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Classical and exceptional Lie algebras and their representations are among the most important tools in 
the analysis of symmetry in physical systems. In this letter we show how the computation of tensor 
products and branching rules of irreducible representations is machine-learnable, and can achieve relative 
speed-ups of orders of magnitude in comparison to the non-ML algorithms.
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1. Introduction & summary

Lie algebras are an integral part of modern mathematical 
physics. Their representation theory governs every field of physics 
from the fundamental structure of particles to the states of a 
quantum computer. Traditionally, an indispensable tool to the high 
energy physicist is the extensive tables of [1]. More contemporary 
usage, with the advent of computing power of the ordinary lap-
top, has relied on the likes of highly convenient software such 
as “LieART” [2]. Such computer algebra methods, especially in 
conjunction with the familiarity of the Wolfram programming lan-
guage to the theoretical physicists, are clearly destined to play a 
helpful rôle.

In parallel, a recent programme of applying the techniques from 
machine-learning (ML) and data science to study various mathe-
matical formulae and conjectures had been proposed [3–5]. Indeed, 
while the initial studies were inspired by and brought to string 
theory in timely and independent works in [3,4,6–8], experimenta-
tion of whether standard techniques in neural regressors and clas-
sifiers could be carried over to study diverse problems have taken 
a life of its own. These have ranged from finding bundle cohomol-
ogy on varieties [7,9,10], to distinguishing elliptic fibrations [11]
and invariants of Calabi-Yau threefolds [12], to machine-learning 
the Donaldson algorithm for numerical Calabi-Yau metrics [13], to 
the algebraic structures of discrete groups and rings [14], to the 
BSD conjecture & Langlands programme in number theory [15–17], 
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to quiver gauge theories and cluster algebras [18], to patterns in 
particle masses [19], to knot invariants [20], to statistical predic-
tions and model-building in string theory [21–23], to classifying 
combinatorial properties of finite graphs [24] etc. Moreover, the 
very structures of quantum field theory and holography [25–27]
have also been proposed to be closely related to suitable neural 
networks.

In this letter, we continue this exciting programme and apply 
machine learning techniques to another indispensable concept for 
physicists, namely the ubiquitous continuous symmetries as en-
coded by Lie groups/algebras. Physicists have long used them to 
classify from the phases of matters to the spectrum of elemen-
tary particles. As listed earlier, machine learning techniques have 
provided us with a powerful new approach towards various classi-
fication problems of physical interests.1 Here we would like to ask 
whether the essential structures of Lie group can also be learned 
by machine. Specifically, by this we mean whether neural net-
work (NN) classifiers and regressors can, after having seen enough 
samples of typical calculations such as tensor decomposition or 
branching rules – both known to be heavily computationally ex-
pensive, as we will shortly see – predict the result more efficiently.

As a comparison, let us also mention a somewhat surprising 
result from [14], where some fundamental structures of algebra, 
viz., certain properties of finite groups and finite rings, seem to 
be machine-learnable. Difficult problems in representation theory 
such as recognizing whether a finite group is simple or not by 
“looking” at the Cayley multiplication table, or whether random 
permutation matrices (Sudoku) possess group structure, etc., can 

1 There have been other interesting works on detecting physical symmetries using 
machine-learning [28,29].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2021.136297
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2021.136297&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:heng.yu.chen@phys.ntu.edu.tw
mailto:hey@maths.ox.ac.uk
mailto:shailesh.hri@gmail.com
mailto:Suvajit.Majumder@city.ac.uk
https://doi.org/10.1016/j.physletb.2021.136297
http://creativecommons.org/licenses/by/4.0/


H.-Y. Chen, Y.-H. He, S. Lal et al. Physics Letters B 817 (2021) 136297
be classified by a support vector machine very efficiently without 
recourse to the likes of Sylow theorems which are computationally 
expensive.

In this letter we are motivated by the question of whether 
and how much one can machine-learn the essential information 
about classical, and exceptional Lie algebras as tabulated in stan-
dard texts such as Slansky [1]. Specifically, we address the two 
fundamental problems in the representation theory of Lie algebras 
that is crucial to physics – the tensor product decomposition and 
the branching rules to a sub-algebra – and show that these salient 
structures are machine learnable.

In particular we show that a relatively simple forward-feeding 
neural network can predict to high accuracy and confidence, the 
number of irreducible representations (“irreps”) that appear in a 
tensor product decomposition, which we refer to as the length of 
the decomposition. Our findings for classical and exceptional al-
gebras are summarized in Table 1. We subsequently show that 
a neural network can also predict with high accuracy, the pres-
ence or absence of a given irreducible representation of a maximal 
sub-algebra within an irreducible representation of a parent alge-
bra. The neural network is capable of predicting, for example, the 
presence of bi-fundamentals in SU (3) × SU (2) for a given rep-
resentation of SU (5) to an accuracy of 88% and a confidence of 
0.735.

We remark that our classification problems were also addressed 
with various standard classifiers, such as Naive Bayes, nearest 
neighbours and support vector machines. We found that the NN 
with the architecture shown below in Fig. 2 significantly out-
performed them. For example, using Logistic Regression for the 
analysis of Table 2 for the Am algebra yields a test accuracy of 
0.823 and a confidence of 0.64. The results from support vector 
machines are similar. This is in line with previous observations 
where NNs with similar architectures perform well for a variety 
of problems, such as the computation of topological invariants of 
manifolds [3,21], and finite graph invariants [24].

2. Tensor products and branching rules learnt by a neural 
network

2.1. Tensor products

2.1.1. Predicting the length of generic tensor decompositions
Let us begin with a simple ML experiment. One of the most 

important computations for Lie groups/algebras is the decompo-
sition of the tensor product of two representations into a direct 
sum of irreducible representations for a given group G: R1 ⊗ R2 =⊕
r∈ irreps

ar Rr , where ar ∈Z≥0 are the multiplicity factors. To be con-

crete, let us first consider Am = SU (m + 1). Every irreducible rep-
resentation (“irrep”) of Am is specified by a highest-weight vector 
�v , which is a rank m vector of non-negative integer components. 
Throughout this letter, we will use

�v ≡ (v1, . . . , vr) (2.1)

to denote the weight vector for a Lie algebra of rank r. When 
the context is clear, an integer with the vector over-script is 
understood to be a vector of the same integer entry, e.g., �4 =
(4, 4, . . . , 4).

As the entries of �v increase in magnitude, the dimension of 
the corresponding irrep R �v can grow dramatically. For instance, for 
A3 = SU (4), dim R �v=(a,b,c) = 1

12 (a + 1)(b + 1)(c + 1)(a + b + 2)(b +
c + 2)(a + b + c + 3). This makes the task of identifying the precise 
irreps contained in a tensor decomposition rather laborious.

We start with two weight-vectors �v1, �v2. Their rank m is cho-
sen randomly from {1,2,...,8}. Then, we randomly generate a pair 
2

Fig. 1. Distribution of the number of distinct irreps in the tensor decomposition 
of R �v1 ⊗ R �v2

for Am with randomized 1 ≤ m ≤ 8 and randomized ternary weight 
vectors �v1,2. The horizontal axis denotes the length of R �v1 ⊗ R �v2

and the vertical 
axis denotes the corresponding frequency.

quinary vectors �v1, �v2 of rank m, and compute their tensor de-
composition into irreducible representations:

R �v1 ⊗ R �v2
=

⊕
r ∈ irreps

ar Rr . (2.2)

This computation, although algorithmic, is non-trivial. Even the rel-
atively simple question of how many distinct irreps, along with their 
multiplicities, are there on the RHS or what we call the length of a 
given tensor decomposition, is not immediately obvious just by 
looking at the vectors �v1 and �v2. For example,

R[0,1] ⊗ R[2,1] = 8 ⊕ 10 ⊕ 27 ;
R[1,0,1] ⊗ R[0,2,0] = 45 ⊕ 20′ ⊕ 175 ⊕ 45 ⊕ 15 . (2.3)

It is difficult to see a priori that one decomposition would be of 
length 3 while the other would be of length 5; and one needs to 
actually compute the respective tensor decomposition to know the 
answer. It took several hours using LieART to perform five thou-
sands decompositions.2 To get an idea of their distributions, we 
show the histogram of the length: indeed there is a huge variation 
from 1 to over 350. A significant improvement in the running time 
(from hours to a few minutes) can be attained by capping off the 
maximum dimension of the irreps (say to 10,000). The distribu-
tion of the lengths of the decompositions vs frequency histogram, 
is depicted in Fig. 1.

Let us next consider a simple binary classification problem us-
ing the data generated by LieART: can ML distinguish tensor de-
compositions of length ≥ 70 and of length < 70? The length 70 is 
chosen since it splits the data rather evenly into around five thou-
sands each. To uniformize the input vectors, for the rank m < 8, 
we also pad both �v1,2 to the right with −1 (a meaningless num-
ber in this context) and stack them on top of each other. Thus, our 
input is a 2 ×8 matrix with integer entries for 1 ≤ m ≤ 8. This step 
is essential for using a single NN for learning data for Lie algebras 
of varying ranks (it is for Am, 1 < m < 8 here). For the majority 
of our experiments, we use a feed-forward neural network classi-
fier built in Mathematica [32] with the architecture shown in 
Fig. 2. We also reproduced these results with a similar 2-layer ar-
chitecture on Keras [30], with selu activated neurons to obtain 
similar accuracy and confidence. Finally, we need to ensure that 
the last softmax is rounded to 0 or 1 according to our binary cat-
egories.

2 Care must be taken to find five thousands distinct pairs ( �v1, �v2) amidst the 
randomizations so as not to bias the input.
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Fig. 2. The neural network architecture. S is the softmax activation and D is a dropout layer with probability 0.2. The hidden-layer neurons (1, 2) and (4, 5) are fully 
connected and sigmoid activated.
Fig. 3. Loss-function (top), and error-rate (below) for training and validation for Am

are plotted against number of epochs.

The results of our training and learning for Am are depicted 
in Fig. 3. The data was partitioned into 64% training, 16% valida-
tion, and 20% test splits. The network was trained on the training 
and validation sets and the test set was used purely for evalu-
ating the trained network. The plots show a steady lowering in 
both the error-rate and loss-function as we increase the number 
of rounds of training and validation. We achieved accuracy 0.969, 
confidence 0.930, 5% error rate, and 0.1 loss function within one 
minute by training for 100 epochs using learning rate 10−3, ADAM 
optimizer; which is excellent indeed. Throughout this letter, we 
will use “accuracy” to mean percentage agreement of predicted 
and actual values. In addition, in discrete classification problems 
it is also important to have a measure of “confidence” so that 
false positives/negatives can be noted. A widely used one is the 
so-called Matthews’ Phi-coefficient φ (essentially a signed square-
root of the chi-squared of the contingency table) [31], which is � 1
for predictions with good confidence.

The above experiment was also carried out with other classical, 
as well as exceptional Lie algebras with comparable success. The 
results are given in Table 1. We generated the same data size as 
in the Am case, i.e. 5000, and used the same cap on the maximum 
dimension of the irreps (10,000). In contrast, though the dimen-
sion cap for exceptional groups was set to 120,000, it yielded far 
fewer data points. The lengths we split the data-sets on were cho-
sen to generate a balanced data-set in each case. The accuracy of 
ML prediction was above .95 for each of these cases. The relatively 
lower accuracy for E6 is caused by the low number of points avail-
able at low dimensions due to its relatively high rank: 903 data 
points below dimension of 120,000. Raising the dimension cap 
would improve the machine-learning, bringing it up to par with 
others, however the corresponding data generation using LieART 
would take days.
3

Table 1
The binary classification of product decomposition lengths. The splitting lengths 
yield a balanced dataset.

Group Data size Splitting length Accuracy Confidence

Am 5000 70 0.969 0.930
Bm 5000 40 0.959 0.878
Cm 5000 40 0.969 0.921
Dm 5000 35 0.965 0.908
G2 1275 110 0.946 0.891
E6 903 30 0.898 0.795

Table 2
Training on low dimensional irreps, and testing on high dimensional ones.

Group Train/Val accuracy Test accuracy Confidence

Am 0.974/0.957 0.961 0.907
Bm 0.972/0.963 0.957 0.845
Cm 0.969/0.970 0.892 0.792
Dm 0.971/0.940 0.956 0.817
G2 0.969/0.963 0.968 0.922
E6 0.963/0.947 0.875 0.751

We also note that partitioning the data-sets at the ‘midpoint’ to 
generate balanced data-sets as we have done above is by no means 
necessary. As an example, we explored this classification problem 
for the Am algebras but now organizing the data into partitions of 
varying lengths, viz. 20/80 through to 80/20. Here by a partition 
of length 20/80 we mean that a ‘cutoff’ decomposition length was 
chosen such that 20% of the decomposition lengths in the dataset 
are below this length, i.e. are denoted by the target variable Y = 0
and the remaining 80% are above, and hence denoted by Y = 1. 
In every case the Matthews’ Phi-coefficient remains close to 1. In 
particular, for the 20/80 and 80/20 partition it is 0.98.

We can take this experiment one step further and train the 
neural net on low dimensional tensor decomposition data, then 
test its performance on higher dimensional cases. If successful this 
would immensely reduce the computation time. For example, ob-
taining the length of decomposition for two A6 weight vectors 
�v1 = �v2 = (2, 2, 2, 2, 2, 2) by brute force takes over 15 minutes 
on LieART while machine learning should estimate the length in 
a matter of seconds.

We retrained the NN in Fig. 2 on the same data for the classical 
and G2 algebras generated by LieART for the previous experiment. 
However, the training set is now restricted to have both input 
weight vectors of dimension less than certain cut-off value, here 
taken to be 2,000. The trained neural network was subsequently 
evaluated on the test dataset consisting of input weight vectors of 
dimension ranging between 2,000 and 10,000. Our results are pre-
sented in Table 2 and Fig. 4.

2.1.2. Beyond binary classification
We now move beyond the simpler binary classification experi-

ments done previously to a multi-class classification task, with the 
aim of predicting a range for the length of the product decom-
position as opposed to the over/under estimates obtained above. 
For definiteness, let us take the Am data and classify it into five 
classes, depending on whether the length of the product decom-
position lies in the ranges 0 to 10, 10 to 25, 25 to 55, 55 to 115 
and greater than 115. Fig. 5 shows a histogram with the class pop-
ulations, and the training curves are displayed in Fig. 6. The neural 
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Fig. 4. Loss-function (top), and model accuracy (below) for training on Am irreps, 
plotted against number of epochs.

Fig. 5. Class Populations of length bins for Am irreps.

network reaches a φ-coefficient of 0.917 on the test set, and the 
confusion matrix is given by

⎛
⎜⎜⎜⎝

96 3 0 0 0
1 92 3 0 0
0 2 109 4 0
0 0 7 86 7
0 0 0 6 84

⎞
⎟⎟⎟⎠ (2.4)

2.2. Branching rules

The next task on which we train our neural network of Fig. 2
is to learn about the branching rules for Lie algebras. Suppose we 
take a weight-vector of SU (5), and restrict its entries from 0 to 4 
(i.e., as quinary 4-vectors). Even though this may look rather harm-
less, the dimension of the corresponding irrep ranges from 1 for �0, 
to 9765625 for �4. When we decomposed these irreps of SU (5)
4

Fig. 6. Training curves for the quinary classification problem for Am , plotted against 
number of epochs.

Fig. 7. Plot and fit of log of the time in seconds of the branching of irreps of SU (5)

versus the length of the weight-vector.

to those of its maximal sub-algebra SU (3) × SU (2) × U (1), and 
found their explicit branching products, the time taken on LieART 
was easily seen to be exponential.3 In Fig. 7, we plot the log of 
the time taken in seconds, versus the length of the weight-vector. 
The best fit is the line −5.54361 + 1.69186x. By extrapolation, the 
single irrep of SU (5) corresponding to weight vector 

−→
10 would 

take over 20 years just to compute its branching products into 
SU (3) × SU (2) × U (1).

In the rest of this section, we shall show the efficacy of us-
ing ML to predict presence/absence of any given representation 
of the maximal sub-algebra in a given irrep of SU (5) and G2
algebras. For concreteness, we look for bi-fundamental represen-
tations of SU (3) × SU (2) (with arbitrary values of U (1) charges) 

3 Notice that as LieART is only capable of generating branching rule data for max-
imal subgroups, here we will focus on this simplest set of branching training data 
to illustrate the capability of neural network.
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in any given SU (5) irrep. In the G2 case, we restrict ourselves 
to bi-fundamental representation of SU (2) × SU (2) maximal sub-
algebra.

For the SU (5) branching, we use first 800 irreps of smallest 
dimension as input vectors with binary output depending on pres-
ence/absence of a bi-fundamental rep of SU (3) × SU (2). The data 
was split into train/validation/test sets in the ratio 80/10/10. The 
neural network reached a test accuracy of 0.899 and a confidence 
of 0.813. The next best results were arrived at by a support vector 
classifier which reached an test accuracy of 0.838 and confidence 
of 0.677.

For the G2 branching, we used 400 weight input vectors 
with dimensions below 4.7 million. Analogous to the SU (5) case, 
the output was binary, depending on presence/absence of a bi-
fundamental rep of SU (2) × SU (2). All classifiers, neural nets and 
otherwise, performed at the level of blind guessing in this case, 
which is possibly due to the relatively fewer input data as well as 
smaller number of features in the data.

3. Outlook

Given the ubiquity of Lie algebras and groups in physics, let us 
end this letter with some comments about the vast possibilities in 
applications to physics of our results, exemplifying with two which 
immediately come to mind.

In scattering processes, given a pair of incoming particles trans-
forming under the irreps of certain global symmetry group, the 
outgoing particles can be classified via their tensor decomposi-
tions. The tensor decomposition prediction and extrapolation re-
sults in section 2.1 thus allow us to efficiently estimate the number 
of distinct outgoing particles. It would also be exciting to see if the 
NN upper bound estimate of the length of a given decomposition 
can help LieART package to work out its explicit terms within sig-
nificantly shorter period.

Our choice of studying the branching of SU (5) into its maximal 
subgroup SU (3) × SU (2) × U (1) in section 2.2 was phenomeno-
logically motivated. This hopefully can lead to an useful algorithm 
for testing whether a field transforming under SU (5) GUT gauge 
group can yield descendants transforming under standard model 
gauge groups upon spontaneous symmetry breaking. We hope this 
will be useful for particle physics model building purposes.
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