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Abstract
Spectro-temporal modes of light can be exploited for the generation of high-dimensional Gaussian
quantum states. Such states are at the basis of continuous variable quantum information protocols
where they have to support mode-selective non-Gaussian operations. We develop a general
framework for single-photon addition on multimode states of light via parametric down
conversion (PDC) processes. We identify the analytical conditions for single-mode and
mode-selective photon addition. We show that spectral mode selectivity can be achieved in the
type-II collinear down conversion, while single-mode condition are retrieved for noncollinear
type-I and type-II processes. Numerical results are shown for photon addition in PDC process at
near-infrared and telecommunications wavelengths.

1. Introduction

Spectro-temporal mode of light are a versatile resource for quantum information and quantum

communication protocols [1–3]. In particular ultra-fast light, that can be easily manipulated via

femtosecond shaping techniques, has been used for application in both discrete variables and continuous

variable (CV) encoding [4–8] In order to exploit the large Hilbert space offered by the frequency mode of

femtosecond light sources, the tailoring of the spectral mode structure for quantum state generation and

manipulation should be performed [2, 5, 9–16].

In CV quantum optics non-Gaussian quantum states are essential constituents for quantum

computation [17, 18]. While spectrally tailored quantum states with Gaussian quadratures statistics can be

deterministically generated via nonlinear optics [5, 8, 19], optical non-Gaussian states require heralded

procedures like single-photon subtraction and single-photon addition.

The two operations have been largely investigated acting on single-mode fields [20], where

photon-subtraction can be implemented via a low-reflectivity beam-splitter [21] and single-photon

addition via a parametric amplifier with a strongly filtered heralding field [22]. A general theoretical

framework of mode selective single photon subtraction has been recently developed [23, 24] and

experimentally demonstrated via sum-frequency conversion in nonlinear crystals [15, 25]. Differently from

the low-reflectivity beam-splitter, the nonlinear frequency conversion allows for the subtraction of a

single-photon from a selected ultra fast frequency mode of a multimode quantum state. Single-photon

addition has been recently implemented in delocalized temporal modes [26] but spectral mode selectivity is

still missing.

The present work is focused on developing a complete theoretical framework to generate non-Gaussian

quantum states of light by performing the addition of a single photon to multimode light fields.
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Figure 1. Principal scheme of conditional photon addition. The signal (resp. idler) channel is colored in red (resp. blue). The
output state ρ̂out

s is conditioned on the detection of a photon in the idler channel.

We both analytically and numerically investigate under which conditions and experimental
configurations it is possible to achieve single-mode and mode-selective photon addition, i.e. when one can
arbitrarily choose the unique mode in which the photon is added.

We analyze configurations of parametric down-conversion (PDC) processes in nonlinear bulk crystals
both at near infrared and telecommunication wavelength, which can be pumped via fields of different
spectral shapes.

This paper is structured as follows. In section 2, we briefly discuss photon addition to a single-mode
light field. In section 3, we provide a complete theoretical description to the single-mode addition process
in a mode selective way to a multimode light field, and discuss the output state purity. In section 4.1, we
analytically show that mode-selective photon addition is achievable in type-II collinear PDC, and recover as
necessary condition the group velocity matching (GVM) between the pump and one of the daughter field in
the PDC process, which was already studied as beneficial condition for the generation of pure
single-photons in spontaneous PDC [27]. In section 4.2, we show simulations in this configuration under
realistic experimental conditions. In section 5, we study single-mode photon addition in noncollinear
configurations by extending the GVM condition to both type-II (section 5.1) and type-I (section 5.2).
Though these results are valid for all classes of uniaxial and biaxial crystals, we present results for KDP,
BBO, LN, BiBO and KTP crystals. Further discussions and prospects are given in conclusions.

2. Single-mode photon addition

In this section, we will restrict ourselves to single-mode addition. Single-photon added states have been
introduced for the first time by [28] and single photon addition has been implemented for the first time on
a coherent state by [22].

We consider a parametric generation process, where we adopt a simplified model of PDC in a nonlinear
crystal. The process is illustrated on figure 1. At the input, the quantum beam of light to which we want to
add a photon, is called the signal. The associated quantum state is described by the general density matrix
ρ̂in

s . The process, modelled by its evolution operator Û , generates two photons, one in the signal channel
and a complementary one in the channel called idler. The output ρ̂out

s on the signal channel is conditioned
by the detection of a photon in the idler channel.

The evolution operator writes:

Û = exp(g(âb̂ − â†b̂†)) ≈ 𝟙̂+ g(âb̂ − â†b̂†), (1)

where g is the strength of the parametric generation, containing the non-depleted pump, â is the
annihilation operator associated to the signal mode, and b̂ is the annihilation operator associated to the
idler mode. In equation (1), we have assumed that the coupling is weak, i.e. |g| � 1. By applying the
evolution operator to the total input state ρ̂in = ρ̂in

s ⊗ |0〉〈0|i, we obtain the evolution equation:

Ûρ̂inÛ† = ρ̂in − |g|2â†b̂†ρ̂inâb̂. (2)

Since the possibility to add more than one photon to the signal is negligible in the weak coupling
approximation, one can model the on/off detector as Π̂ = 𝟙̂i − |0〉〈0|i ≈ |1〉〈1|i . The output density matrix
in the signal mode, conditioned to the measurement of a photon in the idler mode is formally given by:
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ρ̂out
s =

1

P
Tri(Π̂Ûρ̂inÛ†), (3)

where the normalization constant P = Tri,s(Π̂Ûρ̂inÛ†) = |g|2(1 + n̄s) is the probability to successfully
detect a photon in the idler mode [29], with n̄s = Tr(â†âρ̂in

s ) the mean number of photons in the input
state. We point out that the probability to detect a photon depends linearly on 1 + n̄s, which corresponds to
the fact that PDC behaves as an amplifier. Indeed, for an amplifier the output power is proportional to the
input one, and thus the number of generated photons on both idler and signal channels increases with the
signal input power. In other words, the more photons are in the input state, the more likely it is to add a
photon to the signal.

Finally, we obtain that:

ρ̂out
s =

â†ρ̂in
s â

1 + n̄s
. (4)

The output signal state in equation (4) is as expected: the input state on which is added a photon by
applying â†.

3. Multimode photon addition

3.1. General framework
In this section, we extend the simple previous theory to the multimode case: we consider that photons can
be added to any mode. Figure 1 still describes the general setting of the process.

The evolution operator of multimode parametric generation in the low gain regime writes:

Û ≈ 𝟙̂+
∑
n,m

(gnmâ†nb̂†m + h.c.), (5)

where we define the signal modes as the optical modes {un} associated to the annihilation operators {ân},
and the idler modes as the optical modes {vn} associated to the annihilation operators {b̂n}, gnm is the
strength of the process for modes (un, vm), and h.c. stands for Hermitian conjugate. Note that Û can be
derived from a Hamiltonian approach [1, 30]. Again, the input writes ρ̂in = ρ̂in

s ⊗ |0〉〈0|i, where ρ̂in
s is the

signal input, potentially mixed or multimode.
Let us compute the output signal state conditioned on the detection of a photon in the idler beam. Here

we assume to be in the weak coupling regime (|gnm| � 1, ∀ n, m) in order to neglect the possibility to add
more than one photon. In this regime, we can model the on/off detector as:

Π̂ =
∑

d

γd|1〉〈1|rd
, (6)

where the γd are the detection efficiencies in the detection eigenmodes rd associated to the annihilation
operators D̂d and |1〉rd

= D̂d
†|0〉. In this work, we assume for simplicity that the detection efficiencies are

equal to one. It means that we collect all the modes in the detection, i.e. that the detection is not
mode-dependent. Under this assumption, we write:

Π̂ = 𝟙̂i − |0〉〈0|i. (7)

The output state simply writes ρ̂out = Ûρ̂inÛ†. The conditional output signal after a successful click on
the detector is:

ρ̂out
s =

1

P
Tri(Π̂Ûρ̂inÛ†), (8)

where the normalization constant P = Tri,s(Π̂Ûρ̂inÛ†) is the probability to successfully detect a photon in
the idler mode. One can show that the output signal state writes:

ρ̂out
s =

1

P

∑
n,n′

Ann′ â
†
nρ̂

in
s ân′ (9)

Ann′ =
∑

m

gnmg∗n′m. (10)

The behaviour of this whole process is governed by the matrix (Ann′), which we will refer to as the
addition matrix. Note that the addition matrix is Hermitian by definition (10). The diagonalization of the
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addition matrix gives access to the eigenvalues λ1 � · · · � λn � 0 and the eigenmodes {wn} associated to
the annihilation operators {ên}. We obtain:

ρ̂out
s =

1

P

∑
n

λnê†nρ̂
in
s ên (11)

where P =
∑

n

λn(1 + n̄n) (12)

and n̄n = Tr(̂e†nênρ̂
in
s ) is the photon number of the input signal in the eigenmode wn.

In the general case, the addition process is multimode, i.e. more than one eigenvalue λn is non-zero. The
effective number of modes in the process is given by the following quantity, which is similar to the Schmidt
number [31]:

K =

(∑
nλn

)2∑
nλ

2
n

. (13)

The addition process is single-mode when K = 1.
We will now discuss in detail those two cases, looking into their link with the output state purity.

Intuitively, the purity of the output state decreases as the total number of modes involved in the process
increases, since the single photon can be added into more eigenmodes, following equation (11).

3.2. Output state purity
In this section, we assume that the input signal is pure, i.e. ρ̂in

s = |φ〉〈φ|s.
First, if the addition process is single-mode, then equation (11) simply re-writes:

ρ̂out
s ∝ ê†1ρ̂

in
s ê1 = ê†1|φ〉〈φ|s ê1. (14)

We deduce that the output signal is pure: ρ̂out
s = |ψ〉〈ψ|s, with |ψ〉 ∝ ê†1|φ〉. A photon has been properly

added to the eigenmode. This is the ideal single-mode photon addition process, at K = 1.
Let us now consider the case of a multimode process, i.e. K > 1. We will show that the output is always

mixed once the addition process is multimode.
For simplicity, we first assume that only two eigenvalues are non-zero. Then, equations (11) and (12)

rewrite:

ρ̂out
s = λ̃1ê†1ρ̂

in
s ê1 + λ̃2ê†2ρ̂

in
s ê2 (15)

λ̃1(1 + n̄1) + λ̃2(1 + n̄2) = 1 (16)

where λ̃i = λi/P for i = 1, 2.

As ρ̂in
s is pure, we find, using trace properties, that the output state purity writes:

Tr[(ρ̂out
s )2] = λ̃2

1(1 + n̄1)2 + λ̃2
2(1 + n̄2)2 + 2λ̃1λ̃2

∣∣∣〈φ|̂e1ê†2|φ〉
∣∣∣2
. (17)

We apply the Cauchy–Schwarz inequality:

|〈φ|̂e1ê†2|φ〉|2 � 〈φ|̂e1ê†1|φ〉〈φ|̂e2ê†2|φ〉 = (1 + n̄1)(1 + n̄2). (18)

This allows us to write:
Tr[(ρ̂out

s )2] � (λ̃1(1 + n̄1) + λ̃2(1 + n̄2))2 = 1, (19)

where we used the normalisation equation (16). The inequality (19) is saturated if and only if ê†1|φ〉 ∝ ê†2|φ〉,
which is not possible (see proof in appendix A1). So the purity of the output signal density matrix is strictly
lower than 1, meaning that the output signal state is mixed.

This result can be generalized to more than two non-zero eigenvalues, without any additional steps, as
can be checked on appendix A2.

Therefore, we have shown that for a multimode addition process (K �= 1), for any input signal and mode
independent heralding, the output signal is not pure.

Now, let us quantitatively study the dependence of the output state purity on some relevant input states.
In quantum information experiments, state purity is a very sensitive parameter and need to be as close to 1
as possible.

In this section, to simplify the discussion, we consider that the process is mainly determined by two
eigenmodes, so that the output state is given by equation (15).
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Figure 2. Output state purity for a single-mode input state. At K = 1, the process is single-mode, which leads to a purity equal
to 1. Below, the purity drops with K, and increases with n̄1. The squeezing factor axis is non linear, and is derived from
n̄1 = sinh2(R).

We consider the situation where the input signal is a pure single-mode state:

ρ̂in
s = |φ〉〈φ|, |φ〉 = |χ〉1|0〉2, (20)

where in the eigenmode w1, |χ〉1 has n̄1 mean number of photons. Using that the scalar product 〈φ|̂e1ê†2|φ〉
vanishes and n̄2 = 0 in equations (16) and (17), we obtain:

Tr[(ρ̂out
s )2] =

1 + (λ̃1/λ̃2)2(1 + n̄1)2

[1 + (λ̃1/λ̃2)(1 + n̄1)]2
. (21)

We show in figure 2 the output state purity as a function of the effective number of modes
K = (1 + λ̃1/λ̃2)2/(1 + (λ̃1/λ̃2)2), and mean number of photons n̄1. The figure illustrates the competition
between the multimodality and the amplification effect of the process. We point out that for an effective
number of modes smaller or equal to 1.1, the purity is always above about 0.90. Note that equation (21) is
true for any state of the modal form equation (20). The usual candidate states for photon addition are
coherent, thermal and squeezed states. Squeezed states are of particular interest for quantum information,
as they can be entangled into a cluster, building block of measurement based quantum computing. Adding
a photon to a squeezed state leads to a non-Gaussian resource, necessary for quantum computation [18].
We show on a secondary axis the squeezing factor R, related to the mean number of photons by
n̄1 = sinh2(R) for single-mode squeezed vacuum states.

The fact that a non-pure state can emerge from photon addition on a pure single-mode state essentially
comes from the non-zero probability of adding a photon to the vacuum. In comparison, in the photon
subtraction process [24], the output is always pure if the input signal is pure and single-mode, as
subtracting from the vacuum is impossible.

4. Mode-selective photon addition in type-II collinear PDC

In this section, we develop an experimental model of the addition matrix An,n′ , and diagonalize it both
analytically and numerically. The goal is to find:

• under which conditions the process can be single-mode, meaning that the effective number of modes
in which it adds a photon is reduced to one.

• under which conditions the process can be mode-selective, meaning that one can choose in which
eigenmode the photon is added.

While the general principle of the process remains the same as described in figure 1, we now consider
usual physical systems: PDC in a nonlinear crystal, using pulsed light for both signal and pump beams. The
modes at play are frequency modes of the usually large spectrum pulses. The pump is a classical beam that
feeds the nonlinear crystal at the input, and is part of the process described by Û .

5
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Figure 3. Mode-selective photon addition through PDC in a nonlinear crystal. Each pump photon is down converted into one
photon added to the signal and one idler photon detected for heralding purposes. Photon addition occurs in the spectral mode ϕ
of the pump.

In this section, we focus on collinear type-II PDC, see figure 3. Collinear means that input and output
fields are all propagating in the same direction (on figure 3 they are not for clarity purposes). Being type-II
means that the signal and idler output fields have orthogonal polarisations. This allows separating the
output beams in practice. In sections 5.1 and 5.2, we investigate noncollinear PDC configurations.

4.1. Mode-selectivity
The evolution operator for a three wave mixing process in a nonlinear optical crystal, under the low gain
approximation, is a continuous version of that of equation (5) [2, 32]:

Û ≈ 𝟙̂+

∫
dωs dωi

(
R(ωs,ωi)â†(ωs)b̂†(ωi) + h.c.

)
(22)

R(ωs,ωi) = (−2iπC/�)αp(ωs + ωi)φ(ωs,ωi), (23)

where R(ωs,ωi) is called the joint spectral amplitude (JSA) function, and φ(ωs,ωi) = sinc
(
ΔkL/2

)
is the

phasematching function with the crystal length L, Δk = kp − ks − ki, the frequencies ωj and the wave
vectors kj of the fields for j = p, s, i, and C is a constant4. Since the evolution operator has a similar form as
in equation (5), we find:

ρ̂out
s =

1

P

∫
dωs dω′

s A(ωs,ω
′
s)â†(ωs)ρ̂

in
s â(ω′

s) (24)

A(ωs,ω
′
s) =

∫
dωi R(ωs,ωi)R(ω′

s,ωi)
∗, (25)

where we recall the input state form ρ̂in = ρ̂in
s ⊗ |0〉〈0|i and that P is a normalisation factor that ensures

Tr
(
ρ̂out

s

)
= 1. Again, we can diagonalize A(ωs,ω′

s), as it is Hermitian and obtain the exact same equation as
equation (11), by finding the eigenmodes and eigenvalues:⎧⎪⎪⎨

⎪⎪⎩
A(ωs,ω

′
s) =

∑
n�1

λnϕn(ωs)ϕ
∗
n(ω′

s)

ê†n =

∫
dωsϕn(ωs)â†(ωs),

(26)

where {ϕn(ωs)} are the signal frequency eigenmodes.
Such full diagonalization seems to be out of range of analytical computation. Yet, we show that, under

some approximations, one can compute analytically an estimation of the effective number of modes K,
defined in equation (13). We first make a Gaussian approximation on the phasematching function, and
assume a Gaussian pump spectrum:

φ(ωs,ωi) ≈ exp
(
−γ

(
Δk(ωs,ωi)L/2

)2
)

(27)

4 C = L

√
Wp�ω0

s �ω0
i

8ε3
0npns nic

3 , where Wp is the energy contained in a single pulse of the field, nj (resp. ω0
j ) is the refractive index seen by the fields

(resp. the central frequencies) for j = p, s, i, ε0 is the vacuum permittivity, and c is the speed of light.
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αp(ωs + ωi) ∝ exp

(
− (ω̃s + ω̃i)2

2σ2

)
, (28)

where γ � 0.193 is defined such that the functions sinc(x) and e−γx2
have the same full width at half

maximum, σ is the pump spectral width, and ω̃j = ωj − ω0
j for j = p, s, i are the frequency shifts with ω0

j

the central frequency of each pulsed beam.
If we make the Taylor expansion of the phase mismatch Δk(ωs,ωi) around the central frequencies, and

we keep up to the first order in ω̃j, we can write:

Δk(ωs,ωi) = (k′p − k′s)ω̃s + (k′p − k′i)ω̃i + O(ω̃2), (29)

where k′j ≡
∂kj

∂ωj
|ω0

j
are the inverse of the field group velocities and where we have assumed perfect

phasematching at the central frequencies, (Δk(ω0
s ,ω0

i ) = 0).
Substituting equations (27)–(29) into the JSA function (23) leads to:

R(ωs,ωi) ∝ exp

(
− (ω̃s + ω̃i)2

2σ2

− γL2

4

(
(k′p − k′s)ω̃s + (k′p − k′i)ω̃i

)2
)
. (30)

We show that under Gaussian approximations, K has an explicit analytical form (see appendix B for a
detailed proof):

K =

√
(1 + r2

s )(1 + r2
i )

(rs − ri)2
(31)

with rj = σL

√
γ

2
|k′p − k′j|, for j = i, s,

where the adimensional rj coefficients contains all the key parameters of the problem. Expression (31)
allows quantifying of the multimodality of the addition process. In particular, this analytical computation
allows us to find under which conditions the process is single-mode, i.e. K = 1. Indeed to obtain K = 1
from equation (31), one of the rj must vanish. Since we are interested into the selectivity over the signal
mode, we choose rs = 0 similarly to [27]. This leads to the GVM condition:

k′p = k′s (group velocity matching). (32)

This condition can be achieved in some usual crystals, which is discussed in the next section 4.2. K now
rewrites into:

K =

√
1 +

1

r2
i

≈ 1 if r2
i � 1. (33)

The single-mode condition r2
i � 1 leads to:

σ2 � 1

γL2(k′p − k′i)
2/2

. (34)

Note that condition (34) can be physically seen as a long enough crystal condition or equivalently as a
broad enough pump spectrum. The addition process is single-mode under conditions (32) and (34).

For the process to be mode-selective, the output signal mode should be controllable by an experimental
parameter: here it is the pump spectrum. Let us have a general not anymore Gaussian pump spectrum αp,
and show that we still have a single-mode process under conditions (32) and (34). Under the GVM
condition, we can rewrite equation (30) as:

R(ωs,ωi) ∝ αp(ωs + ωi)exp

(
−γL2

4
(k′p − k′i)

2ω̃2
i

)
. (35)

Under condition (34), the spectral width of the pump is large compared to the one of the phasematching
function, and it can thus be considered constant with respect to the variable ωi: αp(ωs + ωi) ≈ αp(ωs + ω0

i )
in equation (35). Now, the JSA function can be written in a factorized from:

R(ωs,ωi) ∝ αp(ωs + ω0
i )exp

(
−γL2

4
(k′p − k′i)

2ω̃2
i

)
. (36)

7
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Figure 4. Group velocity curves of the pump and signal fields for degenerate type-II PDC in KDP. The pump is extraordinary
polarized in both graphs. The signal is (a) extraordinary polarized, or (b) ordinary polarized.

Let us compare it to the Schmidt decomposition of the JSA function into the signal and idler frequency
eigenmodes:

R(ωs,ωi) =
∑
n�1

√
λnϕn(ωs)ψ

∗
n(ωi). (37)

It is clear that in equation (36) the JSA function is reduced to a product of the form
R(ωs,ωi) ∝ ϕ(ωs)ψ

∗(ωi), with ϕ (resp. ψ) the unique signal (resp. idler) eigenmode. The addition process
is thus single-mode and the signal mode ϕ is given by the spectral shape αp of the pump, i.e. ϕ = αp. In
other words, the photon is added to the mode of the signal that has the same spectral shape as the pump.
The mode of the pump can then be tailored via ultrafast shaping in order to choose the addition mode for
the signal.

We conclude from these analytical considerations that the collinear PDC addition process is single-mode
and mode-selective under Gaussian phasematching approximation, GVM condition (32) and broad enough
pump spectrum or equivalently long enough crystal condition (34). Note that this model neglects the
additional oscillations around the main peak of the phasematching function, that may have a small
contribution to the effective number of modes. Illustrations of this effect are shown in the simulations of
the next section.

4.2. Simulations
This section is dedicated to finding the single-mode addition conditions for collinear type-II PDC in
nonlinear bulk crystals, with realistic parameters. In the next section we will extend it to the noncollinear
case.

In type-II PDC, for uniaxial bulk crystals, phasematching at signal and idler’s central frequencies can be
achieved with:

2ne(λp, θc) = ne(λi, θc) + no(λs), (38)

where θc is the crystal cut angle defined as the angle between the pump and the optical axis. At given
wavelengths, this condition is satisfied if the crystal is cut at a specific angle called the phase matching angle,
θc = θPM.

As discussed earlier, the GVM condition is satisfied if k′p = k′s. For uniaxial crystals, the signal photon
can be chosen as ordinary or extraordinary polarized. For KDP crystal, it is not possible to achieve the
GVM condition for an extraordinary polarized signal field, see figure 4. When the signal photon is ordinary
polarized, however, the group velocities of the pump and the signal matches for a particular cut angle
θc = θGVM.

For a given wavelength λp of the pump photon, to achieve both the phasematching condition and the
GVM condition, it requires that: {

θc = θPM

θc = θGVM

. (39)

This condition cannot be achieved for an arbitrary pump wavelength, which constitutes a limitation for
single-photon addition in bulk crystals. We call this particular wavelength of the pump the GVM
wavelength, λGVM, satisfying equation (39), at which in particular θPM = θGVM.

As shown in figure 5, for the KDP crystal, the GVM and phasematching conditions are achieved for
λp = 415 nm and θGVM = θPM = 67.74◦, while for LN, no pump wavelength satisfies equation (39). Table 1
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Figure 5. GVM and phase matching curves for different pump wavelengths, for (a) KDP and (b) LN crystals. For LN, there is no
solution to equation (39).

Table 1. GVM wavelengths λGVM and angles θGVM for different
nonlinear crystals in collinear degenerate type-II PDC.

Crystal λGVM (nm) θGVM(◦)

KDP 415 67.74
BBO 585 30.96
LN — —
BiBO 647 24.12
KTP 711 46.84

shows the different combinations of λGVM and θGVM for four nonlinear crystals typically used in quantum
optics experiments.

As seen in the previous section, the GVM condition is necessary but not sufficient for achieving K = 1,
as we should also have a phasematching bandwidth much smaller than the pump bandwidth. This can
nevertheless be obtained by setting appropriately the crystal length, L or the pump width, σp.

For the KDP crystal, the results are displayed on figure 6, with a Gaussian pump. The crystal length is set
to L = 5 mm, the pump bandwidth is σp = 3 nm, central wavelength of λp = 415 nm, and θGVM = 67.74◦

in this simulation.
The singular value decomposition of the JSA is numerically performed, giving an effective number of

modes K = 1.08. For this set of parameters, the analytical expression (31) obtained under Gaussian
approximations estimates K = 1.02. The quantity σ2γL2(k′p − k′i)

2/2 is computed to be around 10, which
makes the condition on the pump and phasematching of equation (34) valid.

We also compute the JSA function for a first order Hermite–Gaussian function as pump spectrum, cf
figure 7(a). As before, the first signal eigenmode has approximately the spectral shape as the pump’s on
figure 7(b). Hence, shaping the pump allows for selecting the signal mode to which the photon is added.
Here we obtain K = 1.17, meaning that changing the pump spectrum can come at a cost on the effective
number of modes of the process.

To sum up, the numerical simulations shows a realistic configuration of mode-selective photon addition
in a KDP crystal through collinear type-II PDC. Similar results are obtained for BBO, BiBO, and KTP
crystals, in which the GVM condition of equation (39) can also be satisfied.

5. Single-mode photon addition in noncollinear PDC

Single-mode photon addition can be also achieved in noncollinear configurations. In this case, the
noncollinear angle is a new degree of freedom that can be exploited to achieve the GVM condition at an
arbitrary wavelength.

5.1. Type-II
The phase matching conditions for type-II noncollinear PDC are [33]:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
2ne(λp, θc) = no(λs)cos(θs)

+ne(λi, θc, θs,φs)cos(θi)

no(λs)sin(θs) = ne(λi, θc, θs,φs)sin(θi),

(40)

9
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Figure 6. Collinear type-II in KDP. (a) JSA as the product of the phasematching and the Gaussian pump. (b) First normalized
signal and idler eigenmodes of the JSA.

where ne(λi, θPM,−θs,φs) is the refractive index of the idler field, θs (resp. θi) is the angle of the signal (resp.
idler) field with respect to the pump and θi = −θs. Equations in system (40) are solved simultaneously to
find the phase matching angle θc = θPM.

The index matching and GVM curves intersect exactly at an unique pump wavelength for a given
noncollinear angle θs, as in the collinear case. Figure 8 shows for each noncollinear angle θs the
corresponding pump wavelength and GVM angle for KDP. Similar results are obtained for BBO, BiBO
and KTP.

In this noncollinear configuration, longitudinal and transverse components of the wavevector
mismatches are given by: {

Δkz = kp(ωp) − (ks(ωs) + ki(ωi))cos θs

Δk⊥ = (ki(ωi) − ks(ωs))sin θs

. (41)

The first order Taylor expansion of the wavevector mismatch around the central frequencies gives:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Δkz = Δk(0)

z + (k′p − k′s cos θs)Ωs

+(k′p − k′i cos θs)Ωi

Δk⊥ = Δk(0)
⊥ − (k′sΩs − k′iΩi)sin θs,

(42)

where k′j’s are the inverse of the group velocities of the pump and downconverted fields evaluated at the
central frequencies, and Ωj = ωj − ω0 with j = s, i, where ω0 is the signal and idler central frequencies. Here

Δk(0)
z = kp(2ω0) − (ks(ω0) + ki(ω0)) cos θs and Δk(0)

⊥ = (ki(ω0) − ks(ω0))sin θs are the longitudinal and
transverse components of the wavevector mismatch.

Here, both the transverse wavevector mismatch Δk(0)
⊥ and the longitudinal wavevector mismatch Δk(0)

z

should vanish for perfect phasematching. In type-II PDC, the signal and idler fields have orthogonal
polarizations, therefore their refractive indices are not equal. This makes it impossible to have both Δk(0)

⊥
and Δk(0)

z equal to zero. Thus, only approximate phasematching can be achieved.

10
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Figure 7. Collinear type-II in KDP with first order pump. (a) JSA as the product of the phasematching and the pump. The pump
spectrum is a first order Hermite–Gaussian function. (b) First normalized signal and idler eigenmodes of the JSA.

Figure 8. GVM wavelengths λGVM, and angles θGVM, computed for different noncollinear angles θs, for KDP in degenerate
type-II PDC.

As given in reference [34], the phase matching function φ(Δkz,Δk⊥) can be factorized into a product of
its longitudinal and transverse parts:

φ(Δkz ,Δk⊥) ∝ φz(Δkz)φ⊥(Δk⊥). (43)

The longitudinal and transverse components of the phase matching functions can be approximately
written as: ⎧⎪⎪⎨

⎪⎪⎩
φz(Δkz) = exp

(
−γΔk2

z L2

4

)

φ⊥(Δk⊥) = exp

(
−γ(Δk⊥)2ω2

0

4

) . (44)

In the frequency space (ωs, ωi), the slope of the longitudinal phase matching function depends on the
sum of signal and idler frequencies ωs + ωi and its width depends on the length of the crystal L. Similarly,
the slope of the transverse phase matching function depends on the frequency difference ωs − ωi and its

11
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Figure 9. Type-II PDC in BBO. (a) Phase matching as the product of the longitudinal phase matching and the transverse phase
matching. (b) JSA as the product of the phase matching and the Gaussian pump. (c) First normalized signal (left) and idler
(right) eigenmodes of the JSA.

width depends on the beam waist, w0. By changing the crystal length and the beam waist the overlap
between the two can be engineered, in turn changing the width of the signal and idler fields. Therefore, after
fixing the GVM wavelength and angle, the experimentally tunable parameters are the pump spectral width,
the crystal length and the beam waist w0.

The results are shown in figure 9 for BBO in the type-II noncollinear configuration. The pump field was
set as a Gaussian with a spectral width of σp = 5 nm. For a noncollinear angle of θs = 5.325◦, we computed
λGVM = 398 nm and θGVM = 49.1◦. We have chosen a crystal length of L = 0.3 mm and a beam waist of
w0 = 170 μm for the simulation. From figure 9 it is clear that the transverse phasematching function is not
centred around the desired central frequencies. As mentioned earlier in this section, it is due to the
nonvanishing component of the transverse wavevector mismatch, as a result shifting the total
phasematching function. We obtained the effective number of modes K = 1.14. The first signal and idler
eigenmodes are displayed in the bottom of figure 9.

5.2. Type-I
Finally, we treat the case of single-photon addition in degenerate Type-I noncollinear PDC. In this case, we
can have perfect phasematching (Δk(0)

⊥ = Δk(0)
z = 0 in equation (42)).

The phase matching condition for the degenerate type-I PDC process is given by:

ne(ωp, θc) = no(ωs)cos θs, (45)

12
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Table 2. GVM wavelengths λGVM and angles θGVM for different
nonlinear crystals for degenerate type-I PDC at θs = 0◦.

Crystal λGVM (nm) θGVM(◦)

KDP 517 41.15
BBO 771 19.83
LN 1012 44.95
KTP 919 24.98

Figure 10. GVM wavelengths λGVM, and angles θGVM, computed for different noncollinear angles θs, for type-I PDC in BBO.

where all the quantities involved have been defined above.
Table 2 shows λGVM and θGVM for different nonlinear crystals for degenerate type-I PDC at θs = 0◦.
In the case of BBO crystal, we show in figure 10 the variation of λGVM and θGVM with respect to

noncollinear angles θs. Besides, BiBO fulfills the conditions from θs = 5◦.
In type-I, k′s = k′i and therefore equation (42) re-writes as (with Δk(0)

⊥ = Δk(0)
z = 0):

{
Δkz = (k′p − k′s cos θ)(Ωs +Ωi)

Δk⊥ = −k′s sin θ(Ωs − Ωi)
. (46)

Numerical simulations are carried out for the uniaxial crystals KDP, BBO and LN as well as for biaxial
crystals BiBO and KTP. Figure 11 shows the phasematching function and JSA for BiBO in the type-I
noncollinear configuration, the pump being a Gaussian function with a spectral width of σp = 6 nm.
Again for θs = 5◦, we computed λGVM = 708 nm and θGVM = 8.02◦. The central wavelengths are
λs = λi = 1416 nm. The crystal length was set to L = 1 mm, and the beam waist to w0 = 550 μm. The
singular value decomposition for the JSA is shown in figure 11. The effective number of modes was
calculated to be K = 1.17 under the sinc approximation. The first signal and idler eigenmodes are displayed
on figure 11.

For both type-I and type-II noncollinear PDC, mode-selectivity does not seem to be achievable from
our studies. Indeed, increasing the order of the pump Hermite–Gauss mode by 1 increases the effective
number of modes by approximately 1, resulting in non single-mode photon addition.

5.3. Filtering
In order to obtain an effective number of modes K closer to 1, one may filter the idler field spectrally, so as
to suitably select a unique signal mode.

For same set of input parameters as the type-I BiBO computation, a 25 nm wide spectral filter can be
applied on the idler field. The effect of the filter translates into making the corresponding JSA part vanish,
cf figure 11(b). Also, on figure 11(c), most of the second idler eigenmode is filtered. This means that the
probability of adding a photon to the first eigenmode is relatively increased, increasing the single-mode
character of the addition process. Here, applying the filter yields an effective number of modes of K = 1.03,
which is indeed a clear improvement. Besides, when K is not too far from 1, most of the idler energy is
contained in the first eigenmode, so that it does not decrease significantly the idler detection probability.

Similarly, adding a 5 nm wide idler spectral filter to collinear type-II PDC in KDP on both
configurations figures 6 and 7 yields respectively K = 1.02 and K = 1.05 (with respect to K = 1.08 and
K = 1.17 previously). One could obtain K even closer to 1 by choosing a thinner filter, but at the cost of
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Figure 11. Type-I PDC in BiBO. (a) Phase matching as the product of the longitudinal phase matching and the transverse phase
matching. (b) JSA as the product of the phase matching and the Gaussian pump. (c) In blue: first normalized signal (left) and
idler (right) eigenmodes of the JSA. In magenta: the second idler eigenmode. The orange dashed area represents the 25 nm
filtering on the idler field. For more details, see the main text.

lower photon counts. In the case of noncollinear type-II PDC in BBO (cf figure 9), we obtain K = 1.06
(with respect to K = 1.14 previously) with a 25 mm wide filter.

Although filtering helps improving the single-mode character of the process, it does not clearly improve
its mode-selectivity in the noncollinear configurations. Indeed, the success of filtering relies on the spectral
distinguishability between the first idler eigenmode and the higher order ones. For noncollinear type-I PDC
in BiBO, with a first order Hermite–Gauss pump, K = 2 and the first idler eigenmode highly overlaps with
the second, which means filtering is not possible.

6. Conclusion

In this work, we developed a theoretical framework of the addition of a single photon to multimode light
fields in order to generate non-Gaussian quantum states. We showed that multimode photon added states
cannot be pure, although numerical simulations show that very high purity states are achievable in realistic
experimental conditions. We have investigated different PDC configurations that supports photon addition,
with uniaxial and biaxial crystals (KDP, BBO, LN, BiBO, KTP).

For collinear type-II PDC, mode-selective photon addition is shown to be achievable both analytically
and numerically under GVM and long enough crystal conditions. We prove that one can arbitrarily choose
the unique mode in which the photon is added.
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For noncollinear PDC, we extended the GVM condition for both type-I and type-II processes, and show
numerically that single-mode photon addition is possible.

Moreover, filtering the idler field can be used to improve the single-mode character of photon addition.
As a possible future development of this work, other materials than raw bulk crystals can be considered

in order to achieve better results exploiting extra degrees of freedom, such as periodically or aperiodically
poled crystals.

Single photon addition is a promising operation to generate non-Gaussian multimode states, necessary
for high dimensional quantum computing. In particular, we anticipate that such state generation will be
accessible in state-of-the art quantum optics experiments in the near-infrared and telecommunication
wavelengths.

Acknowledgments

This work was supported by the European Research Council under the Consolidator Grant COQCOoN
(Grant No. 820079).

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Appendix A. Multimode photon addition

A1. Proof that the Cauchy Schwarz inequality (18) cannot be saturated
In section 3.2, we obtained from Cauchy Schwarz inequality equation (18):

|〈φ|̂e1ê†2|φ〉|2 � 〈φ|̂e1ê†1|φ〉〈φ|̂e2ê†2|φ〉 = (1 + n̄1)(1 + n̄2). (A1)

This inequality is saturated iff ê†1|φ〉 ∝ ê†2|φ〉.
Let us write |φ〉 over the Fock basis of the two addition eigenmodes5:

|φ〉 =
∑
n1�0

∑
n2�0

Cn1,n2 |n1〉 ⊗ |n2〉, (A2)

where the complex coefficients Cn1,n2 ensure the normalisation.
So, the saturation condition ê†1|φ〉 ∝ ê†2|φ〉 re-writes:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Cn1−1,n2

√
n1 ∝ Cn1,n2−1

√
n2 ∀ n1 � 1, n2 � 1

Cn1−1,0 = 0 ∀ n1 � 1

C0,n2−1 = 0 ∀ n2 � 1

. (A3)

From this set of equations, it is easy to show recursively that:

∀ p � 0,

{
Cn1−1,p = 0 ∀ n1 � 1

Cp,n2−1 = 0 ∀ n2 � 1
. (A4)

This means that all coefficients Cn1,n2 must be zero, which is incompatible with the normalisation of |φ〉. We
conclude that equation (A1) cannot be saturated.

A2. Output state purity of multimode addition processes (general case)
Following our developments in section 3.2, let us show that the output is not pure for multimode addition
processes (i.e. K �= 1) generally, when one do not assume that only two eigenvalues are non-zero.

In this case, we have:

ρ̂out
s =

∑
n

λ̃nê†nρ̂
in
s ên

where λ̃n = λn/P. (A5)

5 The other modes do not intervene in the computation.
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The input ρ = |φ〉〈φ| is still assumed pure. We find, using trace properties, that the output state purity
writes:

Tr[(ρ̂out
s )2] =

∑
k

λ̃2
k(1 + n̄k)2 + 2

∑
k>l

λ̃kλ̃l

∣∣∣〈φ|̂ekê†l |φ〉
∣∣∣2
. (A6)

We apply the Cauchy–Schwarz inequality on the vector states ê†k|φ〉 and ê†l |φ〉, as∣∣∣〈φ|̂ekê†l |φ〉
∣∣∣2

� (1 + n̄k)(1 + n̄l).

We obtain:

Tr[(ρ̂out
s )2] �

∑
k

λ̃2
k(1 + n̄k)2 + 2

∑
k>l

λ̃kλ̃l(1 + n̄k)(1 + n̄l) =

(∑
k

λ̃k(1 + n̄k)

)2

= 1, (A7)

where we used the fact that taking the trace of equation (A5) yields 1.
Again, looking at the saturation of the Cauchy-Schwarz inequality leads to a similar set of equations as

in equation (A3) for k and l fixed (except that the state |φ〉 is decomposed over the full Fock space). Solving
the recurrence equations for a given k, l, shows that the saturation condition cannot be satisfied. Thus, the
purity of the output density matrix is strictly lower than 1, meaning that the output state is not pure.

Appendix B. Proof of the derivation of the analytical from of the effective number
of modes K

In this section, we show the analytical formulae equation (31).
The definition of the effective number of modes K is recalled:

K =

(∑
n
λn

)2

∑
n
λ2

n

. (B1)

The JSA function is conveniently expressed in the Gaussian form:

R(ωs,ωi) = Dexp

[
−1

2
xTVx

]
, (B2)

where xT = (ωs,ωi), V is a 2 × 2 matrix, and D is a proportionality coefficient. The Schmidt decomposition
of the JSA function into signal and idler frequency eigenmodes is expressed as:

R(ωs,ωi) =
∑
n�1

√
λnψ

∗
n(ωi)ϕn(ωs). (B3)

Using equations (B2) and (B3), we obtain two expressions of the integral of R:∑
n

λn =

∫
dωs dωi|R(ωs,ωi)|2 = D2 2π√

det(2V)
, (B4)

where we used the orthonormal properties of the eigenmodes for the left most member, and we performed
the integrals using the following general expression for Gaussian integrals to get the right most member:∫

. . .

∫
exp

[
−1

2
qTMq

]
dq1 . . .dqn =

(2π)n/2

√
det(M)

. (B5)

Note that we assumed that V is real, which can be checked on equation (30).
Similarly, we find: ∑

n

λ2
n =

∫
dωs dω′

s|A(ωs,ω
′
s)|2 = D4 (2π)2

√
det(W)

, (B6)

where W is defined as a 4 × 4 matrix such that:

R(ωs,ωi)R∗(ω′
s,ωi)R∗(ωs,ω

′
i)R(ω′

s,ω
′
i ) = D4 exp

[
−1

2
XTWX

]
. (B7)

Now, substituting equations (B4) and (B6) into the definition (B1), we obtain the expression of the effective
number of modes through the matrices defined above:

K =

√
det(W)

4 det(V)
. (B8)
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Let us now specify the expression of K to this problem. V can be deduced from the JSA expression (30):

V =
1

σ2

(
1 + r2

s 1 + rsri

1 + rsri 1 + r2
i

)
(B9)

with rj = σL

√
γ

2
|k′p − k′j|, for j = i, s,

where the rj coefficients are the adimensioned parameters of the problem. The definition (B7) of W leads to:

W =
1

σ2

⎛
⎜⎜⎝

2(1 + r2
s ) 1 + rsri 0 1 + rsri

1 + rsri 2(1 + r2
i ) 1 + rsri 0

0 1 + rsri 2(1 + r2
s ) 1 + rsri

1 + rsri 0 1 + rsri 2(1 + r2
i )

⎞
⎟⎟⎠ . (B10)

Computing the determinant of matrices (B9) and (B10), and substituting them into equation (B8), we end
up with an analytical expression for K under Gaussian approximations:

K =

√
(1 + r2

s )(1 + r2
i )

(rs − ri)2

with rj = σL

√
γ

2
|k′p − k′j|, for j = i, s. (B11)
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