

Light Hadron Spectroscopy at BESIII

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2015 J. Phys.: Conf. Ser. 599 012003

(<http://iopscience.iop.org/1742-6596/599/1/012003>)

View [the table of contents for this issue](#), or go to the [journal homepage](#) for more

Download details:

IP Address: 131.169.4.70

This content was downloaded on 19/02/2016 at 22:48

Please note that [terms and conditions apply](#).

Light Hadron Spectroscopy at BESIII

Jifeng Hu
(on behalf of the BESIII Collaboration)

Physics Department, University of Torino, Via Pietro Giuria 1, Torino

E-mail: hu@to.infn.it

Abstract. With data of 1.3 billion J/ψ events and 106 million $\psi(2S)$ events collected with the BESIII detector operating at the BEPCII, many different analyses were performed. New baryon states were observed in partial wave analyses of charmonium decays. A comparison between the branching fraction of $\mathcal{B}(J/\psi \rightarrow \gamma f_0(1710))$ to the recent lattice QCD prediction of J/ψ decaying to glueball ground state $\mathcal{B}(J/\psi \rightarrow \gamma G(0^{++}))$ benefits from new results of $J/\psi \rightarrow \gamma \eta \eta$. The observation of $\eta' \rightarrow \pi^+ \pi^- \pi^+ (\pi^0) \pi^- (\pi^0)$ via the radiative decay of $J/\psi \rightarrow \gamma \eta'$ agrees with the combined model of chiral perturbation theory and vector-meson dominance approach.

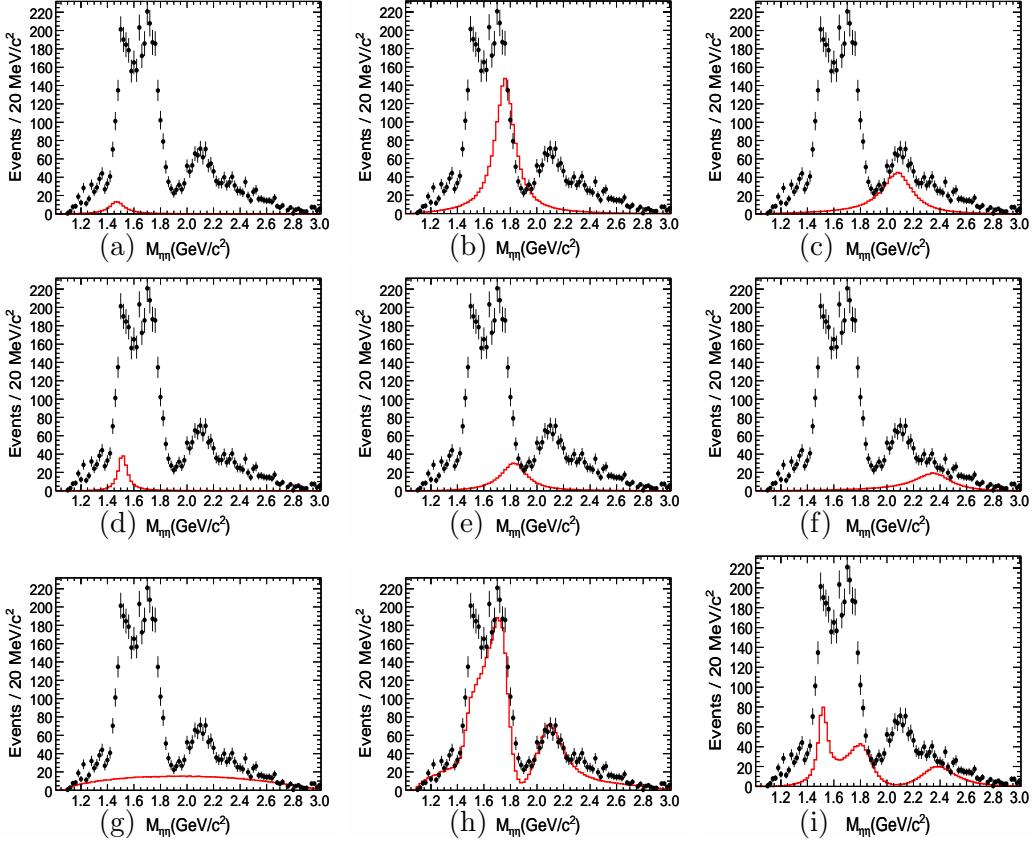
1. Introduction

Rich quantum states are allowed within the quantum chromodynamics (QCD) theory. However, glue-balls still remain unknown in experiments due to the difficult separation from light mesons. J/ψ radiative decay providing a very clean laboratory of scalar and tensor glueballs, has long been used for hunting for glueballs. The Crystal Ball Collaboration [1] made the first observation of $f_0(1710)$ via $J/\psi \rightarrow \gamma \eta \eta$, but suffered from low statistics. Recent lattice QCD calculations [2, 3] tell that, the mass of glueball ground state with $J^{PC} = 0^{++}$ lies in the region of 1.5 to 1.7 GeV/c^2 , and the branching fraction of $J/\psi \rightarrow \gamma G(0^{++})$ has a value of 3.8×10^{-3} . An comparison could be made by summing up branching fractions of $J/\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma K^+ K^- (\gamma \omega \omega, \gamma \pi \pi)$ and the new measurement of $J/\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \eta \eta$. Another problem known as the "missing baryons" [4, 5] can be further understood by investigating new baryon states beyond fixed target experiments [6, 7, 8], because charmonium decays produced at the BESIII experiment take advantages of 93% acceptance of 4π coverage and high statistics to search for the missing baryons [9] [10] [11, 12]. η' meson interpreted as a singlet state arising due to the axial $U(1)$ anomaly [13, 14], still remains active in theoretical studies aiming at extensions of chiral perturbation theory [17], from its discovery in 1964 [15, 16]. New insight could be made by the four-pion decays of $\eta' \rightarrow \pi^+ \pi^- \pi^{+(0)} \pi^{-(0)}$, which could be mediated by the pentagon anomaly instead of suppression according to approximate symmetries. In experiment, no observation of the four-pion decays has been made only the best upper limits reported by the CLEO collaboration: $\mathcal{B}_1(\eta' \rightarrow \pi^+ \pi^- \pi^+ \pi^-) < 2.4 \times 10^{-4}$ and $\mathcal{B}_2(\eta' \rightarrow \pi^+ \pi^- \pi^0 \pi^0) < 2.6 \times 10^{-3}$ at the 90% confidence level (C.L.) [18] excluding the branching ratio of 1.0×10^{-3} calculated using the broken- $SU_6 \times O_3$ quark model [19] three decades ago. Recent predictions $\mathcal{B}_1 = (1.0 \pm 0.3) \times 10^{-4}$ and $\mathcal{B}_2 = (2.4 \pm 0.7) \times 10^{-4}$ employed a combined model of chiral perturbation theory (ChPT) and a vector-meson dominance (VMD) approach [20].

In this paper, the results of partial wave analysis (PWA) on $J/\psi \rightarrow \gamma \eta \eta$ are presented based on a sample of 225 million J/ψ events [21]. The PWA of the decay $\psi(2S) \rightarrow p\bar{p}\pi^0$ is

Content from this work may be used under the terms of the [Creative Commons Attribution 3.0 licence](https://creativecommons.org/licenses/by/3.0/). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

performed using the 106 million $\psi(2S)$ events. The first observation of $\eta' \rightarrow \pi^+\pi^-\pi^+\pi^-$ and $\eta' \rightarrow \pi^+\pi^-\pi^0\pi^0$ takes advantage of $J/\psi \rightarrow \gamma\eta'$ decay with data of $1.3 \times 10^9 J/\psi$ events (2.25×10^8 events in 2009 and 1.09×10^9 events in 2012) collected at the center of mass energy of 3.097 GeV with the BESIII detector [22].

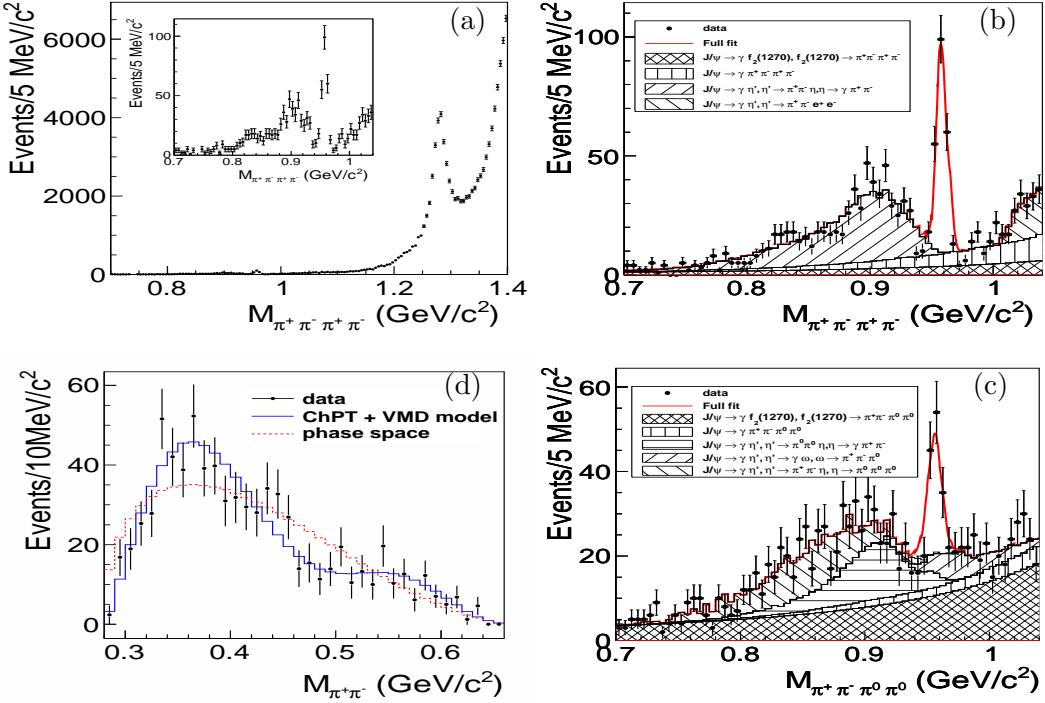

The BESIII detector is a general-purpose spectrometer located at the Beijing Electron Position Collider (BEPCII) [23], designed with a double-ring e^+e^- collider structure. The designed peak luminosity of $10^{33} \text{ cm}^{-2}\text{s}^{-1}$ is optimized at the center of mass energy of 3.773 GeV. The cylindrical core of the BESIII detector consists of a helium-based main drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T (0.9 T in 2012) magnetic field. The acceptance of charged particles and photons has 93% over 4π coverage. The charged-particle momentum resolution at 1 GeV/c is 0.5%, and the dE/dx resolution is 6%. The photon energy resolution is 2.5% (5%) at 1 GeV in the barrel (endcaps). The time resolution of TOF is 80 ps for the barrel and 110 ps for the end caps.

2. Partial wave analysis of $J/\psi \rightarrow \gamma\eta\eta$

This analysis[24] was performed using the relativistic covariant tensor amplitude method. The resonance parameters and branching fractions are listed in Table 1. Projections shown in Fig. 1 indicate that the dominant 0^{++} and 2^{++} components are from the $f_0(1710)$, $f_0(2100)$, $f_0(1500)$, $f'_2(1525)$, $f_2(1810)$ and $f_2(2340)$. Among all scalar components, the measured properties of dominant $f_0(1710)$ are consistent with results of $J/\psi \rightarrow \gamma K\bar{K}$ [25] and $J/\psi \rightarrow \gamma\pi\pi$ [26] at BESII. The production rate for the $f_0(1500)$ is lower than the one for $f_0(1710)$ and $f_0(2100)$ by almost one order. The first experimental evidence for the $f_0(1790)$ was observed in $J/\psi \rightarrow \phi\pi\pi$ but no evidence was observed in $J/\psi \rightarrow \phi K\bar{K}$ [27]. Tensor components, shown as the histogram in Fig. 1 (i), stand for their total contribution, where the peak component around 1.5 GeV/c^2 is the well-established resonance $f'_2(1525)$ and the components contributing to the bump around 2.1 GeV/c^2 are from $f_2(1810)$ and $f_2(2340)$. A tensor component around 1.8 GeV/c^2 with a statistical significance of 6.4σ exists and can not be distinguished from $f_2(1810)$, $f_2(1910)$ and $f_2(1950)$ with the present statistics, denoted as $f_2(1810)$ in this analysis, and the ambiguous assignment of $f_2(1810)$ or $f_2(1950)$ is considered as a source of systematic error. Other possible tensor resonances, $f_2(2010)$, $f_2(2150)$, $f_J(2220)$, $f_2(2300)$ and $f_2(2340)$, are also considered in alternative combinations to get the optimized solution. The best fit favors the presence of $f_2(2340)$. Since the mass of $f_2(2300)$ is close to $f_2(2340)$, an attempt was made by replacing $f_2(2340)$ with $f_2(2300)$ using the fixed mass and width referenced to PDG [28], and the log likelihood value gets worse by 15. The narrow $f_J(2220)$ (also known as $\xi(2230)$) reported by MarkIII [29] and BES [30] shows no evidence in this analysis. Component $f_J(2220)$ has a significance of 0.4σ . None of the other contributions from scalar mesons, $f_0(1370)$, $f_0(2020)$, $f_0(2200)$ and $f_0(2330)$, have a significance greater than 5.0σ , thus they are excluded.

Table 1. Summary of the PWA results. The first errors are statistical and the second ones are systematic.

Resonance	Mass(MeV/c^2)	Width(MeV/c^2)	$\mathcal{B}(J/\psi \rightarrow \gamma X \rightarrow \gamma\eta\eta)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$f_0(1710)$	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0σ
$f_0(2100)$	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9σ
$f'_2(1525)$	$1513 \pm 5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0σ
$f_2(1810)$	1822^{+29+66}_{-24-57}	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334^{+62+165}_{-54-100}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6σ


Figure 1. Contribution of the components. (a) $f_0(1500)$, (b) $f_0(1710)$, (c) $f_0(2100)$, (d) $f'_2(1525)$, (e) $f_2(1810)$, (f) $f_2(2340)$, (g) 0^{++} phase space, (h) total 0^{++} component, and (i) total 2^{++} component. The dots with error bars are data with background subtracted, and the solid histograms are the projection of the PWA.

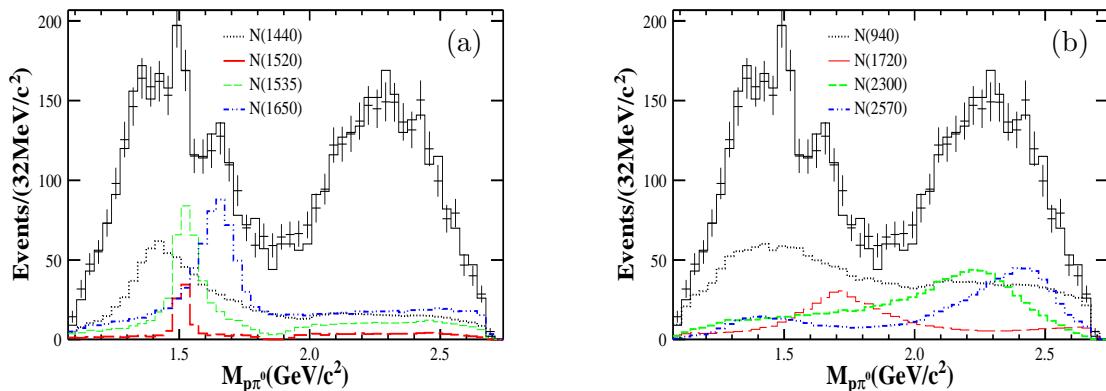
3. Observation of $\eta' \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ and $\eta' \rightarrow \pi^+ \pi^- \pi^0 \pi^0$

This analysis [37] provides clean η' data via J/ψ radiative decay. The $\pi^+ \pi^- \pi^+ \pi^-$ invariant mass spectrum is shown in Fig. 2(a), where an η' peak is clearly observed in the inset plot. The projections of the fit to $M_{\pi^+ \pi^- \pi^+ (0) \pi^- (0)}$ in the η' mass region are shown in Figs. 2(b) and (c), where the shape of the sum of signal and background shapes agree well with data. 199 ± 16 $\eta' \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ events was observed with a statistical significance of 18σ and 84 ± 16 $\eta' \rightarrow \pi^+ \pi^- \pi^0 \pi^0$ events with a statistical significance of 5σ respectively. The $M_{\pi^+ \pi^-}$ spectrum of data carrying key information of η' decay mechanism is extracted from fitting the $\pi^+ \pi^- \pi^+ \pi^-$ mass spectrum and subtracting background. The MC spectrum employs two models, a phase space model and a combined model of ChPT and VMD implemented using decay amplitudes in Ref. [20]. To make comparison, the MC $M_{\pi^+ \pi^-}$ spectrum is divided into 38 bins in the region of $[0.28, 0.66]$ GeV/c^2 for decay of $\eta' \rightarrow \pi^+ \pi^- \pi^+ \pi^-$, as shown in Fig. 2 (d) (four entries per event), where the errors are statistical only. Clearly, the combined model agrees with data better than the phase space model. Branching fractions of $\mathcal{B}(J/\psi \rightarrow \gamma \eta', \eta' \rightarrow \pi^+ \pi^- \pi^+ \pi^-)$ and $\mathcal{B}(J/\psi \rightarrow \gamma \eta', \eta' \rightarrow \pi^+ \pi^- \pi^0 \pi^0)$ are determined to be $(4.40 \pm 0.35 \pm 0.30) \times 10^{-7}$ and $(9.38 \pm 1.79 \pm 0.89) \times 10^{-7}$ respectively.

4. Observation of two new N^* resonances in $\psi(3686) \rightarrow p\bar{p}\pi^0$

This analysis[31] takes advantage of a data set with larger statistics than that at CLEOc shows more than one N^* state below 1700 MeV/c^2 , which are easily seen in the $p\pi^0$ and $\bar{p}\pi^0$ mass

Figure 2. (a) The invariant mass distributions of $\pi^+\pi^-\pi^+\pi^-$. Results of the fits to (b) $M_{\pi^+\pi^-\pi^+\pi^-}$ and (c) $M_{\pi^+\pi^-\pi^0\pi^0}$, where the background contributions are displayed as the hatched histograms. (d) The comparison of $M_{\pi^+\pi^-}$ (four entries per event) between data and two different models, where the dots with error bars are for the background-subtracted data, the solid line is for the ChPT and VMD model, and the dashed line is for the phase space.


spectra, and the threshold enhancement in the $p\bar{p}$ mass spectrum. To better understand the structure of multi-resonances and their interference, a partial wave analysis is performed and components' contributions are shown in Fig. 3. Plot (a) shows the contributions of $N(1440)$, $N(1520)$, $N(1535)$ and $N(1650)$ with clear peaks, the tails at the high mass region come from the interference effects. Plot (b) shows the contributions of $N(940)$, $N(1720)$, $N(2300)$ and $N(2570)$. Two new N^* resonances, $N(2300)$ and $N(2570)$ are observed with number of events 948 ± 68 and 795 ± 45 respectively. No clear evidence for $N(1885)$ or $N(2065)$ were found. More investigations such as $J/\psi \rightarrow \eta p\bar{p}$ [33], $J/\psi \rightarrow \lambda\Sigma^0$ [34], $\psi' \rightarrow \bar{p}K\Sigma^0$ [35], $\chi_{c0} \rightarrow p\bar{n}\pi^-$ [36] also explored new baryon states.

5. Summary

The PWA results of $J/\psi \rightarrow \gamma\eta\eta$ as summarized in Table 1 combining with branching fractions of $J/\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma XX$, were employed to compare the recent lattice QCD prediction of $J/\psi \rightarrow \gamma G(0^{++})$. A series of recently observed baryon states aim to improve further understanding of the quark model. The analyses of $\eta' \rightarrow \pi^+\pi^-\pi^+\pi^-$ and $\eta' \rightarrow \pi^+\pi^-\pi^0\pi^0$ agree with the combined model of chiral perturbation theory and vector-meson dominance approach.

References

- [1] C. Edwards *et al.*, Phys. Rev. Lett. **48**, 458 (1982).
- [2] Y. Chen *et al.*, Phys. Rev. D **73**, 014516 (2006).
- [3] E. Gregory *et al.*, JHEP **1210**, 170 (2012).
- [4] S. Capstick and W. Roberts, Phys. Rev. D **47**, 1994 (1993).

Figure 3. The contribution of each intermediate resonance in the $p\pi^0$ mass spectra. The interferences with other resonances are included.

- [5] N. Isgur and G. Karl, Phys. Rev. D **19**, 2653 (1979).
- [6] S. Stepanyan *et al.* (CLAS Collaboration) Phys. Rev. Lett. **91**, 252001 (2003)
- [7] I. Horn *et al.* (CB-ELSA Collaboration) Phys. Rev. Lett. **101**, 202002 (2008)
- [8] E. F. McNicoll *et al.* (Crystal Ball Collaboration at MAMI) Phys. Rev. C **82**, 035208 (2010)
- [9] H. B. Li *et al.* (BES Collaboration), Nucl. Phys. A **675**, 189C (2000).
- [10] J. Z. Bai *et al.* (BES Collaboration), Phys. Lett. B **510**, 75 (2001).
- [11] R. Koniuk and N. Isgur, Phys. Rev. D **21**, 1868 (1980).
- [12] S. Capstick and W. Roberts, Phys. Rev. D **49**, 4570 (1994).
- [13] S. Weinberg, Phys. Rev. D **11**, 3583 (1975).
- [14] G. 't Hooft, Phys. Rev. D **14** (1976) 3432 [Erratum-ibid. D **18** (1978) 2199].
- [15] G. R. Kalbfleisch *et al.*, Phys. Rev. Lett. **12**, 527 (1964).
- [16] M. Goldberg *et al.*, Phys. Rev. Lett. **12**, 546 (1964).
- [17] J. Gasser, H. Leutwyler, Nucl. Phys. B **250**, 465 (1985).
- [18] P. Naik *et al.* [CLEO Collaboration], Phys. Rev. Lett. **102**, 061801 (2009).
- [19] D. Parashar, Phys. Rev. D **19**, 268 (1979).
- [20] Feng-Kun Guo, Bastian Kubis and Andreas Wirzba, Phys. Rev. D **85**, 014014 (2012).
- [21] M. Ablikim *et al.* (BESIII Collaboration), Chin. Phys. C **36**, 915 (2012).
- [22] M. Ablikim *et al.* [BESIII Collaboration], Nucl. Instrum. Methods Phys. Res. A **614**, 345 (2010).
- [23] J. Z. Bai *et al.* (BES Collaboration), Nucl. Instrum. Meth. A **344**, 319 (1994); Nucl. Instrum. Meth. A **458**, 627 (2001).
- [24] M. Ablikim *et al.* [BESIII Collaboration], Phys. Rev. D **87**, 092009 (2013).
- [25] J. Z. Bai *et al.* (BES Collaboration), Phys. Rev. D **68**, 052003 (2003).
- [26] M. Ablikim *et al.* (BES Collaboration), Phys. Lett. B **642**, 441 (2006).
- [27] M. Ablikim *et al.* (BES Collaboration), Phys. Lett. B **607**, 243 (2005).
- [28] J. Beringer, *et al.* (Particle Data Group), Phys. Rev. D **86**, 010001 (2012).
- [29] R. M. Baltrusaitis *et al.* (MARKIII Collaboration), Phys. Rev. Lett. **56**, 107 (1986).
- [30] J. Z. Bai *et al.* (BES Collaboration), Phys. Rev. Lett. **81**, 1179 (1998).
- [31] M. Ablikim *et al.* (BES Collaboration), Phys. Rev. Lett. **110**, 022001 (2013).
- [32] J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang and Y. S. Zhu, Phys. Rev. D **62**, 034003 (2000).
- [33] M. Ablikim *et al.* [BESIII Collaboration], Phys. Rev. D **88**, 032010 (2013).
- [34] M. Ablikim *et al.* [BESIII Collaboration], Phys. Rev. D **87**, 012007 (2013).
- [35] M. Ablikim *et al.* [BESIII Collaboration], Phys. Rev. D **86**, 032008 (2012).
- [36] M. Ablikim *et al.* [BESIII Collaboration], Phys. Rev. D **86**, 052011 (2012).
- [37] M. Ablikim *et al.* [BESIII Collaboration], Phys. Rev. D **112**, 251801 (2014).