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Abstract

All physical processes can be described, at a fundamental level, through interactions of ele-

mentary particles. The Standard Model of particle physics (SM) describes three of the four

known fundamental forces and all of the known elementary particles. The accuracy of the

predictions made using this theory has been experimentally established over a wide range

of processes. Physicists endeavour to extend the SM to cover those phenomena, observed or

hypothesised, that are currently beyond its scope. To develop these extensions, it is useful to

identify processes involving SM particles where SM predictions differ from what is measured

in nature.

The fact that flavour-changing neutral currents (FCNC) processes are forbidden at tree level

in the SM makes them a promising laboratory for precision measurements that can show

effects of physics beyond the SM: New Physics (NP) at energy scales higher than those of

an FCNC process can nevertheless indirectly affect it to a potentially measurable extent.

This work realises one such precision measurement. It concerns the polarisation of the

photon in b → sγ transitions. Due to the chiral nature of the weak interaction, which is

the only SM interaction that mediates FCNC processes, the photon is almost entirely left-

handed in decays that proceed through a b→ sγ transition. NP with a chiral structure that

is different from that of the weak interaction could enhance the right-handed component

of the photon. The photon polarisation in b→ sγ transitions is experimentally constrained

through measurements of the inclusive branching fraction B → Xsγ and other measurements

of radiative decays of b hadrons, as well as from B 0 → K ∗0e+e− decays at low q2. It has

been directly measured in Λb → Λγ decays. The experimental results are consistent with

SM predictions. A measurement of the up-down asymmetry in B+→ K +π−π+γ decays has

shown that the photon in these decays is polarised, but the value of the polarisation parameter

λγ could not be extracted from this measurement. In this work, an amplitude analysis of

B+→ K +π−π+γ decays recorded at the LHCb experiment during Run 1 and Run 2 of the LHC

is performed, and a model of the B+→ K +π−π+γ decay, including the value of λγ, is defined.

This measurement further constrains the photon polarisation in b→ sγ transitions and thus

contributes to the identification of promising avenues for extending the SM.

The reconstruction of charged particle momenta at LHCb requires a precise knowledge of the

magnetic field that bends the particles’ trajectories. A new map of the magnetic field of the

LHCb dipole was developed for use in Run 3 of the LHC. This map and its development is also

discussed in this work.

Keywords: particle physics, LHCb, LHC, flavour physics, FCNC, radiative decays, photon

polarisation, amplitude analysis, magnetic field map

iii





Résumé

Tous les processus physiques peuvent être décrits, au niveau fondamental, comme des in-

teractions entre particules élémentaires. Le modèle standard de la physique des particules

(MS) inclut trois des quatre forces fondamentales connues, et toutes les particules élémen-

taires connues. Il prédit les probabilités des interactions entre particules avec une grande

précision et a été vérifié expérimentalement dans de nombreuses situations. Cependant, il

reste quelques lacunes dans la description des processus naturels qui nécessitent l’extension

du modèle standard. Des telles extensions pourraient également décrire des phénomènes

non observés à ce jour. L’identification de processus dont les prédictions du modèle standard

dévient des mesures experimentales est essentiel pour le développement de ces extensions

potentielles.

Les courants neutres changeant la saveur (FCNC, flavour changing neutral current) nécessitent,

dans le MS, une boucle de particules virtuelles. Dans une telle boucle peuvent contribuer

de nouvelles particules ou interactions (hors du MS) dont les effets directs ne deviennent

observables qu’à des énergies beaucoup plus importantes que celles du processus FCNC

concerné. Ceci fait des processus FCNC un outil de choix pour la recherche de phénomènes

au-delà du MS. Cette thèse concerne la polarisation des photons dans les transitions b→ sγ,

qui sont dues à un courant FCNC. L’interaction faible est la seule interaction du MS à autoriser

les FCNC. Sa structure chirale fait que les photons sont presque toujours gauchers dans les

transitions b→ sγ. Des particules ou interactions d’une structure chirale différente de celle de

l’interaction faible peuvent diluer la polarisation des photons. Le paramètre de polarisation

λγ a déjà été restreint expérimentalement par des mesures du rapport d’embranchement des

désintégrations B → Xsγ et autres désintégrations radiatives de hadrons b, ainsi que dans la

désintégration B 0→ K ∗0e+e− à petit q2. Une mesure directe de la polarisation du photon a

été effectuée en utilisant la désintégration Λb →Λγ. Les résultats experimentaux concordent

avec les prédictions du MS. Une étude de l’asymétrie du photon dans la désintégration B+→
K +π−π+γ a montré que λγ est non nul, c’est-à-dire que le photon est polarisé. Cependant,

cette étude n’a pas permis de déterminer la valeur de λγ. Cette thèse, basée sur les données

enregistrées par l’expérience LHCb au cours des deux premières périodes d’exploitation du

LHC, présente une analyse en amplitudes de la désintégration B+→ K +π−π+γ qui permet

une mesure de λγ. Cette analyse restreint encore mieux la polarisation des photons dans les

transitions b→ sγ et contribue ainsi à l’identification d’avenues prometteuses pour étendre le

modèle standard.

La réconstruction des quantités de mouvement des particules chargées à LHCb nécessite une

connaissance précise du champ magnétique de l’aimant dipolaire de l’expérience. Le dévelop-

pement d’une nouvelle carte du champ magnétique pour la troisième période d’exploitation

du LHC est également présenté dans cette thèse.

Mots-clés : physique des particules, LHCb, LHC, physique des saveurs, FCNC, désintégrations

radiatives, polarisation du photon, analyse d’amplitudes, carte du champ magnétique

v





Zusammenfassung

Allen physikalischen Vorgängen liegen Wechselwirkungen von Elementarteilchen zugrunde.

Das Standardmodell der Teilchenphysik (SM) umfasst drei der vier bekannten fundamen-

talen Wechselwirkungen und alle bekannten Elementarteilchen. Die Übereinstimmung der

Vorhersagen des SM zum Ablauf von physikalischen Vorgängen mit Messergebnissen ist in

verschiedensten Prozessen fast flächendeckend bestätigt. Um die verbleibenden Lücken in der

Beschreibung von Naturprozessen zu schliessen, oder um bislang unbeobachtete Phänomene,

die ausserhalb des Geltungsbereichs des SM liegen, zu beschreiben, suchen Physiker nach

Erweiterungen des SM. Das Auffinden und die genaue Charakterisierung von Vorgängen, bei

denen Messergebnisse von SM-Vorhersagen abweichen, trägt wesentlich zur Entwicklung

solcher Erweiterungen bei.

FCNC (flavour-changing neutral current)-Prozesse sind vielversprechende Kandidaten für

solch abweichende Vorgänge, da zu ihrer Beschreibung im SM Schleifen virtueller Teilchen nö-

tig sind. Neue Physik (Elementarteilchen oder Wechselwirkungen, die nicht im SM enthalten

sind), die erst bei Energieskalen direkt beobachtbar wird, die deutlich über der des relevanten

FCNC-Prozesses liegen, kann möglicherweise trotzdem in diesen Schleifen auftauchen. In

dieser Arbeit wird eine solche Präzisionsmessung durchgeführt. Sie betrifft die Polarisierung

des Photons in b→ sγ-Übergängen. FCNC-Prozesse können im SM nur durch die schwache

Wechselwirkung stattfinden, welche die Paritätserhaltung maximal verletzt. Daher sind Photo-

nen in b→ sγ-Übergängen fast ausschliesslich linkshändig polarisiert. Neue Physik mit einer

Chiralitätsstruktur, die von der der schwachen Wechselwirkung abweicht, könnte den Anteil

an rechtshändigen Photonen steigern. Messungen der Zerfallsrate von B → Xsγ- und anderen

Strahlungszerfällen von b-Hadronen sowie von B 0 → K ∗0e+e−-Zerfällen mit niedrigem q2

beschränken den Wert des Polarisierungsparameters λγ. In Λb →Λγ-Zerfällen wurde er direkt

gemessen. Die Messresultate sind mit der SM-Vorhersage vereinbar. Die Asymmetrie von

Photonen in B+→ K +π−π+γ-Zerfällen zeigt ihre Polarisierung, λγ ist also ungleich null. Um

den Wert von λγ in solchen Zerfällen zu messen ist jedoch eine Amplitudenanalyse notwendig,

die in dieser Arbeit durchgeführt wird. Dazu werden Daten untersucht, die in den ersten

beiden Runs des LHC am LHCb-Experiment aufgezeichnet wurden. Diese Messung schränkt

die Polarisierung des Photons in b→ sγ-Übergängen weiter ein und trägt so zur Auffindung

von Hinweisen zur Erweiterung des SM bei.

Das Magnetfeld des LHCb-Dipolmagneten, welches die Bahnen geladener Teilchen krümmt,

muss präzise bestimmt sein, damit die Teilchenimpulse genau gemessen werden können.

Eine neue Karte dieses Magnetfelds für Run 3 des LHC wurde im Zuge dieser Arbeit entwickelt.

Stichwörter: Teilchenphysik, LHCb, LHC, Flavour-Physik, FCNC, Strahlungszerfälle, Photon-

polarisierung, Amplitudenanalyse, Magnetfeldkarte
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Chapter 1

Introduction

In 1844, Austrian mineralogist Wilhelm Haidinger was contemplating plates of anadalusite

crystals when he observed “a flying phantom of a yellowish color” that vanished again when

he tried to focus on it [1] (translation from Ref. [2]). Haidinger continued to observe this

phenomenon in reflected light from other materials, and in the refracted light of the blue

day-time sky, and correctly concluded that his vision was sensitive to the linear polarisation

of light. The image first described by Haidinger is now known as “Haidinger’s brushes” and

consists of two perpendicularly intersecting bow-tie shaped bars of yellow and purplish-blue.

A representation of this entoptic phenomenon (like the floaters one can see against bright

monochromatic backgrounds, the origin of Haidinger’s brushes lies inside the eye itself, so

they cannot be photographed) is depicted in Figure 1.1. A seeing person who wishes to test

their own sensitivity to light polarisation may look at a white LCD screen and tilt their head, or

the screen, from side to side while alert for the appearance of a faint yellow and blue Maltese

cross-like structure. The tilting motion rotates the cross with respect to the eye, as the yellow

bar always remains perpendicular to the direction of polarisation of the light from the screen,

and thus mitigates the neural adaptation that would cause a static image to fade.

This is very cool, but what is it for? It is possible in principle to use Haidinger’s brushes for

navigation, to infer the position of the sun [4]: the yellow bars of the cross seen at two different

points in the sky lie on celestial great circles that intersect in the sun. For this to be useful,

Figure 1.1 – Haidinger’s brushes [3]. When this page is printed on A4 paper and held at arm’s length,
the image is about the same size as the entoptic phenomenon.
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Chapter 1. Introduction

however, the sun must not be visible, but the sky nonetheless light enough and its degree of

polarisation high enough to make out the faint brushes. If Haidinger’s brushes are not very

useful, though, why are they cool? Even if there is no direct, tangible benefit to knowing in

which direction the light is polarised, the knowledge itself is satisfying. It also raises questions

on the mechanism of the perception of Haidinger’s brushes, and on the origin and/or reason

for the polarisation of the light. Several sections of this work concern a question that sounds

similar to the latter, but before posing it, let us take a step back and set the scene. Or rather, if

the scene is the physical world, let us break it down into ever smaller and more fundamental

parts and processes, until we reach elementary particles and their interactions.

The Standard Model (SM) of particle physics describes the interactions of all known elementary

particles, with the exception of gravity. The gravitational force is often compared to the

Coulomb force due to their similar mathematical structure when electric charges take the place

of masses, but while the carrier particle of the Coulomb force is identified in the SM with the

photon, no experimental evidence has so far shown the existence of its gravitational analogue,

the graviton, and gravity therefore remains disconnected from the SM. Likewise outside of

the scope of the theory are observed phenomena such as neutrino masses, dark matter, dark

energy, and matter-antimatter asymmetry (the observable universe is mostly matter and

not antimatter, but both should have been produced in equal amounts in the Big Bang).

Internally, however, SM predictions agree with experimental measurements across the board.

It is therefore natural to want to extend this resoundingly successful theory to incorporate the

abovementioned phenomena. Such additions to the SM can take the form of new elementary

particles and/or interactions. These must have some connection to the known SM particles

if they are to affect the observable universe, and if nature is not fully described by the SM,

some deviations from SM predictions ought to arise from the new physics. Correspondingly, if

a measurement differs from its SM prediction, it offers a clue to the nature of the necessary

extension of the SM. Precision measurements of SM parameters present a way to suss out the

weak points of the theory. One such parameter is the photon polarisation parameter in the

transition of a bottom quark to a strange quark and a photon (charge-parity conjugation is

implied throughout this document except where stated otherwise). Photons can have one of

two polarisation states, but due to a quirk of the SM which will be elaborated in Chapter 2, this

transition almost exclusively produces photons of the same single polarisation. Human vision

cannot detect this polarisation for many reasons, the least of which is that it is in the circular

and not the linear basis, so the measurements must be made at particle physics experiments.

The photon polarisation in b→ sγ decays has been constrained through measurements of

mixing-induced CP asymmetries in radiative decays of B 0 and B 0
s mesons [5–8] and through

the angular analysis of B 0 → K ∗0e+e− decays at invariant masses of the electron pair low

enough for the decay to be dominated by an intermediate virtual photon [9].

In 2014, the LHCb collaboration reported the first observation of the photon polarisation in

b→ sγ transitions using an analysis of B+→ K +π−π+γ decays [10]. The amplitude analysis

discussed in this work concerns the same decay channel. The 2014 measurement found a

non-zero up-down asymmetry of the photon direction with respect to the hadronic decay

2



plane in the Kππ rest frame. This asymmetry is proportional to the photon polarisation

parameter λγ [11] (see also Chapter 2), but the determination of the proportionality coefficient

requires a comprehensive model of the hadronic part of the decay. This decay mode was

studied with a Dalitz analysis to obtain information on the content of the hadronic system

and the relative importance of the different decay channels [12]. A method to model the full

decay including the angular distributions of the final-state particles in order to measure the

photon polarisation parameter by means of an amplitude analysis was proposed in 2019 [13].

The LHCb collaboration reported the strongest direct constraint of the photon polarisation

parameter αγ from an angular analysis of Λ0
b → Λ0

(→ pπ
)
γ decays in 2022 [14]. As far as

the theoretical description of the quark transition b→ sγ is concerned, the definition of αγ
is the same as that of the parameter λγ used in this work, but the two parameters differ in

the hadronic corrections required by and the uncertainties associated with their respective

hadron decays. When hadronic corrections are neglected, the value predicted at leading order

by the SM for both αγ and λγ is (1−|r |2)/(1+|r |2) where r is the ratio of the quark masses

ms/mb . The measurement in Ref. [14] of αγ = 0.82+0.17
−0.26

+0.04
−0.13, where the first uncertainty is

statistical and the second systematic, is consistent with the SM expectation. The amplitude

analysis of B+→ K +π−π+γ decays proposed in Ref. [13] is sensitive to λγ with an expected

statistical uncertainty of 0.014 (0.009) for a sample of 14000 (70000) B+→ K +π−π+γ events.

The implementation of this method discussed in this work is based on a sample of about

35000 events from data recorded by the LHCb experiment in 2011, 2012, 2015, 2016, 2017, and

2018, so the statistical uncertainty on λγ in this measurement is expected to be significantly

lower than that on αγ in the measurement in Ref. [14].

This document is structured as follows: In Chapter 2, the theory of the amplitude analysis

of B+→ K +π−π+γ decays is motivated. Chapter 3 describes the LHCb detector. Chapter 4

is a detour through the magnetic field map of the LHCb experiment. Chapter 5 returns to

the amplitude analysis by describing the selection and B mass fit of the data samples. The

amplitude analysis is detailed and its results are discussed in Chapter 6. Chapter 7 concludes

the thesis.
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Chapter 2

Theory

2.1 The Standard Model of particle physics

In the first year of our education towards a degree in physics, we learn how to derive the

equations of motion for a physical system governed by Newtonian mechanics from Newton’s

laws. Then, in the second or third year, we are introduced to an alternative method of deriving

the same equations of motion that is compelling in its elegance: the Lagrangian method. The

Lagrangian, named after Italian-French mathematician and physicist Joseph-Louis Lagrange,

is defined as

L = T −V , (2.1)

where T is the kinetic and V the potential energy. Their expressions are derived from the

properties of the physical system under study. The equations of motion are obtained from the

Lagrangian using the Euler-Lagrange equations

d

dt

(
∂L

∂q̇

)
= ∂L

∂q
, (2.2)

where t is the time and q are the generalised coordinates of the system with their time deriva-

tives q̇ . These yield the same equations of motion as Newton’s laws, but their derivation is

usually simpler and more succinct since the Lagrangian method does not require the enu-

meration of all the forces that are or can be at play in the physical system. It is not only for its

efficiency or aesthetic value that we learn to appreciate this alternative approach, however:

when those of us who long to get more familiar with the infinities of the universe, be they large

or small, tackle quantum field theories, we find familiar mathematical constructs.

The Lagrangian density of the Standard Model of particle physics (SM) in one of its simplest

forms, often reproduced on T-shirts, coffee mugs, and other basic necessities in a physicist’s
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Chapter 2. Theory

life, reads as follows:

L =− 1

4
FµνFµν

+ i ψ̄ /Dψ

+ψi yi jψ jφ+h.c.

+ ∣∣Dµφ
∣∣2 −V (φ) .

(2.3)

Compact as it is, it conceals considerable complexity within its notation. Fµν stands for the

vector field strength tensors of the photon, the gluon, and the weak bosons. The first term,

therefore, describes the dynamics of those vector bosons and their interactions with each

other (and with themselves). In the second term, ψ stands for the fermion fields, and D for

their covariant derivatives (the slash means that they are contracted with the gamma matrices).

Both the fermion dynamics and their interactions with the vector bosons are contained in

these three symbols. Indeed, they encode such a diversity of processes that all those described

later in this work are, at first order, derived from this second term. The third term describes the

interaction of the fermions with the Higgs boson field, which gives them their masses. Finally,

the fourth and fifth terms are again free of fermion fields: the fourth is the kinetic term of the

Higgs boson, the only known fundamental scalar, and its interactions with the massive vector

bosons. The fifth term is the Higgs potential, often likened to a Mexican hat, which allows for

Higgs self-interactions.

The elementary particles of the SM are referred to as fermions and bosons grouping them

by their spin, which is half-integer for fermions and integer for bosons. With this and only

this distinction, there exist two elementary particles in the Standard Model. With the further

distinction between vector (spin 1) and scalar (spin 0) bosons, there are three. The fermions

come in two families: quarks and leptons. There are three generations of each family, and

each generation has two components. For the quarks, these components are the up-type

and down-type quarks. For the leptons, the components are the charged leptons and the

neutrinos. Of the vector bosons, we distinguish the gluon, the W and Z bosons, and the

photon. This brings the count of elementary particles up to seventeen: four vector bosons, one

scalar boson, six quarks and six leptons. These seventeen can be arranged into more or less

neat box configurations that conceptually stand in for the SM as a whole (another candidate

design for T-shirts and coffee mugs) and the classification up until now has the advantage

that each elementary particle has its own distinctive name, with the possible exception of

the neutrinos. The flavour basis, in which the fermions have names, is not the only way to

split the fermions into three groups (generations). The mass basis is a notable alternative,

but changing the basis does not change the dimension, i.e. the number of groups. Still, we

do not need to stop counting elementary particles here: most of the particles on the list

of seventeen have a distinct antiparticle. Additionally, any particle with nonzero spin has

two (for fermions and massless vector bosons) or three (for massive vector bosons) possible

polarisation states. Finally, the quarks and gluons have colour charges: quarks can be red, blue,
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2.1. The Standard Model of particle physics

or green (antiquarks can be anti-blue, anti-red, or anti-green) and gluons combine colour

and anti-colour into nine charge states. One of those charge states is sterile, which means

that it does not couple to any SM fields, and can therefore neither intervene in any detectable

process, nor be detected by itself. Excluding sterile particles, the highest number of elementary

particles we can arrive at for the SM is 118.

These particles enter bound states (a count of the number of composite SM particles will not

be attempted here) scatter off each other, transform into one another, and interact in various

other ways. The probabilities and dynamics of these interactions can be calculated using the

Lagrangian density given in Eq. 2.3.

7



Chapter 2. Theory

2.2 S-matrix elements in a hurry

Let us attempt a fast-tracked motivation of the calculation of the probability amplitudes we

will soon need to use. No amount of mathematical rigorousness will even be claimed to be

attempted in what follows, and sensitive readers, who do not need this motivation anyway,

may wish to skip to Section 2.3.

Given an initial state i , we wish to calculate the probability of arriving at the final state f .

Putting the f into a bra and the i into a ket, the probability is Pi→ f = |out〈 f |S|i 〉in|2 (in bra-

ket notation, it is customary to read from right to left). The relation of a set of final states

{| f 〉} to a set of initial states {|i 〉} is described, in scattering theory, using the S-matrix. The

operator which transforms an asymptotic “in-state” |i 〉in at t =−∞ to an asymptotic “out-state”

|i 〉out = S|i 〉in at t =∞ is also known as S: the S-matrix is a representation of this operator in

the basis of states mentioned above, i.e.

S f i = out〈 f |S|i 〉in . (2.4)

The interesting part of the S-matrix is the one where f 6= i , that is, where something changes

or happens. To this end, S can be written as

S = 1+2i T , (2.5)

where the operator T describes the interaction and the factor 2i is added for convenience.

To calculate T , we need to bring the states |i 〉 and 〈 f | from their far-infinite times to a moment

where some interaction can take place. The time-evolution of the states is governed by the

time-dependent Schrödinger equation with the operator Ĥ for the Hamiltonian, which can be

obtained from the Lagrangian with a Legendre transformation

H = ∂L

∂q̇
q̇ −L ,

so that the time-dependent Schrödinger equation is

i~∂t |Ψ〉 = Ĥ |Ψ〉 .

Since all mathematical rigorousness is abandoned, this differential equation is easily solved:

|Ψ(t1)〉 = e−i Ĥ(t1−t0)/~|Ψ(t0)〉 .

We can split Ĥ into a “free” part and an “interaction” part:

Ĥ = Ĥ0 + Ĥint .
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2.2. S-matrix elements in a hurry

The free part Ĥ0 describes a world where no interactions between fields take place, the number

of particles always remains constant, and states do not change as they evolve. It turns out that

this free world is the one where we can cleanly define the in- and out-states, so that they are

not always interacting and changing. This is what is meant when they are called asymptotic.

The point is now to evolve the asymptotic “free” state |i 〉 to current time, briefly switch on the

interaction Ĥint, and then evolve the resulting “interacted” state according to the free theory

to an asymptotic out-state and see whether (or how much) it matches state f . The evolution

of an asymptotic state, which is an eigenstate of the time-independent Schrödinger equation

Ĥ0|Ψ〉 = EΨ|Ψ〉 ,

is just a phase e−i Ĥ0t/~, which will cancel by conservation of energy when the interacted state

is evolved to an out-state again. Similarly to the time evolution, the interaction involves

e−i Ĥintt/~, but since we only switch it on for a short time ∆t , we can expand the exponential to

first order in ∆t :

e−i Ĥintt/~ = 1− i Ĥint∆t +O (∆t 2) .

Putting it all together, out〈 f |i 〉in = 〈 f |S|i 〉 ≈ 〈 f |1− i Ĥint|i 〉 and we can identify the transition

matrix element Ti f with the amplitude 〈 f |Ĥint|i 〉 where we have introduced natural units

~ = c = 1 and where any coefficients dropped or added are swept under the rug of this not

being a real derivation. The sensitive reader may now resume.
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2.3 The photon polarisation in B → Kππγ decays

In order to simplify the notation, we will only refer to B− mesons (which contain a b quark) in

the discussion that follows, although the results will apply just as well, after applying charge-

parity conjugation, to B+ mesons (which contain a b quark). B− mesons are pseudoscalar

particles, which means that their total spin J is 0 (the “pseudo” refers to the fact that, unlike

true scalars, they have negative parity). In this work, we examine decays of these mesons into

a kaonic resonance K −
res and a photon. The K −

res then decays to give three charged hadrons K −,

π+, and π− in the final state. These decays are interesting because of their flavour-changing

neutral current (FCNC) process of a bottom quark transitioning to a strange quark and a

photon. In the SM, this transition can only happen through a loop such as the one shown

�W−

W−

γ

u, c, tb s

Figure 2.1 – Feynman diagram of a FCNC b→ sγ transition through a weak loop [15].

in Figure 2.1. In the B− rest frame, the K −
res and γ have equal and opposite momenta, and

the total orbital angular momentum~L of the system is the sum of the two daughters’ orbital

angular momenta, so~L =~rγ×~pγ+~rK −
res
×~pK −

res
= (~rγ−~rK −

res
)×~pγ is perpendicular to the photon

momentum ~pγ (and the K −
res momentum ~pK −

res
). Defining the z axis parallel to these momenta,

the projection of ~L on the z axis is zero. Since the B− has spin 0, conservation of angular

momentum requires that the spin projections of the K −
res and the γ on the z axis be equal

in magnitude and opposite in sign. The photon is a vector boson (spin 1), but because it is

massless, it has no spin 0 projection. There are two allowed configurations: the photon spin

can be aligned with its momentum (“right-handed”) or anti-aligned (“left-handed”). The K −
res

must consequently have spin projection ±1 in the opposite direction.

The aim of the amplitude analysis discussed in this work is to measure the relative proportions

of these two configurations in B−→ K −π+π−γ decays. The SM predicts that the photon is

mostly left-handed. This is due to an interesting property of the weak interaction, which in

the SM mediates FCNC processes such as the b→ sγ transition at the heart of the B−→ K −
resγ

decay: the weak interaction couples only to left-chiral particles and right-chiral antiparticles.

For b→ sγ, by a similar argument as for B−→ K −
resγ, the spin 1 of the photon and the spin 1

2 of

the s quark must be in opposite directions in order to sum to the spin 1
2 of the inital-state b.

This implies opposite spins for the b and s quarks. The relationship between helicity (spin

projection on momentum) and chirality (how a particle transforms between inertial reference

frames) is mathematically complex; both attributes can be described using “handedness,” but

one can only entirely identify right-handed chirality with right-handed helicity for massless

particles. If a particle is massive, there always exists a reference frame where its helicity is
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2.3. The photon polarisation in B → Kππγ decays

“opposite” its chirality. For the present purposes, let it suffice to say that flipping a quark’s

chirality “costs” a factor equal to the quark’s mass, as it is the mass term that mixes the two

chiralities. Since ms
mb

≈ 0.02, right-handed photons are suppressed in the SM with respect to

left-handed photons in b→ sγ transitions.

It is worth pointing out again that this suppression is due to two factors in the SM: firstly, only

the weak interaction can mediate FCNC transitions, and secondly, the weak interaction is

maximally parity-violating, i.e. it couples exclusively to particles of a specific chirality. The

other fundamental forces of the SM do not have this property. One can thus easily imagine a

non-SM interaction which does not violate parity, or which violates parity in a way different

from that of the weak interaction. A contribution from such an interaction to the b → sγ

process could introduce a shift in the relative probabilities of the two photon polarisations

with respect to the SM prediction. In probing for New Physics (NP), it is convenient to describe

b→ sγ without explicitly involving the SM interactions, and instead grouping possible contri-

butions to the process based on their mathematical structure, which reflects their physical

properties. The method chosen to achieve this is the operator product expansion (OPE) where

the long-distance part of a process, like the initial and final states, is contained in the matrix

elements of the effective operators, while the short-distance physics, like the interactions

that mediate the transition, is described by coefficients, known as Wilson coefficients, that

determine the relative importance of the operators.

The number of local operators that contribute to a b→ sγ transition is limited. They include

the current-current operators O1,2, the QCD penguin operators O3−6, the electromagnetic

penguin operator O7, and the chromomagnetic penguin operator O8.

The effective Hamiltonian [16] is built from these operators and their Wilson coefficients:

Heff =−4GFp
2

V ∗
t sVtb

8∑
i=1

Ci (µ)Oi (µ) (2.6)

where GF is the Fermi constant, Vt s and Vtb are elements of the Cabbibo-Kobayashi-Maskawa

(CKM) matrix, which links the quarks’ mass and flavour eigenstates, and µ is the energy scale

at which the OPE is performed. While µ does not show up in the expressions for the local

operators, the scale chosen influences their form, e.g. through the inclusion or omission of

some quark flavours.

The Wilson coefficients Ci (µ) are calculated from perturbation theory. In order to remove

a dependence of these calculations on the regularisation scheme, one defines effective co-

efficients C eff
7 (µ) and C eff

8 (µ) which are the sum of C7(µ) or C8(µ) respectively and a linear

combination of the coefficients C1(µ), . . . ,C6(µ) [17].

The main contribution to b → sγ comes from the matrix elements of the electromagnetic

penguin operator O7, which include the interaction shown in Figure 2.1. The electromagnetic
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penguin operator

O7 = e

16π2 mb sσµνb Fµν (2.7)

couples the s and b quarks to the electromagnetic field tensor Fµν through the dipole tensor

σµν which can be written as a commutator of gamma matrixes: σµν = i
2 [γµ,γν]. O7 can be

split by inserting a factor 1 in the form of the sum of two operators

1 = 1−γ5

2
+ 1+γ5

2
, (2.8)

which project the b quark onto its left-chiral and right-chiral component, respectively. We

recall that the b chirality is directly linked to the photon helicity, so this amounts to splitting

O7 by the photon polarisation:

O (′)
7 = e

16π2 mb sσµν
1∓γ5

2
b Fµν , (2.9)

where the unprimed or primed operator describes the transition to a left-handed (L) or a right-

handed (R) photon, respectively. The factor mb could be absorbed into the Wilson coefficients

but is here retained to simplify the comparison with the SM expectation, and we can define the

Wilson coefficient C ′
7 for just the operator O ′

7, while C7 belongs to O7. We obtain the transition

amplitudes for the decays B−→ K −
resγL and B−→ K −

resγR from the effective Hamiltonian:

AL(B−→ K −
resγL) = 〈K −

resγL|Heff|B−〉 ,

AR(B−→ K −
resγR) = 〈K −

resγR|Heff|B−〉 .
(2.10)

The operators O ′
7 and O7 can be transformed into each other by a parity transformation and a

rotation. It follows (see Ref. [18] for details) that the amplitudes from just these two operators,

〈K −
resγL|O7|B−〉 and 〈K −

resγR|O ′
7|B−〉, are proportional to each other with a proportionality

factor Pres(−1)Jres−1, where Pres and Jres are the parity and spin of the kaonic resonance Kres,

respectively. Note that the “crossed” terms 〈K −
resγL|O ′

7|B−〉 and 〈K −
resγR|O7|B−〉 are 0. The

proportionality factor is just a sign, and thus the ratio of the Wilson coefficients
C ′

7
C7

is equal, up

to a sign, to ms
mb

in the SM.

What about the other operators in Heff, though? We have so far neglected to make a proper

distinction between the processes b→ sγ and B−→ K −
resγ. Since quarks can only be observed

in bound states, the latter decay is what we are actually dealing with. Naïvely, it differs

from b → sγ only by the presence of a u quark, called “spectator” quark because it does

not participate in the crucial b → sγ transition. The presence of the spectator quark, or,

alternatively, the fact that B−→ K −
resγ is really a hadron decay and not a quark decay, rather

complicates the picture: corrections from QCD, notorious for being the most difficult of

the SM interactions to calculate predictions from, must be taken into account. Thus, the

decay amplitudes in Eq. 2.10 contain the dominant terms from O7 and O ′
7 as well as hadronic

12
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corrections hL and hR [19]:

〈K −
resγL|Heff|B−〉 =−4GFp

2
VtbV ∗

t sC
eff
7 gres(0)+hL ,

〈K −
resγR|Heff|B−〉 =−4GFp

2
VtbV ∗

t sC
′eff
7 Pres(−1)Jres−1gres(0)+hR ,

(2.11)

where gres(0) is a hadronic form factor for the B−→ K −
resγ transition at q2 = 0.

While we are on the subject of hadrons, let us not forget that K −
res is not in the final state of

our B → Kππγ decay: its decay into K −π+π− must also be described. That not enough, our

generic “kaonic resonance” can be one of many resonances with different spin and decay

properties. This abundance of decay modes will actually turn out to be crucial to the sensitivity

of the B → Kππγ decay to the photon polarisation. The other crucial factor is the presence of

three hadrons in the final state.

The differential decay rate for the full decay can be written as [18]

dΓ(B−→ K −
res

(→ K −π+π−)
γ) = ∣∣∣∣∣∑

i
AL

(
B−→ K −

res,iγL

)
AL

(
K −

res,i → K −π+π−
)∣∣∣∣∣

2

+∣∣∣∣∣∑
i

AR

(
B−→ K −

res,iγR

)
AR

(
K −

res,i → K −π+π−
)∣∣∣∣∣

2

,

(2.12)

where the sums go over all allowed kaonic resonances K −
res,i and the amplitudes from Eqs. 2.10

and 2.11 have acquired process-dependent indices in the expressions for parity, spin, hadronic

form-factor, and hadronic correction. The terms for right-handed (R) and left-handed (L)

photons are summed incoherently since they do not interfere due to the photon polarisation

being an observable quantity. The hadronic form factors, while process-dependent, are equal

for both helicities. If we neglect the small hadronic corrections hL and hR (see Ref. [20] for a

discussion of the magnitude of these long-distance QCD corrections), we can pull the Wilson

coefficients C7 and C ′
7 out of the sums. That way, the expression for the differential decay rate

can show a dependence on the photon polarisation parameter

λγ =
|C7|2 −|C ′

7|2
|C7|2 +|C ′

7|2
. (2.13)

The hadronic decay amplitudes are described in the isobar formalism as consecutive two-

body decays such as K −
res,i → K −R j

(→π+π−)
or K −

res,i → R j
(→ K −π+)

π−, introducing further

intermediate resonances R j of two final-state hadrons. Each such decay chain is treated as a

separate “amplitude” and we can write

dΓ∝ 1+λγ
2

∣∣∣∑
k

ak e iφk Ak,L

∣∣∣2 + 1−λγ
2

∣∣∣∑
k

ak e iφk Ak,R

∣∣∣2
. (2.14)
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The new index k runs over the decay chains. The relative magnitudes and phases of the ampli-

tudes are given by ak and φk respectively. This leaves the task of describing the “normalised”

amplitudes Ak,L and Ak,R. Dropping constant factors that are equal between the left-handed

and right-handed terms, the weak decay amplitude reduces to a spin factor Si ,L/R that absorbs

the relative sign Pres,i (−1)Jres,i−1 and a normalised Blatt-Weisskopf coefficient BLB [21] that

depends on the relative angular momentum LB and the breakup momentum qB (the absolute

value of the three-momentum of the K −
res,i or the photon in the B− rest frame). The strong

decays are described by resonance propagators T k
i and T k

j for the three- and two-hadron

resonances K −
res,i and R j in the decay chain, respectively, and spin factors Sk

i j ,L/R that depend

on the resonances’ spin structures:

Ak,L/R(x) = BLB (qB (x),0)Si ,L/R(x)T k
i (x)T k

j (x)Sk
i j ,L/R(x) . (2.15)

These expressions depend on the four-momenta of the final-state particles, x . It is worth

noting that the magnitudes ak and phases φk are presumed to be equal for the left-handed

and right-handed cases, as the strong decays of the hadronic resonances are invariant under

parity transformations. The difference between Ak,L and Ak,R lies in the spin factors Si ,L/R

and Sk
i j ,L/R(x). Interferences between decay channels with different resonances ensure that λγ

does not cancel in the differential decay rate, and thus, that the B → Kππγ decay is sensitive

to λγ.

Let us now return to the matter of charge-parity conjugation, that is, to B+ decays. Following

the same argument structure as above, we can show that the photon emitted in B+→ K +π−π+γ
decays should be predominantly right-handed in the SM, since now the quark transition in

question is b→ sγ, and the weak interaction requires the b and s anti-quarks to be right-chiral.

By changing the sign of the charges and three-momenta of all the particles involved, we can

treat B− decays like B+ decays and thus perform a “CP-averaged” measurement.
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The LHCb spectrometer

Experimental research in the natural sciences involves testing the validity of theoretical pre-

dictions in the laboratory. Experimental particle physics is no exception. The theoretical

predictions we want to test usually come from the SM and concern the behaviour of the

members of its particle zoo. To test the validity and applicability of the SM to as complete

an extent as possible, we do not want to limit ourselves to the relatively small pool of stable

particles. Unstable particles, however, are not so easily available for observation as stable ones.

By Einstein’s famous mass-energy equivalence (E = mc2) [22], massive particles, including

unstable ones, can be created from energy.

A widely accepted fundamental law of the universe is the conservation of (total) energy: energy

can neither be created nor destroyed, cannot be spontaneously generated or vanish. Energy -

including, by the above equivalence, matter - can only be transformed. Particles can liberate

some or all of their energy for transformation by decaying or by interacting with other particles.

Such a process has an initial state, usually one (in the case of a decay) or two (in the case

of a collision) particles, and a final state of at least one (collision) or two (decay) particles.

The process is characterised by specifying the four-momenta of all the initial and final state

particles. Detectors are used to measure the four-momenta. Roughly speaking, high-energy

processes are interesting for particle physicists because they allow the study of a larger number

of unstable particles: a particle with mass m (rest energy mc2) can only be created in a process

where the available energy is at least mc2.

There exist natural sources of high-energy processes such as cosmic rays. In the early days of

particle physics research, interactions of cosmic rays with particles in the Earth’s atmosphere

were the primary source of experimental knowledge about the behaviour of unstable particles.

While cosmic rays are available “for free,” there are several disadvantages to their experimental

usage. The obvious disadvantages are related to their unpredictability: while we can know

the energy spectrum of cosmic rays at the detector position quite well, it is impossible to

predict when exactly the next high-energy process will occur, which kind of particle will be
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the cause, and exactly how high its energy will be. The rate of high-energy processes is also

generally so low that to record a sizeable sample of them would require a very large detection

volume, a very long recording time, or both. Man-made sources of high-energy particles,

such as (particle) accelerators, can yield much higher rates and are a much more dependable

experimental source.

The highest-energy accelerator built so far is the Large Hadron Collider (LHC) at the European

Organization for Nuclear Research, referred to as CERN (from the acronym of the French

name of its predecessor council). The LHC is a 27 km ring collider that intersects the border

between Switzerland and France near the Swiss city of Geneva. Together with its ancillary /

preparatory accelerators (often, part of the structure of the most recent biggest collider on

the site was used as the pre-accelerator and injector for the next big, or even higher-energy,

collider project), the LHC accelerates bunches of protons and/or lead ions in two beams,

clockwise and counter-clockwise, which are made to collide at several experimental points.

When two bunches collide, there can be many proton-proton (or ion-proton, or ion-ion)

collisions. In the LHC experiments, all collisions during a bunch crossing are referred to as

one “event.” The period of operation of the LHC between 2009 and 2013 is known as Run 1.

It was followed by a phase of maintenance, developments and upgrades before the second

main period of operation, Run 2, which started in 2015 and concluded in 2018. During Run 1,

proton-proton collisions at the LHC reached a centre-of-mass energy of 8 TeV. In Run 2, the

centre-of-mass energy went up to 13 TeV, and in Run 3, which started in 2022, to 13.6 TeV.

The LHCb experiment sits at one of the LHC collision points in its experimental cavern at a

depth of about 100 m (the whole LHC tunnel being underground) near the French town of

Ferney-Voltaire just across the Swiss border. The researchers of the LHCb collaboration mostly

study the physics of b and c quarks, and the detector has been designed for this purpose.

It is a single-arm forward spectrometer covering a pseudorapidity range from η = 2 up to

η = 5. “Forward” here means that it sees those particles created in the pp-collisions that

travel in the forward direction, close to the proton beam line, as opposed to those that have

most of their momentum perpendicular to the beam line. There is technically no “backward”

direction, the colliding beams being symmetric, but LHCb only covers one of the two forward

regions - otherwise it would be a double-arm forward spectrometer. The word “spectrometer”

refers to the detector’s task of measuring particle masses and momenta and their distributions

(spectra). This is achieved using multiple sub-detectors with different scopes of duties. The

description of the detector that follows refers to the configuration in Run 1 and Run 2, during

which the data used in the amplitude analysis were recorded.

A schematic view of the LHCb experiment is shown in Figure 3.1. The LHCb coordinate system

is defined such that the origin is at the interaction point (IP), where the protons or ions from

the two LHC beams are brought to collision. The z axis points from the IP into the forward

region covered by the LHCb spectrometer (towards the right in Figure 3.1). The y axis points

vertically upwards, and the horizontal x axis completes the right-handed coordinate system.

The direction of motion of particles in the LHCb acceptance towards higher values of z is
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Figure 3.1 – The LHCb detector. Particles created at the IP in the VELO on the left-hand side pass
downstream (towards the right) through the systems of sub-detectors.

called “downstream”, and the opposite direction is “upstream”. The two regions of the LHCb

cavern on either side of the spectrometer are known as A-side (for “access”, x > 0) and C-side

(for “cryo”, x < 0). Figure 3.1 is a view of the spectrometer from the C-side.

The process of detecting and reconstructing the path taken by a charged particle is known

as tracking. Charged particles leave signals as they pass through layers of tracking detectors

(trackers) with air or vacuum between them. The tracking layers are perpendicular to z and

segmented so that, for each signal, the transverse coordinates x and y can be reconstructed

at the z position of the layer. The tracking sub-detector that is closest to the IP is the Vertex

Locator (VELO). It consists of two arrays of roughly semicircular silicon-strip modules per-

pendicular to the beam, with a clearance of radius 8 mm at the centre of the circle through

which the beam passes during operation. The outer radius is 42 mm, so a VELO module looks

a bit like a Mini-CD that has been broken in half. A photograph of one of the VELO arrays

taken during assembly is shown in Figure 3.2. Each module actually covers a little more than

half of the azimuthal angle, so the two halves on each side of the beam can overlap and thus

avoid a dead zone. There are two kinds of VELO modules: one is called R-sensor because it

measures the distance of a signal to the centre with circular strips, and the other φ-sensor,

which measures the azimuthal angle with radial strips. To keep the LHC beam vacuum in-

tact, the VELO arrays, while mounted inside the vacuum pipe, are separated from the beam

vacuum by corrugated sheets of aluminium, 0.3 mm thick, that also protect the VELO from

radio-frequency beam noise. The two sides of the VELO can be retracted from the beam,
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Figure 3.2 – One half of the VELO sub-detector, with its semicircular silicon modules.

which needs a higher clearance during ramp-up, and closed again when the beams are stable.

Bringing the VELO sensors as close to the beam as possible allows high impact-parameter

resolution of tracks near the collision point.

The next tracking station is the Tracker Turicensis (TT). It is a single planar tracking station

that is 150 cm wide and 130 cm high, placed perpendicular to the beam line between the VELO

and the magnet. Downstream of the magnet are another three tracking stations, each of which

has an Inner Tracker (IT) and an Outer Tracker (OT) component. The inner region, close to

the beam pipe, requires better spatial resolution of track hits than the outer region to achieve

comparable track reconstruction efficiency and relative momentum resolution between the

two regions. This is due to the fact that the trajectories of high-momentum particles are less

affected by the magnetic field, and the fact that the number of charged particles per unit

area is highest close to the beam pipe. There are significantly more tracks per collision, on

average, that pass through the inner region, and these tracks tend to come from more energetic

particles than those in the outer region. The IT and the TT, the latter of which is much closer

to the IP where the transverse area of the LHCb acceptance is much smaller than for the

downstream tracking stations, use silicon microstrip sensors. The sensors are arranged, for

each of the four silicon tracker stations (one TT station and three IT stations), in four layers

that are rotated with respect to one another. The first and fourth layers have vertical strips,

while the two layers on the inside are rotated by +5◦ and −5◦ from the vertical around the z

axis. This configuration produces a single-hit resolution just above 50µm with silicon strip

pitches of about 200µm. The OT only needs to provide a spatial resolution of approximately

200µm, which is achieved using straw-tube detectors with an inner radius of 4.9 mm. The

straw tubes are arranged in four modules per station. Each module has two layers of tubes,

and the four modules are arranged in the same pattern of vertical – off-vertical – off-vertical –

vertical orientations as the silicon tracker stations.

The LHCb magnet is a warm dipole magnet positioned between the TT and the downstream

tracking stations [23]. Two coils sit above and below the beam line, surrounded by a 1450 ton
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Figure 4.1: Perspective view of the LHCb dipole magnet with its current and water connections
(units in mm). The interaction point lies behind the magnet.

coils with respect to the measured mechanical axis of the iron poles with tolerances of several
millimeters. As the main stress on the conductor is of thermal origin, the design choice was to
leave the pancakes of the coils free to slide upon their supports, with only one coil extremity kept
fixed on the symmetry axis, against the iron yoke, where electrical and hydraulic terminations
are located. Finite element models (TOSCA, ANSYS) have been extensively used to investigate
the coils support system with respect to the effect of the electromagnetic and thermal stresses
on the conductor, and the measured displacement of the coils during magnet operation matches
the predicted value quite well. After rolling the magnet into its nominal position, final precise
alignment of the yoke was carried out in order to follow the 3.6 mrad slope of the LHC machine
and its beam. The resolution of the alignment measurements was about 0.2 mm while the magnet
could be aligned to its nominal position with a precision of ±2 mm. Details of the measurements of
the dipole parameters are given in table 4.1. A perspective view of the magnet is given in figure 4.1.

The magnet is operated via the Magnet Control System that controls the power supply and
monitors a number of operational parameters (e.g. temperatures, voltages, water flow, mechanical
movements, etc.). A second, fully independent system, the Magnet Safety System (MSS), ensures
the safe operation and acts autonomously by enforcing a discharge of the magnet if critical param-
eters are outside the operating range. The magnet was put into operation and reached its nominal

– 12 –

Figure 3.3 – The LHCb dipole magnet, showing the constituent iron plates of the yoke and bent
pancakes of the coils. Current connections to the coils and water cooling pipes are shown, as well as
some of the yoke support structure. Distances are indicated in mm [24].

window-frame iron yoke with a wedged aperture. The predominantly vertical field bends the

trajectories of charged particles in the horizontal plane. A schematic drawing of the magnet

yoke and coils from the design stage of the magnet system is shown in Figure 3.3. Each of

the two coils is made from 15 stacked layers of trapezoidal race-track shaped “pancakes.”

Each pancake is a spiral coil made from an extruded aluminium Al-99.7 conductor with a

length of about 300 m and a square 50×50 mm2 cross-section. The conductor has a central

duct of 24 mm diameter for water cooling. The tapering sides of the pancakes are bent by

45◦ along lines with a 250 mrad angle with the symmetry axis of the trapezoid. Five triplets

of pancakes make up one coil [25]. The yoke is constructed of low-carbon steel (EN S235JR)

plates of 80 to 100 mm thickness. The horizontal (vertical) aperture of the yoke window is

parallel to the 300 mrad (250 mrad) acceptance boundaries, but with an additional 100 mm

(600 mm) clearance. Iron “shims” are added on the sides of the pole faces to increase the field

uniformity [26]. Beyond the shims, the yoke has cut-outs where the coils are mounted. The

nominal current in the conductors of 5850 A has to be multiplied by 225 to obtain the total

nominal current in each coil [27]. The field produced by the magnet is mostly vertical, with a

maximal field strength of 1.1 T and a bending power of 4 Tm. The field polarity is periodically

reversed by inverting the current direction to help cancel out detection asymmetries of charged

particles. The polarity where the y component of the field is positive is referred to as “Up”

or “MagUp” polarity, and the configuration where the y component is negative has the field

pointing down, and is therefore referred to as “Down” or “MagDown.” The bending power is

calculated by integrating the field along a path, in this case along the beam axis where the

symmetry of the magnet leads to the highest and most uniform vertical field. It gives a measure
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of the deviation of a charged particle’s trajectory as it passes through the field. This deviation

is used to measure the particle’s momentum in the bending plane. The magnetic field in the

LHCb acceptance must be precisely known to achieve accurate momentum reconstruction.

The mapping of the LHCb dipole field for Run 3 of the LHC is described in Chapter 4.

As a charged particle passes through a dielectric medium, its electric field polarises the

medium around it. If the speed vp of the charged particle exceeds the speed of light in the

medium vn = c
n , where c is the speed of light in vacuum and n ≥ 1 the refractive index of the

medium, the wave fronts caused by the depolarisation of the regions the particle has just

left interfere constructively to a conical wavefront that follows the particle, radiating light

at an angle θc to the particle direction, with cosθc = vn
vp

. This light emission is known as the

Cherenkov effect. It can be used to measure the velocity of highly energetic charged particles.

Together with measurements of the momentum and/or the energy of the particle, the mass can

be calculated, which amounts to identifying the particle type. The LHCb detector has two sub-

detectors that make use of Cherenkov light to provide particle identification (PID) information.

For a charged particle that passes through a short dielectric medium, the conical geometry of

the emitted light leads to an image of a ring on a screen or detector placed perpendicularly

to the particle trajectory. The two sub-detectors are called RICH1 and RICH2, where RICH

stands for Ring Imaging Cherenkov detectors. The RICH1 is located between the VELO and the

TT, and covers low-momentum (1−60 GeV/c) charged particles in the full LHCb acceptance,

while the RICH2 sits between the downstream tracking stations and the calorimeters and

covers high-momentum (15−100 GeV/c) charged particles in the central (forward) region of

the acceptance. Both sub-detectors use gas as the dielectric medium (radiator): RICH1 uses

C4F10, which has a refractive index of n = 1.0014 at a photon wavelength λ of 400 nm, and

RICH2 uses CF4, which has n = 1.0005 at λ= 400 nm. The Cherenkov photons are reflected

out of the LHCb acceptance by two sets of mirrors, one spherical and one flat, to segmented

photon detectors. The radius of the reconstructed ring gives the opening angle θc of the

Cherenkov cone. The PID performance of RICH1 is illustrated in Figure 3.4, where different

types of particles can be identified by their highly separable distributions in p −θc space.

The calorimeter system measures the energy of charged as well as neutral particles. There

are two basic systems: the electromagnetic calorimeter (ECAL), which measures the energies

of photons and electrons and, downstream of it, the hadronic calorimeter (HCAL), which

measures charged and neutral hadrons.

Before a particle enters the main ECAL structure, it passes through two sub-detectors that

provide PID information: the Scintillator Pad Detector (SPD) and the Preshower (PS) detector.

The SPD/PS system consists of two scintillation layers with a 15 mm lead converter plate

sandwiched between them. Electrons, charged hadrons, and photons have different signatures

in terms of the signals they leave in the SPD and PS. The SPD acts almost as a tracking station,

in the sense that charged particles leave only a minimal amount of energy as a sign of their

passage through the scintillator. Charged hadrons do not interact much in the thin lead

converter plate so that they pass through the PS (and the ECAL) with no more than those
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Figure 3.4 – Reconstructed momentum and Cherenkov angle in RICH1 for isolated tracks [28].

minimal energy deposit signals. Electrons, however, are induced by the lead plate to produce

a cascade of secondary particles, each with a fraction of the electron’s energy. The signal of

such an electromagnetic (EM) shower in the PS is then much higher than the minimal signal

left by a charged hadron. Photons have no electric charge and therefore leave no signal in

the SPD, but like electrons, they shower in the lead plate. The EM showers of electrons and

photons proceed into the ECAL proper, which is a “shashlik” structure of alternating lead

absorber plates and scintillator tiles. Sixty-six such lead-scintillator layers make up one 42 cm

long ECAL module. The length of the modules was chosen so that all EM showers are entirely

contained within the ECAL, for optimal energy resolution. The transverse size of the square

module faces is 40.4 mm in the inner region of the ECAL close to the beam line, 60.6 mm in

the middle region, and 121.2 mm in the outer region. The SPD and PS scintillator pad sizes

match those of the ECAL. The lateral segmentation of the sub-detectors is finer towards the

beam line due to the much higher hit frequency per area in the central region. Neutral pions

decay into pairs of photons which induce EM showers in the ECAL. Besides localising the

energy deposits in the transverse plane, the lateral segmentation of the sub-detectors allows

for some discrimination power between single photons and pairs of photons from neutral

pions through comparison of the transverse shower distributions, see also Section 5.1.

Like the ECAL, the HCAL consists of layers of absorbers and scintillators, but unlike the ECAL,

these layers are arranged parallel to and not perpendicular to the beam axis. The HCAL uses

iron as the absorber material. Its transverse cell size is 131.3 mm in the inner region and

262.6 mm in the outer region. Hadrons are less likely to produce cascading particle showers

than electrons and photons, which is why the HCAL is positioned after the ECAL. A hadronic

shower has an EM component and a hadronic component, the latter coming from strong

interactions with the shower medium. The variable relative energy loss through EM and strong

processes makes it difficult to resolve with low uncertainty the energy of a hadronic shower.

The required HCAL energy resolution is only moderate compared to the required resolution in
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Figure 3.5 – The LHCb calorimeter system [29]. One half of the HCAL, PS and SPD are shown in open
position, away from the beam axis.

the ECAL, however. Nevertheless, with a depth of 1.2 m, the HCAL is much longer than the

ECAL.

In both ECAL and HCAL, the light produced by charged particles in the scintillators is read

out using wavelength-shifting fibres and photodetectors. The light yield is proportional to

the energy deposited in the scintillator. Figure 3.5 is a schematic view of the calorimeter

sub-detectors, showing the different granularities of the lateral segmentation.

The electron’s heavier cousin, the muon, does not induce any shower in the ECAL, and in-

deed leaves only the minimal energy deposits of a charged particle due to ionisation in the

calorimeter sub-detectors (as well as in the tracking stations). This qualitative difference

between electrons and muons comes from the fact that the muon mass is ~200 times that

of the electron. An electron shower starts with the emission of a high-energy photon due

to Bremsstrahlung in the electric field of a nucleus. The energy loss from Bremsstrahlung

is inversely proportional to the squared mass, which explains why muons can pass through

the LHCb spectrometer without significant energy loss. This is a boon when it comes to the

identification of this particle type: at the downstream end of the spectrometer sit the muon

stations, which are multi-wire proportional chambers, interspersed with 80 cm thick iron ab-

sorber plates. One extra muon station without iron absorber sits in between the downstream

tracker and the ECAL, where it improves the transverse momentum resolution of the muon
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system. In its central region, the radiation rate is so high that it would degrade the life-time

of a wire chamber system to an unacceptable extent, so triple-GEM (gas electron multiplier)

detectors are used there instead. Muons with a momentum above 3 GeV/c traverse at least the

first three muon stations, while those above 6 GeV/c traverse all five. The PID efficiency for

muons is around 97% for a 1−3% probability that charged pions are mistaken for muons.

The LHC delivered pp-collisions at a rate of 40 MHz. It is impractical to store all the signals

collected in the many sub-systems of the LHCb detector at this high rate: the disk size of one

such event is about 50 kB, and both bandwidth and storage limitations preclude this sort of

greedy data collection. Only a small fraction of collisions lead to processes that are of interest

to the LHCb physics programme anyway, such as bb pair production. And in only 15% of such

cases are all the decay products of at least one of the beauty hadrons contained within the

LHCb acceptance [30]. Interesting events should be stored for analysis, while the rest can be

discarded: this is the task of the LHCb trigger system. It consists of three stages of increasing

complexity in the selection requirements and decreasing pass rates. The L0 (level 0) trigger is

hardware-based and selects events with high pT /ET signatures from the calorimeter system

and the muon stations. Two subsequent high-level trigger stages, HLT1 and HLT2, perform

(partial) event reconstruction. The trigger architecture was upgraded for Run 2, and notably,

full event reconstruction was implemented in HLT2. The trigger system yielded event rates of

5 kHz in Run 1 [31] and 12.5 kHz in Run 2 [32].
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Chapter 4

The LHCb magnetic field map

A precise knowledge of the magnetic field generated by the LHCb dipole is crucial for accurate

reconstruction of the momenta of charged particles, which are deflected by the Lorentz force.

The magnetic field strength in the detector region and its environment is also important

from the perspectives of health and safety as well as detector operation: magnetic fields

can disturb currents in electronic components of the detector. Specifically, the operation of

photomultiplier tubes in the RICH sub-detectors requires that they be shielded from fields

with strengths above the mT level [33]. There are, broadly, two ways to obtain quantitative

information about the magnetic field. One uses simulations of the magnet and its environment.

The other consists in measuring the field using Hall probes. These two sources of information

are discussed in the following.

Hall probes are sensors that measure the magnetic field strength perpendicular to a thin strip

of conductor thanks to the Hall effect. A magnetic field causes a deviation of the current in the

conductor from a straight path to one side of the strip, resulting in a voltage drop between

the two sides of the strip that is proportional to the magnetic field strength perpendicular

to the conductor. Three such sensors arranged mutually perpendicular to each other allow

the measurement of three perpendicular components of the magnetic field. In the following,

the term “Hall probe” refers to such a configuration of three Hall sensors. For a map of the

field in space, both the orientation and the location of the Hall probe with respect to some

reference coordinate system must be known, which generally requires careful positioning as

well as monitoring of the probe and its support apparatus. The three field components are

usually interpreted as a measurement of the three-vector ~B at some point in space~x, but since

the sensors have nonzero width and cannot intersect, this space-vector~x is an approximation;

in reality, the three sensors, while placed close together, measure their field components at

slightly different points in space, and the measurements are technically averages over the

surface of the conductor strip. The accuracy of the measurement of ~B(~x) also depends on the

accuracy of the measured location and orientation of the probe, and on the extent to which the

three sensors’ orientations overlap (in the ideal case of perfectly perpendicular sensors, there
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is no overlap). Another technical difficulty in the field measurements comes from the fact that

the LHCb field map must cover a large volume (the region in the acceptance between z = 0

and z = 12 m alone has a volume of over 45 m3) with high granularity, which would require

field measurements at thousands of points in space, some of which are hard to access and do

not permit the installation of a measurement apparatus. It is therefore impractical to build a

field map from measurements alone.

The magnetic field generated by a current in a coil and shaped by the surrounding materials

can be calculated from Maxwell’s equations. The equations’ solutions determine the field at

every point in space, so this approach is not hampered by measurement logistics. For a set-up

as complex as the LHCb dipole and its environment, a discretised solution of the systems of

partial differential equations is preferable to the intractibility of an analytic approach. Discreti-

sation, however, means that the resulting magnetic field values are necessarily approximations

of the exact analytic solution, and while the discrepancy between the two can be reduced by

decreasing the size of the discretisation steps, doing so will exhaust the available computing

power before the step size is infinitesimal. The other limitation of the simulation approach lies

in the correspondence between the simulation model and its physical counterpart, in this case

the LHCb dipole and its environment. The model should be comprehensive and the positions,

sizes, orientations, and magnetic properties of all its parts should match reality as precisely as

possible, which is a manifestation of a rather poetic paradox: the most, the only accurate map

of a territory is the territory itself, but as a map, it is useless [34]. In the present case, however,

this cartographic problem illustrates the main virtue of field measurements, which is that they

represent the magnetic field as it is in situ, without being affected by any shortcomings of

modelling. Field values from both measurements and simulation are therefore used in concert

to produce a map of the magnetic field of the LHCb dipole.
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4.1 Overview of LHCb magnetic field maps

In the LHCb software, the field map is defined on a 10×10×10 cm3 cubic grid that spans the

volume where −4 m ≤ x ≤ 4 m, −4 m ≤ y ≤ 4 m, and 0.5 m ≤ z ≤ 14 m. The map is split into

quadrants by the x = 0 and y = 0 planes of the LHCb coordinate system. In the following, the

term “map” shall refer to a full set of maps for all four quadrants.

The first map, produced in 2010 [35], was based on field measurements taken in 2005 [27]

and a simulation of one quadrant of a model of the LHCb detector (the approximate mirror

symmetry of the LHCb experiment with respect to the horizontal and vertical planes along

the z axis was presumed exact), which included a description of the magnet coils and yoke as

well as the iron absorbers in the HCAL and the muon stations, and the magnetic shieldings of

the RICH1 and RICH2 sub-detectors. The field differences (residuals) between measured and

simulated field values were parametrised using polynomials of order up to four in 11 overlap-

ping regions along the z axis and in all four quadrants simultaneously. These parametrised

corrections were then added to the values obtained from the field simulations at the grid

points. The simulated field values at the measurement positions were extrapolated from the

grid using the ROOT fit function TMultiDimFit [36] with polynomials of order 2. The residual

parametrisations of the three field components are independent of each other. Two sets of

residual parametrisations were obtained for the two magnet polarisations.

Subsequent field maps were produced in 2011 [37] and 2014 [38] and based on the parametrised

2010 map and on field measurements taken inside the LHCb acceptance in 2011 and 2014,

respectively. In both map updates, the previous field map was shifted, rotated, and scaled to

minimise the discrepancies between the new field measurements and the map. The shifts

were of the order of 1 cm and the rotations were of the order of a few mrad. The scale factors

differed from 1 at the sub-permill level.

For the update of the magnetic field map for Run 3 of the LHC, it was decided to rebuild

the map from scratch by rerunning the simulation after adjusting the simulation model.

Several methods of incorporating the results of a new field measurement campaign, which

was undertaken in January 2021, were tested. The measurement data and comparisons to the

simulated field values are discussed in Section 4.2. The simulation model and the adjustments

made to it are described in Section 4.3. The interpolation of magnetic field values from a

discrete three-dimensional grid to points anywhere in the volume used throughout these

studies is described in Section 4.4. The field map chosen for Run 3 and its validation on

detector data are described in Section 4.5.
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4.2 January 2021 magnetic field map measurements

Field measurements were recorded in the LHCb cavern between January 27th and January

29th, 2021. To record the field values, 37 Hall probes were mounted on a support bar with

nominal distances of 57 mm between two probes. At two of these nominal probe slots were

placed reflective targets for survey measurements of the bar’s position in space. Survey targets

were also placed on two smaller bars installed perpendicularly to the bar, close to its ends.

The bar was installed parallel to the x axis on a vertical adjustment slide, which itself was

mounted on a rail to allow shifting the position of the bar in the z direction. Figure 4.1 shows a

photograph of the bar in the lowest y position on the vertical adjustment slide as well as the

rail that extends into the magnet volume. The magnet coils are visible in the foreground on the

top right and bottom right as well as in the background. Figure 4.2 is a close-up photograph

of one end of the probe bar, showing some of the Hall probes and survey targets. With this

set-up, the bar was moved to different positions in y and z. At each position, the magnetic field

values measured by the 37 probes, which were spaced along the x direction, were recorded.

The positions of the six survey targets on the bar were also recorded for each measurement.

Together with a detailed survey of the bar and the placement of the Hall probes on the bar [39],

the survey measurements allowed a precise reconstruction of the position of each probe for

Figure 4.1 – The probe bar in the LHCb dipole magnet on January 28th, 2021, viewed from the C side
of the RICH1 sub-detector (upstream of the magnet).

28



4.2. January 2021 magnetic field map measurements

Figure 4.2 – Close-up of one end (A side) of the probe bar in the LHCb dipole magnet on January 28th,
2021. Four Hall probes are fully in the picture, and three survey targets are visible: two on the vertical
bar and one in the third slot in the bar, between the Hall probes.

each measurement. The rotation of the bar with respect to the LHCb coordinate system was

also calculated from the survey data for each measurement.

Data was taken at 29 different positions of the vertical adjustment slide in z and five (three)

different vertical positions of the bar for magnet polarity “Down” (“Up”). The positions of the

Hall probes at which field measurements were recorded span the region from x =−1.08 m to

x = 1.08 m, y =−0.52 m to y = 0.64 m, and z = 2.51 m to z = 6.02 m.

Two successive corrections were applied to the field values recorded by the Hall probes. First,

the three-vector ~B was rotated to correct for the difference between the orientation of the bar

and the LHCb coordinate system determined from the survey measurements. Then, because it

was found that the field measurements were less smooth along x (along the bar) than expected,

a data-driven method of correcting for rotations of the Hall probes relative to each other was

developed, which is described in the following.

Consider a probe which is rotated with respect to the LHCb coordinate system by a small

angle ϑ around the axis parallel to the z axis that passes through the centre of the probe. The

dominant component of the magnetic field is along the y direction (this holds for all the points

in which measurements were recorded). The probe which is oriented off-axis picks up some

of this dominant component in its nominal sensor for Bx :

B meas
x = cosϑB true

x + sinϑB true
y , (4.1)

B meas
y = cosϑB true

y − sinϑB true
x , (4.2)

B meas
z = B true

z . (4.3)
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The deviations from the accurate LHCb coordinate system can be presumed to be small, so

we can approximate the field strength measured by the x sensor as the true x component of

the field with a small contribution from the true y component of the field. The correction is

linear in B true
y with a correction coefficient cx : B meas

x = B true
x + cx B true

y . A similar consideration

for a probe that is slightly rotated around an axis parallel to x through its centre gives B meas
z =

B true
z +cz B true

y with a correction coefficient cz . We will not repeat this exercise for probes that

are rotated around the y axis because the fact that |By |À |Bx |, |Bz | in the whole measurement

volume means that only rotations of the probes around the x and z axes can be corrected with

this method. We will return to discuss this later.

For a row of probes along the x axis, each with its own rotation with respect to the nominal

orientation, the deviation of the measured value of Bx (Bz ) from the true value is, to first order,

proportional to By . The approximate symmetry of the magnet with respect to the y = 0 plane

means that horizontal field components from the upper and lower coils should cancel out,

and therefore that Bx and Bz should be close to 0 in the region surrounding the symmetry

plane. The field measurements for the y position that lies closest to the plane are therefore

chosen for the determination of the rotation corrections. The true value of Bx (Bz ) cannot

be independently determined, but it should be smooth along x. We therefore choose to use

third-order polynomial fits to the Bx and Bz measurement values as a function of x as proxies

for the true values.

The two sub-figures on top of Figure 4.3 show the fitted polynomials for Bx and Bz for one of

the measurement positions of the bar as black dashed lines, while the measurements they

are fitted from are shown as blue circles. After obtaining the polynomial truth proxies, the

residuals (B meas
x(z) −B fitted

x(z) ) are plotted for each probe against the measured value of By . The

linear dependence is clearly visible for all probes, see the left-hand sub-figure of Figure 4.4 as

an example. For some of them, the correlation between the residuals and the measured By is

near zero, see e.g. the right-hand sub-figure of Figure 4.4, indicative of a linear dependence

with a slope close to 0. As the correction coefficient calculated for such a probe is then also very

small, these probes with negligible rotation are not excluded from the correction procedure.

The first order corrections applied for each probe based on the correction coefficients cx and

cz lead to

B corr
x =B meas

x − cx B meas
y , (4.4)

B corr
y =B meas

y + cx B meas
x + cz B meas

z , (4.5)

B corr
z =B meas

z − cz B meas
y . (4.6)

These corrections leave the field magnitude |~B | invariant up to first order in the correction

coefficients. The largest absolute values for the correction coefficients found are on the order

of 10−3, so the higher-order changes in field magnitude of order 10−6 are negligible.
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Figure 4.3 – Measured field values with corrections for the bar rotations from the survey (blue circles)
and field values after the corrections for relative rotations (orange diamonds) as a function of x for one
of the measurements near the beam line (y = 0.01 m, z = 3.97 m) at polarity “MagDown”. The Bx and
Bz plots on the top left and top right respectively also show the polynomial fits used to calculate the
offsets (see for example Figure 4.4) as dashed black lines. On the bottom are By (left) and |~B | (right,
dominated by the By component). The magnetic fields are in units of Tesla.

Figure 4.4 – Residuals B meas
x −B fitted

x (in Tesla) from the 3rd degree polynomial fit of Bx measurements
for the probe at x = 34 cm (left) and the probe at x = −80 cm (right) as a function of the By values
measured by the same probe. The result of the linear fit is overlaid and the slopes, which correspond to
the correction coefficients cx for the respective probes, are given. Since the correlation in the left plot
is relatively large compared that in the right plot, the linear dependence is more apparent on the left.
Note the different scales (by almost two orders of magnitude) on the vertical axes.
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The corrections, calculated on the basis of data taken near y = 0 with “MagDown” polarity,

also lead to smoother field values along x in independent regions, as illustrated in Figure 4.5,

which shows data recorded with “MagUp” polarity at the top of the measurement volume.

The fact that the mean of the correction coefficients cx and cz (8×10−8 and −1.6×10−7 re-

spectively) over all 37 probes is close to 0 points to the main blind spot of this correction

method: its basic assumption that the true values of the fields Bx and Bz can be approximated

by smoothing over the ensemble of probes. With this approach, the method can only correct

for rotations of the probes relative to their mean orientation. If this mean orientation itself

is not aligned with the LHCb coordinate system, a global rotation affects the array of probes.

This global rotation cannot be corrected for, or even detected, with the data-driven correc-

tion method detailed above. Such a global rotation could result from a defect in the probe

manufacturing process or the mounting of the probes on the bar. It could only be detected

through calibration of the bar in a well-known reference field. The other shortcoming of this

correction procedure has already been mentioned: it cannot account for relative, let alone

global, rotations around the y axis. Such a correction could be accomplished in LHCb’s own

magnetic field by measurements taken with a vertical bar; however, the bar supports are not

set up for such an arrangement and the vertical clearance of the coils at the upstream end

of the magnet is barely above 2 m, which is close to the length of the bar. The corrected field

measurements for “MagDown” are shown in Figures 4.6-4.8.

Figure 4.5 – Measured Bx , By , Bz , and |~B | values (in Tesla) with corrections for the bar rotations from
the survey (blue circles) and after the corrections for relative rotations (orange diamonds) as a function
of x for y = 0.64 m and z = 4.92 m at polarity “MagUp”. The data shown here were not used in the
determination of the correction coefficients.
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Figure 4.6 – Bx measurements taken in January 2021 with polarity “MagDown,” with rotational
corrections applied for the orientation of the bar and for the rotations of the Hall probes with respect to
each other.
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Figure 4.7 – By measurements taken in January 2021 with polarity “MagDown,” with rotational
corrections applied for the orientation of the bar and for the rotations of the Hall probes with respect to
each other.
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Figure 4.8 – Bz measurements taken in January 2021 with polarity “MagDown,” with rotational
corrections applied for the orientation of the bar and for the rotations of the Hall probes with respect to
each other.
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4.3 Simulations of the magnetic field

Simulated field values are obtained using OPERA [40], a multiphysics software suite that uses

finite element discretisation for electromagnetic analyses. The field equations are solved in

this finite element method (FEM) with a scalar potential formulation algorithm, which was

formerly known as TOSCA [41]. A basic model of the detector was implemented in OPERA and

used in the course of the design, commissioning, and initial performance tests of the LHCb

experiment. This model includes the magnet coils and yoke, as well as the shielding structures

of both RICH sub-detectors and the iron absorbers in the HCAL and the muon stations (see

Section 3). In order to obtain more accurate field values, it has been improved in the course of

this work to correspond more closely to the experimental environment of LHCb. Figure 4.9

shows a view of the updated simulation model in OPERA. The following adjustments were

made:

• The simulation volume was quadrupled to cover all four quadrants of the detector,

discarding the assumption of exact symmetry with respect to the horizontal and vertical

planes through the z axis.

Figure 4.9 – View of the simulation model for the calculation of magnetic field values in the OPERA

software suite. The model comprises the magnet yoke (wine �), the coils and the current lines (pale
grey �), the clamps that support the yoke (sand �), the yoke support chariot (green �), the RICH1
(cyan �), the RICH2 (teal �), the HCAL (indigo �), the muon stations (purple �), the bunker (rose �),
and the scaffolding (olive �).
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• The maximal mesh size in the central magnet region, where both the field and its

variations are highest, was decreased from 20 cm to 5 cm.

• The current in the conductor blocks that make up the coils was set to the nominal value

of 225×5850 A, where previously the current density had been equal in all conductor

blocks. Due to the varying cross-sections of differently shaped blocks, this constant

current density meant that the total current varied between the conductor blocks. A

constant current for all blocks is a more accurate description of the magnet coils.

• The surfaces of the pole faces, i.e. the planes on the top and bottom of the yoke win-

dow, which shape the direction of the magnetic field, were adjusted based on survey

measurements of the pole faces in situ.

• The coil geometry was adjusted to account for the slight “opening” of the coils when

current is flowing with respect to their “magnet off” state, also based on survey results.

• A simplified description of the connectors that provide current to the coils was added.

• Several ferromagnetic structures in the magnet environment were added, in simplified

form, to the model:

– the structure supporting the yoke, referred to as the yoke support chariot;

– the scaffolding platforms and stairs that surround the magnet on the upstream

side of the cavern;

– the clamps added in the period between Run 1 and Run 2 to provide additional

support to the coils on the upstream and downstream sides of the yoke;

– the steel reinforcements of the concrete structure known as the “bunker” on the

downstream side of the magnet, underneath the LHCb acceptance region.

Notably, other reinforced concrete structures in the LHCb cavern, such as the VELO

alcove and the cavern walls and floor themselves were not included in the simulation

model as no sufficiently precise estimate of their ferromagnetic properties could be

obtained.

4.3.1 Changes to the simulation model based on surveys in the cavern

Surveys of the inner (top and bottom) planes of the yoke window, i.e. the pole faces, were

performed on May 28th, 2021 [42]. Nine targets were placed at points along the pole face edges.

Two (four) additional targets were positioned in the central region of the bottom (top) plane.

The position of all targets with respect to the LHCb coordinate system was measured. The

resulting sets of points for each face were used to define two planes by minimising the sum of

the squared normal distances between the sets of measured coordinates and the plane. The

fitted planes were compared to the planes spanned by the pole faces in the simulation model,

and adjustments were made to the latter planes to bring them into coincidence with the fitted

planes by rotating them around the origin of the coordinate system and shifting them in the y

direction. These rotations and shifts, summarised in Table 4.1, were also propagated to the

shims on the sides of the pole faces. The top and bottom blocks of the magnet yoke were then

redrawn in the simulation model, shifting only the four corner points of each pole face, and
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Table 4.1 – Transformations applied to the magnet pole faces in the OPERA simulation model.

axis of rotation rotation angle shift in y

top face (0.956,0.124,0.265) 0.72 mrad 3.5 mm

bottom face (0.880,0.117,−0.460) 0.18 mrad −2.8 mm

keeping the other corners fixed. The shims were redrawn with all their corner points rotated

and shifted according to the plane of the pole face they sit on.

Surveys of the magnet coils were taken to compare their positions between the “magnet on”

and “magnet off” states in June 2012 [43] with photogrammetric retro-reflective targets placed

on each of the five pancake triplets that make up a coil. The targets were pasted to both coils

on the upstream side, with four targets per pancake triplet, two each on the A-side and C-side,

near the bend of the coils into the downstream region inside the magnet. The targets were

found to shift outwards by a few mm when the magnet was on, with respect to their positions

when the magnet was off; an upstream shift in the z direction on the order of 5 mm was also

observed. Consequently, the “opening” shifts in x and y were applied to those conductor

blocks in the coil simulation models that make up the tapering sides, with one block on each

end of that region “stretched” by having only one of its faces shifted, to ensure that the coil

models remain unbroken. The average of all z shifts observed across the survey targets was

applied to each of the coils as a whole.

4.3.2 Additional ferromagnetic structures in the simulation model

The first and most impactful ferromagnetic addition to the simulation model concerned the

yoke support chariot. It was designed in OPERA with a simplified geometry, taking care that

the volume and position of each part correspond to the values in a detailed CAD model of

the LHCb spectrometer and its surroundings. With a total weight of over 70 tons, it has the

largest impact on the magnetic field out of all the material changes made to the model, being

essentially an extension of the yoke and bringing a sizeable up-down asymmetry into the

model of the magnet environment. The description of the yoke support chariot in OPERA is

shown in green in Figure 4.9.

The scaffolding on the A-side and C-side of the magnet is a collection of rather complex

structures. While their combined mass is over 20 tons, they are mostly far enough from the

magnet yoke that their description in OPERA can be simplified. For the simulation model,

platforms and stairs were grouped into seven different components. Ten vertical support

pillars of the platforms and stairs make up the rest of the scaffolding parts. For each part (stair

and/or platform components as well as pillars), the description in OPERA was based on only

three attributes:
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• the (x, y, z) coordinates of the structure’s centre of mass;

• the 3×3 inertia tensor with respect to the centre of mass;

• the total volume.

These attributes were calculated from the same CAD model of LHCb that provided the yoke

support chariot geometry. Each of the 17 scaffolding parts is represented in the OPERA model

by a rectangular iron block with the same centre of mass, moments of inertia, and volume as

the original complex structure. The scaffolding parts are shown in olive in Figure 4.9.

The clamps that hold the coil in place, whose combined volume is a little less than 1 m3, are

represented in the OPERA model by iron blocks of dimensions 25 cm×16.5 cm×80 cm for the

clamps along the straight sections of the coils and 30 cm×25 cm×60 cm for the outermost

clamps at the bent section, which were added to the magnet in the period between Runs 1

and 2. The clamps are sand-coloured in Figure 4.9.
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4.4 Interpolation and extrapolation

In tracking and reconstruction at LHCb, the field values at a point defined by coordinates

(x, y, z) need to be calculated from the map, which is defined on a cubic grid. In the LHCb

software, this calculation uses linear interpolation from the vertices of the grid cube that

contains (x, y, z). For magnetic fields that vary slowly with the grid spacing, this approach

gives accurate enough estimates of the fields. A more precise interpolation method that

uses polynomials of order 2 in the distance from the cube vertices which intrinsically respect

Maxwell’s equations [44], was implemented in the course of this work for the computation of

field values at the measurement points, for purposes of comparison between measurements

and simulation data.

The simulated field values exported from OPERA have discontinuities at the material bound-

aries of the simulation model. Grid vertices that lie within material should therefore not be

used to interpolate field values at points that lie outside of the material boundaries, i.e. in

air. As the boundaries of the LHCb acceptance lie close to the material boundaries, especially

within the window of the magnet yoke, a point in the acceptance may lie inside a grid cube

that has at least one vertex inside some material in the model. Due to the shifts that were

Figure 4.10 – Comparison of field values at grid vertices in air (blue circles) and grid vertices in material
with extrapolated field values (green circles) and the field values exported directly from the simulation
(red crosses) at x =−2 m and z = 4.5 m for the three field components Bx (top left), By (top right), and

Bz (bottom left) as well as for the magnitude of the field |~B | (bottom right).
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applied to LHCb field maps preceding this work (see Section 4.1), such discontinuities affected

the field values in the maps even within the LHCb acceptance, at large positive values of y

in the magnet yoke window. For the field maps produced in the course of this work, the grid

vertices that lie within material boundaries have values assigned to them that are extrapo-

lated, using the same parametrisation of the field in Maxwell-compliant polynomials as in the

interpolation, from a nearby grid cube that is fully in air, i.e. that does not have any vertices

in material. The main goal of this extrapolation is the improvement of the field description

in the LHCb acceptance. The search algorithm for a suitable grid cube can be summarised

as follows: Grid cubes near the original vertex that lies within material are checked until one

cube fully in air is found. To determine the order in which nearby cubes are checked, the

magnitudes of the x and y coordinates of the original vertex are compared. If |x| ≤ |y |, the

algorithm prioritises neighbouring cubes in the direction of lower values of |y | (towards the

beam line). Then, the neighbouring cubes in the direction of lower |x| are checked. The next

search direction is downstream towards higher values of |z| (or higher values of z, since this

coordinate is positive for all materials in the simulation model) due to the pyramidal shape

of the LHCb acceptance. If |x| > |y |, the search order of these two directions is reversed. All

cubes with a given distance to the original vertex are checked before widening the search to

the next layer of surrounding cubes (nearest neighbours, then next-to-nearest neighbours,

and so on). The search ends when a suitable cube that is fully in air is found, or when the

distance to the original vertex reaches 5 m. In the latter case, the simulated field values of the

original vertex are used as is. A comparison between the field values without this extrapolation

algorithm (using the simulated values directly for vertices in material) and those obtained

from extrapolation is shown in Figure 4.10. Unlike the field values from the simulation for grid

points in material, those obtained from extrapolation give smooth continuations of the fields

in air for the first few grid points inside the material, which ensures that the interpolation of

the field values close to acceptance boundaries is not corrupted.
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4.5 The magnetic field map for Run 3

The field map produced for use in LHCb during Run 3 is based on results of field simulations

with the updated simulation model described in Section 4.3. The measurement data from 2021

is taken into account in a similar way as for the maps produced in 2011 and 2014, by shifting

the grid coordinates to reduce the discrepancy with the measured field values. In this case,

however, the map that is shifted comes out of the updated simulation, with the extrapolation

procedure from Section 4.4 applied. The extrapolation does not influence the result of the fit

to data, as the measurements lie well within the acceptance.

Figure 4.11 shows the difference between the measured By values for the “MagDown” polarity

and the values interpolated from a simulated grid based on the updated simulation model. The

analogous Figures A.1 and A.2 for the other two field components are available in Appendix A.1.

The data-simulation differences are also shown as histograms in Figure 4.12. A comparison

with Figures A.4, A.3, A.5, and A.6, which show the differences between the measurements

and the magnetic field map used in LHCb in Run 2, indicates that the new simulation model

alone improves the field description with respect to the previous map for Bx and Bz . The
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Figure 4.11 – Differences between the corrected magnetic field measurement values for the By com-
ponent, taken with “MagDown” polarity in January 2021, and the interpolated values for the same
component from the OPERA simulated map with the updated simulation model, before shifting the
magnet.
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Figure 4.12 – Histograms of the field differences (in Tesla) of Figures A.1, 4.11, A.2.

Table 4.2 – Transformations applied to the magnet in the OPERA simulation model based on a fit of
the simulated map to field measurements from January 2021. The magnet is shifted and then rotated
around the pivot point at (0,0,4.3158 m). The rotation is given in the form of extrinsic Euler angles
around axes that are parallel to the LHCb coordinate system.

Translations [ cm ] Rotations [ mrad ]
x y z total x y z total

−1.2548 0.1517 −1.6069 2.0444 −2.6559 1.7863 −0.0045 3.2011

z dependence of the sign of the difference that can be seen in Figure 4.11 is indicative of a

relative shift in z.

To quantify the z translation of the field, as well as translations in x and y , and rotation

parameters around a pivot point at (0,0,4.3158 m) (a point in the central region of the magnet

that was also used in the production of the 2011 LHCb field map [37]), a minimisation fit

is performed. The minimised quantity is the sum of the squared differences in the three

B-field components between the data and the simulation, over the measurement points. The

simulated field values at the measurement positions are interpolated from the grid using the

Maxwell-compliant polynomials of degree 2 from Ref. [44]. The measurement coordinates

are shifted in the fit iterations until the minimum is reached. The fit to the measurement

data uses measured field values after the rotation corrections described in Section 4.2. The

results for both magnet polarities are compatible, and the “MagDown” results are used in

the final map. The opposite of the final shift to the measurement coordinates is applied

to the magnet (the coils, current lines, yoke, shims, yoke support chariot, and coil support

clamps) in the simulation model, and magnetic fields are re-computed for the new geometry,

i.e. the simulation is re-run. Shifting the magnet within the simulation model instead of the

whole field map changes the fields less in regions far from the pivot point of the rotation. The

transformations applied to the magnet in the model are shown in Table 4.2.
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Figures A.7 to A.10 in Appendix A.1 show that the differences between the measured and

simulated field values are reduced after shifting the magnet model and that the systematic z

dependence of the By difference sign seen in Figure 4.11 is compensated.

Global and local scale factors for the field values were also considered but not incorporated in

the final map. Likewise, a local adjustment of the map in the measurement region, where the

field values are high and/or vary significantly over short distances (which is where accuracy of

the field map is paramount) was tested but not chosen for the final Run 3 map. The choice

of map for use in Run 3 was based on the performance of the detector alignment and track

reconstruction, which will be introduced in the following.

The precision and accuracy of the reconstruction of charged particle momenta directly in-

fluences the resolution and accuracy of the reconstructed invariant masses. For the decay

D0 → K −π+, for example, the D0 invariant mass can be computed from the reconstructed

four-momenta of the K − and the π+, charged long-lived particles, which leave signals (called

“hits”) in the tracking detectors. The particles’ trajectories are reconstructed from the tracker

hits and the four-momenta of the K − and π+ immediately after the D0 decay are calculated in

the reconstruction with input from the magnetic field map. If the momentum reconstruction

is accurate, the distribution of the reconstructed D0 invariant mass will be centred at the D0

mass of 1864.84±0.05 MeV/c2 [45]. If the momentum reconstruction is precise, the distribution

of the reconstructed D0 invariant mass will be narrow. A narrower mass peak means that the

resolution is better.

The effect of the B field map quality on the momentum reconstruction is inextricably linked

to that of the alignment performance. “Alignment” here refers to the fine-tuning of the

position settings of the tracking detectors in the reconstruction framework (for details see

e.g. Ref. [46]) so that the distance between the hit coordinates and the intersections of the

reconstructed trajectories with the tracker planes is minimised. There is constant interplay, in

the development (in terms of curvature) of the trajectories, between alignment, momentum

calculation, and the magnetic field values in the (extrapolated) particle trajectories in this

iterative procedure, so any measure of quality of the momentum reconstruction refers to both

the magnetic field map and the alignment.

Mass peaks are shown in Figure 4.13 for the D0 and J/ψ mesons, from their decays into K −π+

and µ+µ−, respectively. The peaks on the left-hand side have been calculated using the most

recent previous version of the magnetic field map used in LHCb, with its associated alignment,

and the right-hand side peaks are based on reconstruction using the new Run 3 map with its

new alignment. All data shown in this figure and in Figure 4.14 were recorded by the LHCb

experiment in 2024. The statistical uncertainties of the peak position and width are of the

order of 0.2 MeV/c2 for the J/ψ data sets and of the order of 0.05 MeV/c2 for the D0 data sets.

The J/ψ peak in the new configuration is 2.4 MeV/c2 closer to the known J/ψ mass [45] than in

the old configuration. The resolution on the J/ψ mass does not change significantly. The D0

peak in the new configuration is 1.66 MeV/c2 closer to the known D0 mass [45] than in the old
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Chapter 4. The LHCb magnetic field map

Figure 4.13 – The reconstructed J/ψ (top) and D0 (bottom) mass in Run 3 data obtained with the Run
2 map (left) and the Run 3 map (right). The distributions are described with a linear background (blue)
and a Gaussian signal peak (red). The green dashed lines indicate the known J/ψ and D0 masses [45].

configuration. There is a slight (less than 1 MeV/c2) improvement in the D0 mass resolution.

The improvements of the accuracy of the reconstructed mass and on the resolution obtained

with the Run 3 map with respect to the Run 2 map are small but statistically significant.

The quality of track reconstruction and of the B field map may have spatial variations. One way

to test for this is to check for a dependence of the reconstructed meson mass on its direction of

flight. The slope parameters tx and ty are the ratios of the transverse momentum components

px and py respectively to the forward momentum pz . A reconstructed decay with tx > 0 and

ty > 0 is likely to have both daughters’ tracks in the first quadrant of the detector. Figure 4.14

shows the reconstructed J/ψ mass as a function of tx and ty . The reconstructed J/ψ mass

shows a smaller dependence on ty for the Run 3 map than for the Run 2 map.
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4.5. The magnetic field map for Run 3

Figure 4.14 – The reconstructed J/ψmass as a function of the slope parameters tx (top) and ty (bottom)
for the Run 2 map (left) and the Run 3 map (right). The blue dashed line indicates the true J/ψmass [45].
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Chapter 5

Data selection and B mass fit

5.1 Selection requirements

This work uses data recorded by the LHCb experiment in 2011, 2012, 2015, 2016, 2017, and

2018. Due to the high collision rate and consequent data volume, not every event can be

retained, or even recorded. There are several stages of classification, interspersed with (partial)

reconstruction, between the bunch collisions at the LHCb interaction point and the data

available for physics analysis. The purpose of this process is to retain as much useful data as

possible, while keeping the computational and memory loads manageably low.

The purpose of the LHCb trigger system is to identify potentially interesting events for reten-

tion, the triggered action being the recording of the event. Full reconstruction of all events

is too expensive, so the triggering relies on simple markers such as high-energy deposits in

some detectors that indicate a hard collision or an otherwise interesting event. For this work,

at the hardware trigger level, events are selected that present a high-energy deposit in the

ECAL. The high-level trigger requirements select B candidates that have one or more charged

tracks in addition to a high transverse-energy photon candidate. For Run 1 data, a trigger line

that reconstructs B candidates from three charged tracks, independently of the presence of a

photon candidate, is also used. Table 5.1 summarises the trigger lines.

The data that pass at least one of these trigger lines at each level are loosely filtered in the

“stripping” stage for topological correspondence with a B+→ K +π−π+γ signal decay. Events

with soft final-state particles are rejected, as are events with a low score for a classifier that

discriminates photons from neutral hadrons (gamma_CL ). Table 5.2 summarises the selection

requirements at this stage.

The next batch of selection requirements is referred to as the “offline” selection. Like the strip-

ping, its purpose is to select as many events with correctly reconstructed B+→ K +π−π+γ de-

cays as possible, while keeping the number of other events, referred to as background, rela-
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Chapter 5. Data selection and B mass fit

Table 5.1 – Triggering requirements. An event must pass at least one of the lines listed at each level.

L0
L0Photon

L0Electron

HLT1

Run 1 Run 2

Hlt1TrackAllL0 Hlt1TrackMVA

Hlt1TrackPhoton Hlt1TwoTrackMVA

HLT2

2011 2012 Run 2

Hlt2RadiativeTopoPhotonL0 Hlt2RadiativeTopoPhoton

Hlt2RadiativeIncHHHGammaHlt2RadiativeTopoTrackTOS Hlt2RadiativeTopoTrackTOS

Hlt2Topo3BodyBBDT Hlt2Topo3BodyBBDT

Table 5.2 – Requirements applied for the stripping selection. The detachment of the trajectory of a
particle from the PV is quantified by the impact parameter, which is the minimal distance from the
extrapolated trajectory to the PV; the related figure of merit χ2

IP should be small for the B candidate and
large for the tracks of the final state particles, which do not come from the PV. The B DIRA is the cosine
of the angle between the B direction and the line connecting the PV and the B decay vertex.

Variable 2011–2012 2015–2018 Unit

Track transverse momentum pT > 300 > 300 MeV/c
Track momentum p > 1000 > 1000 MeV/c
Track fit quality χ2/ndf < 3 < 3
Track detachment χ2

IP > 16 > 20
Track ghost probability < 0.4 < 0.4

Tri-track
∑

pT > 1500 > 1000 MeV/c
Tri-track vertex fit quality χ2

vtx < 10 < 9
Tri-track vertex separation from PV χ2

VS > 0 > 0
Tri-track invariant mass ∈ [0,7900] ∈ [0,7900] MeV/c2

Photon ET > 2000 > 2000 MeV
γ confidence level (gamma_CL) > 0 > 0

Photon and tracks
∑

pT > 5000 > 3000 MeV/c
B DIRA > 0 > 0
B vertex fit quality χ2

vtx/ndf < 9 < 9
B detachment χ2

IP < 9 < 9
B candidate mass ∈ [2900,9000] ∈ [2400,6500] MeV/c2

tively low. A b hadron may decay into several final-state particles of which three are charged

and one is neutral. If the reconstruction, looking for B+→ K +π−π+γ decays, picks up some

but not all of the final-state daughters of a true decay, the event contributes to what is called

the partially reconstructed background. Some of the topological selection requirements at the

stripping stage are intended to reduce this background. Another similar criterion is defined

in the offline selection: each of the tracks in the event that is not associated to one of the

final-state particles in the putative B+→ K +π−π+γ decay is merged in turn with those four

“signal” finals, and a decay vertex is reconstructed from the four charged tracks and the neutral
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5.1. Selection requirements

candidate. If the candidate is actually from a signal decay, and if the vertex is spatially isolated

from spurious tracks from the rest of the event, then adding any other track to the vertex

decreases the vertex quality (∆χ2 > 0). Therefore it is required that there be a significant drop

(∆χ2 > 5) in vertex quality when any track that is not part of the candidate is added to the

decay vertex. If this is not the case, the candidate is a partially reconstructed decay, or is not

well enough isolated in space to be discriminated from such a background.

There are background processes, some partially reconstructed among them, which peak in

some invariant mass distributions. These “peaking” backgrounds can be reduced by requiring

that an invariant mass combination, for example the invariant mass of the Kππ system, lie

outside of the region where the background peaks. The process B+→ D0ρ+, where the D0

decays to K +π−π0 and the ρ+ to π+π0, can mimic a B+→ K +π−π+γ signature when one of

the final-state π0 is lost, and the other one is misidentified as a photon. In case the π0 from

the D0 decay is reconstructed as a photon, and the π0 from the ρ+ decay is lost, the invariant

mass of the K +, the π−, and the photon candidate (assigning the π0 mass to it), is close to the

D0 mass. In the other case, where the π0 from the ρ+ is reconstructed as a photon and the π0

from the D0 is lost, the invariant mass of the π+π0 system is close to the ρ+ mass. By requiring

the invariant masses concerned to be a good deal higher than the D0 mass, respectively the

ρ+ mass, the contributions from this background in the data are significantly reduced.

Finally, each of the particles in the final state has one dangerous doppelganger that can be

mistaken for it. To reduce background from these events with misidentified particles, the

particle identification (PID) capabilities of the LHCb detector and software are exploited.

For example, the dangerous doppelganger of the K + is the π+ (and vice versa). There is

a multivariate classifier that uses information from the PID sub-systems to determine the

probability that the K + candidate is a K +, and another classifier that yields the probability

that it is actually a π+. The output of these two classifiers is combined into one quantity by

multiplying the K + probability with one minus the π+ probability. An event is rejected if this

combined variable has a value less than 0.2. The π± candidates have the inverted requirement:

their pion probability, times one minus their kaon probability, must be greater than 0.2. These

PID classifiers do not perform well for very high momenta, so the high-p tails of the charged

final-state particle candidates are discarded by requiring that p < 100 GeV/c for the K +, π+,

and π− candidates. The photon’s doppelganger is the neutral pion π0. Since the photon is not

charged, photon identification can only depend on the information from the calorimeters,

specifically the ECAL. A high-energy photon can transform into a positron-electron-pair

through interaction with the calorimeter material. The positron and electron interact further,

mostly through emission of Bremsstrahlung photons, which may convert into more e+e−

pairs producing more photons and electrons in turn, until a whole shower of electromagnetic

particles is detected and its energy is measured. The ECAL is segmented, so some information

about the distribution of the shower (energy) in space is available. This becomes important

when it comes to differentiating an ECAL shower that was caused by a photon from one

caused by a π0 after decaying into a pair of photons. For relatively low-energy pions, the

momentum of the photons perpendicular to the initial π0 direction is large enough compared
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Chapter 5. Data selection and B mass fit

Table 5.3 – Requirements applied for the offline preselection, excluding the multivariate classifier for
rejection of combinatorial background.

Variable 2011–2012 2015–2018 Unit

Photon ET > 3000 > 3000 MeV
Photon ET < 120000 < 120000 MeV
K + momentum < 100000 < 100000 MeV/c
π+ momentum < 100000 < 100000 MeV/c
π− momentum < 100000 < 100000 MeV/c
B meson pT > 5000 > 4000 MeV/c
B meson isolation ∆χ2 > 5 > 5
γ/π0 separation (IsPhoton) > 0.9 > 0.9
γ confidence level (gamma_CL) > 0.2 > 0.2
ProbNNK (K +)× (1−ProbNNπ(K +)) > 0.2 > 0.2
ProbNNπ(π+)× (1−ProbNNK (π+)) > 0.2 > 0.2
ProbNNπ(π−)× (1−ProbNNK (π−)) > 0.2 > 0.2
K +π−π+ mass ∈ [1100,1900] ∈ [1100,1900] MeV/c2

K +π−π0 mass > 2200 > 2200 MeV/c2

π+π0 mass > 1100 > 1100 MeV/c2

π−π0 mass > 1100 > 1100 MeV/c2

to their parallel momentum that they acquire an appreciable separation before reaching the

ECAL. When this separation is large enough, their showers can be “resolved” (reconstructed

separately). The two photons from a high-energy π0 decay, on the other hand, reach the ECAL

so close together that their showers overlap. This is referred to as a “merged” π0, as opposed

to the resolved case at lower energy. A merged shower can look like the shower from a true

single photon with an energy close to the energy of the initial π0. The best discrimination

power has been achieved using a multivariate classifier with several variables that quantify

the shower shape (size, concentration, asymmetry, etc.) [47]. The resulting discrimination

score is called IsPhoton and is close to 1 when the photon confidence is high, and close to 0

when the shower resembles that of a π0. It is required to be higher than 0.9 for this analysis.

Because the classifier does not distinguish neutral candidates with very high energies well,

the transverse energy of the photon candidate is required to be below 120 GeV. All the offline

selection requirements defined up to this point are summarised in Table 5.3.

The requirements on the PID variables are some of the strictest. Their efficiencies, which are

not reproduced well in MC, are evaluated on data samples prepared for this purpose, where

any background is corrected for. This is done using PIDCalib2 [48] for the ProbNN variables,

and GammaPi0SeparationCalib [49] for the IsPhoton variable. The calibration samples are

binned in the variables p and η for the charged, and pT and η for the neutral particles. Each

MC event is assigned a weight equal to the product of the efficiency of the PID requirements

on data in its kinematic bin, instead of applying the PID requirements on MC.
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5.1. Selection requirements

For all quantities that can be defined and calculated to characterise a pp collision event,

there is some overlap between the distribution in a randomly selected sample of all recorded

events and the distribution specific to a signal-only sample. A decay candidate that is not

signal and does not belong to any of the previously mentioned background categories (misID,

partially reconstructed), exhibiting a signal-like signature by simple stochastic accident, is

termed “combinatorial” background, being the result of a random combination of tracks,

energy deposits, or noise. The generic nature of this background, contrasted with the speci-

ficity of a signal signature, can be used to reject some of these combinatorial events. However,

simple one-dimensional rejection criteria are not optimal for this background type. Even with

very overlapping variable distributions, though, a multi-dimensional approach can squeeze

some discrimination power out of the parameter space. In this work, this is done using a

multivariate classifier with boosted decision trees (BDT). The classification is trained on signal

MC (“norm”, see Section 6.3) as a signal proxy. The selection efficiency for combinatorial

events is so low that using MC for the background proxy would be computationally expensive

to an unreasonable extent. Instead, the background proxy is taken from events in data. Events

with a B candidate mass far away from the signal peak are background events. In the low

mass range, these can be partially reconstructed backgrounds, but in the high mass range,

only combinatorial events are present. The training sample is chosen from data where all the

previously described selection steps have been applied and the B candidate mass is greater

than 5620 MeV/c2. The signal and background proxy samples differ by construction in their

B mass range. So any variable used in the classifier must be independent of the B mass. As

one sample is from MC and the other one from data, these variables must also be chosen

among those which are well reproduced in MC. The list of variables chosen is given in Table 5.4.

Each variable with CHI2 or Chi2 in its name characterises the quality of the reconstruction of

some part of the event under the assumption that the event is a B+→ K +π−π+γ signal event;

generally, the better the match, the lower the value of the variable. Exceptions to that rule are

Kplus_MINIPCHI2, piplus_MINIPCHI2 and piminus_MINIPCHI2, which are related to the

minimum distance of the trajectory to the primary vertex (PV), which is the proton-proton

interaction point of origin of the B candidate [50]. The charged hadrons should come from the

B decay vertex, which is displaced from the PV. K_res_ENDVERTEX_CHI2 is the χ2/ndf of the

K +π−π+ vertex. The smaller variable B_IPCHI2_OWNPV is, the more likely the PV is to be the

origin of the B candidate. B_DIRA_OWNPV is also related to the compatibility of the B candidate

and the PV, but rather than a fit χ2, it is the cosine of the angle between the B momentum and

the line between the PV and the B decay vertex. B_OWNPV_CHI2 is the χ2/ndf of the PV itself.

The greater the flight distance between the PV and the B decay vertex, the higher the value

of B_FDCHI2_OWNPV. This variable is another exception of the general rule that a smaller χ2

variable is more signal-like. Another exception is B_SmallestDeltaChi2OneTrack, which

is small when there is a track in the event not belonging to the signal candidate that is com-

patible with the B decay vertex, and the last χ2 variable that should be large for signal events

is B_MINIPCHI2NEXTBEST, which characterises the compatibility of the B candidate to orig-

inate at another proton-proton interaction point (the next best candidate for the primary

vertex), and is only available for Run 2 data. Also available in Run 2 only are the cone iso-

51



Chapter 5. Data selection and B mass fit

Table 5.4 – Variables used in the BDT to reject combinatorial background. The Run 2 variables
K_res_ENDVERTEX_CHI2 and B_VTXISODCHI2ONETRACK are aliases of and equivalent to the Run 1
variables K_1_1270_plus_ENDVERTEX_CHI2 and B_SmallestDeltaChi2OneTrack respectively.

2011–2012 (Run 1) 2015–2018 (Run 2)

B_FDCHI2_OWNPV
K_1_1270_plus_ENDVERTEX_CHI2 K_res_ENDVERTEX_CHI2
B_SmallestDeltaChi2OneTrack B_VTXISODCHI2ONETRACK
Kplus_MINIPCHI2 Kplus_MINIPCHI2
piplus_MINIPCHI2 piplus_MINIPCHI2
piminus_MINIPCHI2 piminus_MINIPCHI2
B_IPCHI2_OWNPV B_IPCHI2_OWNPV
B_DIRA_OWNPV B_DIRA_OWNPV
B_OWNPV_CHI2 B_OWNPV_CHI2

B_MINIPCHI2NEXTBEST
B_B_CONEP_1.0
B_B_CONEPTASYM_1.0
B_B_CONEPTASYM_1.35
B_B_CONEPTASYM_1.7
B_Gamma_CONEPTASYM_1.0
B_Gamma_CONEP_1.0

lation variables which give the sum of the absolute momenta of tracks in a cone around

the B trajectory (B_B_CONEP_1.0) or the photon trajectory (B_Gamma_CONEP_1.0), as well

as the pT asymmetry, which is the normalised difference between the pT of the B candi-

date (B_B_CONEPTASYM_1.0, B_B_CONEPTASYM_1.35, B_B_CONEPTASYM_1.7) or the photon

candidate (B_Gamma_CONEPTASYM_1.0) and the sum of the pT of all the tracks in the cone.

The numbers in the name of the cone isolation variables give the radius of the cone, which is

calculated from the pseudorapidity η and the azimuthal angleφ (in radians) as
√

(δη)2 + (δφ)2.

Since there are operational differences between data-taking years, and the sample sizes are

sufficiently large, each year gets its own classifier. In fact, for the purposes of simultaneous

implementation and testing, eight classifiers are trained for each year on seven eighths of the

signal and background proxy samples, with the remaining eighth used to test and quantify

the classifier’s performance. So as not to bias the estimation of the efficiency of the cut on the

classifier output, the data and MC events are evaluated by the classifier for which they were in

the testing, and not in the training, sample.

With any suboptimal classifier, there is a trade-off between the false positive rate (the propor-

tion of true background events classified as signal) and the false negative rate (the proportion

of true signal events classified as background). A stricter requirement on the classifier output

score lowers the false positive rate, but also rejects more signal events. Conversely, a loose

requirement leads to a lower loss of signal, i.e. a higher true positive rate, at the cost of higher

background contamination. Plotting the false positive rate vs. the true positive rate leads to a
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Table 5.5 – Optimised requirements on the multivariate (BDT) classifier scores to reject combinatorial
background events and corresponding AUC.

Year Requirement AUC

2011 > 0.45 0.946±0.010
2012 > 0.60 0.940±0.006
2015 > 0.60 0.948±0.013
2016 > 0.55 0.961±0.003
2017 > 0.55 0.957±0.004
2018 > 0.45 0.961±0.003

Table 5.6 – Fiducial requirements on invariant masses of the hadronic systems.

Hadronic system Low limit High limit

K +π− 650 MeV/c2 1200 MeV/c2

π+π− 530 MeV/c2 900 MeV/c2

K +π−π+ 1100 MeV/c2 1800 MeV/c2

curve called the ROC-curve, for receiver operating characteristic. The BDT performance can

be characterised by the area under the ROC-curve (AUC) [51]. An AUC of 0.5 means that the

BDT performs no better than a random selection. An AUC of 1 is a perfect score. The cut

on the BDT output is chosen, for each year, so that it maximises the product of the signal

significance and the signal purity, Sp
S+B

× S
S+B where S and B are respectively the expected

numbers of signal and background events. These numbers are computed from a fit to the B

candidate mass distribution in the data sample with the offline selection applied. The fit com-

ponents are described in Section 5.2. Events with B candidate masses between 4300 MeV/c2

and 6500 MeV/c2 are included in the fit. The fitted signal shape and combinatorial background

shape are integrated in the B candidate mass range between 5100 MeV/c2 and 5500 MeV/c2 to

obtain the values for S and B . The optimised requirements for the different years, as well as

the AUC, are given in Table 5.5. The ROC-curves for one of the classifiers for each year out of

the eight classifiers per year are shown in Figure 5.1.

A final set of offline selection requirements is related to the performance of the amplitude fit.

One of the challenges of this analysis is the large number of decay chains of B+ mesons that

lead to the K +π+π−γ final state. This multiplicity is due to the many intermediate resonances

in the hadronic system (whereas intermediate resonances decaying to one or two hadrons

and a photon are suppressed so as to be negligible by requiring a very high-energy photon).

By paring down the list of decay chains that must be considered in the amplitude analysis,

the model building described in Section 6.4 can be rendered more robust. The intermediate

resonances show up in different regions of the phase-space of invariant masses of the hadronic

system, depending on their mass peak and width. The m(K +π−) spectrum is dominated by the

K ∗(892)0, while the main peak of the m(π+π−) spectrum is that of the ρ(770)0. The importance

of other resonances, such as the K ∗(1430) or the f2(1270), can be reduced by requiring the
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Figure 5.1 – Performance of the multivariate classifier to reject combinatorial background: for each
data-taking year, the ROC-curve of one of the eight classifiers trained for that year is shown. The true
positive rate and false positive rate obtained with the optimised threshold for that year is indicated in
red. For the mean of the AUC for all eight classifiers of each year, see Table 5.5.
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5.1. Selection requirements

invariant masses of the K +π− and π+π− systems to lie within the bulk of the K ∗(892)0 and

ρ(770)0 peaks, respectively. Similarly, the description of the high-mass tail of the m(K +π+π−)

spectrum can be simplified by constraining the allowed values for that invariant mass. These

“fiducial” requirements are listed in Table 5.6. They are not included in the list of offline

selection requirements of Table 5.3 because they were not applied on the samples that were

used to train the multivariate classifier for combinatorial background rejection. The numbers

of events after offline selection and fiducial requirements are 3041 in 2011, 8533 in 2012, 2525

in 2015, 20623 in 2016, 19911 in 2017, and 25116 in 2018, for a total of 79749.
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5.2 Fit to B candidate invariant mass

Information on the make-up of the data sample after the selection has been applied can be

obtained from the B candidate mass distribution. It shows a clear signal peak at the B+ mass.

By describing this peak mathematically, the total number of signal events in the sample can

be calculated. Different background contributions to the data sample have different B mass

distributions, which can be characterised and quantified using MC simulations as well as the

data sample itself. This description of the B mass distribution in terms of the shapes and yields

of the signal and the significant backgrounds allows the subtraction of the backgrounds from

the data, using a weighting procedure that will be introduced in Section 5.3. This background-

subtracted data sample is used in the amplitude fit in Chapter 6. In the B mass fit, data from a

wide mass range between 4300 MeV/c2 and 6500 MeV/c2 is used. Once the descriptions of the

shapes and the yields are fixed, the B mass range can be constrained to 5000−6500 MeV/c2

for the background subtraction. The data in the range 4300−5000 MeV/c2 is almost free from

signal, but is retained for the B mass fit so that the shapes of the backgrounds that populate

this region can be characterised.

The B mass distribution of the signal is modelled with a double-sided Crystal Ball (CB) proba-

bility density function (PDF) [52]:

fCB(x;µ,σ,αL ,αR ,nL ,nR ) =N ×


AL

(
BL − x−µ

σ

)−nL for x−µ
σ ≤−|αL |

AR
(
BR − x−µ

σ

)−nR for x−µ
σ ≥ |αR |

exp
(
− (x−µ)2

2σ2

)
for −|αL | < x−µ

σ < |αR |
, (5.1)

where N is a normalisation factor and

AL =
(

nL

|αL |
)nL

exp

(
−α

2
L

2

)
, BL = nL

|αL |
− |αL | ,

AR =
(
− nR

|αR |
)nR

exp

(
−α

2
R

2

)
, BR =− nR

|αR |
+ |αR | .

This smooth PDF is a Gaussian in the bulk of the peak, but has more degrees of freedom for the

shapes of the tails on both sides. For each data-taking year, the tail parameters αL ,αR ,nL ,nR

are determined from fits to the post-selection “norm” MC samples (see Section 6.3), with the

PID efficiency weights applied. The mean µ and the width σ of the bulk of the peak, which is

equal for both sides, are determined from the full B mass fit on the data distribution.

For the backgrounds from specific B meson decays other than the signal mode, the expected

contamination, which is defined as the ratio of the number of background events to the

number of signal events in a given sample, can be calculated from the branching fractions of

the signal and the background decays and from their respective selection efficiencies. The

branching fractions are fixed or estimated from existing measurements, while the selection

efficiencies are determined by applying the selection detailed in Section 5.1 on simulated
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5.2. Fit to B candidate invariant mass

Table 5.7 – List of samples of fully simulated events used to estimate the background contaminations.
The B+→ K +π−π+γ signal samples have been generated with the “val” model given in Table 6.3.

Year Number of events Year Number of events

B 0→ K ∗0
(→ K +π−)

γ 2012 6.053×106 2016 1.013×106

B+→ K ∗0
(→ K +π−)

π+γ 2012 1.523×106 2016 2.012×106

B+→ D0
(→ K +π−π0

)
π+ 2012 2.091×106 2017 1.016×106

B+→ D0
(→ K +π−π0

)
ρ+ (→π+π0

)
2012 2.119×106 2016 1.007×106

B+→ D∗0
(
→ D0

(→ K +π−)
γ
)
π+ 2012 1.032×106 2016 1.317×106

B+→ D∗0
(
→ D0

(→ K +π−)
π0

)
π+ 2012 1.008×106 2016 2.603×106

B+→ K ∗+ (→ K +π0
)
π+π− 2012 2.012×106 2016 1.034×106

B 0→ K1(1270)0
(→ K +π−π0

)
γ 2012 1.127×106 2016 1.013×106

B+→ K +π+π−η
(→ γγ

)
2012 1.522×106 2016 0.514×106

B+→ K1(1270)0
(→ K +π+π−)

π0 2012 0.621×106 2016 2.529×106

B+→ a+
1

(→π+π−π+)
γ 2012 1.008×106 2016 0.511×106

B+→ K +π−π+γ (signal) 2012 0.232×106 2016 0.301×106

samples. The running conditions during Run 1 and Run 2 of the LHC were similar enough

that it is sufficient to analyse simulation data for one data-taking year per run and assign the

resulting contaminations and models to all the data-taking years of that run. For Run 1, the year

chosen for simulation is 2012 and, for Run 2, it is 2016, except for the B+→ D0
(→ K +π−π0

)
π+

decay where a larger simulated sample was available for 2017 data-taking conditions. Also,

studies which concern only the signal channel were often performed using the “norm” MC

samples (see Section 6.3), of which one is available per data-taking year. The simulated

MC samples used to estimate the background contaminations are shown in Table 5.7. The

branching fractions, efficiencies, and expected contaminations of specific non-signal B meson

decays that may significantly contribute to the post-selection data sample in the B mass fit

range of 4300−6500 MeV/c2 are shown in Table 5.8.

The proportion of double-mis-ID signal events, where the signal kaon is labelled as a pion and

the pion of the same charge as the kaon is taken for the kaon, is reduced to the sub-permill

level by the PID selection requirements and considered to be negligible.

For B+→ a+
1

(→π+π−π+)
γ decays, which can be misidentified as signal when one of the

same-charge pions is taken for a kaon, the branching fraction is suppressed with respect to

B+→ K +π−π+γ decays by a factor of
∣∣∣Vtd

Vt s

∣∣∣2
= 0.04, where Vtd and Vt s are the leading CKM-

matrix elements for b → d (as in B+→ a+
1

(→π+π−π+)
γ) and b → s (as in B+→ K +π−π+γ)

transitions, respectively. The efficiency of the selection on B+→ a+
1

(→π+π−π+)
γ decays is

low enough to render their contamination negligible.

The background from B+→ D0
(→ K +π−π0

)
ρ+ (→π+π0

)
decays is suppressed by the selection

requirements placed on invariant mass combinations (see Section 5.1), but due to the relatively
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Chapter 5. Data selection and B mass fit

Table 5.8 – List of potential peaking backgrounds and the quantities used to calculate their expected

contaminations C = B εsel εgen

Bsig εsel, sig εgen, sig
, in the B mass range 4300−6500 MeV/c2 in Run 1 and Run 2 MC.

Here, B denotes the branching fractions, εsel the selection efficiencies, and εgen the generator-level
efficiencies. The branching fractions are taken from Ref. [53] or calculated as indicated. The last line
refers to the signal decay, with respect to which the contaminations are computed. When less than 3
candidates pass the selection, a 90% confidence level upper limit is quoted.

Decay chain B Year εsel εgen C

B+→ a+
1

(→π+π−π+)
γ

∣∣∣Vtd
Vt s

∣∣∣2
Bsig 2012 (4.05±0.74)×10−5 0.20996±0.00039 (2.34±0.43)×10−3

= (1.03±0.06)×10−6 2016 (9.3±1.6)×10−5 0.2150±0.0085 (2.74±0.47)×10−3

B+→ D0
(→ K +π−π0

)
π+ (6.6±0.3)×10−4 2012 < 1.43×10−6 0.15843±0.00037 < 4.02×10−2

2017 < 2.95×10−6 0.16520±0.00041 < 4.30×10−2

B+→ K ∗+ (→ K +π0
)
π+π− (2.5±0.3)×10−5 2012 < 1.49×10−6 0.1608±0.0066 < 1.59×10−3

2016 < 2.92×10−6 0.14919±0.00026 < 1.44×10−3

B+→ D0
(→ K +π−π0

)
ρ+ (→π+π0

)
(1.9±0.3)×10−3 2012 < 2.86×10−6 0.14432±0.00034 < 2.09×10−1

2016 < 3.05×10−6 0.15172±0.00024 < 1.17×10−1

B+→ D∗0
(
→ D0

(→ K +π−)
π0

)
π+ (1.23±0.05)×10−4 2012 < 2.97×10−6 0.15252±0.00030 < 1.49×10−2

2016 < 1.16×10−6 0.15930±0.00044 < 3.04×10−3

B+→ D∗0
(
→ D0

(→ K +π−)
γ
)
π+ (6.7±0.3)×10−5 2012 < 2.90×10−6 0.17229±0.00034 < 8.96×10−3

2016 < 2.28×10−6 0.17881±0.00046 < 3.63×10−3

B 0→ K +π−π0γ (4.1±0.4)×10−5 2012 (3.1±2.7)×10−6 0.20405±0.00034 (6.8±6.0)×10−3

2016 (1.10±0.44)×10−5 0.21559±0.00047 (1.29±0.53)×10−2

B+→ K +π+π−η
(→ γγ

)
Bsig

B(B+→K ∗+η)
B(B+→K ∗+γ)B(η→ γγ) 2012 (3.47±0.16)×10−4 0.16691±0.00044 (7.71±0.85)×10−2

= (5.01±0.58)×10−6 2016 (7.23±0.39)×10−4 0.17311±0.00040 (8.31±0.95)×10−2

B+→ K +π+π−π0 Bsig
B(B+→K ∗+π0)
B(B+→K ∗+γ) 2012 (6.48±0.44)×10−5 0.16960±0.00026 (1.31±0.21)×10−2

= (4.48±0.69)×10−6 2016 (1.358±0.077)×10−4 0.18052±0.00044 (1.46±0.23)×10−2

B+→ K +π−π+γ (signal) (2.58±0.15)×10−5 2012 (3.681±0.029)×10−3 (3.954±0.029)×10−2 1
2016 (6.592±0.043)×10−3 (4.429±0.033)×10−2 1

high branching fraction of this decay compared to that of the signal mode, they still contribute

significantly to the partially reconstructed backgrounds in the post-selection data sample. The

MC samples used to determine the selection efficiency on B+→ D0
(→ K +π−π0

)
ρ+ (→π+π0

)
events initially contain about 2M (1M) events for Run 1 (Run 2), see Table 5.7. The selection

eliminates so many of these events, however, that the effective size of the post-selection

samples is less than 1. This is not nearly enough to model the shape of this background species

in the B candidate mass. It is more useful to introduce generic models for this and other

partially reconstructed backgrounds which are characterised by the loss in reconstruction of

one or two pions from the initial B meson decay.

A background that contaminates the signal region comes from B+→ K +π+π−η decays where

the η decays into two photons, one of which is used to build the signal candidate, and the other

of which is lost. The ratio of this decay’s branching fraction to that of the signal decay is esti-

mated from the ratio of branching fractions of the similar B+→ K ∗+η and B+→ K ∗+γ decays,

which is equal to 0.49±0.05 [45]. The branching fraction for η→ γγ decays of (39.41±0.20)%

must be multiplied with this, and from the selection and generator-level efficiencies for the sig-

nal and for this background, we obtain expected contaminations from B+→ K +π+π−η
(→ γγ

)
decays of (7.71±0.85)% and (8.31±0.95)% of the number of signal events for Runs 1 and 2,

respectively. The shape of this background in the B candidate mass is modelled with an Argus
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Figure 5.2 – Mass distribution of simulated B+→ K +π+π−η events reconstructed as B+→ K +π−π+γ in
2012 MC (left) and 2016 MC (right) with the result of a fit to an Argus PDF convolved with a double-tail
Crystal Ball resolution function. The differences (residuals) between the numbers of bin entries and
the average of the fitted blue curve over each bin in units of the uncertainty of the residuals are shown
in the bottom plots, with grey bars indicating the deviation from zero and red dashed lines at ±2. No
residuals are plotted for empty bins.

PDF [54] fArgus, a standard function for describing partially reconstructed background mass

distributions [55, 56],

fArgus(x;m0,c, p) =N x

(
1− x2

m2
0

)p

e
c

(
1− x2

m2
0

)
, (5.2)

convolved with a function that accounts for the mass resolution, which is dominated by

the resolution on the photon energy. The curvature c and power p of the Argus function

are determined from a fit to the B mass distribution of simulated B+→ K +π+π−η events

reconstructed as signal and with the full selection applied. In this fit to MC, the resolution

function is fixed to the distribution of signal events in the “norm” MC. The end-point m0 of

the Argus PDF is fixed to the mean of that signal distribution. The normalisation N of the

Argus PDF is computed numerically in the fit range. The results of the fits for Run 1 and Run 2

can be seen in Figure 5.2. In the fit to the B mass distribution in data, the number of events for

this background is pegged to the number of signal events multiplied by the contamination

values quoted above. The curvature and power of the Argus are fixed to the results of the fit

on MC shown in Figure 5.2, and the end-point is pegged to the signal mean. The resolution

function is also pegged to the signal distribution.

Similarly to B+→ K +π+π−η decays, which contaminate the post-selection data significantly in

the region of the signal peak, B+→ K +π−π+π0 decays present another source of background

that is difficult to reduce. Neutral pions can mimic a photon signature, as mentioned in

Section 5.1. The π0 background events that survive the offline selection cannot be subtracted

from the data sample with weights as the distributions of the signal and the background in the

B candidate mass are so similar as to make impossible the construction of a useful orthogonal

weight function for this background species: as the distinction between the two distributions
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Chapter 5. Data selection and B mass fit

would have to be based on very minor differences in shape and position, the weight values for

both signal and background move so far away from unity in the positive and negative ranges

that the amplitude fit on the weighted data sample is compromised. The ratio of pions to

photons can be reduced by placing a strict requirement on the IsPhoton classifier score [47]

introduced in Section 5.1. However, to reduce it to a level where it is insignificant would also

mean degrading the signal efficiency to a point of undue loss of statistical power. We therefore

choose to place the strictest requirement on IsPhoton consistent with sufficiently high signal

efficiency and to merge the π0 background with the signal in the background subtraction.

With the selection threshold on the IsPhoton score of 0.9 chosen for this analysis, the expected

contamination from B+→ K +π−π+π0 events is (1.31±0.21)% for Run 1 and (1.46±0.23)%

for Run 2, see Table 5.8. Similarly to what is done for the B+→ K +π+π−η background, for

the calculation of these contamination values, it is assumed that the ratio of the background

and signal branching fractions is the same as the ratio of branching fractions of the decays

B+→ K ∗+π0 and B+→ K ∗+γ. The remaining π0 contamination is a potential source of bias

on the result of the amplitude fit. Studies have been performed to better estimate the π0

contamination using the IsPhoton distribution in data. These estimates are used to determine

the systematic uncertainty on λγ associated with the B+→ K +π−π+π0 background, and are

detailed in Section 6.8.3.

In the fit to the B mass distribution in data, the π0 contamination is fixed to the result of

the calculation based on the branching fractions and MC efficiencies. The B+→ K +π−π+π0

background is modelled, like the signal, with a double-sided CB, see Eq. 5.1. The tail parame-

ters αL ,αR ,nL ,nR for the π0 background as well as the width σ are determined from a fit to

simulated B+→ K +π−π+π0 events reconstructed as B+→ K +π−π+γ decays. The mean µ of

the π0 background shape is pegged to the signal mean and shifted towards lower masses by

the difference between the signal mean from a fit to simulated signal decays and the mean

of the B+→ K +π−π+π0 MC fit (0.7 MeV/c2 in Run 1 and 8.6 MeV/c2 in Run 2). The latter fit is

shown in Figure 5.3. The B+→ K +π−π+π0 CB and the signal CB have different shape parame-

ters, so their common distribution in the background subtraction is the sum of the two CB

distributions with their relative normalisations fixed to the B+→ K +π−π+π0 contaminations

from Table 5.8.

The combinatorial background distribution is modelled with a linear function whose two

parameters are determined in the full B mass fit on data. No input is taken from simulation

because, as explained in Section 5.1 for the multivariate classifier that distinguishes this

background, it would be very computationally expensive. Fortunately, the combinatorial

background is the only component that contaminates the spectrum at high B masses, since

all other background contributions come from incorrectly and/or partially reconstructed B

decays and therefore have mass distributions at or below the signal level. Therefore, the shape

of the combinatorial background can be constrained in the fit to the data distribution when

the fit range extends to high B mass values beyond the signal peak.
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Figure 5.3 – B+→ K +π−π+γ candidate mass distributions from simulated B+→ K +π−π+π0 events for
2012 (left) and 2016 (right) MC. The fit to the distribution with a double-sided CB PDF is shown in blue.
The pull plots at the bottom are described in Figure 5.2.

In partially reconstructed B decays, the loss of one pion shifts the B candidate mass distribu-

tion from the signal peak towards lower mass values by at least one pion mass, and analogously

for two lost pions and two pion masses. Partially reconstructed backgrounds with one lost pion

are combined into a single background species in the B mass fit, and partially reconstructed

backgrounds with two missing pions make up another background species. The former is mod-

elled, like the B+→ K +π+π−η
(→ γγ

)
background, with an Argus function, convolved with the

signal shape to account for the detector resolution. The width of the resolution proxy is scaled

from the signal width to account for the effect of the missing pion, which improves the resolu-

tion on the B mass. Naturally, the reconstructed value of the B mass cannot be more accurate

in the partially reconstructed case than in the fully reconstructed case, but the presence of one

more reconstructed track, with its associated uncertainties on its four-momentum, means that

the spread of the B mass values is slightly higher in the fully reconstructed case. This effect on

the resolution of removing one pion is expected to be approximately independent of the num-

ber of tracks in the B decay. For lack of a sizeable B 0→ K +π−π+π−γMC sample, it is estimated

from simulated B+→ K ∗0
(→ K +π−)

π+γ events, which figure as the partially reconstructed

background, and B 0→ K ∗0
(→ K +π−)

γ events, which figure as the signal. The MC samples for

both decays are reconstructed as B 0→ K +π−γ. The offline selection for this analysis is used as

far as it applies to this event type; notably, the HLT2 trigger line Hlt2RadiativeIncHHGamma

(two hadrons and a photon) is chosen instead of the Hlt2RadiativeIncHHHGamma line (three

hadrons and a photon) in Run 2 (the Run 1 trigger lines are unchanged, see Table 5.1), the

vetoes and fiducial requirements on the invariant mass combinations are not applied, and

the BDT classifier is not evaluated. Also, in the absence of a pion candidate with the same

charge as the kaon, any and all selection requirements related specifically to this candidate are

moot. In the resulting B 0→ K ∗0γ sample, the distribution of the B 0 candidate mass is fitted

with a double-tailed CB, while in the B+→ K ∗0π+γ sample reconstructed as B 0→ K +π−γ, the

difference between the reconstructed B 0 candidate invariant mass and the true invariant mass

of the K +π−γ system is fitted, also with a double-tailed CB. The ratio of the widths of the two
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Figure 5.4 – Fits to constrain the shape of the partially reconstructed background with one missing pion:
left is the difference between the reconstructed B 0→ K +π−γ candidate mass and the true invariant
mass of the K +π−γ system in B+→ K ∗0π+γ decays, in 2016 MC. The double-tailed CB resulting from
the fit is superimposed. This shape is used as the resolution function in the fit to the B 0 → K +π−γ
candidate mass in the same sample shown on the right, superposed with the Argus PDF convolved
with the CB resolution. The pull plots at the bottom are described in Figure 5.2.

fitted CB distributions is found to be r = 0.92±0.06 in 2012 MC and r = 0.95±0.03 in 2016

MC. These ratios are used to scale the signal width in the resolution function that is convolved

with the Argus PDF in the shape of the partially reconstructed backgrounds with one missing

pion. In the fit to the B mass of the B+→ K +π−π+γ candidates in data, the end-point of the

Argus is pegged to the signal mean minus the π0 mass. The curvature and power are fixed

to the result of a fit to the B+→ K ∗0π+γ-reconstructed-as-B 0→ K +π−γ sample, where the fit

function is an Argus with the end-point fixed to the B+ mass minus the π0 mass, convolved

with the resolution function determined from the difference between the B 0 candidate mass

and the true invariant mass K +π−γ system mentioned above. That fit, as well as the one that

determines the Argus PDF curvature and power, is shown in Figure 5.4 for the 2016 MC sample.

The partially reconstructed backgrounds with two or more missing pions are modelled with a

RooPhysBkg PDF [57], another generic shape for partially reconstructed backgrounds, which

is defined as

fpart(x;m0,σ,c) =N

∫ +∞

−∞
x ′

(
1− x ′2

m2
0

)
Θ(m0 −x ′)e−cpartx ′− 1

2 ( x−x′
σ

)2
d x ′ . (5.3)

This function is similar to a simplified Argus PDF (see Eq. 5.2), multiplied with the Heaviside

step function Θ, and convolved with a Gaussian resolution function. The end-point m0 is

pegged to the signal mean minus two times the neutral pion mass, the width σ of the Gaussian

is pegged to the signal width, and the curvature cpart is left free.

The distribution of the B candidate mass in data is fitted, for each data-taking year, with

a composite PDF comprised of the B mass shapes for the signal, the η background, the π0

background, the combinatorial background, the partially reconstructed background with one
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5.2. Fit to B candidate invariant mass

missing pion, and the partially reconstructed background with two missing pions. The yields

(number of events) of the η and π0 backgrounds are not free in the fit as they depend on the

signal yield as described above. The free parameters of the fit are

• the signal yield Nsig;

• the yield of the partially reconstructed background with one missing pion Nmisspi;

• the yield of the partially reconstructed background with two missing pions Npart;

• the combinatorial background yield Ncomb;

• the signal mean µ (mu);

• the signal width σ (sigma);

• the curvature cpart of the partially reconstructed background with two missing pions;

• the slope a of the combinatorial background.

The data with the fitted distributions are shown in Figure 5.5 with the fit results. The latter are

also tabulated in Table 5.9.

The total number of signal events is 35236±198. Of these, 34855 are in the B mass range

5000−6500 MeV/c2 that is used for the amplitude fit.

Table 5.9 – Fit parameters obtained from the mass fit of the B+→ K +π−π+γ candidates selected in the
2011, 2012, 2015, 2016, 2017, and 2018 data sets.

Fit parameter 2011 2012 2015

Nsig 1387±37 4061±68 1228±36
Nmisspi 854±62 2127±98 638±47
Npart 659±49 1963±82 529±40
Ncomb 16.9±5.5 15.2±6.4 10.0±4.1
µ [MeV/c2] 5263.4±3.2 5280.2±1.0 5263.7±2.8
σ [MeV/c2] 81.1±2.5 77.3±1.3 71.4±2.3
cpart [c2/MeV] 7.0±3.3 2.3±1.5 −3.2±2.2
a [c2/MeV] 0.999773±0.000024 0.99836±0.00024 0.99813±0.00011

Fit parameter 2016 2017 2018

Nsig 8849±100 8772±99 10939±110
Nmisspi 5026±147 4614±143 6220±157
Npart 5840±129 5602±127 6824±142
Ncomb 43±11 67±13 64±13
µ [MeV/c2] 5264.6±1.0 5273.4±1.0 5272.97±0.97
σ [MeV/c2] 72.52±0.87 72.00±0.83 71.56±0.78
cpart [c2/MeV] 1.91±0.74 1.45±0.74 2.45±0.63
a [c2/MeV] 0.99796±0.00025 0.99467±0.00019 0.99048±0.00024
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Figure 5.5 – Invariant mass distribution of the B+→ K +π−π+γ candidates selected in the 2011 (upper
left), 2012 (upper right), 2015 (centre left), 2016 (centre right), 2017 (lower left), and 2018 (lower
right) data sets. The total fit function is shown as the solid blue curve. It is the sum of the following
components shown as dashed curves: B+ → K +π−π+γ signal (blue), B+ → K +π+π−η background
(green), B+→ K +π+π−π0 background (orange), background with one missing pion (cyan), background
with at least two missing pions (magenta) and combinatorial background (red). The differences
(residuals) between the numbers of bin entries and the average of the fitted blue curve over each bin in
units of the uncertainty of the residuals are shown in the bottom plots, with grey bars indicating the
deviation from zero and red dashed lines at ±2.
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5.3 Background subtraction with custom orthogonal weight func-

tions

The PDF for the amplitude fit, introduced in Section 6.1, describes only B+→ K +π−π+γ signal

decays. In order to correct for the presence of background events in the data samples that

survive the selection requirements detailed above, the different distributions of the signal and

background categories in the B candidate mass are leveraged. To this end, a weight function

that depends on the B candidate mass is constructed from the result of the B mass fit on

data (see Section 5.2) and used to subtract the background from the data in the amplitude fit:

each event is assigned a weight so that the various backgrounds cancel out and the resulting

weighted sample is effectively signal-only.

When the distributions of the signal and the backgrounds are known in a discriminating

variable, one can use these distributions to disentangle the different species (the species

being the signal and backgrounds) and obtain the distribution of another variable, which

must be independent from the discriminating variable, for each species separately. The sPlot

technique [58] is commonly used for this purpose; however, in this analysis, a more general

technique known as Custom Orthogonal Weight (COW) functions [59] is used. Unlike the sPlot

technique, which relies on a maximum likelihood fit, no fit is required for COWs when the

distributions in the discriminating variable and the yields of the different species are known.

The B candidate invariant mass is used as the discriminating variable, and signal weights are

applied to the data events to obtain background-subtracted, i.e. effectively signal-only, sam-

ples. The distributions in the B mass are determined from simulation and data as described in

Section 5.2.

From the distributions fi and yields Ni of the species i = 1, . . . , Nspecies, the weight for a species

k is

wk (m) =
∑Nspecies

i=1 Cki fi (m)∑Nspecies

i=1 Ni fi (m)
, (5.4)

where m is the B candidate mass and the matrix Cki is defined as

(C−1)kl =
∫

dm
fk (m) fl (m)∑Nspecies

i=1 Ni fi (m)
. (5.5)

The weights are scaled with a common normalisation constant that accounts for the sta-

tistical power of the weighted data sample with respect to a sample without weights. The

normalisation constant is given by

S =
∑Ndata

i=1 wsig(mi )∑Ndata

i=1 (wsig(mi ))2
, (5.6)
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so that the signal weight si for event i is given by S wsig(mi ).

The characterisation of the signal and background shapes in Section 5.2 uses a wide B mass

range between 4300 MeV/c2 and 6500 MeV/c2. Once the shapes are defined, however, the

background-dominated low-B-mass region can be excluded. Therefore, the data is con-

strained to the B mass region between 5000 MeV/c2 and 6500 MeV/c2. This choice of range

allows to combine into one species the partially reconstructed backgrounds with one missing

pion, two missing pions, and one missing photon from the η→ γγ decay. With the combina-

tion of the B+→ K +π−π+γ and B+→ K +π−π+π0 contributions into one species, this means

that there are three species to consider in the weights calculation (Nspecies = 3):

• B+→ K +π−π+γ and B+→ K +π−π+π0;

• partially reconstructed backgrounds;

• combinatorial background.

For simplicity, the species that contains the signal and the π0 background will be referred to as

the signal species, or simply as “signal” for the rest of this section. It is to be able to subtract the

combinatorial background that the end of the B mass range is chosen far from the signal peak;

this way, there is a region dominated by combinatorial background that is assigned negative

signal weights to counteract the combinatorial background events in the signal-dominated

region. The yields of the partially reconstructed backgrounds are high enough that efficient

background subtraction is possible with the lower limit of the background subtraction range

relatively closer to the signal peak than the upper limit.

The background-subtracted samples reproduce the signal distributions of variables other than

the discriminating B mass if and only if those other variables are independent of the B mass.

For the purposes of the amplitude fit, the background subtraction should be valid for the five

variables that describe the final state of the B decay, see Section 6.2. The correlations of these

five variables with the B mass are examined on the “norm” signal MC. While a lack of corre-

lation is a necessary rather than a sufficient condition for independence, the independence

hypothesis can be strenghtened by a visual inspection of the two-dimensional distributions

of the discriminating variable and each of the five final-state phase-space variables. These

are shown in Figure 5.6 in the B mass-constrained (see Section 6.3) case. The correlation

coefficients are all below 2%, the highest value of 1.8% being reached for mK +π−π+ , and are

hence considered negligible, and the two-dimensional distributions in Figure 5.6 show no in-

dication of any kind of non-linear dependence that would escape detection by the correlation

test. This validates the background subtraction using COWs with the B candidate mass as the

discriminating variable.
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Figure 5.6 – Correlations between the B candidate mass and the five variables mK +π−π+ , mK +π− ,
mπ−π+ , cosθ, and χhel after B-mass constraint in the “norm” MC. The sub-figures on the right-hand
side show zooms in the most densely populated regions.
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Amplitude analysis

The data collected by the LHCb experiment contains information on the physical nature of the

process B±→ K ±π∓π±γ. To extract (some of) this information, one first needs a qualitative

framework in which the process can be described. This framework can then be compared

to the data to obtain a quantitative description of the process within the framework. The

qualitative framework used in this work to describe the decay B± → K ±π∓π±γ has been

introduced in Section 2.3. The quantitative step takes the form of an amplitude analysis, or

amplitude “fit” to obtain

• the decay paths that contribute to the transition from the initial state B to the final state

Kππγ, i.e. the set of amplitudes referred to in the following as the model content;

• the relative magnitudes and phases of the amplitudes that make up the model, and;

• the photon polarisation parameter λγ.

Technically, a complete model of the decay is given by a setΩ= {Ak,R/L, ak ,φk ,λγ} of ampli-

tudes, magnitudes and phases, and λγ; however, we also use the word “model” to refer to

the set {Ak,R/L} only. Fitting this model to the data then leads to estimates of the parameters

{ak ,φk ,λγ}.

The amplitude fit takes the data in the form of a list of signal decay candidates with 16 variables

x each (which are the four-momenta of the four final-state particles) and returns the best

estimate of the magnitudes and phases and of the polarisation fraction polFrac, which is

related to λγ as

polFrac = 1+λγ
2

. (6.1)

In fits on data, the polFrac parameter is blinded through the addition of an unknown offset

that is randomly chosen from the range [−0.2,0.2]. The offset is fixed for the whole analysis so

that it cancels in the calculation of relative differences between blinded polFrac values.
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Let F (x |Ω) be a function that describes the probability distribution of the measurable quanti-

ties x given a set of parametersΩ. We wish to invert this relation, that is to say: given a set of

data {xi }, we wish to find the “best” parameter setΩ to describe the data. With the likelihood

function

L(Ω) =
Ndata∏
i=1

F (xi |Ω) , (6.2)

the principle of maximum likelihood states that the best estimate ofΩ is the one that max-

imises L [60].

In practice, instead of maximising the likelihood, one can minimise the negative log-likelihood

NLL,

NLL(Ω) =−2lnL(Ω) , (6.3)

since the natural logarithm is a strictly monotonous function. The factor 2 is added so that

differences in the NLL can be conveniently identified with the χ2 test statistic in the case

of normally distributed data. The background-subtraction weights si (see Section 5.3) are

included as weights in the sum that the logarithm makes of the product in Eq. 6.2:

NLL(Ω) =−2
Ndata∑
i=1

si lnF (xi |Ω) . (6.4)

It is worth mentioning already, before describing the PDF F in the next section, that some

attributes of the amplitudes, such as masses and widths of the resonances for example, can

also be determined from a minimisation of the NLL, and can thus be seen as a part of the set

Ω for certain fits.
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6.1 Fit function

The PDF that describes the signal decay in the fit function of the amplitude analysis is based

on the expression of Eq. 2.14 for the differential decay rate derived in Section 2.3. Note that

Eq. 2.14 describes B− decays, whereas the amplitude fit PDF describes B+ decays. In B+

decays, the photon is predominantly right-handed in the SM. The decay amplitude for a

right-handed photon is associated, in B+ decays, with the Wilson coefficient C7, while the

amplitude for a left-handed photon is associated with C ′
7. This means that for the differential

decay rate for B+→ K +π−π+γ decays, the indices R and L in Eq. 2.14 have to be swapped,

while the photon polarisation parameter λγ defined in Eq. 2.13 remains the same. The signal

function P s is proportional to the differential decay rate:

P s(x |Ω) = 1+λγ
2

∣∣∣∑
k

ak e iφk Ak,R(x)
∣∣∣2 + 1−λγ

2

∣∣∣∑
k

ak e iφk Ak,L(x)
∣∣∣2

. (6.5)

It is a function of the four-momenta x of the four final-state particles. The signal function

P s , the four-body phase-space densityΦ4(x), and the function ξ(x), which encodes the LHCb

acceptance as well as the reconstruction and selection efficiencies, make up the PDF F that

describes the signal data,

F (x |Ω) = 1

NΩ
ξ(x)P s(x |Ω)Φ4(x) , (6.6)

where the normalisation factor NΩ is given by

NΩ =
∫
ξ(x)P s(x |Ω)Φ4(x)dx . (6.7)

The functions ξ and Φ4 are intrinsically taken into account in the evaluation of the PDF

on (simulated) data: any event generated in simulation or reconstructed from data must

have four-momentum variables x that are kinematically allowed, by the construction of the

generator or the constraints of the reconstruction as signal. The efficiency ξ(x) takes the value

0 for a signal decay that lies outside of the acceptance or that does not pass the selection

requirements and the value 1 for a signal decay within the acceptance that passes the selection.

It can also take values between 0 and 1 for a MC decay with PID efficiency weights, in which

case the value of the signal function is multiplied by the PID efficiency weight.

The normalisation factor is computed numerically from simulated “norm” data as

NΩ ≈
∫
ξ(x)Pnorm(x)Φ4(x)dx × 1

Nsel

Nsel∑
j=1

w j
P s(x j |Ω)

Pnorm(x j )
, (6.8)

where Pnorm is the signal function used in the generation of the “norm” MC samples, with the

parameters from Table 6.3, and w j are the MC weights, set to 1 if no weighting is applied. For

the Nsel “norm” MC events that pass the selection, the signal function P s is evaluated, and the
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Table 6.1 – Spin factors for the weak decay B−→ K −
res,iγR/L. Where two signs are given, the upper sign

belongs to the R and the lower sign to the L spin factor. The four-momentum P = pB +pKres,i is the
sum of the B and Kres,i four-momenta, while q = pB −pKres,i is their difference, equal to the photon
four-momentum. The Levi-Civita tensor εµνρσ is +1 (−1) for even (odd) permutations of (0123), and 0
otherwise. The photon polarisation vector is ε. The Kres,i polarisation vector or tensor is ε′. The asterisk
indicates complex conjugation.

Resonance type J P Si ,R/L

Axial vector 1+ ∓iεµνρσε∗µε′∗νPρqσ+((ε∗ ·ε′∗)(P ·q)− (ε∗ ·P )(ε′∗ ·q))
Vector 1− −iεµνρσε∗µε′∗νPρqσ±((ε∗ ·ε′∗)(P ·q)− (ε∗ ·P )(ε′∗ ·q))
Tensor 2+ −iεµνρσε∗µε′∗νλPλPρqσ±ε∗µPσ(ε′∗µσ(P ·q)− (Pµε′∗σνqν))
Pseudo-tensor 2− ∓iεµνρσε∗µε′∗νλPλPρqσ+ε∗µPσ(ε′∗µσ(P ·q)− (Pµε′∗σνqν))

sum of the ratios of the two signal functions is computed. The integral in Eq. 6.8 and the factor
1

Nsel
do not change with different fit parametersΩ, and these constant factors (additive in the

NLL) can therefore be omitted in the minimisation.

The propagators T k
i (x) and T k

j (x) of Eq. 2.15 are generally described by relativistic Breit-

Wigner distributions [61]. The broad ρ0→ π+π− resonance and the narrow ω→ π+π− reso-

nance overlap and are described with a common line-shape that is adapted from the Gounaris-

Sakurai line-shape [62]. Expressions for all propagators can be found in Appendix A.2.

Angular momentum conservation in the weak decay of the pseudo-scalar B meson into a

photon and a kaonic resonance requires that the resonance have non-zero integer spin. No

significant contributions from resonances with spin higher than 2 are expected in the invariant

mass ranges considered in this analysis, so only vector (J P = 1−), axial vector (J P = 1+), tensor

(J P = 2+), and pseudo-tensor (J P = 2−) resonances are considered. The decays of these

resonances into the three pseudo-scalar hadrons of the final state are mediated by the strong

interaction.

The weak decay spin factors Si ,R/L from Eq. 2.15 were calculated using the helicity formalism

in Ref. [20] for vector, axial vector, and tensor resonances. The expression for pseudo-tensor

resonances is inferred by analogy to the tensor expression, and by requiring that the R and L

amplitudes differ by a factor Pres(−1)Jres−1. The weak decay spin factors are given in Table 6.1.

They are defined in the B rest frame. A boost of the Kππγ system in a direction other than the

axis defined by the Kres and γ momenta in the B rest frame distorts the angular distributions.

That is why the four-momenta in the data and integration samples are boosted from the LHCb

lab frame to the B rest frame for the amplitude fit.

In the isobar formalism, each decay channel contains two strong decays: that of the initial

resonance Kres,i into an intermediate resonance R j and one of the final-state pseudo-scalars,

and that of R j into the rest of the final state. A strong two-body decay R → AB conserves

angular momentum and parity: with the spin (parity) JX (PX ) of the particle X = R, A,B , the

total spin S AB of the daughters can take values between |J A − JB | and J A + JB . Conservation of
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Table 6.2 – Intermediate states Kres,i and R j taken into consideration in the model building, grouped
by their possible decay products and spin-parity properties.

J P = 0+ J P = 1− J P = 1+ J P = 2+ J P = 2−

Kres,i → R jπ

Kres,i → R j K

K ∗(1410)
K ∗(1680)

non-resonant

K1(1270)
K1(1400)
K1(1650)

non-resonant

K ∗
2 (1430)

K2(1580)
K2(1770)

R j → Kπ K ∗
0 (1430) K ∗(892) K ∗

2 (1430)

R j →ππ non-resonant
ρ(770)
ω(782)

f2(1270)

angular momentum requires that JR lie between |L AB −S AB | and L AB +S AB , where L AB is the

relative angular momentum of the daughters. Another constraint on the spin-orbit structure

of the decay follows from parity conservation: PR = P APB (−1)L AB . Note that in this analysis,

all final-state hadrons are pseudo-scalar particles, so without loss of generality, we can take

JB = 0 and PB =−1.

The centrifugal barrier factors limit the relevant angular momenta, so we only consider S-, P-,

and D-wave decays (corresponding to relative angular momenta L AB of 0, 1, and 2, respec-

tively). The set of resonances and non-resonant states considered for the intermediate states

Kres,i and R j are given in Table 6.2.

There are no established axial vector nor pseudo-tensor candidates for the two-body resonance

R j , so with constraints from angular momentum and parity conservation, we consider ten

spin-orbit configurations for the Kres,i decays. The particles involved are scalars S (J P = 0+),

pseudo-scalars P (J P = 0−), vectors V (J P = 1−), axial vectors A (J P = 1+), tensors T (J P = 2+),

and pseudo-tensors P t (J P = 2−). The spin-orbit configurations for axial vector Kres,i are

A
P−→ SP , A

S−→ V P , A
D−→ V P , and A

P−→ T P . For vector Kres,i , they are V
P−→ V P and V

D−→ T P .

The K ∗
2 (1430) is the only tensor considered among the resonances that decay to Kππ. T

P−→
T P decays are allowed, but the only possible tensor for R j in this case is the f2(1270), and

conservation of energy heavily suppresses the decay K ∗
2 (1430)→ f2(1270)K . Therefore, only

T
D−→V P decays are considered. The spin-orbit configurations considered for pseudo-tensor

Kres,i are P t
P−→V P , P t

S−→ T P , and P t
D−→ SP . The P t → T P decay is also allowed in the D-wave

configuration, but only the S-wave is considered in the model building. This is because the

tensor two-body resonances f2(1270) and K ∗
2 (1430) peak beyond the limits of the π+π− and

K +π− invariant mass ranges, respectively, that are used in this analysis, although their large

widths mean that they can have significant tails in the mass windows considered here. In order

to simplify the model building, only the lowest accessible waves are considered for the tensor

two-body resonances. All two-body resonances R j decay to two pseudo-scalars whose relative

angular momentum is determined by the mother’s spin, so the spin-orbit configurations

considered are S
S−→ PP , V

P−→ PP , and T
D−→ PP .
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Following the covariant formalism developed in Refs. [63, 64], the spin factor for the strong

decay of a resonance R into two daughters A and B is built from the polarisation tensors of

R, A, and B , spin projection operators, and angular momentum (projection) operators. It is

written as

εR X (JR ,L AB ,S AB )L(L AB )P(S AB )ε
∗
Aε

∗
B , (6.9)

where the spin projection operator P(S AB ) projects the conjugated polarisation tensors ε∗A
and ε∗B of the daughters onto the sub-space of total spin S AB . The angular momentum

tensor L(L AB ) is constructed from the components of the relative momentum p A −pB of the

daughters, projected onto the sub-space of angular momentum L AB by the spin projection

operator P(L AB ). Depending on the spin configuration, the factor X (JR ,L AB ,S AB ) is equal to

1 (when JR +L AB +S AB is even) or equal to the Levi-Civita four-tensor contracted with the

four-momentum pR = p A +pB . An analogous term X (S AB ,S A ,SB ) has been omitted as, for

any strong decay in this analysis, daughter B is always a pseudo-scalar, so S AB +S A +SB =
S AB +S A = S A +S A is always even. Expressions for the polarisation tensors and the projection

operators are given in Appendix A.3. The full strong decay spin factor Sk
i j ,R/L is obtained by

multiplying the spin factors for the Kres,i and R j decays.

The isobar formalism is applied even for decay chains that do not proceed, or only partly

proceed, through hadronic resonances. Non-resonant placeholders are used in some decay

amplitudes in the place of the resonance Kres,i , or in the place of a two-pion resonance

that decays to π+π−. Rather than a phase-space B+ → K +π−π+γ decay, the decay B+ →
K (NR,1+)+

(→ K ∗(892)0
(→ K +π−)

π+)
γ models the decay of the B+ into a K ∗(892)0, a π+,

and a photon, where the K ∗(892)0π+ system has total angular momentum J = 1 and is in a

positive parity eigenstate (P =+1). Decays of the B+ into a photon and a K ∗(892)0π+ system

with J P = 1− (designated K (NR,1−)) are also considered, as are ρ(770)0K + systems with vector

or axial vector properties. Analogously, the decay K1(1270)+→ a(NR,0+)
(→π+π−)

K + has the

K1(1270)+ decay into a K + and two pions that are in a scalar configuration. Instead of a Breit-

Wigner propagator, a propagator that only contains the normalised Blatt-Weisskopf barrier

factor BL(q,0) calculated from the breakup momentum q , see Table A.1 in Appendix A.2, is

assigned to such non-resonant particle pairs in the PDF. For B+ decays into a non-resonant

particle pair and a photon, the weak decay spin factor from Table 6.1 corresponding to the

J P of the non-resonant particle pair is used. The strong decay spin factors for non-resonant

particle pairs are derived assuming parity conservation, so they are the same as the strong

decay spin factors for the hadronic resonances introduced above.
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6.2 Fit fractions, visualisation and goodness of fit

Fit fractions It is convenient to compare different amplitude models by comparing the fit

fractions of the respective amplitudes instead of the magnitudes and phases. The fit fractions

can be defined for single or multiple amplitudes that are a sub-set of the full model. For a

sub-set {A`,R/L}, the fit fraction is defined as

1∫
ξ(x)P s(x)Φ4(x)dx

∫
ξ(x)

(
1+λγ

2

∣∣∣∑
`

A`,R

∣∣∣2 + 1−λγ
2

∣∣∣∑
`

A`,L

∣∣∣2
)
Φ4(x)dx , (6.10)

where A`,R/L = a`e iφ` A`,R/L and the integral in the denominator concerns the full model. In

the case of different parametrisations of decay channels, which may have different normali-

sation conventions especially with regards to the propagators, the fit fractions give a better,

model-independent, impression of the relative importance of different decay channels within

the model than the relative magnitudes ak . For sub-models that contain more than one

amplitude, the fit fraction takes interferences between amplitudes into account. It includes

the terms Re(A ∗
m,R/LAn,R/L) if both amplitudes Am,R/L and An,R/L are part of the sub-model.

It will, however, not include interferences between Am,R/L and Ak,R/L if the amplitude Ak,R/L

is not in the sub-model. This can lead to fit fractions that do not add up to 100%, even if the

set of sub-models is exclusive (no overlap between the sets) and complete (the union of the

sub-sets makes up the full model). The integrals in the fit fraction definition are computed

analogously to the PDF normalisation in Eq. 6.8.

Model visualisation in five independent variables The B+→ K +π−π+γ decay is passed to

the fit PDF in the form of the four-momenta of the final-state particles. These 16 observables

are not independent, though: all final-state particles are on-shell (4 constraints), the four-

momentum of the initial state is conserved (4 constraints), and the orientation of the reference

frame is arbitrary (3 constraints), so the final state has five independent observables. We

choose to describe it with three masses and two angles (see Figure 6.1):

• mKππ: the invariant mass of the K +π−π+ system;

• mKπ: the invariant mass of the K +π− system;

• mππ: the invariant mass of the π+π− system;

• cosθ: the cosine of the angle between the normal of the hadronic decay plane that

points in the direction of the cross product of the π+ and π− momenta and the opposite

of the photon momentum in the Kππ rest frame;

• χ: the angle between the sum of the momenta of the two pions and the projection of the

opposite of the photon momentum in the hadronic decay plane in the Kππ rest frame.

These five variables are calculated on the data and MC samples. With the background sub-

traction weights and the PID efficiency weights applied to data and MC respectively, the

distributions in data can be compared with the distributions given by a certain amplitude
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Figure 6.1 – Sketch of the K +π−π+γ final state in the rest frame of the three hadrons (~pK ++~pπ++~pπ− =
0). The vector n̂ perpendicular to the hadronic decay plane is the normalised cross product of the two
pion momenta ~pπ+ ×~pπ− . The angle between n̂ and the opposite of the photon momentum −~pγ is
given by θ, and χ is the angle between the sum of the pion momenta ~pπ+ +~pπ− and the projection of
−~pγ onto the hadronic decay plane.

model. To this end, the MC samples have another set of weights applied (multiplicatively) to

transform them from the “norm” model to the model under consideration. For each event,

this model weight is calculated as the ratio of the model PDF and the generation (“norm”)

PDF. Sub-sets of the decay amplitudes can also be shown in the histograms by calculating a

sub-model weight where the sub-model contains only some sub-set of the amplitudes in the

full model. The MC histograms for the full model are normalised to match the data, and any

sub-model to match the data times the fit fraction for the sub-model. Since the fit fractions do

not necessarily sum up to one, the sum of the sub-model histograms does not necessarily sum

up to the histogram for the full model. For each of the five visualisation variables, the residuals,

defined as the distance between the data points and the full model histogram, in units of the

error on the data bins, can be computed and visualised. These “pull plots” are shown below

the histograms that show the data and the model distributions. The error bars on the pull

plots are combinations of the data and reweighted MC histogram errors. For visibility, only

pulls between −6 and 6 are shown; note that this may mean that there are some bins whose

pulls are not plotted.

Figure of merit: χ2/ndf The figure of merit chosen for the correspondence between the

model and the data is a χ2 divided by its number of degrees of freedom (ndf) in the fit. The

χ2/ndf is computed in bins of the five-dimensional phase-space of the decay. The bins

are rectangular in terms of five independent squared mass combinations of the final-state

particles, namely m2
π+π−γ, m2

K +π− , m2
K +π+ , m2

π+γ, and m2
K +π+π− . The bins are determined using

an adaptive binning scheme for each data-taking year separately. The binning algorithm [65]

recursively splits the sample into sub-samples of equal size along one of the binning variables.

The splitting stops when a further division would lead to bins containing fewer than the

minimum number of events, which is set to 15 in this analysis. Note that the splitting points

and the number of events are determined without taking event weights into account. For

each bin, the variable that determines the next split is that in which the bin population varies
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the most. The variation is quantified by the spread of nearest-neighbour distances of the

events [66]. The binning can be visualised as a decision tree. For each bin, the contribution

to the χ2 is determined as the squared difference between the sum of the weights of the

data events and the sum of the weights of the integration events, divided by the variance of

that difference. The weights of the integration events have been scaled so that the sum of

integration event weights over the whole sample is equal to the sum of data event weights over

the whole sample. The variance is calculated as the sum of the squared data event weights

and the squared scaled integration event weights. These squared ratios are summed over

all the bins to give the χ2, which is divided by the number of degrees of freedom. They are

given by the number of bins minus the number of free parameters in the fit minus one (the

normalisation of the integration sample to the data sample size removes an extra degree of

freedom). Studies in Ref. [65] indicate that the systematic precision of the χ2/ndf determined

this way is approximately 0.02.
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6.3 Data and MC samples

The fit is performed on data samples recorded by the LHCb experiment in 2011, 2012, 2015,

2016, 2017, and 2018. The selection procedures described in Chapter 5 are applied on the data,

including the fiducial cuts on the invariant masses of the hadronic systems in Table 5.6. For

the amplitude fit, the B mass range is restricted to 5000−6500 MeV/c2 and the background

subtraction weights calculated in this region (see Section 5.3) are applied. As explained in

Section 2.3, the data events that are reconstructed as B− meson decays rather than B+ meson

decays have CP conjugation applied by inverting the charges and the three-momenta of all the

particles involved. This way, all events can be treated as B+ decays and the measurement con-

sidered CP-averaged. The necessary assumption of negligible CP violation is cross-checked

by fitting the B+ and the B− events separately in Section 6.7.

Simulated samples, generated with AMPGEN [67] and with the LHCb detector response and

reconstruction applied, are used for the normalisation of the fit PDF and for validation. Two

models are used for generating two kinds of samples, referred to as “norm” for “normalisation”

and “val” for “validation,” although they are also used for other purposes. In the generation,

the decays of B− mesons which make up about half of the events are treated the same way as

the decays of B+ mesons, so these samples need not have CP conjugation applied. The model

composition (decay chain amplitudes) and parameters were chosen so that they resemble

the true physical structure of the B → Kππγ decay, based on the Dalitz analysis [12] and on

known properties of the (intermediate) decaying mesons. In Section 6.1, it is explained that

the amplitude fits use the four-momenta of the final-state particles in the B rest frame. The

exception to this are validation fits on the “val” and “norm” MC samples. Their generation uses

rejection sampling: an event with four-momenta x is retained if a random number sampled

uniformly between 0 and 1 is smaller than Pgen(x)/max(Pgen), and rejected otherwise. In

the generation, Pgen(x) is evaluated on the true four-momenta x in the LHCb lab frame, so

in order to recover the “val” and “norm” model parameters, the fit PDF must be calculated

in the same reference frame. This is another way of saying that because the generation of

the “norm” and “val” MC samples uses the lab frame momenta, the generated models are

different from what was intended. This is not a problem for the amplitude fit, however,

because the generation PDF Pgen for the numerical integration of the fit PDF (see Eq. 6.8) can

be calculated correcly by simply using the true lab frame momenta. For this, the maximal

value of the generation PDF, max(Pgen), which is determined prior to the generation as the

maximal value of Pgen over one million phase-space events, times a safety factor of 3, is also

taken into account. Note that in the amplitude analysis, the lab frame momenta are only used

to obtain the generation PDF of the MC samples. For all other purposes, e.g. for the evaluation

of the model PDF in the numerator of Eq. 6.8, or the evaluation of the fit model PDF in the

model visualisation (see Section 6.2), the true momenta of the MC events are boosted to the B

rest frame.
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Table 6.3 – The amplitudes of the B+→ K +π−π+γ samples generated with AMPGEN and their relative
magnitudes and phases. The B+ radiative decay into the resonance at the head of the decay in the
“Amplitude” column is implied, as are the two-body decays of the neutral resonances; for example, the
first row implies B+→ K1(1270)+

(→ K ∗(892)0
(→ K +π−)

π+)
γ. The lowest possible value of the relative

angular momentum L of the Kres daughters is used, except where a [D-wave] indicates that L = 2. All
the amplitudes listed here are part of the “norm” model. The right-most column indicates with a cross
those amplitudes that are part of the “val” model. All samples were generated with λγ =−1.

J P Amplitude k Magnitude ak Phase φk (rad) “val”

1+

K1(1270)+→ K ∗(892)0π+ 1. 0. ×
K1(1270)+→ K ∗(892)0π+ [D-wave] 1.072 0.
K1(1270)+→ K +ρ(770)0 2.017 −0.910 ×
K1(1270)+→ K ∗

0 (1430)0K + 0.564 −1.637
K1(1270)+→ K +ω(782)0 0.114 0.302
K1(1400)+→ K ∗(892)0π+ 0.609 −0.755 ×

1−
K ∗(1410)+→ K ∗(892)0π+ 0.716 0. ×
K ∗(1680)+→ K ∗(892)0π+ 0.268 0.443 ×
K ∗(1680)+→ K +ρ(770)0 0.193 1.403

2+
K ∗

2 (1430)+→ K ∗(892)0π+ 1.253 0. ×
K ∗

2 (1430)+→ K +ρ(770)0 2.246 1.798 ×
K ∗

2 (1430)+→ K +ω(782)0 0.465 −2.353

2−

K2(1580)+→ K ∗(892)0π+ 1.103 2.883 ×
K2(1580)+→ K +ρ(770)0 0.874 2.442 ×
K2(1770)+→ K ∗(892)0π+ 0.823 0. ×
K2(1770)+→ K +ρ(770)0 0.191 2.527
K2(1770)+→ K ∗

2 (1430)0π+ 0.169 −2.060
K2(1770)+→ K + f2(1270)0 0.353 −0.174

Phase space 1.305 0.

The “norm” model includes 19 amplitudes which are given, with their relative magnitudes

and phases, in Table 6.3. One of these amplitudes does not include any resonances, but

is a “direct” decay of the B meson into the four-particle final state, where every configura-

tion of the final four-momenta that is allowed by the kinematic constraints of the decay

is equally probable. This “phase-space” component was included in the “norm” model

to ensure coverage of the phase-space regions away from resonance peaks, so that the

normalisation of the fit PDF has high enough precision even for fit models that are very

different from the resonant part of the “norm” model. The strangeness-violating decay

B+→ K1(1270)+
(→ K ∗

0 (1430)0
(→π+π−)

K +)
γwas included in the model accidentally instead

of the decay B+→ K1(1270)+
(→ K ∗

0 (1430)0
(→ K +π−)

π+)
γ. With a fit fraction of 0.068%, the

contribution of this amplitude is quite low. Since the generation PDF can be calculated, the

validity of the “norm” samples is not compromised by the presence of this amplitude, even if

the contribution were higher. Several million “norm” MC events (1035589, 3427474, 1043203,
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5354017, 5150473, and 9145559 for years 2011, 2012, 2015, 2016, 2017, and 2018, respectively)

were generated and simulated with LHCb detector response and reconstruction applied for

the data-taking conditions of each year.

The “val” model contains 10 resonant amplitudes, indicated with crosses in Table 6.3. There is

one “val” sample per LHC run; one, with 231851 events, generated and reconstructed in 2012

data-taking conditions, and one with 301035 events, generated and reconstructed in 2016

data-taking conditions.

The momentum reconstruction does not a priori take the known B+ mass into account; in-

stead, the mass of the mother is calculated from the properties of the daughters as determined

from the reconstructed tracks (charged hadrons) or calorimeter clusters (photon). This unbi-

ased B candidate mass is used in the fit described in Section 5.2. The momentum resolution

for signal decays can be improved by taking the known B+ mass into account. The “decay

tree fit” [68] approach simultaneously reconstructs all the particles in the decay under the

constraints that they come from a common vertex and that the mass of the mother is the B+

mass. This approach especially improves the resolution of the photon momentum, which has

no associated track. These “B-mass-constrained” momenta are used in the amplitude fit. For

the computation of the normalisation (see Eq. 6.8) the true (generated) momenta available in

MC are used.
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6.4 Iterative amplitude selection

To build the amplitude model that best describes the data, an iterative approach is used. The

model used at the first iteration, called the base model, includes most of the decay chains

found in the Dalitz analysis [12]. The specific make-up of the base model has been established

during the development of the amplitude analysis and model building procedure, in the

course of which a large number of configurations of the data and integration samples, e.g.

concerning background subtraction in data and data-driven corrections to the MC samples,

and model building algorithms were tested. The base model unites those decay amplitudes

that were most frequently picked up early on in these model building tests and that lead to

a good description of the data distributions. The full set of amplitudes in the base model is

given in Table 6.4. Amplitudes with the decay channels K1(1270)+→ K ∗(892)0π+ [D-wave]

and K ∗(1410)+→ K +ρ(770)0, while not part of the Dalitz analysis result, are included in the

base model.

As a preliminary step of the model building, the relative magnitudes and phases of the base

model amplitudes, as well as the mean mass (m0) values for the K1(1270)+ and the K ∗
2 (1430)+,

and the mean masses and decay widths (Γ0) of the ρ(770)0 and the ω(782)0 are obtained from

a fit on data. These parameters are free throughout the model building. The ρ(770)0 and the

ω(782)0 masses and widths are constrained to the vicinity of their established values from

Ref. [45] (referred to as PDG values) by adding Gaussian constraint terms to the minimisation.

Only the central values of these Gaussian constraint terms are determined by the PDG values

(given in Table 6.8). Setting the widths of the constraints to the experimental uncertainties of

the PDG values makes the constraints too strict to allow the masses and widths to move in the

fit. Therefore, widths larger than the PDG uncertainties are needed to allow some adjustment

Table 6.4 – Decay amplitudes included in the base model. The decay of the B+ into the kaonic
resonance at the head of the decay in the “Amplitude” column and a photon is implied, as are the
two-body decays of the neutral resonances.

J P Amplitude k

1+

K1(1270)+→ K ∗(892)0π+

K1(1270)+→ K +ρ(770)0

K1(1270)+→ K ∗(892)0π+ [D-wave]
K1(1400)+→ K ∗(892)0π+

K (NR,1+)+→ K +ρ(770)0

1−
K ∗(1410)+→ K ∗(892)0π+

K ∗(1410)+→ K +ρ(770)0

K ∗(1680)+→ K ∗(892)0π+

K ∗(1680)+→ K +ρ(770)0

2+ K ∗
2 (1430)+→ K ∗(892)0π+

K ∗
2 (1430)+→ K +ρ(770)0
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to the data but retain the ρ(770)0 and ω(782)0 identities. The widths of the four constraints of

these resonances are all set to 0.4 MeV/c2. The K1(1270)+ and K ∗
2 (1430)+ masses are left free

without constraint in order to improve the matching of the model to the data in the regions of

the prominent peak and of the “shoulder” in the mKππ spectrum. Freeing the K ∗
2 (1430)+ mass

also adds some freedom to the J P = 2+ component of the amplitude model. The polarisation

parameter is also free in the fit.

The fit of the base model to the data is the preparation of the model building (step zero). In

step one, the best of the 33 amplitudes in Table 6.5 is chosen as an addition to the base model.

These test amplitudes are temporarily added to the base model one at a time, and each of

these models with 12 amplitudes (where the base model contains 11 amplitudes) is fitted to

the data. The test amplitudes are sorted by how much they improve the description of the

data using the χ2/ndf metric introduced in Section 6.2. Since the uncertainty on the value of

χ2/ndf is 0.02, all test amplitudes whose fits yield a χ2/ndf within 0.02 of the minimum over

all the test amplitudes are short-listed as candidates for addition to the base model. Among

these, the candidate with the most significant fraction (where significance is defined as the

fit fraction divided by the fit fraction uncertainty) is permanently added to the base model,

marking the end of step one. Each subsequent step of the model building uses the same

selection procedure to add another decay amplitude to the model. We stop adding amplitudes

to the model when the χ2/ndf stabilises, i.e. when additional decay amplitudes no longer

improve the χ2/ndf value by at least 0.02. Once the χ2/ndf has stabilised, any amplitudes

with a (recalculated) fit fraction significance below 1 are removed from the model in order to

reduce the model complexity. The remaining amplitudes define the nominal model resulting

from the model building.

The model is then further refined by running fits to data where the masses of the kaonic

resonances and the masses and widths of the ρ(770)0 and the ω(782)0 are optimised in turn.

In this “post-production” of the nominal model, the magnitudes and phases of the amplitudes

are left free in all the fits on data. In a first step, the ρ(770)0 and theω(782)0 masses and widths

are fixed to their values from the iterative model building and the Kres masses that were fixed

to their PDG values in the iterative model building are freed, but constrained to the vicinity

of their PDG values by adding Gaussian constraints. The K1(1270)+ and K ∗
2 (1430)+ masses

remain free, but are now also constrained with Gaussian penalty terms. Conversely to the

case of the ρ(770)0 and ω(782)0 masses and widths explained above, setting the widths of

the Gaussian constraint terms of the Kres masses to the experimental uncertainties of the

respective values in the PDG made the constraints too weak to stabilise the fit. For the Kres

masses, a Gaussian constraint width of 4 MeV/c2 was found to allow an adaptation of the

masses to better match the Kππ system mass in data while still keeping the model description

sound. After this fit on data, the Kres masses are fixed to the fit results, and the ρ(770)0 and

ω(782)0 masses and widths are freed, with Gaussian constraints to their PDG values of width

0.4 MeV/c2, as in the iterative model building. In the last step of the post-production, all masses

and widths are fixed and the fit on data is re-run.
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Table 6.5 – Additional amplitudes tested in the model building. The B+ radiative decay into the kaonic
resonance at the head of the decay in the “Amplitude” column is implied, as are the two-body decays
of the neutral resonances. The lowest possible value of the relative angular momentum L of the Kres

daughters is used, except where a [D-wave] indicates that L = 2.

J P Amplitude k

1+

K1(1270)+→ K +ρ(770)0 [D-wave]
K1(1270)+→ K ∗

0 (1430)0π+

K1(1270)+→ K +a(NR,0+)
K1(1400)+→ K ∗(892)0π+ [D-wave]
K1(1400)+→ K +ρ(770)0

K1(1400)+→ K +ρ(770)0 [D-wave]
K1(1400)+→ K ∗

0 (1430)0π+

K1(1400)+→ K +a(NR,0+)
K (NR,1+)+→ K ∗(892)0π+

K (NR,1+)+→ K ∗(892)0π+ [D-wave]
K (NR,1+)+→ K +ρ(770)0 [D-wave]
K (NR,1+)+→ K ∗

0 (1430)0π+

K (NR,1+)+→ K +a(NR,0+)
K (NR,1+)+→ K + f2(1270)0

K (NR,1+)+→ K ∗
2 (1430)0π+

1−

K ∗(1680)+→ K + f2(1270)0

K ∗(1680)+→ K ∗
2 (1430)0π+

K (NR,1−)+→ K ∗(892)0π+

K (NR,1−)+→ K +ρ(770)0

K (NR,1−)+→ K + f2(1270)0

K (NR,1−)+→ K ∗
2 (1430)0π+

2−

K ∗
2 (1580)+→ K ∗(892)0π+

K ∗
2 (1580)+→ K +ρ(770)0

K ∗
2 (1580)+→ K ∗

0 (1430)0π+

K ∗
2 (1580)+→ K +a(NR,0+)

K ∗
2 (1580)+→ K + f2(1270)0

K ∗
2 (1580)+→ K ∗

2 (1430)0π+

K ∗
2 (1770)+→ K ∗(892)0π+

K ∗
2 (1770)+→ K +ρ(770)0

K ∗
2 (1770)+→ K ∗

0 (1430)0π+

K ∗
2 (1770)+→ K +a(NR,0+)

K ∗
2 (1770)+→ K + f2(1270)0

K ∗
2 (1770)+→ K ∗

2 (1430)0π+
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6.5 Validation of the amplitude fit method

The principle of the sensitivity of B → Kππγ decays to the amplitude model including the

photon polarisation parameter λγ has been presented in Section 2.3. Bellée et al. have shown

in Ref. [13] the feasibility of an amplitude fit of this decay to measure λγ in the absence of

experimental (reconstruction) effects. The weak decay spin factors used in the study were

calculated in a covariant formalism, so they differ from those used in this work which follow

the helicity formalism. However, since the spin factors in the study obey the same relation

between right-handed and left-handed amplitudes (a sign factor of Pres(−1)Jres−1) discussed

in Section 2.3, the conclusion on the sensitivity remains valid. The new spin factors were

implemented as an optional parametrisation in the AMPGEN framework [67] for use in this

analysis. The validation of AMPGEN is documented in Ref. [65]. The self-consistency of

the AMPGEN framework in the context of this analysis is tested using 60 samples of 30000

B+→ K +π−π+γ events generated in AMPGEN with the “norm” model. Fitting the same model

content to the samples, with the relative magnitudes, phases, and λγ as free parameters (37 in

total), yields a set of 60 models which can be compared to the “norm” model.

Figures 6.2 and 6.3 show the distributions of the differences between the parameters and fit

fractions of the fitted model and the “norm” model values, divided by the statistical uncertain-

ties determined in the fits. These distributions, known as “pulls”, are expected to be centred

at 0 if the result is unbiased, with a standard deviation of 1 if the uncertainty is estimated

correctly. While the relative magnitudes and phases are not free from biases, the polFrac

parameter shows neither bias nor over- or under-coverage of the statistical uncertainty.

Experimental effects from event reconstruction and selection are examined using the “val” MC

samples with the full LHCb reconstruction and analysis selection (described in Section 5.1)

applied. The effects of shaping of the phase-space of the fitted samples by the acceptance and

efficiency of the reconstruction are assessed by fitting the “val” MC samples using the true

(generated) particle four-momenta. The effects of the imperfect reconstruction of particle

momenta are investigated by using the B-mass-constrained (see Section 6.3) four-momenta

instead of the true four-momenta. Both “val” MC samples (2012 and 2016) are fitted simul-

taneously with the amplitudes from the “val” model. The fitted values of the parameters,

together with their true (generation) values, are shown in Table 6.6. The fit results from true

and B-mass-constrained momenta are compatible with each other. For both fit results, each

fitted parameter is in the range of the true value plus or minus one or, in a few cases, two times

the statistical uncertainty on the fitted parameter, except for the polFrac parameter. Here, the

fit with B-mass-constrained momenta indicates a small bias that will be quantified with a

systematic uncertainty on the final result, see Section 6.8.

The model building algorithm (without the post-production) is likewise checked on the

“val” MC samples, using the true four-momenta of the final-state particles. The resulting

model is close to the generation model, although the fitted model contains the decay chain

B+→ K ∗
2 (1430)+

(→ K ∗(892)0
(→ K +π−)

π+)
γ only in the D-wave configuration, where the
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generation model has only an S-wave. Notwithstanding these slight differences between the

generation model and the fitted model, the result for the polFrac parameter of 0.002±0.003 is

compatible with the generation value of 0.
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Figure 6.2 – Distribution (from 60 samples generated with “norm”) of the difference between the fit
fractions of the fitted and the generated models, divided by the uncertainty on the fit fraction of the
fitted model, for each of the 19 amplitudes, and for the sum of the 19 fit fractions.
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Figure 6.3 – Distribution (from 60 samples generated with “norm”) of the difference between the
fitted and the generated values, divided by the uncertainty on the fitted value, for each of the 37 free fit
parameters.
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6.5. Validation of the amplitude fit method

Table 6.6 – Model parameters and χ2/ndf resulting from the simultaneous fits to the 2012 and the 2016
“val” samples using the generated (TRUE) and the B-mass-constrained (MACO) four-momenta, as well
as the true (gen) values of the parameters of Table 6.3 used in the generation of the “val” samples.

Amplitude k Magnitude ak Phase φk (rad) Fraction (%)

B+→ K ∗
2 (1430)+

(→ K +ρ(770)0
)
γ

TRUE 2.279 ± 0.067 1.827 ± 0.031 40.3 ± 0.3
MACO 2.273 ± 0.068 1.823 ± 0.033 40.2 ± 0.3

gen 2.246 1.798 40.2

B+→ K ∗
2 (1430)+

(→ K ∗(892)0π+)
γ

TRUE 1.264 ± 0.038 0.032 ± 0.032 17.4 ± 0.3
MACO 1.256 ± 0.038 0.028 ± 0.034 17.3 ± 0.3

gen 1.253 0.000 17.5

B+→ K1(1270)+
(→ K +ρ(770)0

)
γ

TRUE 2.051 ± 0.064 5.414 ± 0.029 16.7 ± 0.2
MACO 2.045 ± 0.065 5.412 ± 0.030 16.7 ± 0.2

gen 2.017 5.373 16.4

B+→ K2(1580)+
(→ K +ρ(770)0

)
γ

TRUE 0.883 ± 0.028 2.481 ± 0.035 7.3 ± 0.2
MACO 0.884 ± 0.028 2.472 ± 0.036 7.4 ± 0.2

gen 0.874 2.442 7.4

B+→ K2(1580)+
(→ K ∗(892)0π+)

γ

TRUE 1.112 ± 0.038 2.906 ± 0.037 7.3 ± 0.2
MACO 1.110 ± 0.038 2.904 ± 0.038 7.3 ± 0.2

gen 1.103 2.883 7.4

B+→ K1(1270)+
(→ K ∗(892)0π+)

γ

TRUE 1.000 (fixed) 0.000 (fixed) 4.3 ± 0.2
MACO 1.000 (fixed) 0.000 (fixed) 4.3 ± 0.3

gen 1.000 0.000 4.4

B+→ K2(1770)+
(→ K ∗(892)0π+)

γ

TRUE 0.854 ± 0.036 0.018 ± 0.047 2.4 ± 0.1
MACO 0.850 ± 0.037 0.009 ± 0.049 2.4 ± 0.1

gen 0.823 0.000 2.3

B+→ K1(1400)+
(→ K ∗(892)0π+)

γ

TRUE 0.577 ± 0.024 5.525 ± 0.049 1.9 ± 0.1
MACO 0.583 ± 0.025 5.524 ± 0.050 1.9 ± 0.2

gen 0.609 5.528 2.1

B+→ K ∗(1410)+
(→ K ∗(892)0π+)

γ

TRUE 0.717 ± 0.036 0.023 ± 0.050 1.6 ± 0.1
MACO 0.716 ± 0.036 0.022 ± 0.052 1.6 ± 0.1

gen 0.716 0.000 1.6

B+→ K ∗(1680)+
(→ K ∗(892)0π+)

γ

TRUE 0.278 ± 0.025 0.473 ± 0.098 0.35 ± 0.06
MACO 0.279 ± 0.025 0.470 ± 0.101 0.35 ± 0.06

gen 0.268 0.443 0.34

polFrac
TRUE −0.000 ± 0.003
MACO 0.007 ± 0.003

gen 0.0

χ2/ndf
TRUE 0.98
MACO 1.0
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6.6 Results

The amplitudes added in each step of the model building on the experimental data and the

χ2/ndf of the respective models are collected in Table 6.7. The χ2/ndf stabilises after step

5 with the addition of the decay amplitude B+→ K2(1770)+
(→ K +ρ0

(→π+π−))
γ. In order

to balance model complexity and goodness of fit, the amplitudes from steps 6 to 9 are not

included in the nominal model result. Figure 6.4 shows the development of χ2/ndf and the

blinded value of the polFrac parameter, both of which stabilise after step 5.

The final “pruning” step would remove amplitudes with a fit fraction significance below 1,

but no such amplitudes are found; the amplitude with the lowest significance (and the lowest

fit fraction) is the one for the decay B+→ K ∗(1410)+
(→ K +ρ0

(→π+π−))
γ which has a fit

fraction of (0.08±0.06)% and a significance of 1.3.

The post-production of the model, in which the masses and widths of the Kres and the light-

flavour resonances are alternatingly optimised, leads to a model with a blinded polFrac value

of 0.933±0.007 and a χ2/ndf of 1.18, both within the statistical uncertainty of the values of

0.931±0.007 and 1.19 of the model before the post-production. The masses and widths that at

any point in the model building are not fixed to their PDG values are shown in Table 6.8 after

the iterative model building, as well as after the post-production.

The masses of both the K1(1270)+ and the K ∗
2 (1430), free in all iterations, are each about

20 MeV/c2 above their established values. The K1(1400)+ mass likewise moves about 20 MeV/c2

away from its PDG value, though in the other direction, once it is freed. The other fitted

Kres masses are compatible with their PDG values. The widths of the Gaussian constraints

Table 6.7 – Amplitudes added to the base model in the first ten steps of the iterative model
building, and their χ2/ndf values. The nominal model is developed out of the model that
results from step 5.

Step Amplitude added χ2/ndf Blinded polFrac

0 None (base model) 1.37 0.899±0.007
1 B+→ K (NR,1+)+

(→ K +ρ(770)0
(→π+π−))

[D-wave]γ 1.35 0.912±0.007
2 B+→ K1(1270)+

(→ K ∗
0 (1430)0

(→ K +π−)
π+)

γ 1.30 0.935±0.007
3 B+→ K (NR,1−)+

(→ K +ρ(770)0
(→π+π−))

γ 1.28 0.924±0.007
4 B+→ K1(1400)+

(→ K +ρ(770)0
(→π+π−))

γ 1.22 0.914±0.007
5 B+→ K2(1770)+

(→ K +ρ(770)0
(→π+π−))

γ 1.19 0.931±0.007
6 B+→ K1(1270)+

(→ K +ρ(770)0
(→π+π−))

[D-wave]γ 1.19 0.929±0.007
7 B+→ K (NR,1+)+

(→ K ∗(892)0
(→ K +π−)

π+)
[D-wave]γ 1.19 0.929±0.007

8 B+→ K1(1400)+
(→ K ∗(892)0

(→ K +π−)
π+)

[D-wave]γ 1.19 0.928±0.007
9 B+→ K (NR,1+)+

(→ K ∗
0 (1430)0

(→ K +π−)
π+)

γ 1.18 0.928±0.007
10 B+→ K2(1770)+

(→ K ∗(892)0
(→ K +π−)

π+)
[D-wave]γ 1.18 0.928±0.007
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Figure 6.4 – Evolution of χ2/ndf (left) and blinded polFrac (right) in the iterative part of the
model building. The amplitude added at the end of each iteration (from left to right) is indi-
cated in shorthand on the horizontal axis, where e.g. “1270 to RhoD” stands for the amplitude
B+→ K1(1270)+

(→ K +ρ0
(→π+π−))

[D-wave]γ. The step defining the nominal model, step 5 (note
that the model labelled “base_model” is counted as step 0), is indicated in red. See also Table 6.7.

Table 6.8 – Mean masses m0 and widths Γ0 from the model after step 5 of the iterative part of
the model building, and in the nominal amplitude model after the post-production, compared
with the PDG values [45]. All values are in GeV/c2. The relative magnitudes and phases of the
nominal amplitude model are listed in Table 6.9.

Model after step 5 Model after post-production PDG

m0(K1(1270)+) 1.268±0.001 1.269±0.001 1.253±0.007
m0(K ∗

2 (1430)+) 1.449±0.001 1.447±0.001 1.4273±0.0015
m0(K1(1400)+) fixed to PDG 1.380±0.004 1.403±0.007
m0(K ∗(1410)+) fixed to PDG 1.420±0.004 1.414±0.015
m0(K ∗(1680)+) fixed to PDG 1.710±0.004 1.718±0.018
m0(K2(1770)+) fixed to PDG 1.769±0.004 1.773±0.008
m0(ρ(770)0) 0.7757±0.0004 0.7757±0.0004 0.77526±0.00023
Γ0(ρ(770)0) 0.1477±0.0004 0.1477±0.0004 0.1474±0.0008
m0(ω(782)0) 0.7832±0.0003 0.7832±0.0003 0.78266±0.00013
Γ0(ω(782)0) 0.0107±0.0003 0.0107±0.0003 0.00868±0.00013
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Chapter 6. Amplitude analysis

of 4 MeV/c2 for the Kres masses and 0.4 MeV/c2 for the masses and widths of the ρ(770)0 and

ω(782)0 strongly influence the fit uncertainties on these parameters. The fit uncertainties

of the masses of the K1(1270)+ and the K ∗
2 (1430)+, which are free and unconstrained in the

iterative model building, do not increase in the post-production, where they are still free,

but Gaussian constraints of width 4 MeV/c2 are added to the fit. The ρ(770)0 and the ω(782)0

masses and widths do not change significantly in the post-production. Their deviations from

the PDG values depend on the line-shape parametrisation: a model similar to the nominal

one, but with an alternative description of the light flavour resonances (see Section 6.8.6)

fits parameters that are compatible with the PDG values, except for the width of the ω(782)0,

which, at 0.0093±0.0004 GeV/c2, is nevertheless closer to the PDG value than the nominal

model. Note that the fit uncertainty on this parameter is driven by (and its rounded value

is equal to) the width of its Gaussian constraint. A fit of a model containing the same decay

amplitudes as the nominal one, but with all masses and widths fixed to their PDG values,

returns a blinded polFrac value of 0.935±0.007 for a χ2/ndf value of 1.25, compared to the

value of 1.18 for the nominal model after post-production. This suggests that the description

of the data is improved by freeing the masses in ways that have no strong influence on the

polarisation measurement.

The relative magnitudes and phases and the fit fractions of the best amplitude model to

describe the data, which is the nominal model with all the masses and widths fixed to the

values obtained in the post-production step, are tabulated in Table 6.9. The corresponding

projections of the data and the model on the five visualisation variables are shown in Figure 6.5.

The statistical power of the data sample is reduced through the background subtraction

weights and is approximately equivalent to that of a pure sample of 28898 signal events.

The sensitivity study of this method for measuring the photon polarisation, discussed in

detail in Ref. [69], predicted a statistical uncertainty on λγ of 0.018 for a pure sample of

14000 signal events. Scaling for sample size, this would correspond to an uncertainty of

0.013 for this measurement. Also suggested in the same discussion was a scaled prediction

of this statistical uncertainty based on the uncertainty of the signal yield (before applying

or accounting for background subtraction), which would lead to a statistical uncertainty of

0.012 for this measurement. The statistical uncertainty of 0.014 on λγ in this measurement

is therefore only slightly higher than expected based on the signal yield, although the signal

yield itself is lower than expected, due to the necessity of applying rather strict selection

requirements. The strict selection enhances the signal purity, however, so the systematic

uncertainties related to the presence of backgrounds are reduced.

The comparison of the results of this analysis for the make-up of the K +π−π+ spectrum to

other studies that include these particles in the final state is generally not straightforward.

Even ignoring process dependence, differences in models and phase space (which is shaped

by differences in the experimental set-up or the data selection) mean that the fit fractions

of one analysis cannot be compared one-to-one with those of another analysis. The ampli-

tude analysis of B+→ψ(2S)K +π+π− decays [70] includes a detailed study of the K1(1270)+
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substructure that translates the amplitude models from analyses of D0 → K +K −π+π− [71],

D0 → K +π−π+π− [72], and B 0
s → D−

s K +π+π− [73] decays to the B+→ ψ(2S)K +π+π− ampli-

tude model in order to more directly compare the fit fractions. The translated fit fractions

are more in agreement than the untranslated ones. Without performing a similar study, we

can still observe that the substructure of the K1(1270)+ in this analysis shows a similar ra-

tio of contributions including K ∗(892)0 to contributions including ρ(770)0 as the study in

Ref. [70] and as the Dalitz analysis of B+→ K +π−π+γ decays [12] in the sense that both the

fit fractions of the corresponding amplitudes are of similar magnitude, while the K +ρ(770)0

intermediate state dominates. Contrary to the analyses mentioned in Ref. [70], including

the B+→ψ(2S)K +π+π− amplitude analysis, this analysis finds no significant non-resonant

contribution to K1(1270)+ decays, but does find a relatively high fraction of B+ decays to

a non-resonant state in an axial vector configuration, which then decays to K +π−π+ via

K +ρ(770)0 intermediate states in the S- and D-wave. This analysis, the Dalitz analysis, and

the amplitude analysis of B+→ψ(2S)K +π+π− decays all find a contribution of the K1(1400)+

that is significantly smaller than the dominating axial vector resonance K1(1270)+. It is worth

noting that both this analysis and the amplitude analysis of B+→ψ(2S)K +π+π− decays find

significant fit fractions for the K1(1400)+→ K +ρ(770)0 decay, where the Dalitz analysis and the

PDG have clear dominance of the K1(1400)+→ K ∗(892)0π+ channel. It is remarkable that the

contributions from pseudo-tensor resonances in the Dalitz analysis is much larger than in this

analysis, though a large part of this may be accounted for by the different phase-space, with

the mKππ range of the Dalitz analysis extending by 100 MeV/c2 beyond that of this analysis.
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Table 6.9 – The relative magnitudes and phases of the amplitudes in the nominal decay model after the
post-production as well as their fit fractions. The magnitudes and phases of the B+ decays are relative
to those of the decay B+→ K1(1270)+γ. The magnitudes and phases of the Kres decays are relative to
the decay of that Kres that has a fixed magnitude (phase) of 1 (0). The fit fractions in the rightmost
column refer to the decay in the “Amplitude” column on the same line. For particles with more than
one decay channel, the sum of the fit fractions is given.

polFrac (blind) 0.933 ± 0.007

Amplitude k Magnitude ak Phase φk (rad) Fraction (%)

B+ →K1(1270)+ γ 1.000 (fixed) 0.000 (fixed) 40.1 ± 1.0
K1(1270)+→ K +ρ(770)0 1.469 ± 0.050 5.311 ± 0.038 44.8 ± 1.6
K1(1270)+→ K ∗(892)0π+ 1.000 (fixed) 0.000 (fixed) 19.7 ± 0.9
K1(1270)+→ K ∗

0 (1430)0π+ 0.413 ± 0.022 3.513 ± 0.049 7.4 ± 0.7
K1(1270)+→ K ∗(892)0π+ [D] 2.481 ± 0.117 2.460 ± 0.050 4.2 ± 0.3
Sum(K1(1270)+) 76.1 ± 1.2

B+ →K ∗
2 (1430)+ γ 1.666 ± 0.059 1.279 ± 0.049 7.3 ± 0.3

K ∗
2 (1430)+→ K ∗(892)0π+ 1.000 (fixed) 0.000 (fixed) 62.4 ± 1.8

K ∗
2 (1430)+→ K +ρ(770)0 0.661 ± 0.030 0.120 ± 0.056 24.8 ± 1.6

Sum(K ∗
2 (1430)+) 87.2 ± 0.3

B+ →K ∗(1680)+ γ 0.543 ± 0.022 4.354 ± 0.069 6.0 ± 0.4
K ∗(1680)+→ K ∗(892)0π+ 1.000 (fixed) 0.000 (fixed) 51.5 ± 3.6
K ∗(1680)+→ K +ρ(770)0 0.612 ± 0.055 4.010 ± 0.122 28.0 ± 3.1
Sum(K ∗(1680)+) 79.5 ± 0.7

B+ →K (NR,1−)+
(→ K +ρ(770)0

)
γ 0.672 ± 0.042 1.195 ± 0.070 4.8 ± 0.5

B+ →K (NR,1+)+γ 0.508 ± 0.029 1.208 ± 0.080 4.7 ± 0.4
K (NR,1+)+→ K +ρ(770)0 1.000 (fixed) 0.000 (fixed) 91.9 ± 1.5
K (NR,1+)+→ K +ρ(770)0 [D] 0.914 ± 0.073 0.706 ± 0.073 11.4 ± 1.6
Sum(K (NR,1+)+) 103.3 ± 0.4

B+ →K1(1400)+ γ 0.441 ± 0.024 5.368 ± 0.053 4.5 ± 0.3
K1(1400)+→ K ∗(892)0π+ 1.000 (fixed) 0.000 (fixed) 45.7 ± 4.1
K1(1400)+→ K +ρ(770)0 0.742 ± 0.070 0.823 ± 0.090 40.2 ± 4.0
Sum(K1(1400)+) 85.9 ± 0.4

B+ →K ∗(1410)+ γ 0.474 ± 0.025 3.719 ± 0.073 1.5 ± 0.1
K ∗(1410)+→ K ∗(892)0π+ 1.000 (fixed) 0.000 (fixed) 105.1 ± 3.0
K ∗(1410)+→ K +ρ(770)0 0.226 ± 0.085 1.365 ± 0.298 5.2 ± 3.9
Sum(K ∗(1410)+) 110.3 ± 5.4

B+ →K2(1770)+
(→ K +ρ(770)0

)
γ 0.809 ± 0.040 2.204 ± 0.071 1.2 ± 0.1

Sum(B+) 70.0 ± 0.9
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Figure 6.5 – Projections on the five visualisation variables (see Section 6.2) of the data (black points)
and MC integration samples reweighted to the best fit amplitude model (pink) and the sub-models for
the different kaonic resonances (colours indicated in the plot legends). The pulls (see Section 6.2) are
shown below each histogram in the range between −6 and 6; this range excludes one bin each for the
mKππ and the mππ plots, each of them in a region where the shapes of the distributions vary strongly
between adjacent bins.
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6.7 Cross-checks

Several cross-checks have been done to test the stability of the measurement, and to justify

some a priori assumptions. They consist in fitting subsets of the data and/or integration

samples, or alternative samples, to models with the same amplitude content as the nominal.

Unless stated otherwise, the resonance masses and widths in these fits are fixed to the values

from the nominal model after post-production.

The assumption that CP violation is negligible for the purposes of this analysis is cross-checked

by fitting separately the data events identified as B+ decays and those identified as B− decays.

The full MC integration sample is used in these fits for both B+ and B− since there is no CP

violation in MC (see Section 6.3). The blinded polFrac values from the two fits are compatible:

0.934±0.010 for the B+ data subset and 0.930±0.010 for the conjugated B− data subset. This

supports the assumption of negligible CP violation.

Differences in the data-taking and reconstruction over time that are not accounted for in

the treatment of the samples, or not reproduced in the integration samples, could lead to

a variation of the measurement results over data taken from different time periods. This is

checked by fitting separately the data and integration samples from Run 1 and Run 2, as well

as the data and integration samples from each individual year. The statistical power of the

samples from 2011 and 2015 is too low to allow successful minimisation of the NLL, but for

the other years, the blinded polFrac values are compatible. They are collected, together with

the results of the other split-samples cross-checks, in Figure 6.7. The results for the Run 1 only

and the Run 2 only samples have a discrepancy of 1.9 times the statistical error. However, the

result for year 2012, which dominates the Run 1 sample, is compatible within one standard

deviation with the Run 2 result. A fit on the samples from all years except 2011 leads to a

blinded polFrac value of 0.937±0.007, 0.004 higher than the nominal value. This could indicate

a bias introduced by the 2011 sample, but the effect is below the statistical uncertainty. As

there is no other reason to mistrust the data recorded in 2011, the 2011 sample is retained

as part of the full nominal data sample. For completeness, a fit to the data excluding the

sample from 2015 yields a blinded polFrac value that is less than one permill away from the

nominal value. We consider all discrepancies between the results from split samples to be due

to statistical fluctuations. These cross-checks do not indicate any problem with the nominal

result from the full data and integration sample sets.

As mentioned in Chapter 3, the polarity of the magnetic field of the LHCb dipole is periodically

reversed to help cancel out detection asymmetries of charged particles. Any such asymmetries

that are not well reproduced in simulation can mean that the “MagUp” data fits a different

result than the “MagDown” data. In fact, an asymmetry between these two data sets, even if

perfectly reproduced in MC, can still bias the result if it means that MC events with “MagUp”

are not suitable as part of an integration sample for “MagDown” data. In this case, the fits

to the two samples of data and MC split by the magnet polarity would give results that are

compatible with each other, but incompatible with the result from the full data sets where the
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Figure 6.7 – Blinded polFrac values for cross-checks on subsamples of the full data set: splits by
magnet polarity, charge, data-taking run, and data-taking year. The result from the full data set is given
in black. Note that this set of values is not statistically independent due to the overlap between samples
from different splits.

polarities are mixed. The fit results from “MagUp” and “MagDown” for the blinded polFrac

parameter are 0.923±0.010 and 0.948±0.010, respectively, see also Figure 6.7. The two values

differ by 1.8 times the statistical error. This could be due to reconstruction asymmetries that

are not well accounted for in simulation, but the discrepancy is not high enough to lend much

confidence to such a claim. Since the average of the two values is compatible with the nominal

blinded polFrac value, these results do not indicate that the data and MC samples must be

split by polarity in the fit to the full sets.

The background subtraction with custom orthogonal weight functions introduced in Sec-

tion 5.3 is cross-checked by using an alternate method of reducing the background contamina-

tion in the data: a restriction of the B mass range. As the fits to the B candidate mass show (see

Figure 5.5 in Section 5.2), the region of high B mass is nearly free from partially reconstructed

backgrounds, while the level of combinatorial background events is low throughout. Therefore,

a set of data events from that region has a low contamination of backgrounds without having

to apply any background subtraction weights. The range from 5300 MeV/c2 to 5600 MeV/c2

is chosen for this cross-check. It comprises a little less than half of the signal peak in the B

mass. The data and MC samples that are restricted to this range are therefore referred to as the

“upper half peak” samples. The abovementioned fits to the full B candidate mass distribution

indicate a background contamination of around 3.7% in this range, compared to over 20% in

the range from 5000 MeV/c2 to 6500 MeV/c2 in which the background-subtraction weights are

defined (the background-subtracted full data sample has an estimated contamination of 1%

from B+→ K +π−π+π0 events, see Section 6.8.3). The fit of the nominal model to the data in
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the restricted B mass range, without background subtraction weights, yields a blinded polFrac

value of 0.913±0.010. The magnitudes and phases and the fit fractions of the amplitudes are

listed in Table 6.10 and the projections of the fitted model on the five visualisation variables

are shown in Figure 6.8.

Following the reasoning from Section 6.8.3, specifically, the toy studies on the effect of back-

grounds on the fitted polarisation parameter, the fitted polFrac value should be corrected for

the presence of backgrounds in the upper half peak samples. These studies were performed

specifically for the π0 background, but any component of the data other than the signal would

lack the specific polarisation structure of the signal model that is fitted and therefore “wash

out” the polarisation measurement, i.e. bias it in the direction of no polarisation (polFrac

value 0.5). Let us note here that since the measured blind values of polFrac are above 0.9, and

the blinding offset is between −0.2 and 0.2, we know that the measured values are greater

than 0.5 and therefore the corrections must be positive in order to increase the degree of

polarisation. With a correction of 3.7% on the upper half peak result, we get a blind polFrac

value of 0.950. With statistical uncertainties only, the blinded polFrac values after correction

for background contaminations are 0.945±0.007 for the result from data with background-

subtraction weights (see Section 6.8.3) and 0.950±0.010 for the result from the upper half peak

data without background subtraction weights. The two samples are statistically dependent:

all events in the upper half peak samples are included, with background-subtraction weights,

in the nominal samples. Assuming full correlation, the two uncertainties are subtracted in

quadrature to determine the uncertainty of the difference between the two polFrac values.

The actual uncertainty of the difference would be slightly higher than this simple estimate due

to the presence of weights in one of the samples. With the simple estimate of full correlation,

the difference between the two values is 0.005±0.007, which is compatible with zero. This

means that there is no indication of bias on the photon polarisation measurement from the

background subtraction method. Therefore, no systematic uncertainty related to the back-

ground subtraction method will be assigned to the measurement of λγ. Since the estimate of

the background contamination in the upper half peak sample comes from the same B mass fit

as the shapes that are used to define the background-subtraction weights, systematic effects in

the fit (e.g. the description of the background and signal shapes) could bias the measurement

in a way that escapes detection through this cross-check. That is why we will determine a

systematic uncertainty related to the B mass fit.
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Table 6.10 – Results for the magnitudes and phases and the fit fractions of the amplitudes from the
model in Table 6.9, fitted to unweighted data samples with tightened cuts on the B candidate mass.
The fit fractions in the rightmost column refer to the decay of the particle that is at the head of the
decay in the “Amplitude” column on the same line. For particles with more than one decay channel,
the sum of the fit fractions is given.

polFrac (blind) 0.913 ± 0.010

Amplitude k Magnitude ak Phase φk (rad) Fraction (%)

B+ →K1(1270)+ γ 1.000 (fixed) 0.000 (fixed) 39.3 ± 1.3
K1(1270)+→ K +ρ(770)0 1.326 ± 0.067 5.415 ± 0.057 39.2 ± 2.2
K1(1270)+→ K ∗(892)0π+ 1.000 (fixed) 0.000 (fixed) 21.0 ± 1.3
K1(1270)+→ K ∗

0 (1430)0π+ 0.374 ± 0.030 3.377 ± 0.077 6.5 ± 0.9
K1(1270)+→ K ∗(892)0π+ [D] 2.607 ± 0.160 2.464 ± 0.068 5.0 ± 0.5
Sum(K1(1270)+) 71.7 ± 1.4

B+ →K ∗
2 (1430)+ γ 1.858 ± 0.083 1.397 ± 0.060 8.7 ± 0.4

K ∗
2 (1430)+→ K ∗(892)0π+ 1.000 (fixed) 0.000 (fixed) 67.6 ± 2.3

K ∗
2 (1430)+→ K +ρ(770)0 0.576 ± 0.037 0.050 ± 0.069 20.6 ± 1.9

Sum(K ∗
2 (1430)+) 88.1 ± 0.4

B+ →K (NR,1−)+
(→ K +ρ(770)0

)
γ 0.762 ± 0.058 1.310 ± 0.087 6.6 ± 0.9

B+ →K ∗(1680)+ γ 0.518 ± 0.030 4.454 ± 0.097 6.6 ± 0.6
K ∗(1680)+→ K ∗(892)0π+ 1.000 (fixed) 0.000 (fixed) 44.7 ± 4.9
K ∗(1680)+→ K +ρ(770)0 0.728 ± 0.089 4.091 ± 0.147 34.5 ± 4.7
Sum(K ∗(1680)+) 79.3 ± 0.9

B+ →K1(1400)+ γ 0.350 ± 0.032 5.353 ± 0.091 4.3 ± 0.5
K1(1400)+→ K +ρ(770)0 1.056 ± 0.143 0.937 ± 0.134 55.8 ± 5.8
K1(1400)+→ K ∗(892)0π+ 1.000 (fixed) 0.000 (fixed) 31.0 ± 5.3
Sum(K1(1400)+) 86.8 ± 0.9

B+ →K (NR,1+)+γ 0.481 ± 0.041 1.180 ± 0.109 4.3 ± 0.6
K (NR,1+)+→ K +ρ(770)0 1.000 (fixed) 0.000 (fixed) 93.7 ± 2.0
K (NR,1+)+→ K +ρ(770)0 [D] 0.733 ± 0.106 0.854 ± 0.148 7.5 ± 2.0
Sum(K (NR,1+)+) 101.3 ± 0.7

B+ →K2(1770)+
(→ K +ρ(770)0

)
γ 0.871 ± 0.064 2.219 ± 0.095 1.4 ± 0.2

B+ →K ∗(1410)+ γ 0.454 ± 0.039 3.927 ± 0.085 1.4 ± 0.2
K ∗(1410)+→ K ∗(892)0π+ 1.000 (fixed) 0.000 (fixed) 108.8 ± 2.5
K ∗(1410)+→ K +ρ(770)0 0.399 ± 0.112 0.735 ± 0.249 17.0 ± 9.1
Sum(K ∗(1410)+) 125.8 ± 6.8

Sum(B+) 72.6 ± 1.5
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Figure 6.8 – Projections on the five visualisation variables (see Section 6.2) of the data (black points)
and MC integration samples reweighted to the best fit amplitude model (pink) and the sub-models for
the different kaonic resonances (colours indicated in the plot legends) in the restricted B mass range
from 5300 to 5600 MeV/c2 (“upper half peak” samples). The pulls (see Section 6.2) are shown below
each histogram.
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6.8 Systematic uncertainties

In this section, the main systematic uncertainties that affect the measurement of λγ are dis-

cussed and quantified in terms of uncertainties on polFrac, which must be doubled to obtain

the uncertainties on λγ. The largest systematic uncertainty arises from the contamination

of the background-subtracted data sample from B+→ K +π−π+π0 events. It is discussed in

Section 6.8.3. Further systematic uncertainties related to the momentum resolution (Sec-

tion 6.8.1), the fixed parameters in the B mass fit described in Chapter 5 (Section 6.8.2), the size

of the MC integration samples (Section 6.8.4), the choice of decay amplitudes in the nominal

model (Section 6.8.5), and the parametrisation of the ρ0 −ω0 resonance mixing (Section 6.8.6)

are also discussed. Systematic effects related to the fixed parameters in the amplitude fit are

expected to contribute to the systematic uncertainty on the measurement of λγ at a secondary

level. The strategy for their quantification is discussed (Sections 6.8.7), but the results of the

studies are not described in this work. Instead, an estimate based on a simpler study is given.

As explained in Section 6.7, no systematic uncertainty related to the background subtraction

method itself is assigned to the measurement of λγ. The uncertainties on both polFrac and λγ
are collected in Table 6.11.

Table 6.11 – Systematic and statistical uncertainties (and their quadratic sum) on the photon

polarisation parameter both in terms of polFrac = 1+λγ
2 and λγ. The corrections on the param-

eters for the effect of the π0 background in the otherwise background-subtracted data sample
are also given, but not included in the quadratic sums of the uncertainties.

polFrac λγ

Momentum resolution 0.0025 0.0050
Fixed parameters in B mass fit 0.0023 0.0047
π0 background correction +0.0116 +0.0232
π0 background uncertainty 0.0030 0.0060
Integration sample size 0.0017 0.0034
Choice of decay amplitudes 0.0024 0.0048
ρ0 −ω0 line shape 0.0024 0.0048
Fixed parameters in amplitude fit (estimate) 0.0016 0.0031

Total systematic uncertainty 0.0061 0.0123

Statistical uncertainty 0.0070 0.0140

Total uncertainty 0.0093 0.0186
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6.8.1 Momentum resolution

To determine the systematic effect of the use of reconstructed, rather than true, four-momenta

in the fit on data, the “norm” MC samples are used. The samples for each data-taking year

are split into sub-samples with a size approximately corresponding to the statistical power

of the data sample for that year. This way, nine exclusive sub-samples of the “norm” MC

samples are obtained. These nine samples are re-weighted to match the nominal model from

the fit on data with an arbitrarily chosen value of 0.885 for polFrac, since the polarisation is

blinded in the fit on data. Each MC event is assigned a weight that is the ratio of the PDF of the

nominal model with polFrac = 0.885 to the generation PDF value of the “norm” model. No PID

weights (see Section 5.1) are applied to any samples in these studies, since the MC samples

used here only contain signal events where the final-state particles are correctly identified in

the reconstruction. The nine samples are fitted with the nominal data model. The masses

and widths of the resonances are free parameters with Gaussian constraints like in the model

building. The magnitudes and phases of the amplitudes, as well as polFrac, are also free. The

reconstructed, B-mass-constrained (see Section 6.3) momenta are used for the re-weighted

MC sub-samples in one set of fits, while the true momenta are used in the other. In all fits, the

full “norm” MC samples are used as integration samples.

The mean value of the fitted polFrac parameter over the nine samples is 0.8854±0.0017 for the

fits using the true momenta and 0.8825±0.0018 for the fits using the reconstructed, B-mass-

constrained momenta. The uncertainties on these values are the square roots of the variances

of the nine fitted polFrac central values for each respective set of fits. The mean of the polFrac

values fitted with true momenta is compatible with the value of 0.885 from the model used in

the re-weight, while the mean from the fits that use B-mass-constrained momenta is 0.0029

lower than the fit result from true momenta and 0.0025 lower than 0.885. Hence, a systematic

uncertainty of 0.0025 related to the momentum resolution is assigned to the measured value

of polFrac.

Analogous fits are also run using the reconstructed momenta without the B mass constraint.

Their mean fitted polFrac value is 0.8816±0.0017. While this result is not used in the calculation

of the systematic uncertainty, it is a useful cross-check of the B mass constraint method. The

fact that the fitted value of polFrac for the B-mass-constrained momenta is closer to the

true value than for the unconstrained reconstructed momenta confirms that the B-mass-

constrained momenta should be used in the fit on data.

6.8.2 Fixed parameters in the B mass fit

The parameterisation of the signal and backgrounds as well as other choices made in the

B mass fit (see Section 5.2) can influence the measurement of λγ, specifically through their

effects on the background subtraction. These effects are estimated by varying the B mass fit
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and noting the changes, if any, in the measured value of λγ. Two variations of the B mass fit

are studied:

• An exponential model is used for the combinatorial background instead of a linear

model. The fitted polFrac value changes by 8.8×10−5.

• The relative yield of the B+→ Kππη background to the signal yield is varied by chang-

ing the contamination of that background by one unit of its uncertainty. Increasing

(decreasing) the η contamination in the B mass fit changes the fitted polFrac value by

+0.0022 (−0.0021).

The changes in η background yields in the COWs range between 5000 MeV/c2 and 6500 MeV/c2

from the two studies are about evenly compensated by the signal yield and the yield of the

partially reconstructed background with one missing pion. The results of this study hint, at

first sight, at an underestimated background yield, but the effect is below the precision of the

“upper half peak” cross-check in Section 6.7.

The fixed shape parameters in the B mass fit other than the η contamination and the π0

background shape parameters are

• the four tail-shape parameters of the signal CB (see Eq. 5.1);

• two shape parameters each for the Argus functions (Eq. 5.2) of the η background and

the partially reconstructed background with one missing pion;

• one scale factor for the width of the resolution function of the partially reconstructed

background with one missing pion.

Note that we ignore the fixed contamination and shape parameters of the π0 background

for this systematic study, since a separate systematic effect related to this background is

determined in Section 6.8.3. One could also consider the end-points of the three partially

reconstructed backgrounds, which are pegged to the signal mean minus zero (for η), one (for

one missing pion), and two (for the generic partially reconstructed background) times the π0

mass, as fixed parameters, but they are not determined from fits to MC samples but from phe-

nomenological considerations. The impact of the nine fixed shape parameters above on the

COWs, and therefore on the polarisation measurement, is expected to be much smaller than

that of the η contamination This is because the latter changes the relative yields of the signal

and background species, while the other parameters change the shapes, but are expected

to have only small effects on the yields. The study of the combinatorial background above

also changes the shape of one of the background species, so its result can be used to estimate

the effect of the remaining fixed parameters. We multiply the result of the combinatorial

background study by ten before adding it, in quadrature, to the η contamination study. The

result of 0.0023 is assigned as a systematic uncertainty to the polFrac parameter.
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6.8.3 Contamination from B+→ K +π−π+π0 events

The IsPhoton classifier gives values close to 1 for photon-like calorimeter objects, and values

closer to 0 for π0-like calorimeter objects. By applying the offline selection excluding the

requirement on IsPhoton, one can study the distribution of the IsPhoton variable in data

samples and compare it to the true γ distribution and true π0 distribution.

Assuming that the photon candidates in the B → Kππγ data sample come from either real

photons or real π0, the distribution of the IsPhoton variable is understood as being the sum of

these two components: for each bin i , the number of events in data Ndata(i ) is the sum of the

contribution from photons and the contribution from π0 in that bin:

Ndata(i ) = Nπ0 nπ0 (i )+Nγnγ(i ) , (6.11)

where Nπ0

(
Nγ

)
is the total number of true π0

(
γ
)

and nπ0 (i )
(
nγ(i )

)
the fraction of that number

in bin i . When the distributions are known, a binned χ2 fit can be used to estimate Nγ and

Nπ0 .

The IsPhoton classifier is not well modeled in simulation, so the cut efficiencies have to be

calibrated using distributions of IsPhoton from pure (background-subtracted) data samples

of photons and π0 as described in Section 5.1. These same calibration samples are used for

this study to obtain the distributions nγ and nπ0 of the IsPhoton variable for true γ and true

π0. The π0 sample comes from 2017 data that has been selected to contain almost exclusively

D∗+→ D0
(→ K +π−π0

)
π+ decays [74]. The subtraction of the remaining background is based

on the difference between the D∗+ and the D0 candidate invariant masses. The photon

sample comes from 2017 data that has been selected for B 0→ K ∗0γ decays. The background

subtraction is based on the B 0 candidate invariant mass [74]. Since the ECAL is split into

three regions with different cell sizes and occupancies (see Section 3), the IsPhoton variable is

actually composed of three separately trained classifiers, one for each ECAL region [47]. The

distributions in each region should therefore be studied separately.

The histograms of the IsPhoton score Ndata(i ) are obtained for each ECAL region from data

recorded in 2017, the same year as the calibration samples, with the full selection described in

Section 5.1 applied except for the requirement on IsPhoton, and with background-subtraction

weights as calculated from the distributions of that sample in the B mass, as explained in

Section 5.3. In the background subtraction weighting, the signal and B+→ K +π−π+π0 shapes

are joined, therefore, the weighted sample should include the background from π0.

The discrimination power as well as the distributions of the IsPhoton classifiers can depend

on the kinematic attributes of the photon candidate. The true distributions of γ and π0 should

therefore be obtained from samples that kinematically match the data they are fitted to. To

this end, the calibration samples are weighted in each ECAL region so that their pT and η

distributions match those of the data sample in that ECAL region. These weights are applied

in addition to the background-subtraction weights by multiplication. To obtain these weights,
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6.8. Systematic uncertainties

Figure 6.10 – Binning used in the kinematic reweighting of the π0 calibration sample in the inner
region of the ECAL. All histograms have the π0 candidate pT [ MeV/c ] on the horizontal axis and η on
the vertical axis. The left column shows the finely binned distributions of the data (top) and the π0

calibration sample (bottom) in the inner region of the ECAL. The middle column shows the same
samples, in a coarser binning that was used to determine the weights. The bottom histogram on the
right shows the ratio of the normalised histogram on the top of the middle column to the normalised
histogram on the bottom of the middle column; it defines the weights that are assigned to the events in
the π0 calibration sample in the inner region of the ECAL.

the 2D pT−η distributions are binned in each sample and each event in the calibration samples

is assigned a weight that is proportional to the ratio of the number of data events in that bin to

the number of calibration events in that bin. As an example, the bins in the inner region of

the ECAL with data from this analysis as well as from the π0 calibration sample are shown in

Figure 6.10.

Nπ0 and Nγ are determined in each region of the ECAL by minimising the discrepancy between

the data histogram and the scaled γ and π0 distributions. The discrepancy is quantified by the

χ2 test statistic: for each bin i , the residual ri is squared and divided by its variance V (ri ), and

the sum of these scaled squared residuals gives the χ2:

χ2 =∑
i

r 2
i

V (ri )
. (6.12)

The residual ri is defined as

ri = Ndata(i )− (
Nπ0 nπ0 (i )+Nγnγ(i )

)
. (6.13)
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The variance V (ri ) is calculated from the data and the calibration samples. Since the samples

are weighted, the number of events in each bin i is in fact the sum of the weights of those

events in the sample that fall into bin i . For example,

Ndata(i ) = ∑
j∈i

w j (6.14)

and

V (Ndata(i )) =
∑
j∈i

w2
j . (6.15)

For the uncertainties on the binned π0 and γ distributions, the normalisation must be taken

into account as well:

V
(
nπ0 (i )

)= V
(
Nπ0 (i )

)(∑
j Nπ0 ( j )

)2 , (6.16)

where Nπ0 (i ) = ∑
j∈i w j and V

(
Nπ0 (i )

) = ∑
j∈i w2

j (note that nπ0 (i ) = Nπ0 (i )∑
j Nπ0 ( j ) ). The variance

V
(
nγ(i )

)
is calculated analogously to V

(
nπ0 (i )

)
. The variance for the residual of bin i is then

V (ri ) =V (Ndata(i ))+ (
Nπ0

)2 V
(
nπ0 (i )

)+ (
Nγ

)2 V
(
nπ0 (i )

)
. (6.17)

The fit results are shown in Figure 6.11.

Without a requirement on IsPhoton, the overall π0 contamination is found to be
Nπ0

Nγ
=

(6.3± 0.5)%, combining all ECAL regions. From the reweighted π0 and γ distributions of

IsPhoton, the efficiencies of cuts on IsPhoton for π0 and γ can be evaluated. They are plotted

in Figure 6.12, while selected values are tabulated in Table 6.12. For the nominal requirement

of the analysis, IsPhoton > 0.9, the contamination is only (0.86±0.07)%. The B+→ K +π−π+π0

contamination values that are calculated using the selection efficiencies and branching frac-

tions, see Table 5.8 in Section 5.2, are (1.31±0.21)% and (1.46±0.23)% for Run 1 and Run 2,

respectively. The two methods of calculating the contamination are very different, though

somewhat correlated by the use of the same calibration samples (they are used to determine

the efficiency of the IsPhoton cut on MC, thus contributing to the estimates of the selection

efficiencies), and consequently are a useful cross-check. Both result in contaminations of the

order of 1%; the fact that the values are not compatible indicates that the uncertainty of at

least one of the two methods is underestimated.

The effect of a contamination from B+→ K +π−π+π0 in the signal-only sample on the photon

polarisation parameter is estimated from fast simulation studies. A simulated signal sample

with 30000 events is merged with a smaller background sample. To save time, the simulated

decays in these samples are not passed through the full LHCb reconstruction and selection pro-

cess. They are generated in the B rest frame and no selection is applied. The four-momentum

values of the π0 in the background sample are assigned to the γ candidate in the fit, and the

resulting sample is fitted with a signal model. Since the π0 is a pseudoscalar, a fit to a back-

ground sample should not indicate any polarisation, and indeed, fits to background samples
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Figure 6.11 – Fits to the IsPhoton distribution in background-subtracted 2017 data after the
offline selection excluding the photon PID cuts in linear (top) and logarithmic (bottom) scale.
The fits are done separately in the three regions of the ECAL: the inner region (Region 1, left),
the middle region (Region 2, centre), and the outer region (Region 3, right).
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Figure 6.12 – IsPhoton cut efficiencies for the γ (blue) and π0 (orange) calibration samples, reweighted
to match the data’s pT −η distributions, in the three regions of the ECAL: inner (left), middle (centre),
and outer (right). The nominal requirement is IsPhoton> 0.9.
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Table 6.12 – Efficiency of photons and π0 in background-subtracted 2017 data sample at
different IsPhoton cut values. The contamination, defined as the ratio of π0 to γ events, is
estimated from a fit to the IsPhoton distribution. Note that requiring IsPhoton to be greater
than zero is not the same as not placing a requirement on IsPhoton as the distributions extend
slightly into negative values.

γ efficiency (%) π0 efficiency (%) π0 contamination (%)

ECAL region ECAL region ECAL region
cut 1 2 3 all 1 2 3 all 1 2 3 all

0.00 100.0 100.0 100.1 100.0 96.4 89.8 95.8 94.9 8.7 3.2 6.2 6.0
0.38 95.1 97.7 99.1 97.4 55.0 54.5 65.7 59.0 5.2 2.0 4.3 3.8
0.70 83.7 90.8 92.8 89.4 27.4 27.2 34.4 30.0 2.9 1.1 2.4 2.1
0.86 65.2 78.9 79.3 75.0 12.4 13.5 17.1 14.4 1.7 0.6 1.4 1.2
0.90 53.7 70.2 67.6 64.3 7.7 9.3 9.9 8.8 1.3 0.5 1.0 0.9
0.95 23.5 41.4 34.3 33.4 2.1 3.2 2.3 2.4 0.8 0.3 0.4 0.5

yield values of the polarisation fraction compatible with 0.5 (0.491±0.011 and 0.511±0.027

from fits to ten simulated B+→ K +π−π+π0 samples with model C (see below) with “val” and

“norm” fit models respectively) which corresponds to no polarisation. The addition of an

unpolarised-like component to a polarised signal sample should dilute the polarisation of

the sample: the bias on the fitted polarisation is expected to be roughly proportional to the

relative amount of background events in the sample. As an example, when a fully polarised

signal sample and an unpolarised signal sample (unpolarised for the signal meaning that 50%

of the photons are right-handed and 50% are left-handed) of the same size are merged, the

resulting sample is 75% polarised, and a fit to the merged sample should return a polarisation

fraction of 0.75 (or a polarisation fraction of 0.25, depending whether the polarised sample is

right-handed or left-handed). Adding an unpolarised (polarisation fraction 0.5) background

component to a signal sample with a polarisation fraction of 0 should therefore yield a fitted

polarisation fraction of R/2, where R is the proportion of background events in the combined

sample.

The bias on the polarisation fraction may also depend on the make-up of the π0 background

(i.e. the π0 background model), or on the signal model that is used in the fit.

To test the dependence of the bias on the background model and the fit model, a signal

sample with 30000 events is generated using the “val” signal model. Background samples of

B+→ K +π−π+π0 decays are also generated with four different models:

• Model A: all the decay chains of the “val” model, but swapping the γ for a π0;

• Model B: same as model A, but with two extra amplitudes involving the pseudo-scalar

resonance K (1460)+, which is forbidden in decays with a photon;

• Model C: same as model B, but with different phases for the pseudo-scalar amplitudes;
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• Model D: only the two pseudo-scalar amplitudes, plus a third non-resonant scalar

amplitude.

For each background sample and model, the signal sample is merged with 5000 (1000, 300)

events from the background sample, yielding a 35000 (31000, 30300) event sample which

has a relative proportion of background events of 14.2% (3.2%, 1%). The samples are fitted

with the “val” model and with the “norm” model in turn, to cover both the case where the true

signal model is assigned, and the case where the assigned model has more degrees of freedom

than the signal model which could be picked up by the background contribution. The results

are summarised in Table 6.13.

Table 6.13 – Results of studies on the effect of a π0 background contamination on the fitted
photon polarisation parameter for different π0 background models (see text) and different
proportions R of π0 background events in the full sample. The signal is generated with a true
polFrac of 0.

π0 bkg model R Fit model Fitted polFrac

A 14.2% val 0.125±0.006
B 14.2% val 0.120±0.006
C 14.2% val 0.119±0.006
D 14.2% val 0.113±0.006
A 14.2% norm 0.124±0.006
B 14.2% norm 0.120±0.006
C 14.2% norm 0.117±0.006
D 14.2% norm 0.116±0.006
A 3.2% val 0.035±0.006
B 3.2% val 0.035±0.006
C 3.2% val 0.034±0.006
D 3.2% val 0.028±0.006
A 3.2% norm 0.036±0.006
B 3.2% norm 0.036±0.006
C 3.2% norm 0.032±0.006
D 3.2% norm 0.031±0.006
A 1% val 0.012±0.005
B 1% val 0.011±0.005
C 1% val 0.011±0.005
D 1% val 0.011±0.005
A 1% norm 0.010±0.005
B 1% norm 0.010±0.005
C 1% norm 0.009±0.005
D 1% norm 0.009±0.005

The bias on the polarisation fraction introduced by the background events is of the same

order as the proportion of background. This is the case both for the fit model that matches
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the generated signal model (“val”) and for the fit model that does not (“norm”). This result is

also independent of the precise content of the background model. The bias is systematically

larger than the expectation of R/2 for an unpolarised background component. To further

study the bias, the study is extended for one of the π0 background models (model C). Relative

proportions R of 1%, 3.2%, 14.2%, 33.3%, 42.9%, and 50% are tested, corresponding to 300,

1000, 5000, 15000, 22500, and 30000 background events added to the signal sample of 30000

events. The previous signal sample, generated with the “val” model with a polarisation fraction

of 0, is tested, as well as a signal sample generated with the “val” model but a polarisation

fraction of 1. In addition to testing the effect of a background contamination, we also test

the effect of a contamination with unpolarised signal events. To this end, a signal sample is

generated with the “val” model with a polarisation fraction of 0.5 and used to contaminate the

usual polarised “val” signal sample as well as a signal sample generated with the “norm” model

with a polarisation fraction of 0. The fitted values of the polarisation fraction for different

combinations of polarised signal and background or unpolarised signal samples are shown

in Figure 6.13. The results from samples with unpolarised signal contamination broadly

match the expectation of R/2, but the biases from contamination with π0 background are

systematically larger. In the region of low contamination values, however, the discrepancy

is small, and additionally, the biases as well as their differences are of the same order as the

uncertainty on the parameter from the fit.

The correction of the polarisation parameter for the presence of π0 background in the back-

ground-subtracted data sample is applied using the result from background contamination

rather than signal contamination. The contamination being around 1%, a correction equal to

the contamination is applied, rather than a correction of half the contamination.

The first method to estimate the π0 contamination uses selection efficiencies and branching

fractions and leads to estimates of the contamination of (1.31±0.21)% in Run 1 and (1.46±
0.23)% in Run 2. The second method, using the distribution of the IsPhoton variable, gives a

contamination of (0.86±0.07)% for 2017 data. The two methods are completely independent of

each other. Both indicate that the measured polarisation parameter should have a correction

on the order of 1% applied. The fact that they are only compatible within 2.5σ must be

reflected in the systematic uncertainty associated with the π0 background. We choose the

following prescription for the correction and the systematic uncertainty: since the estimate

from the IsPhoton distribution concerns data from 2017, the resulting value is compared to the

value from the branching fractions for Run 2. The different signal and background selection

efficiencies between Run 1 and Run 2 do not change the contamination to such an extent that

the IsPhoton study needs to be repeated for Run 1 data, as is evidenced by the compatible

contamination estimates from the first method. The correction and systematic uncertainty is

therefore applied to the global (using data from Run 1 and Run 2) result for the polarisation

parameter. The correction applied is equal to the arithmetic average of the two contamination

estimates: 1.16%. With a blinded polFrac of 0.933 in the nominal fit, we get a corrected value

of 0.945. The two estimates are 0.6% apart, so we assign a systematic uncertainty of half this

difference, 0.3%, to the measured polFrac value in addition to the correction.
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Figure 6.13 – Fitted values of the polarisation fraction (polFrac) for different combinations of
polarised signal samples and background (circles) or unpolarised signal (crosses) samples.
The expected bias of R/2 is shown in black. For the signal sample with a polarisation fraction
of 1, the plot shows 1−polFrac rather than polFrac. All the contamination values are shown in
the top plot, while the bottom plot shows a zoomed view of the results for low contamination
values, with a meaningless offset in the abscissa to stagger the points for visibility and with the
statistical uncertainty of the fit results as error bars.
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6.8.4 Integration sample size

The integration samples must contain enough events to precisely compute the PDF integral ev-

erywhere in the phase space of the signal model so as not to bias the measurement. To ensure

this, very large MC samples with signal-like properties were produced (see Section 6.3). Any

remaining bias is therefore expected to be small. To determine the associated systematic uncer-

tainty, the integration sample is split into three sub-samples of approximately equal size, and

the fit to the nominal model is repeated, each time with the full set of background-subtracted

data events. The largest difference between the three results for the polFrac parameter is

divided by
p

3 and the result of 0.0017 is assigned as a systematic uncertainty.

6.8.5 Choice of decay amplitudes

The large number of amplitudes in Tables 6.4 and 6.5, and the even larger number of possible

combinations of them, makes it impractical to test all possible sets of decay amplitudes to

find the model that best fits the data, which is why the nominal model is found through an

iterative algorithm. In order to quantify the effect that a different choice of decay amplitudes

would have on the measurement of λγ, alternative decay models must be tested. To choose

these alternative models arbitrarily, however, would discard the optimised description of the

data that is the result of the model building, and therefore would over-estimate the systematic

uncertainty associated with model content choice. Instead, two alternative models are tested:

for one, the amplitude with the lowest significance, which is also the amplitude with the

lowest fit fraction, that of the decay B+→ K ∗(1410)+
(→ ρ0

(→π+,π−)
,K +)

γ (see Section 6.6),

is removed from the nominal model. The other alternative model is obtained by adding the

amplitude for the decay B+→ K1(1270)+
(→ K +ρ0

(→π+π−))
[D-wave]γ from step 6 of the

iterative part of the model building (see Table 6.7) to the nominal model. Both alternative

models are fitted to the data. The former alternative model, with one fewer amplitude than

the nominal, gives a polFrac value that differs more from the nominal result than the latter,

and this larger of the two differences of 0.0024 is assigned as a systematic uncertainty.

6.8.6 The parametrisation of the ρ0 −ω0 resonance mixing

The parametrisation of the main resonances in the π+π− system used in the nominal model is

a Gounaris-Sakurai (GS) line-shape for the ρ(770)0, which is adapted to include the ω(782)0

through a multiplication by a factor of (1+δ s
m2

ω
BWω), where BWω is a Breit-Wigner (BW)

function for the ω(782)0 resonance, and the parameter δ is set to 0.00471 (see Section A.2.3 in

Appendix A.2). This parametrisation leads to a good description of the data. The fact that it

strictly constrains the contribution from the ω(782)0 to that of the ρ(770)0 is advantageous

in the model building and generally in the amplitude fit, as it reduces the fit complexity. A

systematic effect from this strong assumption is determined using a different parametrisation
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where the ρ is still described by a GS function, and the ω by a BW function, but the two

are decoupled. This adds nine decay amplitudes to the model, amounting to 18 additional

free parameters in the minimisation. To stabilise the fit, the masses and widths of the two

light-flavour resonances are fixed to their PDG values (the Kres masses are fixed to the nom-

inal model results); it is also necessary to constrain the relative magnitude of the ω(782)0

contribution in the decays of vector Kres to 10% (the approximate result of some fits whose

minima could not be verified due to the strong correlation between the ρ(770)0 and ω(782)0

amplitudes) of that of the ρ(770)0. The fit to data with this alternative parametrisation yields a

blinded polFrac value of 0.931±0.007 for a χ2/ndf of 1.21. This differs from the nominal blind

polFrac by 0.0024. The difference is assigned as a systematic uncertainty.

As a further variation, the nominal description of the ρ(770)0 line-shape is used, but the mixing

parameter δ, which is fixed in the nominal model and during model building (see Section A.2.3

in Appendix A.2), is freed and no longer constrained to be real, i.e. both the magnitude and

the phase of δ are fitted. The masses and widths of the ρ(770)0 and the ω(782)0 are also free

in the fit, with Gaussian constraints as in the model building. The Kres masses are fixed. The

fit yields 0.0027±0.0002 for the magnitude and −0.098±0.086 for the phase of δ. The fitted

values of the ρ(770)0 and the ω(782)0 masses and widths are compatible with the PDG values,

except for the ω(782)0 width, which is 0.0092±0.0004 GeV/c2 (PDG: 0.00868±0.00013 GeV/c2).

While neither the magnitude nor the phase of δ from the fit are compatible with the value of

0.00471 used in the analysis, the blind polFrac value from that fit is exactly the same as the

nominal value. Therefore, no additional systematic uncertainty is assigned.

6.8.7 Fixed parameters in the amplitude fit

The masses of the Kres and the masses and widths of the ρ(770)0 and theω(782)0 are optimised

in fits on data as part of the model building. Their fitted values can be assumed to depend on

the parametrisation of the decay amplitudes. To determine a systematic uncertainty related

to these parameters and to the decay radii of the resonances in the nominal model, the

parameter values are varied and the fit is repeated. An upper bound of the resulting systematic

uncertainty can be estimated from a fit with all the masses and widths set to their PDG values

rather than to the values from the nominal model. This fit is mentioned in Section 6.6 as a

cross-check. It yields a blind polFrac of 0.935±0.007, which is 0.0016 away from the nominal

fit result, so the systematic uncertainty related to the fixed parameters in the amplitude fit is

expected to be of the order or 0.0016 or lower.
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Chapter 7

Conclusion

A map of the magnetic field of the LHCb detector for Run 3 has been built from simulated

and measured field data. This map is created from scratch, where previous updates of the

field maps have been based on corrections to older maps, and several improvements have

been made to the simulation model, the translation of the simulated field to a map in the

LHCb format, the measurement data, and its incorporation into the final map. The new map,

with its associated alignment, has been shown to outperform its predecessor in accuracy

and precision of reconstructed mass peaks in 2024 data. Given the complete overhaul of the

process, the small but significant improvements in these metrics are a welcome success and

show that the methods outlined in this work not only provide a magnetic field map that is fit

for use in LHCb analyses, but also pave the way towards further refinements of the map. A

closer correspondence of the field map to the real field could be achieved with, for example,

field measurements beyond the region of high field values that covers the measurements used

in this work, and/or a more detailed knowledge of the ferromagnetic structures in the LHCb

cavern, specifically the reinforced concrete in the cavern floor and walls.

A measurement of the photon polarisation in b → sγ transitions is performed through an

amplitude analysis of B+→ K +π−π+γ decays, using data recorded at the LHCb experiment in

2011, 2012, 2015, 2016, 2017, and 2018. Backgrounds are reduced through tailored selection

requirements. The remaining backgrounds are subtracted from the data using weights calcu-

lated with COWs based on signal and background distributions in the reconstructed B mass,

with the exception of the background from B+→ K +π−π+π0 decays. The mass distributions

of the signal and the B+→ K +π−π+π0 background are too similar to allow subtraction of this

background. It is estimated from selection efficiencies and branching fraction ratios, as well

as from fits to the distributions of a dedicated γ/π0 discriminant in data, that about 1% of

the photon candidates in the background-subtracted data sample are neutral pions that have

been misidentified as photons. Instead of modelling the B+→ K +π−π+π0 background, the

degree to which it dilutes the measured polarisation is studied using simulation, and the

dilution effect is corrected for in the measurement.
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Chapter 7. Conclusion

The signal decay is described in the isobar formalism. It proceeds through decay chains

involving hadronic resonances, where the photon is always produced in the first decay of the

chain. There are many hadronic resonances that can contribute, so the number of possible

decay chains is high. A selection of decay chains is made in an iterative process called “model

building” where decay chains are added to improve the description of the data. The presence of

interferences between different decay chains is crucial for the sensitivity of the B+→ K +π−π+γ
decay to the photon polarisation. The selection efficiency is not parametrised but taken into

account in the normalisation of the amplitude fit PDF, which uses a large sample of simulated

signal events with LHCb reconstruction and full selection applied. The hadronic resonances

are mostly described using Breit-Wigner line-shapes, with some resonances, such as the

ρ(770)0, having specific line-shapes that have been experimentally established in addition to

their motivation from theory. The radiative part of the decay is described with spin factors

derived in the helicity formalism. They are added as custom spin factors to the AMPGEN

framework, in which the amplitude fit on data is performed. The same framework is used to

generate the simulated events used for the PDF normalisation. Both the amplitude fit and

the model building are tested and validated on simulated signal samples. The iterative model

building on data is deemed successful since the figure of merit that quantifies the agreement

between the amplitude model and the data and the polarisation parameter both stabilise.

The resulting nominal amplitude model describes the data well, based on projections of the

model and the data on five visualisation variables. The measured polarisation parameter

λγ, which has a physical range from −1 to +1 and is predicted to be close to +1 in the SM,

is concealed from the researchers at the time of writing, to avoid biasing the measurement.

Its statistical uncertainty is 0.0140. A cross-check of the background subtraction method

with a data sample where stricter selection requirements than the nominal have been ap-

plied, sacrificing some statistical power, indicates no bias on the measurement from the

background subtraction method. As a consequence, no systematic uncertainty is assigned to

the background subtraction. Other systematic uncertainties on the measured value of λγ have

been determined for the momentum resolution, the fixed parameters in the B mass fit, the

correction of the polarisation dilution from B+→ K +π−π+π0 events, the integration sample

size, the choice of decay amplitudes, and the parametrisation of the light-flavour resonance

line-shape. An additional systematic uncertainty from fixed parameters in the amplitude fit

has not been determined in this work. For the purposes of discussing the sensitivity of this

measurement, it is estimated at 0.0031 (see Section 6.8.7). The total systematic uncertainty

on the measurement of λγ is then 0.0123, compared to the statistical uncertainty of 0.0140.

With a combined uncertainty of 1.9% on λγ, the measurement of the photon polarisation in

b→ sγ transitions discussed in this work constrains New Physics contributions to the Wilson

coefficients C7 and C ′
7 about ten times as strongly as the first direct measurement of the

photon polarisation in b→ sγ transitions from Λb →Λγ decays in Ref. [14], assuming that the

value of λγ, once uncovered, is compatible with the SM.

A larger data sample could reduce the uncertainty on λγ by lowering the statistical uncertainty,

but more importantly, by helping to refine some systematic effects. Specifically, a more
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precise estimate of the B+→ K +π−π+π0 background contamination, which is one of the main

sources of systematic uncertainty, could be obtained with more data, through a more detailed

adaptation of the calibration samples’ kinematics to the data, for example. The parameters of

the nominal model other than λγ, including the decay chains that are part of this model, and

the fact that some resonances, e.g. the K ∗
2 (1580), have been tested and not found to improve

the measurement enough to warrant inclusion in the nominal model, are a secondary result

of the amplitude analysis. We found, in the development of the model building, that there is a

large number of models with some difference in model content and/or line-shape description

that describe the data similarly well. A larger data sample could allow some more qualitative

differentiation between these competing descriptions of the hadronic part of the signal decay

and increase the sensitivity to the Dalitz-analysis-like part of this amplitude analysis. The

polarisation parameter does not differ significantly between the competing models, which

lends confidence in the robustness of the method. Nevertheless, a reduction of the model

ambiguity could also reduce the systematic uncertainties related to the amplitude model.

The photon polarisation in b→ sγ decays is strongly constrained experimentally, leading to

constraints on New Physics contributions to the Wilson coefficients C7 and C ′
7. The measure-

ment discussed in this work, once the remaining systematic uncertainties are quantified and

the central value uncovered, will refine these constraints and contribute to lighting the path of

extensions to the SM, towards a (more) complete description of elementary and composite

particles and their behaviour.
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Appendix A. Appendix

A.1 Magnetic field visualisations
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Figure A.1 – Differences between the corrected magnetic field measurement values for the Bx com-
ponent, taken with “MagDown” polarity in January 2021, and the interpolated values for the same
component from the OPERA simulated map with the updated simulation model, before shifting the
magnet.
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A.1. Magnetic field visualisations
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Figure A.2 – Differences between the corrected magnetic field measurement values for the Bz com-
ponent, taken with “MagDown” polarity in January 2021, and the interpolated values for the same
component from the OPERA simulated map with the updated simulation model, before shifting the
magnet.
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Figure A.3 – Differences between the corrected magnetic field measurement values for the Bx com-
ponent, taken with “MagDown” polarity in January 2021, and the interpolated values for the same
component from the field map used in LHCb for Run 2.
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Figure A.4 – Differences between the corrected magnetic field measurement values for the By com-
ponent, taken with “MagDown” polarity in January 2021, and the interpolated values for the same
component from the field map used in LHCb for Run 2.
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Figure A.5 – Differences between the corrected magnetic field measurement values for the Bz com-
ponent, taken with “MagDown” polarity in January 2021, and the interpolated values for the same
component from the field map used in LHCb for Run 2.
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A.1. Magnetic field visualisations
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Figure A.6 – Histograms of the field differences (in Tesla) of Figures A.3, A.4, A.5.

x [m]

1.0 0.5 0.0 0.5 1.0

y 
[m

]

0.4

0.2

0.0

0.2

0.4

0.6

z [m
]

3456

1.0 0.5 0.0 0.5 1.0
x [m]

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

z [
m

]

ypos==-2

1.0 0.5 0.0 0.5 1.0
x [m]

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

z [
m

]
ypos==-1

1.0 0.5 0.0 0.5 1.0
x [m]

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

z [
m

]

ypos==0

1.0 0.5 0.0 0.5 1.0
x [m]

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

z [
m

]

ypos==1

1.0 0.5 0.0 0.5 1.0
x [m]

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

z [
m

]

ypos==2

0.006

0.004

0.002

0.000

0.002

0.004

0.006

diff(B) [T]

meas. - translated and rotated map, Bx

Figure A.7 – Differences between the corrected magnetic field measurement values for the Bx com-
ponent, taken with “MagDown” polarity in January 2021, and the interpolated values for the same
component from the OPERA simulated map with the updated simulation model, after shifting the
magnet.
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Figure A.8 – Differences between the corrected magnetic field measurement values for the By com-
ponent, taken with “MagDown” polarity in January 2021, and the interpolated values for the same
component from the OPERA simulated map with the updated simulation model, after shifting the
magnet.
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Figure A.9 – Differences between the corrected magnetic field measurement values for the Bz com-
ponent, taken with “MagDown” polarity in January 2021, and the interpolated values for the same
component from the OPERA simulated map with the updated simulation model, after shifting the
magnet.
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Figure A.10 – Histograms of the field differences (in Tesla) of Figures A.7, A.8, A.9.
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A.2 Propagators

Natural units, where ~= c = 1, are used throughout this section.

A.2.1 Breit-Wigner

The default line shape for a hadronic resonance is the Breit-Wigner propagator [61],

TBW(s, q,L) = BL(q,0)

m2
0 − s − i m0Γ(s, q,L)

, (A.1)

where s is the squared invariant mass of its two daughters, q is the breakup momentum (the

absolute value of the three-momentum of one of the daughters in the resonance’s rest frame)

and L the relative angular momentum of the two daughters, BL are normalised Blatt-Weisskopf

barrier factors, given in Table A.1, m0 is the nominal mass of the resonance, and constant

factors are omitted. The breakup momentum q is a function of s and the masses of the

daughters.

The width Γ depends on the breakup momentum q and the relative angular momentum L of

the daughters. It is given by

Γ(s, q,L) = Γ0
m0p

s

(
q

q0

)2L+1

BL(q, q0)2 , (A.2)

where Γ0 is the width and q0 the breakup momentum at s = m2
0, for the resonances that decay

into two final-state particles.

For the kaonic resonances Kres that decay to Kππ, the width in the propagators Ti is computed

numerically to account for the dynamics of the different decay chains that lead to the Kππ

system as documented in Refs. [65,76], except for those resonances which have only one decay

channel to Kππ, for which the running width is given by Eq. A.2.

Table A.1 – Normalised Blatt-Weisskopf centrifugal barrier factors for relative angular momentum L.
The radial parameter R used is 1.5( GeV/c)−1 according to a measurement by the Belle collaboration [75].

L BL(q, q0)

0 1

1

√
1+R2q2

0

1+R2q2

2

√
9+3R2q2

0 +R4q4
0

9+3R2q2 +R4q4
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A.2. Propagators

A.2.2 Gounaris-Sakurai mass propagator

The Gounaris-Sakurai line-shape [62] is defined as

TGS(s, q,L) = BL(q,0)

m2
0 − s +φ(s, q)− i m0Γ(s, q,L)

, (A.3)

where the running width Γ(s, q,L) (Eq. A.2) is the same as for the Breit-Wigner propagator. The

function φ(s, q) is

φ(s, q) = Γ0

π

2ln

(p
s +

√
q2

2mπ

)
m2

0q3

p
sq3

0

+ ln

m0 +
√

q2
0

2mπ

 q2(s −3m2
0)+ s(m2

0 − s)

m0q2
0

+ m2
0 − s

q0

 .

(A.4)

A.2.3 A combined propagator for ρ andω

A single π+π− line-shape can be used to describe the ρ and ω resonances as well as their

mixing. The physical states ρ and ω are mixtures of the isovector ρ0 and isoscalar ω0 states.

The isovector component dominates the ρ, and the mixing-induced contribution from the ω

can be included in the ρ line-shape as [77]

Tρ−ω(s, q,L) =TGSρ (s, q,L)

[
1+δ s

m2
ω,0

TBWω
(s, q,L)

]
. (A.5)

It uses the Gounaris-Sakurai propagator for the ρ and a Breit-Wigner line-shape for ω. The s-

dependence of the expansion is explicit so that the mixing parameter δ is constant. Following

the argument in Refs. [78, 79], it is set to 3 · |δem|, where |δem| = 0.00157 [77]. The complex

phase of the parameter δ, which accounts for the relative phase between the two resonances,

cannot be predicted by an analogous argument. For simplicity, δ is constrained to be real in

this analysis. A cross-check in Section 6.8.6 indicates no bias on the polarisation measurement

from the choice of value of δ made in this analysis.

A.2.4 The LASS line-shape

Non-resonant S-wave decays to K +π− are described by a line-shape derived from scattering

experiments by the LASS collaboration [80]. It can be seen as the sum of a non-resonant and a

Breit-Wigner propagator,

TLASS(s, q) = 2a
p

s

2+ar q2 −2i aq
+ 2+ar q2 +2i aq

2+ar q2 −2i aq
TBW(s, q,0) (A.6)

where the parameters a and r are fixed from the LASS scattering data [81].

125



Appendix A. Appendix

A.2.5 The Bugg line-shape

Non-resonant S-wave decays to π+π− are described by a line-shape based on solutions to the

Roy equations [82] and scattering data, proposed in Ref. [83] by D.V. Bugg.
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A.3. Elements of the strong decay spin factors

A.3 Elements of the strong decay spin factors

The polarisation tensor for a spin-J boson has rank J . For (pseudo-)scalars, it can be set to 1.

Spin-1 particles can have three projections m of their intrinsic angular momentum onto an

arbitrary z axis. The polarisation vectors in the particle’s rest frame are

ε
µ

(1)(m =±1) = 1p
2


0

∓1

−i

0

 , ε
µ

(1)(m = 0) =


0

0

0

1

 . (A.7)

They can be transformed into polarisation vectors εµ(1)(p,m) for spin-1 particles of four-

momentum p with Lorentz transformations.

The rank-2 tensors of a spin-2 particle are built from two rank-1 tensors using Clebsch-Gordan

coefficients 〈 j1m1, j2m2|J M〉:

ε
µν

(2)(p,m) = ∑
m1,m2

〈1m1,1m2|2m〉εµ(1)(p,m1)εν(1)(p,m2) . (A.8)

Spin projectors are built in their turn from their respective polarisation tensors. For spin-1

particles:

Pµν

(1) (p) =∑
m
ε
µ

(1)(p,m)εν(1)(p,m) =−gµν+ pµpν

p2 (A.9)

and for spin-2 particles:

Pµνρσ

(2) =∑
m
ε
µν

(2)(p,m)ερσ(2) (p,m) . (A.10)

The angular momentum tensor for a two-particle state A,B is obtained by projecting the

relative angular momentum q = p A −pB onto the sub-space of spin L with the appropriate

spin projection tensor given above:

Lµ1...µL

(L AB ) (p A , pB ) = (−1)L AB Pµ1...µLν1...νL

(L AB ) (p A , pB )qν1 . . . qνL . (A.11)
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