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Abstract

In the late 60’s and early 70’s V. Kac and R. Moody developed a theory of generalised
Lie algebras which now bears their name. As part of this theory, Kac gave a beautiful
generalisation of the famous Weyl character formula for the characters of integrable highest
weight modules, raising the classical result to the level of Kac-Moody algebras. The Weyl—
Kac character formula, as it is now known, is a powerful statement that preserves all of
the desireable properties of Weyl’s formula. However, there is one drawback that also
remains. Kac’s result formulates the characters of Kac—-Moody algebras as an alternating
sum over the Weyl group of the underlying affine root system. This inclusion-exclusion
type representation obscures the natural positivity of these characters.

The purpose of this thesis is to provide manifestly positive (that is, combinatorial)
representations for the characters of affine Kac—-Moody algebras. In our pursuit of this
task, we have been partially successful. For 1-parameter families of weights, we derive
combinatorial formulas of so-called Littlewood type for the characters of affine Kac—-Moody
algebras of types Aéi) and Cq(ll). Furthermore we obtain a similar result for D1(12+)1’ although
this relies on an as-yet-unproven case of the key combinatorial ¢g-hypergeometric identity
underlying all of our character formulas.

Our approach employs the machinery of basic hypergeometric series to construct ¢-
series identities on root systems. Upon specialisation, one side of these identities yields
the above-mentioned characters of affine Kac—-Moody algebras in their representation pro-
vided by the Weyl-Kac formula. The other side, however, leads to combinatorial sums of
Littlewood type involving the modified Hall-Littlewood polynomials. These polynomials

form an important family of Schur-positive symmetric functions.

This thesis is divided into two parts. The first part contains three chapters, each
delivering a brief survey of essential classical material. The first of these chapters treats
the theory of symmetric functions, with special emphasis on the modified Hall-Littlewood
polynomials. The second chapter provides a short introduction to root sytems and the
Weyl-Kac formula. The introductory sequence concludes with a chapter on basic hyper-
geometric series, highlighting the Bailey lemma.

All of our original work towards Littlewood-type character formulas is contained in
Part II. This work is broken down into four chapters.

In the first chapter, we use Milne and Lilly’s Bailey lemma for the C,, root system
to derive a C,, analogue of Andrews’ celebrated g-series transformation. It is from this
transformation that we will ultimately extract our character formulas.

In the second chapter we develop a substantial amount of new material for the modified
Hall-Littlewood polynomials @). In order to transform one side of our C, Andrews
transformation into Littlewood-type combinatorial sums, we need to prove a novel g¢-

hypergeometric series identity involving these polynomials. We (partially) achieve this by



first proving a new closed-form formula for the @,. For this proof in turn we rely heavily
on earlier work by Jing and Garsia.

The highlight of our work is the third chapter, where we bring together all of our prior
results to prove our new combinatorial character formulas. The most interesting part of
the calculations carried out in this section is a bilateralisation procedure which transforms
unilateral basic hypergeometric series on C,, into bilateral series which exhibit the full
affine Weyl group symmetry of the Weyl-Kac character formula.

The fourth and final chapter explores specialisations of our character formulas, result-
ing in many generalisations of Macdonald’s classical eta-function identities. Some of our
formulas also generalise famous identities from partition theory due to Andrews, Bressoud,
Gollnitz and Gordon.
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Introduction

In the late 60’s and early 70’s V. Kac and R. Moody developed a theory of gener-
alised Lie algebras which now bears their name. As part of this theory, Kac gave a
beautiful generalisation of the famous Weyl character formula for the characters of
integrable highest weight modules, raising the classical result to the level of Kac—
Moody algebras. The Weyl-Kac character formula, as it is now known, is a powerful
statement that preserves all of the desireable properties of Weyl’s formula. However,
there is one drawback that also remains. Kac’s result formulates the characters of
Kac-Moody algebras as an alternating sum over the Weyl group of the underlying
affine root system. This inclusion-exclusion type representation obscures the natural
positivity of these characters.

The purpose of this thesis is to provide manifestly positive (that is, combinato-
rial) representations for the characters of affine Kac-Moody algebras. In our pursuit
of this task, we have been partially successful. For 1-parameter families of weights,
we derive combinatorial formulas of so-called Littlewood type for the characters of
affine Kac-Moody algebras of types Agi) and CV. Furthermore we obtain a similar
result for Df}rl, although this relies on an as-yet-unproven case of the key combina-
torial g-hypergeometric identity underlying all of our character formulas.

Our approach employs the machinery of basic hypergeometric series to construct
g-series identities on root systems. Upon specialisation, one side of these identities
yields the above-mentioned characters of affine Kac—Moody algebras in their rep-
resentation provided by the Weyl-Kac formula. The other side, however, leads to
combinatorial sums of Littlewood type involving the modified Hall-Littlewood poly-
nomials. These polynomials form an important family of Schur-positive symmetric

functions.

This thesis is divided into two parts. The first part contains three chapters, each
delivering a brief survey of essential classical material. The first of these chapters
treats the theory of symmetric functions, with special emphasis on the modified
Hall-Littlewood polynomials. The second chapter provides a short introduction to
root sytems and the Weyl-Kac formula. The introductory sequence concludes with
a chapter on basic hypergeometric series, highlighting the Bailey lemma.
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All of our original work towards Littlewood-type character formulas is contained
in Part II. This work is broken down into four chapters.

In the first chapter, we use Milne and Lilly’s Bailey lemma for the C,, root system
to derive a C,, analogue of Andrews’ celebrated g-series transformation. It is from
this transformation that we will ultimately extract our character formulas.

In the second chapter we develop a substantial amount of new material for the
modified Hall-Littlewood polynomials ¢)%. In order to transform one side of our C,
Andrews transformation into Littlewood-type combinatorial sums, we need to prove
a novel g-hypergeometric series identity involving these polynomials. We (partially)
achieve this by first proving a new closed-form formula for the @)}. For this proof in
turn we rely heavily on earlier work by Jing and Garsia.

The highlight of our work is the third chapter, where we bring together all of
our prior results to prove our new combinatorial character formulas. The most
interesting part of the calculations carried out in this section is a bilateralisation
procedure which transforms unilateral basic hypergeometric series on C,, into bi-
lateral series which exhibit the full affine Weyl group symmetry of the Weyl-Kac
character formula.

The fourth and final chapter explores specialisations of our character formulas,
resulting in many generalisations of Macdonald’s classical eta-function identities.
Some of our formulas also generalise famous identities from partition theory due to
Andrews, Bressoud, Gollnitz and Gordon.



Part 1

Preliminary material

A brief introduction to symmetric functions, characters of affine Kac—

Moody Lie algebras and basic hypergeometric series.



CHAPTER 1

Symmetric Functions

In later sections we develop a significant amount of new material concerning the
modified Hall-Littlewood polynomials, an important family of symmetric functions.
This section prepares the reader with a highly-selective introduction to the general
theory of symmetric functions. To expert readers, the contents of this section may
appear somewhat arbitrary. However, we have chosen to present those results most
relevant to our later development of the modified Hall-Littlewood polynomials. A
more comprehensive discussion of symmetric functions can be found in many places,
see e.g., [Fu97, Ha08, La0l, Macd95,Stan99]. We mainly follow the notation and
conventions of Macdonald’s monograph Symmetric Functions and Hall Polynomials
[Macd95].

Preliminaries

The classical theory of symmetric functions begins with the classification of several
important families of polynomials. Partitions and compositions are conventionally
employed to index the members of these families; in this section we introduce these

elementary notions.

Partitions and compositions

A sequence of nonnegative integers A = (Aq, Ao,...,\,) is called a composition
(sometimes a weak composition) of N on n entries if |A| := A\j + Ao+ ---+ A, = N.
A partition p is a composition of N on an infinite number of entries, where the en-
tries are in weakly decreasing order. The positive entries of a partition A are called
parts and the number of parts is called the length, denoted ¢(\). Sometimes it is
useful to consider a partition to contain only a specified number of zeros. We do not
distinguish between partitions whose entries differ only in the number of zeros and
so we will usually record only the parts of a partition, unless it is convenient to do

otherwise. The set of all compositions of N is denoted by Cn and we will use Py



to denote the set of all partitions of N. For example, there are 5 partitions in Py:
(4),(3,1),(2,2),(2,1,1),(1,1,1,1). The sets of all compositions and partitions are
denoted C and P respectively. For the greater part of this thesis A, 4 and v denote
partitions, but occasionally these symbols are also used to denote compositions.
The symmetric group S, is the group of permutations on n symbols, which acts on
a sequence a = (ay,...,a,) by permutation of the entries a;. For any composition
i there is a unique partition pt in the S, orbit of u. We should be careful to note
that compositions with differing numbers of entries may correspond to the same
partition, e.g., for yp = (0,4,1,1,0,3) and v = (1, 1, 3,4),

pt=vt=(4,311).

Let the multiplicity m; := m;(\) be the number of times a part of size i occurs
in the partition A\. Where convenient, we will employ exponent notation, so that
(1m12m23ms ... ) is the partition where parts of size i occur m; times. It is standard
practice to omit the exponent of the part of size ¢ when m; = 1 and to omit the
part itself when m; = 0. With these conventions the partition (4,3,3,1,1,1) can be
compactly rendered (133%4). Note that this introduces some slight ambiguity, e.g.,
(13245) might be (5,4,3,3,1) or (45,13,13), and so we will only use this notation
when the intended part sizes are easily inferred.

The dominance ordering is a natural ordering on partitions, called the natural
ordering by some authors. Given distinct partitions A and p such that |A| = |u| we
say that A dominates p, denoted A > p, if Ay +---4+X\; > g+ -+ p; for all ¢ > 1.
For example, (432?) > (3%1%). Dominance order is a total order on partitions of
size less than or equal to 5, but a partial ordering thereafter; e.g., (313) % (23) and
(2%) # (31%). The distinct partitions A and p are said to be in reverse lezicographical
order, denoted A >pg p, if the first non-vanishing difference of \; — u; is positive. For

example, P5 in reverse lexicographical order is
(5) >r (41) >R (32) >r (31%) >R (2°1) > (21°) >R (17).

There is an important relationship between reverse lexicographical order and domi-
nance order: if A dominates i, then A has precedence over p in reverse lexicographical
order; i.e.,

A>p = A>ppu. (1.1)

Note that the converse of this statement is false; e.g., (31%) > (2%) but (31%) # (2%).

We now introduce a bijective graphical representation for partitions. Every par-
tition has a Young diagram, which is a left-justified array of cells, where the number
of cells in a row is weakly decreasing from top to bottom. French authors prefer



to draw these diagrams with parts in increasing order from top to bottom. The
partition (A1, Ag, . ..) corresponds to the Young diagram with A; cells in the ith row.
For example:

(4,3) (3,3,1)

Young diagrams give rise to a natural involution on partitions, called conjugation.
The partition conjugate to A, denoted ), is formed by reflecting the Young diagram
of A across the main diagonal:

N N ‘ ‘

(3,3,1,1) - —  (4,2,2)

More formally, A is the number of parts of A that are greater than or equal to i.
From this definition it is easy to see that m;(A\) = A} — Ai,; and that the length of
Ais A}
The statistic n(A) is defined
n(A) = (i—1)\.
i>1

We can find an alternate form for this function with the following combinatorial
interpretation: assign weight ¢ — 1 to each cell in row ¢ of the Young diagram of A;

e.g.,

0[0]0]

WIIN | =D

‘%C&')[\DHO
WIN | =D

so that the ¢th row in the diagram corresponds to the ith term of the sum. If we

calculate n(A) by summing over the entries of columns instead of rows we obtain
Py
n(\)=> (2) (1.2)
i>1

Very occasionally we will consider partitions in which all of the parts are half-
integers, i.e., the parts all lie in the set {n + % :n € N}, where N = {0,1,2,...}.
The objects will be referred to as half-partitions.



Young tableaux and Kostka numbers

Our later discussions of the Schur functions and the modified Hall-Littlwood poly-
nomials use the notion of a Young tableaux. Here we briefly introduce these simple
combinatorial objects.

Fix a positive integer n. A semi-standard Young tableau of shape X is a Young
diagram of ) filled with the numbers 1 to n such that the entries are weakly increasing
from left to right along rows and strictly increasing down columns. The modifier
semi-standard is to distinguish our Young tableaux from a standard Young tableaux
which, for |\| = n, we fill with the numbers 1 to n so that each number occurs exactly
once. In this thesis we will discuss only semi-standard tableaux.

The content p of a Young tableau is a composition (p1, . .., i, ), where y; is the
number of times ¢ occurs as an entry in the diagram. For example, the following
distinct Young tableaux both have shape (4,3,1,1) and content (2,2, 3,0, 2):

112]3]
35

1/3]3]
215

‘Cﬂ‘w N | —
‘o—:‘w DO | —

We remark that our terminology differs from that of Macdonald [Macd95|; in his
text content refers to the function ¢ that appears in the hook-contents formula, an
elegant and elementary enumeration of Young tableaux.

Given a partition A and composition p, the Kostka number K, is the cardinality
of the set of Young tableaux of shape A and content p, where we define K, = 0
if |A| # |p|. This last set we will denote by Tab(A\, u). We will see later that these

numbers are invariant under permutation of the content composition p; in particular
Ky, = Ky,+. (1.3)

Therefore, we need only consider K, where p is a partition. We remark that K,
vanishes if A does not dominate .

For example, Table [1.1] presents all K, for |\| = |u| = 4.
Table has some instructive properties. Since we have arranged the partitions in
Table in reverse lexicographical order, then by the contrapositive of , all the
entries below the main diagonal are zero. The Kostka matriz is defined K := (K,),
where the rows and columns are in reverse lexicographical order. The entries of
Table [1.1] are then exactly those of the Kostka matrix for |A\| = |u| = 4. The Kostka
matrix is in general upper-triangular and moreover unipotent since Ky, = 1.

For later purposes we introduce the notion of the hook length of cells in a Young
diagram. We will take this opportunity to state the hook-contents formula |[Macd95|,



Table 1.1

)\,U, 4 31 22 212 14

31 11213
22 112
212 1|3
14 1

an elegant enumeration of Young tableaux. Let A be a Young diagram and define
s = (i,7) to be a cell of A\, where 1 <i < /(\) and 1 < j < \;. The hook length h(s)
is the sum of the number of cells to the right of s and of those below s, plus 1 for s
itself. For example, hook lengths of the cells of the Young diagram (4,3,1, 1) are as
follows

413]1]

‘»—‘1\301\1
[\
—_

We also need the simple statistic ¢(s) := j — ¢ which Macdonald calls the content.
The following example shows the value of ¢(s) for each cell for the Young diagram
of (5,3,3,1,1).

0l1]2]3]4]
-10|1
—2/-1| 0
=3
=4

The hook-contents formula is as follows. For a partition A and integer n, the number
of Young tableaux of shape A with entries 1,...,n is given by
n+c(s)

W) (1.4)

SEX
Classical symmetric functions

The Hall-Littlewood polynomials are a g-analogue of the classical theory of symmet-
ric functions. We now briefly introduce some of the standard polynomial bases of

5



the ring of symmetric functions, giving particular attention to the Schur functions,
and discuss their orthogonality properties under the Hall inner product.
Standard bases of the ring of symmetric functions

Let Z[x1,...,x,] =: Z[z] be the ring of polynomials in n independent variables
x1,...,%T, with integer coefficients. A polynomial p(xy,...,z,) =: p(x) in Z[x] is

symmetric if it is invariant under permutation of its variables; i.e., for every w € S,,,

P(T1, .. x0) = P(Tw)s - - s Tuwn))-

The set of all symmetric polynomials in n variables, denoted A,,, is a graded subring

An = @Afw

k>0

of Z[xy, ..., )

where A* is the ring formed of the set of homogeneous symmetric polynomials in n
variables of degree k, together with the zero polynomial.
For a = (ay, ..., a,) a sequence of integers, let

«

@ =it aln

o
Given a partition A of length at most n, the monomial symmetric functions my =

. «
my = E T,

where the sum is over all compositions on n entries in the S,, orbit of A\. In other

my = E xh,

wh=\

my(z) are defined by

words, for u a composition,

where my = 0 when ¢(\) > n. The set of polynomials {m, : ¢(A\) < n} form an
integer basis for A,,. Define A, the ring of symmetric functions in countably many
variables. Clearly, the m) form a basis of A when X ranges over all partitions. In the
theory of symmetric functions it is often more convenient to work with a countably
infinite number of variables, and so we adopt this convention except where indicated
for the rest of this chapter. This convention may be given a rigorous grounding, but
we will not include the details of these considerations here; see [Macd95, §1.2].
Using the m) we may proceed to define other special families of symmetric func-
tions. The complete symmetric functions, denoted h, := h,(x), are defined as

h, = E my = E Liy * Ly

A|=r 1<y Sip <oy



with the conventions that hg = 1, and h, = 0 when r < 0. The h, admit a simple
generating function H,(x) =: H,, which may be written as

H.=Y h=]] - _12%. (1.5)

r>0 1>1

We offer another explicit representation of the h,., this time in a finite number of

variables x = (z1,...,x,) to faciliate a later comparison with the Hall-Littlewood
polynomials:
., x
m=1 itm =" ¢

This non-standard (and not manifestly polynomial) representation calls for a quick

derivation.

Proof. Using (]1.5]), transform the product into a sum of partial fractions, introducing

coefficients b; so that
n

1 by
1_‘[1—2331':22221—21‘,'. (1.7)

1=

Multiply both sides by (1 — zz,,) and set z = 1/x,, to obtain the general coefficient
b =]

=1
i#=m

Tm

Tm — T

Now, substitute this into ((1.7)) so that we can solve for h,:

n n

1 Tm,
E h.z" = E ] H )
—zx Top, — T
>0 m=1 moj=1 ™ v
i#Em

Simply expand 1/(1 — zx,,) in a geometric series and equate the coefficients of 2"
for the result. O

The complete symmetric functions may be extended to compositions. For a
composition A, define hy by
hyx = hxhy, -+ . (1.8)

We note that ((1.6)) amounts to a recursive form for hy:
= x
hy=h a0 ", 1.9

where = (A2, A3,...). The set of partition-indexed polynomials {hy : ¢(\) < n}
form a Z-basis for A,,.



The elementary symmetric functions e.(x) =: e, are defined by
€r = M@ary = Z Ly " Tje
1<ip<to<-<ip
Like the h,., the e, have a compact generating function F, := E,(z):
E.=> e2" =[]0+ 2. (1.10)
r>0 i>1

If we fix an alphabet of length n, observe that by the definition of m,, e, = 0 for
r > n. For a composition \, the following product defines e,:

EX = EX6E0 ",

where again we set eg = 1 and e, = 0 where » < 0. The partition-indexed set
{ex : £(N) < n} is then an integer basis for A,. Observe that by the product sides

of (T5) and (T.10)
E_.(2)H.(z) = 1, (1.11)

with the consequence that
!

> (1) eshi, =0,

r=0
for all p > 1. Later we will revisit ([1.11)) in the context of A-ring notation.
For r > 1, the power sums p,.(x) =: p, are defined by

pr=mg = Y1, (1.12)

and have the generating function

PZ(QZ) = Zprzril = Z ngzril = Z 1 _x;zz

r>1 i or>1 i

By comparison with ([1.5]) it is easy to see that
p= Liogn (1.13)
dz &

The powers sums too may be extended to compositions. For a partition A, p, is
defined as the product
DPx = DxiPxy -y

where once more we set po = 1 and p, = 0 where r < 0. The set of p, for A ranging
over all partitions is a Q-basis (and not a Z-basis) for A.



The Schur functions

In the literature, the Schur functions appear across a vast breadth of fields and
garner far more attention than the other classical bases of A. Correspondingly, we
will discuss their properties to a greater depth, though our treatment is still very
superficial overall. We begin with a derivation of the Schur functions from first
principles, following Macdonald [Macd95].

For a = (a,...,a,) a composition, let a,(z) =: a, be the anti-symmetrisation

of the monomial x® =: 7" - - - x%; that is,

Ao = Z sgn(w)z* @,

wES,

where sgn(w) is the sign (or signature) of the permutation w. Note that a, is of

homogeneous of total degree |a|. For example,

1.2.3 2 31 3. 1.2 2 1.3 3 2.1 1.3 2
a(1,3,2) = T1ToT3 + T1ToT3 + T1ToT3 — T]ToT3 — T]ToT3 — T1THT3.

By construction, the polynomial a, is skew-symmetric, i.e.,
w(ay) = sgn(w)ag.

Now, if a; = «;, the permutation w = (ij) merely introduces a sign, so we have
o, = —a,. As a consequence, a, = 0 unless ag, ..., qa, are all distinct. Therefore,
up to a possible change of overall sign in a,, it is harmless to reorder « so that
under the new arrangement oy > --- > «, > 0. Hence, we obtain a = A + ¢ for
some partition A = (Ay,...,\,) and where 0 := (n — 1,...,1,0). The polynomial
a, naturally admits a determinant form, which arises immediately from the Leibniz
formula for determinants,
ayys = det (x;\ﬁn_j).
Now, observe that by the skew-symmetry property ay;s = 0 when z; = x; for i # j.
Therefore, the factor (z; — x;) divides ay;s in Z[zy, ..., x,] and so the product of
these factors over all ¢ < j, which may be written as as, is also a divisor of ays.
The product as is famously known as the Vandermonde determinant A(x) ,
and so we will use the latter notation.
For a partition A = (Aq,...,\,), define the Schur functions sy := s)(x) as the
polynomial
sx(@) = aris(2)/A(x), (1.14)
which is homogeneous of total degree |A|.
We will see the Schur functions appear in the study of characters of classical Lie

algebras. The details of this relationship are given later, shortly after the presenta-
tion of the Weyl character formula ({2.6)).



Equation ((1.14)) gives rise to a recursive formulation of the Schur functions. By

expanding the first column of the determinant in the numerator we obtain

si(x) = f:@;(f[ ﬁ>su(x(m>), (1.15)

m=1 i=1
where = (Ag,...,\,) and where we have used the notation
™ = (Z1,.. ., L1, Tmgls - - - > Tn)-

We will see (1.15) again in the context of modified Hall-Littlewood polynomials.
From ([1.15)) it is not difficult to see that the Schur functions are stable, that is

sx(@1, ..oy @) = sa(x1, ..., Ty, 0).

Thanks to this property, the Schur functions may be extended to A. The Schur
functions are symmetric and the coefficients of the monomials appearing are always
positive. The symmetry of the Schur functions is easy to see (it is the ratio of two
skew-symmetric polynomials), but proving that the coefficients are positive is not so
straight-forward. We will not provide a proof but instead give another well-known
representation of the Schur functions where the positivity is manifest, which comes
from the the theory of Young tableaux.

The content = (uy,...,p,) of any Young tableaux 7" defines a monomial as
follows

ol =gt

Although we already possess notation that defines a monomial using a composition
(i.e., the definition of z* on page@[)7 in the context of Young tableaux the convention
is to raise T' itself instead of p. By this assignment, the two Young tableaux given
on page 4 which have content (2,2, 3,0,2) both correspond to z?xrjzizr2. Recalling

the definition of Tab(\, 1) from page , we may then represent the Schur functions

=y a. (1.16)

TETab(}, )

as

For example, we can compute s(,1,0)(1, 2, 23) as follows:

1]1] 1[1] 1]2] 1]12] 1]3] 22| 2[3]
2] 13 2] 3] 3 13 13

(2,1,0) (2,0,1) (1,2,0) (1,1,1) (1,0,2) (0,2,1) (0,1,2)
.I%.IQ I%.ﬁg .Tll’% T1T2T3 I’ll’% .Igl’g I2$§
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and hence
2 2 2 2 2 2
5(2,1,0) = T1T2 + XT3 + T1T5 + T102T3 + T105 + ToT3 + Ta¥5.

It has been our practice to give each new symmetric function in terms of the m.

We may express s, as
Sy = ZK)\#m#, (117)
o

where the coefficients K, are the Kostka numbers of page {4 and the sum is over
all partitions p. It is easy to show that is equivalent to (1.17). Given some
composition v such that |v| = |\|, the coefficent of the monomial z¥ in is by
definition K,. Since s, is symmetric, s, can be rewritten as a sum of monomial
symmetric functions. The monomial z* occurs in m, and therefore the coefficient
of my, is Ky,.

A change between any two of the my, hy, ey and s, bases admits in each case
a transition matrix very similar to the Kostka matrix or, equivalently, a transition
formula like (L.17). A table of these matrices can be found in [Macd95| pp. 101]. For
later purposes, we wish to single out another transition formula that is of particular

interest:

hy = ZK/\MS)” (1.18)
A

where the sum is over all partitions A. This last formula will appear again in the
context of Hall-Littlewood polynomials.

The Hall inner product

There is a notion of duality amongst the bases of A that arises from consideration
of the sum
S ha(@)ma(y). (1.19)
AEP
These considerations lead to important sum-product identities relating certain pairs
of bases of symmetric functions, as follows.
By the definition of m, and the fact that hy = h,, for all u* = A,

D oia(@maly) =Y ha(z) Dy =D > hula)yt =Y bl
AP \eP pt=A NEP pt =2 pec

This last sum can be rewritten as a product of geometric series, recognisable as the
generating function for the h, from (|1.5))

> byt =D )t =[] Hy () = [ 1;

)
pnec 7>1 k>0 j>1 ij>1 i

11



and hence,

A

> in@ma) = ] 1= (1.20)

It is known that hy) and m, are not the only pair of bases satisfying ((1.20)). We can
capture this idea formally with the Hall inner product (.,.), defined on A by

(hx, M) = O (1.21)

Now, given two arbitrary bases uy, vy € A, the following statements are equivalent
[Macd95, pp. 63]:

(ur, vu) = O, (1.22a)
1
> m@uw) =11 7=+ o (1.22b)
A i,5>1

where the sum is over all partitions A. Pairs of bases that satisfy are said to
be dual with respect to the Hall inner product. The existence of a dual partner is
guaranteed by elementary linear algebra, so it is natural to seek the partner given a
particular basis. Indeed, nothing prevents us from defining other bases in this way.

For example, the forgotten symmetric polynomials f, are defined by

<6>\, fu> = 5)\;1,-

The f, are called forgotten because no one has found a compelling reason to remem-
ber them.

The Schur functions are self-dual, and form an orthonormal basis for A,
<S)\, SH> = 5>\N‘ (123)

The corresponding identity

S sn) =] 7= (1.2

A ii>1 1 =2y,
is called the Cauchy identity. The Schur functions are in fact the unique orthonormal
basis and so self-duality with respect to the Hall inner product identifies the s,.
Hall-Littlewood polynomials

We come now to the symmetric polynomials that play such a crucial role in this
thesis. Where previously in this chapter we have been very brief, the importance of

these polynomials warrants a more patient treatment.

12



We will need the following notation. The equations (1.25)) below all define what
are referred to as q-shifted factorials. We first define the infinite product

(a: @)oo = (@)oo = (1 = a)(1 — agq)(1 — ag®) -~ . (1.25a)

By means of a quotient of two ¢-shifted factorials, we may express a product with a

finite number of terms

(@;¢)n = (a)n = : (1.25b)

Explicitly, we have (a)o = 1 and
(a)n =1 —a)(l—aq) - (1—ag"™"), (1.25¢)

and

1
(@)= (I—ag™)(1 —ag+1)--- (1 —ag™')’ (1.254)

when n > 0. Alternatively,

N e .
@ = G, =~ @, 1 (1.25¢)

for all integers n. From (1.25d)) it immediately follows that 1/(¢)_, = 0 for n > 0.

Where convenient, we will also employ the condensed notation

T

(a1, ar)p = (a1, ..., 0r;q)n = H(ai)n. (1.25f)

i=1

For any n > 0, define

(Dn

U = U(q) =
(1—q)
where for a partition A = (A, ..., \,), we use the notation
(@)m,i
R | T
1 11 (1 —g)m

where we recall the multiplicity notation defined on page[2and we use the convention
that mg = N — £()).
We may now define the Hall-Littlewood polynomials Py := Py(z;q) by

1 Ti — qT;
Po=—> wla —J> 1.26
= Y =" (1.26)

13



where the sum is over all permutations w € S,,. For example, for an alphabet of
three variables

22, 292, 229 2 2 P
Py = wiw; + wiws + w505 + (1 — q) (270203 + 2120523 + 112225).

If the vy quotient is dropped from the definition ((1.26)), P\ is not stable. This
particular choice of vy is desirable since the leading coefficient (i.e., the coefficient
of #*) is then 1. However, it is possible to eliminate vy and at the same time
obtain a more computationally efficient representation of P, that is stable with
leading coefficient 1. Observe that when A\ contains repeated entries, there are
several permutations that fix z*. We may take advantage of this fact by collapsing

A where S) is the set of permutations
that fix A\. The idea is to dissect the product in so that

T —qr; T — qu; T — qu;
I =171 1 7= (127)

- Ty — Xy i — &y o
1<i<j<n A< k>0 i<y
Ai=Aj=k

the sum over S, down to a sum over S,/ SA

A
Now, S5 2 Spy | X +++ X Sy, and so

Sy, &

n
~ §><SmAl X oo X S
n

We can take care of these additional Sy, terms with the crucial identity

3 w( 11 —‘J) v, (1.28)
- Ly — Xy

wESy 1<i<j<n

Using this identity, for each & in the final product of (1.27) we may extract a factor
and thereby eliminate the prefactor vy. Then we have

A=Yu(» [T 2% (1.29)
i J

)\i>)\j

Uy,

where the sum is over representatives w taken from each coset of S,,/S>. To conclude
the above considerations, we now briefly remark upon ([1.28)).

Arising from the study of finite reflection groups, the Poincaré polynomial [Bo02,
Hu72| is defined as

W(g)=> ¢, (1.30)
weW

where W is a finite real reflection group and ¢(w) is the length function on W.
Thanks to the works of Chevalley |[Ch55] and Solomon [So66|, it is known that the
Poincaré polynomial has the following product formula

n

wig) =11 11__q (1.31)

d
i=1 q

14



where the d; are the degrees of the fundamental invariants of W. A later result due
to Macdonald [Macd72b, Theorem 2.8] gives a further representation of the Poincaré
polynomial for groups of crystallographic type (i.e., the Weyl groups that will be
introduced in Chapter

’UJ&

D) | (1.82)

weW a>0
Macdonald states this result for the multivariable Poincaré polynomial W(t), in
which a variable ¢, is attached to each of the positive roots a. Here we have spe-
cialised t, — ¢ for all a.

Given also the introductory material on root Systems in Chapter [2, we may
understand to be being nothing more than equated with for
the root system A,_;, under the assignment e™“ = x;, where the degrees of the
fundamental invariants are 2,...,n.

From equations and it may not be clear that P, is always symmetric
or even that it is polynomial. Like the Schur functions of Equation , Py is a
homogeneous symmetric polynomial because it is the ratio of a homogeneous skew-
symmetric polynomial in x, ..., x, and the Vandermonde product , as can be
seen in the following trivial reformulation of , rewritten so that the sum is an

anti-symmetrisation:

b= U)\A ngn ( H —qxj>

1<j

Together, definitions and make clear another important feature of the
Hall-Littlewood polynomials: P, interpolates between s, and m,. From (|1.26) it is
immediately apparent that

Py(z;0) = s\(x), (1.33)

and from ([1.29)) we can observe that
Py(z;1) = my(x). (1.34)
The set {Py : £(\) < n} is a Z[q| basis for A,[q] [Macd95|, pp. 209].

The modified Hall-Littlewood polynomials Q’

We now turn our attention to a particular family of Hall-Littlewood polynomials
which are, for our purposes, the most important symmetric functions.

With respect to the Hall inner product , the polynomials dual to P, are
known as the modified Hall-Littlewood polynomials Q) := Q\(x;q), i.e

(Pr, Q) = O (1.35)

15



As an immediate consequence of this definition, the polynomials ) interpolate
between sy and hy. By ((1.33)) and (1.34)), we have

Q//\(l’, O) = S,\(x),

and
Q\(z:1) = hy(x).
The @, are polynomials whose coeflicients are positive integer polynomials in ¢, al-
though this not obvious from . Later, @, will feature in our new combinatorial
representations for the characters of affine Lie algebras; it is the native positivity of
@), that permits us to say that these representations are manifestly positive.
In the remainder of this chapter, we will make clear the positivity of Q.

particular we show that they are Schur positive, i.e., they can be represented as a
linear combination of Schur functions where all coefficients are positive. Towards

this end we introduce the Kostka-Foulkes polynomials K, (¢), which are defined
by [Macd95, pp. 239]

5= 3 Ko ()P (1.36)
1
Now, from this definition and , it is easy to see that
5)\7 ZK)\I/ Pm Q Z K}\l/<q>51/p, = KAM(Q),
which immediately implies that

Q, = Z K u(q)sa- (1.37)
A

From this last equation it is clear that if K),(g) is positive, then @/, is a Schur-
positive polynomial. If one computes a few values of K},(q), there appears a strong
suggestion that the Kostka—Foulkes polynomials are in general positive (and indeed,
polynomial), a fact not clear from (1.36). Now, (L.18) and (1.37)) together imply that
K),(1) = K),, and so the Kostka-Foulkes polynomials are a generalisation of the
Kostka numbers, and moreover, that is equal to (1.17)) when ¢ = 1. In light of

these facts, Foulkes [Fo74] conjectured that there must exist an interpretation of the

K),(¢) in terms of Young tableaux with an unknown nonnegative integer statistic
o(T):
K= >, ™. (1.38)

TeTab(\,u)

The question of the existence of this combinatorial form was decided in the affirma-
tive when Lascoux and Schiitzenberger |LaSchii78| provided a constructive proof,

16



wherein ¢(T") was named the charge. Using this result we may write in a
combinatorial form as
Q=" ¢"Vsgaper). (1.39)
TETab( * ,u)

To complete this section we provide a description of how to extract the charge
from a given tableau, which was first published in full detail by Butler [Bu94]. This
procedure requires that we establish a few conventions. A tableau T is read from
right to left, top to bottom, starting at the upper-right-most cell S and following
the path below, looping back to S as many times as necessary.

S

1/1]3
2124

Each complete transit through all the cells of T is a cycle. The charge is extracted as
follows: reading T as directed, remove the first 1 encountered, the first 2 thereafter,
the first 3 following after that and so on until there is no larger number to be found
in T. As each entry is removed, it is replaced with the number of cycles completed
at the time of removal. Reset the cycle count to zero and begin another iteration,
ignoring entries that have already changed, until all original entries of T" have been
replaced. The sum of the new entries is the charge of T'. For example, there are two
tableaux of shape (3,3) and content (2,2, 1,1):

1112
2134

111]3
2|24

T1 T2

To compute K33 (2,2,1,1)(¢), we must find the charge of each tableaux:

Iteration 1 2 1 2
Cycle
0 110/2110]0]2 11013[]0]0]1
0134|012 2101411001
1 11012001 1101
01114012 2101
1102
2 0112
C(Tl) =4 C(Tg) =2

Having calculated the charge for each tableaux, we can apply ([1.38]) and obtain
K@33)22010(0) = ¢ 4+ ¢*™) = ¢* + ¢2.

Other explanations of the charge statistic may be found in Macdonald [Macd95| pp.
129] and |[HaO8, pp. 16].
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The notation of A-rings and the polynomials Q)

Due to their primary importance in this thesis, we have given a slightly non-
standard treatment of Hall-Littlewood polynomials that emphasises the modified
Hall-Littlewood polynomials @)). A more conventional approach first meets the
Hall-Littlewood polynomials @,. Recall the multiplicity notation for partitions
from page [2/ and let A = (1"12™23™3 .. ). Then define the function by(q) =: by by

by = H(Q)mi' (1.40)

i>1

The @, are then usually defined in terms of P as

Qx(w;q) = bx(q)Pr(;q).

Since b)(0) = 1, the @, are another generalisation of the s,.

In this section we work in the opposite direction to a standard introduction and
give a representation of @) using @) and A-ring notation (also called plethystic
notation) |Ha08, La0l], which we now revise. This notation will occasionally be
employed to describe results in later chapters.

The notation of A-rings is an extremely useful device that unifies much of the
theory of symmetric functions. It is an abstraction that describes certain formal
operations on alphabets of variables. These operations are defined below and give
for each a simple example in terms of the rth power sum p, , and another
in terms of the generating function of the complete symmetric functions H, (L.5)).
Most often we can easily define these operations at the level of the alphabet in
simple language, but where this is not possible, the examples provided suffice to
define the operation for all symmetric functions. Should the reader wish to compare
these examples for consistency, the identity will be useful.

Let X and Y be alphabets of variables. Addition of alphabets is achieved by
merely joining alphabets together, i.e., X +VY := X U Y. The “subtraction” of
alphabets is not easily described in such plain terms. However, observe that in

terms of p, and H, the two operations are equally simple:

pr(X £Y) =p(X) £p,(Y) (1.41a)
H.(X+Y)=H,(X)HF(Y) (1.41b)

Note that we have the agreeable property that
(X+Y)-Y =X.

More generally, we will see that A\-ring notation features many familiar arithmetic
properties like this one.

18



Following from ([1.41b]) is the fact that

Recalling (1.11]), we then have

and hence

There exists many other relations between symmetric functions that are easily de-
scribed by a change of alphabet.

Multiplication of alphabets X and Y produces another alphabet with the ele-
ments defined by

XY ={zy:zeX,yecY}. (1.42)
In terms of p, and H.:
pr(XY) = p(X)p(Y), (1.43a)
1

H,(XY) = ) 1.43b
o) =1l (1.43b)

reX

yey

Our notation treats juxtaposition of an alphabet X with a scalar a as an instance of
(L.42), so that aX := {a}X. Here there is important matter of interpretation. The
notation —X is to be read as {} — X, rather than {—1}X. As an aside, the latter
is usually denoted eX.

Division of alphabets X/Y cannot be meaningfully defined in general, but there
is a notion of division by the formal symbol (1 — ¢), which amounts to taking each
variable € X and replacing it with an infinite number of variables z, gz, ¢*z, and

so on, i.e.,
X .
TP {z¢' 1z € X,1 € N}, (1.44)
—q
where N includes 0. For example:
X (X
l—gq L —=q"
X 1
Hg(————):: S 1.45b
1—gq H (22) 00 ( )
zeX
We remark that
1
l—g)X - —=(1- — =X
(1—q) - ( Q)l_q ,



where we naturally interpret (1—¢)X as X —¢X and the order of operations follows
ordinary arithmetic.

To close our discussion of A\-ring notation we remark that merely by reformulating
statements using this notation, a proof concerning one symmetric function may be
effortlessly distributed to many others.

The Hall-Littlewood polynomials (), may then be represented as

QA(X5q) == Q\((1 - ¢)X3q). (1.46)
We remark that this relation is conventionally expressed as

X
Q\(X:q) = Qx(—;q)-
(50 (1-q)
We point out that the g-analogue of the Hall inner product may be defined using
A-ring notation. Observe that by the Hall inner product we have

> A 0@w o = [] 7 = hiw). (1.47)

By simply applying the definition of @, (|1.46|) we obtain

ZP)\(Z’; 0)Qx(y;q) = Hi((1 — q)zy) = H 1— gy,
A

Qo1 LT Y

Observe that when ¢ = 0, we obtain the Cauchy identity ((1.24)) in the first and last
expressions. This then invites the definition of the g-Hall inner product:

Of course, generalisations of the statements equivalent to the Hall inner product
(1.22)) also follow. That is, given any two bases for Alq], uy := wuy(x;q) and vy :=
va(z; q), the following are equivalent:

<u)\a Uu>q = 5)\;u

ZUA(ZE;Q)U)\(y;q) — H ll—ﬂ

A i,j>1 iYi
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CHAPTER 2

Characters of affine Kac—-Moody Lie algebras

In this chapter we introduce the second of the main ingredients in this thesis, the
characters of Kac—moody Lie algebras, specifically those corresponding to highest-
weight modules of affine Lie algebras. The following chapter is a heavily truncated
introduction that includes only slightly more material than what is required to be
able to define the characters and understand our results concerning them.

Our interest in characters is of a purely combinatorial nature. We invoke the
Kac—Moody Lie algebras, but do not define their algebraic structure, nor do we
discuss their full representation theory. However, we occasionally use the language
of this theory in accordance with convention, but all of our definitions are intended
to stand free of these notions.

We begin by introducing the geometric structure underlying classical Lie algebras
from the perspective of root systems. From these objects, we proceed to define
Dynkin diagrams and Cartan matrices and give the Weyl character formula. For a
reader new to these ideas, this is a slightly gentler approach than treating the finite
and affine cases uniformly in the style of Kac [Kac90|. In the section on root systems
our discussion follows Humphreys [Hu72|, though the reader is cautioned that we
make a significant departure by adopting conventions consistent with those of Kac.
Consequently, our Cartan matrices are the transpose of those found in Humphreys’
text. The classical section concludes with a brief discussion of character identities
of Littlewood-type, and in particular some results due to Désarménien, Macdonald,
Okada and Stembridge.

After the classical section, the discussion is raised to the affine case with the
notion of generalised Cartan matrices, towards delivering the Weyl-Kac character
formula. For the most part we follow Kac, which is well-complemented by Wakimoto
[Wak01|. The reader is again warned in advance that we make some small departures
that have subtle consequences for the intermediate (but not the final) results. These
differences will be indicated where they appear.

We will conclude this chapter with a reformulation of the Weyl-Kac formula that
more precisely suits our needs.
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Finite root systems and the Weyl character formula

In this section we offer the reader some essential results from a standard treatment
of root systems, before stating the Weyl character formula. We will also breifly
touch on the notion of a Littlewood-type character formula. The following results
and ideas are well-known and covered at length in many texts; for example, [Ja62|
Hu72,[Bo98,Bo02, Bo05].

Finite root systems

Let £ be a Euclidean space, i.e., a finite dimensional vector space over R with a
positive definite symmetric bilinear form (.,.). For a nonzero vector w € £, the dual
vector wY is defined by

w” = 2w/ ||wlf?,

1/2 i the length of w. The hyperplane P, that is orthogonal to

where ||w|| = (w, w)
w forms a co-dimension 1 subspace of &, such that P, = {v € £ : (w,v) = 0}. Let

o be the involution defined by reflection of £ through the hyperplane P, that is,
(V) = v — (WY, v)w.

Let ® be a subset of the Euclidean space £, with ® the set of covectors. @ is called

a reduced root system in & if the following conditions are satisfied:

1. @ spans £ and does not contain the zero vector.
2. The only multiples of a in & are +a.
3. For each a € @, the reflection o, leaves ® invariant.

4. If a, 8 € @, then (o, 8) € Z.

The elements of ® and ®¥ are then called roots and coroots and dim(€) is the rank
of ®.

It is worth noting that conditions 1-4 are not completely independent; (2) implies
that the zero vector is not an element of ® and both (2) and (3) have the consequence
that ® = —®, where —® = {—a | a € O}.

The word reduced in reduced root system refers to the inclusion of condition (2).
Our considerations concern only reduced root systems, and henceforth we suppress
the word reduced. Condition (4) is commonly referred to as the crystallographic
condition and amounts to a severe restriction on the admissible angles formed by

pairs of roots, and also the relative lengths of roots. This is because
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A, Bs G

Figure 2.1: The root systems As, By and Gs. The roots o and  mark
the canonical bases.

and hence, 0 is a multiple of /4 or 7/6. Furthermore, for ||« > |8, if (o, ) # 0
then the only permissible ratios of root lengths are ||||?/||3||* = 1,2 or 3.
A subset A of ® is called a base if

1. A is a basis for &,

2. Each root § € ® can be written as § = ZQGA

is a nonnegative integer or every coefficient k, is a nonpositive integer.

kqo, where every coefficient k,

The elements of a base A are called simple roots. It is known that every root system
has a base. Condition (2) means that, relative to A, we can partition the roots of
® into the set of positive roots ®*, and negative roots O~ .

The Weyl group W of a root system ® is defined as the group generated by the
reflections {0, : « € A}, where W is independent of the particular choice of A. The
elements of W permute the roots of ® and hence W is isomorphic to a subgroup of
the group of all permutations of the roots of . From this it clearly follows that W
is finite. Root systems that are dual (i.e., ® and ®") share the same Weyl group.

A root system P is irreducibl if ® (or, equivalently A) cannot be partitioned
into two orthogonal subsets. Irreducible root systems have been completely classified
(up to rescaling) into 4 infinite families and 5 ezceptional root systems. We will often
use the notation X, to refer to the irreducible root system of type X and rank r. For
example, all irreducible rank-2 root systems correspond to one of the 3 diagrams in
Figure 2.1]

Up to rescaling, root systems may be completely described by Dynkin diagrams.
Given simple roots oy, ..., a,, the corresponding Dynkin diagram is a graph with
r vertices labelled by aq,...,a,, where the vertices o; and «; are connected by
(o, a;)(af, ;) edges. If |(a), ;)| > 1 there is an arrow pointing to the vertex a;.

Due to the fact that for irreducible root systems (o, ;) (), ;) may take only

] )
the values 0, 1,2 and 3, the corresponding Dynkin diagrams have only 0,1,2 or 3

*Not to be confused with reduced.
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Figure 2.2: A classification of all irreducible root systems using Dynkin
diagrams, with the standard ordering of roots. The rank restrictions on
the root systems of type B and C are to avoid duplication.

edges between vertices. It can be shown that in any particular irreducible root
system, the roots take at most two different lengths, and hence can be called either
long or short. The sets of these roots are denoted ®, and ®, respectively. It is easy
to see that where we have 2 or 3 edges connecting 2 vertices in a Dynkin diagram,
one of the vertices corresponds to a short root and the other to a long root. For
Dynkin diagrams of irreducible root systems, the arrow points from the long root
to the short root. Naturally, the simple roots connected by one edge have the same
length. Figure contains the complete classification of all irreducible root systems
of positive rank.

If we were to omit condition (2) from the definition on page [22] this classification
would contain an additional infinite family of root systems of type BC. If condition
(4) were omitted, we must then include an infinite family associated with the dihedral
groupf], and two extra exceptional root systems, Hy and Hy.

*The group of symmetries of the regular m-gon. For the dihedral group of order 2m, the associated
root system may be constructed by taking as our roots the set of lines passing through the origin that are
normal to the reflections that preserve the regular m-gon.

24



2 -1 0
2 =3 -1 2 -1 0
-1 2 -1
-1 2 0 -1 2 =2
0 -1 2
0 0 -1 2
G2 A3 C4

Figure 2.3: Cartan matrices of the root systems Go, Az and C4. The
simple roots are ordered according to the classification in Figure

Given a root system ® with base A, where the simple roots have a fixed ordering
(aq,...,a,), the entries of the corresponding Cartan matriv A = [a;j]1<ij<n are
defined as a;; = (o, ;). For example, the root systems Gs, Az and C,; have the
Cartan matrices given in Figure [2.3] Given the Dynkin diagram of an irreducible
root system it is easy to deduce the entries of the corresponding Cartan matrix:
a;jaj; is the number of edges between vertices o; and «;, and any ambiguity in the
factorisation is resolved by the presence of an arrow. Up to simultaneous relabelling
of the rows and columns, a Cartan matrix is independent of the choice of A and
completely determines ®. If A is the Cartan matrix of ®, then the transpose matrix
AT is the Cartan matrix of the dual root system ®V.

In most standard texts one may find explicit descriptions of all irreducible root
systems in terms of €, €s, ..., €,, the standard unit vectors in R™, but here we give
only those descriptions that we will later employ. We adopt the normalisation of
roots lengths found in [Hu72].

The following description of A,_; uses unit vectors from R", but the Euclidean
space £ spanned by A,,_; is in fact the n — 1 dimensional hyperplane orthogonal to
the vector €; + - -- + €,. For n > 2, the positive roots ®, of the A, _; root system
are given by

{ei —€¢:1<i<j<n} (2.1a)

where the canonical choice for A is
{ei —€41:1<i<n-—1} (2.1b)

This description is quite convenient. Observe that in A,_;, the reflection o, ,
sends each root €; —¢€;, to the root where the indices ¢ and ¢+ 1 have been transposed,
leaving all other indices unchanged. The corresponding Weyl group W is generated
by the set of root transpositions {o, ¢, , : 1 <7 <n —1}, and so W is isomorphic

to the symmetric group S,,.
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For the B,, and C,, root systems, &€ = R". For n > 1, the positive roots of the

B,, root system are given by
O, ={ete:1<i<ji<n}U{eg:1<i<n}, (2.1¢)
where the canonical choice for A is
A={e—¢€41:1<i<n-—1}U{e,}. (2.1d)
Similarly, the positive roots of the C,, root system are given by
O, ={ete:1<i<j<n}U{2¢:1<i<n} (2.1e)
where the canonical choice for A is
A={e—¢€41:1<i<n-—1}U{2¢,}. (2.1f)

Note that the simple roots of the B,, and C,, root systems are those of A,,_;, with
one extra root. With this additional root, W is isomorphic to the group of signed
permutations (or hyperoctahedral group) S, X (Z/2Z)", where X is the semi-direct
product.

Given the simple roots oy, ..., a,, the fundamental weights are the vectors

Aq,... A €E,

such that (o), A;) = d;5. A weight is any vector A € £ that can be written as
A =310 NN, for integers \;. If all \; are nonnegative, the weight A is said to be
dominant. The set of dominant weights relative to a basis A is denoted P,. For the
A,,_1 root system, we provide the fundamental weights Aq, ..., A,, first in terms of
the simple roots as

i—1 n—1
1
A= X — . _ . .
i= [(n—1i) Zkak + zZ(n k)ay] for 1 <i <mn, (2.2a)
k=1 k=i
and then using the unit basis ¢, ..., €, as
1
N=—[(n=0)(er+- +e&)—ile+ - +6)] for 1 <i <n. (2.2b)
n

Similarly, for the B,, root system the fundamental weights are given by

1—1 n—1 .
Zkak+i2ak+%an for 1 <i<n,
Ai = k=1 k=i (23&)

1 n
2 Z ko, for i = n,
k=1
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and

€1+ -+ g for 1 <i<n,
A=<t (2.3b)
se1 4+ +e) fori=n.

Finally, for the C,, root system the fundamental weights may be expressed as
i—1 n—1
Ai:Zkak+iZak+ian/2 for 1 <i<n, (2.4a)
k=1 k=i

and
Ni=e+--+¢ forl<i<n. (2.4b)

The Weyl character formula

We now introduce the Weyl character formula, which arises from the representation
theory of Lie algebras. Before the statement of this formula, we provide the standard
definition of a character in the following passage, using the language of representation
theory.

Let g be a semi-simple Lie algebra and h* the dual of the corresponding Cartan
subalgebra. The character of an irreducible g-module V' (A) of highest weight A € P,
is defined as

chy = Y dim(V},)e". (2.5)
HEDh*
Here e is a formal exponential and dim(V},) is the dimension of the weight space
V,, in the weight-space decomposition of V(A).

In [We25,|We26|, Hermann Weyl showed that given a Lie algebra with underlying

root system ® and Weyl group W,

Z’wEW Sgn(w) ew(A‘i’p)*p

[loeor(1—e7)

where A € P, and where the Weyl vector p is defined as either

p:% Za or p:i/\i.
i=1

acdt

ChA B (26)

The Weyl character formula tells us that all of the information required to
compute any particular character is contained in the corresponding root system.
The remainder of this section is devoted to the discussion of the Weyl chrac-
ter formula. We will order our remarks as follows. The first remark concerns an
important result which follows immediately from (2.6]). This result yields a list of
product-determinant identities that will see frequent use in the remainder of this
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thesis. Next, we examine the natural positivity of characters and their connection
to symmetric functions.

When A is the zero vector, corresponding to the trivial one-dimensional repre-
sentation for which the character is 1, we obtain the Weyl denominator formula:

Z sgn(w) e?PW=r = H (1—e). (2.7)
weW acdt

Later, we will need ([2.7) specialised for each of the infinite families of irreducible
root systems. We list the preferred forms of the Weyl denominator identities for
types A,,_1, B,,, C,, and D,, as follows:

det (2777) = H (x; —x;) =1 A(x) (2.8a)

1<i,j<n y
1<i<j<n

det (277! —af"7) = H(l — 1) H (x; — xj)(zx; — 1) = Ag(x)

1<i,j<n
i=1 1<i<j<n
(2.8b)
det (@ =) =[J0—ad) [T (@i -2y (@ie; —1) = Acle)
=hI= i=1 1<i<j<n
(2.8¢)
1 i e i
5 1<(}?t<n (27 Ly 1) = H (x; — ;) (ziw; — 1) = Ap(x) (2.8d)
- 1<i<j<n

We remarked earlier that equation is known as the Vandermonde determinant.
Equations and are commonly regarded as its B and C type generalisa-
tions. For convenience we also provide here the corresponding Weyl vectors, which
are as follows:

n

1

pa=g 2(71 — 2i + 1e;, (2.9a)

n

pp=>Y (n—i+i)e, (2.9b)

=1

n

pe =Y (n—i+ 1), (2.9¢)

i=1
n

pD = Z(n —1)€;. (2.9d)

i=1
From ([2.5)), the positivity of characters is obvious, but this property is obscured by
the inclusion-exclusion structure of Weyl’s formulation. Naturally, one seeks forms
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where this positivity is manifest. In Chapter [ we remarked that the character of the
A,,_1 root system is precisely the Schur function s,, which is a positive polynomial.
This correspondence is achieved explicitly as follows.

We first compute the denominator of . The positive roots of A,,_; are given
by and so under the assignment e“ =: x;, we have

n

[JTa-e®) =A@ ]« (2.10)

acdt i=1

We now turn to the numerator of (2.6]). Recall the fundamental weights Aq, ..., A,
for A,,_1 (2.2b)). For integers ¢y, ..., cp1 let the weight A be given by A = ZZ EENY
and define the partition A = (>\1, ceiyA-1,0) by Ay = ¢; + -+ 4+ ¢,—1. Then A may

be written as \
A= Z( | |>

For A,,_1, the corresponding Weyl vector p is given by (2.9al) and the Weyl group
W is the symmetric group S,. The numerator may then be expressed as

Y .
w(A+p)—p _ i-n—1T0 AjF+n—j
S | CR T G|

’LUESn

Under the identification z;---x, = 1, the denominator and numerator together
yield the right-hand side of (|1.14]).

Littlewood-type sums

In this section we introduce the notion of a Littlewood-type sum, which are sums of

Z exfa(z),

A
suitable restrictions

the form

where f) is a symmetric function, such as a Schur or Hall-Littlewood polynomial and
¢y is a combinatorially defined coefficient. In Chapter [6] we will derive combinatorial
formulas for the characters of affine Kac—-Moody algebras that are of this type.

To motivate our terminology, we revisit the Weyl character formula . This
may be used as a means to produce analogues of the Schur function for other root sys-
tems. The analogues of types B, C and D are known as the odd-orthogonal, symplec-
tic and even-orthogonal Schur functions respectively, denoted s02,411 (%) =: S02,11,x,
SPan A (T) =: SPg, , and s09, A (2) =: S0z, [Li50]. By making the substitution
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e % =: x; in ([2.6]), we obtain the explicit forms

deti<ij<n (xfflﬂj _ ?"*jJr)\j)
) Ag(z) ’ (2.11a)
deti<ij<n (xg_l_Af _ x?”‘j-l—l—l—)\j)
Sp2n,)\($) = Ac(l’) ) (211b>
det;<; j<n (xg—l—kj + Z2n j 1+>\J>
SO2n,>\(33) - f>\ AD(I) , (2'11(:)

where, in the last expression we have used the notation

1/2 if ((\) < n,

L PR (A) = n.

We note that it will be convenient to allow A to be a half-partition (see p.|3) in the
case of and . Note that the sign of ¢; in the substitution e™% =: x;
differs from that used at the end of the previous section. The equations are
the same regardless of which sign we choose, our choice here is for consistency with
later expressions in which the minus sign is convenient.

Each of the generalised Schur functions are Laurent polynomials in x and
display signed-permutation symmetry. It is easy to see that these polynomials have
maximum degree |\|. After rescaling by a monomial factor (z;---x,)™ the func-
tions become ordinary symmetric polynomials that may then be expanded in
terms of the Schur basis. In [KoTe87], Koike and Terada obtained a general formula
for the coefficients in this Schur function expansion in terms of alternating sums
over Littlewood—Richardson coefficients. Such inclusion-exclusion representations
are not combinatorial in nature and do not lend themselves to practical computa-
tions. However, there exist several manifestly positive expansions of Littlewood type
for rectangular or near rectangular shapes. For example, in the case of rectangular

partitions we have:

(g x,)™ sme(mn)(x) = Z sx() (2.12a)
(21~ )" 0ot ey () = Y 5a() (2.12D)

(@1 -+ 2)™ 8025, (mny (@) = Z sx(x) (2.12¢)

30



The first identity is due to Désarménien [De86] and Stembridge [Stem90], the second
to Macdonald [Macd95] and the last to Okada [Ok9§|. Further examples for near-
rectangular shapes may be found in [Kr98]. We point out that the second and third
identities also allow for half-integer m and that the m — oo case of all three identities
was discovered by Littlewood in his classic text The Theory of Group Characters
and Matriz Representations of Groups |Li50].

Apart from classical representation theory, Littlewood-type sums involving Schur
functions have also played an important role in the theory of plane partitions. See
e.g., [Br99,Macd95|, Pro90, Stem90b).

Characters of affine Kac—-Moody Lie algebras

In this section we introduce the Weyl-Kac character formula, a generalisation of
the Weyl character formula for affine Kac-Moody Lie algebras [Mo67,|Kac74]. In
this generalised framework the picture is still essentially the same: underlying each
affine Kac-Moody Lie algebra is a root system and a Weyl group, each now infinite
dimensional, and contained within these objects is everything necessary to describe
the corresponding characters of integrable highest-weight moduls. More thorough
treatments of the representation theory of infinite-dimensional Lie algebras can be
found in [Kac90, Wak01] and [KacPe84].

Preliminaries

There is quite a long list of definitions before we come to the Weyl-Kac character
formula. Most importantly, we must generalise root systems and Weyl groups to
the affine setting. Now, earlier we first described the classical root systems by way
of their Dynkin diagrams and then from these objects defined each corresponding
Cartan matrix. In the present generalised setting, it is useful to work in the opposite
direction. Here we begin with generalised Cartan matrices and then proceed to
describe the parts of affine root systems necessary to present the affine character
formula.

The matrix A = [a;]1<ij<n IS a generalised Cartan matriz if it satisfies the
following conditions

(Cl) ay; =2 for 1 <i<n,
(C2) a;; are non-positive integers for i # j,

(C3) a;; = 0 implies aj; = 0.
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Generalised Cartan matrices A and A" = [a};]1<i j<n are said to be equivalent if aj; =
Uo(i)0(j) for all o € S, and 1 < 4,57 < n, that is, they are related by simultaneous

permutation of rows and columns. If a generalised Cartan matrix is not equivalent

G

it is indecomposable. For our purposes, there are two types of indecomposable gen-

to a matrix of the form

eralised Cartan matrices of interest: those of finite type, where all principal minors
of A are positive, and those of affine type, where all proper principal minors of A
are positive and det(A) = 0. Indecomposable generalised Cartan matrices that are
neither finite nor affine are indefinite. Naturally, the transpose of an indecomposable
Cartan matrix is another indecomposable Cartan matrix of the same type.

The finite Cartan matrices are precisely classified by the Cartan matrices corre-
sponding to the Dynkin diagrams in Figure [2.2]

We now proceed at quick pace through a long list of definitions leading up to the
Weyl-Kac character formula.

Let g = Xg\?) be a Kac-Moody Lie algebra with affine Cartan matrix A = [a;;]; jer,
where I = {0,1,...,n}, N > 0 is the rank, and r = 1,2 or 3 is the tier. The
relationship between n and the rank N is determined by type. Throughout this
section, when given a group or set Y related to a Kac-Moody Lie algebra we will
use the notation Y to represent the group or set corresponding to the Cartan matrix
A, which is obtained by deleting the zeroth row and column of A. The object Y is
often called the finite part of Y.

Corresponding to g is the (n+2)-dimensional Cartan subalgebra b and its dual h*,
with pairing (.,.). Choose two sets of n+1 linearly independent elements: the simple
coroots o, ..., ay € b and the simple roots «, ..., a, € h*, where (o, o) = a;;.

From this choice arise the labels ay, . . ., a, and colabels af, ..., a,, which are positive

'

integers such that

Qo

subject to the condition ged(ay,...,a,) = ged(ay,...,a)) = 1. For all g under

consideration, ay = 1. The sum h = )., a; is known as the Cozeter number and
hY =3 .c;a is the dual Coxeter number.

We point out that the affine Cartan matrix AT = [a;;]; jer corresponds to the
Kac-Moody Lie algebra dual to X%), in which all objects and co-objects described

above are interchanged.
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The full classification of all indecomposable affine Cartan matrices (up to rela-
belling) may be expressed in the form of Dynkin diagrams. Those of nontwisted
type are listed in Figure [2.4] and those of twisted type can be found in Figure [2.5
One may obtain the Dynkin diagram of the finite part of X%) by simply deleting the
vertex g and all its incident edges, however this results in the Dynkin diagram of
the irreducible root system Xy only when » = 1. The Dynkin diagram of the dual
algebra may be obtained by simply reversing the directions of the arrows.

We extend the simple roots and coroots to bases of h* and h by introducing
Aoy € h* and d € b, such that (o, Ao) = (d, ;) = 0;0 and (d, Ag) = 0. The standard
non-degenerate bilinear form (.|.) on b is defined by setting

(@]a}) = L ay,  (@]d) = adio.  (dld) =0.
j
The spaces h and h* are identified by choosing d = agA¢ and ) = a;a;/a;’. We can
then see that
a’ 1
(i) = == ai,  (ulAo) = —big, (AolAg) = 0.
a; Qo
The null root (or fundamental imaginary root) ¢ is defined as the sum ,_;
We wish to point out that under this construction h* = CAq @ b* @ C6. The Weyl
vector p € h* is defined by (o, p) = 1 and (d, p) = 0.
The level lev(A) of an element A € h* is defined as lev(A) = (K, A), in relation
to the canonical central element K = . a/a;. Observe that lev(p) = hY. More
generally for A € h*, we point out that lev(A) depends only on the Ay component

a; 0.

of the basis expansion of A in ay, ..., a,, Ay. For example, lev(Ag) = 1. Extend Ay
to a complete set of fundamental weights Ao, ..., A, € b*, where (o), A;) = d;; and
(d,\;) = 0. Let P, = {A: (o)), A) € N} be the set of dominant integral weights of
g.

The integer span of the simple roots and coroots define @) and @V, the root
and coroot lattices respectively. Similarly, Q and QY are the lattice subspaces

with no ay and «g component. To avoid confusion, we note explicitly that Q¥ =
{3 riaai/a)  (r,... 1) € 2", o € Q}. Let the lattice M be defined by

QV forg= Xg\lf) or AP,

(Q otherwise.

M = (2.13)

There are two important ways to naturally partition h*. The set of positive roots
®, C h* is comprised of all roots that have a nonnegative expansion in the basis

o, ..., 0n, Ng. The roots that are not positive are negative. The roots that satisfy
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1 2 2 1
1 2 3
&—0—C—>0—0
1 2 3 4 2

1

2%
o o)
1 2 3 2 1

2
. ! .
1 2 3 4 3 2 1
3

. T
1 2 3 4 5 6 4 2

(a]ar) > 0 are called real, denoted P*®
In Figure a complete description of the positive imaginary roots ®*™ and the

Figure 2.4: The Dynkin diagrams of affine Cartan matrices of nontwisted

(1)

type, with the root ap marked black. The other vertices of X} are
indexed by «; in a manner consistent with that of Xy in Figure
The corresponding labels a; appear adjacent to each vertex.

- otherwise they are imaginary, denoted ®™.

(r)

positive real roots T, with their multiplicities, is provided for all X}i/. In this figure
® is the set of roots of the classical root system corresponding to A, relative to the

base A, and mult(«) is the dimension of the rootspace [Hu72, pp. 35| corresponding

34



2 2 2 1

A(Q) (n > 2) o——o0o— - —0o—=<—0

2n Qg oq Qp—-1 Qn
Qq

(2) 1 2 2 2

A (n=3) aq Qa9 . ﬁn

1 1 1 1

D(2) (n > 2) oc—(—0— -+ —O0—>r0

+1 o aq Qn—-1 Qn

) 12 3 2 1
E O X ( O
6 oap o1 Qa3 0y

1 2 1

DEE) o—a=£=0

Qp @1 o

Figure 2.5: The Dynkin diagrams of affine Cartan matrices of twisted
type. The number appearing above the vertex «; is the corresponding
label a;.

to the root a.
n itmerZy

]X:f ifmé¢rZy

qpifl - {m(5 tm € Z+} mult(md) = {

_ _ Z if )

Pre = <I>+U{m5+a:a€<1>,m€ N 1a€'s }
rZy otherwise

mult(®F) =1

Figure 2.6: The positive roots for each X%). If Xg\?) = Agi), there are
the additional positive real roots {md=+3(6— > , aja;) :m € Zy, 1 <
k<n}and {10 — X" ai;) : 1 < k < n}, all with multiplicity 1.
Here Z. is the set of positive integers. Recall the short roots @, from
Section [2}
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The Weyl-Kac Character formula

Let A be a dominant integral weight. The Weyl-Kac formula for the characters of
the highest weight module V(A) of a Kac-Moody algebra is given by

ZwGW Sgn(w) eﬂl(A-ﬁ-p)—p
Hacor (1~ oo

where W is the affine Weyl group of the root system underlying the Kac-Moody

ChAVZZ (2.14)

algebra. Note that the structure of this formula is exactly the same as the classical
formula (2.6]), up to the occurrence of mult(«). In the setting of affine Kac—-Moody
algebras, it remains the case that the natural positivity of characters is hidden by
the alternating-sum structure of the character formula. Again, a question presents
itself: do there exist manifestly positive representations for affine characters? Our
principle results in chapter |§| answer this question in the affirmative for types Ag‘;)
and CY", with a conditional affirmation for type D,(i)rl. All of these results are
presently restricted to 1-parameter families of weights. In Chapter [ we will give a
brief explanation for why our results concern only these types.

The methods that we employ to achieve these results require a modified repre-
sentation of the Weyl-Kac character formula, due to Kac and Peterson [KacPe84].
We now prepare this reformulation.

Recall the root lattice M . By using the fact that W = W x M, Kac and
Peterson decompose the sum in to yield an infinite sum over the lattice M
and a finite sum over the classical Weyl group W, so that

e—A chy, = H (1 _ e—a)—mult(a)
acdt

YEM weW

where £ = lev(A + p) =lev(A) + hY and ¢ = exp(—9).
Equation (2.15)) is the general character formula, but we require forms slightly

more specialised, computed for each of A%),

CV and Dﬁl. One may easily compute
similar forms for all other affine types, but it is only for these three that our present
methods have traction.

The Weyl groups of ASL), ¥ and D7(12—i)-1 are similar enough that we may proceed
uniformly for a while longer. For each of these three types, W = (Z/2Z)" x S,,. For
Agj’j and DSJ)FI, M is precisely the B, root lattice span(A), where A is defined in
. Note that that M is sensitive to the scaling of root lengths. In the case of

) (where our scaling in ([2.1f) departs from Kac’s normalisation), M = span(2A).
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AP 11

c) o2 1
2

b, 1 2

Figure 2.7: Values of a and b by type.

For these three affine types, we can then rewrite M in terms of the standard unit

vectors €1, ...,€, as
- 7" for AY or D?
M = { Zmei c(ry, ..., € (2171) ot } (2.16)
1 27" for Cy
Kac has the convention that the simple roots oy, ..., a, are always scaled so that

(i) = 2 for «; a long root. We do not follow this convention. For our purposes,
we prefer to scale the roots in a way consistent with the descriptions in (2.1b), which
are given in terms of the standard basis vectors €y,...,€,. The length of the long
roots then depend on type. As a consequence, the value of (¢e;) varies according
to type as follows:

52‘]‘ for Agl),

(eilej) = 5ij/2 for Cn ) (2.17)
262] for D’Ezz—f)—l'

This consideration must be borne in mind during intermediate calculations, but
the final results in this section are not affected by the scaling of roots. We define
the numbers a and b, which are determined according to type by and
respectively and tabulated in Figure [2.7]

Let vy, ..., v, be defined by A + p = Z? 1 Ulﬁz and, once again, let e™“ =: z;.

Informed by the near-uniformity of W for types A2n , c and Dv(fll, the double sum

in Equation (2 may be written as

Z (anzb/ﬂ"z ali’f'z—i-Ul) Z Sgn(w)Hy;E;Z) (218)
i=1

rezn = wEV_V

abr

where y; = ¢"iz; and yuu) = ¢"*@x,;). The sum over W in (2.18) may be
rewritten two sums over (Z/2Z)" and S,,, which leads to the following determinant
formulation:

det (4~ —y;”).

1<i,j<n
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Type h hY

AZ o1 2m+1
¢’ 2m n+1

D? . n+1l  2m

Figure 2.8: The Coxeter and dual Coxeter numbers for Agn) , ¢V and
p@
n+1

Kac and Peterson’s reformulation (2.15)), specialised for Agi), CV and D,ﬂl, is then
given by

—A chy = H (1 - efa)fmult(a)

aedt
5 (Fotem) i, -

rezr N i=
We will now provide the specialised details necessary to reach the desired final forms
for each of the A2n, c and Dﬁ)rl characters.

We begin with . According to the Dynkin diagrams in Figure and Figure
, the finite part of Cg) =: ® is the C,, root system, which has the positive roots
given in (2.1€)), with Weyl vector p = pc defined in . Figure describes

the corresponding positive real and imaginary affine roots. The product in the

denominator of (2.19)) then yields

n

[T (= et = (@ Ac) [ (@) [ (@ofad)e,  (220)

acdy i=1 1<i<j<n

where (au®)s = (au,au™!), and

(au*vF) o = (auv, auv™", au™ v, au v ™).

In , the factor (¢)% corresponds to the roots in @', with the rest arising from
the positive real roots.

Next we consider the numerator of . For A = coAg + -+ + ¢, A, € Py,
define the partition A = (A1,...,\,) by Ay = ¢; + -+ + ¢,. Hence, recalling that
A; = e+ - +¢; from , we have A+p = Yo (Ni+pi)e, so that v; = \i+n—i+1.
Also note that

/f—Za ci+1)=h"+c+ - +cp=n+1+co+ .
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Up to an overall factor, the determinant in (2.19) is then the symplectic Schur
function spy, \(y) (2.11b)):

—Aj—ntj-1 ‘>\j+7’l/—j+1
lﬁégtﬁn (yz Y; ) AC Sp2n )\ H yz (221)
where y; := ;¢"". Combining equations (2.19)), (2.20) and (2.21]), we obtain the next

lemma.

Lemma 2.1 (Cg) character formula). For ¢ = exp(—d), A = (A1, ..., A\,) a partition

and
A=coAo+ (M —A)A 4+ -+ (M1 — A) Ao + AA, € Py (2.22a)
T; = e T Tan—1—an/2 (2.22b)
we have
e chV(A) = !

()% H?:l(qxz:'tZ)OO H1§i<j§n(q‘rixi)

Z AC xq qu *nrixil‘i"‘i‘f‘)\i SPan. (l-qr)’ (2.23)
=1

rewn

where k =n+ 14 co + \1.

We remark that the reformulated assignment in terms of the roots oy, ..., a,
makes clear the root scaling independence of Lemma [2.1]

For the Aéi) algebra, the procedure is especially similar since Agi) and CY share
the same finite part, so that ® and vy, . .., v, are unchanged. We note that h" takes
a new value, given in Figure 2.8 Compared to the other affine types, the positive
roots of Aéi) are a particularly complicated set, and are given special treatment in
Figure The denominator of is then given by

[T (= ey = @ ) [Tl ol o5 )

acd

< ] (azfaf)e. (2.24)

1<i<j<n

In (2.24), the additional positive real roots of Figure correspond to the product

n

[ )

i=1
To obtain the next result, we then repeat in a straight-forward manner the steps
that yield Lemma
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Lemma 2.2 (Agff character formula, I). With the same assumptions as in Lemma

1
(9)2 H?:1(q1/2x?:)oo(q2x;t2; 0*)o H1§i<j§n(q$ixi)

AC l’q Lur2—nr; kritX r
x Z H g T SPon A (2¢"), (2.25)

reL™ 1=1

e chV(A) =

where k = 2n + 1 + ¢o + 2.
Since Agi) is self-dual, the Dynkin diagram labelled Agi) in Figure and its

mirror-image correspond (up to relabeling) to the same algebra and hence, the same
character. There is a choice in which diagram most naturally represents Aéi) and
this freedom leads us to a not-entirely-trivial reformulation of the character. If our
choice is swapped, one is cautioned that the rule that determines M (i.e., )
must be adjusted so that for Agi) we have M = Q. Recalling Ag(z) from (2.8b)),
the alternate form of the Agi) character is as follows.

Lemma 2.3 (Aéi) character formula, II). For ¢ = exp(=9), p = (ft1,.--, ) @

partition, and

A =2p, Mo+ (pn—1 — pn) A1+ -+ + (1 — p2) N1 + oAy, € Py,

Y = efaof"‘fafnfi7
(so that y; = ¢z .| and p; = co/2 + A\i — Ap—it1 compared to ([2.25)),
1

e chV(A) =

(@)% H?zl(qyf)oo(qyfz; 02)oo [T1<icjan (@07 U7 )oo

n

1, 2
1 n_, i KT+ r
X E H 27~ Y 1502n+1,u(yq )a

rezn =1

where kK = 2n + 1 4 2¢,, + 2.

Here we have employed the odd orthogonal Schur functions sog,41. (), defined
0 (@113).

Finally, we prepare a similar formulation for type Dﬁ)l. As before, we first
compute the denominator of (2.17). Observe that the finite part of foll is the
B,, root system. Once again, the positive affine roots are given in Figure and
from Figure we can see that hY = 2n. The denominator of may then be
expressed as

n

[T - = (%) @wdn() [[ol (@) [T (%Fatia))s

acd, i=1 1<i<j<n
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We turn our attention to the numerator of . For a dominant integral weight
Ai=coA+-+ep, let A= (Ag,..., ) as \; = ci+---—|—cn_1+%cn. Note that for
convenience we have allowed for the possibility that A is a half-partition (see page[3]).
From this definition and (2.3b)), it follows that A = Z?Zl(%cn—l—zn_.l cj)€;. Given the

J=t

corresponding Weyl vector p = pp (2.9b)), we then have v; = A+ p; = \i+n—i+3,
and so the determinant in (2.19)) is given by

mticl m—ial i,
det (y; "7 =y TR = Ap(y) sogmiin() [[uE " (2.26)

1<i,5<n !
=1

where y; := z;¢*"". We then obtain the following form for the Df}rl character.

Lemma 2.4 (Dfi)rl

a partition, and

character formula, ¢, = 2\,,). Forq =exp(—0), A= (A,...,\y)

A= CoAO + ()\1 — )\Q)Al + -+ (>\n—1 — /\n)An—l + 2/\nAn € P+, (227&)
7 = e A (2.27D)
we have
A 1
e “chV(A) =

(4% ¢*) % (0) oo H?:l(qxz'i)oo H1§i<j§n(q2xgt‘rji; 7*) oo

« Z % ﬁ q" ?—(2n—1)rixl§n+/\i SO2741.1 (LBC]2T) (2.28)
AB(x) i=1 Z | |

where kK = 2n + ¢y + 2.

At this point we remark that for the purposes of presenting our results, these
character formulas are more general than necessary. Later, we will exclusively study
cases where A is the empty partition.
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CHAPTER 3

Basic hypergeometric series

The final elements in our introductory material concern basic hypergeometric series.
In this chapter we introduce these objects and, in particular, study an important
classical result known as the Bailey lemma. To conclude the chapter we will revise
the celebrated Rogers—Ramanujan identities and their various generalisations due
to Andrews, Bressoud, Gollnitz, and Gordon.

Once again our treatment of a vast subject will be brief, as we have chosen to
convey from the literature only those notions and results most pertinent to our new
work. Gaspar and Rahman’s Basic Hypergeometric Series |GasRa90] provide a much
more complete treatment of this topic. We remark that the appendices of this book
compile a list of many important g-hypergeometric summation and transformation

formulas, as well as a useful collection of elementary ¢-factorial identities.

Basic hypergeometric series

In this section we introduce the fundamental notions concerning very-well-poised
basic hypergeometric series and give some illustrative classical results that will be
useful in our discussion of the Bailey lemma.

A basic hypergeometric series (also called g-hypergeometric series) is a series
> k>0 Ck, such that the quotient ¢y /¢y is a rational function of q". Without loss of
gengrality, every basic hypergeometric series can be expressed with coefficients that
are ratios of g-shifted factorials. We follow Gaspar and Rahman’s convention and
define an ,¢, basic hypergeometric series by

A1y...,0p > (al,...,a,r)k. L (k) 14+s5—1 i
»Ds 1q,z| = — (-1 2 z", 3.1
¢ lbl,...,bs ‘ } ,;(q,bl,...,bs)k[( ol (3.1)

where sometimes the left-hand side is written as ,¢s(ay,...,a,;b1,...,bs;q,2). Un-
der this definition, basic hypergeometric series are normalised so that when k£ = 0
the summand on the right-hand side is 1. Observe that if any a; = ¢~", then for
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k > n the summand vanishes, and therefore, the sum has a finite number of nonzero
terms. A series with this property is said to be terminating. In many works prior
to [GasRa90|, e.g. [S166,/Ba35|, the square-bracketed term does not appear in the
definition of , ¢, series. By including this term, gains the desirable property
that if we set z — z/a, and let a, — oo, the result is again a series of the same
functional form, but with r +— r — 1.

Though we have given a general definition of basic hypergeometric series, the
summations and transformations we will encounter are (with only one exception)

r+1¢, series. For example, the g-binomial theorem may be expressed as

nlai—i0.2) = = el <1 3.2)

Further to our focus upon ,;1¢, series, the scope of our discussion will be limited
to those series that are balanced or very-well-poised. We will introduce these special
requirements first by example. For n € N, consider the left-hand side of the following
identity, known as the ¢-Pfaff-Saalschiitz summation [GasRa90, (I1.12)]:

c/a,c/b,q™" } - (,b)n

= . 3.3
c,cqt="/ab c,ab/c)p (3:3)

302 [

Observe that the product of the arguments of the two ¢-factorial terms in the de-
nominator is exactly ¢ times the product of the three terms in the numerator. More
generally, a ,.,1¢, series is called balanced if bibs ... b, = qaias . ..a,,1 and z = q.

Consider next the following terminating summation, known as Jackson’s o5
sum [GasRa90, I1.20]:

a,qa'’?,—qa*? b,c,g"  aq"™] _ (aq,aq/bc),
al’2,—aVl, aq/b,aq/c,aq T "be | T (ag/bagfc)’

On the left-hand side, each numerator term may be paired with a corresponding

s [ (3.4

denominator term so that the product of each pair is aq. This is the identifying
property of a well-poised basic hypergeometric series. An ,,1¢, series is called very-

well-poised if it is of the form

a qal/2 qa1/2 a a
1 1 - Yl W4,y Wpyt]
r+1¢r{ 1/2 1/2 §Q;Z] (3.5)
a; ,—ag 7qa1/a47 cee 7qal/ar+l
The extra adjective very signals the presence of the factor
(qay*, —qay*) 1= aig®
= (3.6)
e I

where k is the summation index. It is important to note that under the assignment
ay := 22, (3.6)) is precisely equal to Ac(zq¥)/Ac(z) on a single variable alphabet
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x = (1), where Ag(z) is from the type C Vandermonde determinant (2.8c). This
apparently trivial relationship between very-well-poised series and root systems be-
comes much more significant in the setting of multiple basic hypergeometric series,
which will be discussed later.

It is often convenient to suppress the very-well-poised terms in using the

notation

r+1Wr(CL1; 4,05, ... ,0r41;4, Z)

With this notation, Jackson’s ¢¢5 summation may be compactly written as

(aq, aq/bc),
(ag/b,aq/c)n’

An ,.1¢, very-well-poised series reduces to an ,_1¢,_o very-well-poised series

Wi (a;b,¢,q7" q,aq" Jbe) = (3.7)

under the specialisation

1 We (a1; Q4,05 .., 0r41;9, Z) = Wi o(ar;a, a5, ..., 0,-15q, 2). (3.8)

ArQr41=0a19q

Observe that subject to (3.8)) (i.e., the specialisation bc = aq) the right-hand side of
Jackson’s W5 summation ([3.7]) vanishes unless n = 0, so that we have

Ws(a;q¢7":4") = 6np. (3.9)

where 9, 5 is the Kronecker delta, which is 1 when r = s and 0 otherwise.

Bailey’s lemma

Bailey’s lemma is a powerful tool that enables the recursive construction of infinite
families of ¢-hypergeometric series identities. There exists several detailed accounts
of the origins, applications and generalisations of Bailey’s lemma, see e.g., [AnAs-
Roy99,An00,An86,War(01]. Our intentions in this chapter are to acquaint the reader
with Bailey’s lemma in the classical setting, in preparation for a generalisation to
the C,, root system that appears in a later chapter, and so what follows is a much-
abridged history and introduction.

In |Ba48], Bailey presents his lemma in its earliest form, framed as a simplified

strategy for finding, one-at-a-time, transformations of g-hypergeometric series: for

sequences {an}TLzO: sy {5n}n207 {Un}nzo and {Un}nzm if
ﬂn = Z A Up—pUnr, (310&)
r=0
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and

Vn = Z OpUp—pUpips (3.10Db)

then . .
Z OnYn = Z ﬁndm (310C)
n=0 n=0

subject to suitable convergence conditions. Bailey had particular success for the
choice u,, = 1/(q), and v,, = 1/(aq),, which lead to proofs of a number of identities
of Rogers—Ramanujan type, old and new. Under this choice, two sequences o and
f satisfying the condition (3.10al) are together called a Bailey pair relative to a:

n

B = Z@—T (3.11a)

r—0 n—r(G/Q)n—l—r '

Similarly, a pair of sequences (v, d) where

Y= (5— (3.11b)

Q)r—n(GQ)rﬂz’

are a conjugate Bailey pair relative to a. Bailey’s student Slater [S152] pushed the
use of further and compiled a list of 130 identities of Rogers-Ramanujan
type using 96 Bailey pairs (polynomial versions of all 130 identites have been found
by Sills in [Si03] and more identities of Rogers-Ramanujan type have been added
and put in the context of contemporary results in [LauSiZi08]). Slater’s list, which
included many new ¢-series identities, was substantial evidence of the power of
Bailey’s result, but even then the full potential of the lemma had hardly begun to
be realised. In [Ba48, §4], Bailey makes special mention of the conjugate pair:

-N
5, = —((zc(j?v /a))’; 7, (3.12a)
= (aa/b.ag/c)n (b, ¢, g™ )n(ag/be)" (— 1)y ().

" (ag,aq/be)n(aq/b, aq/c, agV*1),

To see that is a conjugate Bailey pair as claimed, one needs only substitute

into the right-hand side of and complete the sum. For this purpose

we need the ¢g-Pfaff-Saalschiitz 3¢, summation , applied under the simultaneous

assignment (a,b,c,n) — (bqg", cq", ag* 1, N —n).

Substitution of into yields, after some minor adjustments, the

expression

- Olag/be)  ar g (b.0)c(ag/be) (ag o)
—0 (aq/b,aq/c)r (@)n—r(aQ)ntr —0 (aq/b,aq/c)n(q@)n-r

(3.12b)

B (3.13)
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Unfortunately, Bailey only considered ([3.13)) as n tends to infinity and did not notice
that this expression offers a second Bailey pair, building upon the first. Decades
later, it was Andrews [An84] who first struck upon this fact and recast (3.10) in a

new iterative form. To produce Andrews’ iterative form, we do nothing more than
pull apart (3.13)).

Lemma 3.1 (Bailey’s lemma). If (o, 8) is a Bailey pair relative to a, then (o, ')
15 also a Bailey pair relative to a, where

o (b,)ulag/bo)"
(a/b, a4/}

(3.14a)

and

r_ =~ (b, ¢),(aq/bc)" (aq/bc)n—,
ﬁ”_rzo (ag/b.ag))nl@hnr (3.14b)

We remark that certain special cases of Lemma were discovered in prior work
by Paule [Pa82].

Given a Bailey pair (a, 3), the recursive formulation of Bailey’s lemma allows

one to generate an infinite sequence of Bailey pairs:
(. B) = (o, 8) = (o, B") = -

Such a sequence is known as a Bailey chain. There are many different Bailey chains
of interest, and each Bailey chain is generated by a corresponding seed Bailey pair.
There is a special seed that emerges naturally from inversion of the Bailey pair

relation.

Lemma 3.2 (Bailey pair inversion [An79, Lemma 3]). If (a, 8) is a Bailey pair,
then

& (1= a?) (1)) (@)
o, = ; e B, (3.15)

By choosing 8 = 4,0, Lemma [3.2] yields the unit Bailey pair

a, = (—1)" (g)ﬂ%
n=(—=1)"q 1—a (g

(3.16)
Bn = 5n,0-

By iterating the unit pair (3.16) with the Bailey lemma, we obtain the following
infinite family of Bailey pairs for k € N:

m 1 —ag* (a) b (bi, ;) ag \"
Oéglk) — (_1)nq(2) n H iy Ci)n (_> : (317&)

1-a q =1 GQ/bm GQ/Cz)n bici
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and

(k) _ (GQ/bka‘)n—Tk—l
0 2 (aq/br, aq/cr)n(@)n—r .

k—1

b; , . b.c:) . T
y H ( H—lacz—i-l)n(GQ/ zcz)n Tic1 ( aq ) . (3.17b)

i1 (aq/bi= aq/ci)h‘ (q)v"rm_1 biy1Cit1

We can substitute (3.17) into the Bailey pair relation (3.11al), to obtain the corre-
sponding multiple-series ¢-hypergeometric identity called the Andrews transforma-
tion |An7b|:

7150y T—1>0

akqn+k
W- ) b, cr,q " q, ————
2k+aWak4+3| @;01,C1, ..., 0k, Cky, 4 5 4,
blcl...bkck

_ (aq,aq/bick)n 3 (") (bkck)ml

~ (aq/bk, ag/cr)n o breka™/a)n,, \ a

T1yeensTh—

k— 1

’L 1,C; 1 T G'Q/b C’L)Tz*ﬁ aq "
XH 415 Cit 1 (b C(3.18)

i=1 aq/bl7 GQ/CZ)TL( )ri—m,l i+1ci+1

We point out that for k = 1, this result reduces to Jackson’s ¢¢5 summation (3.7)).
Note that effectively offers a second identity for every Bailey pair (a, ).
By substituting into (3.15) we obtain another very general identity. We do
not reproduce these identities here and only remark that for £k = 1 we recover the
q-Pfaff-Saalschiitz identity .
We provide here a short proof of Lemma , due to Andrews [AnT79].

Proof of Lemma([3.3, Let (a, 3) be a Bailey pair and let A, , and A;, , be the sum-
mands of (3.11a) (without ;) and (3.17) (without 3,), respectively. We may inter-
pret A, and A

nr as the entries of invertible infinite-dimensional lower-triangular

matrices A and A’. The following calculations essentially show that A’ = A~!. First
relabelling (n,r) — (r,s), we substitute into (3.11a)) to obtain

_ Z Ap oy = Z Apr Z Al B (3.19)
r=0 r=0 s=0

Next we interchange the order of the two sums and then shift r — r + s,

ZBSZAn 7"+5 r+ss (320)

By carrying out some standard manipulations involving ¢-shifted factorials, this

yields

aq 2s 2s. s—n. n—s
s W ; ; . 3.21
§ B O(a 3(aq™;¢" " q"0) (3.21)

47



By application of the identity (3.9)) for a 41¥/3 series we then obtain

Z 53 aq 2 n,s — ﬁn- [

n s GQ)nJrs

Identities of Rogers—Ramanujan type

In this section we will revise several generalisations of the famous Rogers—Ramanujan
identities due to Andrews, Bressoud, Gollnitz and Gordon. This revision is prepa-
ration for our work in chapter [7, where we will derive further generalisations for
these identities in the setting of affine Kac-Moody algebras. Other relationships
between partition identities of Rogers—Ramanujan type and the representation the-
ory of affine Lie algebras have been known for some time. The interested reader
may find many such connections in [Cap96}LepMi78alLepMi78b,LepWi78| LepWi82|
LepWi84| [Kac90,MePri87, MePri99).

The Rogers—Ramanujan identities [Schul7, RogRal9,|Rogl1894] are often stated

in analytic form as

" (%) N
2 (@) (¢)o ’ (3.220)

and

i (9.4, 4° ¢")oc. (3.22b)

— (@) (@)

These identities have an interpretation in terms of partition congruences, due to
MacMahon [Macml16, pp. 33-36] and Schur [Schul7]. Equation (3.22al) may be
understood as:

The number of partitions of n such that consecutive parts differ by at

least 2 is equal to the number of partitions of n into parts congruent to

1 (mod 5).

Similarly, (3.22b)) is equivalent to:

The number of partitions of n such that all parts are greater than 1 and
consecutive parts differ by at least 2 is equal to the number of partitions
of n into parts congruent to +£2 (mod 5).

We now revise a proof of the Rogers—Ramanujan identities due to Watson [Wat29].
Many classical proofs of the Rogers—Ramanujan identities (3.22)) start by establishing
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by some means the Rogers—Selberg identity [RogRal9[Se36| (see also [GasRa90, Eq.
(2.7.6)]):

7‘7'2

(aq)oe Z a(qf.;r 14 Zl (aq)r—1(1 —aq™) (_a2)rqr(5r—1)/2' (3.23)

s (@)r

From (3.23)), the identities (3.22)) are obtained simply by first specialising a to 1 or
q, and then subsequently applying the Jacobi triple product identity [J1829] to the
right-hand side:

> (—2)"q®) = (2,9/2, 4): (3.24)

r=—00

We briefly remark that we will later encounter again as the denominator
identity for the character of the affine Kac-Moody Lie algebra A(ll). Watson’s cele-
brated proof connects the Rogers—Ramanujan identities to ¢-hypergeometric series
by demonstrating that the Rogers—Selberg identity is found in the limit as b, ¢, d, e
and n tend to infinity in what is now known as Watson’s terminating sWs transfor-

mation:

sWr(asb,c,d e, q " q,a°q" Jbede)
(aq,aq/bc), q ", b,c,aq/de
~ (aa/b.aafe), ** [ ag/d. aqfe,beg /o’ T ]
Note that is the Andrews transformation for k& = 2. We remark that the
terminating condition is lifted as n tends to infinity, see |GasRa90, I1.25].

(3.25)

Andrews discovered that an argument essentially identical to Watson’s proof
of the Rogers—Ramanjuan identities, but beginning with the Andrews transfor-
mation , yields a more general family of identities which form part of the
Andrews—Gordon identities [An74,Go61].

Theorem 3.3 (The Andrews-Gordon identities). For 1 < i < k, let M; = m; +
My + -+ Mg,

o M2+ +M2_ +Mi++M_1 i 2k+1—i 2k+1. 2k+1)

d _ (@', q ,q 0 q o
Z (Dmy (@ myy - (@) : (3.26)

My 120
Note that the Rogers-Ramanujan identities appear when k& = 2.
Recalling the multiplicity notation m;, for completeness we include Gordon’s
partition-theoretic statement of Theorem [3.3}

Forall k > 1,1 < <k, let Ag;(n) be the number of partitions of n into
parts not congruent to 0, +¢ (mod 2k + 1) and let By ;(n) be the number
of partitions of n of the form A = (1™2™2...), with m; < i — 1 and
mj+mj < k—1forall j > 1. Then Ay ,;(n) = Byi(n).
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When k = 2, this partition-congruence interpretation corresponds to that of the
Rogers-Ramanujan identities. Comparing the above with MacMahon and Schur’s
statement, it is clear that A, ;(n) satisfies the required modular-arithmetic condi-
tions. It is not difficult to see that the restrictions on Bs;(n) match the minimum-
difference conditions of the other set. Observe that m; +m;; <1 implies that, for
all j, at least one of the parts j or j + 1 do not appear in A, and so the entries of A
differ by at least two.

Bailey’s lemma takes all the pain out of proving , which was previously
demonstrable only with less-systematic methods involving g-difference equations.
We include a short proof of Theorem using the Andrews transformation.

Proof of Theorem[3.5 for i =1 ori=k. Given (3.18) we let all by, ¢, ..., bk, ck, 1
tend to infinity to arrive at a higher-level Rogers—Selberg identity:

(aq)os Z H a” QZQ _ f: (aq)r—1(1 — ag®) (_ak)rqr((Qk—&-l)r—l)/Q‘ (3.27)

rl ri—1 r—0 (Q)r

1y, Tk—12>0 =1

We then set @ = 1 or ¢ to obtain (3.28a]) and (3.28b)) respectively:

o0

> H = ﬁ S (g, (3.282)

m,...,mp_1>0 i=1 Q)ml r=—00

M2+M; 1 e

) H‘“ = s 2 ayd ™), (3.250)

mi,...,mi—1>0 i=1 r=—00

where we have defined M; = r,_; and m; = 74_; — "x—;—1 so that M; = m; +--- +
my_1. The right side of each of the equations (3.28) may now be summed using the
Jacobi triple product identity (3.24)), to arrive at the p = k and p = 1 instances

of (3:20). 0

The full set of the Andrews—Gordon identities in the range 1 < p < k may be
recovered from the Bailey lattice [AgAnBr87], a multi-dimensional form of Bailey’s
Lemma. Later, it was revealed that this additional theory is not strictly necessary
for the full complement of identites if one works hard enough; see [AnScWar99].

For later purposes we will introduce two more general families of Rogers-Ramanujan
type identities. Each of the following results are similarly accessible using the clas-
sical Bailey machinery and each have well-known combinatorial intepretations as
partition congruences. The first of these families of identities form an even modulus
counterpart to the Andrews—Gordon identities, due to Bressoud [Br80].
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Theorem 3.4. For 1 <i <k, let M; =m; +my1+ -+ +mi_1,

© ME M2 +M+4My_q i 2k—i q2k. 2k)
Y )

Z > (q)ml U (q)mk_z (qQ; q2)mk—1 N (q)oo . (329)

The last family of Rogers—Ramanujan-type identities we wish to introduce are
the generalised Gollnitz—Gordon identities. The classical Gollnitz—Gordon identities

[G660, Go6b| are stated in analytic form as follows:

() (00550 oo (d 0N 2 30

Z (qz.qz) - (q> ) ( . a)

r=0 ’ r o0
q

iq”(r”)(—q;q% (0.47, 4% 6*) oo (6% ¢*) oo

—~ (%) N (¢)oo

(3.30b)
The following generalised form is due to Andrews [An67, Equation 7.4.4] for
i = k, and Bressoud [Br80b, Equation (3.8)] for 1 <i < k.

Theorem 3.5 (The generalised Gollnitz-Gordon identities ). For 1 < i < k, let
M; =m; +mypq + - +my_1. Then

io: q2(M12+---+M,371+Mi+---+Mk71)(_q1—2M1; q2)M1
Mg 120 (QQ; C]2)m1 o ((]2; q2)mk71
(@1, g2 g™ ) o (0% )

= N . (3.31)

Note that by relabelling M; = r and choosing i = 2 (3.31]) yields (3.30a)) for & = 2,
up to the transformation (—¢'~2"), = (—¢; ¢*)»¢~" . Similarly, (3.30b)) appears when

k=2 1=1and M; =r.
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Part 11

Combinatorial character formulas

New results including the C,, Andrews transformation, an explicit g-
hypergeometric formulation for the modified Hall-Littlewood polynomi-
als, combinatorial formulas for the characters of affine Lie algebras and

generalisations of the Macdonald eta-functions.



CHAPTER 4

The C,, Andrews transformation

In this chapter we derive a C,, analogue of Andrews transformation ([3.18)). This C,
Andrews transformation is the foundation of our combinatorial character formulas.
A key tool in our derivation is the C,, Bailey lemma developed over several papers by
Milne and Lilly [MiLil92,MiLil95,[LilMi93]. Unfortunately, the relevant statement of
Milne and Lilly’s main result contains a typographical error, which until now seems
to have evaded notice. This has been corrected below.

C,, basic hypergeometric series

The notion of basic hypergeometric series as discussed in Chapter [3| can be gener-
alised to the setting of root systems. Instead of giving the most general definition
of such series, see e.g., [Gu87,/Schl09,|Mi87|, and references therein, we restrict our
attention to the C,, root system. Roughly, a C, basic hypergeometric series is a
multiple series containing the factor

Ac(zq" R/ a ziq" — xyq" xxgtit — 1
c(q):H A | ’ (4.1)
Ac(x) 1 —a; \<isjen T rix; — 1
where r = (rq,...,r,) € Z" is an n-dimensional summation index. Note that for

n = 1 and after replacing x? by a and r; by r, we recover the classical very-well-

poised term
1— aq2r

1l—a ’

see ([3.6).

Many of the classical identities for basic hypergeometric series admit general-
isations to the C,, root system. For example, the C, analogue of Jackson’s W5
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summation (3.7)), due to Milne and Lilly is given by

n

Z AC(IQT> f[ (q_NJl'z/%,l‘ﬂ?J)n H (bxijcxi)m (q|N+1)m‘
0CrCN Ac(z) 1 (qSL’i/SUj,ql-l—ijil’j)ri o (qq;i/b’ qz;/c)., be

1= v

(qzixj) N,
= (a/behw H it e AL amay 2
where N = (Ny,...,N,) € N" is a sequence of nonnegative integers, |N| := Ny +
-+ N,, and where 0 C » C N is shorthand for »r € N" such that r, < N; for
1 <7 < n. More generally we will simply denote the empty sequence as 0, where
the length is defined by context.
Note that the condition 0 C » C N is indeed the natural range of support for
the above series, since
(¢ Nxi/x)),
(qi/)),
simplifies to (¢~),./(q),, for j = i. When r; < 0 or r; > N; this terms clearly
vanishes. In some of our later series we will use this observation and simply write
2 rezn
For later reference we observe that by specialising bc = ¢, equation yields
a C,, analogue of the 4Wj series identity

A ' n _N]' i . i Li)p:
Z c(zq") H (¢~ Vwi/xy, mamy)r, Vi = G0, (4.3)

S gNitlp.p.
0CrCN Ac(l') -1 (qxz/xjaq J 1'137])1%

where 9, 5 is the Kronecker delta, i.e., 6,5 is 1 if 7 equals s and zero otherwise.

Not all series labelled by C,, necessarily contain all of the factors in (4.1). For
example, subsequently we will need the C,, analogue of the g-Pfaff-Saalschiitz sum-
mation for a balanced 3¢, series, which is given by

|

\ AT e T n ~Nj o [,
3 q 11 Tiq" — 159 11 (¢~ wi/x))r,
(bcq_‘]\”) (qxixj>ri+7“j

0CrCN |7 1<i<j<n ? J ij=1 (q Z/ jrd%i ])Tz

n

X H(bxi, CTi)r,

=1
1 n n
- WC)IN\ 1<H (qrirj) N, 4N, H ()n H (qzi/b,qx;/c)n,. (4.4)

Si<jsn i,j=1 Nii=1

For n = 1 the g¢-Pfaff-Saalschiitz summation (3.3 is recovered under the simul-
taneous assignment (b,c,z?) — (q/a,q/b,c/q). The above form of (4.4)) is due to
Bhatnagar [Bh99, Theorem 1], although the result was first discovered by Milne
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and Lilly |MiLil95, Theorem 4.2] in a dual form corresponding to a reversed order
of summation. Note that the C, very-well-poised term is not present in its
entirety. This is not unexpected since the classical ¢g-Pfaff-Saalschiitz summation
is not very-well-poised. In fact, attaching a root system to series of this nature
is somewhat problematic and Bhatnagar and Schlosser refer to as a D, se-
ries [Bh99,[BhSchl98|Schl09).

The C,, Bailey lemma

In this section we follow Milne and Lilly to derive a C,, analogue of the Bailey lemma.
If @ ={an}nyens and f = {fn}nenn are sequences such that

n

=3 ol ! , (4.5)

0CrCN  i,j=1 qri/Ti)N, r](qx %)N+r]

then the pair («, ) is a C,, Bailey pair relative to x. This definition is a slight
rescaling of the original as given in [MiLil92, Equation 2.5]. For ease of comparison,
we note that Milne and Lilly define their C,, Bailey pair as

Z H q:lfl/l'] ri—Tj ((]$ x])n-{—r]

0CrCN 1,7=1 qxz/xj N; Tg(qgjlx])N +7;

Bn

Z H 1
= (6% .
T 7"1 7"J+1£Ui/xj)N¢*n(qTi+Tj+1xixj)Ni*Ti

0CrCN 1,j= 1

We now prove our corrected version of the C,, Bailey lemma [MiLil92, Equation
2.5].

Lemma 4.1 (C,, Bailey lemma). If (o, ) is a C,, Bailey pair relative to x, then
(o, ") is a C,, Bailey pair relative to x where

d - (b%‘, C%)Nv q\Ni
- v \be 4.6
o O‘Nll (qri/b,qxi/c)n <bc> ’ (4.6a)

/ Ir| bx;, cx;),,
o= 5 s (1) T sl

0CrCN

> H ((qxixj)ri-i-rj H (qxi/xj>ri—rj . (46b>

1<i<j<n qxixj)Ni+Nj ij=1 (qxi/xj)Ni_rj

Proof. Let Ay, be the summand of (4.5) without a., let By, be the summand of
(4.6b)) without 3., and let («, #) be a C,, Bailey pair. We will verify that (¢/, 5’) is a
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C,, Bailey pair. This proof proceeds in an analogous fashion to that of the classical
Bailey lemma.

Once more bearing in mind that r — r+s means (ry,...,7,) — (r1+S1, ..., 7+
sn), we perform steps essentially the same as those of the classical proof, i.e., we
interchange sums and normalise the interior sum to 1 when r is the zero vector.

Using our shorthand notation By, and Ay, this leads to

By = Z Ay By Z M

0CsCN 0CrCN—s As,sBn.s
IT\)
_ q(2
= Z OésAs,sBN,s Z m H (qyiyj>ri+7"j
0CsCN 0CrCM 1<i<j<n
n

H qyl/yj rrrj( _iji/yj)m (%)ﬂal ﬁ (bys, cys)
yj P ? )

i qyl/yj7 qyl?/y)n

where y; = y;(s) = x;¢° and M = N —s. We can carry out the sum over r using
the C,, ¢-Pfaff-Saalschiitz sum (4.4)) and the elementary identity

n

H(qyl/yj oy = H Yiq* yjq ( %>Si_8,jq(si;5j>—5j. (4.7)

ij—1 1<i<j<n — Y Y
The result of completing the sum over r is then

BN,sAs,s
B = Z Qs H (QYils) N+ Ny~ (sits5)

0CsCN (a/b¢) - 1<i<j<n
n 1 n
< 11 =11 (awi/b. qvi/c)n.—s.-

50 (QUi)N—ss

After eliminating the y; in favour of the x;¢* this simplifies to

-5 T (1)

0CsCN (q2:/b, qi/c)s,

z : !
AN,sasa

0CsCN

as required. O

The C,, Andrews Transformation

In this section we employ the machinery of the C, Bailey lemma to generate the
C,, Andrews transformation. As in the proof of the C,, Bailey lemma, the key steps
in the following procedure are precisely analogous to those of the classical setting.
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We use a specialisation of the C,, Jackson sum to invert the C,, Bailey pair relation,
which in turn yields a C,, analogue of the unit Bailey pair . From this C,, unit
Bailey pair, the C,, Andrews transformation then follows by m-fold application of
the C,, Bailey lemma.

We now carry out the inversion of the C,, Bailey pair relation.

Lemma 4.2 (Cn Bailey pair inversion [MiLil92]). If («, ) is a C,, Bailey pair, then

A x r;iq" — x;q"7 1 — xxqi T
ay = 2o\ ) cl q Z 8. H q 34 34

Ti — Xj 1 —zz;
0CrCN 1<i<j<n v J v

° N\ Ni—rj N (ZEI)N .
e T <_“"_) T () A N4y g
X . (4.
I Lj v (qxi/xj)Ni_Tj ( )

ij=1
Proof. We verify by direct substitution into . For convenience of notation,
let Ay, (z) be the summand of without a, and let A% (z) be the summand
of without [,, including the prefactor. As seen in the classical case, observe
that both Ay, (7) and Ay .(z) may be interpreted as the entries of two invertible,
infinite-dimensional lower-triangular matrices, A and A’. The following calculations
essentially show that A’ = A~!. This proof proceeds in a fashion analogous to the
proof of the classical Bailey inversion. With the proviso that r — r + s now means

(r1,...,rn) ¥ (r1 + $1,...,7n + Sp), the steps leading from (3.19)) to (3.20) remain
identically true. Now using the definitions of Ay ,(x) and Ay (7), we arrive at a

multiple analogue of m

ZBSH

0CSsCN  ij=1 (qui/ys) Sz(qyzy])N s

- Ac yq Nl H (=g Jys, yii)r, (49)

0CrCN-—s i,j=1 qyl/yﬂ V_sj+1yiyj)7"i

where we have introduced the shorthand notation y; = y;(s) = x;¢* as before, and
where we have used A, (z)A! ,() = 1, which follows from (4.7).

Finally, applying (4.3)) to ( . ) leads to

D OnaBs =By O

0CsCN

By choosing Sy = dnp, the C,, Bailey pair inversion (Lemma yields the C,

unit Bailey pair

QNZAC(qu) T (i), <_$Z>N’q )
Acl@) 22 (qzi/;)n \ 2

Bn = dn-
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Naturally, this corresponds to the classical unit pair (3.16) when n = 1. Using
Lemma [£.I, we may now generate the C, Bailey chain corresponding to the C,
Andrews transformation. For m a nonnegative integer we obtain,

n m+1
(m) — AC :(:q (bexi, comi) n, ( d >Ni
o E H qac /bz,Ql’z/Cg) N; bgC@
xﬁ e} ( :U)N (%) (4.10a)
o q ) . a
j=1 qxl/x] €y

W= T e

n

X Z H 1 Hff?e))w(eﬂ)(x; Q)
é:l

T; /X
r) . rmezn ij=1 q ’/ J

m+1 4 A
’ e[[l [(q/bw)'r“1>|—|r<f>|<%>

n (bg[l}i, Cgfvi)rzm
L (qri /e, quifed) o ]

(3

X (4.10Db)

where in ([£.100), 7@ := N and r™*1) := 0 and we have introduced the notation

) (PO | iy (11)

=1 i,j:l (qu/xj)ri—sj

Note that since 1/(¢), vanishes when n < 0, the function f\%(z:q) is zero unless
s C r. Equation will appear frequently throughout the rest of this thesis.

By rescaling according to (by,cg) + (bg/a'/?,co/a'/?), the classical Bailey
chain described by and appears when n = 1 and z? = a. By substitu-
tion of into the definition of a C,, Bailey pair, the C,, Andrews transformation
then follows.
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Theorem 4.3 (C,, Andrews transformation). Form a nonnegative integer and N € N,

Z Ac xq ﬁ "lL—f (bex, cox;)y,s ( > ﬁ Nig,)xg, xixg),, S
(qxi/be, qi/co)r, \boce (qui/zj, ¢Nitlaea;),,

0CrCN = 7j=1

= Il I —

1<i<j<n (qxll‘,])Nz‘i‘N

% Z H qwl/xj

X/ T;
(.. r(m)eNn i,j=1 q Z/ ] N; r ) o

m

fT(e) F(E+1) (75 q)
1

m—+1 q |T(Z)‘
X H beCe) -1y 1r() ( )
a/bece)pe-vi-poi\ 7 -
no (e, o) o ]

1 (qzi/be, qzi/ce) e
(4.12)

X

where r© := N and r(m*+D .= 0.

A few remarks are in order. First we note that for m = 0 we recover the C,
Jackson sum . For m = 1 we obtain Milne and Lilly’s C,, analogue of Watson’s
transformation between a very-well poised g7 and a balanced 4¢3 [Mi94,
Theorem A3], [MiLil95, Theorem 6.6]. We point out that is symmetric under
simultaneous permutation of x and N. Hence, as all Ny,..., N, tend to infinity,

both sides are symmetric in x.
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CHAPTER 5

The modified Hall-Littlewood polynomials

In this chapter we obtain a new basic hypergeometric representation of the modified
Hall-Littlewood polynomials. This representation stems from Jing’s construction of
these polynomials in terms of his ¢g-Bernstein operators B, [J191] and Garsia’s sub-
sequent explicit formulation of these latter objects as g-difference operators [Gar92].
Using this new formulation of the modified Hall-Littlewood polynomials we then
prove a particular case of a conjectural identity for a Littlewood-type sum involving
@. One side of this conjectural identity is a ¢-hypergeometric sum. Later we will
see that this side may be identified with the right-hand side of a specialisation of
the C,, Andrews transformation.

An explicit formulation

We begin with a brief revision of Jing and Garsia’s relevant theorems. For more
details on this preliminary material, see also [Za00)].

We will use the following notation. Let f € A,. Define the operator f* as the
adjoint of f under multiplication with respect to the Hall inner product. That is,
for u,v € A,

(f(w),v) = (u, f(0)).
This operator is sometimes called the Foulkes derivative; called derivative because
its action on the order of a symmetric function shares some properties with that of
an ordinary derivative. For example, if f € A, and g € Ag, then the homogenous
symmetric function f*(g) has order s —r (0 if 7 > s). The Foulkes derivatives of the
elementary and complete symmetric functions appear prominently in the definition
of the ¢-Bernstein operators B, := B,(z;q),

B, = Z (_1)Tq5h10-&-r—i—s(x)ethsL = Z hp-i—?“(x)hL (‘T(q - 1))a
r,s=0 r=0
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where p is an integer and the second expression uses \-ring notation. Alternatively,
if B(z) =: B(z;x;q) is the vertex operator B(z) =)  2™B,,, then

BE) (@) = F(r -]

i>1

1
1—zz;’

where we have again used A-ring notation. In [Ji91] Jing showed that the modified

.....

In other words, the @) are uniquely determined by the recursion

Q//\ = B)\l (Ql/u)v

subject to the condition Qf = 1, where pu = (Ag, ..., Ag). This recursion was given
an explicit form by Garsia [Gar92, Thm. 2.1] in terms of ¢-difference operators as

Q\ = zn: xf;zl ( H - l )Tq;fcanL7 (5.1)

m=1 i#m !

where the operator Ty, is defined by

Tyam F (X1, Ty ooy n) = f(T1, 0 QT -, Ty

Equation (5.1)) may be used to quickly rederive the recursive forms for hy (|1.9) and
sy (L1.15). When ¢ =1, Q) (z;1) = hy(z) and T}.,,, is the identity operator. Hence
@, may be brought before the sum and ([5.1)) becomes ([1.9). Recalling the notation

m
SU( ) = (.1:1, sy =15 41, - - - an)a

the second recursion arises for ¢ = 0, where Q' (x;0) = s)(z). The stability property
of sy ensures Tp.,, sx(7) = sy(x™) so that becomes (L.15).

We will now briefly introduce a fourth family of Hall-Littlewood polynomials,
the modified Hall-Littlewood polynomials P;(x;q) := Py, which appear as the dual
basis of () in the Hall inner product,

<P£, Qu) = 5/\u‘ (5‘2)

In many papers concerning the modified Hall-Littlewood polynomials [DeLeTh94,
Gar92, GarPro92,|Ki00,|La05, Mi92|, the Pj receive none of the attention given to
Py, Q) and Q). The lack of interesting results involving Pj is likely due to the
fact that these polynomials have coefficients in Qlg|, are not Schur positive and do
not interpolate between classical symmetric functions under specialisation of ¢. It
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should be understood that we will employ P5 simply because of the convenience
provided by the scaling relation

Q\ = b\Fy,
where by := by(q) is defined in (1.40). As such, we will freely switch between Q)
and P§ without further comment.

Recall the rational function f,gfs) (z;q) (4.11). For simplicity in the following

statements, we define the convention

frs(@iq) = £ (2:0).
We now present two original representations of () that we develop specifically for
use in later sections. These formulas are probably too complicated to be of broader
interest, but prove essential for the results that are the main focus of this thesis.
This next theorem constitutes a closed-form solution to Garsia’s recursion (5.1)) for

Q-

Theorem 5.1. For all partitions A with x = (x4, ..., x,),
Py (x;q) ZHf 0 o1 (T3 q) (5.3)
>1
where the sum is over all vV D r@ D G ... with each r® e Z': such that lr@| :=

T%e) +o4 P = = \}.

We remark that the product in may be written with a finite upper bound.
Since [r(¥)| = 0 when £ exceeds the length of X', (i.e., when £ > ;) and fy pesn) (73 q) =
1 for 7 = 0, we need only consider the product up to £ = \;.

This discovery of this theorem is a critical step towards the combinatorial char-
acter identities of Chapter [6]

It is a highly non-trivial fact that the sum of rational functions on the right-hand
side of is a positive polynomial, and so we give an example in addition to a
proof. Switching to @}, for A = (1*) we have

T3 q) = Z fro(@;q).
|r|=Fk
We now choose A = (1, 1) and sum over 7 = (r)) with 7(!) running over (2, 0), (0, 2)

and (1,1), so that

2,4 2.4
q Ty q Ty

(1 — 22)(qu1 — 22) (22 — 21) (g2 — 21)
(1 — ¢*)afa?
(1 —q)(gr1 — m2)(qr2 — 71)
= 2123 + q(2} + 23 + T122).

Q/(1,1)($17902;C]) =

+
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Before we proceed with a proof of Theorem we will give a useful lemma from
INGSS, Eq. (7.13)].

Lemma 5.2. For all positive integers n,

- T T — Tili
Z<1—ym>(H—)=1—y1---yn, (5.4)
m=1 im1 fm T T

In Milne’s paper Equation ([5.4)) comes as part of a more general statement whose
proof, while not complicated, is more than we need here. We will instead employ

an elementary technique communicated by [Ros04, pp. 421].

Proof of Lemmal[5.9 Given fixed formal parameters a and b, consider the following
product and corresponding partial fraction expansion:

n

o=, 55)
i=1 '

k=1

where ¢, := cx(a,b) is to be determined. To find this coefficient, we multiply both
sides by a,, — z and set z = a,,. This yields

n

bi—am
Cm = (b, — @ )
m (m m)gai_am
i#Em

Now, substituting this into ([5.5)), we obtain

b — 2 " ap — by 1 ar — b;
I i
BT WA T k=2 Ak —
J#k
where, by setting a; = z;, b; = x;y; and z = 0, we arrive at the result. O

Bearing Lemma [5.2] in mind, we proceed to the proof of Theorem [5.1] For any

sequence r = (11, ...,7,), when we write r £ €,,, we mean (rq,...,r, £1,...,7,).

Proof of Theorem[5.1 Let = (Ag,...,\,) and let A\; = d, so that
A\ = (1m1 ce dmd)7

with mg = A, > 0. Garsia’s ¢-Bernstein recursion for @) (5.1)) may be trivially
restated for Pi:

1 x
- A m /
D= > o ( 11 Pe—— xi)Tq;mme (5.6)

m=1 i#m
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where we have used b,(q)/bx(¢) = 1/(1 — ¢"™*). Equation (5.3 clearly satisfies the
initial condition Pj(x) = 1, so all we need to do is show that it satisfies (5.6). Now,
using the remark after Theorem [5.1] we may write (5.3) as

d
Z H Jr e, (5.7)

|7"(k)|:)‘§c (=1
1<k<d

(d+1) .

where r; =0 for 1 <i<n. Using |pu| = |\ — d and

! bV
2 (5) w2 (5)
i>1 i>1

together with some simple but lengthy manipulations, it follows that

d
Tq me}/L< ) = ‘/ET_rLd Z H fr(l)+em,r(l+1)+5m (.77, Q)
|T(k)|:>\;€,1 (=1
1<k<d
After shifting 7\ — ri) —1for £ =1,....d (while recalling that (@) := 0), this

implies

—=
)—l
|
bQ
N@
Gl
~
&
N
:ﬁ
2
S
t

/ . _ —d 2 :
TQyﬂmeu ,C]) =Ty
|r(k>\:>\;€ i=1 Z:l
1<k<d

Therefore

> :csfn( 1. xZ)Tq,szM Q)

m=1 i#m

(@

Z Z (d) (H m__ZiI )Hf(g) P41 - 58)

(k) 1
P [=x;, m= iz
1<k<d
By Lemma [5.2] the sum over m in the summand simplifies to
1— qrgd)+“'+1”»£1d> =1— q|7‘(d>| -1 )‘ii

_q :1_qmd

The right-hand side of ((5.8)) thus simplifies to P§(z;¢), completing the proof. ]

We also provide a more computationally efficient alternative representation of
P;.
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Corollary 5.3. Let ' = (M -+« M3 M["), for My > -+ > My, and 7y, ..., 7m > 0.

Then
Py(x;q) Z H fr<4) 1))

|r® =M 1=1
1<I<k

where r(m+1) = 0.

Note that for m = 1 (5.3) simplifies to Milne’s expression for P indexed by a
rectangular partition of the form A\ = (m™), which is implied by equating (2.7) and
(2.17) in [Mi94].

In spite of the fact we have used the label corollary, at first glance the above
formula may appear to be more general than Theorem [5.1] Indeed, Corollary
“reduces” to Theorem when 77 = 75 = --- = 1, upon the identification of a;
with m; and M; with A,. Corollary arises from the observation that the sum in
is written with more summation indices than we need in most cases. In the
following proof we work to get rid of these redundant indices.

Proof of Corollary[5.3. We use the following notation for ease of representation. Let

the partition A be given in multiplicity notation as
A= (b ) (bt ),

where 71,...,7, > 0 and ay,...,a, > 0 are integers. Note that this representation
maintains full generality over the set of all partitions.

Now, observe that m;(A\) =0form+-- -+ <i<m+---+741and 1 <0 <m.
Then using m;(\) = \] — A, we have

)\/

/
A T+ 4Ty

ERSNEE PR B =M, forl1</<m.

We apply this notation to Theorem . In the sum of (j5.3]), we then have
\T(Tﬁ'“”f*l“)‘ — = \r(ﬁ*“'“f)] =M, forl</{<m. (5.9)

Thanks to the occurrence of the product

n

1

(qxz'/%)rl(é)f,,;em

1,j=1

in f. .« and the fact that 1/(q)_, = 0 for n > 0, the summand of ([5.3)) vanishes
unless r'” > ™. Hence, if |[r®| = [r D], then we must have r® = ) We
may thus replace (5.9)) by
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plritetreatl) — o= pntetn) = 0 for 1 <0 <m (5.10)

where || = M,.
From (4.11)) it is clear that
15 =TI (#71®)
i=1
and we find that, subject to (5.10) and the remark immediately after Theorem

71+ +Tm

H fro gy =

r—1
(fsm,S(o)T Js@ s,

’,:]3 n',:]s

Te
f s(0) s(t+1)

~
Il

1

It thus follows that

Z Hf (0 plt+1) = Z Hf (0) s(t+1)" (511)

|r 4)| )\/ >1 |34)| Mee 1 0
2>1 1<e<m

The Rogers—Szegd polynomials

In this short section we briefly review some of the elementary properties of the
Rogers—Szegd polynomials [Rog1892,/Sz26], which will appear alongside the Hall—
Littlewood polynomials in our soon-to-come conjecture for a Littlewood-type sum.

The Rogers—Szeg6 polynomials H,,(z;q) are defined by the generating function
[An76, pp. 49]

i Hulzigo™ _ 1 (5.12)

= (@m (1, 22)00

for |z| < 1. By two applications of the g-binomial theorem (3.2), one finds the
explicit form

Hyp(2;q) = i [m} 2, (5.13)

=0

where we have used the ¢g-binomial coefficient [ } defined by

W R
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It will be useful to follow the convention that [*] = 1/(g);. Subject to the initial
conditions Hy(z;¢q) = 1 and Hy(z;q) = 1 — ¢, the Rogers—Szegé polynomials satisfy

the recursion
Hya(z59) = (1+ 2)Hy(239) — (1 — ¢™)Hp—1(2; q)- (5.14)

In [Rog1892], the Rogers—Szegd polynomials are defined only implicitly by means
of (what are now known as) the continuous q-Hermite polynomials H,,(z|q), which
are instrumental to Rogers’ first proof of the Rogers-Ramanujan identities (3.22)).
These polynomials may be identified with the Rogers—Szeg6é polynomials by the
assignment

H,(2lq) = €™ Hy,(e72; ),

where z = cos 6.

We remark that the continuous ¢g-Hermite polynomials appear in the so-called
q-Askey scheme for g-orthogonal polynomials, compiled by Koekoek and Swarttouw
in two very detailed resource manuals [KoSw98,|KoLesSw10]. In g-hypergeometric
notation, the continuous ¢-Hermite polynomials may be written as

Hy(zlq) = €™ 5¢0(q7™,0;—3q,¢" e 7).

Following the classical program, the g-Askey scheme organises many g-orthogonal
polynomials into a tiered hierarchy, where each polynomial in the ¢th tier is a limiting
specialisation of a polynomial in the (¢ + 1)th tier, or may be specialised to obtain
a polynomial in (i — 1)th tier.

The Rogers—Szegd polynomials do not factorise in general, but there are a number
of factorisations into cyclotomic polynomials for special values of z. Up to the

symmetry
Hy(25q) = 2" Hy (275 q), (5.15)

these specialisations are listed exhaustively as follows [An76, Ch. 3, Examples 3-9]:

Hy,(0;9) = 1, (5.16a)
1 q*)ms2, for m even,
H(~Lig) = BT ' (5.16D)
0, for m odd,
Hyu(=q:0) = (65.4°) /21 (5.16¢)
Ho(£¢"7%;q) = (F¢"% £¢"%) . (5.16d)
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It is easy to verify these expressions through the use of the following identity, due
to Berkovich and Warnaar [BerWar(05, Theorem 8.1]
Lm/2]
m/2
Hn(z9) = > 2(=a/2%6")e(—2 ¢") mj21 - {L T/ J} )
q2

r=0
or by using the standard identities for ,.¢; series that may be found in |GasRa90].
The occurrence of the Rogers—Szeg6é polynomials in the context of symmetric
function theory is perhaps not as surprising as it may first seem. In particular we
note that

Ho(2:0) = (@b () (5.17a)
= ZK,\'(W)SA(L z). (5.17b)
A

Equation (5.17al), which employs A-ring notation, immediately follows from ((1.45b))
and (5.12)). Equation (5.17b)) requires slightly more effort. Recalling the definition
of hook length from page [5] the hook length polynomial is defined as

Hy(q) := H (1 o qh(S)).

SEA

Now, once more using (5.12)), we have

i Hy(z)z™ 1
= (@ (7, 22) 00
n(A) Al
"Nz
= sx(1, 2
; Hi(q) L:2)
oo n(\)
q
= ™ sx(1, 2)
mz=o i M)
oo xm
=3 S K (@) (1.2,
m=0 q)m A

where the second equality follows from [Macd95, p. 66] and the final equality from
[Macd95, p. 243]. Equating coefficients of ™ in the extremes of this equation settles

BITH).
A conjectural ¢-hypergeometric identity for a
Littlewood-type sum

Littlewood-type sums involving the Hall-Littlewood polynomials have appeared in
the literature quite extensively, see e.g., [[sJoZe06}JoZe05, Kaw99, Macd95,Stem90,
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Vel2,War(06|. In this section we present a novel type of Littlewood sum for the Hall-
Littlewood polynomials, expressible as a g-hypergeometric multisum. We require
only a little more notation before we proceed to state this conjecture.

Using the conventions of Warnaar [War(06|, H,,(z;¢) may be extended to parti-
tions as follows:

For example,
haazp210)(2:0) = H(2:q) Ha (2 q).
For a partition A, let A\, be the partition formed from the odd parts of A. For
example, if A = (5,4,3,3,2,1,1), then X\, = (5,3,3,1,1).
With this notation, we present the following general conjecture for a Littlewood-

type sum, which is supported by extensive computer-assisted checking.
Conjecture 5.4. For M = (M, ..., M,,) € N™ and my(\) := oo
- Moy_ A
5 <00z oz T [ 20|
=1

A A2(—1
A1 <2m

= Z <H (_ Z(Uw/x“ _qlrgl)z/xi)ng)> H fﬁ(ze))yr(un(x; q), (518)
i=1 /=1

where the sum on the right is over v, ... ™ € N" such that [r"9| = M,, and
(m+1) .—
r = 0.

By summing both sides of ( over all sequences M € ZT', we obtain an

expression that is more useful for later applications, where the right-hand side is

simply a sum over ), .. (™ ¢ 7 For ease of representation we introduce the
polynomial
2m—1 2m—1
hg\m)(w,z; q) = H ZmiA y(w/z; q) H Hpo0(wz;q).
ilodd i ven

For example, given A = (8,8,7,5,5,2,1,1) and m = 4:
h(;l)(w 2,q) =z Hl(w/z q)H (w/z q)Hi(wz; q) Ha(wz; q).

We remark that this representation hides the fact that hg\m) is symmetric in z and
w, which becomes easy to see using (5.15)).
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We now use this polynomial to rewrite ([5.18]). On the left-hand side of (5.18)) we
interchange the A and M sums and shift M, — M, + X}, _,, to obtain

. m M, | Mae—2(A
; zf(/\o)PA(x;q)hAo(w/z;q)el_[ (wz) { iwé( )]

=1 M,;>0

(5.19)

A <2m

Since [m“j\}i(’\)} = 1 when M, > mys_s, the sums inside the product terminate at

mar—o. We may then apply (5.13]) so that all but the £ = 1 case of the product in
(5.19) may be written together as

2m—1

H Hppy o (w25 q).
=1

i even

Since we define my(A) = oo, by application of the g-binomial theorem ([3.2]) for
a = 0, the remaining M;-sum may be completed to obtain the factor 1/(wz).. We
then arrive at the next corollary.

Corollary 5.5. Let |lwz| < 1. Assuming (5.18), we have

> b (w, z:q)Pi(x:q)
A

A <2m
n

G G -
=<wz>mz(n<—q1 S 1z/xi)nm)Hf:éi,ml)(x;q), (5.20)
/=1

i=1
where the sum on the right is over v, ... r™ e N*, and r(™+) .= (.

Later we will consider in the case m = 0. For this purpose we set héo) =
(w2)s0, S0 that here the left and right-hand sides are equal.

In the context of (5.20]), consider the specialisations of (w, z) where h(Am) (w, z; q)
is factorisable. Now, hf\m) (w, z; q) contains both H,,(w/z;q) and H,,(wz;q), and so
by the only choices of w and z that will yield a factorisable result are

(w,2) = (0,2), (1,¢%), (=1, —4"?), (¢"%, —¢"/?).

Note that for w = 0, the variable z is not restricted to the specialisations in (|5.16]).
Note furthermore that we have dismissed the case (w, z) — (1,—1) due to an issue
of convergence; on the right-hand side of , the factor (wz)s tends to infinity.
It is for a certain subset of these possible specialisations, applied to a later result,
that we obtain characters of affine Lie algebras.

In the case of the specialisation w = 0 we can prove Conjecture [5.4] which, by
application of ((5.16a)) to , leads us to the following proposition.
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Proposition 5.6. For M = (M,..., M,,) € N"

n

sz(Ao)P)’\(x; q) = Z (H (—ql i Z/xz (1)> H <z) 7a(e+1 ;q), (5.21)

i=1
where the sum on the left is over partitions A such that A\y < 2m and X,, | = My,
and where the sum on the right is over rV, ... r™ ¢ N" such that ]r(z)] = M,.

The proof of Proposition is simplified by the observation that z is essentially
an overall scaling factor in and therefore may be eliminated without loss of
generality. This fact is demonstrated in the following remarks.

By the substitution x — xz we have

n

PR ACTIEDS <H( = ) “)) Hfm o (@239). (5.22)

i=1
Now, it follows trivially from the definition of f{% (z;¢) (£.11)) that

[ @z q) = 2 (21).
On the right-hand side of (5.22]), we then have an overall factor of z2Mit-+2Mm

arising from

m

2M 2Mp,
H (z) ) :UZ Q) = g2t Hf(z) z+1)(x Q)

/=1

where we have used |r()| = M,.

Observe that since P} is homogeneous of total degree |\|, Pi(z2;q) = 2P} (x;q).
Using m;(A) = X, — N1, we have £()\,) = |Ao| — |Ae| and so on the left-hand side of
(5.22),

Zzlko\—lAeIHA\pi(x;q) — 2Mit42M, ZP;\("L‘;Q)'
We may then rewrite (5.22)) as

Z P (x;q) = Z (H (—ql_r'gl)/ifz')n(1>> Hf:?é))7r(£+1)(x; q),
=1

i=1
which is precisely ((5.21]) for z = 1. It then suffices to prove Proposition [5.6|for z = 1.

In the following proof we will use the notation ;9 to represent the A,,_; basic
hypergeometric series

Dofa iq.a) =Y H( ))1‘" ﬁ x:j(ajxi/xj)'ﬂ‘(?mi/xj)ri_rj7

reN? =1 ij=1 (q‘rl/xj)ﬁ

where a = (ay,...,a,).
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Proof of Proposition[5.6 Recall our earlier convention of writing f,. s for fﬁ)(.’p, q).
We apply Theorem with A a partition such that A\; < 2m, so that in light of

the remark after Theorem [5.1] we have

2m

/

P)\: E Hfr“)ﬁ(“”‘
/=1

summed over (1) D ... D 7™ ¢ N" such that [r¥| = )}, where r®m*1) .= (0. We

now replace (o 1,7’23) — (rg,s¢) for all £ =1,... m. Hence
B=) [ /oo fo e, (5.23)
=1

where the summation indices are now written ) D s D ... D (M D g(m) ¢ N»,
such that [r®)| = X,, | and [s)| = \,,.

We now sum both sides of over all partitions A such that \; < 2m and
Nyy_1 = M, for 1 < ¢ < m to obtain

Z Py = Z H fr s [ pesny, (5.24)
=1

so that the left-hand side of is identical to the left-hand side of . On
the right we have combined the summation conditions just mentioned with those of
(5.23) so that the sum is over r&, ... 7™ € N* and sV, ... s(™ € N” such that
r| = M,. What remains to be shown is that this is identical to the right-hand

side of (5.21)).

Now, the summand on the right-hand side vanishes unless i+ c 50 C O,
We are then prompted to shift s — s 4 (D for the new bounds 0 C s C
r® — 1 Using the explicit form for f,, given by and manipulating some
of the ¢-shifted factorials, the right-hand side of is then equal to

where each s sum now forms a ;P series and the remaining summation is over
1
7 ), . ,T(m) e N",

which is still subject to |r®)| = M, and where (1,...,7,) = (1,2,...,2). By
Milne’s A,,_; terminating g-binomial theorem |[Mi97, Theorem 5.46]

1PV q,2) =[] (™l

=1
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By application of this theorem to each of the 1®q series, (5.25) is then

n m
(1’+1)
E (H H (L') (£+1)> H f (e) r(E+1)

=1 (=1
n m

= Z <H q:l (1)) Hf (z) (£+1)> 5 26)

where the right-hand side follows by elementary manipulation, recalling that r(™+ .=
0. We then apply (=b), = (—¢*~"/b), brq(;), to obtain the right-hand side of (5.21)),

as required. O
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CHAPTER 6

Combinatorial character formulas

Introduction

In this penultimate chapter we bring together all the foundational material of pre-
vious chapters to derive combinatorial formulas for characters of affine Kac-Moody
algebras of types Agi), c and Dfi)rl for a 1-parameter family of weights. These are
the main results of this thesis.

Our mains results are achieved by carrying out, in any order, a three-step pro-
cedure on both sides of the C,, Andrews transformation (£.12)), which in particular
requires that

I. all of by, co, ..., bpmi1, Cmy1 tend to infinity,
I1. the bounds of summation Ny,..., N, all tend to infinity, and

I1I. the alphabet z is replaced with a* := (z1, 27", ..., 2, 2, 1).

n

Note that step III effectively doubles the rank n. After steps I and II, and by
using the conjectural ([5.20)), the right-hand side of the C,, Andrews transformation
may be identified with a Littlewood-type sum over the modified Hall-Littlewood
polynomials. Subsequent to all three steps, the left-hand side becomes a formula
that unifies the Weyl-Kac forms of the characters Agi) ([2-25)), c and Dfi)rl
(2.28), where each individual character is obtained by certain specialisations of the
parameters b; and ¢; that remain from step I.

We can motivate steps Il and III by comparing the features of the left-hand side
of the C,, Andrews transformation with the features of the character formulas ,
and (2.28). Recall that the left-hand sum of the C,, Andrews transformation
is a terminating series that is unilateral in the positive quadrant and symmetric
under simultaneous permutation of x and N. In contrast, the expressions appearing
on the right-hand side of the character formulas are bilateral sums over the full

n-dimensional integer lattice and have signed-permutation symmetry in z. Steps

74



IT and III serve to introduce the desired symmetry and range of support to the
expression on the left-hand side of the C,, Andrews transformation.
In our results we also consider the same three-step procedure for the alphabet

x = (x1,...,Tn_1,1) where we abuse notation slightly to define
vt = (z, 27, ey, 10, 1),
and not (z,27",...,2,_1,7,%,,1,1) as one might expect. Our result for this alpha-

bet does not yield combinatorial character formulas, but will be important in the
next chapter. The details for the execution of the three-step procedure are quite
long and involved and so we leave them until after the discussion of our results.

Main results

We now present the general theorem that yields our main results under specialisa-
tion. Recall the polynomial

2m—1 2m—1
hg\m)(w,z; q) = H 2 »(w/z;q) H Hop, (w25 q).
zzgdld i even

from page [69}

Theorem 6.1. Let m be a nonnegative integer and |q/bc| < 1. Then the following
two identities are true for b — oo and true for general b if the conjectural (5.20)
holds. First,

n

AC I(] b{L‘Z,CJ]z qlin " T (m+n)r;
PRIl (%) @)

xi b, c; q = paley (qx; /b, qxl/c
= Y PR (=g /b, —¢ 2 fesq) P (%1 ), (6.1a)
-
where x = (x1,...,,) and

D(z%;b,¢;q) OOH qxi/b qxi/c) H (q2F7F) . (6.1b)

1<i<j<n
Now using the alphabet © = (x1,...,x,_1,1), where
- +2  +
(qz; ,qa: ) +,.+
D(z%:b,¢;q (q77 5 ) oo (6.1c)
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the second identity is given by

n

1 (bx;, cx;)y. PPN G o mane1/2)r
D(a%:b,¢:q) >3 H (qwi/b,q:/<)., ( be ) )

rezn =1

Z PR (g2 /b, —qM? e q) P (21 q). (6.1d)

\/\y

A1

Recalling the definition héo) (w, z;q) = (W2)no, we point out that for m = 0, the
identities (6.1a)) and (6.1d]) appear as specialisations of Gustafson’s C,(Tl)—analogue of
Bailey’s sum of a very-well-poised ¢t series [Gu87, Theorem 5.1]:

n+1

AC xq —(n—i+1)r; (bfxi7 Cfxi)n ( q \"
T% E g (qzi/be, qzi/ce)r, bec)
(Q)n n+1
= I @b T (@/bsbea/erce ] (0272 )
( /brer s+ bn g1 Cnia oo k=1 1<k<t<n+1 1<i<j<n

n+1
1

X H(qg;;m)oo ng EITRTI (6.2)

In particular, (6.1a)) is found from (6.2)) in the limit by, co, . .., byi1, Cpe1 — 00 and
(6.1d]) is found when bs, c3, b3, ..., byi1, cpy1 — 00 and co = 1, where

(X1, xn) = (=21, .o, =Ty, —1).

We will now specialise (6.1a]) to obtain manifestly positive representations of the
characters AQn, cV) and Dﬂl. These specialisations are guided by the factor

W™ (¢ /b, —¢"* /¢; q)

on the right-hand side. Recall from page [70] that the arguments for which this
function is factorisable (adjusted for (w, z) = (—¢*/?b, —¢*/?c)) are:

(b7 C) — (OO, 0)7 (_q1/27 _1)7 (q1/27 1)’ (_17 1)'

We emphasise that it is only for specialisations where b — oo that our results are
fully supported, since the other specialisations are conjectural cases of Theorem
For b — oo the right-hand side becomes

> NP (=q"? o) P P (¥ q) (6.3)

A1 <2m
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There are three specialisations of ¢ that yield characters of affine Lie algebras on
the left-hand side of (6.1af). For ¢ — oo we have

1 AC xq (n+m~+1)r2 —nr;  2(m+n+1)r;
n ’LI'L 7'7
()% i (qxz:'tz)oo H1§i<j§n<q$ a? ; 11

which, by Lemma , is the character of the integrable highest-weight module V' (A)
of type Cg), where A = mAy. For this same specialisation, the sum in (6.3]) vanishes
unless ¢(\,) = 0, i.e.,, A is a partition with only even parts. The corresponding
identity for this specialisation is given in Theorem [6.2]

For the specialisation ¢ — —¢*/? on the left-hand side of , using

% = (aq""?) o (aq* %)

to compute D(z*; 00, —¢/?; ¢), we have
1
(9)% H?:l(ql/%z:'t)oo(qz-f?ﬂ% 4%)o H1<i<j<n(ql’i$i)

AC xq H (nt+m+1/2)r2 . 2(n+m+1/2)r;
Z n+m 2 fm“zxi i
=1

rewn

Y

which, by Lemma , is the character V(A) of type Agl) for A = mAy. The corre-
sponding identity for this specialisation is given in Theorem
Finally, for the specialisation ¢ — —1 on the left-hand side of ((6.1al), using

((_a%;:o = (a0) (03 ¢*) o

to compute D(z%; 00, —1;¢), we have

1
()% H?:l(qxf)oo(qxii% q%)o H1<i<j<n<q$i$i)

Z Ag( xq H (mAnt1/2)r —(n—1/2)r; , 2(mnt1/2)r;

rezn

Y

which, by Lemma , is the mirrored form of the character of V(A) of type A for
A = mA,,. The corresponding identity for this specialisation is given in Theorem
0.4

With these specialisations we announce the following three theorems, which are
the main results of this thesis.
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Theorem 6.2. Fiz a nonnegative integer m and let

g=¢" and z; = e~ T 1m/2
Then, for g = C® and A = mAy,
e chV(A) = Z g2 P (2% q). (6.4)
S

Theorem 6.3. Fix a nonnegative integer m and let

q=e"° and x; = e -1 an/2
Then, for g = Agi) and A = 2mA,,
e M chV(A) = Z gM2 P (2% q). (6.5)
Alg)\?m

Theorem 6.4. Fix a nonnegative integer m and let

§

g=¢e"° and x; = e V0T M1,

Then for g = Agi) and A = mA,,

e M chV(A) = Z q("\|+l(’\°))/2P/’\(xi;q). (6.6)

A
A1 <2m

There is some evidence that suggests the combinatorial character formulas in
Theorems [6.2] [6.3] and [6.4) hold more generally. After substantial computer-assisted
investigation, we are convinced that and also hold for half-integer m.
Furthermore, for the CS) character, we believe that

k
e M chV(A)) = 2y i Q'(le) ($i§ Q)-

0 (9)x

WE

B
Il

One more character identity may be obtained from under the specialisation
(b,¢) — (=1, —¢"/?), which is one of the conjectural cases. We note that here the
specialisations of each side are not completely independent of one another as was
the case previously. The factor h&m) (¢*/?,1;q) on the right of simplifies by
the straightforward use of the list of factorisations of H,,(z;q) (5.16)

2m—1

hE\m)(ql/27 1:q) = H (‘ql/Q;QI/Q)mi(A)- (6.7a)

=1
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To obtain the correct form for the following conjecture, it is important to intro-
duce the factor (—¢'/?;¢'/?) into the product above. For uniformity, we use the
convention that mg(\) := co. The expression above then becomes

2m—1
1
P (g%, 15) = —a7% /) [T (a4 . (6.7b)

=0

so the right-hand side of (6.1a)) is given by

1 2m—1
e 3 qwz( 11 (—ql/Q;qm)mi(A))P*( ). (6.8)

A =0
A <2m

On the left-hand side we have

1/2,.+

_qxi7 —q T )oo H 1
(g277) o0 T )0

1<i<j<n (qxi J

Z Ag( xq H (mA4n)r2—(n—1/2)r; 7J(m+”)“'_ (6.9)

rezn

n

1
()5 7

After shifting the introduced factor 1/(—q'/?;¢'/?) from the right-hand side to the
left and using the identity (a%q)oo/(—aq"?, —aq)ss = (aq"/?;¢"/?)ss, we then rescale
q — ¢* and apply Lemma to obtain the following conJecture. Again, we be-
lieve that this identity also holds for half-integer m, and so this condition has been

incorporated.

Conjecture 6.5. Let g = D7(12+)1 and, for m a nonnegative integer or half-integer,
let A =2mAy, g =€ and x; = e %% Then

et chV(A) = Z ql)\l( I_I (_Q)mi()\)>P>/\(xi3q2)' (6.10)

A =0
A <2m

It is natural to ask why it is only for the types Azn, c and D,(fll that we have
theorems or conjectures. Now, no other specialisation of b and ¢ in will yield
further combinatorial character formulas but it is possible to obtain equations that
are tantalisingly close. Under certain specialisations of b and ¢, the left-hand side of
resembles the Kac—Peterson form of the other BC,, type characters; i.e., BY )
D,(l1 and Agi)fl. The specialisations obtained are (up to a prefactor) of the form

LHS = > fy.(2)

reLn
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where f; . (2) is the summand of the Kac-Peterson representation of the affine char-
acter of type g. Where these near-character formulas differ importantly from the
desired Kac—Peterson form of the other BC,, type characters is in the summation
conditions: missing here is the condition |r| = 0 (mod 2). However, combinatorial
character formulas for the missing types may be obtained from another C, hyper-
geometric series, similar to the C,, Andrews Transformation, which arises from a
C,, Bailey pair («,3) where «, vanishes whenever r = 1 (mod 2) [War]. More-
over, Milne and Lilly’s A,, Bailey lemma [MiLil92] may be applied to generate an
A,, Andrews Transformation, but perhaps surprisingly this does not seem to yield

character formulas upon specialisation.

Proof of Theorem [6.1]

In this section we carry out the three-step procedure described at the start of this
chapter, which constitutes a proof of Theorem [6.1] We complete this proof in two
parts, where the left and right-hand sides of the C,, Andrews transformation are
treated separately. The details of the procedure for the left-hand side are dramati-
cally more complicated than those of the right-hand side.

We will now define some useful notation. Recall the C,, Andrews transformation:
for m a nonnegative integer and N € N”,

Z Ac Sﬂq ﬁ rﬁ (bewi, coxi)y, ( > ﬁ “Niwi/xy, 2y, quri]

0CrCN i=1 | =1 (qi/be, qvi/ co)r; \bice =1 (qzi/7j, ¢Vt aizy),,

- o T —

1<i<j<n (qxzx])Nz‘i’N

Y H qazz/a:g - H £ e (239)
(=1

XTi/X;
r) . p(m)eNp i,j=1 q l/ J Ni—r;

m+1 q (0]
X q/bece) -1 _ppo (—)
KHl (a/bece)pe-vi-por (3 -
no (bewi, comi) o ]

i=1 (qxl/bb qxi/cé)r@fl)
(6.11)

X

where 79 := N and r(™*1) := 0. As shorthand, we will express this transformation

as
LN(JU; b,c;ba,Coy vy D1y Congts Q) = RN(33; b,¢; by, Cay - by, Cng; Q) (6-12)

where we have relabelled the variables by, ¢ as b, c.
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The right-hand side

We will demonstrate that after application of steps I, II and III, the right-hand
side of the C,, Andrews transformation becomes the right-hand side of when
x = (x1,...,2,), or (6.1d) when z = (xy,..., 2,1, 1).

The right-hand side of C,, Andrews is a rational function and hence we may let
all by, co, ..., byma1, Cma1 tend to infinity for fixed N € N™®. We then wish to let all
Ny, ..., N, tend to infinity, which will complete steps I and II. For this we must

assume that |¢/bc| < 1 so that we may apply dominated convergence to obtain

Rioomy(x50,c;00,...,00;q) = (q/bc) s D(z; b, c;
(oo q) = (¢/bc)os D( q)

2m times
L (1) ) i
—r —p (] 2
X E | | (ql n /bfuql " /cxi)r(l) | |qlT |f£(e)) T(z+1)(x§ q), (6.13)
4 )
P p(m)eNn i=1 =1

.....

D(x;b,¢;q) == H (477)os H (g% ) oo- (6.14)

paley (qzi/b, qmi/c)o 1<i<j<n
By the replacement
('Ta w, Z) = (q1/2x, _q1/2/b7 _q1/2/0)7

in the conjectural ¢-hypergeometric identity for a Littlewood-type sum and
the use of fﬁ?(ql/%; q) = q'r‘fr(? (x; q), the right-hand side of becomes an ex-
pression that matches the right-hand side of (6.13), up to the prefactor D(z;b, c; q).
Finally, step III is completed by replacing the alphabet x with 2*. For |q/bc| < 1
we then have

R(OOQn)(.fL'i; b,c;00,...,00;q)
= D(z*1b,¢;q) Y M2 (=g /b, —q' 2 fe; q) Pi(a*1q). (6.15)
A 22m
where earlier we proved the conjectural for w = 0 and so holds for

b — 0.

The case for x = (z1,...,2,_1,1) follows by exactly the same argument until

(6.15) where oo®" is replaced by co?" 1.
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The left-hand side

We will now demonstrate that after the three-step procedure at the start of this
chapter, the expression on the left-hand side of the C,, Andrews transformation
becomes the left-hand side of when © = (z1,...,x,), or (6.1d) when = =
(1,...,Zp_1,1). In the execution of this procedure we are able to maintain finite
bounds and full generality of the parameters by, co, ..., byni1, a1 until the very end

of our calculations and so, for this reason, we will carry out steps I, I and III in the
order III, I, II.

Bilateralisation of the left-hand side of the C,, Andrews transformation

Recall that steps II and III amount to the restoration of signed-permutation sym-
metry and the bilaterialisation of the unilateral sum on the left-hand side of the C,,
Andrews transformation. It is the carrying out of step III that demands the most
effort in the following considerations.

Let the left-hand side of C,, Andrews be denoted more simply as

LN(xa ba (6% b2a Coyevny bm-‘rlacm-‘rl; q) = LN(x)

The notation Ly(z) suppresses all but N and x as these are the only parameters
that will have an active role until we later come to steps I and II.

We now outline our approach to step III. The main obstacle in the change of al-
phabet # — z* arises from the denominator factor Ac(z), which vanishes whenever
the product of two variables in x is 1. This obstacle may be overcome through a
procedure in which we first double the alphabet (x1,...,2,) = (z1,y1, -, Tn,Yn)
and then iteratively perform the limit y; — z; ' for 1 <4 < n. This doubled alpha-
bet is of course accompanied by a doubling of the number of summation indices and
the number of summation bounds. We will denote the result of this procedure by

lim Ly NG M) (21,91, -, Zn, Yn) =t Lagn (), (6.16)

1 _
Yn—Tn 5. Y1 —>Tq

and, in Figurel|6.1] we give a more precise summary of the features of the intermediate
expressions at each stage. The application of step III in the x = (x1,...,2,-1,1)
case is very similar, and is achieved by carrying out the limit

lim L(N1,M1,...,Nn,Mn) ('rla Yty -5 Tpn—1,Yn—1, In) = LM,N(x)a

: (6.17)

—1
Tn =1 Yn—1—T, "1, Y1 T

where & = (21,...,2,-1).
We now give the result of completing step III and provide the details of the
computation shortly thereafter.
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Step 111 1I

Initial Doubled alphabet limy — 27! N, M — o
Variables T T1yYls -y Tny Yn xl,xfl,.. T, Ty, L T
Bounds 0CrCN 0Cr,sCN,M —-MCrCN —0CrcCoo
Symmetry Sh Son (Z)2Z)" »x Sy, (Z)2Z)" xSy,

Figure 6.1: The features of left-to-right-sequential intermediate expres-
sions during steps III and II. Note that the the desired bilateralisation
of the sum and the introduction of signed-permutation symmetry are
coupled together in the limit y — 2~ 1.

Proposition 6.6. For z = (x1,...,x,) and M, N € N",

. Ac( iUC] nol T (b, cony) - g\
Lyn(z) = Z H [H (g /be, i /o), <bgCg>

rezn =1 /=1

o Mz, g N fxg), (M;+N;)r;
X | | g 6.18
J:l Mt g, N )., !  (6.182)

and for & = (5(71,...,%'”_1), T = (I1’~"7$n—171) (26 Tn = 1)7 M € N1 and
N e N*,

<

i

=

n
1=

m—+1
R - —xq") (bexs, coxy)y, q
Ly (%) = ng:n (—2) 11 [H (qxi/be, qi/co)r, (beC)

n—

:E ':E] Ti Mj'rz- - (q ]xz/x]) N T
H Pz q H (@ z2;),, g | (6.18D)

',”UZ/I] T j=1

We remark that the sums in (6.18a)) and (6.18b|) have natural bounds arising from
the factors (¢™i 1z, /x;),, and (¢ Nix;/xz;),,, Le., vanishes unless —M; < r; <
N; for 1 <7 < n and similarly, (6.18b]) vanishes unless —M; < r; < N; and r, < N,,,
for1<i<n-—1.

Note that has the full symmetries of the group of signed permutations up
to simultaneous permutation of the bounds of summation, as intended. For example,

for n = 2,
L(MI,MQ (N1,No) (5151,932) L(M2,M1 (Ng,Nl)(anxl) =
Lt o)y vty (1,03 1) = Loy (vo,vy) (331, 21) =
Ly vy, on No) (171, @2) = Lay,ny) (N ay) (T2, 27) =
L(N17N2 ),(M1,M>) (xl 7x2 )_ L(NQ,Nl M27M1)(x2 7x1 )
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Before we can give a proof of Proposition [6.6, we must develop an instrumental

technical lemma. For this purpose we introduce the following function. For r € Z",
0<p<mnand M :=(M,...,M,)

n

Ac( :cq il (b, cox;) q \"
L)y () = =5 C T ( )
Mo (T) E H (qzi/be, qri/co)r, \bycy

_N, —M;
y (q in/iﬂj,q Jwi$j)ri q(Mj“‘Nj)’"i], (619)

“ (M Jx;, Vit )y,

where M,y = --- = M, := 0. This function has identical vanishing conditions to

those of (6.18al).

We use L%?N(x) to denote the sum of L%Z{N;T(ZB) over all r € Z. Observe that

Ly(z) = LY (x) (6.20)
and
Lun(x) = Li)y(2). (6.21)

Restricted to the following lemma and the proof of Proposition [6.6] we wish to
introduce some important notation. Let z(® denote the new alphabet derived from
the alphabet x in which the Varlable in the 7th position of x has been dropped. For
example, if x = (a, b, ¢), then 2 = (b, ¢), 2@ = (a,c) and 2 = (a,b) .

Lemma 6.7. Let M = (M,...,M,) and M' = (M, ..., My, Nyis). For 0 <p <
n—2,
lim LY ()= LU (@), (6.22)

/ N(p+2)
Tpy2—1/Tpp1 M',N

Proof of Lemmal[6.7 Let us first focus on those numerator and denominator terms

in LE\Z)’ v () that vanish when x,9 — 1/2,4;. From the numerator, in the product

n

n
11 11 @y

=1 j=p+1
we find the factors
(xp+1xp+2)rp+1 (xp+1xp+2)rp+z, (6.23)

where 7,41 and 7,49 are both nonnegative since M1 = Mp;o = 0. These factors
in turn have the component (1 — 2, 12,.9)? if 7,41 and r, 5 are both positive, 1 —
Tp1Zp+2 if only one of these is positive and 1 if both are zero. From Ac¢(zq")/Ac(z)

comes the contribution

1— Ip+1mp+2qrp+1+rp+2

, 6.24
L = 2p17p40 (6.24)
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which is 1 if both r, and 7,4, are zero, but leads to a factor (1 — z,x,4+1) in the
denominator if (at least) one of ry, r,4; is positive.

Combining contributions and , it follows that the left-hand side of
(6.22) vanishes unless one of 1,1 or rp,, is zero. These two nonvanishing remainders
are computed individually and then summed to obtain the final result.

It is now a long but elementary exercise to show that

: () _ r(+)) +2
1’p+2£r1r}1'13+1 (L]‘]/JI’N”(x)‘Tmz:O) o LJ‘Z'aN(”“);T(p“)(:E(p ))'

It takes only slightly more work show that

. 1) (p+2)
lim (L(p) (x ) — Pt NG
Tpya—1/Tpr1 M’N’T( ) ‘7"zo+1=0 M/ N@+2) 0+ ) ( ):

where 7% := (r1, ..., 71, —Tit1,Tis2,..,7n). In this last calculation we make use

of
(a)_” (Q/b)n b\n
b)—n  (q/a)n (5) ' (6.25)

Recalling the natural bounds —M; < r; < N; and M, = --- = M,, := 0, we have
p+1 p+2
(p) _ ()
lim Ly y(x) = E E E lim Ly v, ()
Tp42—T pi1 i Tpi1= -0 Tpro= 1 Tp42—T p+1
1=1,....n IS =0 r -0
itplprz e
Np+1
_ (p+1) (p+2)
- Z Z Ly N(+2) - (p+2) (33 )
Ti 0
i=1,..,n p=
i#p+1,p+2

Np+2
+1) 2
+ Z L]\Zl (N (P+2). r(p+1)( (p+ )>)

Tpt2=1

Note that the case where 7,11 = 7p12 = 0 is captured in the first of the two internal

sums. Renaming the summation index 7,49 as —r,y1, this yields

(p) (p+1) 2 (p+1) 2
lim . L]\]/J[N(x) = E L]\Z/ N®+2). T(p+2>( i )) = L]\Z’7N(P+2) (x(p+ ))'
Tp+2 =Ly *MZ-/STiSNi
i=1,..,n
i#p+2
where M), =---= M, :=0. O

The proof of Proposition may now be completed. We treat separately the

derivations of (|6.18a)) and ([6.18b)).
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Proof of Proposition[6.6, We show that the limit in (6.16)) may be carried out merely
by repeated application of Lemma [6.7. Observe that by Lemma [6.7], we have

: (0)
hrni1 L_7(N17M17W7Nn7Mn) (xl, YLy« v vy Ty yn)
Y1—Tq
_ 7
= Lia) (N No Moo N, M) (21, 22,92, - Ty Yn) -

Recalling ((6.20)), it is then easy to see at the level of the following notation that by
p applications of Lemma we have

: 0)
Mmoo L e N M) (@151, T )
Yn =Ty Y1 L]

(p)

- lim (M1 1.0, Mp),(N1 oce, Np 1, Mp 1,00, Nuo, M) (@15 Tpsts Ypts - Ty )

yn_>wn yeesYp+ 1T +
We now set p to n and recall (6.21]), which completes the derivation of (6.184)).
Now treating (6.18b)), we apply Lemma n — 1 times to (6.17]), which yields
the expression

J:lir—{ll Z AC ‘Tq ﬁ [Th bﬁl'z,Cg{L'l 7‘1) <bech)7"z

N (qzi/be, qri/co

X H ]xi/xj’ Jx.xj)"'i q(Mj+Nj)T‘¢
M+ N1 7
]:1 zifxj, ¢Nittexg),,

where M,, := 0. Letting z,, tend to 1, treating the r, = 0 and r,, > 0 cases of the
summand separately, results in

2 . Ap(—2q") s bex;, cox;)y, 7
Lun(@) =) urn—Aé<_j)>H Ll:[l( (b, o) )n<b£qce>

qxi/bb qﬂfz’/Ce

n

(q_Mjmia:j)Ti qun' H m qN 7”1] )

D (@), (g i),

j=1
where x = (x1,...,2,-1,1) (so that =, :== 1), M,, == 0, ug = 1 and u; = 2 for
1 <i < N,. Using (6.25) and the fact that for x, = 1

As(=2q) S )
Ap(-2) Ap(=z)

this can be rewritten in exactly the same functional form as the above but now with
M, = N, and u; = 1 for all —M,, <17 < N,,. O

Tb>—Tn
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Recall that we have already applied step I1I for (6.18a]) and (6.18b]), and so steps
I and II remain. To carry out these steps we let all by, co, ..., b1, cmy1 tend to

infinity, followed by letting all the entries of N and M also tend to infinity, which
needs only

lim (az)y = (—x)kq(g)

a—00 ak

This completes the three step procedure on the left-hand side of the C,, transforma-
tion and the proof of Theorem [6.1]
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CHAPTER 7

Generalised Macdonald eta-function identities

Prior to the discovery of Kac—-Moody Lie algebras, in [Macd72a] Macdonald gener-
alised the Weyl denominator formula (2.7)) to the setting of affine root systems:

Z sgn(w = H (1 — e~ )mult(e), (7.1)

weW acdt
where W is an affine Weyl group, ®* is the set of positive roots and p is a Weyl
vector. Note that is an exact match for the denominator formula that may be
obtained from the Weyl-Kac character formula; i.e., for A = 0. Macdonald’s
formula yields an identity for each affine root system, which together are known
as the Macdonald identities. These results generalise several significant classical
identities. For example, the Jacobi triple product and the quintuple product
identity |GasRa90, Exercise 5.6] correspond to for the cases Agl and A(Q)
respectively. Macdonald also considered certain specialisations of his denominator
formula identities which yield expansions for powers of the famous weight % modular

form, the Dedekind eta-function n(t):

o0

n(r) =¢ [0 - ) = ¢ (@),
j=1
where ¢ = exp(2mi7) for Im(7) > 0. The simplest of these Macdonald eta-function
identities are for the non-twisted types Xﬁl), which yield summation formulas for
n(7)% X For example, in [Macd72a), p. 136, (6)] the Macdonald eta-function for

e is given by

Ny = ¢y 3 gt >Hvz [T (- (7.2)

=1 1<i<j<n

where the sum is over v € Z" such that v; =n —i+1 (mod 2n + 2) and we use the
notation c¢g = 1/(113!--- (2n — 1)!) and |[v||* = v? + - - - + v2.

In this chapter we provide combinatorial generalisations for almost all of the
Macdonald eta-function identities. These generalisations arise from various choices
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for the parameters b and ¢ in (6.1al)) and (6.1d)), subject always to the specialisation
(x1,...,2,) = (1,...,1). Furthermore, we will see that particular results for types
Agi), B\ and DSJ)A may also be interpreted as generalisations of the ¢ = k instances

of the Andrews-Gordon identities, Bressoud’s even-modulus identities (for £ odd)
and Andrews’ generalisation of the Gollnitz—Gordon identities, respectively.

Generalised eta-function identities

To properly state our results, we must first give a small part of the details of the
specialisation procedure, the bulk of which appears later. Since Macdonald gave
no indication of the methods employed in his specialisations, we develop our own
approach using differential operators, which differs from Kac’s [Kac90| algebraic
technique.

Our efforts are highly concentrated upon the specialisation of x — (1,...,1)
inside the sum on the left-hand sides of both and ; this specialisation
is persued only after both b and ¢ have been specialised. The functions under
consideration may be uniformly represented by
Z Ay(zq")

Ay(z)

reLn

(_1)arquT¢2_(”_"//2)7’ix2KTi, (73)
1

n

)

where K is an integer or half-integer; a =0 or 1; v =0,1,2; g = B,C,D and z =
(x1,...,2p) or (=21,...,—xy_1,—1). Figure tabulates the values of K, a,~,g
and x for the relevant specialisations of b and c.

In ([7.3)), it is the denominator factors Ag, A¢ and Ap that present an obstacle:
every term in these products vanish when any two of the variables in x are equal

or reciprocal, or more specifically for our considerations, when x — (1,...,1) or
(=1,...,—1). This obstacle is overcome by application of Lemma[7.2) which prepares

our specialisation technique employing differential operators.

Before the statement of our results there remains a couple of important remarks,
and some notation to be introduced.

Some of the following identities depend on conjectural cases of Theorem [6.1 We
will use the notation = instead of = to distinguish conjectural results from those
that have been proven. Many of the following identities are also conjectured to hold

more generally for m a half-integer. The relevant equations are: ((7.7)), (7.12)), (7.13)),

@15), (717), (7-18) and (7.19).
The specialisations of parts of (6.1a) and (6.1d)) not already discussed (i.e.,

D(z*%;b,¢;q) and the right-hand side) is almost completely trivial. We point out

that in each of the following results, the specialisation of D(x¥;b,c;q) results in
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Spec. Values in ([7.3))

b c K a v ¢ x
(6-12)
-1 —q% m-+n 0 1 B (X1, ., Tp)
oo -1 m—i—n—l—% 0 1 B
0o m+n+1 0 0 C
00 —q% m+n+% 0 0 C
1 -1 m—+n 1 0 D
(16.1d))
oo 0 m—l—n—{—% 0 1 B (—z1,...,—xp-1,—1)
. — m+n—-%+ 0 2 D
o -1 m-4+n 0 2 D
s} —q% m-4+n 0 1 B
Figure 7.1

the prefactors next to the left-hand sums, up to an additional factor of ¢llPlI*/4(K=m)

which arises from introduction of the eta-function notation and, in some cases, up
to a single g-factorial term absorbed from the right-hand side.

Though the next equations and are merely reformulations of A(v)
(2.82), we follow Macdonald [Macd72a| and introduce the characters yg(v) and
xp(v) as

n

xB(v) = Hvi H (v} —v3), (7.4a)

i=1  1<i<j<n

ww) = [[ -2 (7.4Db)
1<i<j<n
where v = (vy,...,v,) and for convenience we set x4(v/w) = x4(v)/x4(w). For
example, using this notation ([7.2)) may be expressed as

loll?
n(r)? =3 g xg v/ pc),

v

where we have used the fact that ¢ = 1/xg(pc) (a number of facts of this kind are
listed later in Lemma .

Finally, we remark that in many cases Macdonald refers to affine root systems by
labels that differ from those which we have employed. Under Macdonald’s labelling,
the untwisted types XM are referred to as X,. Macdonald’s labels for other types
differ more radically and are indicated inside brackets adjacent to our labelling.
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Type BS)

The following is Macdonald’s third eta-function identity for B [Macd72al p. 135,

(6¢)]:

D /2)Pn(r)P 5 = 3 (1)1 o p) o A (75)

where p = pp, v € Z" such that v = p (mod 2n — 1). We now provide a generali-
sation of this identity. If we set b = —1, ¢ = —¢'/? in (6.1d)note that this choice
of (b, ¢) is one of the conditional cases— and then specialise * = (z1,...,2,_1,1) to
(1,...,1), on the right-hand side we obtain (6.8)), except with z = (1,...,1); i.e.,

1 2m—1
m ; q|>\|/2( 1]0: (_q1/2; q1/2)mi()\)> P)/\( 1,....1: q)' (7.6)

A <2m 2n—1 times

Note that again we have introduced the factor (—¢'/?;¢'/?) to match the power
of the eta-function in our result with the classical case (7.5). For uniformity of
expression on the right-hand side we again employ the convention that mg(\) := oc.

On the left-hand side of (6.1d]), we compute D(1,...,1; -1, —¢"/?; ¢) from (6.1d)
and apply the operator Dp _ from Lemma to the sum, which leads to

- el =lol
n2—3n Z(—1)|”| ‘p‘XD (v/p) q2@mT2n-1)

v

1
(=42 ¢Y?) 0o (g2 ¢1/2)2(q)

where p = pp, v € Z™ such that v = p (mod 2m + 2n — 1) and m > 0. Introducing
the Dedekind eta-function notation and putting the two sides yields a generalisation

of :

: S (1) o) g
B Xp(v/p)q?Eman= n=
Do 2
2m—1

2 I/\/2( 172, 1/2 ) ) .

= q ( g9 )m P(1,...,1;q), (7.7)
ZA: 11 o)
A1<2m n—1 times

where p = pp, v € Z" such that v = p (mod 2m + 2n — 1). Note that is
recovered when m = 0. We believe that also holds for half-integer m.

For n =1, may be interpreted as a generalisation of the ¢ = k case (i.e.,
Andrews’ contribution) of Bressoud’s even-modulus counterpart to the Andrews—
Gordon identities under the further restriction that k£ is odd. We demonstrate
this as follows.
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Using the congruence v = (2m + 1)r, together with the factor (—¢'/?; ¢'/?) from
the right-hand side, the left-hand side of ([7.7)) becomes the expression

2m—+1.

mA1/2 gm1/2 q

.q 2m+1>

(@)oo

1 r (q
- _m+1/2yr _(2m+41)(5) _
S R CR

where the second expression follows by application of the Jacobi triple product
identity (3.24). Recall the identity n(A) = >.., (’\2/) and the notation by
(1.40). By application of P{(1;q) = ¢"") /bx(q) (which is easy to see from (5.3))) and
by recalling the facts that m;(A) = A} — X, and £(\) = Ay < 2m, the rlght hand
side of becomes

= (7.8)

rez

Z q|/\\/2+n()\)
X (q*/2; ql/Q) Y (¢"/% ql/Q)XQm 1—>\’2m(Q)/\’2m
A <2m
3 g3 (NE+-+NE) 79)
oo (@ )y (@0 ) (Do
where in the second expression we have introduced the integers nl, e Moy > O such

that X, :== N; = n; + -+ - 4+ ngy,, for 1 < i < 2m. Now equating (7.8 and and
rescaling g — ¢*, we obtain Andrews’ contribution to Bressoud’s 1dent1ty - for
k=2m+ 1.

Type CV

By application of the operator D¢, from Lemma [7.2] the specialisation b, ¢ — oo
and z = (z1,...,2,) to (1,...,1) in (6.1a) (or equivalently, z to (1,...,1) in (6.4)))
yields a generalisation of (7.2) (i.e., [Macd72al p. 136, (6)]):

2 2
—llell

Ilv] Lol
2n2+n Z XB fu/p q 4(m+n+1) +Al(vlwu)Jrl) — E q‘)‘l/2pl 1 q) (710)
A even 2n times
A <2m

where p = pg, v € Z™ such that v = p (mod 2m + 2n 4+ 2) and m > 0. Note that
the right-hand side may be equivalently expressed as

Z A P(L - L),

2'rL times
A< <m

There is another generalisation of ([7.2]) involving the Cartan matrix of type A, =:
[Cab)i<ap<on, due to Feigin and Stoyanovsky (n = 1) [FeStoy94] and Stoyanovsky
(n > 1) [Stoy9§]:

zi’z 1 ST Can B Y

qQ
LHS- E )
Hizl(Q)T@

(7.11)
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where the sum is over r 6 N for all 1 <a <2nand 1 <i<m, and we define the
integers Rg = §“> 4+ 4 rm for1 <i¢<m.

Type Agl) (or affine BC,,)

By application of the operator Dg 4 from Lemma if we specialise b — 0o, ¢ = —1

and z = (21,...,2,) to (1,...,1) in (6.1a)) (or equivalently, z to (1,...,1) in (6.6))
we obtain a generalisation of [Macd72al page 138, (6a)]:

n(2r)*" o2 lpl®_, _lle)? (NLIOw))/2 o

2n2+3n ZXB (v/p) @2CmFeniD T30n D) = Z q EP(1,. .., 1q) (7.12)

2n times

)\1<2m

where p = pg and v € (Z/2)" such that v = p (mod 2m + 2n + 1). We believe that

(7.12) also holds for half-integer m.
Using Dg ., if we specialise b — 00, ¢ = —¢'/2 and = = (zy,...,2,) to (1,...,1)

in (6.1a) (or equivalently, x to (1,...,1) in (6.5))) we obtain a generalisation of
[Macd72al p. 138, (6b)]:

1 llwl®=1pl? llel?
77(7'/2>2n7](27)2n7](7>2n2—3n Z XB('U/P 2<2m+2n+1)+2(2n+1)

= Z VEP(L . L) (T13)

2n times

/\1<2m

where p = pc and v € Z" such that v = p (mod 2m + 2n + 1). We believe that

(7.13)) also holds for half-integer m.
Using D, If we let b, ¢ — oo in (6.1d) and then specialise x = (xy, ..., 2x,-1,1)
to (1,...,1) we obtain a generalisation of |[Macd72aj page 138, (6¢)]:

1 w2 =1p12 llol2
=D B e ORI DI e s (SR £
v ;‘1 (iv;:@ 2n 1 times

(7.14)
where p = pp and v is summed over (Z/2)™ such that v = p (mod 2m + 2n + 1).
We should interpret as a higher-rank generalisation of Andrews—Gordon
identities , for ¢ = k. We will see that for n = 1 and m = k — 1, is
identically equal to ([3.26]).
Again using n(A) = > .o, (g) and now using the congruence v — p =
(2k + 1)r, the left-hand side of becomes the right-hand side of (3.26)):

2k+1.

1 i q

(@)

. q
(@)oo

2k+1)oo

(_qurl)rq(Qk—l—l)(g) _ (q yq

?
rez
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where the second expression follows by application of the Jacobi triple product
identity (3.24)), as before. Likewise, using Pi(1;q) = ¢""/br(q) once again, the
right-hand side of ([7.14])) becomes

PN gNEH N
= )
ZA (@)x -, - (D, m,,_zm_lzo (@~ (@D
N <k—1
where in the second expression we have introduced the integers ny,...,nx_1 > 0

such that A, .= N; = n; + - +mnp_y for 1 < i < k — 1. This last expression
may be immediately identified with the left-hand side of by the relabelling
(N,n) = (M,n).

We point out that Warnaar and Zudilin recently discovered a conjectural formula
(proven for m = 1) for the left-hand side of in terms of Cartan matrix of
Ay, 1 [WarZul2, Theorem 4.1]:

5 S i Can RV R

q§
LHSEID =2 [ R N ()R
a=1 1Li=1\9), @

where the sum is over TZ(“) eNforalll<a<2n-—1and 1 <i<m, and we define
the integers Rl(a) = rga) 447 for 1 < i < m. We note that this expression
has exactly the same functional form as Feigen and Stoyanovsky’s generalisation of

Macdonald’s CY eta-function identity (|7.11)).

Type AL, (or BY)

By application of the operator Dp _ from Lemma if we let b — o0, ¢ = —1 in
(6.1d)) and then specialise x = (z1,...,2,-1,1) to (1,...,1) we obtain a generalisa-
tion of [Macd72al page 136 (6b)]

2n—1 ol— o2 —11ol12 2
?%L S (1) v p) g S
777— n<+n—

_ (A+HQN2prey 001 7.15
; q )\< ) ) 7q)7 ( )

2n—1 times

A <2m

where p = pp, v € Z" such that v = p (mod 2m + 2n). Using Dp 4, a somewhat
different generalisation of the same eta-function identity arises if we take b = —c =1
in (6.1a))—which again is one of the conditional cases—then use ([5.16))

2m—1
(o) /2 2
B (—g!12, g% g) = g/ H (@07 ) msyy21 - for mo;_1(A) even (7.16)
; ) i=1 :
0 otherwise,
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and h ( 2 "% q) = (—@)so = (6% ¢*)s0/ (@)oo, and finally specialise z = (z1, ..., 7,)
to (1,...,1). Then

2m—1
?
LHS(TIE) = ) q(w“(%)m( 11 (q;qz)(miu)/ﬂ)Pﬁ(l L), (T.17)
=0

A <2m 2n times

(Xo)’ is even

where again mg(\) := oo. We believe that both (7.15) and (7.17) also hold for
half-integer m.

Type D(_,_1 (or CY)

By application of the operator Dp . from Lemma [7.2] if we specialise b — —1,¢ —
—¢"? and x = (21,...,2,) to (1,...,1) in (6.1a]) (or equivalently, z to (1,...,1) in

(6.10)) we obtain a generalisation of [Macd72a, page 137, (6a)]:

||ng(2 +Hp)HQ+||§¢2
77(7-)2n+1 2n27n 1 ZXB U p q = "
2m—1
7 |/\< H . / L2
= Z q ( q)mzo\) P)\(l,...,l,q ), (718)
A =0 2n times
A <2m

where p = pg, v € (Z/2)" such that v = p (mod 2m + 2n). We believe that
also holds for half-integer m.

Using Dy _, if welet b — oo and ¢ = —¢'?1in - ), then specialise (z1,...,2,1,1) =
(1,...,1), and finally replace ¢ — —q we obtain a generalisation of [Macd72a, page
137, (6b)]:

2 2 2
[v] el ol =1lell”  llell

1
—1)20m+n) T3(mAn) T 2n
1(7)2n Ly (4r)2n—Ly(27)2n2 —Bnt2 Z( ) xo(v/p)q
Z g™ P{(1 Lol ;q%), (7.19)

2n 1 times

v

)\1<2m

again with v as in . We believe that also holds for half-integer m.

This last eta-function identity should be viewed as a higher-rank generalisation
of Andrews’ generalised Gollnitz—Gordon g-series ; ie, forn =1 and m =
k—1, is identically equal to . This fact is not quite as easy to see
as the earlier generalisations of the Andrews—Gordon and Bressoud identities. To
obtain the desired form, after specialisation the right-hand side of must be
transformed using an identity due to Bressoud, Ismail and Stanton.
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By the congruence v — p = 2kr, the left-hand side of (7.19) becomes the right-

hand side of (3.31)):
(4% "o (— g+ 1)rg(:) — (@1 @ 0" ") o (6?5 4" oo
<q) o0 reZ (q>oo
where the second expression follows by application of the Jacobi triple product
identity ([3.24) once again. Using the now familiar identity P(1;q) = ¢"™/ba(q),
the right-hand side of (7.19) may be rewritten as
qlqu%()\)

2. . = 2 5

2. 2 (02 a2) 2.02) ... (a2 o2
5 (@ Py (@ P, = (@56 n (4507 nay s
.

NEeNg

where in the second expression we have introduced the integers ny,...,no_2 > 0
such that \; := N; = n;+- - -+ngg_o for 1 < i < 2k—2. By application of [BrIsStan00,
Theorem 5.1] for i = k, a = 1 and ¢ — ¢* we obtain

> e .
2. 2\ ... (22

ni,...,np_1>0 (q ’q )nl (q 7q )nk,l

which under the identification (N,n) = (M, m) is the left-hand side of (3.31)).

2(N12+~-~+N,§71)<_ 1—2N1.q2)N
I 1
9

Details of specialisation procedure

In this section we prepare our specialisation lemma and demonstrate its use with an

example.

Preliminaries

Using the Vandermonde determinant ([2.8al), the characters (7.20) also have the

following determinant forms:

xe(@) = (-1)(5) det (277, (7.20a)
o (v) = (=1)3) det <v§j—2). (7.20b)

To aid the calculations in our specialisation lemma we first provide a simple lemma

containing a number of evaluations of these characters for various Weyl vectors ([2.9)).

Lemma 7.1. We have

elpw) = 5 ]2+ 1) xeloe) = [J2i+ 1)
xolow) = [[(2i) Xolpn) = gy [](20)
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Proof. These four simple facts require only elementary methods. We only give a
proof of a typical example, in which most of the work is done by relabelling indices
j—j+iand theni—n—1i+ 1.

XB(pC):Hn—z—l—lHH (n—i+1)?*—(n—j+1)?)

i=1 =1 j=1+1
n i—1 n i—1

:Hz i2 — (i — j)? Hz J(2i —7)
i=1 j=1 i=1 j=1
n—1

=1]2i+1) O
i=0

We now proceed to our specialisation lemma.

Lemma 7.2 (Specialisation lemma). Let D, := 0/0x;, mp = 1, mc = 0 and
mp = 2. Define the differential operators D¢+ and Dy 1 (acting on formal Laurent
series g in xi,...,T,) by
Dyig= Dy D3 D elm/2Diizi® (4 e7) (7.21)
1 =r=2n=0,
and the operators Dp + and Dy __ by
Dyt g= Di:—Q . Dipgl e(me/2=1) 320 @i g(£e”) (7.22)
r1=-=xy=0.
If g 1s given by
g(x) = f(2)Ag(x) [ [l (7.23)
i=1

with f generic (i.e., g is free of zeros in the demominator at x; = xj[ for1 <i<
j<mnandx; ==l for 1 <i<j<n), then

Dot g=2"(~1)"FDE f(£L,..., £1) xalpc). (7.24a)
Dp.yg=2"(-1)""G)f(1,....1) xs(pp) (7.24b)
Dpsg=2"F)E) f(£1,...,£1) xo(pp) (7.24c)
Dp_g=2"f(~1,.. 1>><D<p> (7.24d)

We give a proof for the D¢ 1 case only. Note that in this calculation (and the
completely analogous working for the other cases), the factors eMe/2-2is1 % gnd
[T, =; 7™ play a purely passive role. In later calculations, their presence will be

zlz

convenient.
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Proof of Lemma[7.3. For 1 < k < n, define (Dék)i g) (x) recursively as follows

(PEk o) (@) = (D e DE g) )]

where
(DY, g)(x) = g(£e?).
Clearly,
(DEL 9) (@) = (Do g) ().
We will now find a closed form for this recursion. At the kth iteration we have the

following expression

(D& 9) (@) =(=2) (1) )Y Hl(zz — 1)1

X f(£1,...,£1,+e™, ... +te™)

x ﬁ (e™ —e™)(1 - exﬁxi)}

i=k+1

(7.25)

=0

The action of the differential operator Di’;_l on the square-bracketed factor is quite
easy to describe. We repeatedly apply the product rule, and branch to a depth of
2k — 1. By looking ahead to the specialisation x; = 0, and observing that under this
specialisation (1—e**) vanishes, we need only write down the unique term containing
the (2k — 1)th derivative of (1 — e®*)%*~1. It then follows that

(DL, g) () =(~2)(F1) () =D H(Qz’ —1)!

x Ag(e™, . emm) T (1—e™)(em)

i=k+1

X (L, ... £]1,£e™+ . £e™). (7.26)
By setting £ = n and using Lemma [7.1], we obtain the result. O
Example: specialisation for type Cfll)
We now provide the complete details of the specialisation (z1,...,2,) — (1,...,1)

in the left-hand sum of (6.1a]) for the case b,c — oo. By (7.3) and Figure [7.1] we
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will specialise the function

n

Z AC xq Hquffnnx?Kn’ (727)
=1

rezn

where K = m +n + 1. This corresponds to the generalised Macdonald eta-function
identity of type cy (7.10). The proofs for the other affine types may be completed
by a completely analogous procedure, up to the changes specified in the statement

of each case.

Specialisation of (7.27)). By substitution of f(z) into ([7.23) we have

n

= > Ac(aq) [[ " ma i, (7.28)

ren i=1

In the next few steps we prepare ([7.28]) for the application of the differential operator
Dc.+, so that we may use Lemma . We expand the factor Ac(zq") using (2.8¢))
and, by appeal to multilinearity, this yields

_ Kr?2—(n—j+1)r 2K7”_(n_j) _ Kr?+(n—j+1)r , 2Kr+n—j+2
o) = et (o v > ),
rEZ rEZL
Introducing p = p¢ (2.9¢) and sending r — —r in the second sum we obtain
= det Kr? —pir 2Kr—p; i ‘—2K7‘+p]- .
g(x) =  det (Zezjq zi(2; oY)
T

We then further introduce the variables v; = p; — 2Kr, and note that Kr? — p;r =

1

E(Uiz — p?), which leads to

Lol =]pl2 . w)
9(x) "Fn Z q 1<£t<n (Ij i)

where the sum is over all v € Z™ such that v; = p; (mod 2K). By definition of the
differential operator D¢ 4 (7.21) we have

\2 W

o2 — P 2 )

1<i,j<n

r1==x,=0
After computing the derivative and setting x; = --- = x,, = 0, this yields
Do gle) = (~2)" 3¢ det (37
ct9(7) = q (Jet {vi”).
Finally, we use ((7.20a)) and ([7.24a]) to obtain the desired expression. O
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