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1. Introduction & summary

Lie algebras are an integral part of modern mathematical
physics. Their representation theory governs every field of physics
from the fundamental structure of particles to the states of a
quantum computer. Traditionally, an indispensable tool to the high
energy physicist is the extensive tables of [1]. More contemporary
usage, with the advent of computing power of the ordinary lap-
top, has relied on the likes of highly convenient software such
as “LieART” [2]. Such computer algebra methods, especially in
conjunction with the familiarity of the Wolfram programming lan-
guage to the theoretical physicists, are clearly destined to play a
helpful role.

In parallel, a recent programme of applying the techniques from
machine-learning (ML) and data science to study various mathe-
matical formulae and conjectures had been proposed [3-5]. Indeed,
while the initial studies were inspired by and brought to string
theory in timely and independent works in [3,4,6-8], experimenta-
tion of whether standard techniques in neural regressors and clas-
sifiers could be carried over to study diverse problems have taken
a life of its own. These have ranged from finding bundle cohomol-
ogy on varieties [7,9,10], to distinguishing elliptic fibrations [11]
and invariants of Calabi-Yau threefolds [12], to machine-learning
the Donaldson algorithm for numerical Calabi-Yau metrics [13], to
the algebraic structures of discrete groups and rings [14], to the
BSD conjecture & Langlands programme in number theory [15-17],

* Corresponding author.
E-mail addresses: heng.yu.chen@phys.ntu.edu.tw (H.-Y. Chen),
hey@maths.ox.ac.uk (Y.-H. He), shailesh.hri@gmail.com (S. Lal),
Suvajit.Majumder@city.ac.uk (S. Majumder).

https://doi.org/10.1016/j.physletb.2021.136297

to quiver gauge theories and cluster algebras [18], to patterns in
particle masses [19], to knot invariants [20], to statistical predic-
tions and model-building in string theory [21-23], to classifying
combinatorial properties of finite graphs [24] etc. Moreover, the
very structures of quantum field theory and holography [25-27]
have also been proposed to be closely related to suitable neural
networks.

In this letter, we continue this exciting programme and apply
machine learning techniques to another indispensable concept for
physicists, namely the ubiquitous continuous symmetries as en-
coded by Lie groups/algebras. Physicists have long used them to
classify from the phases of matters to the spectrum of elemen-
tary particles. As listed earlier, machine learning techniques have
provided us with a powerful new approach towards various classi-
fication problems of physical interests.! Here we would like to ask
whether the essential structures of Lie group can also be learned
by machine. Specifically, by this we mean whether neural net-
work (NN) classifiers and regressors can, after having seen enough
samples of typical calculations such as tensor decomposition or
branching rules - both known to be heavily computationally ex-
pensive, as we will shortly see - predict the result more efficiently.

As a comparison, let us also mention a somewhat surprising
result from [14], where some fundamental structures of algebra,
viz., certain properties of finite groups and finite rings, seem to
be machine-learnable. Difficult problems in representation theory
such as recognizing whether a finite group is simple or not by
“looking” at the Cayley multiplication table, or whether random
permutation matrices (Sudoku) possess group structure, etc., can

1 There have been other interesting works on detecting physical symmetries using
machine-learning [28,29].
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be classified by a support vector machine very efficiently without
recourse to the likes of Sylow theorems which are computationally
expensive.

In this letter we are motivated by the question of whether
and how much one can machine-learn the essential information
about classical, and exceptional Lie algebras as tabulated in stan-
dard texts such as Slansky [1]. Specifically, we address the two
fundamental problems in the representation theory of Lie algebras
that is crucial to physics - the tensor product decomposition and
the branching rules to a sub-algebra - and show that these salient
structures are machine learnable.

In particular we show that a relatively simple forward-feeding
neural network can predict to high accuracy and confidence, the
number of irreducible representations (“irreps”) that appear in a
tensor product decomposition, which we refer to as the length of
the decomposition. Our findings for classical and exceptional al-
gebras are summarized in Table 1. We subsequently show that
a neural network can also predict with high accuracy, the pres-
ence or absence of a given irreducible representation of a maximal
sub-algebra within an irreducible representation of a parent alge-
bra. The neural network is capable of predicting, for example, the
presence of bi-fundamentals in SU(3) x SU(2) for a given rep-
resentation of SU(5) to an accuracy of 88% and a confidence of
0.735.

We remark that our classification problems were also addressed
with various standard classifiers, such as Naive Bayes, nearest
neighbours and support vector machines. We found that the NN
with the architecture shown below in Fig. 2 significantly out-
performed them. For example, using Logistic Regression for the
analysis of Table 2 for the A, algebra yields a test accuracy of
0.823 and a confidence of 0.64. The results from support vector
machines are similar. This is in line with previous observations
where NNs with similar architectures perform well for a variety
of problems, such as the computation of topological invariants of
manifolds [3,21], and finite graph invariants [24].

2. Tensor products and branching rules learnt by a neural
network

2.1. Tensor products

2.1.1. Predicting the length of generic tensor decompositions
Let us begin with a simple ML experiment. One of the most

important computations for Lie groups/algebras is the decompo-
sition of the tensor product of two representations into a direct
sum of irreducible representations for a given group G: R1 ® Ry =

@ arRy, where a, € Z> are the multiplicity factors. To be con-
re ireps
crete, let us first consider Ay, = SU(m + 1). Every irreducible rep-
resentation (“irrep”) of Ap, is specified by a highest-weight vector
v, which is a rank m vector of non-negative integer components.
Throughout this letter, we will use

v=(v1,..., V) (21)

to denote the weight vector for a Lie algebra of rank r. When
the context is clear, an integer with the vector over-script is
understood to be a vector of the same integer entry, e.g., 4 =
4,4,...,4).

As the entries of v increase in magnitude, the dimension of
the corresponding irrep R; can grow dramatically. For instance, for
A3 =SU(4), dimRj_gp,c) = %(a + Db+ (c+D@a+b+2)b+
c+2)(a+ b+ c+ 3). This makes the task of identifying the precise
irreps contained in a tensor decomposition rather laborious.

We start with two weight-vectors V1, V5. Their rank m is cho-
sen randomly from {1,2,..,8}. Then, we randomly generate a pair
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Fig. 1. Distribution of the number of distinct irreps in the tensor decomposition
of Ry, ® Ry, for Ay with randomized 1 <m <8 and randomized ternary weight
vectors V1. The horizontal axis denotes the length of Rj, ® Ry, and the vertical
axis denotes the corresponding frequency.

quinary vectors V1, vy of rank m, and compute their tensor de-
composition into irreducible representations:

P ar. . (2.2)

r € irreps

RV_H ® R\72 =

This computation, although algorithmic, is non-trivial. Even the rel-
atively simple question of how many distinct irreps, along with their
multiplicities, are there on the RHS or what we call the length of a
given tensor decomposition, is not immediately obvious just by
looking at the vectors v; and V,. For example,

Ri0.11® R[2,11=89 10927 ;
Ri1,0,11 ® Ri0,2,00 =45 20 1750450 15 . (23)

It is difficult to see a priori that one decomposition would be of
length 3 while the other would be of length 5; and one needs to
actually compute the respective tensor decomposition to know the
answer. It took several hours using LieART to perform five thou-
sands decompositions.2 To get an idea of their distributions, we
show the histogram of the length: indeed there is a huge variation
from 1 to over 350. A significant improvement in the running time
(from hours to a few minutes) can be attained by capping off the
maximum dimension of the irreps (say to 10,000). The distribu-
tion of the lengths of the decompositions vs frequency histogram,
is depicted in Fig. 1.

Let us next consider a simple binary classification problem us-
ing the data generated by LieART: can ML distinguish tensor de-
compositions of length > 70 and of length < 70? The length 70 is
chosen since it splits the data rather evenly into around five thou-
sands each. To uniformize the input vectors, for the rank m < 8,
we also pad both V15 to the right with —1 (a meaningless num-
ber in this context) and stack them on top of each other. Thus, our
input is a 2 x 8 matrix with integer entries for 1 <m < 8. This step
is essential for using a single NN for learning data for Lie algebras
of varying ranks (it is for Ay, 1 <m < 8 here). For the majority
of our experiments, we use a feed-forward neural network classi-
fier built in Mathematica [32] with the architecture shown in
Fig. 2. We also reproduced these results with a similar 2-layer ar-
chitecture on Keras [30], with selu activated neurons to obtain
similar accuracy and confidence. Finally, we need to ensure that
the last softmax is rounded to O or 1 according to our binary cat-
egories.

2 Care must be taken to find five thousands distinct pairs (v7, v) amidst the
randomizations so as not to bias the input.
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Fig. 2. The neural network architecture. S is the softmax activation and D is a
connected and sigmoid activated.
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Fig. 3. Loss-function (top), and error-rate (below) for training and validation for Ap
are plotted against number of epochs.

The results of our training and learning for A, are depicted
in Fig. 3. The data was partitioned into 64% training, 16% valida-
tion, and 20% test splits. The network was trained on the training
and validation sets and the test set was used purely for evalu-
ating the trained network. The plots show a steady lowering in
both the error-rate and loss-function as we increase the number
of rounds of training and validation. We achieved accuracy 0.969,
confidence 0.930, 5% error rate, and 0.1 loss function within one
minute by training for 100 epochs using learning rate 10~3, ADAM
optimizer; which is excellent indeed. Throughout this letter, we
will use “accuracy” to mean percentage agreement of predicted
and actual values. In addition, in discrete classification problems
it is also important to have a measure of “confidence” so that
false positives/negatives can be noted. A widely used one is the
so-called Matthews’ Phi-coefficient ¢ (essentially a signed square-
root of the chi-squared of the contingency table) [31], which is <1
for predictions with good confidence.

The above experiment was also carried out with other classical,
as well as exceptional Lie algebras with comparable success. The
results are given in Table 1. We generated the same data size as
in the A, case, i.e. 5000, and used the same cap on the maximum
dimension of the irreps (10,000). In contrast, though the dimen-
sion cap for exceptional groups was set to 120,000, it yielded far
fewer data points. The lengths we split the data-sets on were cho-
sen to generate a balanced data-set in each case. The accuracy of
ML prediction was above .95 for each of these cases. The relatively
lower accuracy for Eg is caused by the low number of points avail-
able at low dimensions due to its relatively high rank: 903 data
points below dimension of 120,000. Raising the dimension cap
would improve the machine-learning, bringing it up to par with
others, however the corresponding data generation using LieART
would take days.
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Table 1
The binary classification of product decomposition lengths. The splitting lengths
yield a balanced dataset.

Group Data size Splitting length Accuracy Confidence

Am 5000 70 0.969 0.930

Bm 5000 40 0.959 0.878

Cm 5000 40 0.969 0.921

Dp 5000 35 0.965 0.908

Gy 1275 110 0.946 0.891

Eg 903 30 0.898 0.795
Table 2
Training on low dimensional irreps, and testing on high dimensional ones.

Group Train/Val accuracy Test accuracy Confidence

Am 0.974/0.957 0.961 0.907

Bm 0.972/0.963 0.957 0.845

Cm 0.969/0.970 0.892 0.792

Dm 0.971/0.940 0.956 0.817

Gy 0.969/0.963 0.968 0.922

Eg 0.963/0.947 0.875 0.751

We also note that partitioning the data-sets at the ‘midpoint’ to
generate balanced data-sets as we have done above is by no means
necessary. As an example, we explored this classification problem
for the A, algebras but now organizing the data into partitions of
varying lengths, viz. 20/80 through to 80/20. Here by a partition
of length 20/80 we mean that a ‘cutoff decomposition length was
chosen such that 20% of the decomposition lengths in the dataset
are below this length, i.e. are denoted by the target variable Y =0
and the remaining 80% are above, and hence denoted by Y = 1.
In every case the Matthews’ Phi-coefficient remains close to 1. In
particular, for the 20/80 and 80/20 partition it is 0.98.

We can take this experiment one step further and train the
neural net on low dimensional tensor decomposition data, then
test its performance on higher dimensional cases. If successful this
would immensely reduce the computation time. For example, ob-
taining the length of decomposition for two Ag weight vectors
Vi =7Vy=(2,2,2,2,2,2) by brute force takes over 15 minutes
on LieART while machine learning should estimate the length in
a matter of seconds.

We retrained the NN in Fig. 2 on the same data for the classical
and G, algebras generated by LieART for the previous experiment.
However, the training set is now restricted to have both input
weight vectors of dimension less than certain cut-off value, here
taken to be 2,000. The trained neural network was subsequently
evaluated on the test dataset consisting of input weight vectors of
dimension ranging between 2,000 and 10,000. Our results are pre-
sented in Table 2 and Fig. 4.

2.1.2. Beyond binary classification

We now move beyond the simpler binary classification experi-
ments done previously to a multi-class classification task, with the
aim of predicting a range for the length of the product decom-
position as opposed to the over/under estimates obtained above.
For definiteness, let us take the Ap data and classify it into five
classes, depending on whether the length of the product decom-
position lies in the ranges 0 to 10, 10 to 25, 25 to 55, 55 to 115
and greater than 115. Fig. 5 shows a histogram with the class pop-
ulations, and the training curves are displayed in Fig. 6. The neural
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Fig. 4. Loss-function (top), and model accuracy (below) for training on Ay, irreps,
plotted against number of epochs.
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Fig. 5. Class Populations of length bins for Ay, irreps.

network reaches a ¢-coefficient of 0.917 on the test set, and the
confusion matrix is given by

9% 3 0 0 O

1 92 3 0 0

0 2 109 4 0 (2.4)
0 0 7 8 7

0 0 0 6 84

2.2. Branching rules

The next task on which we train our neural network of Fig. 2
is to learn about the branching rules for Lie algebras. Suppose we
take a weight-vector of SU(5), and restrict its entries from 0 to 4
(ie., as quinary 4-vectors). Even though this may look rather harm-
less, the dimension of the corresponding irrep ranges from 1 for 0,
to 9765625 for 4. When we decomposed these irreps of SU(5)
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Fig. 7. Plot and fit of log of the time in seconds of the branching of irreps of SU(5)
versus the length of the weight-vector.

to those of its maximal sub-algebra SU(3) x SU(2) x U(1), and
found their explicit branching products, the time taken on LieART
was easily seen to be exponential.’ In Fig. 7, we plot the log of
the time taken in seconds, versus the length of the weight-vector.
The best fit is the line —5.54361 + 1.69186x. By extrapolation, the
single irrep of SU(5) corresponding to weight vector 1_6 would
take over 20 years just to compute its branching products into
SUB) x SUR) x U(1).

In the rest of this section, we shall show the efficacy of us-
ing ML to predict presence/absence of any given representation
of the maximal sub-algebra in a given irrep of SU(5) and G,
algebras. For concreteness, we look for bi-fundamental represen-
tations of SU(3) x SU(2) (with arbitrary values of U(1) charges)

3 Notice that as LieART is only capable of generating branching rule data for max-
imal subgroups, here we will focus on this simplest set of branching training data
to illustrate the capability of neural network.
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in any given SU(5) irrep. In the G, case, we restrict ourselves
to bi-fundamental representation of SU(2) x SU(2) maximal sub-
algebra.

For the SU(5) branching, we use first 800 irreps of smallest
dimension as input vectors with binary output depending on pres-
ence/absence of a bi-fundamental rep of SU(3) x SU(2). The data
was split into train/validation/test sets in the ratio 80/10/10. The
neural network reached a test accuracy of 0.899 and a confidence
of 0.813. The next best results were arrived at by a support vector
classifier which reached an test accuracy of 0.838 and confidence
of 0.677.

For the G, branching, we used 400 weight input vectors
with dimensions below 4.7 million. Analogous to the SU(5) case,
the output was binary, depending on presence/absence of a bi-
fundamental rep of SU(2) x SU(2). All classifiers, neural nets and
otherwise, performed at the level of blind guessing in this case,
which is possibly due to the relatively fewer input data as well as
smaller number of features in the data.

3. Outlook

Given the ubiquity of Lie algebras and groups in physics, let us
end this letter with some comments about the vast possibilities in
applications to physics of our results, exemplifying with two which
immediately come to mind.

In scattering processes, given a pair of incoming particles trans-
forming under the irreps of certain global symmetry group, the
outgoing particles can be classified via their tensor decomposi-
tions. The tensor decomposition prediction and extrapolation re-
sults in section 2.1 thus allow us to efficiently estimate the number
of distinct outgoing particles. It would also be exciting to see if the
NN upper bound estimate of the length of a given decomposition
can help LieART package to work out its explicit terms within sig-
nificantly shorter period.

Our choice of studying the branching of SU(5) into its maximal
subgroup SU(3) x SU(2) x U(1) in section 2.2 was phenomeno-
logically motivated. This hopefully can lead to an useful algorithm
for testing whether a field transforming under SU(5) GUT gauge
group can yield descendants transforming under standard model
gauge groups upon spontaneous symmetry breaking. We hope this
will be useful for particle physics model building purposes.
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