thus resolving all singu-

larities.
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6.1.5.2 Contributing Source Points

In addition to the core workings of the numeric algorithm outlined in the previous seg-

ments, during development it was found that additional functionalities were required to

provide results which fit closer to exact analytic solutions. These additional functional-

ities will now be discussed.

First and foremost, an issue arose in the computation of contributing points in dis-

cretised space. Consider the time-dependent 2-sphere, S, which is defined on Minkowski

spacetime for a given x0 as being the set S =
{
x ∈ R

3 : x2i = x20
}
. This is physically

manifested as an infinitesimally thin four-dimensional surface on which every point is

equidistant in spacetime from a central origin. On a continuous topological space this

2-sphere is comprised of an uncountable set of coordinate values, guaranteeing that for

every temporal coordinate there exists an infinite set of spatial coordinates which lie on

the surface, and vice versa. However, for discrete topological spaces, on which spatial and

temporal coordinates may only take specific values, one cannot make the same claim; as

such, one cannot completely describe the 2-sphere on discrete topological spaces. How-

ever, in the limit to continuum this coordinate set becomes dense, thus approaching an

increasingly well-approximated representation. Since the discrete time coordinates are

a subset of those in continuous time, without loss of generality one is able to directly

compare the spatial coordinates between discrete and continuous spaces at time slices

in discrete space.

To illustrate this, consider a field point located at some arbitrary point in Minkowski

spacetime
(
tf ,xf

)
. The past lightcone of this point at three consecutive time slices,

t0, t1 and t2, with t0 = tf > t1 > t2, is shown in Figure 6.5a. At each of these time

slices, tn, the 2-sphere is the surface of radius r =
√
x2 + y2 + z2 =

√
t2n , as shown in

Figure 6.5b.

From this, one notes a stark contrast between the set of coordinates representing

the 2-sphere on continuous and discrete spaces. One may even note that it is possible

for the 2-sphere in a time slice to miss all discrete grid points, resulting in a complete

absence of causally-connected source points from that time slice. A näıve but effective

solution to this problem is to posit that the surface (contour lines in Figure 6.5b) is no

longer infinitesimally thin but it instead assumes a thickness, ∆. The requirements of

this thickness are that it takes a quantity of length that is characteristic and meaningful

in the context of the coordinate system and scale, as well as being a length which
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t0 xs

ts

(tf ,xf )

t1

t2

(a) Spacetime diagram indicating three
consecutive time slices t0 = tf > t1 > t2
along the past lightcone of a field point.
Source points lying along the diagonals

contribute masslessly to the field point at(
tf ,xf

)
whereas those residing inside the

shaded region contribute massively.

y

x

t0

t1

t2

(b) x-y plane projection of a 2-sphere in
Minkowski spacetime at three consecutive
time steps, t0 = tf > t1 > t2. Solid contour
lines indicate the constant radius of the

2-sphere on a continuous topological space.
Small square nodes signify the locations of

the 2-sphere on a discrete topological
space, which only occur at the coincidence
of the surface with exact grid cell centres.

In the time slices chosen, the only
contributing source points are those in t1.

Figure 6.5: Diagrammatic representations of causally-connected
source points to individual field point.

vanishes in the spatial limit to continuum. To this end, it was decided that the surface

thickness would take the value of the unit cell diagonal, i.e. ∆ =
√
δx2 + δy2 + δz2 .

Figure 6.6a illustrates how this manifests itself in the context of a spacetime diagram

while Figure 6.6b demonstrates how this increases the number of points used to represent

the 2-sphere.

Despite the success of this method in better approximating the discrete 2-sphere to

continuous behaviour and avoiding time slices altogether lacking contributing points,

it raises a further issue. Each discrete grid point contained within the surface thick-

ness represents a source term which contributes equally to all other source points to

the total field, for a given spacetime interval, resulting in an over-abundance of source

contribution, e.g. four contributing points at equal-time t0 = tf . The solution to this

implemented in Run:DMC was to scale the contributions according to the grid point’s

proximity to the true surface location. This thickness is required to fall off with distance

from the lightsphere surface in order to ensure that field points rely less on more distant

source points. The choice of this scaling is ultimately an arbitrary detail, provided it
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(tf ,xf )
t0 xs

t1

t2

(a) Spacetime diagram indicating three
consecutive time slices t0 = tf > t1 > t2
along the past lightcone of a field point.
Source points lying within the lightcone
thickness along the diagonals contribute
masslessly to the field point at

(
tf ,xf

)

whereas those residing inside the shaded
region contribute massively.

y

x

t0

t1

t2

∆

(b) x-y plane projection of a 2-sphere

with surface thickness ∆ =
√
δx2 + δy2 at

consecutive time steps, t0 = tf > t1 > t2.
All grid cell centres contained within the
cyan regions contribute to the discrete
representation of the 2-sphere surface.

Figure 6.6: Diagrammatic representations of causally-connected
source points to individual field point with lightcone thickness.

falls off with distance and approximately sums to the same total contribution as in con-

tinuous, however for simplicity it was decided to be a linear fall off with distance as the

ratio of the surface thickness with a boundary at the extremities of the surface width.

Mathematically this scaling factor, δ, was formulated as

δ =

∣∣∣∣
∆t− ‖∆x‖ −∆

∆

∣∣∣∣ , (6.4)

where ∆t and ∆x respectively denote the temporal and spatial differences in discretised

spacetime. Figure 6.7 graphically represents how this manifests itself.

A flowchart of the core algorithm implemented in Run:DMC is shown in Figure 6.8.

Each process block will be briefly expanded upon following the chart.

Calculate elements of source data

To facilitate more efficient calculation, the elements of the system are precalculated and

utilised throughout. The time element, δt, is calculated as being the temporal difference

between the first and second time steps in the system data, i.e. δt = t2 − t1. Spatially,

the x-axis denotes the primary axis of the simulation data, thus it is assumed that there

are at least two elements in this direction; it is calculated by δx = x2 − x1. In order

to handle 1D data, the y element – which is taken to be the secondary axis – is given
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y

x

t0
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∆

Figure 6.7: x-y plane projection of a 2-sphere with surface

thickness ∆ =
√
δx2 + δy2 and scaling factor δ =

∣∣∣∆t−‖∆x‖−∆
∆

∣∣∣
at consecutive time steps, t0 > t1 > t2.

Start
Calculate
elements of
source data

Iterate over
all field points
and causally-
connected

source points

Calculate re-
tarded time, tret

Calculate
massless Green’s
function, Gm=0

Calculate
massive Green’s
function, Gm 6=0

Calculate source
density, ̺

Calculate
contributions,
Ψ =

∑
ts,xs

G̺

Sum contribu-
tions, Ψtotal =
Ψm=0 + Ψm 6=0

Save fields
to data file

Return all data

|tret| ≤ ∆

tret ≥ 0

Figure 6.8: Flowchart of Run:DMC core algorithm.
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by δy = δx if it is only one element in size and δy = y2 − y1 otherwise. Similarly,

δz = min (δx, δy) if the length of z is unitary and δz = z2 − z1 otherwise. Using these,

the volume element and lightcone thickness are calculated by δV = δx × δy × δz and

∆ =
√
δx2 + δy2 + δz2 , respectively.

Iterate over all field points and causally-connected source points

In its current incarnation, Run:DMC enforces causality by iterating over all data time

steps preceding the time at which a field point is observed.

Calculate retarded time, tret

The retarded time for each field point-source point pairing is calculated from the spa-

tiotemporal coordinates by tret =
(
tf − ts

)
−
∥∥xf − xs

∥∥, where tf and ts are the field

and source time coordinates, and xf and xs are the corresponding spatial coordinates.

Calculate massless Green’s function, Gm=0

If the retarded time is calculated to be within the lightcone thickness of zero, i.e.

‖tret‖ ≤ ∆, then the interval is lightlike and the massless Green’s function is calcu-

lated by Equation (6.2) as

Gm=0

(
tf ,xf |ts,xs

)
=

Θ
(
tf − ts

)
δ
((
tf − ts

)
−
∥∥xf − xs

∥∥
)

4π
∥∥xf − xs

∥∥ .

This is then scaled by the distance per Equation (6.4) as δ =
∣∣∣∆t−‖∆x‖−∆

∆

∣∣∣ ,.

Calculate massive Green’s function, Gm 6=0

If the retarded time is calculated to be less than or equal to zero then the interval is

timelike and the massive Green’s function is calculated by Equation (6.3) as

Gm 6=0

(
tf ,xf |ts,xs

)
= −m

4π

Θ
((
tf − ts

)
−
∥∥xf − xs

∥∥
)

√(
tf − ts

)2 −
∥∥xf − xs

∥∥2
J1

(
m

√(
tf − ts

)2 −
∥∥xf − xs

∥∥2
)
.

Calculate source density, ̺

The source density of a particle is calculated from its coupling to ordinary matter. For

ALPs, ̺ (ts,xs) = E (ts,xs) ·B (ts,xs), for DLPs ̺ (ts,xs) = E2 (ts,xs)−B2 (ts,xs) and

HSPs ̺ (ts,xs) = E (ts,xs).

Calculate contributions, Ψ =
∑

ts,xs
G̺

For each field point, the field strength contributions due to massless and massive com-

ponents are calculated separately as being the inner product of the respective Green’s
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functions and source density, along with multiplicative factors of the spatiotemporal unit

elements.

Sum contributions, Ψtotal = Ψm=0 +Ψm 6=0

The overall field strength at a given spacetime location is calculated as being the sum

of the massless and massive contributions.

Save fields to data file

Julia’s Serialization package is utilised to serialise the processed data to disk.

6.2 Case Testing

Prior to taking any results from Run:DMC as given, it must first prove itself capable of

correctly calculating the resultant fields of analytically calculable systems. As previously

calculated in Equation (2.4), the value of a field Ψ at a spacetime coordinate
(
tf ,xf

)
is

calculated from its source density ̺ by

Ψ
(
tf ,xf

)
=

∫ ∞

−∞
d4xs

(
Θ(T ) δ (T −X)

4πX
− m

4π

Θ(T −X)√
T 2 −X2

J1

(
m
√
T 2 −X2

))
̺ (ts,xs) ,

where T = tf − ts and X =
∥∥xf − xs

∥∥.

Within the following subsections, test cases will be outlined, corresponding fields

analytically calculated, physical interpretations discussed and numeric results compared

with those expected. Owing to the Bessel function, the massive contributions are signif-

icantly harder to analytically calculate than their massless counterparts and will only be

considered in the final case test, where the solution is readily calculable and comparable

with numeric outcome.

It was found during development that results from systems with disparate time and

length scales were highly inaccurate or inefficient. When initially conducting the test

cases presented later, results for systems in which the temporal elements were much

larger than the grid separations, the calculated fields exhibited large discontinuities. In

contraposition, the results when the temporal spacing was significantly smaller than that

of the spatial were unable to be run to completion due to excessive forecasted duration.

The heuristic explanation for these behaviours is as follows. If steps in time, δt, are

sufficiently large relative to steps in space, δx, i.e. δt ≫ δx, then between time steps

the lightsphere surface extends beyond multiple cell lengths, thus reducing the number

of source points that are able to contribute to each field point and hence resulting in
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a severe reduction in calculated field strength. However, in cases to the counter, i.e.

δt≪ δx, it requires multiple time steps for the signal to reach adjacent cells; whilst this

does not negatively affect the computed field strength, each additional time step takes

longer than its predecessor due to calculating the contributions from all source points in

all preceding time steps. As such, the calculation becomes increasing inefficient with a

large number of time steps. On balance, it was decided that the ideal configuration for

computation was that the time and length scales of all test cases must be commensurate

with the propagation speed of light in vacuo, i.e.

δx

δt
∼ c,

a result reminiscent of, but unrelated to, the Courant-Friedrichs-Lewy condition. It

should be noted that this may not be entirely optimal and potentially warrants further

investigation.

Each test case was performed at a multitude of resolutions in order to illustrate the

asymptotic behaviour in the approach to continuum. These resolutions are designated

“low”, “medium” and “high”, with the corresponding number of grid points (t×x×y×z)
as follows:

Low resolution: 16× 16× 16× 1
Medium resolution: 64× 64× 64× 1
High resolution: 512× 512× 512× 1.

Note 1: All massless test cases were generated as two-dimensional data on a 100 µm×
100 µm square mesh. This was chosen to mimic the source sizes within the systems

which will be later investigated, e.g. the plasma wavelength for a plasma of density

n0 = 1024m−3 is λp ∼ 30 µm.

Note 2: All massless test cases use sources of unitary density, i.e. ̺ (ts, s) =
1
δV .

Note 3: For notational brevity, the component intervals between source creation (t0,x0)

and field observation
(
tf ,xf

)
are denoted ∆t = tf − t0 and ‖∆x‖ =

∥∥xf − x0

∥∥.

6.2.1 Transient Stationary Point Source

From an analytical perspective, the simplest case for which to calculate the resultant field

is that of a source which exists at a single point in spacetime, namely a stationary point

source that comes into existence for an infinitesimal instance, whereupon it vanishes.
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The density for a point-like source located at a single spacetime coordinate (t0,x0)

is given by

̺ (ts,xs) = δ (ts − t0) δ
(3) (xs − x0) .

From this, one is able to evaluate the integrals with ease, simply carrying over the points

for which ts = t0 and xs = x0, giving

Ψm=0

(
tf ,xf

)
=

Θ(∆t) δ
(
∆t− ‖∆x‖

)

4π ‖∆x‖ .

Physically, this massless contribution manifests itself as a 2-sphere propagating out-

ward from the source point at the speed of light, falling off linearly with Euclidian

distance between the source creation and field observation. The numerically calculated

field for such a system is shown in Figure 6.9.

102

104

Low resolution

Medium resolution

High resolution

102

103

0 20 40 60 80 100
102

103

Longitudinal distance (µm)

F
ie
ld

st
re
n
gt
h
(a
rb
.
u
n
it
s)

Figure 6.9: Field strength of an m = 0 transient stationary
point source located in the centre of the domain (x = 50 µm).
Vertical black lines indicate the delta distributions propagating
at the speed of light away from the central position at given time

steps. Horizontal black line indicates expected peak value as
1

4πc(t1−t0)
.

Time steps: 21.2 fs (top), 79.4 fs (middle), 143 fs (bottom).

From Figure 6.9 it can be seen that the overall field distribution is comprised of

two equal distributions which separate and retreat from the point of origin in opposite

directions at the speed of light, as expected. Regardless of resolution, these distributions

are composed of the same number of points, the ensemble width of which decreases with
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increased resolution. Additionally, the calculated value remains approximately correct,

albeit underestimated, for all resolutions.

Combining these observations, one may justly conclude that the computed distribu-

tion approaches that calculated analytically, i.e. resembling two radially-diminishing

delta distributions departing the source point at the speed of light. Consequently,

Run:DMC has demonstrated its capabilities in numerically analysing systems which

may be modelled as a set of massless transient point sources.

6.2.2 Persistent Stationary Point Source

Perhaps the most prevalent of the point-like source systems taught during undergraduate

studies is that of an eternal stationary source. This system is used in solving such

problems as Laplace’s equation of electrostatics, i.e. ∇2Ψ = 0, the R
3 solution to which

is given by Ψ (t,x) = 1
4π‖x‖ . However, the following test case concerns situations in

which the requirement of eternal existence is not assumed, instead dealing with sources

coming into existence.

The density for a stationary point-like source located at spatial coordinate x0 which

comes into existence at time t0 and persists thenceforth is written

̺ (ts,xs) = Θ (ts − t0) δ (xs − x0) .

Integrating over xs in order to remove the source delta gives

Ψm=0

(
tf ,xf

)
=

∫ ∞

−∞
dts

(
Θ(T )Θ (ts − t0) δ

(
T − ‖∆x‖

)

4π ‖∆x‖

)
,

where ∆x = xf − x0.

Prior to undertaking the remaining integral, one must first calculate the roots of the

delta, tn, such that it can be written in the form

δ
(
f (ts)

)
=
∑

n

δ (ts − tn)∣∣∣f ′ (ts)
∣∣
ts=tn

∣∣∣
,

where f ′ (ts) =
d

dts
f (ts) [105, §13.1.3]. These roots can be shown to be tn = tf ±‖∆x‖,

however one notes that just one of these roots is valid since tf − tn − ‖∆x‖ = 0 only

holds for the root inclusive of the negative sign, i.e.

tn = tf − ‖∆x‖ .
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Since ‖∆x‖ ≥ 0 ∀∆x, one calculates the massless field contributions to be

Ψm=0

(
tf ,xf

)
=

Θ
(
∆t− ‖∆x‖

)

4π ‖∆x‖ , (6.5)

where ∆t = tf − t0. This is physically interpreted as a steady radially-diminishing con-

tribution which permeates the hypervolume of the lightsphere centred on source point

(t0,x0). One may note that as the time between the source creation and field observation

approaches infinity, the step function tends to unity, i.e. lim
∆t→∞

Θ
(
∆t− ‖∆x‖

)
→ 1, re-

sulting in a solution convergence to the expected Coulombic behaviour from the solution

to Laplace’s equation:

Ψm=0

(
tf ,xf

)
=

1

4π ‖∆x‖ . (6.6)
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Figure 6.10: Field strength of an m = 0 persistent stationary
point source located in the centre of the domain. Analytical
solution given by Equation (6.6). Vertical black dashed lines
indicate the lightcone surface propagation away from central

source position at given time steps.
Time steps: 21.2 fs (top), 79.4 fs (middle), 143 fs (bottom).

The solid black line of Figure 6.10 demonstrates a finitely peaked distribution of

the result calculated in Equation (6.5). One is able to see clearly that the numerically

calculated behaviours very closely match those expected from analytic analysis across all

resolutions, for example, the calculated field values are approximately confined by the

speed of light propagating away from the source in vacuo, as indicated by the vertical

dashed lines. Additionally, the distribution of the numeric results closely resembles that
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of the analytic result, with a calculation overestimation in values between the two results

being of order 1% relative to the peak, i.e. ∼ 104

106
. Furthermore, one notes that the peak

value increases with resolution, a result deriving from the decreased cell size; in the limit

to continuum this value should asymptotically approach infinity.

As a consequence of this test case, it is the author’s wish that the reader should

be convinced as to the efficacy of Run:DMC in analysing systems comprised of static

sources which survive longer than single instances of time, in particular that distributions

are correct and calculated values are close to those expected.

6.2.3 Moving Point Source

Hitherto only stationary point-like sources have been considered, however the nature of

some systems is such that sources within the domain may be moving. As such, this test

case considers a moving point source at a relativistic speed.

The density of a source which comes into existence at (t0,x0) moving at a constant

speed v is written

̺ (ts,xs) = Θ (ts − t0) δ
(3)
(
xs −

(
x0 + v (ts − t0)

))
.

Initially integrating over xs to remove the source delta, one gets

Ψm=0

(
tf ,xf

)
=

∫ ∞

−∞
dts

(
Θ(T )Θ (ts − t0) δ

(
T −

∥∥∆x− v (ts − t0)
∥∥)

4π
∥∥∆x− v (ts − t0)

∥∥

)
.

As with the persistent stationary source test case (6.2.2), one must first calculate the

roots of the delta, tn, prior to undertaking the final integral, in order to write the delta

as

δ
(
f (ts)

)
=
∑

n

δ (ts − tn)∣∣∣f ′ (ts)
∣∣
ts=tn

∣∣∣
,

which one computes to be

tn = γ2
(
tf − (∆x+ vt0) · v

)
±
√
γ4
(
tf − (∆x+ vt0) · v

)2 − γ2
(
t2f − (∆x+ vt0)

2
)
,

where γ ≡
(
1− v2

)− 1
2 . However, by definition of the delta root, tf−tn−

∥∥∆x− v (tn − t0)
∥∥ =

0 ∀∆v thus, by considering the case in which v = 0, one concludes that the only valid

root is that with the negative sign.

Using f (ts) = tf − ts −
∥∥∆x− v∆t′

∥∥, one is able to show that
∣∣∣∣
d

dts

(
f (ts)

)∣∣∣
ts=tn

∣∣∣∣ =
∥∥v (tn − t0)−∆x

∥∥+
(
v (tn − t0)−∆x

)
· v∥∥v (tn − t0)−∆x

∥∥ .
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By introducing a unit vector ξ̂ such that v (tn − t0) −∆x =
∥∥v (tn − t0)−∆x

∥∥ ξ̂, one

can then write the delta as

δ
(
T −

∥∥∆x− v (ts − t0)
∥∥) = 1

1 + ξ̂ · v
δ (ts − tn) .

Finally, one may carry out the remaining integral and hence conclude the massless

field contributions to be

Ψm=0

(
tf ,xf

)
=

1

1 + ξ̂ · v
1

4π

Θ
(
tf − tn

)
Θ(tn − t0)∥∥v (tn − t0)−∆x

∥∥ . (6.7)

Physically this manifests itself as a singularity moving at a speed v, whose field

strength diminishes radially with distance from the source as 1
‖v∆t−∆x‖ . One may note

that in the limit of v → 0 this solution tends to that of the persistent static source, i.e.

Equation (6.5). Figure 6.11 illustrates the numeric analysis of a point-like source moving

at a constant relativistic speed v = 0.9c, instantiated at x = 0 µm and moving in the

positive x-direction toward x = 100 µm. The black line models the analytic expression

derived in Equation (6.7). From this, one sees that the field propagation ahead of the

source is limited by the speed of light, which results in an asymmetric tail either side of

the source, compressing on the side of propagation direction and stretching behind.

From Figure 6.11 one observes the asymptotic behaviour approaching that expected

from the analytic result. The dominant behavioural shifts observed with increased res-

olutions reside in the peak value growing as the distribution becomes increasingly keen,

a result afforded by the smaller cell sizes. Additionally, small peaks become increasingly

prevalent along the distribution tail with increased resolution, suggesting a numeric arte-

fact which likely results the encapsulation-interpolation methodology earlier described.

One notes that the distribution is always underestimated versus the analytic expectation.

This test case highlights Run:DMC’s ability to calculate fields derived from moving

point sources, as well as its incorporation of relativistic behaviours.

6.2.4 Persistent Time-Varying Stationary Source

The cases considered heretofore have been used to demonstrate the efficacy of Run:DMC

in calculating massless contributions for a multitude of systems. Despite this, there are

no clear methods of calculating the massive contributions in most of these systems. A

final test case therefore considers a system in which it is possible to exactly calculate

the massive contributions for a sufficiently long time; that of a point-like source whose

density varies with time.
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Figure 6.11: Field strength of an m = 0 moving point source
initially located in the left side of the domain and moving at a

constant speed v = 0.9c along the positive longitudinal direction.
Analytical solution given by Equation (6.7). The right-most

vertical black dashed line indicates the propagation of light from
the initial source position at given time steps and the left-most

line indicates the source location.
Time steps: 21.2 fs (top), 159 fs (middle), 276 fs (bottom).

The density for a point source located at x0 whose density oscillates sinusoidally with

angular frequency ω and amplitude b for which the value at initial time t0 is a is given

by

̺ (ts,xs) = Θ (ts − t0) δ
(3) (xs − x0)

(
a+ b sin

(
ω (ts − t0)

))
.

Initially integrating over xs to remove the source delta gives the massless contribution

Ψm=0

(
tf ,xf

)
=

∫ ∞

−∞
dts

Θ(T )Θ (ts − t0) δ
(
T − ‖∆x‖

)

4π ‖∆x‖
(
a+ b sin

(
ω (ts − t0)

))
.

As in previous cases, the only valid root of the delta can be calculated to be tn =

tf − ‖∆x‖, hence the massless contributions are

Ψm=0

(
tf ,xf

)
=

Θ
(
∆t− ‖∆x‖

)

4π ‖∆x‖

(
a+ b sin

(
ω
(
∆t− ‖∆x‖

)))
, (6.8)

where the Heaviside function Θ
(
∆t+ ‖∆x‖

)
has been excluded due to it vanishing only

in regions where the second Heaviside function also vanishes.
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In a similar manner to evaluating other test cases, one initially integrates over xs,

giving the massive contributions as

Ψm 6=0

(
tf ,xf

)
=

1

4π

∫ tf−‖∆x‖

t0

dts
−m√

T 2 − ‖∆x‖2

× J1

(
m

√
T 2 − ‖∆x‖2

)(
a+ b sin

(
ω (ts − t0)

))
. (6.9)

Introducing a new variable ξ = m
√
T 2 − ‖∆x‖2 allows one to rewrite this integral

as

Ψm 6=0

(
tf ,xf

)
= − 1

4π

∫ m
√

∆t2−‖∆x‖2

t0

dξ
mJ1 (ξ)√

ξ2 +m ‖∆x‖2

×


a+ b sin

(
ω

(
∆t− 1

m

√
ξ2 +m2 ‖∆x‖2

))
 .

By considering the behaviour at a sufficiently long time, i.e. t ≫ ‖∆x‖, one is able

to approximate the following:





∆t2 − ‖∆x‖2 ∼ ∆t2

ξ2 +m2 ‖∆x‖2 ∼ ξ2.

Furthermore, by using the trigonometric identity sin (α± β) = sin (α) cos (β)±cos (α) sin (β),

the massive contributions may now be written

Ψm 6=0

(
tf ,xf

)
= −ma

4π

∫ m∆t

0
dξ

J1 (ξ)

ξ
− mb

4π

[
sin (ω∆t)

∫ m∆t

0
dξ

J1 (ξ)

ξ
cos

(
ω

m
ξ

)

− cos (ω∆t)

∫ m∆t

0
dξ

J1 (ξ)

ξ
sin

(
ω

m
ξ

)]
.

Using the following identities [128, §6.693]:

∫ ∞

0

Jν (αx)

x
sin (βx) dx =





1
ν sin

(
ν arcsin

(
β
α

))
β ≤ α

αν sin( νπ
2 )

ν
(

β+
√

β2−α2
)ν β ≥ α

∫ ∞

0

Jν (αx)

x
cos (βx) dx =





1
ν cos

(
ν arcsin

(
β
α

))
β ≤ α

αν cos( νπ
2 )

ν
(

β+
√

β2−α2
)ν β ≥ α

one is then able to calculate the massive contributions to be
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lim
t→∞

Ψm 6=0

(
tf ,xf

)
= −ma

4π

− b

4π

[
sin (ω∆t)Re

(√
m2 − ω2

)
− cos (ω∆t)Re

(
ω −

√
ω2 −m2

)]
. (6.10)

The analytic expression in Equation (6.10) effectively trisects the behaviours of the

field according to oscillation frequency relative to the mass, i.e. ω S m. It was found

during testing that, regardless of overall behaviours, within fifteen oscillation periods of

the source under all mass-frequency ratios the value of this long-time approximation was

not reached, making the continued analysis unreasonable. This was explained as being

analogous to calculating the temperature distribution in the region of an oscillatory heat

source and comparing the result to the heat death of the Universe.

Despite this, the massive results of Run:DMC can still be compared to an expected

behaviour through the numeric evaluation of Equation (6.9). Because this additional

analysis to be conducted is of a significantly different – and notably simpler – nature,

it serves as a valid benchmark when examining Run:DMC’s capabilities in resolving

massive contributions.

Figure 6.12 illustrates the capability of Run:DMC in calculating the massless con-

tributions of time-varying sources. As can be seen, the numeric results closely follow the

expected behaviours according to the analytic expression derived in Equation (6.10). De-

spite having well-matched peak values and distributions, discrepancies between analytic

expectation and numeric result become increasingly prominent at higher frequencies.

These differences are likely the consequence of the inability of Run:DMC to resolve

extremely high frequency oscillations at the given resolution.
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(b) ω = 0.1m
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(c) ω = 10m

Figure 6.12: Field strength of an m = 0 persistent time-varying
stationary point source. Black dashed lines indicates expected
behaviours according to Equation (6.8). The source initial value
is given by a = 0, the oscillation amplitude b = 1 and oscillation
angular frequency is defined as a proportion of the oscillations of

the particle mass, which is m = 1 eV.

Figure 6.13 demonstrates Run:DMC’s capabilities in calculating massive field con-

tributions across the regimes ω S m. As is evident from these, Run:DMC is able to

approximately calculate the behaviours across the spectrum of oscillation-mass ratios,

as well as order of magnitude values, provided the oscillations are sufficiently low for the

resolution. Whilst one can analytically calculate lim
x→0

J1(x)
x = 1 through l’Hôpital’s rule,

numerically this would diverge. Consequently, one should not pay too much heed to the

“analytic” numeric result in the central regions of source location.

From Figures 6.12 and 6.13, it has been demonstrated that Run:DMC is able

to calculate values of the correct order for massive contributions in the regimes ω ≤
m, however it cannot resolve the field structure for oscillation frequencies significantly

smaller than that corresponding to the particle mass. Additionally, it is apparent that

the code struggles with calculating massive contributions beyond providing rough order

of magnitude estimates.
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(a) ω = m

(b) ω = 0.1m
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(c) ω = 10m

Figure 6.13: Field strength of an m = 1 eV persistent
time-varying stationary point source. The source initial value is
given by a = 0, the oscillation amplitude b = 1 and oscillation

angular frequency is defined as a proportion of the oscillations of
the particle mass, which is m = 1 eV. Black dashed lines indicate

numerically integrated values.

6.2.5 Conclusions

With the final test case concluded, the author’s intention to have thoroughly convinced

readers as to the efficacy of Run:DMC in calculating the fields corresponding to systems

comprised of point-like sources exhibiting a multitude of behaviours can be summarised

as a partial success.

By analytically calculating exact expressions for these systems, it has been shown

that Run:DMC is capable of calculating massless contributions with relative accuracy

and seeming convergence to the analytic expressions in the limit to continuous spacetime.

As such, it is able to provide order of magnitude estimates with overall accurate shape,

albeit often with artefacts, but would be unsuitable for exact calculations in its current

state. Further, Run:DMC can calculate massive contributions to within an order of

magnitude of their true values for ω ≤ m, but the exact structure requires additional

work. From the results earlier discussed, one sees that the strengths of Run:DMC lie

in evaluating fields for which massive contributions are negligible, in particular those
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produced within spatially static systems.

With its strengths and weaknesses in mind, it can be argued that Run:DMC is a

suitable tool for calculating approximate field strengths of particles with small masses, in-

cluding those of ALPs, DLPs and HSPs. Additionally, the systems in which Run:DMC

excels are static, non-transient, and those in which the dominant contributions are mass-

less, i.e. the primary source and field co-propagate ultrarelativistically. As will later be

seen, this makes Run:DMC a suitable tool for investigating the proposed methods of

dark matter production in this thesis.

6.3 Queries of Methodology

With the capabilities and inner workings of Run:DMC covered, one may begin to query

a number of decisions made in the development of Run:DMC. This section addresses

all questions foreseen by the author.

Perhaps the most obvious question regards the foundation of the project: Why em-

ploy numerical analysis techniques for approximate outcomes instead of striving for exact

analytical results? The answer to this is simple: most real systems are not analytically

calculable. Of those that are not exactly computable, an approximation is considered

sufficiently close if it approaches the true value with increased computational resources,

as demonstrated by Run:DMC.

A clear follow-up question is then, Why would one create a new numerical analysis

code in lieu of implementing additional functionality to an existing simulation software,

such as EPOCH or MEEP? Consider the further development of an existing codebase;

any amendments made would be specific to, and tailored for, that software. As such,

should one wish to use or compare results with another simulation software they would

find themselves in need of designing, developing and testing the same functionality within

the context of a second codebase. In contrast, Run:DMC strives for versatility and

reusability, obeying the time-honoured maxim of avoiding the reinvention of the wheel. It

is capable of analysing the output of any simulation software, with the only requirement

for which being an appropriate data reader.

From this, a new question likely spawns: Why has Run:DMC been written using

integration over Green’s functions instead of utilising any other method of solving the

inhomogeneous Klein-Gordon equation? First and foremost, the method employed is
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theoretically capable of solving any linear partial differential equation (PDE) by refor-

mulating it in terms of integrals, with the resulting integral equation being an exact

solution to the governing PDE. Whereas methods that rely on approximations of deriva-

tives between adjacent grid points – such as finite difference – suffer from issues calcu-

lating boundary terms, the Green’s function methodology is impervious to this since it

is directly and exactly calculated between particular source and field points. Further

to this, in the limit of discrete to continuous spaces, i.e. with greater resolution, the

Green’s function method asymptotically approaches the true value. Because the value

for each source-field point pairing is calculated, the methodology is capable of handling

an arbitrary number of source and field points with the only cost being computational

resources. Furthermore, the field point locations can be extended beyond the simula-

tional domain, allowing for a wider use case than every other method which requires

their being contained within the domain.

A final foreseeable question is that of limitations: Under what circumstances can

Run:DMC not be trusted to correctly calculate the field? Since the methodology

utilised reformulates the PDE in terms of Green’s functions, an obvious restriction of

Run:DMC is the requirement for the governing PDE to be linear, otherwise Green’s

functions are inapplicable. Furthermore, the recruited Green’s function is that for free-

space, making the explicit assumption that the field is non-interacting with the sim-

ulation media – a just assumption when considering DMC fields but restrictive with

canonical Standard Model fields.

6.4 Future Development

In the interest of full disclosure, the shortcomings of Run:DMC, along with their

intended solutions, will be considered in this section. It is the author’s intent to address

the following points in coming years with potential collaborators.

6.4.1 Speed and Efficiency Improvements

Despite the code being developed with speed and efficiency in mind, there remain im-

provements yet to be implemented.

Further speed gains may be achieved by substituting the containers in which the

data is stored. Currently data is stored in a dictionary, which is constructed internally

as mutable hash tables which access data in amortised complexity O (1), i.e. constant
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regardless of data size. The dominant reasons for this choice of composite data type were

(a) familiarity and (b) the initial ease of writing. However, by establishing necessary

data fields, heretofore unknown, Run:DMC may be rewritten instead using immutable

structs, which also have access complexity O (1). Whilst on a cursory glance this rewrite

appears to be of little benefit, due to the nature of complexity calculations there are

additional hidden constants that render structs more efficient. Whereas dictionaries

require hashes to access intended data, structs are contiguous blocks of physical memory

that allow for different data variables to be accessed through a single pointer – a more

efficient process than hashing and searching for matches. Consequently, one can expect

marginal speed differences between the data structures, however on the scale of several

million data points being accessed multiple times, there would be measurable speed

increases.

On a final note, the author recognises possible (read highly likely) algorithmic short-

comings and corresponding changes to be made. For instance, there may be a more

efficient method of establishing contributing source points for each field point; if this

were the case then one could expect significant speed boosts following its implementa-

tion.

6.4.2 Additional Functionality

Beyond aspects of performance, Run:DMC would benefit from supplementary function-

ality which would enhance its capabilities as a numeric analysis tool for the calculation

of particle fields.

The first addition to be considered would be to allow the input of system parameters

via a secondary configuration file. This would meet the needs of a larger set of users

by alleviating the current necessity for user-added code to specify the appropriate data

reader, simulation variables to be read &c. In a similar vein, a desirable functionality

to be added to the particle input file would be the ability to specify a coupling/kinetic

mixing in terms of variables specified in the system input file – this could be achieved

by the evaluation of these expressions.

Currently Run:DMC has the ability to numerically calculate fields which obey the

Klein-Gordon equation, i.e. those of spin-0; this is clearly a subset of a much larger

set of potential applications. Consequently, an advantageous generalisation to the code

would be to include the ability to solve for an arbitrary spin. In all likelihood, the most
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general solution would be numerically inefficient, so the implementation would be to

code the additional Green’s function for other major relativistic wave equations, e.g.

Dirac (spin-1/2), Proca (spin-1), Rarita-Schwinger (spin-3/2) &c, only resorting to the

general solution if none of those are the use case. The benefit of this methodology is

that there would be no appreciable difference in runtime versus a tailored code since it

would be identical once the use case is established.

Some theoretical frameworks, such as Kaluza-Klein theory and string theory, rely

upon different dimensionality to the 3+1 found in Run:DMC. The existence of a second

configuration file for specifying system parameters, as suggested above, could contain a

flag denoting the number of dimensions, which would allow for the existence of additional

extents.

A further generalisation that could be made is the handling of particles of greater

rank (dimensionality/spacetime degrees of freedom) than scalar (rank-0). This could be

achieved by recursively adding to the structure of the particle until reaching the desired

dimensionality. Each component of the particle’s field may then be calculated iteratively,

with any sensible compiler optimising out this unnecessity for cases of scalar particles.

A limitation of Run:DMC comes in the shape of the language(s) used. The julia

programming language in which Run:DMC has been written was developed around

the philosophy that developers should have readily available interoperability with other

languages through the utilisation of shared libraries. This functionality has already been

employed inRun:DMC for the reading of data from the EPOCH simulation code which,

at the time of writing, lacks a native julia reader for the output data files. However,

a reader for the Python programming language exists, which has allowed the reading

of EPOCH outputs into julia for analysis. Despite its strengths, julia is a relatively

new programming language, thus currently lacks the wide adoption of more mature

mathematical programming languages such as FORTRAN and C/C++, hence finding

additional collaborators for further development may prove challenging.

6.4.3 Public Release

It is the author’s intent to further develop the Run:DMC code by addressing the

improvements and additional functionalities considered herein and ultimately releasing

it under a copyleft publishing licence, i.e. providing recipients the four fundamental

freedoms of software with the stipulation that they be reciprocal, namely [140]:
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Freedom 0 : The freedom to run the program as you wish, for any purpose;

Freedom 1 : The freedom to study how the program works, and change it so it does

your computing as you wish;

Freedom 2 : The freedom to redistribute copies so you can help others;

Freedom 3 : The freedom to distribute copies of your modified versions to others.
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Chapter 7

Results: ALPs and DLPs from

LWFA

“I’m being quoted to introduce something but I have

no idea what it is and I certainly don’t endorse it.”

— Randall Munroe, XKCD 1942

7.1 Recapitulation

This chapter considers the potential of magnetised laser-driven plasma wake field accel-

erators for the production of specific DMCs, namely axion-like particles and dilaton-like

particles, i.e. fields which couple to −E ·B and E2 −B2, respectively. The hypothesis

of this investigation is that these fields can be produced and are capable of escaping

the plasma. To this end, a scan of a select parameter space was conducted to ascertain

dependences that these DMCs may have on particular system variables.

7.2 Motivation

Axion-like particles are well-motivated hypothetical particles initially theorised to restore

charge-parity symmetry in quantum chromodynamics while dilatons are scalar fields

resulting from compactification of higher-dimensional theories. However, more recently

these hypothetical fields have been noted to exhibit similar properties as dark matter.

Despite over forty years of passive searches surveilling astrophysical sources such as

galactic halos and Sol, ALPs yet remain elusive. However, there has been a recent push

for purely laboratory-based ALP searches [141]. In recent years, several papers have

suggested the potential for laser-based systems to be utilised for the laboratory-based
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detection of ALPs [142–145]. The proposition addressed in this chapter concerns the

laboratory-based production of ALPs and dilatons, first theorised by David Burton and

Adam Noble in their 2018 publication [84].

In their paper, Burton and Noble analytically investigated the prospect for active

ALP production from a laser-driven plasma wake field accelerator subject to a strong

external magnetic field. Their calculations were restricted to one dimension, ensuring

that angular components are ignored, thus guaranteeing the magnetic and wake fields

may only be co- or anti-parallel, i.e. E·B = ±‖E‖ ‖B‖. Additionally, owing to the highly
non-linear nature of the bubble regime in plasma accelerators, Burton and Noble focussed

their considerations to the linear regime, however they were also able to infer ALP

field behaviours in the bubble regime through scaling laws. Their chosen representative

parameter values were: plasma frequency ωp = 2× 1013 rad s−1, Lorentz factor γ = 100,

magnetic field strength B = 35T, and coupling constant g = 0.88× 1010GeV−1.

Under the aforementioned considerations, Burton and Noble derived an analytic

expression governing the expected ALP energy flux density produced by a magnetised

laser-driven plasma-based accelerator. Using this expression, they concluded that the

produced flux density of ALPs of mass ma . 10−4 eV c−2 would be greater than solar

axions at terrestrial detectors1.

Whilst their paper provided a proof-of-concept and order-of-magnitude estimates,

Burton and Noble recognised the requirement for numeric analysis in more detailed

investigations. The advantages therein include additional behaviours, such as electron

interactions with the magnetic fields, as well as being able to extend the acceleration to

the non-linear regime.

Finally, a recent phenomenological paper explored the contributions to the axion

field from a laser-plasma interaction [146]. The team concluded that the dominant

contributions to ALP fields derive from the laser pulse, not the wake itself. Further,

they predicted that regardless of mass, the ALP field strength should grow linearly with

distance travelled through the plasma.

1It should be noted that these particles would be produced in high flux bursts instead of the constant
flux from the sun.
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7.3 Methodology

The methodology utilised herein employs the particle-in-cell code EPOCH to conduct

2D LWFA simulations in order to generate the electromagnetic fields to be used for

calculation [134]. An example input deck for the undertaking of EPOCH simulations can

be found in Appendix D. The results of these simulations were post-process numerically

analysed by Run:DMC in order to calculate the field strengths of ALPs and dilatons

at a multitude of masses corresponding with the generated electromagnetic fields. To

achieve this, the Python EPOCH file reader was utilised to bring the generated data

into memory in an appropriate form for Run:DMC to analyse. From the calculated

quantities, trends and dependencies were noted and explanations offered. The coupling

constant used was g = 0.88× 1010GeV−1, in line with Burton and Noble’s paper.

Readers may question whether the approach of post-processing the generated data

would miss important dynamics such as reactionary forces from field production. In

response to this, the author notes a recent paper by Mendonça et al. which further

investigated the prospect for magnetised plasmas to act as ALP sources [147]. In this

paper the authors formalised the conversion process between the magnetised wake field

and axions, in the process deriving an axion-plasmon coupling parameter which they

concluded to be sufficiently small that the presence of axions contributes negligibly to

plasma phenomena. Furthermore, they deduced that magnetised plasmas are able to act

as sources for ALPS, thus adding credence to the initial proposal as well as validating

the methodology presented in this thesis.

7.4 Parameter Value Selection

The proposed scheme of DMC production focusses on currently available experimental

equipment and their capacities, insofar as all utilised parameter values are currently

achievable somewhere globally, albeit not necessarily within the same facility. Tables 7.1

to 7.3 illustrate the parameter values or range of values over which will be of concern in

this chapter. These will be further discussed in following subsections.

7.4.1 Laser Parameters

The choice of laser parameter values could have been arbitrary, however it is useful to

set a baseline as an existing experimental facility. The foundational set of values for the

laser parameters have been taken from the Astra Gemini laser system, located at the
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Table 7.1: Table of laser parameter values.

Laser Parameter Value range

Wavelength, λL 800 nm
a0 3

Transverse spot size
λp

2 ∼ 16.7 µm

Pulse duration
tp
4 ∼ 27.8 fs

Profile Bi-Gaussian

Table 7.2: Table of plasma parameter values.

Plasma Parameter Value range

Total length 1mm
Ramp length 100 µm
Density, ne 1024m−3

Table 7.3: Table of magnet parameter value ranges over which
will be scanned.

Magnet Parameter Value range

Strength 0 to 1000 T
Angle from longitudinal 0 to π

2 rad

Central Laser Facility, Rutherford-Appleton Laboratory, United Kingdom [148]. This

500TW Ti:Sapphire laser is capable of delivering 800 nm light pulses with energies of

15 J and durations of 30 fs.

7.4.2 Plasma Parameters

In addition to those for the laser, the chosen plasma parameter values were decided upon

by those achievable and typically implemented experimentally.

7.4.2.1 Peak Density

As demonstrated in Section 3.1, the critical density of a plasma is given by

nc =
4π2ǫ0mec

2

e2
1

λ2L
.

Using this with the requirement that one wishes to maximise the wake excitation by

minimising absorption and reflection, one concludes an upper plasma density limit

of ne . 1.7× 1027m−3. This is commensurate with densities utilised in laser-driven

wake field acceleration experiments, for which the typical range is 1023 to 1027m−3 [149,

§11.2.2, p. 284]. However, due to the limitations of the laser pulse duration, the max-

imum plasma density for a pulse of duration
tp
4 , where tp = 2π

ωp
= 30 fs is the plasma

oscillation period, is approximately ne = 1024m−3.
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7.4.2.2 Density Distribution

The plasma density profile indicates the distribution of electron number density along a

specified direction. Theoretically these distributions can take forms that are physically

unrealisable, hence one must consider experimental limitations when defining the density

profile of the plasma.

Näıvely, one may assume the plasma taking a top-hat density profile, i.e. one in

which the plasma takes a constant density throughout its length and vacuum elsewhere,

however this results in an unrealistic spatial discontinuity in number density. Despite

this, experimentalists are able to produce quasi-top-hat density distributions of super-

sonic gas jets for plasma-based accelerators using de Laval nozzles [150,151]. The result

of this is a smooth transition to peak density from either end of the plasma, as shown

in Figure 7.1.

Figure 7.1: Typical plasma density profiles produced by a de
Laval gas nozzle along the direction of laser propagation [152].
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There is no canonical equation governing this family of distributions thus, without

loss of generality, one is able to consider a general distribution which meets a similar

profile. As such, the assumed plasma density profile will be piecewise linear, comprising

of an up-ramp, a flat peak and a down-ramp, asserting a vacuum (ne = 0) outside of the

plasma, i.e. mathematically formulated as

ne = npeak ×





∥∥∥ x−xstart
x1−xstart

∥∥∥ xstart ≤ x ≤ x1

1 x1 ≤ x ≤ x2

∥∥∥ xend−x
xend−x2

∥∥∥ x2 ≤ x ≤ xend

0 otherwise,

where xstart, x1, x2 and xend respectively denoted the plasma start, end of up ramp,

end of down ramp and end of plasma, which can be represented graphically as shown in

Figure 7.2.

ne

x

npeak

x1 x2xstart xend

Figure 7.2: Piecewise linear plasma density profile along the
direction of laser propagation.

Additionally, one must consider the length of the plasma channel. The dominant

consideration of plasma accelerators is over what distance one is capable of accelerating

electrons before they close in on the driving beam. This distance is known as the

dephasing length, which was given in Section 3.1.8 as

Ldph ≈ nc
ne
λp ∝ n

− 3
2

e .

For a representative parameter set of λL = 800 nm and ne = 1025m−3, one calculates

a dephasing length of Ldph ∼ 1mm, which is a typical plasma length for LWFA exper-

iments [153]. The density distribution generated by the PIC code EPOCH is shown in

Figure 7.3.
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Figure 7.3: Electron plasma density profile generated by
EPOCH.

7.4.3 High Magnetic Field

The magnetic field strength employed in simulations herein will range from 0T to 1000T.

One might initially consider 1000T to be unattainable in a laboratory setting, however

its feasibility is less distant than might be expected.

Sufficiently high fields have already been achieved in laboratories, albeit destruc-

tively. In 2018 a team from the University of Tokyo, Japan, used the technique of

electromagnetic flux-compression to produce a magnetic field of 1200T, which destroyed

their laboratory [154]. Aside, the current record for highest non-destructive field is held

by the National High Magnetic Field Laboratory in Florida, USA, for their achievement

of over 100T in 2012 [155].

One must also assess the necessary duration of the external magnetic field for the

application. According to the Appleton-Hartree equation [156, p. 23], the refractive in-

dex experienced by an electromagnetic wave propagating along the z-direction through a

cold collisionless magnetised plasma at a density of ne = 1024m−3 subjected to external

magnetic field B = 103T is η = 0.999. As such, the propagation duration over a dis-

tance ℓ = 10mm is t = ℓη
c ∼ 3.3 ps, which one concludes to be the minimum necessary

duration of the magnetic field for the proposed experiment. The relevance of this be-

comes apparent when considering a recent experimental technique of generating strong
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quasi-static magnetic fields via capacitative coils for short periods of time [157]. Fur-

thermore, proposed next-generation strong magnetic field production schemes indicate

that strengths of 104T should be achievable for durations on the order of nanoseconds

– a sufficient duration for the purpose of the schemes proposed herein [158,159].

In light of the above points, it should become clear that exposing a laser wake field

accelerator to a 1000T magnetic for its full duration is not far removed from the realms of

already achievable field strengths, and realistically attainable within the next generation.

7.5 Results

Several theoretically-derived features of ALP fields produced within magnetised laser

wakefield accelerators were investigated. The magnetic field in the simulated system

was directed along the direction of laser propagation with a strength of 1T.

7.5.1 Field Structure

Burton and Noble’s initial proposition of ALP production in magnetised LWFA consid-

ered the plasma wake as the source of the dark matter candidates. However, the more

recent paper from Huang et al. posited that the laser pulse bore the responsibility for

the majority of the particle production. Both of these propositions will be considered in

this subsection, which presents the ALP and DLP field structures within a laser-driven

plasma-based accelerator.

Figure 7.4 illustrates the electric field along the direction of propagation, which is

the dominant field in plasma-based accelerators, along with the corresponding fields for

ALPs and DLPs.

As can be seen in Figure 7.4, the peak ALP and DLP field values reside in the region of

the laser pulse, thus affirming Huang et al.’s conclusion that the dominant contributions

derive from the driving beam. The reason for this derives from the laser pulse providing

a stronger electric field than the wake itself, which also provides additional behaviours.

ALPs couple to −E·B, whereas the DLPs couple to E2−B2; consequently, the ALP field

amplitude is negative while the DLP is positive, with the laser strength also explaining

the vast interspecies difference in magnitudes between the field amplitudes. Further, the

wake also contributes to the DMC fields, validating Burton and Noble’s analysis.
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Figure 7.4: Top: Longitudinal electric field. Middle: ALP
field amplitude. Bottom: DLP field amplitude.

7.5.2 Quasistaticity

The energy flux density of a field Ψ, PΨ, is given by

PΨ = − (∂tΨ) (∇Ψ) .

The temporal expectation value of this quantity, 〈PΨ〉, is given by the normalised integral

over a period T , i.e.

〈PΨ〉 =
1

T

∫ T

0
PΨ dt.

However, because the results lie within a moving window, the coordinate system changes

every time slice, thus there would be no guarantee that the same coordinate lies within

consecutive times. As such, the nature of the results does not lend itself conducive to

being integrated over time. Instead, one is able to replace the temporal integral by a

spatial integral.

For an arbitrary 1D function f (x, t) the temporal expectation value 〈f〉 at a coordi-

nate x is given by

〈f〉 (x) = 1

t1 − t0

∫ t1

t0

f (x, t) dt,

while its spatial expectation value 〈〈f〉〉 at a time t is

〈〈f〉〉 (t) = 1

x1 (t)− x0 (t)

∫ x1(t)

x0(t)
f (x, t) dx.

Suppose instead that f depends solely on a single variable ζ = x− vt. Introducing f(ζ)

such that f (x, t) = f(ζ), it then follows that

〈f〉 (x) = −1

v

1

t1 − t0

∫ x−vt1

x−vt0

f(ζ) dζ
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and

〈〈f〉〉 (t) = 1

x1 (t)− x0 (t)

∫ x1(t)−vt

x0(t)−vt
f(ζ) dζ.

However, because x1 (t1)− x0 (t1) = −v (t1 − t0), then 〈f〉
(
x1 (t1)

)
= 〈〈f〉〉 (t1). Conse-

quently, by assuming that the field structure is static within the moving window (qua-

sistatic), i.e. a function of x − vwindowt, one calculates the spatial expectation value of

the moving window to be equivalent to that of the temporal.

In Burton and Noble’s paper, the authors assumed a quasistatic ALP field struc-

ture, writing “The ALP field is static in the wake frame”, however it was previously

unknown whether this was truly the case. In order to assess this assumption, 〈PΨ〉
and 〈〈PΨ〉〉 of the ALP field were calculated using PΨ = − (∂tΨ) (∇Ψ) and PΨ =

−
(
−vwindow

∂
∂xΨ

)
(∇Ψ), respectively; under the assertion of quasistaticity, one expects

the two flux densities to coalign. Figure 7.5 illustrates how these formulations compare

with one another.
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Figure 7.5: Comparison of temporal derivative,
〈PΨ〉 = 1

t1−t0

∫ t1
t0
f (x, t) dt, and spatial derivative,

〈〈PΨ〉〉 = 1
x1(t)−x0(t)

∫ x1(t)−vt
x0(t)−vt f(ζ) dζ, when calculating field

energy flux densities. Dashed vertical black line indicates end of
plasma; additional propagation length is 1mm.

From Figure 7.5 one sees that, to a reasonable approximation, the ALP and dilaton

field structures are quasistatic, albeit with the temporal derivative being approximately
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twice the magnitude as spatial derivatives. That being said, the 〈PΨ〉 suffers from regular

fluctuations – resulting in blocks of seemingly filled regions – as well as completely

nullified regions – diverging from local data trends. These behaviours are likely a result

of the aforementioned issues due to discretisation as well as the structure propagation

not being perfectly matched with the window speed. Consequently, one is able to replace

temporal integrals by appropriately scaled spatial integrals when calculating field energy

flux density expectation values, provided one only considers the actual values to be

approximate. An addition behaviour worthy of note is the rapid falloff in field strength

following the plasma; the reason for this is that in vacuo the electric field – and hence

ALP source – is negligible, thus the Klein-Gordon equation becomes homogeneous, i.e.

dispersive, and one accordingly expects ALP and DLP field strengths to diminish as the

inverse square of distance from the plasma exit.

7.5.3 Magnetic Field Direction

It has so far been demonstrated that the primary contributing factor toward the ALP

field derives from the laser pulse as well as one being able to assume quasistaticity in

the ALP field during propagation with reasonable confidence.

Burton and Noble assumed that the magnetic field could be either co- or antiparallel

to the direction of propagation by conducting their analysis in one spatial dimension.

However, this approach is extremely limited as it restricts all additional behaviours to

that one dimension, which may be physically unrealistic. For example, the Lorentz

force experienced by a plasma electron within an external magnetic field has orthogonal

components to the singular dimension available. As such, this subsection investigates

the dependence of DMC fields on the relative angles between the external magnetic field

and the direction of propagation.

The modelled plasma channel was chosen to be cylindrical such that, owing to the

symmetry of the system, it is sufficient to have only one relative angle between the

direction of propagation and the external magnetic field. The analysis conducted utilised

a B = 1T magnetic field and varied the relative angle at regular intervals over the range

θ =
[
π
2 , 0
]
, where θ = π

2 indicates the magnetic field being perpendicular to the direction

of propagation and θ = 0 indicates their being co-parallel. Figures 7.7 and 7.9 illustrate

the results of these analyses.

One sees from Figure 7.7 that when the external magnetic field is perpendicular to
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(a) ALP energy flux density at θ = π
2
.

(b) ALP energy flux density at θ = 3π
8
.
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(c) ALP energy flux density at θ = π
4
.

(d) ALP energy flux density at θ = π
8
.
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(e) ALP energy flux density at θ = 0.

Figure 7.6: Energy flux density of ALP field for a variety of
external magnetic field angles relative to the direction of
propagation. Dashed vertical lines indicate end of plasma.

Additional propagation length of 1mm.
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Figure 7.7: Peak energy flux density values of ALP field during
plasma propagation across a variety of external magnetic field

angles relative to the direction of propagation.
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(a) DLP energy flux density at θ = π
2
.

(b) DLP energy flux density at θ = 3π
8
.
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(c) DLP energy flux density at θ = π
4
.

(d) DLP energy flux density at θ = π
8
.
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(e) DLP energy flux density at θ = 0.

Figure 7.8: Energy flux density of DLP field for a variety of
magnetic field angles relative to the direction of propagation.

Dashed vertical lines indicate end of plasma. Additional
propagation length of 1mm.
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Figure 7.9: Peak energy flux density values of DLP field during
plasma propagation across a variety of external magnetic field

angles relative to the direction of propagation.
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the propagation direction, i.e. θ = π
2 , the ALP field does not undergo growth, instead

maintaining an approximately constant value. This is due to the transverse electric field

not co-propagating with the window, instead only providing transitory contributions.

Additionally, one finds that the rate of ALP field growth is greatest when the magnetic

field is co-parallel with the propagation direction, i.e. θ = 0. An interesting, but

unsurprising, result is that the DLP field appears to be independent of θ. DLPs, being

scalar fields, are invariant under parity transformations and so one expects this lack

of angular dependence. A particularly interesting observation is that, irrespective of

mass in the range considered, all ALP fields have equal energy flux densities, as do all

dilaton fields, thus the massive contributions to the solution are inconsequential. The

reason for this lies with the fact that massive contributions for these particles scale as

Ψm 6=0 ∝ mJ1 (m), thus with their relatively low masses, this term is negligible when

not near resonance, e.g. the Compton wavelength for ALPs of mass m = 10−3 eV is

λ ∼ 1mm, significantly larger than the current simulation. A further behaviour of

interest is the formation of regular peaks in field strength over time. Between the results

displayed here and later, one is able to see that the magnetic field does not affect the

frequency of these peaks, however, the frequency for DLPs is twice that as for ALPs.

Consequently, one can tentatively conclude that the peaks derive from the electric field,

where their regularity signifies a periodic electric structure, thus the author concludes

that the peaks are a result of the wake.

7.5.4 Magnetic Field Strength

It has so far been demonstrated that the optimal relative angle between the external

magnetic field and direction of propagation is θ = 0. This subsection presents investiga-

tions into the dependence of the ALP and DLP fields upon the strength of the magnetic

field. During these investigations the magnetic field strength was varied over the range

0 to 1000T with the value of the relative angle set to θ = 0. Figures 7.11 and 7.13

demonstrate the energy flux density of the DMC fields at a variety of magnetic field

strengths.

First and foremost, as earlier observed, the field energy flux densities are quasi-

independent of mass – a result unerred by significantly stronger magnetic fields. Addi-

tionally, from Figure 7.11 one is able to verify that the rate of growth of ALP fields is

approximately linear. The combination of these observations are in agreement with the

conclusions of Huang et al [146].
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(a) ALP energy flux density at ‖Bx‖ = 0T.

(b) ALP energy flux density at ‖Bx‖ = 1T.
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(c) ALP energy flux density at ‖Bx‖ = 10T.

(d) ALP energy flux density at ‖Bx‖ = 100T.
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(e) ALP energy flux density at ‖Bx‖ = 1000T.

Figure 7.10: Energy flux density of ALP field across a variety
of magnetic field strengths. Dashed vertical lines indicate end of

plasma. Additional propagation length of 1mm.
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Figure 7.11: Peak energy flux density values of DLP field
during plasma propagation across a variety of external magnetic

field angles relative to the direction of propagation.
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(a) DLP energy flux density at ‖Bx‖ = 0T.

(b) DLP energy flux density at ‖Bx‖ = 1T.
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(c) DLP energy flux density at ‖Bx‖ = 10T.

(d) DLP energy flux density at ‖Bx‖ = 100T.
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(e) DLP energy flux density at ‖Bx‖ = 1000T.

Figure 7.12: Energy flux density of DLP field across a variety
of magnetic field strengths. Dashed vertical lines indicate end of

plasma. Additional propagation length of 1mm.
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Figure 7.13: Energy flux density of DLP field for a variety of
magnetic field strengths. Dashed vertical lines indicate end of

plasma. Additional propagation length of 1mm.
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One is able to compare ALP field strengths across the range of magnetic field

strengths. Because the energy flux density PΨ is proportional to the field energy E,

which is itself proportional to the square of the field strength Ψ, which is proportional

to the magnetic field B, i.e. PΨ ∝ E ∝ Ψ2 ∝ B2, then one expects PΨ to increase

two orders of magnitude for every order of magnitude increase of ‖B‖ – a prediction of

Burton and Noble’s substantiated by Figure 7.11.

Considering now the DLP field energy flux densities shown in Figure 7.13, one notes

that, as with the results for the ALP fields, there is exceedingly little variation across

masses. Perhaps most notably, the field values change very little over the full range of

examined magnetic field strengths. This is a result deriving from the large electric fields

present in plasma-based accelerators, resulting in ‖E‖ ≫ ‖B‖; consequently, the DLP

energy flux densities are relatively unaffected.

7.6 Discussion

The post-process numeric analysis codeRun:DMC was applied to data generated by the

particle-in-cell plasma simulation code EPOCH in order to calculate the field strengths

of dark matter candidates, including axion-like particles and dilaton-like particles. The

results affirmed theoretically-predicted behaviours, as well as discovering previously un-

theorised trends.

The first noteworthy results of the analysis is the verification of Burton and Noble’s

assumption of quasistaticity, while identifying the dominant ALP and DLP source as

the laser pulse, in agreement with Huang et al. Further, it has been demonstrated that

the optimal angle for ALP field growth is when the external magnetic field is co-parallel

with the direction of laser propagation and that the rate of growth of the ALP field is

proportional to the square of the magnetic field strength. Unsurprisingly, being scalar,

the DLP field was unaffected by the relative angle between the external magnetic field

and propagation direction. Additionally, the DLP field does not benefit from the presence

of external magnetic fields and it is the author’s conjecture that external magnetic fields

instead hinder DLP production in LWFA.

Prior to drawing final and full conclusions regarding field strengths, additional work

is required. A shortcoming of the aforementioned results lies in the one-dimensionality of

the field calculated; because the field is a central lineout, off-central-axis field strengths
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could not be considered. Additionally, the energy flux density drop-offs following emer-

gence from the plasma remain inconclusive.

Whilst it has been shown that magnetised laser-driven plasma-based accelerators

can act as sources of ALPs and dilatons, it may not be the best source. For example,

laser-driven wake field accelerators are the shortest of plasma-based accelerator schemes,

however the ALP fields produced would benefit from increased length. Huang et al.

noted that there was a compromise in plasma accelerator length and sustainable rate of

ALP field growth; as such particle-driven wake field accelerators may surpass the final

ALP flux density at the end of the plasma vs LWFA. In contrast, there is no advantage

for dilatons of any mass to have this additional duration due to the field strengths

not developing in the same manner as ALPs. Instead, dilatons benefit from high electric

fields and low magnetic fields; as such the author’s recommendation for laboratory-based

dilaton production would be to utilise extremely short laser-driven plasma accelerators

with a train of laser pulses.
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Chapter 8

Results: Dark Photons and ALPs

from PBG Lattice

“Be thine own palace, or the world’s thy jail.”

— John Donne, To Sir Henry Wotton

8.1 Motivation

The premise of this project was the utilisation of photonic band gap lattices for the

confinement of electric fields generated within magnetic resonant cavities, potentially

allowing the production and detection of dark photons (HSPs) and axion-like particles.

This builds upon previous work by Rebecca Seviour, Ian Bailey, Nathan Woollett and

Peter Williams [160]. In their 2014 paper, the group investigated the capacity for a

spatially defective triangular dielectric lattice structure to localise the electric fields

situated within a microwave resonance cavity, as shown in Figure 8.1.

The team simulated the transmission of an electric field through a two-dimensional

multi-defect triangular lattice, where the dielectric structure was comprised of sapphire

rods with relative permittivity ǫr = 9. It was found that this arrangement is capable of

approximately confining the electric field photons to within several characteristic lattice

lengths. Through so doing, it was found that at a distance of ten lattice lengths from a

source, the electric field strength dropped by a factor of 107, effectively decoupling the

regions, as indicated in Figure 8.2.

As a consequence of this analysis, the authors were able to conclude that the electric

field at a sufficiently displaced region would be effectively negligible. As such, if one
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Figure 8.1: Electric field strength over distance in a triangular
lattice with source located in a central defect [160]. Red indicates

electric field strength in the negative z-direction, with blue
indicating the same field in the positive z-direction.

Figure 8.2: Normalised electric field strength as a function of
distance from source (x = 0), measured in lattice constants, a.

Vertical bars indicate dielectric rods responsible for the band gap
structure [160].
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were to measure an unexpectedly large electric field in one of these spatially separated

defect regions, one would infer the existence of a feebly-interacting intermediary particle.

Through kinetic mixing with the standard model photon, dark photons are a prime

candidate for such an experiment. However, the lattice may also be immersed in a

magnetic field in order to facilitate the generation of axion-like particles, which would

also be capable of traversing the dielectric media unhindered.

The proposed experimental setup is to create a photonic bandgap lattice comprised

of sapphire rods inside a microwave resonant cavity. Two defects would be introduced

to the system in sufficiently separated regions by removing rods from the lattice. The

entire system would then be immersed inside of a uniform magnetic field and an electric

field would be applied to one of the defects at a frequency which would be localised. A

straight wire cathode will be installed within the non-electrified defect in order to mea-

sure the electric field. If the observed electric field strength is greater than expected then

one would infer the existence of intermediary electromagnetically-interacting particles,

namely ALPs and HSPs.

8.2 Methodology

As with Chapter 7, the methodology for this project involved conducting simulations of

an existing experimental system and performing post-process analysis of the output. The

chosen experiment for analysis was the CERN Resonant WISP Search (CROWS) and

the simulation code utilised herein was the MIT Electromagnetic Equation Propagator

(MEEP) [161]. Following the generation of the electromagnetic fields, Run:DMC was

used to calculate the field strengths of ALPs and HSPs.

8.2.1 The MEEP Code

MEEP is a software package for simulating the time-evolution of electromagnetic ra-

diation via Maxwell’s equations. It utilises a finite-difference algorithm (outlined in

Section 5.1) in the time-domain on a uniformly spaced grid in space and time. It uses

normalised units to facilitate scale-invariant calculations and supports the inclusion of

nearly arbitrary materials and a variety of boundary conditions.
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8.2.2 MEEP Units

Whilst MEEP benefits from scale-invariance by using dimensionless quantities, its appli-

cation in relation to Run:DMC’s numeric analysis is problematic. Run:DMC utilises

SI units, thus when calculating fields in the context of a proposed experimental under-

taking, the MEEP output data requires scaling by appropriate factors prior to analysis.

To this end, there are four degrees of freedom between the two systems: length [ℓ], time

[t], current [I] and mass [m], which may all be calibrated through choices of values for

physical parameters.

The simplest degree of freedom is that of the length scale, which in the context of

a lattice is canonically denoted a. As such, one defines the length scale by defining the

lattice constant as

[ℓ] = a. (8.1)

Through dimensional analysis, one sees that units of time are equivalent to those of

a length-to-speed ratio. Consequently, by defining a characteristic physically significant

constant speed, e.g. the speed of light through a medium c, one is able to use the length

scale to define the time scale as

[t] =
a

c
. (8.2)

Noting that the speed of light is given by c = 1√
µǫ , where µ and ǫ are respectively

the permeability and permittivity of the medium, then one need only define one of µ or

ǫ as the other is forced to take a value such that c takes the earlier defined value. As

the system being considered in this chapter focusses on phenomena relating to electric

fields, the defined parameter was chosen to be the permittivity ǫ, which has units

[ǫ] =
t4I2

mℓ3
,

where I is current and m is mass. Substituting Equations (8.1) and (8.2) into this

permittivity dimension equation one then obtains a current-mass ratio of

[
I

m

]
=
ǫc4

a
. (8.3)

Equation (8.3) is a linear equation with two unknown variables, thus leaving a single

degree of freedom. One may hence make an arbitrary choice of definition

[I] = I0 (8.4)
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such that one derives the mass definition

[m] =
I20a

ǫc4
. (8.5)

Consequently, using Equations (8.2), (8.4) and (8.5) with the permittivity, one is

able to translate from MEEP units to an arbitrary unit system through the definitions

of a set of four fundamental quantities: a, c, ǫ and I0.

8.2.3 Scalar Representation of Vector Bosons

The addition of a dark sector U (1) symmetry to the standard model introduces a new

mediating gauge boson, the dark photon. As a gauge boson, the dark photon is a vector

boson and hence is theorised to have multi-dimensional components, viz. x, y and z. In

its current state of development, Run:DMC is only capable of handling scalar fields,

thus the simulated electric field was restricted to the z-direction, i.e. E = (0, 0, Ez),

through which one is able to treat the dark photon as a scalar boson, thus facilitating

the calculation.

8.2.4 ALP Production

The localisation of electric field within a photonic band gap lattice not only aids in the

detection of dark photons via kinetic mixing, but can also serve as a means of detecting

axion-like particles. By applying a constant and uniform background magnetic field to

the cavity, it is possible for ALPs to be produced within a electromagnetised PBG lattice

defect and detected in another, sufficiently separated, region. Because the DMCs are

known a priori to have weak coupling to ordinary matter fields, the addition of this

background magnetic field will not significantly affect the DMC dynamics.

8.2.5 Previous Investigations

Previous explorations into this proposed experimental scheme involved the simulation

of electric field propagation throughout a lattice of dielectric rods [160]. The authors

quantified the expected electric field strength at some detector region due to a source

through a definition of the so-called geometric factor of the lattice. Through this they

were able to estimate the relative electric field strength at a spatially separated region

from the source.
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Additionally, in his PhD thesis, Michael Betz outlined an equation to be calculated

for a DMC field Ψ at a point x due to a source ̺ at point x′ as effectively

Ψ (t,x) =

∫

Ω
d3x′ e

−ik‖x−x′‖
4π ‖x− x′‖̺

(
t,x′) (8.6)

where Ω denotes the support of the source and k =
√
ω2 −m2

Ψ is the wavenumber

associated with a DMC of mass mΨ oscillating at a frequency ω [162]. The source term

for ALPs is ̺ = −gaγγE · B, whereas for HSPs ̺ = χm2
γ′Ez, from Equation (2.6).

One may note that Equation (8.6) is the Fourier transform of Equation (2.4), thus is a

limited use case of its Run:DMC counterpart in that it assumes a harmonic behaviour,

i.e. the DMC oscillates sinusoidally in time at a single frequency. Consequently, when

Run:DMC calculates the production of DMCs at each step in time, it is evaluating the

above equation with additional details which were previously excluded.

8.3 CROWS

CROWS was an experiment probing the existence of sub-eV weakly-interacting slim

particles (WISPs), the primary focus of which are axion-like particles and dark photons.

The experiment involves the utilisation of a microwave cavity with LSW methodology

in an effort to infer the existence of these hypothetical particles. The inner dimensions

of the CROWS microwave cavity are illustrated in Figure 8.3.

CROWS ran at a frequency of several GHz within a 3T superconducting magnet.

Contrary to the proposed experiment, CROWS did not utilise a PBG lattice, instead

utilising a second cavity – running in synchronicity to the generating cavity – for de-

tection, using external electromagnetic shielding as the walls through which light may

shine. However, the system under investigation proposes a single cavity which houses a

PBG lattice, into which an electric field is applied.

8.4 Results

The same input file used in the generation of the system shown in Figures 8.1 and 8.2 was

used to perform the MEEP simulation for this project. This MEEP simulation produces

multiple HDF5 data files containing grid coordinates and field data. These data were

read by Run:DMC into an appropriate format and used to calculate the corresponding

DMC fields.
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8.4 Results

Figure 8.3: Inner dimensions of CROWS microwave cavity
(mm). Image adapted from Reference [163].

8.4.1 Unit Scaling

As earlier noted, the definitions of four system constants to MEEP’s dimensionless pa-

rameters bring them into physically meaningful quantities. Since Run:DMC is written

using SI units and the system of concern for this chapter has relative permittivity of uni-

tary order, the following definitions were made in the reading of simulation data output

from MEEP:

c = 299 792 458m s−1 (8.7)

ǫ = 8.854 187× 10−12 Fm−1

I0 = 1A,

leaving the lattice spacing a yet unconstrained. As this length scale is a free parameter,

it was chosen in such a manner as to localise photons of a given frequency using the

dimensional quantities of the CROWS cavity shown in Figure 8.3.

Assuming the interior medium of the cavity to have permittivity and permeability of

order those for free space, then by using Equation (4.29) with the cavity dimensions, one

derives the available range of angular frequencies in the TM010 mode as being between

5× 109 rad s−1 and 9× 109 rad s−1. Since a = c
f = 2πc

ω , one obtains a range of length

scales of 33mm to 50mm. Choosing the lower bound of these with the set of parameters
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8.4 Results

in Equation (8.7), then by renormalisation one obtains a maximum simulation electric

field value of approximately 7MVm−1, which is readily achievable with modern mi-

crowave cavities. Additionally, the rods were calculated to be of radius 6.6mm, within

the capabilities of modern sapphire fabrication methods [164].

8.4.2 Free Parameters

The DMC masses of interest in this microwave cavity experiment are 10−4.5 to

10−3.5 eV c−2 [160]. Consequently, the dark photon and ALP masses for which the fields

were calculated spanned this range in half-integer orders of magnitude.

As earlier mentioned, a constant and uniform background magnetic field is necessary

for the production of ALPs. This was chosen to be ‖B‖ = 1T as this is currently readily

achievable in many experimental facilities globally. Assuming that the external magnetic

field permeates the entire cavity shown in Figure 8.3, the required magnetised volume

is approximately 1550 cm3.

8.4.3 Results: DMC Field Structure

Arguably the most important aspect of dark matter candidate production in static sys-

tems is the manner in which the respective fields are spatially distributed. Figure 8.4

indicates the spatial distribution of m = 10−3.5 eV ALP fields across a number of time

steps while Figure 8.5 indicates the distribution of m = 10−3.5 eV dark photon fields

across the same time steps.

One observes from Figures 8.4 and 8.5 that the fields for both ALPs and HSPs are

distributed radially with a central region of high intensity. Furthermore, the DMC fields

can be seen to oscillate in conjunction with the electric field. Additionally, as will be

demonstrated shortly, the fields follow the same trends across the mass spectrum, albeit

at different magnitudes. Finally, one is able to note that the magnitudes of the ALP

and HSP for equal masses are equal; this is a result of the electric and magnetic fields

being limited to one dimension, i.e. ΨHSP ∼ ‖E‖ = ‖Ez‖ and ΨALP ∼ E · B = EzBz,

consequently because Bz = 1T then ΨHSP ∼ ΨALP, excluding scaling factors such as

particle masses and coupling constants.
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Figure 8.4: Axion-like particle fields of mass m = 10−3.5 eV at
different time steps in photonic bandgap lattice.
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Figure 8.5: Dark photon fields of mass m = 10−3.5 eV at
different time steps in photonic bandgap lattice.
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8.4 Results

8.4.4 Results: Mass Spectrum Variations

As earlier mentioned, the distributions of the dark matter candidate fields are approxi-

mately the same across the mass spectra of interest. Whilst the analyses were conducted

in two dimensions, these surface plots do not lend themselves useful to comparing mul-

tiple datasets. Instead, one-dimensional profile across the central axis provide clearer

comparisons across mass spectra. Figure 8.6 demonstrates the field strengths across

mass for ALPs while Figure 8.6 indicates those for HSPs.
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Figure 8.6: Central lineout of axion-like particle fields at
different time steps in photonic bandgap lattice.

156



8.4 Results

−4 −2 0 2 4

Longitudinal [m] ×10−3

0.0

0.5

1.0

1.5

2.0

F
ie
ld

st
re
n
gt
h
[a
rb
.
u
n
it
s]

×10−3

m=1e-3.5

m=1e-4

m=1e-4.5

(a) t = 0.00 ps

−4 −2 0 2 4

Longitudinal [m] ×10−3

−1.5

−1.0

−0.5

0.0

0.5

F
ie
ld

st
re
n
gt
h
[a
rb
.
u
n
it
s]

×10−3

m=1e-3.5

m=1e-4

m=1e-4.5

(b) t = 275 ps

First and foremost, Figures 8.6 and 8.7 more clearly demonstrate the agreement

between ALP and HSP fields when the magnetic field is unitary. This is an expected

result Additionally, one sees that field behaviours are similar across the mass spectrum,

albeit at different scales. The more massive fields exhibit more uniform distributions

than those of lower mass fields.

8.4.5 Results: Field Saturation

The production of progressively stronger dark matter fields cannot continue ad infinitum.

The taking of the limit of time to infinity from Equation (2.4) shows that a theoretical

field strength plateau is inevitable. As such, it is of interest to investigate how rapidly
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Figure 8.7: Central lineout of dark photon fields at different
time steps in photonic bandgap lattice.
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8.5 Further Work

the fields reach saturation. This is readily calculable in microwave cavity simulations

owing to the static nature of the setup; for this reason it was not possible in the earlier

LWFA analysis.

To evaluate the field saturation, Run:DMC was used to conduct numeric analysis

following an initial period in which the electric field propagated throughout the lattice.

The time evolution of the DMC field strength at a distance of ten lattice spacings from

the electromagnetic source was then calculated. Due to technical limitations, it was not

possible to obtain results at regular enough intervals to infer smooth trends, thus would

require additional work before being used in application for experimental undertaking.

With that noted, it was found that that all fields evolve in approximately the same

manner, with oscillations occurring at a rate which scales weakly with their masses,

i.e. smaller masses have a greater number of oscillations per unit time. Additionally,

the investigation established that the fields saturated rapidly as no further growth was

demonstrated. Consequently, one need only operate the microwave cavity for short

durations in order to maximise the DMC fields prior to observation.

8.5 Further Work

Despite the success in calculating the DMC fields, there yet remains improvements to

be made and further analyses to conduct.

The Green’s function utilised by Run:DMC assumes a free space solution, devoid

of interactions with ordinary matter. However, it has previously been shown that ALPs

are produced at the interface between substances with significantly disparate dielectric

properties, such as those found in this investigation [165]. As such, one would expect

marginally greater quantites of ALPs. This behaviour is unlikely to be implemented

into Run:DMC in the near future, and further investigations would benefit from this

phenomenon being implemented in the simulation code itself.
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Chapter 9

Conclusion

“No one can be a great thinker who does not

recognise, that as a thinker it is his first duty to

follow his intellect to whatever conclusions it may

lead.”
— John Stuart Mill, On Liberty

9.1 Overview

The purpose of this doctoral programme was the further exploration of two recently

proposed experimental schemes of laboratory-based production and detection of dark

matter candidates. Both approaches utilise electromagnetic radiation for production

and light-shining-through-wall methodology for detection. These investigations have

culminated in the development of a numeric analysis code, Run:DMC, the algorithmic

components of which have been presented in this thesis.

The first proposed experimental scheme utilises a laser wake field accelerator situated

within a powerful external magnetic field. Owing to their couplings to these electromag-

netic fields, it was previously theorised that this arrangement would be ideal for the

production of axion-like and dilaton-like particles. These particles were predicted to be

produced with momentum co-parallel with the accelerator, thus allowing them to propa-

gate after the plasma. Due to their weak couplings with ordinary matter, these axion-like

particles and dilaton-like particles may then traverse an absorber medium, whereupon

they may be stimulated to decay into detectable photons through the reverse Primakoff

effect.

The second scheme proposed the usage of a microwave resonant cavity in applying
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9.2 Axion-like particles and dilaton-like particles from laser wake field acceleration

a localised electric field within a defect of a photonic band gap lattice. This dielectric

lattice serves to approximately confine photons to a lattice defect, making detection of

supernumerary electric fields at displacements of several characteristics lattice lengths

indicative of dark photon intermediaries.

9.2 Axion-like particles and dilaton-like particles from

laser wake field acceleration

Previous theoretical analysis had involved 1D analytic calculations of a laser wake field

accelerator subjected to a strong external magnetic field. The results of this found that

ALPs could be produced with energy flux densities comparable to those reaching Earth

from the Sun, with greater values achievable for masses ma . 104 eV c−2, albeit only for

the duration of the burst.

The further exploration of this scheme involved the simulation of a laser-driven

plasma accelerator using the PIC code EPOCH and subsequent analysis usingRun:DMC.

The representative parameter values used were taken from existing facilities, including

the Astra Gemini laser at the Central Laser Facility in Rutherford Appleton Labora-

tory. The parameters under consideration for these investigations were the magnetic

field strength as well as the angle between the magnetic and wake fields.

The first noteworthy result of this investigation was the definitive exclusion of ALPs

being produced in unmagnetised laser-driven plasmas. Whilst this outcome likely further

extends to general unmagnetised plasmas, the author wishes to avoid making overgen-

eralisations. Additionally, it was found that the ALP field resulting from a magnetised

plasma is proportional to the external magnetic field strength to which it is subjected.

This is in line with theoretical expectations as the axionic minimal-coupling to electro-

magnetic fields is linear in both.

The second line of enquiry in this project investigated the dependence of the ALP

fields upon the angle of the magnetic field relative to the wake. It was found that the

field growth is maximal when the magnetic field is co-parallel with the direction of laser

propagation in the plasma channel, in line with assumptions made in previous works.

Whilst this was not unexpected, confirmation of such is an important milestone in the

possible development of a laboratory-based search for these dark matter candidates.

Additionally, it was uncertain how ALP fields would behave at non-co-parallel angles.
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9.3 Axion-like particles and dark photons from photonic band gap lattices

The earlier presented results indicate that non-longitudinal components are capable of

producing ALP fields, however the field growth rate is severely limited when considering

orthogonal fields.

9.3 Axion-like particles and dark photons from photonic

band gap lattices

Previous works on this proposition have involved the simulation of the propagation of an

electric field within a photonic band gap lattice. The conclusions of this work were that

it was possible to effectively localise electric fields to regions of lattice defects. It was

hypothesised that this localisation could be used to detect dark photons and axion-like

particles via light-shining-through-wall methodology.

The analysis presented herein concluded that it is possible to produce dark matter

candidate fields within a microwave cavity resonator. During initialisation these fields

oscillate with the electric field source, however it was also possible to calculate the field

saturation strength.

9.4 Final Thoughts and Further Development

The two experimental schemes investigated throughout this PhD programme proved

theoretically promising as candidates for laboratory-based dark matter production. The

results presented herein support earlier hypotheses as well as elucidating upon well-

reasoned assumptions. Additionally, the same methodologies may also prove useful in the

development of low energy particle physics, an area of research relatively untouched by

particle accelerators. On a final note, the author draws readers’ attentions to Chapter 6,

in which it was found that resolution and numeric error almost always served to calculate

values as being smaller than theoretical prediction. As such, the values presented in this

thesis pertaining to dark matter fields should be taken to be smaller than those that

be would physically manifest during experimental operation, albeit to within reasonable

agreement.

As mentioned in Chapter 6, the author intends to publish Run:DMC as a free and

open source software under a copyleft licence. Prior to public release, there are adjust-

ments and additions to be made to the codebase. Such additions include the capacity

to parallelise analyses across multiple nodes, which will likely be achieved through the
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9.4 Final Thoughts and Further Development

inclusion of MPI (Message Passing Interface). This addition would allow the utilisation

of greater computational resources within a given runtime, which would in turn pro-

vide more accurate results. Additionally, the author intends to generalise the means by

which one uses Run:DMC to calculate fields corresponding with input data. Through

so doing, it is the author’s goal to provide users the capability of also calculating directly

observable fields resulting from DMC decay, e.g. a→ γγ.

Further works on the projects investigated through this thesis are possible. A rigorous

quantum field theory treatment of dark matter candidate production would provide more

accurate theoretical predictions of an idealised system to which simulations could be

compared; this would not be limited to either experimental proposal. Additionally, one

may wish to investigate related experimental schemes such as particle-driven plasma

wake field acceleration, which offer significantly longer acceleration lengths and hence

longer durations of dark matter field growth.

It is the author’s hope that as a result of the research presented within this thesis the

wider scientific community is encouraged to further pursue investigations into methods

of laboratory-based dark matter production and detection.
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Appendix A

Dirac and Kronecker Deltas

Whereas Dirac deltas are used in continuous systems, its discrete counterpart, the Kro-

necker delta, is required for numeric calculations. One must thus be able to interchange

them in order to translate between continuous analytic expressions and discrete numeric

calculations.

The Dirac delta δ (x) is a distribution which is mathematically defined on a topolog-

ical space X as satisfying

∫

X
f (x) δ (x− y) dx =





f (y) y ∈ X

0 y /∈ X.

(A.1)

Conversely, the Kronecker delta δij is a function which takes the value 1 when its

indices are equal and 0 when they are not, i.e.

∑

xi∈X
f (xi) δij =





f
(
xj
)

xj ∈ X

0 xj /∈ X.

(A.2)

Consequently, the Kronecker delta acts similarly to the Dirac delta, in that when multi-

plied by a test function and integrated over, the result is the test function at a specific

point. However, translating between them is not a simple matter of notation.

Heuristically, the following relations hold:

Directly substituting components for their discrete counterparts, Equation (A.1)

reads

∑

xi∈X
f (xi) δ

(
xi − xj

)
∆xi =





f
(
xj
)

xj ∈ X

0 xj /∈ X.
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Appendix A Dirac and Kronecker Deltas

Continuous Discrete

Coordinates x 7→ xi
y 7→ xj

Element dx 7→ ∆xi
Domain

∫
X 7→ ∑

xi∈X

However, in order for this to exactly duplicate Equation (A.2), one thus derives the

relation between the Dirac and Kronecker deltas to be

δ
(
xi − xj

)
=

δij
∆xi

.

Additional support is lent to this relationship when performing dimensional analysis

on the two deltas;

[
δij
]
= 1

[
δ (x− y)

]
= x−1,

as well as the limit to continuum:

lim
∆xi→0

δij
∆xi

=





∞ xi = xj

0 otherwise





= δ
(
xi − xj

)
= δ (x− y)
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Appendix B

Justifying ∂µA
µ
= 0 in the Proca

Equation

Consider the Lagrangian of a massive vector boson given by

L = −1

4
FµνF

µν +
1

2
m2AνA

ν −Aνj
ν , (B.1)

where Aν is the electromagnetic four-potential and Fµν is the electromagnetic field tensor

which is defined by Fµν := ∂µAν − ∂νAµ. The Euler-Lagrange equation of motion of

this is

�Aν − ∂ν
(
∂µA

µ
)
+m2Aν = jν ,

which is the eponymous Proca equation. It can be seen that this cancels down to the

inhomogeneous Klein-Gordon equation if ∂µA
µ = 0, which is the generalised Lorenz

gauge condition. It is in justifying this condition that motivates this appendix.

Consider the Maxwellian action on a manifold M :

S [A] =

∫

M
−1

4
FµνF

µν − jµA
µ d4x. (B.2)

For the action to be considered gauge invariant, it must not change under a gauge

transformation Aµ 7→ A′µ = Aµ + ∂µf , where f is an arbitrary function, i.e. S [A]
!
=

S
[
A′]. Since ∂µ and ∂ν act upon the same coordinate system, the electromagnetic

tensor terms can be shown to be gauge invariant:

F ′µν = ∂µA′ν − ∂νA′µ

= ∂µAν − ∂νAµ + ∂µ∂νf − ∂ν∂µf︸ ︷︷ ︸
cancel

≡ Fµν .
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Appendix B Justifying ∂µA
µ = 0 in the Proca Equation

By expanding the second term of the integrand in Equation (B.2) following gauge

transformation, one sees that the action is gauge invariant up to a term, i.e. S
[
A′] =

S [A] + δS, where

δS = −
∫

M
jµ∂

µf d4x.

By Stokes’ theorem;

∫

M
jµ∂

µf d4x =

∫

∂M
n̂µjµf dS −

∫

M
∂µjµf d

4x,

where ∂M denotes the boundary beyond which the action variation integrand takes a

value of zero and n̂µ is the four-vector of unit norms for the boundary. Assuming that

δS has compact support, i.e. is bounded and has closure, then by definition the surface

terms are zero and hence

δS =

∫

M
∂µjµf d

4x
!
= 0.

For this to hold for all functions f , one deduces that ∂µjµ = 0. This is a sensible con-

clusion since it takes a physical interpretation of conserving four-current on a universal

scale.

Taking the derivative ∂ν of Equation (B.1) and cancelling the first two terms, one is

left with

m2∂νA
ν = ∂νj

ν .

Therefore, by building a theory in which four-current is universally conserved, as found

in Maxwell’s equations, then when m 6= 0 one derives

∂νA
ν = 0,

which may be called a generalised Lorenz gauge condition. Consequently, the Proca

equation becomes

�Aν +m2Aν = jν ,

i.e. in theories that conserve four-current the Proca equation is equivalent to four simul-

taneous Klein-Gordon equations.
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Appendix C

Solving the Driven Simple

Harmonic Oscillator Equation

The equation for a driven undamped simple harmonic oscillator is written

ü+ ω2u = f,

where u = u (t) is the solution, ω is the angular frequency and f = f (t) is the source.

Since the left side of this equation can be written as a linear operator acting on the

solution, one sees that it is possible to obtain the solution using the method of Green’s

functions, i.e.

u (t) =

∫
G
(
t, t′
)
f
(
t′
)
dt′ (C.1)

for a Green’s function G which satisfies

[
∂2t + ω2

]
G
(
t, t′
)
= δ

(
t− t′

)
. (C.2)

Since G
(
t, t′
)
is defined across the entire domain of t ∈ (−∞,∞), it may be written

as the sum of contributions over separate subdomains;

G
(
t, t′
)
= Θ

(
t− t′

)
G>

(
t, t′
)
+Θ

(
t′ − t

)
G<

(
t, t′
)
+ δ

(
t− t′

)
G=

(
t, t′
)
, (C.3)

where the subscript (in)equalities indicate the relations of t to t′, i.e. G> is the value

that G takes for t > t′. In this form, it becomes apparent that G undergoes simple

harmonic motion on either side of the delta, i.e.
[
∂2t + ω2

]
G≷
(
t, t′
)
= 0, the general

solution to which is G≷
(
t, t′
)
= a≷

(
t′
)
sin (ωt) + b≷

(
t′
)
cos (ωt). For notational brevity,

henceforth in this appendix the argumental parentheses will be dropped, unless their

inclusions improve clarity.
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Choosing a smooth test function with compact support g (t), then
∫ ∞

−∞
gG̈ dt =

∫ ∞

−∞
g̈G dt

with additional boundary terms which disappear by construction. Consequently, multi-

plying Equation (C.2) by the test function and integrating over all t gives
∫ ∞

−∞

(
g̈ + ω2g

)
G dt = g

(
t′
)
, (C.4)

thus by substituting Equation (C.3) into Equation (C.4) one receives
∫ ∞

t′

(
g̈ + ω2g

)
G> dt+

∫ t′

−∞

(
g̈ + ω2g

)
G< dt+

(
g̈ + ω2g

)
G=

∣∣∣∣
t=t′

= g
(
t′
)
.

Evaluating the above integrals by parts, using the earlier noted fact of simple harmonic

motion in G≷, and discarding terms within the limits t → ±∞ owing to g’s compact

support, then Equation (C.4) becomes

−ġ (G> −G<)
∣∣
t=t′

− g∂t (G> −G<)
∣∣
t=t′

+
(
g̈ + ω2g

)
G=

∣∣∣∣
t=t′

= g
(
t′
)
.

Since g is an arbitrary smooth function, the above must hold ∀g. Furthermore,

whatever value t′ takes, there is always a function that can meet any set of values at

each derivative. Therefore, each order of derivative can be treated as being linearly

independent, hence by equating coefficients of g̈ one obtains that G= = 0 ∀g, leaving ġ
and g to give a set of two junction conditions;





(G> −G<)
∣∣
t=t′

= 0,

∂t (G> −G<)
∣∣
t=t′

= 1,

the first of which indicates continuity of G across the delta.

Imposing the condition that the solution is zero prior to any non-zero source, i.e.

u (t) = 0 if f
(
t′
)
= 0 ∀t < t′, then G<

(
t, t′
)
= 0 and hence a< = b< = 0 since sin (ωt)

and cos (ωt) are linearly independent. This gives a new set of junction conditions with

two underlying unknowns, a> and b>;





G>|t=t′ = 0,

∂tG>|t=t′ = 1.

(C.6a)

(C.6b)

Substituting the general simple harmonic solution into Equations (C.6a) and (C.6b)

gives a system of linear equations which can be written



sin
(
ωt′
)

cos
(
ωt′
)

ω cos
(
ωt′
)

−ω sin
(
ωt′
)






a>
(
t′
)

b>
(
t′
)


 =



0

1


 .
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Inverting the preceding matrix gives the parameters as



a>
(
t′
)

b>
(
t′
)


 =

1

ω




cos
(
ωt′
)

− sin
(
ωt′
)


 ,

thus by substitution into the solution for G>, one obtains

G>

(
t, t′
)
=

1

ω
sin
(
ω
(
t− t′

))
,

where the trigonometric identity sin (α± β) = sin (α) cos (β) ± cos (α) sin (β) has been

used to eliminate cosine terms. Finally, the solution u from Equation (C.1) is calculated

to be

u (t) =

∫ ∞

−∞
G
(
t, t′
)
f
(
t′
)
dt′

=

∫ t

−∞

1

ω
sin
(
ω
(
t− t′

))
f
(
t′
)
dt′.
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EPOCH Input Deck

The following is the EPOCH input deck used for simulating a plasma of peak density

1× 1024m−3, length 1mm, up- and down-ramp lengths 100 µm which is driven by a

bi-Gaussian 800 nm laser pulse with a0 = 3. For readability, long lines have been auto-

matically broken at text width, however they are not split within the input deck itself.

begin:constant

# General constants

amu = 1836.15 # atomic mass units [electron masses]

# Plasma parameters

dens = 1e24 # [m^-3]

plasma_length = 0.001

ramp_length = 0.0001

plasma_start = 0.0

plasma_end = plasma_start + plasma_length

plasma1 = plasma_start + ramp_length # end of up -ramp

plasma2 = plasma_end - ramp_length # beginning of

down -ramp

plasma_density3 = if((x gt plasma2) and (x lt plasma_end

), dens * abs((plasma_end -x)/(plasma_end -plasma2)),

0.0)

plasma_density2 = if((x gt plasma1) and (x lt plasma2),

dens , plasma_density3)
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plasma_density = if((x gt plasma_start) and (x lt

plasma1), dens * abs((x - plasma_start)/( plasma1 -

plasma_start)), plasma_density2)

omega_p = sqrt((dens * qe^2) / (me * epsilon0))

lambda_p = 2*pi*c / omega_p

period_p = 2*pi / omega_p

# Laser parameters

wavelength = 800 * nano # [m]

a0 = 3

intens = 1.368e6 * (a0/wavelength)^2

laser_omega = 2.0*pi*c/wavelength

laser_vg = c * sqrt(1-( omega_p/laser_omega)^2)

duration = period_p / 4

# duration is FWHM , need to choose a time for the

profile to peak at.

# If centre the gaussian at t = 0, then you miss the

rising ramp.

laser_t_peak = 1.5* duration

x_length = 3* lambda_p # full length (x-direction)

yh = 40* micron # half width (y-direction)

delta_x = wavelength /20

delta_y = delta_x*pi*exp (1)

end:constant

begin:control

# Global number of gridpoints

nx = nint(x_length/delta_x)

ny = nint (2*yh/delta_y)

# Simulation duration [s]
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t_end = 2 * plasma_length / c

# Size of domain (window) [m]

x_min = 0

x_max = x_length

y_min = -yh

y_max = yh

dlb_threshold = 0.6

stdout_frequency = 100

smooth_currents = T

maxwell_solver = cowan

end:control

begin:boundaries

bc_x_min = simple_laser

bc_x_max = simple_outflow

bc_y_min = simple_outflow

bc_y_max = simple_outflow

end:boundaries

begin:laser

boundary = x_min

intensity_w_cm2 = intens

lambda = wavelength

# Laser profiles

t_profile = gauss(time , laser_t_peak , duration)

profile = gauss(y, 0, 0.5* lambda_p)

end:laser

begin:fields

bx = 0.0
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end:fields

begin:window

move_window = T

# wait for leading edge of the laser (not the peak) to

get 90% through box

window_start_time = 0.9 * x_length / c

window_v_x = laser_vg

bc_x_min_after_move = simple_outflow

bc_x_max_after_move = simple_outflow

end:window

begin:output

# Time between file outputs

dt_snapshot = delta_x / c

# Grid variables

grid = always

# Properties on grid

ex = always

ey = always

bx = always

by = always

end:output

begin:species

name = Electron

charge = -1

mass = 1.

npart_per_cell = 16.

density = plasma_density

end:species
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