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Abstract

Exact Calculations of Indices and Partition Functions

for 1D and 2D Supersymmetric Theories and Their

String Theory Applications

Heeyeon Kim

Department of Physics and Astronomy

The Graduate School

Seoul National University

In this thesis, we introduce two ideas of string theory which can examine geomet-

rical structure of the spacetime compactified on a Calabi-Yau manifold. The first

half of the thesis focuses on the Witten index and their applications in string the-

ory. As one of the most interesting example, we review the counting problem of

BPS states in four-dimensional N = 2 supersymmetric gauge theory obtained from

the Calabi-Yau compactification of type II string theory. Especially, we concen-

trate on how the Witten index can be used to prove the wall-crossing phenomena

therein. At the second half, we outline recently revealed relation between two-

dimensional partition functions and geometry of the Kahler moduli space of the

Calabi-Yau manifolds. We show that the partition function of N = (2, 2) gauged

linear sigma model on S2, D2 and RP 2 calculates the Kahler potential, central

charge of D-brane and Orientifold of A-model respectively.
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Chapter 1

Introduction

String theory is a unique quantum theory in which the gravity consistently arises.

As we have learned from the Einstein’s theory of general relativity, the theory of

gravity is closely related to the geometry of the spacetime which has sophisticated

mathematical structures. Then what kind of geometry can string theory probe and

which mathematics is associated to this new theory of gravity?

In order for the supersymmetric string theory to be well-defined, the spacetime

should be ten-dimensional. In addition, if we want to obtain a four-dimensional

field theory which preserves certain amount of supersymmetries, the six remaining

directions should be compactified on a so called Calabi-Yau manifold. This space

is defined by a complex manifold X whose first Chern class c1(X) vanishes.

Understanding the mathematical structure of the Calabi-Yau manifold is extremly

important since the field theories in four-dimensional spacetime are determined by

the geometry and topology of the compactified manifold X. However, since the

Calabi-Yau manifold is very complicated space that a single non-trivial metric is

not known, the standard geometrical approach cannot be easily applied. Actu-

ally, these efforts of string theorists to describe the dynamics of two-dimensional
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Chapter 1. Introduction

worldsheet theory on Calabi-Yau manifolds offered a lot of new insights to modern

mathematics.

The most prominent example is the mirror symmetry. This implies the equivalence

between two topologically different Calabi-Yau manifold, which leads to a duality

between symplectic geometry and complex geometery. It was first discovered by

string theoriest [1], and later motivated the beginning of new branch of pure mathe-

matics. Mirror symmetry is very non-trivial duality in mathematical point of view,

but can be naturally understood in terms of the string theory. This can be easily

seen from the mass spectrum of the string exitation with one direction compactified

on a circle of radius R,

M2 =
n2

R2
+
m2R2

α′
+

2

α
(N + Ñ − 2) . (1.1)

Here n is a momentum mode and m is the winding mode of the string around the

compactified direction. One can easily see that the spectrum is invariant under the

exchange (R,n,m)↔ (
√
α′/R,m, n). This is what we call a T-duality which is the

prototype of the mirror symmetry.

Interestingly, the mirror symmetry relates the classical theory in one side (B-model)

and the fully quantum corrected theory (A-model) on the other side. Hence, in

order to calculate physical quantities for the A-model, one can use the mirror

symmetry and readily obtain the results by looking at their B-model counterparts.

However, until very recently, this duality has been proven only for very limited case,

when the Calabi-Yau is obtained from the U(1) quotient of the Kahler manifold.

[2]

Having understood the structure of the backgroud spacetime, we consider objects

which are embedded in the lower-dimensional submanifolds of the Calabi-Yau am-

bient space. This brings us to the study of D-branes in open string theory. Since

the existence of D-branes breaks the translational symmetry of the spacetime, it

2



Chapter 1. Introduction

also breaks the spacetime supersymmetry. In order to preserve the half of the su-

persymmetry, it should satisfy the BPS (Bogomol’nyi-Prasad-Sommerfield) bound,

which imply

M = |Z| , (1.2)

where Z is the central charge of the supersymmetry algebra. This condition is

translated into the volume minimizing cycles in the Calabi-Yau ambient space,

whose solution is given by solving non-linear differential equations which are ex-

tremly difficult to solve in general. But it can be rather easily dealt with in view

point of the supersymmetric theory, due to the linear killing spinor equations.

Since the D-branes wrapping supersymmetric cycles inherit many properties of the

ambient space, these objects are also crucial in studying the Calabi-Yau manifolds

and mirror symmetry thereof.

Apart from its mathematical importance, studying BPS objects has strong mo-

tivations in string theory. Because of its topological nature, these states remain

invarient along the continuous change of parameters of the theory. This property

enables us to study the non-perturbative aspects of the supersymmetric theories.

Since they can probe the strongly coupled regime of the theory as well, it plays a

significant role in the proof of various dualities in string theory. Furthermore, BPS

states are strongly believed to be candidates of the blackhole microstates, whose

origin is one of the central questions that true quantum gravity should be able to

answer.

In this thesis, we introduce recent developements of string theory to understand the

structure of the Calabi-Yau manifold and D-branes wrapping supersymemtric cycles

in it. The key framework is the sigma model. Superstring theory can be most easily

described by a two-dimensional supersymmetric non-linear sigma model (NLSM)

whose target space is the Calabi-Yau manifold X. The worldsheet scalar fields

φ : Σ → X provide coordinates of the target space, and the fermions are valued

3



Chapter 1. Introduction

in pull-back of the tangent bundle TX. It provides very useful tool to understand

the topology of the spacetime, as we shall see in the following chapters.

However, for a complicated manifold such as Calabi-Yau, since we do not have a

metric it is difficult to explicitly write down the NLSM Lagrangian and calculate

some useful quantities. In order to deal with this situation, Witten [3] introduced

the concept of the gauged linear sigma model (GLSM). As the name indicates, it has

a linear space such as CN as a target space. Interestingly, when we properly choose

the field contents and potentials of the theory, and do the renormalization group

flow, it reduces to the NLSM whose target space is a Calabi-Yau manifolds at the

infrared. This machinary turns out to be very powerful to investigate the special

properties of the two-dimensional worldsheet theory such as Calabi-Yau/Landau-

Ginzburg correspondence and the mirror symmetry.

Given these frameworks, we introduce two main tools which encode the topological

and geometrical informations of the supersymmetric theories. These are the Witten

index and partition function. Supersymmetric theories have exceptional property

that theses quantities are exactly calculable. First of all, the Witten index is defined

by the expression

Tr(−1)F , (1.3)

where F is the fermion number operator. Originally, the concept of the index was

first introduced by mathematicians Atiyah and Singer [4] at the beginning of 60’s, in

order to characterize the topological properties of the solution space of differential

equations. Witten later found that there are similar mathematical structures in

the supersymmetric quantum mechanics, where (1.3) can be used as a measure of

spontaneous breaking of the supersymmetry. [5] Furthermore, this quantity turns

out to be topological, i.e., invariant under the continuous deformation of the theory.

This enables us to deform the theory to the particular limit where we can exactly

calculate this quantity.

4



Chapter 1. Introduction

The Witten index has tons of applications in various supersymmetric theories.

The most prominent example is the gauge/gravitational anomalies in quantum

field theory. Alvarez-Gaume and Witten [6] translated the anomaly calculation

problem into the index theorem of the supersymmetric NLSM. From this work,

one can easily extract one-loop anomalies of each field contents in a quantum field

theory just by considering the Atiyah-Singer index theorem.

Secondly, one can use the Witten index to count the number of BPS states, so

that it can be used to probe the non-perturbative properties of the field theories.

Interesting observation is that, for theories with small number of supersymmetries,

the number of BPS states are not constant, but only a piecewise constant on the

moduli space. There exists a co-dimension one wall in the moduli space, and certain

BPS states abruptly disappears across the wall. This is the wall-crossing of the

BPS states. Understanding this phenomenon is of particular importance both in

physics and mathematics, and we will see that again the Witten index and its

variation play central roles in here.

More recently, the partition function arose as another powerful tool for probing the

geometry of the Calabi-Yau space. From the pioneering work of Pestun [7], there

has been much progress on calculating the partition funtions on spheres in vari-

ous dimensions. For theories with superconformal symmetry, one can consistently

map the flat Lagrangian on a sphere with proper curvature corrections. Via the

localization procedure, it is possible to exactly calculate the partition functions for

these theories.

Along the line of these developement, partition function of N = (2, 2) GLSM on

two-sphere has been calculated. [8, 9] Surprisingly, it turns out that this quantity

calculates the exact Kahler potential of the A-model moduli space, which has been

extremly difficult to probe due to the worldsheet instanton contributions.

This relation can be further investigated to the worldsheet with a boundary or a

crosscap, which corresponds to the D-branes or Orientifolds wrapping the subsycles

5



Chapter 1. Introduction

of the Calabi-Yau manifold. In this case, the corresponding GLSM is written on a

hemisphere or a real projective plane respectively. We will see that, for these cases

as well, the partition functions provide very useful information on the D-branes or

Orientifolds coupled to the spacetime curvatures.

This thesis is organized as follow.

Chapter 2 summarizes the prerequisites which are required for discussions in the

following sections. First of all, we present the mathematical and physical definitions

of the index and relations between them. We provide various 0 + 1 dimensional

NLSM Lagrangian, and see how each of them can be used to derive the index the-

orems for various operators. Most importantly, we give the supersymmetric proof

of the Atiyah-Singer index theorem, which will be prequently used in the various

physical situations. After that, as a direct application of index theorem, we review

the pioneering work of Alvarez-Gaume and Witten calculating the gauge/gravi-

tational anomalies in quantum field theories. At the last section of this chapter,

we include the brief summary of the technique of supersymmetric localization de-

veloped by Pestun, which will be mainly utilized for the calculations of various

partition functions.

As an interesting application of the index theorem, Chapter 3 discusses the BPS

states of 4d N = 2 theory and wall-crossing phenomena therein. We first ouline

the 4d N = 2 supersymmetric gauge theories obtained from the Calabi-Yau com-

pactification of type II string theory, and present the work [10] where the Coulomb

branch wall-crossing formula was derived with the first principle.

Chapter 4 studies the relation between the two-dimensional partition function of

N = (2, 2) GLSM and various amplitudes in A-model string theory. First of all,

we reviewed the basic properties of the two-dimensional N = (2, 2) GLSM and

topological string theories. [3, 11] The second section we summarized recent results

on two sphere partition function that exactly calculates the Kahler potential of the

A-model moduli space. [12, 13] Next, we turn to the discussion of the D-brane and

6



Chapter 1. Introduction

Orientifold. In this regard, at the third section, we review how we have determined

the topological coupling of these obejects traditionally, via the anomaly inflow

mechanism. This gives the central charges of such objects at the leading order of

α′. Finally, at section 4 and 5, we review the exact calculation of hemisphere and

RP2 partition function, which turn out to give the α′-exact central charge in the

presence of D-branes and Orientifolds respectively. [14, 15] Especially, at section

5, we present the work [15].

7



Chapter 2

Exact Calculation of

Supersymmetric Indices and

Partition Functions

Supersymmetric index and partition function are the most important concepts in

studying supersymmetric field theories. These quantities are exactly calculable

for many cases, which enables us to study the non-perturbative aspects of the

theory. First of all, the Witten index, defined by Tr(−1)F , was first taken from

mathematics to physics by Witten [5], as a measure of spontaneous breaking of the

supersymmetry. As a preliminary for the following sections, we review physical and

mathematical definitions of the index, and present a physical proof of the Atiyah-

Singer index theorem [4] which states that the analytical index is given by particular

topological invariants of the theory. From this, we can see that the index calculates

a topological invariant of the supersymmetric quantum field theory. After that,

as an interesting application, we study the relation between gauge/gravitational

anomalies and the index theorem, following the reference [6]. Finally, we briefly

8



Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

review the recently developed methods of calculating exact partition functions for

supersymmetric gauge theories, on which the section 4 is based.

2.1 Mathematical and Physical Definition of Tr(−1)F

Consider 0+1 dimensional supersymmetric quantum mechanics with finite volume

which has complex supercarges Qi, Q∗i. The algebra of these operators are

{Qi, Q∗j} = 2δijH , {Qi, Qj} = {Q∗i, Q∗j} = 0 . (2.1)

The Hilbert space can be divided into the fermionic and bosonic states by intro-

ducing an fermion number operator (−1)F , which satisfies {Q, (−1)F } = 0. Then,

we can see that every energy eigenstates with non-zero eigenvalue E are paired: If

we define a real supercharge Q = 1√
2
(Q+Q∗), we have

Q|EB〉 =
√
E|EF 〉, Q|EF 〉 =

√
E|EB〉 , (2.2)

since Q2 = H. This equation further implies that supersymmetric states (Q|E〉 =

0) are always ground states (H|E〉 = 0), and inverse is also true since Q is a

Hermitian. On the other hand, the ground states are not necessarily paired, and

their number nB(E = 0) and nF (E = 0) can be in general mismatch. Note that

their difference nB(E = 0)−nF (E = 0) does not change as we tune the parameters

of the theory, since only paired states can be excited to the non-zero energy states

and the theory is gapped by finite volume. From this simple argument, we can say

that

lim
β→∞

Tr(−1)F e−βH = nB(E = 0)− nF (E = 0) (2.3)

can be thought of as a topological quantity. If follows that this quantity is indepen-

dent of the value of β. If we write our states as t(|EB〉, |EF 〉), then we can express

9



Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

the supercharge as

Q =
1√
2

(
0 Q∗

Q 0

)
. (2.4)

Then, fermionic and bosonic ground state are defined by Q|EB〉 = 0 and Q∗|EF 〉 =

0, which leads

lim
β→∞

Tr(−1)F e−βH = ker Q− ker Q∗ . (2.5)

This expression reminds us a parallel story in mathematics. Consider an elliptic

operator1 D : Γ(M,E) → Γ(M,F ) defined on bundles E,F over M . When we

try to solve a differential equation DX = Y with X ∈ Γ(M,E), Y ∈ Γ(M,F ),

elements of kerD and coker D contains useful information about spectrum of the

solutions: kerD is a space of solutions of homogeneous equation DX = 0, while

cokerD ≡ Y/ImD can be thought of as a space of constraints which Y should satisfy

to ensure the existence of a solution. If both of the space is of finite dimensional,

we call D a Fredholm operator. For a Fredholm D, we can define analytical index

of D as follow

Ind D = dim kerD − dim coker D . (2.7)

This equation can be further managed into

Ind D = dim kerD − dim coker D

= dim kerD − (dimY − dim Im D)

= dimX − dimY

1The operator D : Γ(M,E) → Γ(M,F ) is said to be elliptic when the symbol of sξ(D) is
invertible. The symbol is defined by dimE×dimF matrix sξ(D) ≡

∑
|M|=N A

Mα
a(x)ξM where N

is order of D. Here, the matrix A defines the operator D by the relation

[Dy(x)]α =
∑
|M|<N

AMα
a(x)DMy

a(x) , (2.6)

where y(x) is a section of the bundle E. [16]

10



Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

where we used the fact that these spaces are finite dimensional. As we can see

from the last equation, this quantity does not depend on the details of the operator

D, which can be regarded as a rigid quantity. Indeed, the Atiyah-Singer index

theorem states that this is a topological invariant of the theory: For an elliptic

operator D over a compact complex manifold M without boundary, the index is

given by following quantity [17]

Ind D = (−1)n(n+1)/2

∫
M
ch(⊕p(−1)pEp)

Td(M)

e(M)
, (2.8)

where n is complex dimension of M . Here the ch(E), Td(M), e(M) are characteris-

tic classes which quantify the non-triviality of bundles, being topological invariants

of the theory. See Appendix A for definitions and properties of various charac-

teristic classes. For a Fredholom operator, we can show that coker D = ker D∗,

where D∗ is an adjoint of D. This and eq. (2.5) allows us to identify D with Q

in supersymmetric theories. Furthermore, we can say that there exists following

correspondence between mathematical and physical definition of the index.

Differential Eq. SUSY QM

D Q

ker D bosonic ground state

ker D∗ fermionic ground state

DD∗ +D∗D H

D is Fredholm theory is gapped

Ind(D) Tr (−1)F

Relying on this correspondence, we are going to prove the Atiyah-Singer index

theorem with the supersymmetric quantum mechanics using the path integral rep-

resentation of the regularized index Tr(−1)F e−βH . The standard argument of time

slicing, we get the path integral of Euclidean action,

Tr(−1)F e−βH =

∫
[dφ] [dψ]periodic e−

∫ β
0 dτ LE(φ(τ),ψ(τ)) . (2.9)

11



Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

Although the indices are defined in the limit β →∞, we are going to use topological

property of this quantity which enables us to work in the limit β → 0 instead,

provided that the theory is gapped. In this limit, the higher order interaction

terms become irrelevant, and the quadratic determinant gives an exact answer.

Finally, the insertion of (−1)F acts as changing boundary condition of fermions

from anti-periodic to periodic one. The following section reviews the original works

by Friedan,Windy and Alvarez-Gaume. [18, 19]

2.2 Supersymmetric quantum mechanics and index the-

orem

2.2.1 Euler number

As the first example of (2.9), let us look at the following sigma model Lagrangian

with n real scalar fields φi and two-component real fermions ψiα (α = 1, 2), on the

even dimensional target space M with metric gij .

L =
1

2
gij(φ)φ̇iφ̇j +

i

2
gijψ

i
αDtψ

j
α −

1

4
Rijklψ

i
1ψ

j
1ψ

k
2ψ

l
2 . (2.10)

In the Euclidean signature, it becomes

LE =
1

2
gij(φ)φ̇iφ̇j +

1

2
gijψ

i
αDτψ

j
α +

1

4
Rijklψ

i
1ψ

j
1ψ

k
2ψ

l
2 , (2.11)

where Dtψ
j
α = ∂

∂tψ
j
α + Γjklφ̇

kψlα. Bosonic fields are quantized as

[
pi, φ

j
]

= −iδji , (2.12)

12



Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

while the fermionic fields should be quantized in terms of flat indices such that

ψaα = ei
aψiα. If we complexify with χ = 1√

2
(ψ1 + iψ2),

{
χa, χ̄b

}
= δab,

{
χa, χb

}
=
{
χ̄a, χ̄b

}
= 0. (2.13)

We can check that the Lagrangian (2.10) is invariant under the following super-

symmetry transformation.

δφi = εχ∗i − ε∗χi ,

δχi = iεφ̇i − Γijkεχ̄
jχk , (2.14)

where ε is a one-component complex supersymmetry parameter. We will denote

it as N = 2 supersymmetry. Via the Noether procedure, we can find a complex

supercharge,

Q = χi
(
pi + iwiabχ̄

aχb
)
,

Q∗ = χ̄i
(
pi − iwiabχ̄aχb

)
. (2.15)

In this simple non-linear sigma model, the bosonic fields maps worldsheet coordi-

nate to the target space M , while fermions are spinors valued in pull-back of the

tangent bundle, φ∗(TM). This and the quantization condition (2.13) imply that

acting a χ̄i corresponds to generating a one-form dxi on M . The Hilbert space

forms a exterior algebra Λ∗(M), where the wave functions can be written as

Ωi1,··· ,ik(x)ei1a1 · · · eikak χ̄
a1 · · · χ̄ak |0〉 . (2.16)

13



Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

The action of Q∗ on this state is

χ̄bejb(−i∂jΩi1···ik(x))ei1a1 · · · eikak χ̄
a1 · · · χ̄ak |0〉

+
k∑
i=1

χ̄bejbΩi1···ik(x)(−i∂jeiiai)ei1a1 · · · êiiak · · · e
ik
ak χ̄

a1 · · · χ̄ak |0〉

+ χ̄bejbΩia···ik(x)(iwicdχ̄
cχd)ei1a1 · · · eikak χ̄

a1 · · · χ̄ak |0〉 . (2.17)

Note that the last line can be rewritten as

k∑
i=1

χ̄bejbΩia···ik(x)(iwjaide
iid)ei1a1 · · · êiiak · · · e

ik
ak χ̄

a1 · · · χ̄ak |0〉 . (2.18)

Then, using the torsion free condition

de+ w ∧ e = 0 , (2.19)

we can see that the second and the third line of eq. (2.17) cancels each other. It

follows that the supercharges and Hamiltonian corresponds to

Q ←→ d ,

Q∗ ←→ δ (≡ − ∗ d∗) , (2.20)

H =
1

2
{Q,Q∗} ←→ dδ + δd .

This relation implies that the ground states of this supersymmetric theory corre-

spond to the harmonic forms on M . It leads to

Tr(−1)F e−βH =

dim M∑
k=0

(−1)kbk = χ(M) , (2.21)

where bk are k th Betti number and χ is the Euler number of M .

Explicit computation of the index can be done by path integral of the Euclidean

14
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Lagrangian (2.11). Since the saddle point of the Largrangian is given by the con-

stant configuration of each fields, we can expand it as φ = φ0 +δφ and ψ = ψ0 +δψ.

Using the Riemann normal coordinate (defined by gij(φ0) = δij , ∂kgij(φ0) = 0),

quadratic expansion gives

LE =
1

2
δijδφ̇

iδφ̇j +
1

2
δijδψ

i
αδψ̇

j
α +

1

4
Rijkl(φ0)ψi01ψ

j
01ψ

k
02ψ

l
02 . (2.22)

The path integral can be easily done by

Tr(−1)F e−βH =
(−1)d/2

βd/2

∫ d∏
i=1

dφi0√
2π

d∏
i=1

dψi01dψ
i
02 e

β
4
Rijkl(φ0)ψi01ψ

j
01ψ

k
02ψ

l
02

[
det′(∂τ )2

det′(∂2
τ )

]1/2

,

where d = dim M . The numerical pre-factor comes from the normlization of the

bosonic and fermionic zero mode, (If φ̂i0 and ψ̂i0 are unit normalized quantities,

dφ̂i0 =
dφi0√
β

, dψ̂i0 =
dψi0√
β

=
√
βdψi0.) and the sign (−i)d/2 comes from the fermionice

zero mode measure,

dχ̄1
0dχ

1
0 · · · dχ̄d0dχd0 = (−1)d/2dψ1

01dψ
1
02 · · · dψd01dψ

d
02 . (2.23)

Note that, in order to saturate the fermion zero mode integral, only d/2 power of

the exponential contributes, and it exactly cancels the β-dependence in front of the

integral. Hence,

Tr(−1)F e−βH =
(−1)d/2

(2π)d/22d/2(d/2)!

∫ d∏
i=1

dφi0 ε
i1j1···id/2jd/2εk1l1···kd/2ld/2

×Ri1j1k1l1 · · ·Rid/2jd/2kd/2ld/2

=
1

(2π)d/2

∫
Pf(Rij) , (2.24)

where Rij = 1
2Rijkldx

k ∧ dxl. This is nothing but the Gauss-Bonnet formula.

15
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2.2.2 Hirzebruch signature

Note that the Lagrangian (2.10) has a following symmetry:

ψiα → (σ3ψ
i)α , (2.25)

which in terms of χ

χi → χ∗i , χ∗i → −χi . (2.26)

This symmetry of exchanging χ and χ∗ corresponds to the Hodge dual operation ∗
: Λk(M)→ Λd−k(M) in the Hilbert space. Since ∗ commutes with the differential

operator, the following is well-defined.

Tr ∗ e−βH . (2.27)

If we write the standard inner product on Λ(M) as 〈α, β〉 =
∫
α ∧ ∗β, the index

defined by (2.27) can be thought of as the number of positive eigenvalue minus

negative eigenvalue of “topological” inner product 〈α, ∗β〉, for middle-dimensional

forms α and β. Hence we can say that

Tr ∗ e−βH = (signature on M) . (2.28)

Note that this is non-zero only for 4n dimensional M . In the path integral rep-

resentation, the inserted operator ∗ plays a role of flipping boundary condition of

the negative chirality fermion. Hence we impose the periodic boundary condition

to bosonic fields and negative chirality fermions ψ2, and anti-periodic boundary

condition to ψ1. It follows that only ψ2 and φ have zero modes, and quadratic

expansion can be written as

LE =
1

2
δijδφ̇

iδφ̇j +
1

2
δijψ

i
α

d

dτ
ψjα +

1

4
Rijklδφ

iδψ̇jψk20ψ
l
20 +

1

4
Rijklδψ

i
1δψ

j
1ψ

k
20ψ

l
20 .

(2.29)

16
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Then the determinant reads

Tr ∗ e−βH =
(−i)d/2

βd/2

∫ d∏
i=1

dφi0√
2π

d∏
i=1

dψi20

det
[
δij∂τ + β

2Rijklψ
k
20ψ

l
20

]1/2

AP
det′ [∂τ ]

1/2
P

det′
[
δij∂2

τ + β
2Rijklψ

k
20ψ

l
20∂τ

]1/2

P

= (−i)d/2
∫ d∏

i=1

dφi0√
2π

d∏
i=1

dψi20

d/2∏
a=1

xa coshxa
sinhxa

, (2.30)

where xa’s are the skew eigenvalues of 1
4πRijklψ

k
20ψ

l
20, valued in SO(d). Note that

from the first to second line, only n/2 power of β2Rijklψ
k
20ψ

l
20 contribute to saturate

the fermionic zero mode integral, and this, combined with the definition of xa

cancels the 2πβ dependent prefactor exactly. The ′ indicates the omission of the

zero mode, which yields additional xa in the numerator. The sign (−i)d/2 comes

from the fermionic zero mode measure,

dχ̄1
0dχ

1
0 · · · dχ̄

d/2
0 dχ

d/2
0 = (−i)d/2dψ1

20 · · · dψd20 , (2.31)

where χi = 1√
2
(ψ2i−1

2 + iψ2i
2 ), for i = 1, · · · , n/2. By noting that we can express

fermionic zero mode integral into the spacetime integral with the identity∫
dx1 · · · dxd

∫
dψ1 · · · dψd Cµ1···µdψ

µ1 · · ·ψµd = (−1)d/2
∫
Md

Cµ1···µddx
µ1 · · · dxµd .

(2.32)

This formula can be neatly summarized in terms of the L-class,

Tr ∗ e−βH =
id/2

(2π)d/2

∫
Md

L(TM) , (2.33)

where

L(TM) =

d/2∏
a=1

xa
tanhxa

. (2.34)

For definitions and properties of various characteristic classes, see appendix A.
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2.2.3 Dirac operator

One of the most important example of the index theorem is the Dirac A-genus.

For a d-dimensional target manifold which is a spin, we consider the following

Lagrangian with d real fermions.

L =
1

2
gij(φ)φ̇iφ̇j +

i

2
gij(φ)ψiDtψ

j (2.35)

Note that this Lagrangian can be obtained from (2.10) by setting ψi1 = ψi2 = 1√
2
ψi.

Fields are quantized as

[
pi, φ

j
]

= −iδji ,
{
ψa, ψb

}
= δab . (2.36)

Since the fermions satisfy the Clifford algebra, we find a correspondence

ψa ↔ 1√
2
γa . (2.37)

This Lagrangian has one supercharge (N = 1)

Q = ψµ
(
pµ −

i

2
wµabψ

aψb
)
, (2.38)

which plays a role of the Dirac operator

/D =
1√
2
γµ(∂µ +

1

4
wµabγ

ab) , (2.39)

and H = Q2 = γµγνDµDν . Hence Tr(−1)F in this case calculates the index of the

Dirac operator. The quadratic expansion of the Euclidean Larangian, again in the

Riemann normal coordinate reads

L
(2)
E =

1

2
δijδφ̇

iδφ̇j +
1

2
δijδψ

i∂τψ
j +

1

4
Rijklδφ

iδφ̇jψk0ψ
l
0 . (2.40)
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Then the index can be calculated as

Tr(−1)F e−βH = (−i)d/2
∫ d∏

i=1

dφi0√
2π

d∏
i=1

dψi0
(det′ ∂τ )1/2

det′
[
∂2
τ + 1

2Rijklψ
k
0ψ

l
0∂τ
]1/2

= (−i)d/2
∫ d∏

i=1

dφi0√
2π

d∏
i=1

dψi0
∏
xi

 ∏
n>0

(
2nπ
β

)
∏
n>0

(
2nπ
β − ixi

) 1∏
n>0

(
2nπ
β

)
(2.41)

where xi are skew eigenvalue of 1
2Rijklψ

k
0ψ

l
0. The last factor can be regularized as

∏
n>0

2nπ

β
= lim

s→0
exp

∑
n>0

ln

(
2nπ

β

)
n−s

= lim
s→0

exp
∑
n>0

[
ln

(
2π

β

)
n−s + (lnn)n−s

]
= lim

s→0
exp

[
ln

(
2π

β

)
ζ(0)− ζ ′(0)

]
=

√
β (2.42)

where we used ζ(0) = −1
2 and ζ ′(0) = − ln

√
2π. The first factor gives

∏
n>0

(
2nπ
β

)
∏
n>0

(
2nπ
β − ixi

) =
βxi/2

sinhβxi/2
, (2.43)

which comes from the facts that the LHS has a pole at x = −2nπi
β , and the limit

xi → 0 gives 1. To summarize,

Tr(−1)F e−βH =
(−i)d/2

βd/2

∫ d∏
i=1

dφi0√
2π

d∏
i=1

dψi0
∏
xa

βxa/2

sinhβxa/2
(2.44)

=
id/2

(2π)d/2

∫
A(TM) . (2.45)

Note that from the first to second line, β pre-factor cancels when we saturate the

fermionic zero modes, and the sign factor again comes from (2.31) and (2.32). For
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the last line, we defined A genus by

A(TM) =
∏
a

xa/2

sinhxa/2
. (2.46)

2.2.4 Dirac operator coupled to external gauge fields

Now, let us consider the previous N = 1 Lagrangian, now coupled to the non-

abelian external gauge field. We introduce another complex ghost fermion ηα, η̄α

to incorporate the gauge symmetry labeled by α. Lagrangian can be written as

L =
1

2
gij(φ)φ̇iφ̇j +

i

2
gij(φ)ψiDg

tψ
j + iη̄α(DA

t η)α +
i

2
Fijαβψ

iψj η̄αηβ , (2.47)

where DA
t η

α = ∂tη
α + iφ̇iAi

α
βη

β is a gauge covariant derivative. Quantization of

fermionic fields are given by{
ψα, ψβ

}
= δαβ,

{
η̄α, ηβ

}
= δab . (2.48)

We will restricts our trace to the one particle state of η given by

η̄α|0〉, where ηα|0〉 = 0 , (2.49)

which restricts states to be in a particular representation, not their tensor product

generated by the multiparticle states of η. Supercharges are shifted by the gauge

field:

Q = ψµ
(
pµ −

i

2
wµabψ

aψb + η̄aAµ,abη
b

)
. (2.50)

This corresponds to a Dirac operator couple to external gravitational and gauge

fields,

/D =
1√
2
γµ(∂µ +

1

4
wµabγ

ab − iAaµT a) . (2.51)

Before we do the path integral, we first perfom the quantization of the ghost fields

η, η̄. As usual, (−1)F imposes the periodic boundary condition to the φi and ψi,
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and anti-periodic boundary condition to the η. The quadratic fluctuation near the

saddle point φ = φ0 and ψ = ψ0 gives

LE − η̄αη̇α =
1

2
δijδφ̇

iδφ̇j +
1

2
δijδψ

iδψ̇j +
1

2
Fijαβδφ̇

iδφj η̄αηβ +
1

4
Rijklδφ

iδφ̇jψk0ψ
l
0

+
1

2
Fijαβδψ

iδψj η̄αηβ +
1

2
Fijαβψ

i
0ψ

j
0η̄
αηβ , (2.52)

where Fij = ∂iAj − ∂iAi + [Ai, Aj ], written in Hermitian basis. One-loop determi-

nant can be calculated as

lim
β→0

(−i)d/2
∫ d∏

i=1

dφi0√
2π
dψi0

∏
α

Trη exp

(
1

2
Fijαβδφ̇

iδφj η̄αηβ
)

(2.53)

×
det′(∂τ + Fijαβψ

i
0ψ

j
0η̄
αηβ)1/2

(det′ ∂τ )1/2 det′(∂τ + Fijαβψ
i
0ψ

j
0η̄
αηβ + 1

2Rijklψ
k
0ψ

l
0)1/2

,

where Trη denotes for the trace in the η space restricted to the one particle sector.

The determinant factor in the second line are evaluated as

det
∏
n>0

(
2nπ
β − iF

)
(

2nπ
β

)(
2nπ
β − iF −

i
2Rijklψ

k
0ψ

l
0

) , (2.54)

where F = Fijαβψ
i
0ψ

j
0η̄
αηβ. As before, 1/

∏
n>0(2nπ/β) factors are regularized to

yield overall factor 1
βd/2

. We redefine the fermionic zero mode which absorbs this

factor:

ψ0 →
1√
β
ψ0 , dψ0 →

√
βdψ0 . (2.55)
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Then the integral becomes

lim
β→0

(−i)d/2
∫ d∏

i=1

dφi0√
2π
dψi0 Trη e

1
2
F det

∏
n>0

(2nπ − iβF )

2nπ − iβF − i
2Rijklψ

k
0ψ

l
0

(2.56)

= lim
β→0

(−i)d/2
∫ d∏

i=1

dφi0√
2π
dψi0 Trη e

1
2
F
∏
i

(xi + βF )/2

sinh((xi + βF )/2)
(2.57)

= (−i)d/2
∫ d∏

i=1

dφi0√
2π
dψi0 Trη e

1
2
F
∏
i

xi/2

sinh(xi/2)
. (2.58)

The η integral should be evaluated in the one-particle sector. Note that

〈0|ηd exp

(
1

2
η̄αη̄βFαβijψ

i
0ψ

j
0

)
η̄d|0〉 = Tr exp(

1

2
Fijψ

i
0ψ

j
0) , (2.59)

we have

Tr(−1)F =
id/2

(2π)d/2

∫
M
ch(F ) ∧ A(TM) . (2.60)

where ch(F ) is the Chern character of the gauge bundle on M .

2.2.5 Dolbeault complex

The last example of the index theorem is the Dolbeault index of Kahler manifold.

Kahler manifold is defined as a Hermitian manifold which admit a metric

ds2 = 2gij̄dφ
idφ̄j̄ , (2.61)

where

∂λgµν̄ = ∂µgλν , ∂̄λ̄gµν̄ = ∂̄ν̄gµλ̄ , (2.62)

or equivalently, equipped with Kahler form

Ω = gij̄dz
i ∧ dz̄j , (2.63)
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which is closed (dΩ = 0). Note that, this condition ensures that there exist a

function K(φ, φ̄) such that gij̄ = ∂i∂j̄K(φ, φ̄). A Hermitian manifold is Kahler if

and only if there exist a almost complex structure Jp : TpM → TpM with ∇µJ = 0.

This can be locally written as

Jp = idzµ ⊗ ∂

∂zµ
− idz̄µ ⊗ ∂

∂z̄µ
. (2.64)

From the definition, it is straightforward to see that only non-zero Chirstoffel sym-

bols are

Γµνρ, Γµ̄ν̄ρ̄ , (2.65)

and other components with mixed indices all vanish. It follows that, if we define

Rij = 1
2Rijkldx

k ∧ dxl, only Rij and Rkl are non-zero, which means that holon-

omy group is U(n) subgroup of O(2n). If there is additional constraint that the

Ricci curvature, the trace of Rij , vanishes, the holonomy group becomes SU(n)

subgroup. We call such a manifold as Calabi-Yau manifold.

The non-linear sigma model whose target space is Kahler manifold coupled with

abelian gauge field can be written as

L = gij̄φ̇
i ˙̄φj̄ +

i

2
gij̄ψ

i(∂tψ̄
j̄ + Γj̄

k̄l̄
˙̄φk̄ψ̄ l̄) +

i

2
gījψ̄

ī(∂tψ
j + Γjklφ̇

kψl)

+iAiφ̇
i − iAī ˙̄φj̄ + Fij̄ψ

iψ̄j̄ . (2.66)

The quantization of fields are given by

[πi, φ
j ] = −iδji , [π̄ī, φ̄

j ] = −iδj̄
ī
, {ψa, ψ̄b̄} = δab̄ , (2.67)

where πi = pi+Ai, π̄i = p̄ī+Aī. One can show that there are two supersymmetries

preserved. By the Noether theorem, the supercharges are

Q = ψi(pi + iAi + iwiābψ̄
āψb) ,

Q̄ = ψ̄ī(p̄ī − iAī + iwīab̄ψ
aψ̄b̄) . (2.68)
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Let us change the order of the fermions in the last term so that

Q = ψi(pi + iAi + iwi
a
a + iwibāψ

bψ̄ā) ,

Q̄ = ψ̄ī(p̄ī − iAī + iwī
ā
ā + iwīb̄aψ̄

b̄ψa) . (2.69)

If we tune the external gauge field by Ai = −wiaa, the trace part of the U(n)

holonomy, the supercharge Q becomes the holomorphic dolbeault operator ∂, acting

on

Ωµ1···µk(z, z̄)eµ1a1 · · · eµkakψ
a1 · · ·ψak |0〉 . (2.70)

This is the element of Λk,0(M). On the other hand, if we choose Aī = wī
ā
ā, the

Q̄ becomes a anti-holomorphic dolbeault operator ∂̄, which acts on elements of

Λ0,k(M),

Ωµ̄1···µ̄k(z, z̄)eµ̄1 ā1 · · · eµ̄k āk ψ̄
ā1 · · · ψ̄āk |0̄〉 . (2.71)

This mechanism, locking the curvature with external symmetry is called twisting.

In the higher dimensional supersymmetric field theory, it plays an important role

in leaving some of the supersymmetries unbroken on the curved space.

The path integral can be easily evaluated with the procedure of the previous section.

For the anti-holomorphic operator ∂̄, we substitute U(1) part of the curvature in

the place of the gauge bundle,

in

(2π)n

∫
M2n

n∏
i=1

exi/2
xi/2

sinh(xi/2)
=

in

(2π)n

∫
M2n

n∏
i=1

xi
1− e−xi

, (2.72)

where xi’s are eigenvalues of the matrix Rij̄kl̄dφ
k∧dφ̄l̄. This is defined as the Todd

genus,

Td(M) =

∫
M

∏
i

xi
1− e−xi

, (2.73)

which is defined only for the complex manifold.
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2.3 Index and gravitational anomalies in string theory

2.3.1 Gauge/Gravitational anomalies in string theory

Anomalies refers to a breakdown of classical symmetry at the quantum level. In

general, existence of global anomaly offers useful information of the theory, for

example, in understanding pion decay into two photons in the standard model. On

the other hand, gauge/gravitational symmetries cannot be violated at any quantum

level since they govern unitarity and Lorentz invariance of the theory. Existence

of such anomalies implies the breakdown of the theory, and it is crucial to check

weather gauge/gravitational anomaly cancels out.

One of the most important application of the index theorems derived in the previous

section is calculation of anomalies. Among the various ways of obtaining expression

for anomalies, we are going to focus on the Fujikawa’s method [20], which explicitly

reveals the relation between definition of anomalies and their topological nature.

The first example is the γ5 anomalies of a dirac fermion. Consider a Dirac fermion

coupled to the external spacetime curvature in even-dimensional spacetime:

L =

∫
ddx ψ̄γµDµψ . (2.74)

The action has a symmetry under

ψ → eiα(x)γd+1ψ, ψ̄ → ψ̄eiα(x)γd+1 , (2.75)

with a conserved current

jµ5 = ψ̄γµγd+1ψ . (2.76)

In order to check the full quantum invariance, we should ensure the invariance of

the measure of the path integral. If ψn are eigenvectors of the Dirac operator, we
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can expand the fields as

ψ(x) =
∑
n

anψn(x), ψ̄(x) =
∑
n

b̄nψ
†
n(x) . (2.77)

Then [dψ][dψ̄] =
∏
n dandb̄n transforms under (2.75) as

∏
n

dandb̄n →
∏
n

dandb̄n exp

[
−2i

∫
dx
∑
n

ψn(x)†α(x)γd+1ψn(x)

]
, (2.78)

which shows that the quantum theory is not invariant under this transformation.

This is the source of the anomaly. We can say that

(Anomaly) =

∫
dx
∑
n

ψn(x)†γd+1ψn(x) . (2.79)

However this quantity is ill-defined since two fields are evaluated at the same point.

We introduce a regulator as∫
dx
∑
n

ψn(x)†γd+1ψn(x) = lim
β→0

Tr γd+1 e
−β(i /D)2 . (2.80)

Note that the quantity at RHS is exactly what is calculated in the section 2.2.3,

the index of the Dirac operator. Quantum mechanics we need in order to evaluate

this quantity is N = 1 non-linear sigma model, which yields

(Anomaly) =
id/2

(2π)d/2

∫
Md

d/2∏
i=1

xi/2

sinhxi/2
. (2.81)

As can be seen in this example, anomalies are closely related to the various index

theorems, which will be further investigated in the next subsection. This method

was widely extended in Alvarez-Gaume and Witten’s work [6] where they calcu-

lated anomalies of string theory and their miraculous cancelation. Following this

pioneering work, we will review the procedure of calculating gauge and gravitational

anomalies of various basic fields contents in quantum field theory.
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Gravitaional anomalies of spin 1/2 fields

Gravitational anomaly implies quantum non-invariance of the theory under general

coordinate transformation and local Lorentz transformation, which act as

δceµ
a = ην∂νeµ

a + (∂µη
ν)eν

a

δleµ
a = Λa

beµ
b . (2.82)

In the original work [6], they considered a particular combination of the two trans-

formations, which acts covariantly on the chiral spinor as 2

δη = −ηµDµψ . (2.84)

Since we are considering chiral fermions, the relevant operator is i /DL = i
2
/D(1 −

γd+1). Since this operator is not self-adjoint, the determinant is not well-defined.

Hence we expand as

ψ =
∑
n

anψn, ψ̄ =
∑
n

b̄nχn , (2.85)

where for this case ψn and χn are eigenfunctions of (i /DL)†(i /DL) and (i /DL)(i /DL)†

respectively. In Euclidean signature, we should integrate over both of them since

they are independent degrees of freedom. As in the previous example, we examine

the variation of the measure under the transformation (2.84). The Jacobian yields∫
dx ψ†n(ηµDµ)ψn −

∫
dx χ†n(ηµDµ)χn . (2.86)

2Actually it can be shown that the two transformations essentially gives the same anomaly.
[22] In particular, the anomaly only from the local Lorentz transformation can be written as [24]

(covariant anomaly (2.84))(ηµ) = −2(Lorentz anomaly)(D[µην]) (2.83)
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This quantity can be calculated by proper regularization, which can be written as

lim
β→0

Tr γd+1(ηµDµ) e−β(i /D)2 . (2.87)

The operator insertion (ηµDµ) can be exponentiated to the action, and we can

recover the original quantity by taking terms linear in η at the end. Exponentiated

term amounts to Dµην(x0)xµẋν in the quadratic Lagrangian. The path integral

reduces to the calculation of the Dirac index, which was done in section 2.2.3, where

this operator insertion effectively shift the curvature as

Rµνρσψ
ρ
0ψ

σ
0 → Rµνρσψ

ρ
0ψ

σ
0 + 4Dµην . (2.88)

If we denote the shifted skew eigenvalue as x′i, the result can be written as

Igravity,1/2 =
id/2

(2π)d/2

∫
Md

∏
i

x′i/2

sinhx′i/2

∣∣∣∣∣
Dη-linear

. (2.89)

Since the polynomial is even in x′i, the integrand consists of the formal sum of

4n-forms. Since we should pick only Dη-linear terms, the anomaly can be obtained

from the 2d + 2 form of the Dirac genus A(TM/2π). We clearly see that only in

4n + 2 dimension, spin-half fields have pure gravitational anomaly. Furthermore,

they are closely related to the γ5 anomaly of 4n dimensions. We will further

investigate this relation in the next subsection.

Gauge and gravitational anomalies of spin 1/2 fields

Next, we consider spin-1/2 complex chiral fermion coupled to the external gauge

field additionally. They transform as

δψ = iη̄αT
αψ

δψ̄ = −iψ̄ηαTα . (2.90)
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The anomaly again comes from the transformation of the Jacobian which can be

written as

lim
β→0

Tr γ5 iηαT
αe−β( /D)2 , (2.91)

where Dµ is gauge covariant derivative. Similarly, this can be calculated by expo-

nentiating c∗ iηαT
αc∗, and taking only terms linear in η. As noted in section 2.2.4,

we are only interested in the one-particle state of c-fermions, to avoid generating

tensor product of a given representation. The Lagrangian we need is exactly what

was studied in section 2.2.4, whose path integral reads

Igauge,1/2 =
id/2

(2π)d/2

∫
Md

Tr e( 1
2
Fα+ηα)Tα

∣∣∣∣
η-linear

, (2.92)

where Fα ≡ Fαµνdx
µdxν . When fermions couple to both of the gauge and gravita-

tional field, we can combine the anomaly as

Imixed,1/2 =
id/2

(2π)d/2

∫
Md

Tr e( 1
2
Fα+ηα)Tα

∏
i

x′i/2

sinhx′i/2

∣∣∣∣∣
η-linear

=
id/2

(2π)d/2

∫
Md

ch(F ′) ∧ A(TM ′)

∣∣∣∣
η-linear

, (2.93)

where F ′ and TM ′ denote that gauge field and curvature are shifted by η and Dη

respectively.

Gravitational anomalies of Rarita-Schwinger fields

The next chiral field which can carry the gravitational anomaly is the spin-3/2

Rarita-Schwinger field. This field ψµα can be thought of as the tensor product of

spinor representation and the vector representation, [1]⊗ [1
2 ] = [3

2 ]⊕ [1
2 ], where the

latter spin-1/2 should be factored out at the end. The Dirac operator is in the

SO(2n) representation, where the ghost fields c∗a, ca transform under SO(2n) with

(T ab)cd = δacδ
b
d− δadδbc. The same procedure as gauge anomaly of spin-1/2 fields
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can be applied to this, which results

I3/2 =
id/2

(2π)d/2

∫
Mn

(
Tr eR

′ − 1
)∏

i

x′i/2

sinhx′i/2

∣∣∣∣∣
η−linear

, (2.94)

where R is a two-form valued matrix 1
2Rijkldx

kdxl and the trace is taken over the

remaining indices. Prime denote for the fact that the eigenvalues are shifted by η

and Dη as in the previous example. −1 in the parenthesis is due to the factoring

out spin-1/2 degrees of freedom. Note that the gauge field does not couple to the

spin-3/2 field.

Gravitational anomalies of self-dual antisymmetric fields

In Euclidean, bosonic fields are always in real representations, which means that the

complex conjugate should be integrated out together in the path integral. Hence

they do not carry anomaly in general. The problem occurs for the fields which does

not have a Lagrangian description. Anti-symmetric self-dual fields (ASD) are such

examples. In Minkowskian, ASD exists in 4k + 2 dimensions, which satisfies

Fµ1···µ2k+1
=

√
−g

(2k + 1)!
εµ1···µ2k+1ν1···n2k+1

F ν1···ν2k+1 . (2.95)

Since, in the Lagrangian representation of the index, we are working with Euclidean

signature where such relation does not hold, we will complexify the fields and

calculate the anomaly. Due to this, at the end we should divide the result by

factor of 2. In order to calculate the anomaly, in [6], they introduced other bosonic

antisymmetric tensor fields Fµ1···µi with i = 0, · · · , 4k + 2. All of these can be

constructed from the bi-spinor field φαβ defined by

φαβ =
1

2k+1/2

4k+2∑
i=1

γµ1···µiαβ Fµ1···µi . (2.96)
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It is enough to calculate the anomaly of φαβ instead of Fµ1···µi ’s. Since other anti-

symmetric tensor fields with i 6= 2k+1 does not carry anomaly, this is equivalent to

calculate anomaly coming from self-dual fields only. We can treat the indices α and

β separately, then the procedure parallels that of spin-3/2 fields. The index α can

be thought of as usual spinor index on which Dirac operator acts, while the index β

can be thought of as additional spinor representation. From the first factor, we get

A(TM/2π), and from the second factor, we get Tr exp
(

1
4Rabcdψ

a
0ψ

b
0γ
cd
)
. Hence,

IASD =
1

4

i2k+1

(2π)2k+1

∫
M4k+2

Tr exp

(
1

4
R′cdγ

cd

)∏
i

x′i/2

sinhx′i/2

=
1

4

22k+1i2k+1

(2π)2k+1

∫
M4k+2

∏
i

coshx′i/2 ·
x′i/2

sinhx′i/2

=
1

8

i2k+1

(2π)2k+1

∫
M4k+2

∏
i

x′i
tanhx′i

=
1

8

i2k+1

(2π)2k+1

∫
M4k+2

L(TM) . (2.97)

In the first line, 1/4 factor comes from the reality of fields and chiral projection.

x′i denotes for the eigenvalue of the matrix 1
2Rijkldx

kdxl +Diηj −Djηi. From the

second to third line, x′i’s absorbed factor 22k+2. (Note that, in the integrand, we

need linear term in η and 2k + 1 power of xi’s.) We can see that the answer is

given by the L-class.3

2.3.2 Relation between anomalies and index theorem

As can be seen in the last subsection, gauge/gravitational anomalies of 2n di-

mensions are closely related to the index theorems in 2n + 2 dimensions. In this

3One can directly calculate the anomaly for the ASD fields by noting that the Jacobian of
diffeomorphism is given by Tr∗δη [24]. Since the equation of motion of ASD fields is �Fi1···in = 0,
the regulator can be chosen to be limβ→0 Tr ∗ δη e−β�. In this viewpoint, two fermion indices are
equally treated and the supersymmetric Lagrangian is reduced to that of section 2.2.2, which has
two supersymmetries.
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subsection, we present the reason why the two quantities are related in general,

following [21, 23]. Furthermore, we will see the universal shift of the curvature

Rij → Rij + D[iηj] are related by so called descent procedure of anomaly polyno-

mials. [22]

In order to see the effect of chiral mismatch, we consider the following Dirac oper-

ator,

D̃ = γi
(
∂i +Ai

1 + γ5

2

)
=

(
0 /D+

/∂− 0

)
. (2.98)

Determinant of D̃ can be calculated from the square root of

Det(i/∂+i/∂−)Det(i /D+i /D−) = C ·Det

(
0 /D+

/D− 0

)
, (2.99)

where C is a constant independent of the gauge fields. Hence,

Det(iD̃) =
√

Det(i /D) eiΦ[A] . (2.100)

Since the absolute value
√

Det(i /D) is a well-defined quantity, the source of the

anomaly comes from the imaginary part of the Euclidean action Φ[A], which is a

topological quantity in general. Consider S2n as 2n-dimensional Eucildean space-

time. Let g(θ, x) is an element of the gauge group G, where g(0, x) = g(2π, x) = 1

and x ∈ S2n. Domain of g is therefore S2n × [0, 2π] with two end point identi-

fied, which is S2n+1. Now, let Aθ be a transformed gauge field Aθ ≡ A(θ, x) =

g(θ, x)−1(d + A(x))g(θ, x). If we require well-definedness of Det(iD̃[Aθ]), from

(2.100), it follows that Φ[A(0, x)] = 2πm + Φ[A(2π, x)], where m ∈ Z. Therefore,

we can say that ∫ 2π

0
dθ
dΦ[A, θ]

dθ
= 2mπ . (2.101)

32



Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

Now, consider the gauge variation of the Euclidean effective action Weff[A]:

∂Weff[A(θ, x)]

∂θ
=

∫
d2nx

δWeff[A(θ, x)]

δAθj
·
∂Aθj
∂θ

= −
∫
d2nx Λ(θ, x) ·Dθ

j

(
δWeff

δAθj

)
, (2.102)

where Λ = g−1∂θg, and we used the fact that

dAθj
dθ

= ∂jΛ + [Aθj ,Λ] = Dθ
jΛ . (2.103)

The equation (2.102) is the definition of the consistent anomaly, which refers to

the expression of anomaly obtained from the variation of effective action. We note

that this is in fact related to the winding number m defined above:

2πmi = i
∂Φ[A, θ]

∂θ
= −∂Weff

∂θ
. (2.104)

This relation implies that the consistent anomaly is given by the winding number,

m =
1

2πi

∫ 2π

0
dθ

∫
d2nx Λ(θ, x) ·Dθ

j

(
δWeff[A(θ, x)]

δAθj

)
. (2.105)

How is this quantity related to the index of 2n + 2 dimensional Dirac operator?

Let us introduce yet another parameter r such that (r, θ) parametrizes a two-

dimensional disk. Furthermore, we define A(r, θ, x) so that A(r = 1, θ, x) = A(θ, x).

Then, the following two statements can be shown to be true. [22] 1) The winding

number around the boundary of the disk equals the sum of local winding number

around each zeros of Det(iD̃[A(ρ, θ, x)]). 2) Zeros of Det(iD̃[A(ρ, θ, x)]) are in

1-1 correspondence with the zero modes of i /D2n+2. Especially, according to the

chirality of each zero modes, it gives weight ±1 to the winding number. Combining
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these facts together, from the definition of the index, we find that

ind(i /D2n+2) =
1

2πi

∫
dθ

∫
d2nx Λ(θ, x) ·Dθ

i

(
δWeff[A(θ, x)]

δAj(θ, x)

)
. (2.106)

As can be repeatedly seen in the previous subsections, actual anomaly in 2n di-

mensions can be obtained from 2n+2-form of certain gauge invariant polynomials.

This procedure of extracting anomaly can be summarized into so called descent

procedure of the characteristic classes. In order to explicitly see this, let us con-

sider the two dimensional auxiliary space parametrized by (r, θ). If we glue two

such disks D+ and D− at the boundaries where the gauge fields are defined through

a gauge transformation,

A+(r, θ, x) = g−1(θ, x)(A(x) + d+ dθ∂θ)g(θ, x) , at D+ (2.107)

A−(r, θ, x) = A(x) , at D− (2.108)

where d is a differential in the space of x. (Note that, since g is independent of

r, it can be thought of as a differential in the x, r space.) Then, this additional

two-dimensional space can be regarded as S2n. Now, consider an index of 2n + 2

dimensional operator given by a characteristic class P (F ),

ind(i /D2n+2(A)) =
in+1

(2π)(n+1)

∫
S2×S2n

P2n+2(F ) . (2.109)

Since the gauge field F is closed, dP (F ) = 0, it follows that, locally there exists

2n+ 1 form such that

P2n+2(F ) = dP
(0)
2n+1(F,A) . (2.110)
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Then we can rewrite the equation as

ind(i /D2n+2(A)) =
in+1

(2π)n+1

∫
D+×S2n

dP
(0)
2n+1(A+, F ) +

∫
D−×S2n

dP
(0)
2n+1(A−, F )

=
in+1

(2π)n+1

∫
S1×S2n

P
(0)
2n+1(A+, F )

=
in+1

(2π)n+1

∫
S1×S2n

P
(0)
2n+1(Aθ(x) + dθΛ(θ, x), F θ(x))− P (0)

2n+1(Aθ(x), F θ(x))

=
in+1

(2π)n+1

∫
S1

dθ

∫
S2n

P
(1)
2n (Λ(θ, x), Aθ(x), F (θ, x)) . (2.111)

From the first to second line, the second term vanishes simply because P
(0)
2n+1(A−, F )

does not contain any differential in θ direction. And we substracted the second term

in third line for the same reason. For the last line, we further defined a 2n form by

δΛP
(0)
2n+1(A,F ) = dP

(1)
2n (Λ, A, F ) . (2.112)

Comparing (2.111) with (4.110) and (2.106), and fix θ at certain value, we obtain

the expression for anomaly in 2n dimension,

δΛWeff =
in

(2π)n

∫
S2n

P
(1)
2n (Λ, A, F ) . (2.113)

Although the actual anomalies are given by the descent P
(1)
2n of the gauge invariant

characteristic classes, when we check the cancelation of anomalies for given theory,

it is enough to check the cancelation of the 2n+ 2 form expression P2n+2 only. It

does not seem to be enough, since for given P2n+2 form, its descent P
(1)
2n is not

unique. However, this fact precisely corresponds to the ambiguity in the definition

of the 1-loop anomaly. The first ambiguity comes from the fact that we can always

add a local counterterm Γ =
∫
α2n to the action, which does not alter the equation

of motion. Since Γ does not need to be gauge-invariant, it can be source of the

anomaly, which shift P
(1)
2n + δα2n. Furthermore, from the expression (2.113), we

can see that addition of an exact term dβ2n−1 to P2n(1) does not change the result,
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if the manifold does not have a boundary. From these facts, there are equivalence

relation at the level of anomaly,

P
(1)
2n ∼ P

(1)
2n + δα2n + dβ2n−1 . (2.114)

Using the fact that d and δ commute, it is easy to see that this equivalence class

defines unique gauge invariant form P2n+2(F ).

2.4 Supersymmetric localization and exact partition

functions

In this section, we turn to the study of partition functions in supersymmetric gauge

theories, which will be substantially used for Chapter 4. Compared to the index

studied in the previous sections which only contains information about ground

states, partition function contains information of all the excited states as well,

and in general very difficult to exactly calculate. However, recently, for theories

equipped with certain amount of supersymmetries, there has been extensive de-

velopements of so called supersymmetric localization technique, which enables us

to exactly calculate indices and partition functions of superconformal theories on

spheres in various dimensions. The most prominent example is exact calculation of

partition functions for N = 2 supersymmetric Yang-Mills (SYM) theories and the

Wilson loop expectation values thereof, which was done by Pestun 2007. [7] First

of all, one should construct the Lagrangian on the four-sphere which preserves su-

persymmetries. In general, there are two different ways to put the supersymmetric

theories on curved spaces. The first is so called twisting, which modifies the theory

by turning on the current of global symmetry so that they cancel the curvature

of the manifold. Then, part of the supercharge becomes scalar under new Lorentz

symmetry, and they are preserved for curved spacetime. This procedure makes the

theory topological. The second method is so called rigid supersymmetry on the
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curved manifolds, which is main concern of this section. Given a conformal field

theory on a flat space, one can write the theory on a sphere by a stereographic

projection. The Lagrangian can be written as flat Lagrangian with additional cor-

rection terms which depends on the curvature. For example, the action of N = 4

SYM on S4 can be written as [7]

S =
1

g2
YM

∫
S4

√
g d4x

1

2
FµνF

µν + ∂µΦa∂µΦa +
2

r2
ΦaΦa −ΨΓMDMΨ , (2.115)

where fermions are combined and written in terms of a ten-dimensional Majorana-

Weyl fermion Ψ. Here r is a radius of four sphere, and the third term corresponds

to the curvature correction to the flat Lagrangian. This action enjoys N = 4

superconformal symmetry;

δεAM = εΓMΨ

δεΨ =
1

2
FMNΓMN ε+

1

2
ΓµaΦ

a∇µε . (2.116)

Here ε is a supersymmetric transformation parameter which satisfies the conformal

Killing spinor equation,

∇µε = Γ̃µε̃

∇µε̃ = − 1

4r2
Γµε , (2.117)

where Γµ : S+ → S− is an off-diagonal component of the ten-dimensional gamma

matrix and Γ̃µ is its conjugate. Furthermore, one can show that square of the

(2.116) gives

δ2
ε = −LεγM ε −R−Dεε̃ , (2.118)

where the right hand side are bosonic symmetry generators of the theory which

include the R-symmetry and dilatation. In order to calculate the partition function

defined as

Z =

∫
[dφ] e−SE(φ) , (2.119)
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where φ denotes for all the dynamical fields in the theory, we consider following

deformation,

Z(t) =

∫
[dφ] e−SE(φ)−tQV , (2.120)

where t is an arbitrary number, Q is a supersymmetric variation

Q = δεφ ·
∂

∂φ
, (2.121)

and V is some fermionic fields. When we choose V such that Q2V = 0, in other

words, when V is invariant under the bosonic symmetries of the theory (see eq.

(2.118)), one can show that the integral is independent of the parameter t.

∂Z

∂t
= −

∫
[dφ] (QV ) e−SE(φ)−tQV

= −
∫

[dφ] Q
(
V e−SE(φ)−tQV

)
= 0 ,

if the integrand behaves nicely at the infinity of field space φ. From the first to

second line, we used the fact that the classical action is closed under supersymmetric

transformation. For the last equailty, we note that Q becomes total derivative and

the measure is invariant under the supersymmetric variation. This observation tells

us that the result does not change if we take the limit Z(t→∞). In this limit, the

field field configurations are localized to the locus φ = φ0 which satisfies QV = 0,

and other contributions are exponentially suppressed. In this limit, all the fields

can be expanded as

φ = φ0 +
1√
t
δφ , (2.122)

and one-loop determinant of the fluctuation gives exact answer to the integral.

Most convinient choice of the fermionic term V is

V =
∑
ψ

〈ψ,Qψ〉 (2.123)
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where the summation is over all the fermions in the theory, and 〈 , 〉 is a inner

product defined in the field space. By construction, QV is positive definite, and

the localization locus is given by Qψ = 0. For N = 4 SYM on S4, the result is

given by [7]

ZS4 =

∫
[da] e

−8π2r2a2

g2
YM Z1-loop(ia)|Zinst(ia, r

−1, r−1, q)|2 , (2.124)

where the result is given in terms of the integral over real parameter a, which is

saddle point value of the one component of vector multiplet scalar Φ0. The first

factor is contribution from the classical action, and the second factor comes from

the 1-loop determinant near the saddle configuration. The last factor is instanton

contribution localized at north and south poles of the sphere respectively. Inter-

estingly, Zinst(ia, r
−1, r−1, q) is the Nekrasov’s instanton partition function [25–27]

with ε1 = ε2 = r−1. This behavior of the factorization of partition function are ob-

served to be general for sphere partition functions in other dimensions. [14, 28, 29]

After this seminal work, the partition functions on spheres in various dimensions

are calculated. In three dimension, Kapustin, Willet and Yaakov obtained partition

functions for the N = 2 theories on S3. [30] With this result, various conjectured

three dimensional dualities are proved, and more recently, it was shown that this

quantity calculates entanglement entropy across S1 in R3,1. [31] In five dimensions,

partition functions for SYM theory on S5 are calculated by [32]. This result is

of particular importance since this theory is known to probe the six dimensional

(2, 0) theories on M5-branes, which does not admit Lagrangian description. Most

recently, along the lines of these developements, partition functions on S2 are stud-

ied. [8, 9] Soon after that, it was realized through a series of works [12–15, 29]

that these results calculates very useful quantity which is related to the geometry

of Calabi-Yau manifolds where string theory is based on. This is the main subject

of the Chapter 4 of this thesis.

39



Chapter 3

Applications of Index Theorems

in String Theory

In this chapter, as another important application of the index theorem in string

theory, we study the problem of counting BPS states of supersymmetric theories.

We will mainly focus on theories with eight real supercharge (N = 2) in four-

dimensions, which can be obtained from compactifying Type II string theory on

six dimensional Calabi-Yau manifold. In the first section, we briefly review basics

of four-dimensional N = 2 theories obtained in this way, and present the physical

explanation of the wall-crossing phenomena which is the prominent feature of 4d

N = 2 theories. Contents after the section 3.2 are based on the work [10].
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3.1 BPS States and Wall-Crossing in 4d N = 2 theories

Four-dimensional N = 2 theory has two supercharges which will be denoted as QIα,

Q̄Iα̇, where I = 1, 2. They satisfy the following supersymmetry algebra,

{QIα, Q̄β̇J} = 2σµ
αβ̇
Pµδ

I
J

{QIα, QJβ} = 2εαβε
IJZ

{Q̄α̇I , Q̄β̇J} = −2εα̇β̇εIJ Z̄ , (3.1)

where the conjugate supercharge is defined by Q̄α̇I = (QIα)†. Furthermore, the

index I can be lowered and raised by εIJQ
J
α = QIα and ε12 = ε21 = 1. Z is

complex central charge of N = 2 algebra. In addition to these, we have bosonic

R-symmetry which is SU(2)R × U(1)R. Here SU(2)R rotates I indices, and under

U(1)R, QI and Q̄I has charge 1 and −1 respectively. Let us assume Z 6= 0, and

consider massive representations of Lorentz group, SO(3). In order to see the

particle spectrum of this algebra, define

aIα = e−iδ/2QIα + eiδ/2Q̄β̇Iσ0
β̇α

bIα = e−iδ/2QIα − eiδ/2Q̄β̇Iσ0
β̇α

. (3.2)

Here the factor e±iδ/2 denotes for a possible U(1)R rotation of the supercharges.

They satisfy

{aIα, (aJβ)†} = 4(M − Re(Ze−iδ))δαβδ
IJ ,

{bIα, (bJβ)†} = 4(M + Re(Ze−iδ))δαβδ
IJ ,

{aIα, (bJβ)†} = {aIβ, (bJα)†} = 0 . (3.3)

Then, positivity of the Hilbert space requires

M ≥ Re(Ze−iδ) . (3.4)
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The most strict condition comes from the case δ = argZ. If we require this, we

have

M ≥ |Z| , (3.5)

which is called the BPS (Bogomol’nyi-Prasad-Sommerfield) bound. If we restrict

to the strict inequality M > |Z|, the states generated by the above algebra are

{
|0〉, a1

2|0〉, a2
2|0〉, a1

2a
2
2|0〉

}
⊗
{
|0̃〉, b12|0̃〉, b22|0̃〉, b12b

2
2|0̃〉

}
, (3.6)

where aI1|0〉 = bI1|0̃〉 = 0. These multiplets are sometimes called long multiplets.

The spacetime spin contents are(
2 [0] +

[
1

2

])
⊗
(

2 [0] +

[
1

2

])
⊗ [j] (3.7)

where [j] is a possible representation of the vacuum. When the equality of (3.45)

is met, all the states in the second half of (3.6) vanish. We call these multiplets as

short multiplets, or BPS multipets. The simplest BPS multiplet is(
2 [0] +

[
1

2

])
, (3.8)

which is the half-hyper multiplet. In particular, two real scalars transform as spin

[1
2 ] in SU(2)R global symmetry. The next simplest BPS multiplet is obtained by

assigning charge [1
2 ] to the vacuum. This is the BPS vector multiplet,

2

[
1

2

]
+ [1] + [0] . (3.9)

Note that it consists of a massive vector field, a real scalar, and a Dirac spinor.

These BPS multiplets are of particular interests when we study supersymmetric

theories. First of all, they are very useful in investigating non-perturbative aspects

of the supersymmetric theories, since they are rigid under continuous deformation

of the theories. Secondly, these states are believed to be responsible for microscopic
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entropy of the extremal black-holes. Finally, they can be used to study properties

of Calabi-Yau varieties and their cycles.

The four-dimensional N = 2 supersymmetric theories can be realized in string the-

ory by compactifying Type II string theory on certain Calabi-Yau threefold (CY3).

For simplicity, let us consider Type IIB string theory on X which is CY3. For this

case, BPS particles in non-compact four-dimensions can be obtained from wrap-

ping D3-branes on special Lagrangian three-cycles in X. If there are N coincident

such D3-branes, dynamics the BPS particles obtained from them are subject to the

gauged supersymmetric quantum mechanics with gauge group U(N), which pre-

serves four real supersymmetry. The resulting four-dimensional low-energy theory

is N = 2 supergravity coupled to h2,1 abelian massless gauge fields. In particu-

lar, the latter can be obtained from the self-dual five form Ramond-Ramond field

strength G5 coupled to D3-branes. We can write it as

G5 ∈ Ω2(M4)⊗H3(X,Z) , (3.10)

where H3(X,Z) is a symplectic lattice structure on X, whose basis αI and βI

(I = 1, · · ·h2,1) satisfy

〈αI , αJ〉 = 0

〈βI , βJ〉 = 0

〈αI , βJ〉 = δJI . (3.11)

As a result, in M4, we have two-form abelian gauge field strength F I and their

dual F̃I ≡ ∗4F I , by

G5 = αIF
I + βI F̃I . (3.12)
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On the other hand, central charge of the BPS particle obtained from wrapping

D3-brane on a three-cycle Γ is naturally defined as

Z(Γ) =

∫
X

Γ ∧ Ω, (3.13)

where Ω is a holomorphic three-form of X. (We used same notation Γ for its

Poincare dual.) We can also define (topological) intersection product between

cycles,

〈Γ1,Γ2〉 =

∫
X

Γ1 ∧ Γ2 . (3.14)

Now, let us restrict our attention to the four-dimensional supersymmetric gauge

theory obtained as above. If the gauge group is G of rank r, due to the potential

of the scalar component of the vector multiplet,

Tr[φ†, φ]2 , (3.15)

the moduli space of the coulomb branch is parametrized by abelian U(1)r Maxwell

theory. The parameter of coulomb branch is ui=1,···r, which is made of VEV of the

vector multiplet scalars. For example, if G = SU(N), ui are chosen to be 〈Tr φi〉
for i = 2 · · ·N . Since the low-energy theory is rank r U(1) Maxwell theory, we can

naturally define electric and magnetic charge associated to them. Then the theory

is equipped with symplectic structure of lattice dimension 2r, which is given by

the Dirac-Schwinger-Zwanziger product, 〈γa, γb〉 ∈ Z. This quantization relation

exactly corresponds to (3.14) of internel Calabi-Yau space.

From the seminal work of Seiberg and Witten [35, 36], it was shown that the low-

energy effective theories are severely constrained by N = 2 supersymmetry. The

effective action is determined by the prepotential F which is a holomorphic function

in 〈φ〉. If we let 〈φ〉 = diag(a1, · · · , ar), the bosonic part of the effective action can
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be written as

Seff =
1

4π

∫
M4

(
Im

∂2F

∂aI∂aJ

)(
daI ∧ ∗daJ + F I ∧ ∗F J

)
+

(
Re

∂2F

∂aI∂aJ

)
F I ∧ F J .

(3.16)

Exact form of the prepotential F can be determined from the information of BPS

spectrum of the theory. The central charge of a BPS state with charge γ, which is

a key quantity to study the BPS spectrum, is a function of moduli ui and γ. In

particular, it is linear in γ, i.e.,

Z(u, γ1) + Z(u, γ2) = Z(γ1 + γ2, u) . (3.17)

We require that αI , a basis of the symplectic lattice structure, satisfies

aI = Z(u, αI) . (3.18)

Then, the dual coordinate on the moduli space aD,I can be defined by

aD,I ≡ ∂F (a)

∂aI
= Z(u, βI) . (3.19)

Hence, for a given supersymmetric cycle γ = pIαI + qIβ
I , in X, the central charge

of corresponding particle is

Z(u, γ) = pIaI + qIa
D,I . (3.20)

The BPS states are known to be invariant under the continuous deformation of the

parameters, but this is not true at every point of the moduli space. In the moduli

space, we can find a co-dimension one wall of marginal stability such that as we

cross that, certain BPS states suddenly dissappear. This is what is called the wall-

crossing phenomenon, and this is one of the reason that makes 4d N = 2 theory

much more interesting. This phenomenon can be easily seen from the examaple of

pure SU(2) Seiberg-Witten theory, as in the figure below.
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Figure 3.1: Moduli space and BPS spectra of 4d N = 2 pure SU(2) theory. The
line denotes for the wall of marginal stability defined as arg(a) = arg(aD), and the
two points on that indicate where monopole of charge (0, 1) and the dyon (2,−1)
become massless respectively. Being massless, they can be BPS states at both
side of the wall. At the weak coupling regime, there are additional infinite tower

of BPS states which can be understood as the bound states of the two states.

From the work of Denef and Moore, [45–47], the problem of identifying the BPS

states that disappear across the wall has been translated in term of the bound

state formation problem of the BPS states. To illustrate this, let us look at the

BPS equation given by the supersymmetric variation of the fermions in the vector

multiplet, which reads

F0i −
i

2
εijkFjk − iDi(e

−iδφ) = 0

D0(e−iδφ)− 1

2
[φ†, φ] = 0 , (3.21)

where δ is defined in equation (3.2), the phase of the central charge of this BPS

configuration. For the abelian gauge group U(1)r, they imply

F I+0i = ∂i(e
−iδaI) , ∂0a

I = 0 , (3.22)

where F I+ is self-dual part of the gauge field strength. These BPS equations can

be solved by assuming spherically symmetric field strength. It can be shown that
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they lead to

2Im[e−iδZ(γp, u(r))] = −〈γp, γ〉
r

+ 2Im[e−iδZ(γp, u(∞))] , (3.23)

where γ is a charge of the configuration (3.21), and γp is that of the probe particle.

If there are two such BPS particle, it becomes

2Im[e−iδ1Z(γ2, u(r))] = −〈γ1, γ2〉
r

+ 2Im[e−iδ1Z(γ2, u(∞))] . (3.24)

Note that when argZ(γ1) = argZ(γ2), i.e., when they enjoy the same supersymme-

try, the following relation holds,

|Z(γ1)|+ |Z(γ2)| = |Z(γ1 + γ2)| , (3.25)

and these two states form a bound state which is BPS. One can easily extract the

radius of the bound state,

R =
1

2

〈γ1, γ2〉
Im[e−iδZ(γ2, u(∞))]

. (3.26)

From this relation, normalizable bound state exists only when sin(δ2 − δ1) > 0.

When δ2 approaches δ1 so that eventually sin(δ2− δ1) ≤ 0, the radius diverges and

the corresponding bound states disappear. This is how we physically understand

the wall-crossing phenomena. In order to explicitly calculate the number of BPS

states at both side of the wall, we should define an index which is non-vanishing

only for the BPS states. For this, we introduce the the second helicity trace, defined

by

Ω(u, γ) = −1

2
Tr(−1)2J3(2J3)2 . (3.27)
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The angular momentum operator J used to define the fermion number is SU(2)L

generator which corresponds to the spatial rotation,

J =
1

2

∑
i<j

〈γi, γj〉
~xi − ~xj
|xi − xj |

. (3.28)

Here ~xi is a three-vector which defines the position of a BPS particle of charge γi.

One can straightforwadly show that Ω(u, γ) vanishes for any long multiplet which

include the factor of (3.7). On the other hand, for the half-hyper multiplet, Ω(u, γ)

gives 1 and for the BPS vector multiplet, it gives −2. Moreover, for a BPS states

in the representation

R =

(
2 [0] +

[
1

2

])
⊗ [j] , (3.29)

where the first hypermultiplet factor denotes for the center of mass degrees of

freedom, the index can be simplifed as

Ω(u, γ) = −1

2
TrR(−1)2J3(2J3)2 = Trj(−1)2J3 , (3.30)

the usual Witten idex. For example, when a state γ1 + γ2 disappears across a

marginal stability wall, and dissociate into γ1 and γ2 on the other side, the indices

of these three kind of BPS particles are known to obey a universal formula

Ω−(γ1 + γ2) = (−1)|〈γ1,γ2〉|−1|〈γ1, γ2〉|Ω+(γ1)Ω+(γ2) , (3.31)

where ± denote the two sides of the wall. This simplest wall-crossing formula has

been studied in many examples, generalized to the so-called semi-primitive cases

for γ1 +kγ2 states [47] and most recently embedded into an algebraic reformulation

by Konsevitch and Soibelman [48], which in turn was explained in more physical

basis [49–52].

In Ref. [53], a new approach to the low energy dynamics of dyons in generic N = 2

Seiberg-Witten theory was proposed. Assuming that bound states of interest are

large, which is always true whenever the theory is near a wall of marginal stability,
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the author showed how a N = 2 supersymmetric dynamics can be explicitly written

from the special Kahler data of the vacuum moduli space only. When applied

in the limit of a simgle dynamical probe dyon in the presence of another (very

massive) BPS state, the bound states can be constructed explicitly and counted,

again confirming the above primitive wall-crossing formula. It is abundantly clear

that his method can be used for an arbitrary number and varieties of dyons, as well,

as long as the proximity to a marginal stability wall is satisfied. In the following

sections, we substitute the reference [10], where they set up dynamics of arbitrary

number of dyons near such a wall, with N = 4 supersymmetry, and generate wall-

crossing formula via index theorem.

The first improvement concerns the question of what is the relevant index theorem.

In the Denef’s Coulomb phase approach, the most comprehensive studies to date

involve a truncation of dynamics where one ends up with a geometric quantiza-

tion problem on the classical moduli space of charge centers, which are typically

compact. In this paper, we denote such moduli spaces for n centers as Mn. For

two-center case, this manifold is always S2. The Lagrangian has no kinetic term,

but a minimal coupling to certain magnetic field induces a symplectic structure

on the moduli space, making it a phase space. In turns out, however, the naive

low energy dynamics on this classical moduli space on Mn end up with too many

fermionic degrees of freedom. The anticipated and empirically correct answer,

which is a Dirac index [57], results only if one can somehow remove half of the

fermions. This deficiency has remained unresolved until now.

In the sections below, we will explain why the naive truncation to Mn was ill-

motivated. It turns out that there is no separation of scales, and all 3n bosons

and 4n fermions are of equal massgap. Instead, one can choose to reduce the index

problem toMn by deforming the theory with supersymmetry partially broken. As

long as there is one supersymmetry left unbroken and since the quantum mechanics

has a gap, the index is left invariant under the deformation. At the end of the day,
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we will thus have provided an ab initio derivation of the anticipated Dirac index

on Mn, for the first time.

The second concerns the physical interpretation of certain rational invariants, de-

fined and extensively used by Manschot et.al. [54], of the form

Ω̄(γ) =
∑
p|γ

Ω(γ/p)

p2
, (3.32)

where the sum is over divisors of γ. The expression naturally appears in other

formulation of the wall-crossing, most notably in Konsevitch-Soibelmann. In the

course of enumerating the bound states of Bosonic or Fermionic statistics, we will

encounter Ω(β)/p2 as a universal effective degeneracy of p identical particles of

charge β. It appears as the multiplicative factor from the normal bundle as one

computes contributions from a submanifold fixed by the permutation group of order

p.1

Along the way, our work also clarifies relation between the field theory indices,

namely the second helicity trace and the protected spin character, and the quantum

mechanical ones. Quantum mechanical index usually suffers from ambiguity over

the definition of (−1)F . Usual index formulae relies on certain (mathematically)

canonical choice of (−1)F . Retaining three bosonic coordinates per dyons allow

us to inherit both the spatial rotation group, denoted by SU(2)L, and the R-

symmetry of N = 2 field theory, SU(2)R. The supersymmetries belong to (2, 2)

representation, so both (−1)2J3 of SU(2)L and (−1)2I3 of SU(2)R are chirality

operators. The second helicity trace is then computed unambiguously by Tr(−1)2J3 .

We in turn relate the latter to Tr(−1)2I3 which turns out to be equivalent to the

canonical choice leading to the usual Dirac index formula. This derives, for the

first time, the well-known sign pre-factors in the wall-crossing formulae universally.

In addition, we also explain why the protected spin character of the field theory is

1This same numerical factor 1/p2 had appeared before in the context of the D-brane bound state
problems of 1990’s [58, 59], where identical nature of the D-branes were also of some importance.
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actually computed by equivariant index, by showing that the quantum mechanical

“angular momentum” operator that appears in the latter is actually a diagonal

sum, J3 + I3, from the spacetime viewpoint.

The chapter is organized as follows. Section 2 reviews Ref. [53] and generalize the

low energy dynamics to the case of arbitrary number of dynamical charge centers,

and note the universal nature of the potential terms. Section 3 defines the index as a

method of BPS bound state counting, and in particular make contact with the field

theory indices, commonly known as the 2nd helicity trace and its generalization

known as the protected spin character. It turns out that the quantum mechanics

found have SU(2)L×SU(2)R R-symmetry, each of which defines chirality operators

(−1)2J3 and (−1)2I3 . The field theory index corresponds to the former, while

mathematical index formulae are more directly related to the latter. We discuss a

universal relationship between the two, and conjecture that all BPS bound states

in our quantum mechanics are all SU(2)R singlets.

Section 4 sets up index theorem for this dynamics and show how reduction to the

classical moduli manifold may be achieved. Here we show why the naive derivative

truncation leading to the geometric quantization is unjustified by demonstrating

that there is no natural separation of scales between classically massive directions

and classically massless directions. The main point is thatMn is of finite size, and

the quantum gaps due to this are always equal to those along the classically massive

directions. We show, nevertheless, how one can deform the theory while preserving

the index, such that classically massive modes are decoupled from the evaluation of

the index, at the cost of partially broken supersymmetry. We also observe that the

reduction process keeps a diagonal subgroup SU(2)J , and identify the generator

J3 = J3 +I3 as the operator usually used for equivariant index computations. This

way, we show that the equivariant index of quantum mechanics on Mn actually

computes the protected spin character of N = 2 field theory.
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After the derivation of Dirac index in section 4, we go on to evaluate in section

5 the wall-crossing formula by taking into account the Bosonic or the Fermionic

statistics. Projection operators are introduced for the purpose, and the index

formula is decomposed into additive contributions from various fixed submanifolds

associated with coincident identical particles. The reduced index problems on the

fixed submanifolds appears in the full index with a universal degeneracy factor

∼ 1/p2, which arises from orbifolding action of the p-th order permutation group

S(p). Summing up all relevant contributions, we find an expression identical to

Manschot et.al.’s wall-crossing formula. We close with summary and comments in

section 6.

3.2 N = 4 Moduli Mechanics for n BPS Objects

In Ref. [53], a general framework for deriving moduli dynamics of dyons of Seiberg-

Witten theory was given under the assumption that one works in the field theory

vacuum where the central charge are almost aligned in terms of the phases of

the respective central charges; in other words, very near the marginal stability

wall. This program was then carried out explicitly when one can treat only one

dyon as dynamical, with other dyons as external objects. In this note, we wish to

generalize this to arbitrary number of charge centers, be they field theory dyons

or charged black holes. For this, all dyons should be treated as dynamical, and we

will denote their charges as γA’s. For the above derivation of one dynamical center,

the proximity to a marginal stability wall played an essential role, allowing the

nonrelativistic approximation and thus the moduli space approximation possible,

so we need to retain this assumption.

While the moduli dynamics should have N = 4 supersymmetry, as demanded by

the BPS nature of the dyons, simple off-shell N = 4 descriptions fail to accom-

modate key interaction terms. Furthermore, as we will see in section 4 where we

compute the supersymmetric index, it is more convenient to take one of the four
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supersymmetries, say Q4, and give up others. For these reasons, we employ the

N = 1 superspace [60] where this supersymmetry, Q4, is manifest. We package 3n

bosonic coordinates, xAa, and 4n fermionic superpartners, ψAa and λA, as

ΦAa = xAa − iθψAa, ΛA = iλA + iθbA , (3.33)

with n auxiliary field bA’s. The supertranslation generator and the supercovariant

derivatives are then,

Q = ∂θ + iθ∂t, D = ∂θ − iθ∂t . (3.34)

3.2.1 Two Centers

The general structure of two dyon dynamics can be inferred from the results in

Ref. [53]. The latter actually derived the effective action of a single dynamical

dyon in the background of an infinitely heavy core BPS state. When the core state

consists of a single dyon, the effective action derived there can also be regarded as

the interacting “relative” part Lrel of a two-dyon effective action, upon the usual

decomposition,

L = Lc.m. + Lrel , (3.35)

where the trivial center of mass part was understood to be

Lc.m. =

∫
dθ

i

2
MtotalDΦa

c.m.∂tΦ
a
c.m. −

1

2
MtotalΛc.m.DΛc.m. , (3.36)

with Mtotal →∞ understood. Here, let us recall basic structures of Lrel as dictated

by the supersymmetry.
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Lrel involves only three bosonic coordinates and four fermionic ones and can be

further decomposed as

Lrel = Lrel0 + Lrel1 , (3.37)

where

Lrel0 =

∫
dθ

(
i

2
f(Φ)DΦa∂tΦ

a − 1

2
f(Φ)ΛDΛ +

1

4
εabc∂af(Φ)DΦbDΦcΛ

)
,(3.38)

with a = 1, 2, 3, and

Lrel1 =

∫
dθ (iK(Φ)Λ− iW(Φ)aDΦa) , (3.39)

with the condition

∂aK = εabc ∂bWc (3.40)

imposed. Note that this also implies ∂a∂aK = 0, which is solved by

K = K(∞)− q

|~x|
. (3.41)

We will see shortly how K(∞) and q can be read off from the underlying Seiberg-

Witten theory.

As was claimed, this Lagrangian is invariant under four supersymmetries,

δεx
a = iηamnε

mψn ,

δεψm = ηamnε
nẋa + εmb ,

δεb = −iεmψ̇m , (3.42)

with four Grassman parameters εm and with ψ4 ≡ λ. The N = 1 superspace we

employed is related to ε4, so L0 and L1 are manifestly and individually invariant

under these supersymmetry transformation rules. A less obvious fact, which is
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nevertheless true, is that the two are also individually invariant under all four

δε

∫
dtLrel0 = 0 = δε

∫
dtLrel1 , (3.43)

if the auxiliary field b us kept off-shell. This is the feature that allows an easy

generalization to n dynamical centers. The auxiliary field b takes the on-shell

value,

b = bonshell ≡
1

f

(
K +

i

4
ηapq∂afψ

pψq
)
, (3.44)

which generates bosonic potential terms of type K2/2f and mixes up terms in L0,1.

Nevertheless, N = 4 supersymmetry of L = L0 + L1 still holds, now in far more

complicated on-shell form.

3.2.2 Seiberg-Witten

Before we extend this to n dynamical dyons, we need to understand the role of the

core-probe approximation and how it computes f , K and W [53] in terms of the

quantities that appear in the Seiberg-Witten theory.

Let us consider a collection of charges γA, and represent it as a semiclassical state.

The basic information about the semiclassical dyon state comes from the BPS

equations of the Seiberg-Witten theory [61–64]

~Fi − iζ−1~∇φi = 0 , ~F iD − iζ−1~∇φiD = 0 , (3.45)

where F = B + iE with magnetic field B’s and electric field E’s, φ’s are unbroken

part of the complex adjoint scalars, each of which are labeled by the Cartan index

i = 1, 2, . . . , r. FD’s are defined through the low energy U(1) coupling matrix as

~F iD ≡ τ ij ~Fj , τ ji =
∂φjD
∂φi

. (3.46)
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The pure phase factor ζ is determined by the supersymmetry left unbroken by the

charge γ in a given vacuum, and equals the phase factor of the central charge Zγ

of the configuration.

In a core-probe approximation, we split γT = γh +
∑

A′ γA′ and treat the latter

n−1 as a fixed background of total charge γc =
∑

A′ γA′ . As we saw in the previous

section, the Lagrangian for the dynamical dyon (of charge γh) is characterized by

three objects.

The first is the mass function f = | Zγh | as in

L =
1

2
f

(
d~x

dt

)2

+ · · · , (3.47)

where

Zγ = γeh · φ+ γmh · φD , (3.48)

with the electric part γeh and the magnetic part γmh of the charge vector γh. The

scalar fields here solve the above BPS equation with the other n− 1 charges γA′ ’s

as the background point-like sources. The fact we treat such dyons as point-like

objects is justified by going very near a marginal stability wall, since this tends to

separate charge centers far apart from one another. As we will see shortly, this

proximity to marginal stability wall plays a central role in allowing us to construct

nonrelativistic low energy dynamics of dyons.

Clearly |Zh| acts as the inertia of the probe dyon, which is position-dependent

because of the background: this sort of identification is in accordance with general

spirit of how one describe well-separated charged objects [65], which has been tested

and used successfully for many soliton systems and even lead to exact moduli space

metric in some cases [44, 66]. We also use the notation Zγ for the central charge

of the charge γ so that Zγ = Zγ(∞).
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The other two, more important for the discussion of BPS bound states, are the

potential K2/2f and the vector potential W, so that

L =
1

2
f

(
d~x

dt

)2

− K
2

2f
− d~x

dt
· ~W + · · · , (3.49)

where these two are determined entirely by the charge distribution of γA′ ’s as [53]

dW = ∗dK , K = Im[ζ−1Zγh ] = Im[ζ−1Zγh ]−
∑
A′

qhA′

| ~x− ~xA′ |
, (3.50)

with2

qhA′ = 〈γh, γA′〉/2

for the Schwinger product.

These are direct consequences of the equations (3.45), combined with the extra

assumption of being near the marginal stability wall. Generically, the bosonic

potential would have been

|Zh| − Re[ζ−1Zh] , (3.51)

but this reduces to

K2/2|Zh| = (Im[ζ−1Zh])2/|Zh| , (3.52)

as we move near the marginal stability wall defined by alignment of Zh and Zc

[53]. The reason why we need this proximity to the marginal stability wall is

clearly not because of inherent properties of the system, but rather because of the

non-relativistic quantum mechanics approximation we employed. Far away from

the wall, the potential energy would be not small compared to rest mass of the

2 This convention for the Schwinger product here follows the one used by Denef in Ref. [46, 47].
The original derivation of dyon dynamics from Seiberg-Witten theory in Ref. [53] used a different
convention, such that

〈γ, γ′〉 = 〈γ, γ′〉Denef = 2〈γ̃′, γ̃〉Lee−Yi.

The tilde emphasizes the fact that the latter also used half-integral electric charges as opposed to
integral ones, which is natural when we compute Coulomb energy. Magnetic charges are integral
in either convention.
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particles involved, which will bring dynamics to a relativistic one. However, we do

not know how to handle interacting and relativistic particles at mechanical level.3

Nevertheless, this approximation is good enough since we already know that BPS

states are stable far away from marginal stability walls.

An important subtlety we wish to point out here is the choice of ζ. In the core-probe

limit, it appears that ζ = ζc = Zγc/|Zγc | is the right choice, since we are treating γh

as an external particle in the background given by γc =
∑

A′ γA′ . However, ζ is tied

to the supersymmetry left unbroken by the configuration and further more we are

interested in the supersymmetric bound states of γc and γh. Around such a state,

the low energy dynamics should have supersymmetries associated with γT = γc+γh

rather than those associated with γc.

One can understand this as capturing the backreaction of the background due to

the probe. Failing to do so clearly will give us nonsensical answers since, otherwise,

the supersymmetry of the bound state in question would not be aligned with the

supersymmetry of the moduli dynamics. In the core-probe approximation, the two

happen to be the same, ζT = ZγT /|ZγT | = ζc, simply because the total central

charge is dominated by that of the infinitely heavy core state. As we give up the

core-probe dichotomy, this accidental identity will no longer hold, and the preceding

discussion tells us that one must always use ζT .

As we give up the core-probe approximation and treat all charge centers on equal

footing, the moduli dynamics will become quite complicated. The part of the above

action that remains least affected by this extension is the Lorentz force, coming

from −~̇x· ~W type couplings. The coefficient q inW keeps track of how one particle’s

quantized electric (magnetic) charges see the other particle’s quantized magnetic

(electric one) charges. W is Dirac-quantized and topological, and furthermore can

arise only from sum of two-body interactions. Therefore, this part of the interaction

3Importance of the wall in the derivation of low energy dynamics of dyons was also recognized
by others [67].
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can be reliably computed by adding up all pair-wise Lorentz forces, giving us

− d~x

dt
· ~W → −d~xA

dt
· ~WA (3.53)

with

WAa =
∑
B 6=A

qABWDirac
a (~xA − ~xB) , (3.54)

where qAB = 〈γA, γB〉/2 and WDirac is the Wu-Yang vector potential [68] of a

4π flux Dirac monopole. Note that the 4π flux of WDirac dovetails nicely with

half-integer-quantized qAB, as demanded by the Dirac quantization.

For general n also, N = 4 supersymmetry constrains the Lagrangian greatly and, as

we will see shortly, the potential energy is tied to such minimal couplings. Knowing

the latter will allow us to fix, almost completely, the analog of K2/2f as well.

We will presently see how this works in n center case. A more difficult question

is how the kinetic terms would generalize, to which we will only give a general

statement rather than precise solution. In this note, our primary interest is in

the supersymmetric index for non-threshold bound states, which is independent of

details of kinetic term.

3.2.3 Many Centers

For many centers, it is more convenient not to separate out the center of mass

coordinate. Let us label the centers by A = 1, 2, . . . , n and denote their R3 position

as xAa and the charge γA. The N = 1 superfield content is

ΦAa = xAa − iθψAa , ΛA = iλA + iθbA , (3.55)
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with A = 1, 2, . . . , n and a = 1, 2, 3. N = 4 transformation rules are,

δεx
A = iηamnε

mψAn ,

δεψ
A
m = ηamnε

nẋAa + εmb
A ,

δεb
A = −iεmψ̇Am , (3.56)

where as before ψA4 ≡ λA. We again split the Lagrangian into the kinetic part and

the potential part,

L = L0 + L1 , (3.57)

and look for L0,1 separately, with off-shell bA’s.

The n-center version of L1 is, given (3.54), quite obvious,

L1 =

∫
dθ
(
iKA(Φ)ΛA − iWAa(Φ)DΦAa

)
, (3.58)

since the second term gives precisely the Lorentz force among dyons and while the

first is induced from the second by N = 4 supersymmetry; One can check easily

that

δε

∫
dtL1 = 0 (3.59)

under all four supersymmtries, provided that

∂AaKB =
1

2
εabc (∂AbWBc − ∂BcWAb) , (3.60)

and

εabc∂Ab∂BcKC = 0 ,

∂Aa∂BaKC = 0 , (3.61)
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for any A,B,C. We already learned that

WAa =
∑
B

〈γA, γB〉
2

WDirac
a (~xA − ~xB) ,

so K’s also follow immediately via the N = 4 constraints as

KA = KA(∞)− 1

2

∑
B

〈γA, γB〉
| ~xA − ~xB|

, (3.62)

Note that this obeys the constraints except at the submanifold, say ∆ ≡ {xAa :

~xA = ~xB, 〈γA, γB〉 6= 0}. The quantum mechanics can be very singular at such

places also, meaning that we should excise ∆ from R3n and impose the regular

boundary condition instead.

It remains for us to determine KA(∞)’s. These K’s and W’s can be traced back

to the original BPS equations (3.45), and found by keeping track of how motion of

each center is affected by the presence of the other n− 1 centers. After solving the

BPS equations, similarly as in the core-probe limit, we learn that

KA = Im
[
ζ−1ZA

]
= Im

[
ζ−1ZA

]
− 1

2

∑
B 6=A

〈γA, γB〉
| ~xA − ~xB|

, (3.63)

where ZA is computed from the solution to (3.45) with the other n − 1 charge

centers taken as the background but, nevertheless, with the phase of the total

charge, ζ =
∑

A ZA/|
∑

A ZA|, used in the equations. As we noted above, this is

because we must make sure to use the supersymmetries that are preserved by the

bound state of all centers. This can be also seen from KA(∞) = Im[ζ−1ZA], which

allows
∑

AKA(∞) = 0 as demanded by the antisymmetric Schwinger product. Note

that this consistency condition would have been violated if we had used different

ζ’s for different KA’s.

The other piece L0, containing kinetic terms, is a little more involved. The simplest

way to find the most general L0 is via an N = 4 superspace. For this, note that the
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collection {Φa,Λ} can be thought of as dimensional reduction of a D = 4 N = 1

vector superfield [69, 70].4 In this map, xa’s come from the spatial part of the

vector field, the fermions from the gaugino, and the auxiliary field b from that of

the D = 4 N = 1 vector superfield. Here, we are mainly interested in N = 1 form

of such a general L0, which is available in Maloney et.al. [60],

L0 =

∫
dθ

i

2
gAaBbDΦAa∂tΦ

Bb − 1

2
hABΛADΛB − ikAaBΦ̇AaΛB + · · ·(3.64)

where the ellipsis denotes four cubic terms that we omit here for the sake of sim-

plicity. This L0 is also invariant under the four supersymmetries we listed above,

δε

∫
dtL0 = 0 (3.65)

on its own with bA’s off-shell, provided that various coefficient functions derive from

a single real function L(x) of 3n variables as

gAaBb(Φ) =
(
δeaδ

f
b + ε e

c aε
cf
b

)
∂Ae∂BfL(Φ) ,

hAB(Φ) = δab∂Aa∂BbL(Φ) ,

kAaB(Φ) = εefa∂Ae∂BfL(Φ) ,

... (3.66)

Figuring out the precise form of L for n charge centers requires further work. For

a single dynamical dyon in the core-probe limit, we know that it is related to the

central charge function as ∂2L = | Z|. We expect that there exists a similarly

intuitive generalization for n particles case as well. In this note, we are primarily

interested in counting nonthreshold bound state, for which details of L does not

4In this version of N = 4 superspace, L1 is not obvious. On the other hand, a more extended
harmonic superspace form has been found to accommodate both kinetic terms and potential terms
[71].
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enter. Determination of L can become an important issue, when we begin to

consider non-primitive charge states. See next subsection for related comments.

Again, the main point here is that L0 and L1 are invariant under the four super-

symmetries separately when we keep the auxiliary fields bA’s off-shell. Combining

the two, it follows that the full Lagrangian

L0 + L1 (3.67)

is also invariant under all four supersymmetries. Integrating out bA’s generates po-

tentials of type ∼ K2 and mixes up terms in L0 and L1, but N = 4 supersymmetries

of the entire Lagrangian remain intact.

3.2.4 Kinetic Function L : BPS Dyons vs BPS Black Holes

Note that the potential part L1 of the Lagrangian looks identical to the similar

expression previously found by Denef [46], which has been later used extensively

for counting BPS black holes bound states [54, 57]. The latter relied on N = 4

quantum mechanical supersymmetry. Although we started with Seiberg-Witten

theory for the derivation of L1, this part of Lagrangian is entirely determined by

N = 4 supersymmetry combined with long-distance Lorentz forces among charge

centers. Thus appearance of the same L1 is hardly surprising. In fact, when

we apply L1 to BPS black holes, it is even more trustworthy, since the Abelian

approximation that would underlie such an interaction form is valid all the way to

horizon. One cannot say the same for field theory dyons, since at short distance

non-Abelian nature must be taken into account. Nevertheless, as long as we are

near a marginal stability wall and only long-distance physics matters, it is clear

that L1 is capable of describing both dyons and black holes.

This does not mean that the moduli dynamics of BPS dyons and those of BPS black

holes are identical. The difference resides in the kinetic part L0 of the Lagrangian.
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As demanded byN = 4 supersymmetry, L0 is determined by a single scalar function

L of the n position vectors ~xA. For instance, L for many BPS black holes of an

identical charge was found by Maloney et. al. [60]

L(~x1, ~x2, . . . ) = − 1

16π

∫
dx3ψ4 (3.68)

where ψ = 1 +
∑

A(m/| ~xA − ~x|) with the mass m. On the other hand, for two-

center dyon case, we expect smooth behavior near ~r = 0 [53] since, when the

mutual distance is small, non-Abelian cores cannot be ignored and will smooth

out Coulombic singularities. Even if we use the naive Abelian results, ∂2L ∼ 1/r

at most. Comparing this to the two-body case of the supergravity result shows a

substantial difference when the two objects begin to overlap.

Indeed, there are situations when the two theories are expected to give different

answers. No example of N = 2 field theory dyon which is a bound state of two or

more identical dyons. For black holes, however, no such restriction seems to exist.

If a BPS black hole of charge γ exist, we expect BPS black holes of charge Nγ

also to exist, in fact with large entropy. In the present context of moduli quantum

mechanics, the latter corresponds to a collection of many charge centers with many

flat directions extending to spatial infinities and may be realized as threshold bound

states thereof. In such cases, the kinetic term of the effective action at both short

distances and long distances could be important. This problem is an important

outstanding issue in wall-crossing phenomena in general, for it provided much-

needed input data on what dyons or black holes are available, to begin with, to

form bound states.

Explicit forms of L for n BPS dyons and for n BPS black holes, respectively, will

be studied in a separate work.
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3.3 R-Symmetry, Chirality Operators, and Indices

We wish to compute index of the preceding quantum mechanics

Tr
(
(−1)F e−sH

)
. (3.69)

Since the quantum mechanics is gapped, of which much discussion will follow in

next section, this quantity is truly independent of the parameter s. Thus, following

the standard arguments, we will compute this in small s limit. Before proceeding,

however, it is important to clarify what we mean by the operator (−1)F . In order for

the index to make sense, this operator needs to anticommute with supercharge(s),

{(−1)F , Q} = 0 ,

which is the condition needed for 1-1 matching and thus cancelation between

bosonic and fermionic states for nonzero energy eigenvalues. Clearly this is not

enough to fix the overall sign of (−1)F on the Hilbert space, and an index is also

plagued by this ambiguity. When we compute an index of standard Dirac opera-

tor or de Rham operators, there is usually a canonical choice that is used widely.

We will come back to this, later in next section, but the choice is a matter of

convenience only and, a priori, has no physical significance.

At field theory level, however, we have an unambiguous and useful definition of

such an index, say, the second helicity trace,

Ω = −1

2
Tr
(
(−1)2J3(2J3)2

)
, (3.70)

where the trace Tr is over a single particle sector of a given charge. We wish to

fix the sign of the quantum mechanical index, in accordance with this. Irreducible

BPS multiplets, tensor products of half-hyper-multiplet and a spin j multiplet,
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have the index

Ω ([j]⊗ ([1/2]⊕ 2[0])) = (−1)2j(2j + 1) , (3.71)

so often we also write,

Ω = Tr
(
(−1)2J3

)
, (3.72)

with the factored-out half-hypermultiplet understood. This naturally reduces to

the low energy dynamics of dyons, which then must correspond to an index defined

with a chirality operator that acts exactly like (−1)2J3

Ω ↔ Tr
(
(−1)2J3

)
, (3.73)

but of course we need to ask here how such an operator is realized in the quantum

mechanics.

As can be inferred from discussions in Ref. [53], the quantum mechanics of previous

section are equipped with SO(4) = SU(2)L × SU(2)R R-symmetry. This is easiest

to see in how the fermion bilinear couplings to dK and dW combine to give,

− i

2
ηamn ∂AaKB ψAmψBn (3.74)

in the component form, where, as before, ψAm=1,2,3 = ψAa=1,2,3, ψA4 ≡ λA, and

η is the ‘t Hooft self-dual symbol. The above form is precise when the metric is

flat, but appropriately modified preserving SO(4) symmetry when it is not. For

each particle indexed by A, bosonic coordinates are in (3, 1) representations while

the fermions are in (2, 2). Since spatial rotations rotate ~xA as 3-vectors, SU(2)L

should be interpreted as the rotation group, while SU(2)R must be descendant of

SU(2)R R-symmetry of the underlying Seiberg-Witten theory. The latter rotates

only fermions and leaves the position coordinate intact.5

5In the core-probe approximation of Ref. [53], only SU(2)R were generically there, but this was
an artefact of treating some of dyon centers as fixed background.
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In particular, the four supersymmetries are labeled by the SO(4) vector index, and

thus are in (2, 2) representations. Denoting generators of these two SU(2)’s by J

and I, respectively, we thus find

{(−1)2J3 , Q} = 0 = {(−1)2I3 , Q} . (3.75)

The quantum mechanics have two unambiguous and physically meaningful chirality

operators that can be used for index computation. The desired (−1)2J3 is one of

them, therefore, we have an unambiguous way of computing the field theory index

from the low energy quantum mechanics.

On the other hand, there is an interesting and universal relationship between these

pair of chiral operators in the quantum mechanics. Restricting our attention to the

relative part of the low energy dynamics again, we have

(−1)2J3 = (−1)
∑
A<B〈γA,γB〉+n−1(−1)2I3 . (3.76)

This is easy to see by considering how the two SU(2) generators are constructed

in the quantum mechanics. For SU(2)R, which rotate only fermions, we have

Ia =
∑
A

(
− i

8
εabc [ψ̂Ab, ψ̂Ac] +

i

4
[ψ̂Aa, λ̂A]

)
, (3.77)

where the hat signifies the unit normalized fermion. The spatial rotation generators

Ja = La +
∑
A

(
− i

8
εabc [ψ̂Ab, ψ̂Ac]− i

4
[ψ̂Aa, λ̂A]

)
, (3.78)

are similar but differ in two aspects: first, since SU(2)R rotates ~xA’s, the generators

include the orbital angular momentum L; secondly the fermions rotate differently,

as reflected in the sign of the last term. This latter difference generates a relative

sign between the two chiral operators for each (2, 2) representation of fermions,
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thus explaining (−1)n−1. The other sign is equally simple, and come from well-

known piece of charge-monopole physics, where the orbital angular momenta is

schematically something like

~L ∼
∑
A

(~xA × ~πA) +
∑
A>B

〈γA, γB〉
2

~xA − ~xB
| ~xA − ~xB|

(3.79)

with the covariantized momenta πA. The orbital angular momentum is constructed

from tensor product of spin 〈γA, γB〉/2 representations times usual integral angular

momentum. Then regardless of which particular SU(2)L multiplet the state is,

integrality vs half-integrality of the orbital angular momentum is unambiguously

determined as

(−1)2L3 = (−1)
∑
A>B〈γA,γB〉 . (3.80)

Note that this does not require ~L being symmetry operators.

Thus, we have the second helicity trace of N = 2 dyons which can be computed

via the low energy quantum mechanics as

Ω = Tr
(
(−1)2J3e−sH

)
= (−1)

∑
A<B〈γA,γB〉+n−1 × Tr

(
(−1)2I3e−sH

)
. (3.81)

In the subsequent computation, with this relation in mind, we will eventually iden-

tify (−1)2I3 as the canonical chirality operator (−1)F . For this, there is another

sign issue to settle, later when we begin to quote index formula from literature,

since the latter come with a canonical choice of (−1)F , which may or may not equal

to our choice, (−1)2I3 , but we postpone this to end of next section.

Another reason why (−1)2I3 is useful, even though we ultimately want (−1)2J3 ,

can be found in the observation [73] that all explicitly constructed field theory

BPS states, to date, are in SU(2)R singlets times the universal half-hypermultiplet

(from the center of mass part in quantum mechanics viewpoint). If this is gen-

erally true, we can see that the index with (−1)2I3 is always positive and truly
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counts the degeneracy. An interesting question, therefore, is whether in the low en-

ergy quantum mechanics we derived all supersymmetric bound states are SU(2)R

singlets.

An interesting variant of the second helicity trace is the protected spin character

[73],6

Tr
(
(−1)2J3y2J3+2I3

)
, (3.82)

where again we took out the universal half-hypermultiplet from the trace for sim-

plicity. This clearly reduces to, in quantum mechanics,

Tr
(
(−1)2J3y2J3+2I3

)
. (3.83)

Later we will also see how this quantity is naturally computed, after we reduce the

index problem to the more familiar one that relies only the classical moduli space

K = 0, by the equivariant index that counts “angular momentum” representations.

As we will see, this reduction process cannot carry the entireN = 4 supersymmetry,

and, of SO(4) R-symmetry, only a diagonal SU(2) subgroup generated by J + I

survives as global symmetry. The equivariant index on K = 0 space does not count

representations under spatial rotations but under simultaneous rotation of spatial

SU(2)L and N = 2 R-symmetry SU(2)R.7 See section 4.4. for more detail.

3.4 Index Theorem for Distinguishable Centers

Now we turn to the problem of counting ground states of the above quantum me-

chanics, or equivalently counting BPS bound states of n dyons. Since the quantum

6We are indebted to Boris Pioline and Jan Manschot for bringing the question of the protected
spin character to our attention.

7Of course, if the SU(2)R singlet hypothesis actually holds for the ground state sector, the end
result would not know about I3, anyway. In fact, on the basis of this hypothesis, this equivalence
was anticipated previously [54]. Our argument in section 4.4 will prove the identity without such
an assumption.
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mechanics has a potential, ∼ K2, one may expect that the problem can be reduced

naturally to another problem on the classical moduli space of 2(n− 1) dimensions,

say,

Mn = {xAa | KA = 0, A = 1, 2, . . . , n}/R3 , (3.84)

where the division by R3 is to remove the flat center of mass part. This classical

moduli space is generically a little more complicated since some of the centers could

be associated with identical particles, which we will deal with in the next section.

This reduction is not as straightforward as one might think, however. Ref. [57], for

example, suggested that one can ignore the (then unknown) kinetic part of the La-

grangian. Effectively, in our notation, this would involve a geometric quantization

of L1,

Lgeometric = L1 = −bAKA −WAaẋ
Aa +

i

2
∂AaKBηamnψAmψBn , (3.85)

which is obtained by truncating higher-derivative parts in L0. The auxiliary fields,

bA’s, are now Lagrange multipliers, imposing KA = 0 as constraints and leaving a

lowest Landau level problem on Mn with the magnetic fields
∑

A dWA. However,

computation of the resulting index, if we take Lgeometric verbatim, generates wrong

results relative to other known spectrum; The geometric quantization of Lgeometric
would lead to index formula that is known to generate empirically incorrect answers.

For two body case, for example, the degeneracy 2|q| has been known to be the

correct answer for many explicit constructions. See, for example, Ref. [41] and

Ref. [53] for explicit two-dyon bound state construction in the weakly coupled and

in the strongly coupled regions of Seiberg-Witten theory, respectively. On the

other hand, the naive lowest level Landau problem (or equivalently the geometric

quantization problem) gives 2|q| + 1. One would hope that the effect of fermions

in Lgeometric will fix this, but this apparently does not happen.
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The truncation of the kinetic terms in the presence of fermions is quite subtle, since

while bosons acquire a symplectic structure thanks to the magnetic field, there is no

such analog for fermions. Setting the kinetic term of fermions to zero will cause the

canonical commutator ill-defined, making the whole reduction process ambiguous.

One can try to reinstate kinetic terms on Mn as a regulator, but then, the main

issue is that the number of fermions in L1 is 4(n − 1) real while the number of

bosons is 2(n − 1) real, and these lead to de Rham cohomology problem on Mn.

For not too small q and when Mn is Käehler, for example, the index of such

a quantum mechanics coincides precisely with the state counting of the bosonic

geometric quantization problem,8 again giving us wrong result for the index.

Really at the heart of the problem is, however, the fact that the classical massive

directions are in fact no more massive than the classically massless directions.

Because the classical moduli space Mn is of finite size9, it comes with various

gaps at quantum level, and it so happens that these quantum gaps are one-to-one

matched and identical to the gaps associated with the classically massive directions:

the dynamics cannot be really split into two distinct sectors of heavy and light

modes, at all, and contrary to initial expectation, the reduction to Mn cannot be

justified. In fact, this lack of separation of scales is easiest to see in how fermions

enter the Hamiltonian. Half of fermions get mass from dK while the other hand

get mass from dW. However, N = 4 supersymmetry of the quantum mechanics

tells us that the two are one and the same object, and fermions coupling to dK are

no more heavier than those coupling to dW.

Fortunately, we can still decouple these classically massive directions in the com-

putation of the index problem. This involves a deformation that breaks all but one

supersymmetry, yet because the quantum mechanics is gapped and the surviving

8 See for example Ref. [72], where in effect a regularized version of these problems were con-
sidered with kinetic terms on Mn and for its fermionic partners present.

9There are also some exotic cases corresponding to the scaling solutions. In these cases, the
moduli space is non-compact, from short distance side, but its volume in the naive flat metric is
still finite.
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supercharge is effectively a Fredholm operator, it can be done while preserving the

index. Later in the section and in Appendix B, we explicitly show that, as far as

computation of the index goes, we may reduce the moduli dynamics to an effective

N = 1 supersymmetric quantum mechanics with target Mn,

LN=1
for index only(Mn) =

1

2
Gµν ż

µżν +
i

2
Gµνψ

µψ̇ν + · · · − Aµżµ + · · · , (3.86)

where A is a gauge field on Mn such that

dA = F ≡ d

(∑
A

WAadx
Aa

)∣∣∣∣∣
Mn

. (3.87)

and G is the induced metric on Mn. This Lagrangian must be used only for the

purpose of computing index.

The key point here is that the number of fermions is exactly half of that in

Lgeometric. Since these fermions live on the tangent bundle of Mn, we have a

nonlinear sigma model with real fermions. The relevant wavefunctions are spinors

on Mn and the index in question becomes a Dirac index,

In({γA}) =

∫
Mn

Ch(F)Â(Mn) =

∫
Mn

Ch(F) (3.88)

with the Chern character Ch of F . Â is the A-roof genus of the tangent bundle,

which will be shown to be trivial for allMn’s. This formula counts the index when

we view individual charge centers as distinguishable; in section 5, we will extend

the formula appropriately when identical particles are involved and along the way

see why the rational invariants of the form ∼ Ω/p2 with integer p > 1 appears in

various wall-crossing formulae.

The Dirac index found here is consistent with de Boer et. al.’s observation [57] that

empirically correct answers emerge for n = 2 and n = 3 if one assumes that the

relevant quantum mechanics admit spinors on Mn as the wavefunction. This can
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be then generalized to the refined index (or equivariant index) and make contact

with a series of recent works by Manschot et.al [54, 55].

3.4.1 Two Centers: Reduction to S2

Supersymmetric ground states were found and counted for n = 2 case in Ref. [53],

which gave the correct answer of 2q at the end of the day. expected, the wavefunc-

tions are all maximized near the classical “true” moduli space K = 0, which was

nothing but a two-sphere threaded by a flux of 4πq. However, the wavefunctions

can also be seen very diffuse, too much so to let us call it “localized” there.

Here, we will illustrate why a naive reduction toM2 = S2 by throwing away entire

kinetic term is wrong. After the latter procedure, one ends up with Lgeometric for

which we need to either geometrically quantize over S2 or regularize the dynamics

by reinserting kinetic term on S2 and concentrate on the lowest Landau level. If

we follow the second viewpoint, we end up with a two dimensional nonlinear sigma

model with four real fermions, so effectively we will have thrown away only the

bosonic radial coordinate from the original moduli dynamics.

Let us consider the zero point energy of the relative part of the two-center mechan-

ics. Three bosons can be split into “radial” directions, on which K and the mass

function f depend, and flat “angular” directions. With K = a − q/r and positive

a and q, the ground state is at r = r0 = q/a, and the radial direction becomes a

harmonic oscillator of frequency w = a2/f(r0)q, so

Eradial '
(
mradial
b +

1

2

)
w ≥ a2

2f(r0)q
. (3.89)

The angular part, although classical flat, also comes with a gap due to the finite

volume, and the energy quantization there goes as

Esphere '
~L2 − q2

2f(r0)r2
0

≥ a2

2f(r0)q
, (3.90)
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since the angular momentum is bounded below, in the presence of the flux, by

q. The four real fermions are paired up into two fermionic oscillators of the same

frequency w as above, so we get contribution from the fermion sector as

Efermion '
(
mf +m′f − 1

)
w ≥ − a2

f(r0)q
, (3.91)

where we again see that there is only one scale in the fermion sector also. Of course,

the behavior of fermionic degrees of freedom must be the same as the bosonic ones,

since we have supersymmetry.

This shows that, without further deformation, the gap of the classically massive

radial direction is exactly the same as the rest of the degrees of freedom. If we

wish to localize the problem to M2 = S2 by removing the radial mode, we must

do something else so that the gap along the radial direction and the gap alongM2

are different, but this seems impossible under the N = 4 supersymmetry of the

quantum mechanics.

Let us remember here that, for the evaluation of index, one needs only two things:

a Dirac operator of some kind and a chirality operator that anticommutes with it.

One would like to compute the index

Tr(−1)F e−sH , (3.92)

for interacting part of the theory. Let us, for the sake of definiteness, take H = Q2
4,

and evaluate

Tr(−1)F e−sQ
2
4 . (3.93)

N = 4 supersymmetry is useful since it constrains dynamics but all of them are

not really necessary to define an index. It is clear that, as long as we preserve this

quantity, we can even break N = 4 supersymmetry.

Of course, N = 4 supersymmetry is important when it comes to generating correct

supermultiplet structure to the bound state, but that only concerns the free center
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of mass part. The index must be computed from relative interacting part of the

dynamics, only for which we will break N = 4 supersymmetry.

Thus we are motivated to give up dK = ∗dW condition, thereby keeping only

Q = Q4 unbroken. Let us replace

K → ξK (3.94)

with some arbitrarily large number ξ while keeping W as it is. The ground state

energy counting is now

Eradial + Esphere + Efermion ≥
ξw

2
+
w

2
− ξw + w

2
, (3.95)

since the half of the fermions (λ and ψr) get the mass from d(ξK) and the other

half from dW. The angular momentum sector mass-gap, w/2 = q/2f(r0)r2
0, is

unchanged since the classical vacuum, K = 0 and thus the radius r0, and W are

intact under this rescaling.

It is not difficult to see that the reduced dynamics, after integrating out heavy

modes, is a N = 1 nonlinear sigma model onto M2 = S2 coupled to an external

vector field W. See Appendix B for complete detail of the reduction process. We

note that sinceM2 = S2 happens to be Käehler, the unbroken supersymmetry gets

accidentally extended to N = 2, although this is not important for our purpose.

3.4.2 Many Centers: Reduction to Mn

Similarly, we wish to deform the theory by rescaling KA → ξKA, when we have

many dynamical charge centers, as well

L′deformed =

∫
dθ

(
i

2
gAaBbDΦAa∂tΦ

Bb − 1

2
hABΛADΛB − ikAaBΦ̇AaΛB + · · ·

+iξKA(Φ)ΛA − iWAa(Φ)DΦAa

)
, (3.96)
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where ξ is an arbitrarily large number. As in the two-center case, the bosonic

potentials are quadratic in KA’s and there are n− 1 “radial” directions that are of

mass ∼ ξ. There are also 2(n − 1) fermions that couple to d(ξKA)’s, so they are

also of mass ∼ ξ. The two sets can be decoupled together, thereby reducing the

index problem toMn with real fermions. It leaves behind a N = 1 supersymmetric

quantum mechanics ontoMn with 2(n−1) bosons and 2(n−1) real fermions. The

process does not affect the free center of mass part, so the latter still comes with 3

bosonic coordinates and 4 fermionic ones.

We may further deform the kinetic part, L0, by taking the simplest form of the

kinetic function,

L =
1

2

∑
A

mA~x
A · ~xA , (3.97)

which amounts to

gAaBb = δABδabmA, hAB = δABmA, kAaB = 0, (3.98)

and setting cubic terms to zero as well. The simplest way to justify this deforma-

tion is that the kinetic function approaches this flat metric when distances between

charge centers approach infinity. This asymptotic form is more than good enough

since we can always tune the field theory vacuum, so that we stay arbitrarily near

the marginal stability wall. There, Im[ζ−1ZA] approaches zero, and the submani-

fold Mn is arbitrarily large. Since the index cannot change under the continuous

and sign-preserving deformation of Im[ζ−1ZA], and since the ambient metric is

effectively flat for large Mn, the index will be unaffected by this choice of metric.

This leaves us with a very simple N = 1 quantum mechanics

Ldeformed =

∫
dθ

(
i

2
mADΦAa∂tΦ

Aa − 1

2
mAΛADΛA

+iξKA(Φ)ΛA − iWAa(Φ)DΦAa

)
, (3.99)
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with target R3n modulo submanifolds given by KA = ±∞. Of this, the free center

of mass positions R3 and the accompanying four real fermions decouples, leaving

behind the interacting part of the moduli dynamics onto R3(n−1). This free part is

also essential since it generates the basic BPS multiplet structure (whose content

equals half of a hypermultiplet) to the bound state. Then, by taking ξ → ∞,

we decouple n− 1 “radial” directions and 2(n− 1) accompanying heavy fermions,

and end up with a nonlinear sigma model onto Mn with real 2(n − 1) fermionic

partners. See appendix for detailed derivation of this fact.

Thus, we arrive at the effective Lagrangian, which can be used for the purpose of

computing the index of the original n center problem,

LN=1
for index only =

1

2
Gµν ż

µżν −Aµżµ +
i

2
Gµνψ

µψ̇ν +
i

2
Gµνψ

µżλΓνλβψ
β +

i

2
Fµνψµψν

(3.100)

again with the induced metric G on Mn and, as we already noted,

dA = F ≡ d

(∑
A

WAadx
Aa

)∣∣∣∣∣
Mn

. (3.101)

Since each WA is a sum of Dirac monopoles at ~x = ~xB’s, we find

F = d

∑
A

∑
B 6=A

〈γA, γB〉
2

WDirac
a (~xA − ~xB) dxAa

∣∣∣∣∣
Mn

= d

(∑
A>B

〈γA, γB〉
2

WDirac
a (~xA − ~xB) d(xAa − xBa)

)∣∣∣∣∣
Mn

=
∑
A>B

〈γA, γB〉
2

FDirac(~xA − ~xB) , (3.102)

where FDirac is the Dirac monopole of flux 4π. Of four supercharges, Q4 survives

the deformation process above, which is then further reduced to QMn as heavy

modes are integrated out.
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3.4.3 Index for n Distinguishable Centers

Since this is the plain old nonlinear sigma model twisted by the minimal coupling

to A, the reduced supercharge is represented geometrically as the Dirac operator

with a U(1) gauge field

Q4 → QMn = γµ (i∇µ +Aµ) , (3.103)

whose index, according to Atiyah-Singer index theorem, is given by

In({γA}) = Tr
(

(−1)FMne−sQ
2
)

=

∫
Mn

Ch(F)Â(Mn) ,

as promised, where we must assume a canonical choice of the chirality operator.

This is,

(−1)FMn = (2i)n−1ψ̂1 · · · ψ̂2(n−1) ,

in terms of properly normalized and ordered fermions. See next subsection for how

this choice squares off with physically motivated chirality operators (−1)2J3 and

(−1)2I3 of section 3 and how the latter chirality operators reduce on Mn.

Curiously enough, the A-roof genus Â does not contribute to the index, thanks to

the simple topology of Mn. To see this, let us first note that the ambient space,

in which Mn is embedded is essentially R3n. For instance, take ~x1 = 0 to remove

the translation invariance and make the ambient space R3(n−1), and then impose

KA = 0, of which n − 1 are linearly independent. Therefore, Mn is a complete

intersection in R3(n−1). Since A-roof genus is a multiplicative class, we have an

identity,

Â(TMn)Â(NMn) = Â
(
TR3(n−1)

∣∣
Mn

)
= 1 (3.104)

among the tangent and the normal bundles. However, dKA’s are nowhere vanishing

normal vectors on Mn, and thus the normal bundle NMn is also topologically
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trivial10, and

Â(TMn) = 1 . (3.105)

It is important to note that this decoupling depends only on the topology of the

ambient space, namely the original 3n dimensional moduli space, near the surface

KA = 0.11

Note that similar argument will not lead to triviality of other multiplicative class

since typically they require complex bundles in order to be defined. For instance,

Td(M2k) or c(M2k) cannot be argued to be trivial in this manner since the normal

bundle ofM2k inside the relative position space R3(2k−1) is of odd dimension and,

if irreducible, cannot be complex. In particular M2 = S2, which has a clearly

nontrivial c1, shows this clearly; its normal bundle has a real line as the fibre.

3.4.4 Reduced Symmetry, Index, and Internal Degeneracy

Since we arrived at the nonlinear sigma-model onMn only after the deformation of

the dynamics, which in particular removes the extended supersymmetry, we must

first ask whether various operators survive this procedure of deformation and the

subsequent reduction process ξ → ∞. Of the four original supersymmetries, Q4

survives the deformation. It’s on-shell form will be smoothly deformed as well,

which goes like

Q4 = · · ·+ λAKA → Q4 = · · ·+ ξλAKA . (3.106)

The ellipsis denotes parts unaffected by the deformation. We emphasize again that

this supersymmetry is explicitly preserved since the deformed Lagrangian (3.96) is

written in the superspace associated with Q4. Then, given that Q4 is a gapped

elliptic operator, at ξ = 1, this deformation preserves the index as we increase ξ [43].

10We are indebted to Bumsig Kim for pointing this out to us.
11 However, it turns out that Â(Mn) factor does make a difference when one evaluate the

equivariant index [55].
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This Q4 reduces to QMn of the nonlinear sigma model on Mn, and obviously the

Hamiltonian, Q2
4/2, gets similarly deformed and eventually reduced to the natural

one on Mn.

This leaves the global symmetry operators and the chirality operators. With the

N = 4 supersymmetry partially broken, the SO(4) R-symmetry can be easily seen

to be broken. On the other hand, the deformation commutes with rotation of ~xA’s,

so we expect to see some SU(2) symmetry does survive the process. The question

is which SU(2) in SO(4) = SU(2)L × SU(2)R remains unbroken. The answer is

the diagonal subgroup, SU(2)J , generated by

Ja = Ja + Ia . (3.107)

One can see this in several different ways.

Firstly, both J (SU(2)L) and I (SU(2)L) are broken by themselves, since they

both act nontrivially on heavy fermion sector. The diagonal generators J ’s, on the

other hand does not involve λ fermions and leave the heavy sector ground state

untouched. Secondly, after deformation and reduction to Mn, the dynamics is a

nonlinear sigma model, where fermion transform identically to bosons. Recall that

bosons and fermions used to belong to (3, 1) and (2, 2) of SU(2)L × SU(2)R. In

the reduced dynamics, symmetry properties of the bosons and fermions cannot be

different, and indeed under the diagonal subgroup, bosons and fermion transforms

identically. Finally, after the deformation, the dynamics has only one real super-

symmetry Q4 so no R-symmetry is expected. However this supercharge originate

from a (2, 2) multiplet under SU(2)L × SU(2)R, so has to transform nontrivially

under either of the two individually. On the other hand, becaues J does not ro-

tate λ’s, J commutes with Q4 and also with its reduced version QMn . At the

level of reduced dynamics onMn, this SU(2)J is not an R-symmetry but a global

symmetry that arises from the universal isometry of Mn.
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While we are on the question of symmetry, let us digress a little and consider the

equivariant index or refined index one encounters in literature on wall-crossing, of

the generic form

Tr
(
(−1)F y2j3

)
(3.108)

with a “rotation” generator j3 along z-axis. Most such computations are based on

some version of low energy quantum mechanics on the classical moduli spaces, our

Mn’s, but as we saw above, the “rotational symmetry” of Mn is in fact not the

purely spatial rotation but a diagonal subgroup of spatial rotation SU(2)L and the

field theory R-symmetry SU(2)R. Therefore, the refined indices that have been

computed are in fact

Tr
(
(−1)F y2J3) = Tr

(
(−1)F y2J3+2I3

)
(3.109)

so actually would equal the protected spin character

Tr
(
(−1)2J3y2J3+2I3

)
(3.110)

of the field theory, if we are allowed to choose the chirality operator (−1)F of the

quantum mechanics to be (−1)2J3 .

So this brings the question of what happens to the two natural chirality operators,

(−1)2J3 and (−1)2I3 , when we deform and reduce the dynamics in favor of a Mn

nonlinear sigma-model. As we saw, the two SU(2) symmetries are lost individ-

ually, so operators like J3 and I3 can no longer be used to classify eigenstates.

Nevertheless, (−1)2J3 and (−1)2I3 are still sensible chirality operators. Even after

the deformation, one can show directly (−1)2I3 as a product of all fermions while

(−1)2J3 is again the same product of all fermions times (−1)
∑
A>B〈γA,γB〉+n−1. Both

anticommute with the surviving supercharge Q4, so still defines chirality operators.

This is not much of surprise since they simply measure the most rudimentary in-

formation about the states, i.e., whether, before deformation, the state was in a

integral or in a half-integral representations.
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When we reduced the dynamics to Mn, however, we must properly redefine these

chirality operators by evaluating them on vacuum of the heavy oscillators. For

instance, consider (−1)2I3 for the simplest n = 2 case. The canonical chirality

operator on Mn = S2 is, as noted before,

(−1)FS2 = 2iψ̂1ψ̂2 ,

with the natural orientation arising from embedding of S2 to R3. To relate this to

(−1)2I3 , we remember to set the heavy fermions, ψ3 and λ, to their ground state,

which gives precisely

〈0|(−1)2I3 |0〉heavy = (−1)FS2 ,

it turns out.12 Clearly, we may repeat this for each sector of 4 fermions labeled by

A, and find

〈0|(−1)2I3 |0〉heavy =
∏
A

2iψ̂1
Aψ̂

2
A = (−1)FMn . (3.111)

Therefore, the chirality operator (−1)2I3 prior to the deformation, smoothly de-

scend to the canonical chirality operator on (−1)FMn , upon deformation and sub-

sequent reduction of dynamics, and leads to the standard Dirac index In.

Since the desired index Ω needs (−1)2J3 as the chirality operator, we then use (3.81)

to relate (−1)2J3 to (−1)2I3 , and find an unambiguous answer,

Ωdistinct = (−1)
∑
A>B〈γA,γB〉+n−1 × In({γA}) . (3.112)

On the left hand side, we emphasized the fact we are yet to incorporate the statistics

issue. We will see in next section how this generalizes when we impose statistics

to the index computation. Before asking the question of statistics, however, there

is still one more ambiguity to the expression above, since so far we did not take

into account of the internal degeneracy and quantum numbers of the individual

12 This can be seen most easily when we choose the ordering of γA’s such that 〈γA, γB〉 are all
nonnegative for A > B, which is also the convention chosen in Ref. [54] for non-scaling cases.
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charge centers. The left hand side is still defined with respect to (−1)2J3 , so adding

internal degeneracy factor can be accomodated by writing

Ωdistinct = (−1)
∑
A>B〈γA,γB〉+n−1 × In({γA})×

n∏
A=1

ΩA (3.113)

where individual ΩA’s are also computed as the trace of (−1)2J3 (as usual modulo

the universal half-hypermultiplet part). As usual, we assume that there is no

significant coupling of these internal degeneracy to the quantum mechanical degrees

of freedom. Sometimes, we will also write this as

(−Ωdistinct)× (−1)
∑
A>B〈γA,γB〉 = In({γA})×

∏
A

(−ΩA) (3.114)

which is more convenient when keeping track of statistics, since, for SU(2)R sin-

glets, the Bose/Fermi statistics are naturally correlated with the sign of −ΩA’s.

3.5 Index with Bose/Fermi Statistics and Rational In-

variants Ω̄

So far, we pretended that dyons involved are all distinct, and studied the supersym-

metric bound state thereof. In reality, this is not quite good enough since we often

need to understand bound states of many identical dyons, obeying either fermionic

or bosonic statistics. The effective true moduli space, for example, has to be an

orbifold of type

Mn/Γ (3.115)

where Γ is a union of permutation groups that mix up labels for identical particles,

with proper action on wavefunctions. Equivalently, the index should be computed
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with appropriate projection operator inserted,

Ω = Tr
(
(−1)2J3e−sHPΓ

)
(3.116)

where PΓ projects to wavefunctions obeying either Bose or Fermi statistics under

the exchange of identical particles.

The orbifolding reduces the volume of the moduli space, so given the index formula

which is an integral over the manifold, we should expect to see factors like 1/d! as

a result of having d identical centers. However, action of Γ is not everywhere free,

since when identical particles are on top of one another, the action is trivial. There

are complicated fixed submanifolds under Γ, making the problem very involved,

and in particular there should be additional contributions from the fixed manifolds

under the orbifolding action.

3.5.1 The MPS Formula

Before we carry out such a computation directly, it is instructive to recall a re-

cent result by Manschot, Pioline, Sen (MPS), who evaded this complication alge-

braically, and replaced it by a sum of many index problems with distinct charge

centers [54]. They argued that one can recover the correct index, by adding indices

for a series of artificial problems with a smaller number of charge centers. In this

set of effective index problems, the trick requires the following rules: When the

reduced problem has d particles of the same kind, MPS divides the index by 1/d!.

When one has a particle of nonprimitive charge as a part of such a reduced prob-

lem, one must also use, in place of the true intrinsic degeneracies Ω of the particles,

a mathematical one Ω̄,

Ω̄(γ) ≡
∑
p|γ

Ω+(γ/p)

p2
, (3.117)
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where the sum is over the positive integer p such that γ/p belongs to the quantized

charge lattice of the theory. Note that Ω(γ) = Ω̄(γ) whenever γ is primitive and

Ω̄(pγ) = Ω(γ)/p2 if no non-primitive charge state exists.

For illustration, let us take two primitive charges β1 and β2. Suppose that, among

all possible linear combinations of the two, only these two states exist on one side

of the marginal stability wall. Labeling the degeneracy by ± depending on which

side of the wall we are considering, we thus assume that

Ω+(mβ1 + kβ2) = 0, unless (m, k) = ±(1, 0) or (m, k) = ±(0, 1) . (3.118)

The sign of Ω1,2 ≡ Ω+(β1,2) are correlated with the statistics assignment of the

particle; a hypermultiplet has Ω = 1 and must be treated as Fermions while a vector

multiplet has Ω = −2 and must be treated as Bosons. Under this assumption, we

have Ω̄(pβ1,2) = Ω(β1,2)/p2. Manschot et.al.’s formula then simplifies to,

−Ω−(mβ1 + kβ2)× (−1)
∑
A>B〈γA,γB〉

=
1

m!k!
Im+k(β1, β1, . . . , β2, β2, · · · ) (−Ω1)m(−Ω2)k

+
1

(m− 2)!k!
Im−1+k(2β1, β1, β1, . . . , β2, β2, . . . )

−Ω1

22
(−Ω1)m−2(−Ω2)k

+
1

(m− 3)!k!
Im−2+k(3β1, β1, β1, . . . , β2, β2, . . . )

−Ω1

32
(−Ω1)m−3(−Ω2)k

+
1

2!(m− 4)!k!
Im−2+k(2β1, 2β1, β1, β1 . . . , β2, β2, . . . )

(
−Ω1

22

)2

(−Ω1)m−4(−Ω2)k

+ · · · , (3.119)

where the sum is over all unordered partitions of mβ1 + kβ2 respectively, although

we listed above only part of the partitions of m. For the overall sign, we re-labeled

the individual charges β1, β1, . . . , β2, β2, . . . and called them γA’s. This sum and

each term in it can be characterized by the following set of rules:
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(i) The sum is over all unordered partition of mβ1 + kβ2 =
∑

s dsβs where

βs = (ps1β1 + ps2β2). For each βs, we will have a factor Ω̄(βs), so we can,

with the current assumption on Ω+’s, consider only a subset where only one

of ps1 and ps2 is nonzero for each s.

(ii) The index In′ with n′ ≡
∑

s ds effective charge centers. For In′ , we treat all

charge centers as distinguishable, so it is computed by the index theorem of

the previous section with n′ ≤ n distinguishable centers.

(iii) The combinatoric factor of 1/ds! for each s. This takes into account of the

reduced volume of the moduli space due to the orbifolding by the permutation

subgroup S(ds) acting on the reduced n′-center quantum mechanics, but does

not address the contribution from the submanifolds fixed by S(ds).

(iv) For each effective particle of charge pβ, with primitive β and p > 1, that shows

up in computation of In′ , one further assigns an effective internal degeneracy

factor −Ω̄(pβ) = −Ω(β)/p2, in addition to (−Ω1)m
′
(−Ω2)k

′
, which reflects

the fact that m′ number of β1 centers and k′ number of β2 centers are left as

individual.

The last −Ω̄(pβ) = −Ω(β)/p2 should be compared to the naive (−Ω(β))p degen-

eracy factor that would be the correct factor if we were considering p separable

particles of charge β instead of one particle of charge pβ. Finally, the appearance

of −Ω’s instead of Ω’s is natural, since for example a half-hypermultiplet with Ω = 1

acts like Fermions, while a vector multiplet with Ω = −2 acts like Bosons.

From the quantum mechanics viewpoint, the decomposition (i) clearly has some-

thing do with the orbifolding action Γ. Each term in (3.119) arises from a submani-

fold which is fixed by the product of permutation groups of order ps,
∏
s S(ps) ⊂ Γ.

For each sector, origins of (ii) and (iii) are also evident as coming from a re-

duced problem of n′ charge centers and the subsequent volume-reducing action of∏
s S(ds) = Γ/

∏
s S(ps). The only part of this formula which is not evident, so far,
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from the moduli quantum mechanics viewpoint is the rational degeneracy factor

of (iv). Here, we would like to isolate where this comes from, and later derive it

directly from the moduli dynamics.

After some careful thinking, it becomes evident that this rational degeneracy factor

should come from quantum mechanical degrees of freedom normal to the subman-

ifold fixed by S(p)’s. Let us consider only p > 1 cases and label them ps′ , since

otherwise the internal degeneracy factor is Ω(β) as expected. Subgroup S(ps′)’s

permuting these ps′ > 1 charges fixe a submanifold Mn−
∑

(ps′−1) inside Mn. This

fixed submanifold has a codimension 2
∑

(ps′ − 1) in Mn, since it is spanned by

coincidence of ps′ centers, each of which span two directions in Mn.

Consider the reduced dynamics on the intersection, Mn′=n−
∑

(ps′−1), for compu-

tation of In′ with all such ps′βs′ center treated as single particle, respectively. If

we start with this reduced index problem, impose the statistics, and pretend that

the centers associated with ps′βs′ comes with a unit degeneracy we will find a

contribution of type
1∏
s ds!

In′ × (−Ω1)m
′
(−Ω2)k

′
, (3.120)

where m′β1 + k′β2 = mβ1 + kβ2−
∑

s′ ps′βs′ and n′ = m′+ k′+
∑

s′ ds′ . Note that

we took care to include the volume-reducing effect of
∏
s S(ds) = Γ/

∏
S(ps′) via

the denominator
∏
ds! = m′!k′!(

∏
ds′ !).

This expression is obtained after ignoring the quantum degrees of freedom that

are normal to the fixed manifold Mn−
∑

(ps′−1)’s, and does not agree with MPS

formula. The latter is

1∏
s ds!

In′ × (−Ω1)m
′
(−Ω2)k

′ ×
∏
s′

−Ω(βs′)

p2
s′

(3.121)

so the difference is precisely the rational degeneracy factor of (iv). Clearly it comes

from quantizing the normal bundles of Mn−
∑

(ps′−1)’s inside Mn. On the other

hand, for all intent and purpose, this part of quantum mechanics is free, since they
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have something to do with many identical particles and has no interaction of type

L1, except for the statistics issue.13

This leads us to conclude that the factor, Ω(β)/p2, should arise from an index of

p noninteracting identical particles of charge β, modulo the center of mass part

which already contributed to In′=n−p+1. The relative dynamics of such identical

particles carry 2(p − 1) bosonic degrees of freedoms, 2(p − 1) fermionic degrees of

freedom, and additionally internal degeneracy of |Ω(β)| for all p particles. In next

subsection, we will show that precisely such a factor arises from the dynamics of

non-interacting and identical p particles with the internal degeneracy Ω(β).

The full MPS formula follows the same set of rules, except that one must in general

consider an arbitrary set of charges on the + side, and all the partitions of the total

charge γT in terms of charges of states that exist on + side of the wall. Since the +

side of spectrum may then include states of charges hβ1 + jβ2 with h+ j > 1, more

diverse charge centers will appear for the individual index problems on the right

hand side. As we will discuss later, this can be incorporated by treating all such

particles on the + side as independent. The only subtlety is when non-primitively

charged states exist on the + side; this can be remedied by employing the fully

general form, Ω̄(γ) ≡
∑

p|γ Ω+(γ/p)/p2 as the effective degeneracy factor. We will

also see this most general Ω̄ emerging from our index computations.

13There is a subtlety, again related to whether threshold bound state of identical charges can
form. Since we started with the assumption that such nonprimitive state do not exist, it is safe to
assume this issue does not complicate our problem. Whether or not we can extend this to theories
with threshold bound states, i.e. supergravity, is an open problem.
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3.5.2 Physical Origin of Ω(β)/p2 from p Non-Interacting Identical

Particles

Let us first restrict ourselves to bound states involving several identical dyons of

charge β with −Ω+(β) = ±1.14 As in the previous discussion, let us consider the

bound state of n charge centers, γT =
∑

A γA, m of which are β’s. The identical

nature of the β dyons means that the orbifolding group includes the m-th order

permutation group S(m). We start with the assumption, for simplicity, that kβ

state exists only for |k| = 1 on the + side, and then come back for the fully general

case in next subsection.

Consider the index reduced on the true moduli space Mn as described in the pre-

vious section, with proper account taken of the Bosonic or the Fermionic statistics,

Ω−

(∑
A

γA

)
− Ω+

(∑
A

γA

)
=

∫
Mn

tr
(
〈X|(−1)2J3e−sQ

2PΓ|X〉
)
dX , (3.122)

via the orbifolding projection operator PΓ. Here tr means the trace over the

fermionic variables as well as other internal discrete degrees of freedom, and we

integrate over the bosonic variables X with an appropriate measure. Matching the

sign of −Ω with (−1)F value of the component dyon states, as we noted in the case

of bound state counting in distinguishable centers, this index naturally computes

the degeneracy Ω−’s as

Ind({γA}; Γ) =

∫
Mn

tr
(
〈X|(−1)2J3e−sQ

2PΓ|X〉
)
dX , , (3.123)

so we would like to ask whether this reproduces (3.119) and rediscover the rational

invariant Ω̄. For this, let us concentrate on the permutation group S(m) part of Γ

and see how it generates a series of terms, similar to MPS’s wall-crossing formula.

14Because of spin-statistics theorem, there is no irreducible BPS multiplet in D = 4 N = 2
theories with Ω = −1. The half-hypermultiplet has 1 and vector multiplet has -2. The assumption
here is strictly for the illustrative purpose only.
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InsideMn there are various fixed submanifolds, Mn′ , of dimension 2(n′ − 1). The

simplest are Mn−p+1, fixed under S(p) subgroup of S(m). Note that we use the

same notation M for the fixed submanifolds as the full classical moduli manifold

M. This is because all of them are of exactly the same type. For example, the

manifold Mn−m+1 would also emerge if we started with a different low energy

dynamics involving a single center of charge mβ in place of m centers of charge β.

Ignoring contributions from these fixed manifolds would simply give

(−1)
∑
A>B〈γA,γB〉+n−1

(
In
|Γ|

)
×
∏
A

ΩA (3.124)

due to the volume-reducing action of Γ when it is acting freely. This is the very

first term in the MPS formula. Since there are many fixed submanifolds, however,

each of them will contribute additively on top of this.

Without loss of generality, let us consider the fixed manifold Mn−p+1 associated

with the partition mβ = pβ + β + β + · · ·+ β, and label the coordinates along the

fixed manifoldMn−p+1 by X ′ and those normal to it by Y . Note that among X ′ are

the two coincident (or center of mass) coordinates for the pβ charge center, so we

can think of Y ’s as the relative position coordinates among these p charge centers;

therefore there are 2(p− 1) Y ’s. We then formally write the additive contribution

from the fixed submanifold Mn−p+1 as

∆p × Ind({γA′} = {pβ, β, . . . }; Γ′)

= ∆p ×
∫
Mn−p+1

tr′
(
〈Y = 0, X ′|(−1)2J ′3e−sH

′PΓ′ |Y = 0, X ′〉
)
dX ′ ,(3.125)

where Γ′ = Γ/S(p) is the remaining orbifolding group that acts nontrivially on

Mn−p+1. Here tr′ denotes trace over fermionic and other internal degrees of free-

dom, except those associated with the p identical β’s that are held together at

Mn−p+1.
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We factored out the contribution ∆p from the normal directions, Y , and the super-

partners thereof. On the other hand, the second factor is the index of a reduced

n−p+1 center problem, modulo the internal degeneracy factor of pβ charge center.

Other than this, the computation of this latter factor proceeds on equal footing as

(3.122), ∫
Mn−p+1

tr′
(
〈Y = 0, X ′|(−1)2J ′3e−sH

′PΓ′ |Y = 0, X ′〉
)
dX ′

' (−1)
∑
A′>B′ 〈γA′ ,γB′ 〉+n−p

(
In−p+1({γA′})

|Γ′|

)
×
n−p+1∏
A′=2

ΩA′ + · · · (3.126)

so we may compute the full index recursively. ∆p plays the role of the missing

internal degeneracy factor Ω1′ here, as it computes the effective contribution from

these p coincident β’s. The ellipsis denotes terms from other fixed submanifold

inside Mn−p+1 etc.

We will show that ∆p = ±1/p2, regardless of precise nature of the β particles,

which also reproduces MPS formula for Ω(β) = ±1 entirely from the dynamics.

Schematically, this factor can be written as

∼
∫

tr
(
〈Y |(−1)2J⊥3 e−sH

⊥P|Y 〉
)
dY , (3.127)

with F⊥ and H⊥ defined on Y ’s and the superpartners, again with suitable measure

for the bosonic integral. The projection operator

P =
1

p !

∑
π∈S(p)

(∓1)σ(π)Mπ (3.128)

ensures that we isolate wavefunctions of correct Bose/Fermi statistics. Note that

the sign in the projection operator is the same as that of −Ω(β). Mπ is the (p− 1)

dimensional representation of π ∈ S(p), common for (p − 1) coordinate doublets

Y ′s and for their fermionic partners, ψ’s. Naturally σ(π) is odd or even when π is

odd or even.
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Since the embedding ofMn−p+1’s inMn could be very complicated, the exact na-

ture of the decomposition is not entirely clear. On the other hand, the initial index

problem is gapped and allows us to take s→ 0. At least in this limit, the decom-

position makes sense intuitively, and, as we will see shortly it suffices to consider

an arbitrarily small tubular neighborhood around the fixed manifoldMn−p+1. We

take the Y directions as a ball B2(p−1) insides a flat R2(p−1). Therefore, we have

∆p = lim
s→0

∫
B2(p−1)

tr
(
〈Y | (−1)J

⊥
3 e(s/2)∇2P|Y 〉

)
dY . (3.129)

Precisely how we cut-off this neighborhood will not matter, as we will see shortly

that a Gaussian integral of squared width s emerges along Y directions.

Interestingly, exactly the same kind of object was studied when solving for the fa-

mous D0 bound state problems in the 1990’s. The first such computation appeared

in Ref. [58] on two-body problem and was later expanded to many body case in

Ref. [59]. Here we will adapt and expand the computations in these works. Since

there are 2(p − 1) real fermions, we will choose a polarization of type {ψi, ψ†i }, so

that a general wave function | Ψ〉 can be expanded as

|Ψ〉 =

(
Ψ(Y ) + Ψ{i}(Y )ψ†(i) +

1

2
Ψ{i1i2}(Y )ψ†(i1)ψ

†
(i2) + . . .

)
|0〉 , (3.130)

where Ψ{i1...im}(Y ) =
∑

k λ
{i1...im}
k Ψk(Y ) and {Ψk} are complete basis of Y -space

wave functions. Since the Hamiltonian is free and do not mix sectors of different

fermion numbers, we may evaluate the bosonic and fermionic trace independently.

The fermionic trace, for each of Mπ, is given by

(±1)p trψ

(
(−1)p−1(−1)

N
ψ†Mπ

)
, (3.131)

where (±1)p arises from the value of (−1)2J3 on p individual β states. Also the

orbital part of J⊥3 is always integral in the absence of the minimal coupling contri-

bution, so (−1)2J⊥3 acting on the quantum mechanical degrees of freedom becomes

92



Chapter 3. Applications of Index Theorems in String Theory

purely fermionic expression (−1)p−1(−1)
N
ψ† . The sign in front of the latter comes

from converting the chirality operator to a form involving the fermion number

operator that counts the creation operators ψ†.

Then the contribution from Y direction reads

∆p =
(±1)p

p !

∑
π∈S(p)

(∓1)σπ(−1)p−1trψ

(
(−1)

N
ψ†Mπ

)
×
∫
B2(p−1)

〈Y | es∇2/2Mπ|Y 〉dY , (3.132)

in the limit of s→ 0. A crucial observation that allows us to proceed systematically

is

trψ

(
(−1)F

⊥
Mπ

)
= 〈0|0〉 − 〈0|ψa′Mπa′

aψ†a|0〉+
1

2
〈0|ψb′ψa′Mπa′

aMπb′
bψ†aψ

†
b |0〉+ · · ·

= det(1−Mπ) , (3.133)

and furthermore

det(1−Mπ) =

{
p , π is a cyclic permutation of order p

0 , otherwise
(3.134)

for which it is important to remember that Mπ is a p−1 (rather than p) dimensional

representation of S(p). Since (−1)σπ = (−1)p−1 for any cyclic permutation of order

p, we find

∆p =
(±1)p

p !

∑
π′

(∓1)p−1(−1)p−1det(1−Mπ′)

∫
〈Y | es∇2/2Mπ′ |Y 〉dY

=
±1

p !

∑
π′

det(1−Mπ′)×
1

(2πs)p−1

∫
e−(Y−Mπ′Y )2/2sdY

=
±1

p !

∑
π′

1

det(1−Mπ′)
, (3.135)
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where the sum is now only over the cyclic permutations of order p. There are pre-

cisely (p−1)! such permutations and they each contribute 1/p, via the determinant,

so the result is

∆p =
±1

p2
, (3.136)

as promised. Clearly, we can repeat this when there are several such factors simul-

taneously, to give,

∆{ps′} =
∏
s′

±1

p2
s′
, (3.137)

reproducing Ω(β)/p2
s of the MPS formula with Ω(β) = ±1.

The more general case of Ω(β) = ±d can be derived similarly. Let us write one

particle state as

|Ψ̂〉 = Ψ̂η(x, ψ)|0; η〉 (3.138)

so that η = 1, 2, . . . , d labels the internal degeneracy, and p-particles wave function

(without center of mass degree of freedom) can be written as a sum of terms like

Ψ{ij···k}{ηs}(Y )ψ†(i)ψ
†
(j) · · ·ψ

†
(k)|0; η1, η2, . . . , ηp〉 , (3.139)

none of which mixes under the free Hamiltonian. Thanks to this, Just as the

fermionic part and the bosonic part separately contributed, this internal part also

factorizes under each π. Expressing ∆p as a sum over the elements of permutation

group again, we now have an extra factor

〈ηp, . . . , η1|ηπ(1), . . . , ηπ(p)〉 ,

for each permutation π, and the trace over these internal indices. Thus, we arrive

at a similarly simple form,

∆p =
(±1)

p !

∑
η1,...,ηp

∑
π′

〈ηp, . . . , η1|ηπ(1), . . . , ηπ(p)〉
det(1−Mπ′)

(3.140)
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As before, the sum is over the permutations of cyclic order p. For such π′, the

inner product vanishes identically unless all ηi’s are equal to one another, and

gives unit if all are equal. The sum over η’s thus collapses to a single sum over

η = η1 = η2 = · · · = ηp, and

∆p = (±1)
∑
η

1× 1

p !

∑
π′

1

det(1−Mπ′)
=
±d
p2

=
Ω(β)

p2
. (3.141)

This gives us the only essential ingredient in confirming (3.122), and in fact the

fully general version thereof.

For a complete derivation, a recursive argument is needed and we need to consider

possibility of low energy dynamics with charge centers both primitive and non-

primitive charges simultaneously. This naturally brings us to the most general

wall-crossing formula, next.

3.5.3 General Wall-Crossing Formula

Most of what we derived generalizes to cases with arbitrary spectrum on + side,

without much modification, but here we need to point out one subtlety. Suppose

the + side of spectrum contains not only a pair of primitively charge states γ and γ′

but also states like hγ+ jγ′ a little more involved, and includes states of composite

charges such as mγ or linear combinations with other charges. (One can also have

states with charges completely unrelated to these but those will not participate in

the wall-crossing, and therefore irrelevant.) Such a state cannot be considered as

a bound state of h γ’s and j γ′’s, since the two are mutually repulsive on the +

side. Rather, it should be regarded as a completely independent particle of different

origin. In fact, for SU(2) theory with a single flavor, a monopole γ, a quark γ′ and

a dyon γ + γ′ are known to coexist in the central part of the moduli space.

Let us denote charges of these independent particles as βv. Since one can form

bound states of a given total charge γT on the “−” side from different combinations
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of these + side state,. We will label each of these physically distinct combination

by the upper index inside a parenthesis such that

γT =
∑
A

m(1)
v βv =

∑
v

m(2)
v βv =

∑
v

m(3)
v βv = · · · . (3.142)

In such circumstances, the total degeneracy for γT has to be computed for each of

such bound state problems and summed over,

Ω−(γT )− Ω+(γT ) =
∑
q

Ω
(
{m(q)

v }
)
, (3.143)

where each term on the right hand side is computed from the n(q) =
∑
m

(q)
A

center quantum mechanics. For each of Ω({m(q)
v })’s, computation of the previous

subsection goes through without modification, and will be computed as

Ω
(
{m(q)

v }
)

= Ω

(∑
A

γA =
∑
v

m(q)
v βv

)
. (3.144)

One important detail to remember is that, even if some of charge βv’s might be a

linear combination of other βv’s, each of them are physically unrelated independent

particles: The permutation group is simply Γ =
∏
v S(m

(q)
v ) for each of these index

problems.

Combining this with the results of previous subsection, we reproduce MPS formula

in its most general form. Note that, when we reorganize this formula in terms of

the index of distinct particles of unit individual degeneracy,

In({. . . , γ, . . . }) =

∫
Mn

Ch(F)Â(Mn) (3.145)
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the rational invariants Ω̄(γ), multiplying them, will accumulate additive contribu-

tions of the form, including p = 1 case,

Ω+(γ/p)

p2
(3.146)

for each γ/p = βv that appears in one of the expansion γT =
∑

vm
(q)
v βv. Since we

are summing over all possible such expansions, it implies that

Ω̄(γ) =
∑
p|γ

Ω+(γ/p)

p2
(3.147)

will appear as the effective degeneracy factors that multiply In’s. p = 1 terms

arises only when γ is one of the βv’s, while p > 1 terms arise from the orbifold fixed

sector as in the previous section when γ/p is one of βv’s. The final expression is

Ω−(γT )− Ω+(γT ) =

· · ·

+(−1)−n
′+1+

∑
A′>B′ 〈γ′A′ ,γ

′
B′ 〉 ×

In′({γ′1′ , γ′2′ , . . . })
|Γ′|

×
∏
A′

Ω̄(γ′A′)

+ · · · (3.148)

where we wrote a representative form for the partition γT =
∑n′

A′=1 γ
′
A′ into n′

centers and the associated orbifolding group Γ′ permuting among identical elements

in {γ′A′}.
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3.6 Summary and Comments

In this section, we showed how n generic BPS dyons of Seiberg-Witten theory

interact with one another, and how the relevant low energy dynamics with N = 4

supersymmetry can be derived in the vicinity of a wall of marginal stability. The

resulting quantum mechanics is specified by three classes of quantities: kinetic

term, potentials, and minimal couplings. The latter two turn out to be constrained

to each other by supersymmetry and can be derived exactly, and are universal, in

that the general structure is applicable to BPS black holes as well. The kinetic

term may differ, but for counting non-threshold bound states via index theorem,

we only need the asymptotic form of the kinetic terms, which fixes effectively the

entire Lagrangian. Thanks to the universal form, this Lagrangian can also be used

to compute non-threshold bound states of BPS black holes as well as those of

Seiberg-Witten dyons.

We showed how the usual truncation (in the previous BPS black hole studies) down

to zero locus,Mn, of potentials is misleading because the massgaps along the clas-

sically massive direction are always the same as the quantum massgaps alongMn,

due to the latter’s finite size. Instead, one must sacrifice N = 4 supersymmetry, in

favor of an index-preserving N = 1 deformation, in order to reduce the problem to

a nonlinear sigma model on Mn.

This gives a definite prescription, hitherto unknown, on how to handle the fermionic

superpartners, and the final form of the index is that of a Dirac operator on Mn

with an Abelian gauge field F determined unambiguously by the minimal couplings

among dyons/black holes. Along with n − 1 radial, classical massive directions,

2(n − 1) fermionic partners become decoupled from the problem, leaving behind

a supersymmetric quantum mechanics on Mn with real supersymmetry. (Three

bosonic and four fermionic variables decouple also, playing the role of the center

of mass degrees of freedom.) This shows rigorously why the Dirac index is the

relevant one, as was anticipated by de Boer et.al. [57].
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Since typical wall-crossing problem involves only two linearly independent charge

vectors, and thus bound states of many identical BPS states, statistics is of major

importance. We address this directly for the index problem by inserting the rele-

vant projection operator PΓ, and expanding the index to a series involving various

fixed submanifolds. Each such contribution consists of two multiplicative factors:

one is usual Dirac index on the fixed submanifold and the other is contribution

from the normal direction. The latter turns out to be universal and generates a

numerical factor ∼ 1/p2 for each p coincident and identical particles, times the in-

trinsic degeneracy of the particle in question. This eventually lead to the rational

invariants, Ω̄(γ) =
∑

p|γ Ω(γ/p)/p2, as the effective degeneracy factor, as was also

noted by Manschot et.al. [54] In the end, we have derived the general wall-crossing

formula, from the viewpoint of spatially loose BPS bound states by starting from

Seiberg-Witten theory, ab initio.

After this work, Sen [74] showed that this wall-crossing formula agrees with that

of Higgs branch and Kontsevich-Soibelman (KS) formula, in the limit where there

is no scaling solution. The latter solution appears when the quiver description has

closed loops, so when the theory allows the superpotential. Although the Coulomb

description described in this section offers clear physical picture in understanding

the wall-crossing phenomena, when there exist such solutions, this description be-

comes ill-defined and fails to capture all the BPS states. These states which are

accessible only in the Higgs branch description are called the Higgs invariants, and

they are known to be insensitive to the wall crossing phenomena. Furthermore,

theses states are singlet under the spatial rotation, and believed to be responsi-

ble for the exponentially large microstates of the single centered blackhole of the

supergravity. Recently, there has been several developments which try to clarify

the properties of these states. [75–80] They started from the original quiver quan-

tum mechanics, and investigated the Higgs branch solution of the theory in various

ways. In this description, the index calculation in question is translated into the

cohomology counting of the moduli space of the given quiver theory. Especially, we
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would like to emphasize the recent work [81], where they started from the gauged

quiver quantum mechanics Lagrangian, and carried out the path integral honestly

to obtain the index of the theory. This work generalizes the relation between su-

persymmetric quantum mechanics and the index theorem which was reviewed in

section 2.2 of this thesis, to the level of gauged linear sigma models.
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Chapter 4

D-branes and Orientifolds From

2D Partition Functions

Two-dimensional gauged linear sigma model (GLSM) withN = (2, 2) supersymme-

try provides a very useful tool to investigate the Calabi-Yau spaces which the string

theory is based on. At the first section, we study the basic features of this model,

which include brief summary of two-dimensional mirror symmetry and Calabi-Yau

(CY)/Landau-Ginzburg (LG) correspondences, based on reviews of [3] and [11].

From the second to the last section, we intoduce the new framework of studying

the mirror symmetry and the properties of CY, recently developed in [12–15]. We

will see that the exact partition functions on various two-dimensional manifold

calculated via the method reviewed in section 2.4 plays a crucial role. Especially,

at the second section, we will see that the two-sphere partition function exactly

calculates Kahler potential of the A-model conformal manifold. From the third

section, we focus on the D-branes/Orientifolds which wrap subcycles of ambient

Calabi-Yau manifolds. We first present the review on how we traditionally have

determined the topological coupling of the D-brane/Orientifolds, which gives the
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central charges at the tree-level of α′. Finally, we will see that the exact calcula-

tions of partition functions on hemisphere/RP2 gives the α′-exact central charges

in the presence of D-branes and Orientifolds. All these series of works provide a

way to exactly calculate the fully quantum corrected A-model quantities. We will

see that these works clarify the several subtle issues regarding RR-charges as well.

4.1 Basics of 2d N = (2, 2) Gauged Linear Sigma Model

4.1.1 2d N = (2, 2) algebra

Let us denote the two-dimensional wordsheet coordinate as x± = x0±x1. In order

to deal with the N = (2, 2) supersymmetry, we include fermionic coordinates θ±,

θ̄±. It is particularly useful to study the theory in terms of various superfields.

Define supersymmtry transformation and derivatives acting on superfields as

Q± =
∂

∂θ±
+ iθ̄±∂±

Q̄± = − ∂

∂θ̄±
− iθ±∂±

D± =
∂

∂θ±
− iθ̄±∂±

D̄± = − ∂

∂θ̄±
+ iθ±∂± . (4.1)

The chiral multiplet Φ(x±, θ±, θ̄±) is a superfield defined by

D̄±Φ = 0 . (4.2)

The solution of this equation can be written in terms of

Φ = φ(y±) + θαψα(y±) + θ+θ−F (y±) , (4.3)
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where y± = x±− iθ±θ̄±, φ is a complex scalar field and φα is a Dirac fermion. The

anti chiral multiplet is defined as

D±Φ̄ = 0 , (4.4)

which is solved by

Φ̄ = φ̄(y±) + θ̄αψ̄α + θ̄+θ̄−F̄ (y±) . (4.5)

For two-dimensional N = (2, 2) theory, we can additionally define twisted chiral

multiplet, which satisfies

D̄+Ψ = D−Ψ = 0 . (4.6)

This equations is solved by

Ψ = v(ỹ±) + θ+χ̄+(ỹ±) + θ̄−χ−(ỹ±) + θ+θ̄−G(ỹ±) , (4.7)

where ỹ± = x± ∓ iθ±θ̄±. Similary, the twisted anti-chiral multiplet can be defined

by

D+Ψ̄ = D̄−Ψ = 0 , (4.8)

and this is solved by

Ψ̄ = v̄(ỹ±) + θ̄+χ+(ỹ±) + θ−χ̄−(ỹ±) + θ̄+θ−Ḡ(ỹ±) . (4.9)

For the theories with gauge symmetry, we define the real multiplet V which contains

a gauge fields. If the chiral field transforms under the gauge transformation as

Φ → eiΛΦ, where Λ is another chiral fields, the gauge invariant kinetic action can

be written as ∫
d4θ Φ̄eV Φ , (4.10)
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and the gauge field transform as V → V + i(Λ̄ − Λ) at the same time. In the

Wess-Zumino gauge, it can be expended as

V = θ−θ̄A− + θ+θ̄+A+ − θ−θ̄+σ − θ+θ̄−σ̄

+iθ−θ+(θ̄−λ̄− + θ̄+λ̄+) + iθ̄+θ̄−(θ−λ− + θ+λ+) + θ−θ+θ̄+θ̄−D .(4.11)

One thing to note is that the gauge invariant vector multiplet can be written in

the twisted chiral multiplet and its conjugate, which is

Σ = D̄+D−V . (4.12)

This is automatically invariant under V → V + i(Λ̄− Λ). In the component form,

Σ = σ(ỹ±) + θ̄+λ+(ỹ±) + θ−χ̄−(ỹ±) + θ̄+θ−(D + iF12)(ỹ±) . (4.13)

Given these ingredients, the supersymmetric action can be easily written with

following three possibilities. 1) D-term for chiral and twisted chiral fields,∫
d2xd4θ K(Φ, Φ̄) . (4.14)

2) F-term for chiral fields,∫
d2xdθ−dθ+ W (Φ) +

∫
d2xdθ̄−dθ̄+ W̄ (φ̄) , (4.15)

3) Twisted F-term for anti chiral fields,∫
d2xdθ̄−dθ+W̃ (Ψ) +

∫
d2xθ−dθ̄+ ¯̃W (Ψ̄) . (4.16)

As an example, we present the action for the gauged linear sigma model (GLSM)

which is the main subject of this chapter. The D-term is given by the chiral
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multiplet charged under the gauge group G and the vector multiplet kinetic action,

Skinetic =

∫
d2xd4θ Φ̄ieQV Φi +

1

2e2
Σ̄Σ . (4.17)

We allow the F-term which is given by

SW =

∫
d2xdθ−dθ+ W (Φ) +

∫
d2xdθ̄−dθ̄+ W̄ (φ̄) . (4.18)

Finally we have the twisted F-term which is linear in Σ,

SFI = t

∫
d2xd2θ̃ Σ + t̄

∫
d2xd2 ¯̃

θ Σ̄ , (4.19)

where t = ξ − i θ2π , is a combination of the Fayet-Iliopoulos parameter and the

topological theta term parameter. When G = U(1), all of these action can be

written as, in the component form,

L = Lkinetic + LW + LFI

= −Dµφ̄iDµφ
i + iψ̄i−D+ψ

i
− + iψ̄i+D−ψ

i
+ +D|φi|2 + |F i|2 − |σ|2|φi|2

−ψ̄i−σψi+ − ψ̄i+σ̄ψi− − iφ̄iλ−ψi+ + iφ̄iλ+ψ
i
− + iψ̄i+λ̄−φ

i − iψ̄i−λ̄+φ
i

+
1

2e2

[
−∂µσ̄∂µσ + iλ̄−∂+λ− + iλ̄+∂−λ+ + F 2

01 +D2
]

+
∂W

∂φi
F i − ∂2W

∂φi∂φj
ψi+ψ

j
− +

∂W̄

∂φ̄i
F̄ i +

∂2W̄

∂φ̄i∂φ̄j
ψ̄i+ψ̄

j
−

−ξD +
θ

2π
F01 . (4.20)

Note that this action can be obtained from the dimensional reduction of the 4d

N = 1 theory. One can show that the action is invariant under the supersymmetry

105



Chapter 4. D-branes and Orientifolds From 2D Partition Functions

transformation given by

δA± = iε̄±λ± + iε±λ̄

δλ+ = iε+(D + iF01) + 2ε−∂+σ̄

δλ− = iε−(D − iF01) + 2ε+∂−σ

δσ = −iε+λ− − iε−λ̄+

δD = −ε̄+∂−λ+ − ε̄−∂+λ− + ε+∂−λ̄+ + ε−∂+λ̄−

δφ = ε+ψ− − ε−ψ+

δψ+ = iε̄−D+φ+ ε+F − ε̄+σ̄φ

δψ− = −iε̄+D−φ+ ε−F + ε̄−σφ

δF = −iε̄+D−ψ+ − iε̄−D+ψ−iε̄−λ̄+φ− iε̄+λ̄−φ+ ε̄σψ− + ε̄−σψ+ (4.21)

Two-dimensional N = (2, 2) theories have important global symmetries, which are

U(1)V × U(1)A. The vector-like R-symmetry U(1)V is inherited from the U(1)R

R-symmetry of the 4d N = 1 algebra. It acts on the fields as

Φ(xµ, θ±, θ̄±) → eiqV αΦ(xµ, e−iαθ±, eiαθ̄±) . (4.22)

On the other hand, the axial R-symmetry, U(1)A comes from the rotation of di-

mensionally reduced two internal coordinates. It acts as

Φ(xµ, θ±, θ̄±) → eiqAαΦ(xµ, e∓iαθ, e±iαθ̄±) . (4.23)

These imply that they acts on the supersymmetry generator as

[U(1)V , Q±] = −Q±

[U(1)V , Q̄±] = Q̄±

[U(1)A, Q±] = ∓Q±

[U(1)A, Q̄±] = ±Q̄±
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As can be clearly seen from (4.23), U(1)A couples asymmetrically to the left and the

right moving fermion. This implies that there can be an anomaly associated to this

symmetry. Anomaly comes from the 2-gon 1-loop Feynman diagram, with currents

for the gauge field and U(1)A symmetry attatched at both ends respectively. This

diagram evaluates to
1

2π

∫
Σ

TrF =
∑
i

Qi , (4.24)

where Qi is a charges of the chiral fields under the U(1) factor of the gauge group.

This result can be reproduced from the index theorem studied in the Chapter 2,

which gives
1

2π

∫
Σ
ch(F ) ∧A(T ) =

1

2π

∫
Σ
c1(F ) =

1

2π

∫
Σ

TrF . (4.25)

If this is equal to k, it means that the number of ψ+, ψ̄− zero modes are k larger

than that of ψ−, ψ̄+. This mismatch implies thet the measure of the path integral

becomes ∫
dψ1+

0 dψ̄1−
0 · · · dψ

k+
0 dψ̄k−0 [dψ+][dψ−][dψ̄+][dψ̄−] , (4.26)

where [dψ]’s are non-zero modes as well as remaining zero modes of the fermion

whose numbers match. From this expression, the measure is definitely non-invariant

under the U(1)A action, which rotates the partition function as

Z → e2ikαZ . (4.27)

Note that there remains unbroken subgroup Z2k, which corresponds to α = 2πip
2k

with p = 1, · · · 2k.

One of the most important remarks on the global symmetries of the N = (2, 2)

theory is that, one can find a duality that exchanges

U(1)A ↔ U(1)V , (4.28)
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which can be done by exchanging

θ− ↔ θ̄−, i.e., Q− ↔ Q̄−. (4.29)

This is what is called mirror symmetry. Equivalently, the mirror symmetry can be

rephrased as exchanging the chrial and twisted chiral multiplet,

Φ ↔ Ψ . (4.30)

4.1.2 Phases of 2d N = (2, 2) GLSM and the mirror symmetry

The theory of two-dimensional string worldsheets in ten-dimensional spacetime

can be most easily described by the non-linear sigma model (NLSM) whose target

space is R1,3 ×M6, where M6 is a compact six-dimensional Calabi-Yau manifolds.

However, since the geometry of the CY is very complicated and no explicit metric

is known, this NLSM is very hard to deal with. The reason why we have been

interested in the GLSM of 2d N = (2, 2) theory is that, it can serve a very useful

tool to investigate the properties of CY and the string theory based on it.

The N = (2, 2) GLSM, whose action is given in (4.20), flows under renormalization

group (RG) action to the NLSM whose target space is the Kahler manifold. In

order to explicitly show this, take the simplest example of GLSM with G = U(1)

gauge group and N fundamental chiral fields coupled to G with charge 1. From

the action given in (4.20), after integrating out the auxiliary field D, we can read

off the bosonic potential, which is

V =
∑
i

|σ|2|φi|2 +
e2

2
(
∑
i

|φ|2 − ξ)2 . (4.31)
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The energy is minimized when

∑
i

|φi|2 = ξ, σ = 0 . (4.32)

Hence the moduli space is given by

M = {φi|
∑
i

φiφ̄i = ξ}//U(1) = CPN−1 . (4.33)

As can be seen from this example, the moduli space is discribed by the zero of the

D-term potential quotiented by the gauge group, and this naturally produces the

toric manifold when gauge group is abelian. Under the RG flow, we can see that

this GLSM flows to the NLSM whose target space is CPN−1. First, let us look into

the RG flow of FI parameter ξ, which determines the volume of the moduli space.

It comes from the one-loop diagram as follows.

Figure 4.1: One-loop diagram for D|φ|2

This diagram evaluates to∫ ΛUV

µ

d2k

(2π)2

1

k2
= log

(
ΛUV
µ

)
. (4.34)

In general, when gauge group has U(1)r factor, and if there are chiral multiplet

with charge Qia under the a-th U(1) factor, the FI-parameter runs as

ξa = ξa(µ) +
∑
i

Qia log(ΛUV /µ) . (4.35)
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When moduli space is CPN−1, along the radial direction, there are one bosonic

and fermionic massive modes for the chiral multiplet whose mass is equal to e
√

2ξ.

Hence the effective theory of massless modes only can be obtained by taking e→∞
limit. In this limit, the kinetic terms for the vector multiplet vanish and Aµ and σ

become auxiliary. The equations of motion of these give

Aµ =
i

2

1∑N
i=1 |φi|2

(
N∑
i=1

φ̄i∂µφ
i − ∂µφ̄iφi + ψ̄iρµψ

i

)
, (4.36)

σ = −
∑N

i=1 ψ̄
i
+ψ

i
−∑N

i=1 |φi|2
. (4.37)

If we put (4.36) back to the
∑N

i=1 |Dµφ
i|2, it becomes gFSij ∂µφ̄

i∂µφj , where gFSij is

homogeneous Fubini-Study metric of CPN−1,

ds2 =

∑N
i,j=1 |φi|2|dφj |2 − φ̄idφiφjdφ̄j∑N

i=1 |φi|2
. (4.38)

Secondly, the topological theta term θ
2π

∫
F01 reduces to the anti-symmetric B-field

in the NLSM, ∫
Σ
Bijdφ̄

i ∧ dφj (4.39)

where B = θ
2πwFS , and wFS is the Kahler two form of the Fubini-Study met-

ric. Finally, subsitution of the fermion part of (4.36) and the equation (4.37) to

|σ|2|φi|2 + ψ̄i−σψ
i
+ + ψ̄i+σ̄ψ

i
− give a four fermion interaction term in the NLSM.

Calabi-Yau/Landau-Ginzburg correspondence

The Calabi-Yau manifold can be obtained if we restrict to special cases that the

charges of each U(1) factor satisfy

∑
i

Qi = 0 (4.40)
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For example, consider U(1) theory with N chiral multiplet Φ with charge 1, and a

chiral multiplet P with charge −N . Then we can add a superpotential

W = PG(Φ) , (4.41)

where G(Φ) is a homogeneous polynimial of degree N . In order to preserve the

U(1)V symmetry of the action, the vector R-charge of this superpotential should

add up to 2. Furthermore, for later convenience, we assume that solution for
∂G
∂φi

= 0 is given only by φi = 0. The bosonic potential for this GLSM reads

|σ|2
(∑

i

|φi|2 +N2|p|2
)

+

(∑
i

|φi|2 −N |p|2 − ξ

)2

+p2

∣∣∣∣∂G∂φ
∣∣∣∣2 + |G(φ)|2 . (4.42)

The moduli space, zero loci of the above potential crucially depends on the sign of

the FI parameter ξ. On the other hand, due to the condition (4.40) and equation

(4.35), ξ does not vary under RG flow. Hence we can define a notion of phase,

distinguished by the sign of ξ. First of all, consider the case ξ > 0. The solution

that minimizes the potential is

∑
i

|φi|2 = ξ, p = 0, σ = 0, G(φ) = 0 . (4.43)

Due to the last condition, the moduli space is a degree d hypersurface in CPN−1,

where d is a degree of the polynomial G. For this case, d = N , it is well-known

that the moduli space is CY hypersurface in CPN−1. Note that, the CY condition

is equivalent to the non-anomalous axial R-symmetry condition. The moduli of the

CY target space obtained like this is particulary easy to deal with, by tuning the

parameters of the GLSM. Volume of the CY is controlled by the FI parameter ξ,

and the complex structure is determined by the form of the superpotential W (Φ).

Next, let us consider the case ξ < 0. For this case, the moduli space is given by

φi = 0, |p|2 = ξ/N,
∂G

∂φi
= 0, σ = 0 . (4.44)
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The low-energy theory given by the above equation is nothing but the Landau-

Ginzburg (LG) theory with potential

Weff =

√
ξ

N
G(φ) . (4.45)

Note that we fix the VEV of p to be real using the U(1) gauge symmetry. Since the

charge of P is −N , after this gauge fixing, there still remains ZN subgroup which

we should mod out at the end. Finally, we get the LG ZN orbifold theory.

The singularity which divides two phases of low-energy theory lies at ξ = 0. In

order to determine the singularity structure, we should note an important subtlety

in the presence of the topological θ term. For 1+1 dimension, when θ 6= 0, it is

very well-known [83] that the topological θ term induces additional electric field

and the vacuum energy is shifted. For example, consider a pure gauge theory with

the action ∫
d2x

1

2e2
F 2

01 +
θ

2π
F01 . (4.46)

We can integrate out F01, which yields the vacuum energy

Evac =
e2θ̃2

8π2
, (4.47)

where θ̃ satisfies |θ̃| ≤ π and θ̃ = θ mod 2πZ. This implies that the real singularity

where the phase transition can occur exists only at the point ξ = θ = 0. This is

a real codimension two singularity which always can be by-passed. The argument

allows us to conclude that the CY and LG phases can be thought of as a pair of

equivalent theory. This is a crucial difference from the one-dimensional theory we

have seen in the previous chapter.
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4.1.3 Twisting and Topological Field Theories

On a curved worldsheet, it is not possible to preserve all the supersymmetries in

general. In order to deal with the super-string worldsheet with arbitrary curvature,

we introduce a notion of twisting. This is done by mixing two-dimensional Lorentz

symmetry which is SO(2) = U(1)E with one of the global symmetry of the theory,

so that the Killing spinor equation becomes

(∂µ + wµ +Aglobal
µ )ε = 0 . (4.48)

If we tune Aglobal
µ = −wµ, the equation admits a constant Killing spinor as a

solution, and the corresponding supersymmetry is preserved. Since N = (2, 2)

theory has two global symmetries, we have two possibilities as follow.

U(1)′E = U(1)E + U(1)V : A-twist

U(1)′E = U(1)E + U(1)A : B-twist (4.49)

In order to see which supersymmetries are left preserved under these two choices,

let us look at the following table of charges of supersymmetries under the global

and original Lorentz symmetries.

Q+ Q− Q̄+ Q̄−

U(1)V −1 −1 1 1

U(1)A −1 1 1 −1

U(1)E −1 1 −1 1

(4.50)

This ensures that for the A-twisted theory, Q− and Q̄+ becomes a scalar, hence a

preserved supersymmetries. On the other hand, for the B-twisted theory, Q̄+ and

Q̄− are preserved supersymmetries. We are going to use the particular combination

of these suparcharges by defining QA = Q̄+ + Q− and QB = Q̄+ + Q̄−. Then we
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have

Q2
A,B = 0 , (4.51)

meaning that QA,B respectively defines cohomology which are one to one corre-

spondence to the supersymmetric ground state of the theory. In order to explicitly

construct the states, we define chiral operator φ which satisfies

[QB, φ] = 0 , (4.52)

and twisted chiral operator y by

[QA, y] = 0 . (4.53)

We can see that the lowest component of chiral and twisted chiral multiplet serves

as chiral and twisted chiral operators respectively, if we look at their supersymmetry

transformation rules. Furthermore, when φ1 and φ2 are chiral operator, it is obvious

that φ1φ2 also is a chiral operator. It means {φi} form a chiral ring, with a relation

φiφj = Ckijφk + (Q-exact) , (4.54)

where Ckij is a structure constant of the ring. One of the most important aspects

of this chiral ring theory with A- or B-twist is that the twisted energy momentum

tensor

T̃µν = Tµν +
1

4
(ενµ∂lJ

R
ν + ελν∂λJ

R
µ ) (4.55)

can be shown to be QA or QB-exact. This implies that the metric variation of an

arbitrary correlation function of chiral operator becomes

δg〈φ1 · · ·φk〉 = 〈
∫
σ
d2x{QB, Aµν}gµνφ1 · · ·φk〉 (4.56)

which vanishes in QB cohomology. The same happens for the QA cohomology with

twisted chiral operators. This analysis implies that the correlation functions are
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independent of the metric, which means the theory is topological.

Then, on which parameters do the twisted theories depend? let us consider the

A-twisted theory with a twisted chiral multiplet Y and chiral multiplet Φ. First of

all, the D-term for Y and Φ can be shown to be QA exact:∫
d4θ K(Y, Ȳ ) =

{
Q̄+,

[
Q−,

∫
dθ̄−dθ+K(Y, Ȳ )|θ−=θ̄+=0

]}
=

{
Q̄+ +Q−,

[
Q−,

∫
dθ̄−dθ+K(Y, Ȳ )|θ−=θ̄+=0

]}
(4.57)

Secondly, the chiral and anti-chiral superpotentials are also QA exact:∫
d2x

∫
dθ+dθ− W (Φ) = {Q+ [Q−,W (φ)]}

=

∫
d2x

{
Q+

[
Q− + Q̄+,W (φ)

]}
= −

∫
d2x

{
Q− + Q̄+, [Q+,W (φ)]

]
} , (4.58)

where for the second line, we used the definition of the chiral field, and for the

third line, we applied the Jacobi identity and ignored a total derivative term. In

a similar manner, one can show that
∫
dθ̄+dθ̄−W̄ (Φ̄) can be also written as a QA

exact term. Finally, the anti-twisted superpotential is also QA exact:∫
dθ̄+dθ−W (Y ) = {Q̄+, [Q−,W (y)]}

= {Q̄+ +Q−, [Q−,W (y)]} . (4.59)

Hence, the A-twisted theory only holomorphically depends on the twisted chiral

parameters. On the other hand, the B-twisted theory only depends holomorphi-

cally on the chiral superpotential parameters. Recall the example of GLSM which

reduces to the NLSM with compact CY target space. The A-twist of this theory

only depends on the twisted chiral parameters of the theory, which is nothing but

the FI parameter. On the other hand, the B-twist of this theory only depends on
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the form of the superpotential. As can be seen from this example, The A-twisted

theory carries information about the volume of given CY space, while the B-twisted

theory carries infomation about the complex structure of the CY space.

The statement of the mirror symmetry, (4.29), relates A-twisted theory of given

CY and and B-twisted theory of mirror CY, obtained via the T-duality. One of the

reason this duality is useful is that, while the B-twisted theories are classical (due

to the F-term non-renormalization theorem), the A-twisted theories get quantum

corrections in general, including non-perturbative ones. However, since the mirror

symmetry is proven only for the abelian gauge theories [2], there has been no general

prescription to obtain exact correlation functions for A-twisted theory until very

recently.

On the other hand, after the pioneering work of Pestun [7], there has been much

progress on calculating exact partition functions on supersymmetric gauge theories

on spheres in various dimensions. [7–9, 30, 32] Along the line of these works,

exact partition function of N = (2, 2) GLSM on S2 was recently calculated by

[8] and [9]. Suprisingly, it was claimed [12, 13] that the partition function on

S2 exactly calculates the Kahler potential of the A-model moduli space, which

provides a direct method of computing wordsheet instanton contributions to various

correlation functions.

These works has been further exptended to the partition function on a hemisphere

[14, 29, 127], and on a real projective plane [15], which was argued to compute the

central charge of D-brane and Orientifolds respectively, in the A-twisted theory. In

the following sections, we are going to review the series of these works in details,

focusing on the Orientifold case.

Before going into the detailed calculations, let us briefly summarize the vacuum

structure of the topologically twisted N = (2, 2) theories developed in [126], and

explain the properties of quantities we are going to study in the following sections.
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Figure 4.2: Ground states σi|0〉 ≡ |σi〉 of A-twisted theory can be realized as in-
finite hemisphere with a twisted chiral field insertion at the tip of the hemisphere.
We associate the field configuration at the boundary of the hemisphere with a
ground state |σi〉. This is illustrated in the right figure. Among the ground states
constructed as such procedure, we can define a distinguished (canonical) ground

state |0〉 with identity operator insertion (no insertion) as depicted in the left.

First, let us consider an A or B twisted theory with supercharge Q = QA or QB.

Then, the ground states |0〉 of the theory are defined as

Q|0〉 = Q†|0〉 = 0 . (4.60)

Due to the relation (4.52) and (4.53), for a given ground state |0〉, we can construct

the other ground states by acting

φi|0〉 , (4.61)

where φi are twisted chiral and chiral operator for A- and B-twisted theory re-

spectively. Due to the property of chiral operators, this set of the ground states

φi|0〉 ≡ |i〉 also forms a ring. In order to realize these set of ground states, we con-

sider the infinite hemisphere with (twisted-) chial field inserted at the tip of it, as

depicted in the above figures. Since the wavefunction propagates along the infinite

time direction along the neck of the hemisphere, which is equivalent to acting the

operator limβ→∞ e
−βH , the states at the end circle of the hemisphere are projected

to the ground state. We associate the field configuration at the equator of the hemi-

sphere with a state |i〉. Then, there exists a canonical choice of the distinguished

ground state |0〉 which corresponds to the identity operator insertion. All the other

ground states are then related to this state by the relation φi|0〉 ≡ |i〉. Note that,
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thanks to the topological nature of the theory (4.56), this states are invariant under

the metric variation of the hemisphere or the position of the operator insertion.

Due to the N = (2, 2) supersymmetry, the moduli space of these theory has a

complex structure. One of the most important quantity in the study of this moduli

space is a Hermitian metric of the moduli space which is given by

gīj = 〈̄i|j〉 , (4.62)

where 〈̄i| denotes the states obtained from the anti-topological (Ā- or B̄-) twist.

Furthermore, one can show that the connection on these vacuum bundle over the

parameter space is holomorphic, i.e.,

Aī
k
j ≡ 〈k|∂̄i|j〉 = 0 , (4.63)

and satisfies the so called tt∗ equations [126], which guarantee the existence of

the Gauss-Manin flat connection. Using these relations, one can show that the

Zamolodchikov metric on the moduli space can be obtained from the relation

Gij̄ ≡ −
gij̄
g00̄

= ∂̄j̄∂i ln g00̄ , (4.64)

which means that ln〈0|0̄〉 equals to the Kahler potential of the Zamolodchikov met-

ric for the family of the Calabi-Yau space. As can be inferred from the discussion

above, 〈0|0̄〉 can be obtained from the partition function on the sphere with topo-

logical twisting in the northern hemisphere and anti-topological twisting in the

southern hemisphere. For B-twisted theory, this quantity can be easily calculated

since there are no quantum correction to the F-term potential. This is given by

〈0|0̄〉 =

∫
X

Ω ∧ Ω̄ = e−K , (4.65)

where K is a Kahler potential for the complex structure moduli space, and Ω

is a holomorphic volume form of the Calabi-Yau space. On the other hand, for
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A-twsted theory, the corresponding quantity is not easy to calculate because of

the non-trivial worldsheet instanton correction. The following section presents the

recently developed ways to calculate this quantity exactly for A-twisted theories,

via the method of the supersymmetric localization reviewed in the section 2.4.

Since the worldsheet topology is a sphere in the above case, the string theory in

question is naturally the closed string theory. Next obvious step is to consider the

case when the worldsheet has a boundary, which is the open string theory. Since

these strings can end on the subspace of the Calabi-Yau ambient, which has been

dubbed D-brane, this theory naturally captures information of such D-brane which

wraps the sub-cycles of the Calabi-Yau ambient space. For this case, we should

impose certain boundary condition at the boundary of the hemisphere which is

properly twisted. Note that this boundary condition should compatible with the

supersymmetry of the worldsheet. Then we can consider the following overlap

between A- (or B-) twisted canonical ground state and the boundary state |B(γi)〉
defined by the sub-cycle γi that the string ends,

Πi = 〈0|B(γi)〉 . (4.66)

This quantity is called the period integral. For a B-twisted theory, it is known

that [141] the boundary cycle γi should be a middle dimensional cycle called the

Lagrangian subcycle. Hence the period integral can be naturally mapped to the

integral

ΠB
i =

∫
γi

Ω , (4.67)

which again is not quantum corrected. This quantity is nothing but the central

charge of the N = 2 string theory, which appears on the right hand side of the

commutation relation of the two supersymmetries. The A-twisted counterpart is

ΠA
i =

∫
γ̃i

e−B−iJ +O(α′) , (4.68)
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which depends holomorphically on the complexified Kahler parameter B+iJ . This

quantity, on the other hand, can not be easily calculated in a direct manner because

of the worldsheet instanton correction. In section 4.3, we are going to review what

have been known about this quantity before recent developement of the exact

calculations, by means of the anomaly inflow. In section 4.4, we introduce a new

method to directly calculate the central charge of given D-brane data including

all the α′ corrections, and will see how these works corrected and improved the

previously known results reviewed in section 4.3.

Finally, there are one more class of defect localized at a subcycle of the Calabi-Yau

ambient space, which is the Orientifold planes. For this case, the relevant quantity

is

Π̃i = 〈0|C(γi)〉 , (4.69)

where |C(γi)〉 is a crosscap state which is a fixed point of a certain Z2 projection of

fields accompanied by exchange of both ends of the string. This quantity is known

to calculate the central charge of the type IIA string theory in the presence of such

Z2 action. As in the D-brane case, for the A-twisted theory, this quantity has

been calculated only for the tree-level until very recently. In the last section of this

chapter, we are going to present the work [15] where the exact calculation of the

central charges of the Orientifold planes are given. In this work, several subtleties

regarding the RR-charges of D-brane/Orientifolds and issue with Spinc manifolds

are also addressed and solved partially.

Studying the vacuum structure of these topological theories has an important ap-

plications in Calabi-Yau compactfication of the string theory. For example, when

we consider Type II stirng theory compactified on six-dimensional Calabi-Yau, the

vacuum-to-vacuum amplitude 〈0̄|0〉 we mentioned above, exactly determines the

gauge coupling of the four-dimensional N = 2 effective theory

∂i∂jF0 = τij , (4.70)
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hence the Seiberg-Witten prepotential F0. The D-branes/Orientifolds to the vac-

uum amplitudes 〈0|B(γi)〉 and 〈0|C(γi)〉 also play crucial role in the Calabi-Yau

compactification, which calculates the charge and mass of the BPS states in four-

dimensional spacetime obtained from compactifying D-branes wraping supersym-

metric cycles.

4.2 Kahler Potential and the Two-Sphere Partition Func-

tion

Recently, there has been drastic improvement in understanding two-dimensional

N = (2, 2) theories along with the development of the localization technique which

enables us to exactly calculate the quantities for supersymmetric theories. As

advertised in the last section, we are going to review such development for the 2d

GLSM, and study how these series of works can be used to exactly calculate the

fully quantum corrected quantities in the A-twisted theory. In this section, we start

with a short review of [8, 9], where the partition function of 2d N = (2, 2) GLSM

on a two-sphere was calculated.

First of all, we should write down the action which preserves N = (2, 2) supersym-

metry on the sphere. As was reviewed in section 2.4, this can be done by adding

proper curvature correction terms to the flat Lagrangian. For 2d GLSM, it turns

out to be

L = Lvector + Lchiral + LW + LFI , (4.71)

121



Chapter 4. D-branes and Orientifolds From 2D Partition Functions

where the kinetic terms for the vector and the charged chiral multiplets are, re-

spectively,

Lvector =
1

2g2
Tr

[(
F12 +

σ1

r

)2
+ (Dµσ1)2 + (Dµσ2)2 − [σ1, σ2]2 +D2

+ iλ̄γµDµλ+ iλ̄[σ1, λ] + iλ̄γ3[σ2, λ]

]
, (4.72)

Lchiral = φ̄

(
−DµDµ + σ2

1 + σ2
2 + iD + i

q − 1

r
σ2 +

q(2− q)
4r2

)
φ+ F̄F

− iψ̄
(
γµDµ − σ1 − iγ3σ2 +

q

2r
γ3
)
ψ + iψ̄λφ− iφ̄λ̄ψ , (4.73)

and the potential terms take the following form,

LW =
∑
i

∂W
∂φi

F i − 1

2

∑
i,j

∂2W
∂φi∂φj

ψiψj + c.c. . (4.74)

Finally the Fayet-Illiopoulos (FI) coupling and the two-dimensional topological

term are

LFI = −τ
2

Tr
[
D − σ2

r
+ iF12

]
+
τ̄

2
Tr
[
D − σ2

r
− iF12

]
, (4.75)

where τ = iξ + θ
2π , (ξ ∈ R, θ ∈ [0, 2π]). Note that the superpotential W(φ) should

carry R-charge two to preserve the supersymmetry. This Lagrangian is invariant
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under the following supersymmetry transformation rules,

δλ =(iV1γ
1 + iV2γ

2 + iV3γ
3 −D)ε ,

δλ̄ =(iV̄1γ
1 + iV̄2γ

2 + iV̄3γ
3 + D)ε̄ ,

δAi =− i

2

(
ε̄γiλ− λ̄γiε

)
,

δσ1 =
1

2

(
ε̄λ− λ̄ε

)
,

δσ2 =− i

2

(
ε̄γ3λ− λ̄γ3ε

)
,

δD =− i

2
ε̄γµDµλ−

i

2

[
σ1, ε̄λ

]
− 1

2

[
σ2, ε̄γ

3λ
]
,

+
i

2
εγµDµλ̄−

i

2

[
σ1, λ̄ε

]
− 1

2

[
σ2, λ̄γ

3ε
]
, (4.76)

with

~V ≡
(

+D1σ1 +D2σ2, +D2σ1 −D1σ2, F12 + i[σ1, σ2] +
1

r
σ1

)
,

~̄V ≡
(
−D1σ1 +D2σ2, −D2σ1 −D1σ2, F12 − i[σ1, σ2] +

1

r
σ1

)
, (4.77)

and

δφ =ε̄ψ ,

δφ̄ =εψ̄ ,

δψ =iγµεDµφ+ iεσ1φ+ γ3εσ2φ+ i
q

2r
γ3εφ+ ε̄F ,

δψ̄ =iγµε̄Dµφ̄+ iε̄φ̄σ1 − γ3ε̄φ̄σ2 − i
q

2r
γ3ε̄φ̄+ εF̄ ,

δF =ε
(
iγiDiψ − iσ1ψ + γ3σ2ψ − iλφ

)
− iq

2
ψγiDiε ,

δF̄ =ε̄
(
iγiDiψ̄ − iψ̄σ1 − γ3ψ̄σ2 + iφ̄λ

)
− iq

2
ψ̄γiDiε̄ . (4.78)
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Here the spinors ε and ε̄ can be chosen to be

ε = eiϕ/2

(
cos θ/2

sin θ/2

)
, ε̄ = e−iϕ/2

(
sin θ/2

cos θ/2

)
, (4.79)

which are solutions to the Killing spinor equations

∇µε =
1

2r
γµγ

3ε , ∇µε̄ = − 1

2r
γµγ

3ε̄ . (4.80)

There are two different localization method which can be applied in general. The

first one is the Coulomb branch localization where we use the fact that the above

Lagrangian Lvector, Lchiral and LW can be expressed as a Q-exact terms. For

example,

Lvector =
1

g2
δεδε̄Tr

[1

2
λ̄γ3λ− 2iDσ2 +

i

r
σ2

2

]
, (4.81)

and

Lchiral = −δεδε̄
[
ψ̄γ3ψ − 2φ̄(σ2 + i

q

2r
)φ+

i

r
φ̄φ
]
. (4.82)

Since these terms are Q-exact themselves, the one-loop determinant calculated from

these quadratic action yields exact partition function. The saddle configuration is

A =
B

2
(κ− cos θ)dφ , σ1 = −B

2r
, σ2 = σ , D = 0 ,

φ = 0 , F = 0 , (4.83)

where σ is arbitrary constant and B is quantized magnetic flux. Since the fields

are localized to the constant value of the lowest component of the vector multiplet,

this solution is referred to as a Coulomb branch localization. The result can be
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written as

ZS2 =
∑
B

1

|W |

∫
dσe−4πiξTrσ+iθTrB

×
∏
α∈∆+

[(
α ·B

2r

)2

+ (α · σ)2

] ∏
w∈R

Γ
(
q
2 − irw · σ + |w·B|

2

)
Γ
(

1− q
2 + irw · σ + |w·B|

2

) .(4.84)

In the integrand, the first line correponds to the classical contribution of the action.

At the second line, the first factor comes from the gauge multiplet with roots α,

and the rest of them which is expressed in terms of the ratio of the gamma function

are chiral multiplet contribution, charged with weight w.

The other choice of the Q-exact term is also possible and presented in [8, 9]. This is

the Higgs branch localization. For this choice, one can clearly see that the solutions

are localized at the north and south pole of the sphere. Furthermore, these solutions

are the vortex and anti-vortex configuration on R2 with Ω backgroud parameter

ε = 1/r. Since the choice of Q-exact term should not affect the results, the result

must agree with that of the Coulomb branch calculation, and it can be shown to

be true.

As can be clearly seen in (4.84), the result only depends on the parameter of A-

model moduli space τ = iξ + θ
2π and τ̄ . Then what does this quantity calculate?

A few month later, there appeared a conjecture [12] that (4.84) exactly gives the

Kahler potential of the A-model moduli space. I.e.,

ZS2(τ, τ̄) = e−KKahler(τ,τ̄) = 〈0̄|0〉 . (4.85)

This conjecture has been checked against various known examples of the mirror

symmetry. Especially, it was shown that (4.84) captures the well-known term in

the perturbative correction of e−K which is proportional to ζ(3).
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Figure 4.3: Geometry of the squashed two-sphere and the Kahler potential. At
the tip of the hemisphere, the preserved supersymmetry is A- and Ā-type.

Later, the physical argument on why this conjecture should hold was offered by [13].

They observed two crucial facts. 1) The ZS2(τ, τ̄) is invariant under the squashing

of the sphere which preserves U(1) isometry. 2) At the two poles of the sphere, the

preserved supersymmetry (4.79) is exactly A- and Ā-type respectively. Combining

these two facts, the geometry of the partition function calculation are very similar

to the tt∗ picture. The state at the tip of the hemisphere, which corresponds to

the the identity operator of the A-twisted theory, propagates through the infinite

time direction and projected to the canonical ground state |0〉. On the other half

of the hemisphere, anti-topological counterpart happens and the partition func-

tion over the whole squashed sphere yields a overlap amplitute between these two

states. Although this is not exactly the same as the original tt∗ situation since the

supersymmetry is continuously interpolating between A- and Ā-type in this case,

it gives very plausible argument why the conjecture (4.85) holds in general. More

recently, there appeared another proof of this conjecture without using the local-

ization argument. [128] In this work, it was also claimed that the similar relation

between the sphere partition function and the Kahler potential of the conformal

manifolds holds for four-dimensional superconformal field theories as well.

Compared to the fact that the original mirror symmetry was proven only for the

GLSM with U(1) gauge symmetry, this results can be easily generalized to the non-

abelian gauge groups. We can say that these results offer a new way to suggest

and prove the mirror symmetry for general Calabi-Yau manifold obtained from

non-abelian GLSMs.
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4.3 Ramond-Ramond Charges from the Anomaly In-

flow

Having understood that the two-sphere partition function of N = (2, 2) GLSM

calculates the Kahler potential of the A-model moduli space, the next natural step

is to consider the worldsheet with boundary, which would be applicable for the

open string theory. For this case, the worldsheet topology is a disk (a hemisphere).

As can be inferred from the discussion of section 4.1.3, we can expect that the exact

partition function of the same GLSM on a hemisphere would calculate the overlap

amplitude

〈0|B(γi)〉 , (4.86)

where the boundary state |B(γi)〉 is determined by the cycle γi which the D-brane

attached at the end wraps. This boundary data will be translated to GLSM lan-

guage properly. For the exact calculation of this quantity, we should check whether

the saddle configuration and fluctuations satisfies the boundary conditions. More

importantly, if the Killing spinors (4.79) satisfy the boundary condition, we expect

that, for the same reason in the two-sphere case, (4.86) obtained via the localization

would give the overlap amplitute between the A-twisted canonical ground state and

the boundary state which corresponds to the even-dimensional holomorphic sub-

cycle embedded in the ambient space. As studied before, this quantity maps to

the period integral at the level of NLSM, and the period integral gives the central

charge of the N = 2 supersymmetry algebra. On the other hand, central charge

are closely related to the BPS states of the supersymmetric theory, which are real-

ized as D-branes coupled to the Ramond-Ramond (RR) fields. As a consequence,

if we denote this coupling Y (F ,R), where F ,R are gauge and gravitational field

strength respectively, the general form of the central charge can be written as

(D-brane central charge) =

∫
X
e−B−iJ ∧ Y (F ,R) +O(α′) . (4.87)
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This formula is analogous to the Z(p, q) = pa + qaD in the 4d N = 2 Seiberg-

Witten theory obtained from a Calabi-Yau compactification. Here Y (F ,R) is the

topological RR coupling to the spacetime curvature, which has been renowned

to be exactly determined by the anomaly cancelation mechanism of the D-brane

worldvolume theories. [97, 98, 140] In the presence of the Orientifold planes, the

analogous quantity is

〈0|C(γi)〉 , (4.88)

where |C〉 denotes for the crosscap states whose relavant Orientifold planes are

even-dimensional holomorphic manifold. The precise definition will be given in the

section 4.5.2. The worldsheet topology now becomes RP2, which is non-orientable.

RR coupling to the spacetime curvature also has been calculated in a similar man-

ner, which yields

(O-plane central charge) = ±
∫
X
e−iJ ∧ Z(R) +O(α′) . (4.89)

Note that, for this case, the NSNS two-form field e−B takes discrete value denoted

as factor ±, and the polynomial Z does not depend on the gauge fields since the

strings cannot ends on the Orientifold plane. Before going into detailed discussion of

the exact form of the equation (4.87), in this section, we review the well-established

mechanism of the anomaly inflow which determines polynomial Y (F ,R) and Z(R),

hence the tree-level central charge. We follow the recent work [144], which reviewed

and improved the original study done by [97, 98, 140].

4.3.1 Anomaly Inflow for Intersecting Branes

The axial and gravitational anomaly are quite prevalent and in fact most supersym-

metric Yang-Mills theories with d ≥ 4 have such anomalies. Many of these theories

are realizable as world-volume theories from D-branes and Orientifold planes. From

the pioneering work of Alvarez-Gaume and Witten which we reviewed in section
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2.3.1, one can straightforwardly calculate the one-loop anomalies of such theories.

For a d-dimensional worldvolume theory of intersecting branes, anomaly polyno-

mial can be collectively written as

I1−loop
d=p+1 = (−1)(p+1)/2π · ([ch(F) ∧ A(T ) ∧ [chS+(N )− chS−(N )])

∣∣∣∣
(d+2)−form

,

(4.90)

where T and N are tangent and normal bundle of the worldvolume respectively.

These 1-loop anomaly can be canceled via so called anomaly inflow mechanism,

which was developed by [97, 98, 140]. The main claim is that the topological

couplings between Ramond-Ramond (RR) tensor fields and the spacetime curvature

should be properly chosen so that they exactly cancel (4.90). This mechanism has

been widely discussed in the context M5-brane worldvolume theory as well [96],

which is well known to produce the N3 behaviour of the six dimensional N = (2, 0).

We will shortly review how this anomaly inflow mechanism can determine the RR

couplings of the D-branes and Orientifolds. The original anomaly inflow mechanism

of [97, 98, 140] contains essentially all the necessary ingredients. However, there

has been several unsatisfiactory issues in these arguments until very recently. One

is that, for self-dual brane configurations such as D3 brane or D1-D5 intersecting

brane system, they fail to generate any anomaly inflow although they apparently

suffer from the 1-loop anomalies. In the following, we present the work [144] which

settled this problem by modifying the inflow mechanism properly, and showed that

the RR couplings are allowed to be written in a more natural form. Note that, for

simplicity, we restrict to the case where D-brane wrap a Spin manifold.
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Consider the Chern-Simons coupling in a form1

SCS =
µp
2

∫
Dp

∑
r≤p

s∗(Cr+1) ∧ Yp−r , (4.92)

where Y = ch(F)A(T )1/2A(N )−1/2 and s∗ is the pull-back to the world-volume.

The equation of motion that follows from this coupling is

d (∗(Hr+2)) = −(−1)r
∑
B

2κ2
10µq Y

B
q−r ∧∆B

9−q , (4.93)

with some “delta function” (9− q)-form, ∆B
9−q, representing the D-brane position.

Because this is not a scalar object, however, the expression becomes ill-defined

unless we carefully regularize and covariantize it. This smearing of the magnetic

source is a recurring and necessary step when we discuss the anomaly inflow, es-

pecially when the anomaly associated with normal bundle needs to be discussed.

Thus, we write instead,

d (∗(Hr+2)) = −(−1)r
∑
B

2κ2
10µq Y

B
q−r ∧ τB9−q , (4.94)

where we smeared the sources due to the Dq-branes by introducing a “delta-

function” (9 − q)-form τB9−q, well-identified in the mathematical literatures as the

Thom class of the normal bundle N [110].

τ9−q = d(ρ ê8−q) . (4.95)

1 Note that this not equivalent to the originally conjectured formula

S′CS =
µp
2

∫
Dp

(
s∗(Cp+1) ∧ Y0 + (−1)ε

∑
r<p

s∗(Hr+2) ∧ Y (0)
p−r−1

)
, (4.91)

of [97, 98].
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The “radial” function ρ, whose support determines the smearing of the source,

interpolates between −1 on the brane and 0 at infinity. The global angular form

ê8−q is essentially a covariantized volume-form, normalized to unit volume, of a

(8 − q)-sphere surrounding the Dp-brane. In particular δê8−q = 0, and dê8−q = 0

for even q and dê8−q = −χ(N )9−q with the Euler class χ for odd q. By choosing ρ

to have increasingly small support near the origin, we can localize the source with

arbitrary precision, and with diffeomorphism invariance preserved. In addition we

will also choose ρ′(0) = 0. With arbitrary small support of ρ, we can take Y ’s to

be uniform along the normal direction, which allows (4.94) to make sense.

Since this equation of motion exists for all Cq+1’s, it also implies, with ∗Hn =

(−1)(n−2+ε)/2H10−n, the modified Bianchi identities

dH8−r = −
∑
B

2κ2
10µq (−1)(−q+ε)/2 ∧ Ȳ B

q−r ∧ τB9−q , (4.96)

with Ȳ ’s being the complex conjugated Y ’s,

Ȳ A
n =

[
ch(−FA) ∧

√
A(TA)

A(NA)

]∣∣∣∣∣
n

. (4.97)

Before solving this Bianchi identity, we need to clarify an important difference

between the Thom classes of even and odd dimensional bundles. For odd fibre

dimensions (applicable to even q and thus type IIA branes), τ9−q = d(ρ · ê8−q)

behaves in much the same way as τM5 of the previous section. For even fibre

dimensions (applicable to odd q and thus type IIB branes), the global angular form

decomposes into two pieces [110, 112]

ê8−q = v8−q + Ω8−q(N ) , (4.98)
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where the first term involves at least one normal vector field ŷ and can be written

locally as

v8−q = dψ7−q , (4.99)

while the last term is nothing but the Chern-Simons term of the Euler class with

a sign flip, i.e.,

dΩ8−q(N ) = −χ(N )9−q . (4.100)

Clearly, this behavior of the Thom class is responsible, with ρ(0) = −1, for the

identity s∗(τ) = χ. Finally the gauge-invariance of ê implies that

δψ7−q = −Ω
(1)
7−q = χ(N )

(1)
7−q . (4.101)

Ω exists for even-dimensional normal bundles, and so this is relevant for all type

IIB branes.

Note that v8−q (and its descent ψ7−q) is singular at the origin, being a normalized

volume form of S8−q. In contrast, Ω(N )8−q is composed only of the gauge fields of

the normal bundle and is well-defined and smooth everywhere. For regular solutions

of H, we must then choose the following descent for τ ,

τ
(0)
8−q = −dρ ∧ ψ7−q + ρ · Ω8−q , (4.102)

which results in

τ
(1)
7−q = −ρ · χ(N )

(1)
7−q . (4.103)

Note that both expressions are regular at the origin, with ρ′(0) = 0. This gives

Hs+2 = d(Cs+1)−
∑
B

2κ2
10µq (−1)(−q+ε)/2 (Ȳ B ∧ τB

)(0)

s+2
, (4.104)
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where, for type IIB theory,

(
Ȳ B ∧ τB

)(0)

s+2
= β(Ȳ B)

(0)
q+s−7∧τ

B
9−q+(1−β)(Ȳ B)q+s−6∧(−dρ∧ψ7−q+ρ ·Ω8−q)

B .

(4.105)

Although β is an arbitrary real number in general, we must take β = 0 when Ȳ on

the left hand side is a 0-form (here, q + s = 6). Its gauge variation gives

(
Ȳ B ∧ τB

)(1)

s+1
= β(Ȳ B)

(1)
q+s−8 ∧ τ

B
9−q + (1− β)Ȳ B

q+s−6 ∧ (−ρ · χ(1)
7−q)

B . (4.106)

With this understood, the gauge transformation of C is,

δCs+1 =
∑
B

2κ2
10µq (−1)(−q+ε)/2 (Ȳ B ∧ τB

)(1)

s+1
. (4.107)

Let us concentrate on the case of a single stack of type IIB Dp-branes. The gauge

variation of SCS (4.92) is

δSCS = (−1)(−p+1)/2π

∫
Dp

∑
r

s∗
((
Ȳp+r−6 ∧ τ9−p

)(1)
)
∧ Yp−r . (4.108)

Just as s∗(τ) = χ, it is easy to show that

s∗(τ (1)) = s∗(−ρχ(1)) = χ(1) , (4.109)

and that

δSCS = (−1)(−p+1)/2π

∫
Dp

∑
r

(
Ȳp+r−6 ∧ χ9−p(N )

)(1) ∧ Yp−r , (4.110)

which equals

− (−1)(p+1)/2π

∫
Dp

(
ch(−F) ∧

√
A(T )

A(N )
∧ χ(N )

)(1)

∧

(
ch(F) ∧

√
A(T )

A(N )

)
.

(4.111)
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With p < 9, χ(N )9−p is never 0-form, allowing us to rewrite this as, up to local

counter terms,2

δSCS = −(−1)(p+1)/2π

∫
Dp

(
ch(F) ∧ ch(−F) ∧ A(T )

A(N )
∧ χ(N )

)(1)

(4.112)

= −(−1)(p+1)/2π

∫
Dp

(
[ch

SU(n)
adj (F) + 1] ∧ A(T ) ∧ [ch+(N )− ch−(N )]

)(1)
.

Of these, for p = 1, the expression is null and no inflow is generated. For others,

p = 3, 5, 7, this is precisely the right inflow to cancel one-loop anomaly (4.90) for

d = 4, 6, 8.

We have re-analyzed the Bianchi identities of RR field strengths by requiring the

regularity of physical variables. This is not by a choice but required, since the

D-brane inflow analysis must have the magnetic sources regulated anyway. To

summarize, the RR coupling should be written in a form

SCS =
∑
Dp

µp
2

∫
Dp

∑
r≤p

s∗(Cr+1) ∧ ch(F) ∧

√
A(T )

A(N )
, (4.113)

in order to cancel all the possible one-loop anomalies. In the following paragraph,

we present an example of the D3-brane worldvolume theory, where precise definition

of the global angular forms are explicitly given, emphasizing the fact that this

mechanism can be safely applied to the self-dual systems.

Axial Anomaly Inflow onto D3-Branes

One-loop anomaly of the maximal U(N3) super Yang-Mills theory can be com-

pletely canceled by the anomaly inflow onto N3 coincident D3-branes. Previous

analysis [97, 98] produced a null inflow for this case, seemingly requiring another

2p = 9 requires a separate discussion since this case involves Orientifold planes. See next
section.
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inflow mechanism. The crucial difference between the old and the revised inflow

is whether one has a 6-form s∗(τ6) = χ6 as a blind overall factor (which kills off

all terms) or one also has an exceptional term with 4-form s∗(τ
(1)
4 ) = χ

(1)
4 instead.

Here we wish to retrace the case of D3-branes, with more care given to details of

the Thom class, for a pedagogical reason.

Upon close inspection of the inflow, one can see easily that, for Dp-branes, only

those RR gauge fields from Cp+1 down to its dual C7−p contribute to the inflow.

For an N3 coincident D3, C4 is self-dual, and the only relevant term for D3-brane

inflow is the minimal coupling

SD3
CS =

µ3N3

2

∫
D3
s∗(C4) , (4.114)

with the constant 0-form Y0 = N3 = Ȳ0. This is also related to the fact that

s∗(τ (1)) = χ(1) is already a 4-form, saturating all the world-volume dimensions.

From this, combining with the self-duality constraint on C4, we have the Bianchi

identity of H5

dH5 = 2κ2
10µ3N3τ6(D3) , (4.115)

again with the regularized and covariantized τ6(D3).

Recall that this Thom class is defined by

τ6(D3) = d(ρ · ê5) , (4.116)

with the global angular five-form ê5 of unit volume. More explicitly,

ê5 = − 1

15
εa1···a6Dŷ

a1Dŷa2Dŷa3Dŷa4Dŷa5 ŷa6

−1

6
εa1···a6F

a1a2
R Dŷa3Dŷa4Dŷa5 ŷa6 − 1

8
εa1···a6F

a1a2
R F a3a4R Dŷa5 ŷa6 ,(4.117)
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which can be decomposed as

ê5 = dψ4 + Ω5 , (4.118)

with

dψ4 = − 1

120π3
εa1···a6dŷ

a1dŷa2 · · · dŷa5 ŷa6 + · · · , (4.119)

and

Ω5 =
1

384π3
εa1···a6

[
F a1a2R F a3a4R Aa5a6R + · · ·

]
, dΩ5 = −χ6(FR) . (4.120)

Of course the six-form χ6 and the five-form Ω5 vanish identically when evaluated

on the four dimensional world-volume of D3, but what matters at the end is the

appearance of the 4-form χ
(1)
4 from the variation of ψ4. In what follows, we obtain

the same final answer if we remove χ6 and Ω5 from all the formulae but remember

that δψ4 is trivially closed on the D3 world-volume.

As before, from the regularity requirement of H5 and C4, we must choose among

many naive choices of [τ6(D3)](0),

H5 = dC4 + 2κ2
10µ3N3 (τ(D3))

(0)
5 = dC4 + 2κ2

10µ3N3 [ρ ∧ ê5 − d(ρ ∧ ψ4)] . (4.121)

On the other hand, since

δê5 = 0 , δψ4 = χ
(1)
4 , (4.122)

the gauge invariance of H5 yields

s∗(δC4) = −2κ2
10µ3N3 × s∗

(
τ6(D3)(1)

)
= −2κ2

10µ3N3 × χ(1)
4 . (4.123)

If we substitute this to δSD3
CS , we finally have

δSD3
CS = −κ2

10µ
2
3N

2
3

∫
D3
χ

(1)
4 = N2

3 ×
(
−π
∫
D3
χ

(1)
4

)
, (4.124)
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with κ2
10µ

2
3 = [(2π)7(α′)4/2] × [1/(2π)3(α′)2]2 = π. This cancels exactly the one-

loop anomaly on the D3-branes.

As we saw in the introduction, the SO(6)R axial anomaly polynomial at one-loop

of the U(N3) theory is

I6 =
N2

3

24π2
trS+ F 3

R = N2
3 · 2π · chS+(FR)

∣∣∣∣
6−form

= N2
3 · π · [chS+(FR)− chS−(FR)]

∣∣∣∣
6−form

, (4.125)

where FR is the curvature tensor of an external SO(6)R in the Weyl representation.

The bracket in the last line equals the Euler class divided by the A-roof genus, and

the Euler class is already 6-form, so the one-loop anomaly polynomial equals

I6 = N2
3 × πχ(FR) , (4.126)

which is precisely canceled by the inflow (4.124).

The case of D3 is special in that the minimal coupling to C4 alone generates the

anomaly inflow and there is no need to invoke lower-rank RR gauge fields. This

happens due to the self-dual nature of D3. A toy model of such self-dual objects,

namely dyonic string in six dimensions, was studied previously in Refs. [118–120].

Our inflow argument is related most directly to that of Ref. [119]. There is also

some relation to Ref. [118] in that v5 = dψ4 is the generalization of the Wess-

Zumino-Witten term of the latter, but the inflow here is a direct consequence of

the standard topological coupling, rather than with additional modifications. In

particular, the smearing function ρ plays a crucial role here.
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4.3.2 Chern-Simons Couplings on Orientifold Planes

Extending all of these to the presence of Orientifold planes should be straightfor-

ward. The main extra ingredient is how the various Orientifold planes couple to

the space-time curvature. For Op− plane, the relevant Chern-Simons coupling is

known to be,

SOp− =
1

2
×

(
−2p−4µp

2

∫
Op−

∑
r

s∗(Cr+1) ∧

√
L(T /4)

L(N/4)

)
, (4.127)

where L is the Hirzebruch class [99–102]. There are various studies in the past

that worked out analog of this for other three classes of Orientifold planes, but the

answers seem to disagree partially with one another [103–107].

In this section, we will show that the one-loop anomaly from the gauge sector

cancels away by the anomaly inflow, if we assume the most obvious choices of the

Orientifold Chern-Simons couplings, which in addition to the above O−,

S
Õp−

=
1

2
×

(
−µp

2

∫
Õp−

∑
r

s∗(Cr+1) ∧

[√
A(T )

A(N )
− 2p−4

√
L(T /4)

L(N/4)

] )
, (4.128)

reflecting the usual statement that this case has a single, unpaired D-brane stuck

at the Orientifold plane. For Op+,

SOp+ =
1

2
×

(
2p−4µp

2

∫
Op+

∑
r

s∗(Cr+1) ∧

√
L(T /4)

L(N/4)

)
, (4.129)

and the same expression for S
Õp+

. This last one associated with symplectic type

orbifolding agrees with Refs. [103, 104].

As before, the overall factor 1/2 exists only when we write the kinetic terms of RR

tensors in the duality symmetric form, and does not enter the equation of motion.

The other 1/2 factor accompanying µp is due to the Orientifolding projection.
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Dp-Op Inflow

We work in the covering space of the Orientifold and take care to divide by two

at the end of everything. For example, equation of motion and the Bianchi iden-

tity are unaffected by this, but the action written in the covering space must be

either divided by two (e.g., world-volume part) or restricted to the half space (e.g.,

spacetime part). Similarly, the D-brane Chern-Simons couplings are

SDp =
1

2
×

1

2

∑
A

µp

∫
A

∑
r≤p

s∗(Cr+1) ∧ ch2k(FA) ∧

√
A(TA)

A(NA)

 . (4.130)

Note that here we assumed these 2k Dp branes are on the top of the Op− plane,

so they share the Thom class τ , the tangent bundle T , and the normal bundle N .

Note that, upon the Orientifold projection, some of the RR tensor fields are absent.

With Op planes, Cp−1±4n maps to its negative and thus are projected out, while

Cp+1±4n remains intact. This can potentially modify inflow argument. However,

we do not really lose any term since ch2k(F) is a sum of 4n-forms for SO(2k) and

Sp(k) gauge groups, and since the Euler character χ9−p is a (9−p)-form monomial.

An exception to this is p = 9, for which one of the relevant RR gauge field, C10=9+1,

does not exist, and Y
(1)

10 type of inflow cannot be generated. This is precisely what

leads to the tadpole condition 2k = 32 for type I string theory.

With this, we may proceed as before except that Y = ch2k(F)A(T )1/2A(N )−1/2 is

shifted by −2p−4 times

Z ≡

√
L(T /4)

L(N/4)
, (4.131)

and the Bianchi identity reads

d(Hs+2) = −
∑
B

2κ2
10µq(−1)(−q+ε)/2(Ȳ B

q+s−6 − 2p−4Z̄Bq−r) ∧ τB9−p , (4.132)
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from which we repeat the procedure of the D-brane cases and arrive at the world-

volume expressions,

δ(SOp− + SDp) = −(−1)(p+1)/2 · π
2

∫ (
Ȳ ∧ Y ∧ χ(N )

)(1)

+(−1)(p+1)/2 · π
2
· 2p−4

∫ (
(Ȳ ∧ Z + Z̄ ∧ Y ) ∧ χ(N )

)(1)

−(−1)(p+1)/2 · π
2
· 22(p−4)

∫ (
Z̄ ∧ Z ∧ χ(N )

)(1)

≡ (−1)(p+1)/2

∫
(∆BB + ∆BO−+O−B + ∆O−O−) , (4.133)

where in the last line we classified the contribution to brane-brane(BB), brane-

plane(BO), and plane-plane(OO) type.

Again we denote by chρ the trace over ρ representation of SO(2k). In particular,

ch2k = ch2k and ch2k⊗2k = ch2k⊗2k = [ch2k]
2, thanks to the reality of the vector

representation of SO groups. Then, we find contributions with gauge group factors

∆BB = −π
2

(
ch2k⊗2k(F) ∧ A(T )

A(N )
∧ χ(N )

)(1)

p+1

, (4.134)

and3

∆BO−+O−B =
π

2
· 2p−4

([
ch2k(F) + ch2k(F)

]
∧

√
A(T )

A(N )
∧

√
L(T /4)

L(N/4)
∧ χ(N )

)(1)

p+1

=
π

2
· 2p−4

([
ch2k(F) + ch2k(F)

]
∧ A(T /2)

A(N/2)
∧ χ(N )

)(1)

p+1

=
π

2

(
ch2k(2F) ∧ A(T )

A(N )
∧ χ(N )

)(1)

p+1

,

3A useful identity throughout here is√
A(T )

√
L(T /4) = A(T /2)
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which combine to

(−1)(p+1)/2 (∆BB + ∆BO−+O−B)

= −(−1)(p+1)/2

(
π

2
[ch2k⊗2k(F)− ch2k(2F)] ∧ A(T )

A(N )
∧ χ(N )

)(1)

p+1

.(4.135)

Purely Orientifold contribution is

(−1)(p+1)/2∆O−O− = −(−1)(p+1)/2π

2
· 22(p−4)

(
L(T /4)

L(N/4)
∧ χ(N )

)(1)

p+1

= −(−1)(p+1)/2π

8

(
L(T )

L(N )
∧ χ(N )

)(1)

p+1

. (4.136)

We will see later how these cancel various one-loop contributions.

Extending this to Op+ plane is immediate with

SOp+ = −SOp− , (4.137)

as motivated by the fact that the two planes differ by a sign of the charge. Again

writing

δ(SOp+ + SDp) = (−1)(p+1)/2

∫
(∆BB + ∆BO++O+B + ∆O+O+) ,

the only change from O− case is the sign flip of ∆BO++O+B = −∆BO−+O−B. As

such, we have

(−1)(p+1)/2 (∆BB + ∆BO++O+B)

= −(−1)(p+1)/2

(
π

2
[ch2k⊗2k(F) + ch2k(2F)] ∧ A(T )

A(N )
∧ χ(N )

)(1)

p+1

,(4.138)

where the trace in chρ should be understood as taken in ρ representations of Sp(k)

gauge group. The defining representation 2k is pseudo-real, so the algebra goes the
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same as SO(2k) cases. The Orientifold contribution

∆O+O+ = ∆O−O− (4.139)

remains the same, begins quadratic in the p-brane charge.

Inflow in the presence of Õp−’s can be similarly obtained. Since the charge of Õp−

equals to that of an Op− plus an half D-brane, the obvious candidate for the CS

coupling of Õp− is

S
Õp−

=
1

2
×

(
−µp

2

∫ ∑
r

s∗(Cr+1) ∧

[√
A(T )

A(N )
− 2p−4

√
L(T /4)

L(N/4)

] )
. (4.140)

∆BB is unaffected as before, while ∆
Õ−B+BÕ−

is modified as

∆
BÕ−+Õ−B

=
π

2

(
[ch2k(2F)− 2ch2k(F)] ∧ A(T )

A(N )
∧ χ(N )

)(1)

p+1

. (4.141)

Thus, the analog of (4.135) and (4.138) here is

− (−1)(p+1)/2

(
π

2
[ch2k⊗2k(F)− ch2k(2F) + 2ch2k(F)] ∧ A(T )

A(N )
∧ χ(N )

)(1)

p+1

.(4.142)
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Finally, the purely Orientifold contribution may look more involved than before,

but turns out to be the same:

∆
Õ−Õ−

= −π
2

(√A(T )

A(N )
− 2p−4

√
L(T /4)

L(N/4)

)2

2p−6

(1)

∧ χ(N )9−p

= −π
2

((
A(T )

A(N )
− 2p−3 A(T /2)

A(N/2)
+ 22(p−4) L(T /4)

L(N/4)

)
2p−6

)(1)

∧ χ(N )9−p

' −π
2
· 22(p−4)

((
L(T /4)

L(N/4)
∧ χ(N )

)
p+3

)(1)

= −π
8

(
L(T )

L(N )
∧ χ(N )

)(1)

p+1

= ∆O−O− . (4.143)

where the equalities hold because we are supposed to extract p + 3-form parts of

the anomaly polynomial.

One-Loop from Open String Sector

Consider the situation where 2k coincident D-branes are on the top of one of an

O−, an O+, or an Õ− plane. There is one more type of Orientifold plane Õ+, but

this leads to the same gauge group as the O+ case and thus the same world-volume

one-loop anomaly is induced.

First, in the presence of the O− planes, the gauge group of the open strings ending

on Dp-branes is enhanced from U(k) to SO(2k). Hence a SO(2k) adjoint fermion

contributes to the world-volume anomaly polynomial of amount

2π · ch 1
2

2k(2k−1) ∧ A(T ) ∧ chS+(N ) (4.144)

for 4n-dimensions, and

π · ch 1
2

2k(2k−1) ∧ A(T ) ∧ [chS+(N )− chS−(N )] (4.145)
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for 4n+2-dimensions. Thanks to the reality of SO(2k), two of these can be written

uniformly as

I
SO(2k)
1−loop = π · ch 1

2
2k(2k−1) ∧ A(T ) ∧ [chS+(N )− chS−(N )] . (4.146)

By the way, we have an identity

ch 1
2

2k(2k±1)(F) =
1

2
ch2k⊗2k(F)± 1

2
ch2k(2F) (4.147)

and it leads to

I
SO(2k)
1−loop =

π

2
[ch2k⊗2k − ch2k(2F)] ∧ A(T ) ∧ [chS+(N )− chS−(N )] .(4.148)

Again, with the identity

χ(N )

A(N )
= chS+(N )− chS−(N ) , (4.149)

we see that they have the precise form and the factor that can cancel inflows (4.135)

from BB and BO +OB intersection.

Similarly, the other cases follow. The symplectic case is

I
Sp(k)
1−loop = π · ch 1

2
2k(2k+1) ∧ A(T ) ∧ [chS+(N )− chS−(N )]

=
π

2
[ch2k⊗2k(F) + ch2k(2F)] ∧ A(T ) ∧ [chS+(N )− chS−(N )] ,

which are again canceled by the anomaly inflow ∆BB + ∆BO++O+B (4.138) in the

presence of an O+ plane. SO(2k + 1) type gauge theory can be also dealt with by

expanding its adjoint representation in terms of the SO(2k) representation as

ch
SO(2k+1)
adj. = ch 1

2
2k(2k−1)+2k =

1

2
ch2k⊗2k(F)− 1

2
ch2k(2F) + ch2k(F) , (4.150)
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whereby the world-volume anomaly can be decomposed as

I
SO(2k+1)
1−loop =

π

2
[ch2k⊗2k(F)− ch2k(2F) + 2ch2k(F)]

∧A(T ) ∧ [chS+(N )− chS−(N )] , (4.151)

which again is neatly canceled by ∆BB + ∆
BÕ−+Õ−B

(4.142).

Hence, we conclude that the part of anomaly and inflow that depend on the gauge

group exactly cancel regardless of the brane types, after the overall chirality (or

the orientation issue) is properly taken into account.

On Universal Inflow ∆OO

As ∆BB + ∆BO+OB are canceled by the open string sector one-loop, ∆OO is left

uncanceled so far. Clearly this part of inflow has nothing to do with the open

string degrees of freedom; it exists even in the absence of any D-branes. As such,

∆OO should be canceled by one-loop anomaly from the closed string spectrum. We

wish to emphasize here that, even before checking cancelation against closed string

one-loop, the proposed Chern-Simons couplings stand out because they lead to a

universal inflow

∆O−O− = ∆O+O+ = ∆
Õ−Õ−

= −π
8

(
L(T )

L(N )
∧ χ(N )

)(1)

p+1

, (4.152)

from all types of Orientifold planes. This has to be the case, as the closed string

part of the low energy spectrum does not care what kind of projections are taken

on the Chan-Paton factors. This obvious and basic requirement is met by our

Chern-Simons couplings, which may be compared to those in Refs. [105–107].

Checking the cancelation of ∆OO by closed string one-loop for p < 9 is a bit

nontrivial, however. The simplest thing to try would be the compact version of the

same problem of T 9−p/Z2 with 29−p Orientifold planes distributed, one at each fixed

145



Chapter 4. D-branes and Orientifolds From 2D Partition Functions

point. The low energy spectra here would be identical to type I theory compactified

on T 9−p, producing one gravity multiplet and (9−p) vector multiplets, transforming

as vector representation under SO(9− p)R. For p = 5, 7, in particular, one can see

that the one-loop of this spectra does not completely cancel 29−p∆OO. That is,

unless we set the normal bundle N to be trivial. In the latter case, both the inflow

and the one-loop vanish individually.

In retrospect, this mismatch is to be expected since the one-loop computation

based on the massless spectra in p+1 dimensions only is really computing smeared

version of the anomaly, over T 9−p, rather than the localized ones. As such, the

normal bundle information, which measures nontrivial curvature effect along T 9−p

direction to begin with, is inevitably lost along the way [121]. One must rely on

more complete information, where higher modes such as Kaluza-Klein modes are

taken into account, along the line of Ref. [122]. This is not an easy task, since

one must also keep track of nontrivial internal curvatures. Instead we will consider

p = 9 case that sidesteps this complication.

4.4 D-brane Central Charges and Hemisphere Parti-

tion Function

In the last section, we have learned that the central charge of the D-brane wrapping

a spin manifold can be written as

(D-brane central charge) =

∫
X
e−B−iJ ∧ ch(F) ∧

√
A(T )

A(N )
+O(α′) , (4.153)

at the tree-level of α′. Following the exact calculation of the Kahler potentials via

the two-sphere partition function, we naturally expect that the GLSM partition

function on the hemisphere with proper boundary condition will exactly calculate

the central charge of the D-brane, as was briefly reviewed in section 4.1.3. The
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calculation has been carried out recently by [14, 29, 127], which found various

interesting features for the complete expression of (4.153).

4.4.1 Partition Function of 2d N = (2, 2) GLSM with a boundary

Constructing the supersymmetric Lagrangian for N = (2, 2) GLSM on the hemi-

sphere are exactly same as that of the two-sphere, except for the additioanl bound-

ary terms at the equator. Especially, in order to preserve the supersymmetry chosen

as in (4.79) on the northern hemisphere, one has to add the Chan-Paton factor

TrV

[
P exp

(
−i
∫
dϕ Aϕ

)]
(4.154)

with

Aϕ =ρ∗ (Aϕ + iσ2)− r∗
2r
− i
{
Q, Q̄

}
+

1√
2

(
ψi+ − ψi−

)
∂iQ+

1√
2

(
ψ̄i+ − ψ̄i−

)
∂iQ̄ . (4.155)

Here V denotes a Z2 graded Chan-Paton vector space. The tachyon profile Q(φ)

is an operator acting on the vector space V, anti-commuting with fermions, and

obeys the following relation

Q2 =W · 1V , (4.156)

where W(φ) denotes a given superpotential. The G× U(1)v representation of the

Chan-Paton vector space V is specified by ρ∗ and r∗,

ρ(g)Q(φ)ρ(g)−1 = Q(gφ) ,

λ · λr∗Q(φ)λ−r∗ = Q(λqφ) , (4.157)

where g ∈ G.
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In order to study the field configuration on hemisphere, we need to choose the

boundary condition of chiral multiplets, either Neumann or Dirichlet boundary

condition. This choice would determine the dimension of the D-branes wrapping

subcycles of the ambient space. At first sight, it seems to be natural to impose

the Dirichlet boundary condition to the chiral multiplets which become a coor-

dinates of normal direction and Neumann to the tangential direction. However,

for some reason which will be explained in the next subsection, it turns out to

be better to work with imposing the Neumann boundary condition to the all the

chiral multiplet. After that, we can obtain the lower dimensional brane via well-

established tachyon condensation mechanism. Among the saddle solution of the

Coulomb branch localization for the sphere (4.83), surviving configuration after

imposing the boundary condition is

A = 0, σ1 = 0, σ2 = σ, D = 0, φ = 0, F = 0 . (4.158)

For the one-loop determinant, we again pick out modes which satisfies the boundary

condition. As a result, the exact hemisphere partition function can be expressed

by

ZD2 ∝
1

|W (G)|

∫
t
dσ e−2πiξrentrσ−θtrσ × TrV

[
e2πρ∗(σ)+iπr∗

]
× Z1-loop (4.159)

with

Z1-loop =
∏
α>0

[
α · σ sinhα · σ

] ∏
wa∈Ra

Γ
(qa

2
− iwa · σ

)
, (4.160)

where t is the Cartan subalgebra of the gauge group G, and W (G) is the Weyl

group.
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In what follows, we consider the U(1) GLSM describing the degree N hypersurface

of CPN−1 studied in section 5 for simplicity.

W = PGN (Xi) , (4.161)

where GN (Xi) denotes a homogeneous polynomial of degree N . This model de-

scribes the non-linear sigma model whose target space is a CY hypersurface X in

CPN−1.

Taking into account for the Knörrer map to relate the GLSM brane BUV to the

NLSM brane BIR [141], one can show that

ch
[
BIR

]
=

1

1− e−2πiN(q/2−iσ)
× TrV

[
e2πρ∗(σ)+iπr∗

]
, (4.162)

where V denotes the Chan-Paton vector space of BUV . Note that the Knörrer map

also leads to the shift of the theta angle

θUV = θIR − πN . (4.163)

The central charge of the NLSM brane BIR then takes the following form

Z (BIR) = 2iπβ

∫ q/2+i∞

q/2−i∞

dε

2πi
e2πξε−iθIRε × N

εN−1
× Γ(1 + ε)N

Γ(1 +Nε)
× ch

[
BIR

]
(4.164)

with β = (rΛ)c/6/(2π)(N−2)/2. Focusing on the perturbative part of the central

charge, one can finally obtain the large-volume expression [14, 29]

Zpert (BIR) = (2πi)N−2 β

∫
X
e−iξH−

θIR
2π

H ×
Γ(1 + H

2πi)
N

Γ(1 + NH
2πi )

× ch
[
BIR

]
= (2πi)N−2 β

∫
X
e−iJ−B ∧ Γ̂c(X) ∧ ch

[
BIR

]
, (4.165)

149



Chapter 4. D-branes and Orientifolds From 2D Partition Functions

where H is the hyperplane class of CPN−1. For the last line, we defined the new

characteristic class Γ̂c(X), which is defined by

Γ̂c(X) ≡
∏
i

Γ
(

1 +
xi

2πi

)
. (4.166)

In terms of the Chern characters, it can be expanded as

Γ̂c(F) = exp

 iγ
2π
ch1(F) +

∑
k≥2

(
i

2π

)k
(k − 1)!ζ(k)chk(F)

 , (4.167)

where γ = 0.577... is the Euler-Mascheroni constant, and ζ(k) is the Riemann zeta

function. Gamma class satisfies an identity

Γ̂c(F)Γ̂c(−F) = A(F) , (4.168)

which will turns out to be useful. In fact, the appearence of this new characteristic

class has been very well-known in the mirror symmetry literature [129–131], where

their physical derivation was understood recently by the localization technique.

[14, 132]

Expression for lower-dimensional branes can be obtained as well, via the tachyon

condensation procedure. To be more concrete let us consider a tachyon profile Q

Q = Xaηa + P η̃ +GN ¯̃η , (4.169)

where the fermionic oscillators satisfy the following anti-commutation relations

{η̃, ¯̃η} = 1 , {ηa, η̄b} = δab (4.170)
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with a = 1, 2, .., n. Since the boundary potential becomes

{
Q, Q̄

}
=

n∑
a=1

|Xa|2 + |P |2 + |GN (Xi)|2 , (4.171)

the above tachyon profile describes a lower-dimensional brane wrapping a subman-

ifold at Xa = 0 in the Calabi-Yau space X in the geometric phase. One can easily

show that the Chern character of the brane BIR is

ch
[
BIR

]
= e−πinε

(
2i sin(πε)

)n
, (4.172)

where ε = q/2− iσ. Then, the central charge of the brane in the large volume limit

(4.165) can be written as

Zpert (BIR) = (2iπ)N−1 β

∫
X
e−iξH−

θIR
2π

H ×
Γ(1 + H

2πi)
N−n

Γ(1− H
2πi)

nΓ(1 + NH
2πi )

×Hn × e−
nH
2

= (2iπ)N−1 β

∫
X
e−iJ−B ∧ Γ̂c(T )

Γ̂c(−N )
∧ e(N ) ∧ e−

1
2
c1(N ) . (4.173)

Note that one can see the very subtle factor e−c1(N )/2 emerges from the partition

function computation again. As a byproduct, we also confirmed that the overall

normalization factor (2πi)N−1β = (2π)N/2iN−1(rΛ)c/6 are the same for any di-

mensional D-branes, which turns out to be consistent with the tadpole cancelation

condition in the presence of Orientifold planes.

4.4.2 Freed-Witten Global Anomaly and Spinc Structure

A well-known subtlety with D-branes occurs when they wrap a manifoldM which

is not Spin. This causes a global anomaly in 2D boundary CFT, whereby the

world-sheet fermion determinant has an ill-defined sign. As pointed out by Freed

and Witten [138] this ambiguity is cancelable by additional phase factor, provided
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that M is Spinc,

exp

(
i

∫
∂Σ
Â

)
, (4.174)

with some world-volume Abelian “gauge field” Â. The latter is equally ill-defined,

precisely such that the sign flip due to the world-sheet global anomaly is canceled

by the sign ambiguity of the latter.

A related observation is that spacetime spinor is ill-defined on a Spinc manifold,

which is nevertheless correctable if we think of the spinor as a section of L̂1/2 ⊗
S(TM), where Â is the “connection” on the ill-defined bundle L̂1/2. This implies

that the Dirac index onM is equally ill-defined unless we twist the Dirac operator

by L̂1/2 and once this is done we have an index theorem,∫
M
eF̂ /2π ∧ A(TM) ∧ · · · (4.175)

with F̂ = dÂ, where the ellipsis denotes contributions from the well-defined part of

the gauge bundle. A little experiment with this index formula4 suggests that a good

de Rham cohomology representative for F̂ /2π is c1(M)/2. One can understand this

from the fact that it is c1(M), or more precisely the 2nd Stiefel-Whitney class

w2(M) = c1(M) mod Z2

that determines whether the manifold is Spin. With w3(M) = 0, therefore,

c1(M)/2 determines whether the manifold is Spin or Spinc.

For M embedded in an Calabi-Yau ambient X so that c1(T ) + c1(N ) = 0, this

implies an additional factor

eF̂ /2π = e−c1(N )/2 (4.176)

in the central charge (and in the RR-charge) of the D-brane, whose presence was

argued by Minasian and Moore [140]: the correct central charge must have this

4With the aim at obtaining integer values of the index for completely smooth an compact
examples like CP2k or other toric Spinc manifold. See also [139].
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extra factor,

ZD2 ∼
∫
M
e−B−iJ ∧ ch(E) ∧ · · · ∧ e−c1(N )/2 . (4.177)

In view of its origin as the “half line bundle” L̂1/2, it makes more sense to think of

it as part of the “gauge bundle” E → E ⊗ L̂1/2.

WhenM is Spin, however, this is a mere redefinition of E since L̂1/2 is a proper line

bundle when F̂ /2π = c1(M)/2 is integral. The D-brane spectra is, as expected,

not affected by such factor whenM is Spin. For this reason (and also because the

Orientifold cannot admit gauge bundles), the right thing to do is to keep this factor

explicitly only when M is Spinc. With this in mind, we will write, instead

ZD2 ∼
∫
M
e−B−iJ ∧ ch(E) ∧ · · · ∧ ed(M)/2 , (4.178)

where

d(M) =

{
0 M is Spin

c1(TM) = −c1(NM) M is Spinc

}
,

again by redefinition of the gauge bundle E .

For D-branes, section 4.4.1 outlines how one can compute the hemisphere partition

functions, starting with the result in [14, 29], via the tachyon condensation. In this

approach, one does find the factor e−c1(N )/2, where the key point lies with charge

assignment for the Hilbert space vacua [14, 29, 141] associated with the boundary

degrees of freedom. With “correct” choice of the charges, we find Eq. (4.320).

In view of the global anomaly, this result is quite natural. Since the original

Calabi-Yau manifold is always Spin and thus free of the global anomaly, the lower

dimensional D-brane induced from it must be equipped with the necessary twist to

countermand the potential anomaly on the induced D-brane, as it must flow to a

well-defined boundary CFT again.

However, if one imposes the Dirichlet boundary condition from the outset, to obtain

lower dimensional D-branes in the hemisphere partition function [14], the origin of
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such a factor is at best subtle. The naive computation from imposing the Dirichlet

boundary condition, in contrast to the tachyon condensation above, does not seem

to generate the factor in question. It remains an open question to clarify the GLSM

origin of the hidden global anomaly when the Dirichlet boundary conditions are

explicitly imposed.

4.5 Orientifold Central Charges and RP 2 Partition Func-

tions

In this section, we initiate extending these works to the presence of Orientifold

planes. The simplest quantity one can compute is the vacuum-to-crosscap ampli-

tude,

R〈0|C〉R . (4.179)

Pictorially, this is computed by a cigar-like geometry with the identity operator

at the tip and a crosscap at the other end. There are two possible choices for the

crosscap, say, A-type and B-type. The former corresponds to Orientifold planes

wrapping Lagrange subcycles. In this note, we are led to consider B-type parity for

GLSM, for much the same reason as in Ref. [133], which corresponds to Orientifold

planes wrapping the holomorphic cycles. Topologically the world-sheet is that of

RP2, and the same squashing deformation as in Ref. [13] is allowed, the partition

function of GLSM on S2/Z2 = RP2 is expected to compute the vacuum-to-crosscap

amplitude,

R〈0|C〉R = ZRP2(O, τ) . (4.180)

In the convention of Brunner-Hori [133], the relevant parity action for our purpose

here is of type B, which leads to, generally, holomorphically embedded Orientifold

planes.
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For Orientifold plane that wraps the Calabi-Yau X entirely, we also take the large

volume limit of the central charge. As we have seen in section 3, Orientifold planes,

O±, have L1/2 class as the counterpart of D-branes’ A1/2 class. Here we find that

one must also replace √
L(T /4) → A(T /2)

Γ̂c(−T )
. (4.181)

The parity action on S2 can be augmented by additional Z2 action on the chi-

ral fields, which induces various combinations of O2(d−s) planes, say wrapping a

submanifold M. For these cases, we must also replace√
L(T /4)

L(N/4)
→ A(T /2)

Γ̂c(−T )
∧ Γ̂c(N )

A(N/2)
, (4.182)

with the normal bundle N and the tangent bundle T of holomorphically embedded

M in the Calabi-Yau X . For more complete expression for the large volume limit,

see section 5.

The results found here should be consistent with the hemisphere computation of

the D-brane central charges. Among those issues discussed are anomaly inflow and

a twist that is known to be present when the world-volume wraps a Spinc (rather

than Spin, i.e.) submanifold. Also, one outfall from having both D-brane and

Orientifold plane central charges available is the interpretation of exactly what the

Gamma class corrects. The central charge does not by itself tells us whether the

correction goes to the RR-charge or the vacuum expectation values of spacetime

scalars, or equivalently the quantum volumes. Our conclusion is that the correction

should be attributed entirely to the α′ correction of volumes.

4.5.1 GLSM on RP2 and Squashing

In this section, we start with a brief review on general aspects of parity symmetries

in 2d (2,2) theory on R1+1, which were thoroughly studied in Ref. [133]. To begin
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with, the parity action on the 2-dimensional superspace (x± = x0 ± x1, θ±, θ̄±)

is x1 → −x1, accompanied by the proper action in the fermionic coordinates.

Depending on the latter there are two distinct possibilities,

ΩA : (x±, θ±, θ̄±)→ (x∓,−θ̄∓,−θ∓) ,

ΩB : (x±, θ±, θ̄±)→ (x∓, θ∓, θ̄∓) , (4.183)

which we will call A and B-parity respectively. Under this action, the four super-

charges transform as

A : Q± → Q̄∓, Q̄± → Q∓,

D± → D̄∓, D̄± → D∓,

B : Q± → Q∓, Q̄± → Q̄∓,

D± → D∓, D̄± → D̄∓ . (4.184)

Hence, under the A-parity action, half of the supersymmetry is broken, leaving

QA ≡ Q+ + Q̄− and Q†A invariant. Under B-parity, and QB ≡ Q̄+ + Q̄− and Q†B

survive.

Furthermore, the simplest transformation rule for a chiral field (φ, ψ, F ) is

A : φ(x)→ φ̄(x′) ,

ψ±(x)→ ψ̄∓(x′) ,

F (x)→ F̄ (x′) , (4.185)

B : φ(x)→ φ(x′) ,

ψ±(x)→ ψ∓(x′) ,

F (x)→ −F (x′) , (4.186)

and one can check that these leave the kinetic lagrangian of the chiral multiplet
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invariant. For a twisted chiral multiplet, transformation rules under A and B-

parities are exchanged.

For each parity projection, we can associate a crosscap state denoted by |CA,B〉.
Then we can think of the overlap between this state and a (twisted) chiral ring

element, such as

〈a|CB〉 . (4.187)

We naturally expect that this quantity calculates the Orientifold analogue of the D-

brane central charge. Among these overlaps, there are distinguished element 〈0|CB〉
that no chiral field is inserted at the tip of the hemisphere. The path integral can

be done by doubling of the hemisphere by gluing its mirror image. Topology of the

world-sheet is that of a two sphere with antipodal points identified, i.e., RP2.

GLSM on RP2

The supersymmetric Lagrangian we are considering is the same as that used in

[8, 9];

L = Lvector + Lchiral + LW + LFI , (4.188)

where the kinetic terms for the vector and the charged chiral multiplets are, re-

spectively,

Lvector =
1

2g2
Tr

[(
F12 +

σ1

r

)2
+ (Dµσ1)2 + (Dµσ2)2 − [σ1, σ2]2 +D2

+ iλ̄γµDµλ+ iλ̄[σ1, λ] + iλ̄γ3[σ2, λ]

]
, (4.189)

Lchiral = φ̄

(
−DµDµ + σ2

1 + σ2
2 + iD + i

q − 1

r
σ2 +

q(2− q)
4r2

)
φ+ F̄F

− iψ̄
(
γµDµ − σ1 − iγ3σ2 +

q

2r
γ3
)
ψ + iψ̄λφ− iφ̄λ̄ψ , (4.190)
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and the potential terms take the following form,

LW =
∑
i

∂W
∂φi

F i − 1

2

∑
i,j

∂2W
∂φi∂φj

ψiψj + c.c. . (4.191)

Finally the Fayet-Illiopoulos (FI) coupling and the two-dimensional topological

term are

LFI = −τ
2

Tr
[
D − σ2

r
+ iF12

]
+
τ̄

2
Tr
[
D − σ2

r
− iF12

]
, (4.192)

where τ = iξ + θ
2π , (ξ ∈ R, θ ∈ [0, 2π]). Note that the superpotential W(φ) should

carry R-charge two to preserve the supersymmetry on RP2.

The Lagrangian is invariant under the supersymmetry transformation rules,

δλ =(iV1γ
1 + iV2γ

2 + iV3γ
3 −D)ε ,

δλ̄ =(iV̄1γ
1 + iV̄2γ

2 + iV̄3γ
3 + D)ε̄ ,

δAi =− i

2

(
ε̄γiλ− λ̄γiε

)
,

δσ1 =
1

2

(
ε̄λ− λ̄ε

)
,

δσ2 =− i

2

(
ε̄γ3λ− λ̄γ3ε

)
,

δD =− i

2
ε̄γµDµλ−

i

2

[
σ1, ε̄λ

]
− 1

2

[
σ2, ε̄γ

3λ
]
,

+
i

2
εγµDµλ̄−

i

2

[
σ1, λ̄ε

]
− 1

2

[
σ2, λ̄γ

3ε
]
, (4.193)

with

~V ≡
(

+D1σ1 +D2σ2, +D2σ1 −D1σ2, F12 + i[σ1, σ2] +
1

r
σ1

)
,

~̄V ≡
(
−D1σ1 +D2σ2, −D2σ1 −D1σ2, F12 − i[σ1, σ2] +

1

r
σ1

)
, (4.194)
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and

δφ =ε̄ψ ,

δφ̄ =εψ̄ ,

δψ =iγµεDµφ+ iεσ1φ+ γ3εσ2φ+ i
q

2r
γ3εφ+ ε̄F ,

δψ̄ =iγµε̄Dµφ̄+ iε̄φ̄σ1 − γ3ε̄φ̄σ2 − i
q

2r
γ3ε̄φ̄+ εF̄ ,

δF =ε
(
iγiDiψ − iσ1ψ + γ3σ2ψ − iλφ

)
− iq

2
ψγiDiε ,

δF̄ =ε̄
(
iγiDiψ̄ − iψ̄σ1 − γ3ψ̄σ2 + iφ̄λ

)
− iq

2
ψ̄γiDiε̄ . (4.195)

Here the spinors ε and ε̄ are given by5

ε = eiϕ/2

(
cos θ/2

sin θ/2

)
, ε̄ = e−iϕ/2

(
sin θ/2

cos θ/2

)
, (4.196)

satisfying the Killing spinor equations

∇µε =
1

2r
γµγ

3ε , ∇µε̄ = − 1

2r
γµγ

3ε̄ . (4.197)

Note that the surviving supersymmetry (4.196) becomes A-type and B-type super-

symmetry at the pole (θ = 0) and the equator (θ = π/2), respectively.

In order to define the theory on RP2, we further impose a suitable parity projection

condition on the dynamical fields so that the Lagrangian is invariant under the par-

ity. Particularly, one has to consider the type B-parity in the following discussion.

This is because the Killing spinors (4.196) transform as

ε± → iε∓ , ε̄± → −iε̄∓ , (4.198)

under the parity action (θ, ϕ)→ (π−θ, ϕ+π). It implies that the B-type Orientifold

plane can be naturally placed at the equator θ = π/2.

5See Appendix A for our gauge choice.
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We remark here that, as in the case of the S2, the Lagrangian except LFI can be

made Q-exact with the supersymmetry chosen by (4.196). For instance,

Lvector =
1

g2
δεδε̄Tr

[1

2
λ̄γ3λ− 2iDσ2 +

i

r
σ2

2

]
, (4.199)

and

Lchiral = −δεδε̄
[
ψ̄γ3ψ − 2φ̄(σ2 + i

q

2r
)φ+

i

r
φ̄φ
]
. (4.200)

Consequently, the partition function on RP2 contains only the A-model data.

4.5.2 Squashed RP2 and Crosscap Amplitudes

We propose that the partition function of N = (2, 2) GLSM on RP2 computes the

overlap between the supersymmetric ground state and the type B-crosscap state in

the Ramond sector

ZRP2 = R〈0|CB〉R , (4.201)

which is the central charge of the Orientifold plane. To understand the above

proposal, it is useful to consider a squashed RP2, denoted by RP2
b , where the

Hilbert space interpretation of the results in section 3 becomes clear.

The squashed RP2 can be described by

x2
1 + x2

2

l2
+
x2

3

l̃2
= 1 (4.202)

with Z2 identification below

Z2 : (x1, x2, x3) → (−x1,−x2,−x3) . (4.203)
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The metric on this space is

ds2 = f2(θ)dθ2 + l2 sin2 θdϕ2 , (4.204)

where f2(θ) = l̃2 sin2 θ + l2 cos2 θ. The world-sheet parity Z2 acts on the polar

coordinates as follows

Z2 : (θ, ϕ) → (π − θ, π + ϕ) . (4.205)

An Orientifold plane is placed at the equator θ = π/2. By turning on a suitable

background gauge field coupled to the U(1)V current,

V =
1

2

(
1− l

f(θ)

)
dϕ , (4.206)

valid in the region 0 < θ < π, one can show the Killing spinors (4.196) on the

squashed RP2 satisfying the generalized Killing spinor equations

Dmε =
1

2f
γmγ

3ε , Dmε̄ = − 1

2f
γmγ

3ε̄ , (4.207)

where the covariant derivative denotes Dm = ∂m − iVm. Here we normalize the

R-charge so that the Killing spinor ε (ε̄) carries +1 (−1) R-charge.

As in Ref. [13], one can show that the partition function is invariant no matter how

much we squash the space RP2, i.e., it is independent of the squashing parameter

b = l/l̃. Appendix D shows detailed computations for this. In the limit b → 0,

we have an infinitely stretched cigar-like geometry where the type B-crosscap state

|CB〉 is prepared at θ = π/2. Near θ ' π/2, all the fields can be made periodic

along the circle S1 due to the background gauge field V ' 1
2dϕ, which implies that

the theory is in the Ramond sector near θ ' π/2. Moreover, as mentioned earlier,

the partition function on the squashed RP2 contains only the A-model data.

Combining all these facts, we can identify the partition function on RP2
b as the
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overlap in the Ramond sector between A-model ground state corresponding to the

identity operator at the tip and the B-type crosscap state defined by an appropriate

projection condition we discuss soon,

ZRP2 = ZRP2
b

b→0
= R〈0|CB〉R . (4.208)

4.5.3 Exact RP2 Partition Function

In this section, we compute the partition function of GLSM on RP2 exactly, via the

localization technique. The analysis is parallel to the computation of the two-sphere

partition function [8, 9].

As we will be working with the Coulomb phase saddle points, the gauge group is

effectively reduced to the Cartan subgroup U(1)rG , whose scalar partners will be

collectively denoted by σ. The relevant gauge charges are expressed via weights and

roots. For chiral multiplets in the G-representation R, these U(1)rG gauge charges

will be denoted collectively as w, so the 1-loop determinant of a chiral multiplet

with weight w is a function of w ·σ. When the gauge group is Abelian as in sections

4, 5, and 6, we also use the notation Q for the gauge charges, so w · σ is written as

Q · σ. Similarly, contribution from each massive “off-diagonal” vector multiplet is

determined entirely by its charge under the unbroken U(1)rG ; the determinant is

then written in terms of α · σ. In the end, we take a product over all the weights,

w, and all the roots, α.

Saddle points

To apply the localization technique, we choose the kinetic terms Lvector and Lchiral
as the Q-exact deformation and scale them up to infinitely. The path-integral then
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localizes at the supersymmetric saddle points satisfying the equations

F12 = −σ1

r
=

B

2r2
, Dµσ1 = Dµσ2 = [σ1, σ2] = 0, D +

σ2

r
= 0 , (4.209)

with all the other fields vanishing. Among these saddle configurations, the only

one invariant under the B-type Orientifold projection is

F12 = 0, σ1 = 0, Dµσ2 = 0, D +
σ2

r
= 0 . (4.210)

However, since RP2 has a non-contractible loop C which connects two antipodal

points in the equator, F12 = 0 is solved by a flat connection with a discrete Z2

holonomy

P exp

[
i

∫
C
A

]
∈ Z2 . (4.211)

Hence there are two kinds of saddle points, which we call even and odd holonomy.

Near the odd holonomy, fields effectively satisfy twisted boundary condition that

picks up additional sign along the loop.

Finally, using U(N) gauge transformation, we can make Aµ holonomy and constant

mode of σ2 both diagonal, as the two must commute with each other. Then the

saddle point configurations all reduce to

σ2 = σ, D = −σ
r
, (4.212)

where σ is arbitrary constant element in the Cartan subalgebra. The classical

action at the saddle points is,

Zclassical = e−i2πrξσ. (4.213)
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Chiral multiplets

In this section, we calculate one-loop determinants of chiral multiplets, say, in the

representation R of the gauge group G. To compute the one-loop determinant, we

truncate the regulator action up to quadratic order in small fluctuation, around

each saddle point

Schiral = Sbchiral + Sfchiral

with

Sbchiral =

∫
d2x
√
g φ̄
[
−D2

µ + σ2 + i
q − 1

r
σ +

q(2− q)
4r2

]
φ , (4.214)

and

Sfchiral =

∫
d2x
√
g ψ̄γ3

[
− iγ3γµDµ −

(
σ + i

q

2r

) ]
ψ . (4.215)

We refer readers to Appendix C for properties of the relevant spherical harmonics.

Even Holonomy First, we will calculate the contribution near the first saddle point,

where the holonomy is trivial. For this, we impose the B-type Orientifold projec-

tion6,

φ(π − θ, π + ϕ) = + φ(θ, ϕ) ,

ψ±(π − θ, π + ϕ) =− iψ∓(θ, ϕ) ,

ψ̄±(π − θ, π + ϕ) = + iψ̄∓(θ, ϕ) ,

F (π − θ, π + ϕ) = + F (θ, ϕ) . (4.216)

6This choice of projection condition is consistent with the supersymmetry (4.195) and (4.196).
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For simplicity, let us first consider a single chiral multiplet of charge +1 under a

U(1) gauge group. Thanks to the property, with our gauge choice,

Yq,jm(π − θ, π + ϕ) =(−1)je−iπ|q|Y−q,jm(θ, ϕ) , (4.217)

we can write scalar fluctuations that survive under the projection (4.216) as

φ(θ, ϕ) =
∑
j=2k
k≥0

j∑
m=−j

φjmYjm . (4.218)

The bosonic part of the quadratic action then becomes

Sbchiral =
1

2

∑
j=2k
k≥0

j∑
m=−j

φ̄jm

[ (
j +

q

2
− irσ

)(
j + 1− q

2
+ irσ

) ]
φjm , (4.219)

which leads to

Detφ =
∏
k≥0

(
2k +

q

2
− irσ

)4k+1 (
2k + 1− q

2
+ irσ

)4k+1
. (4.220)

Next, the mode expansion of the fermion fluctuation invariant under the projection

(4.216) takes the form

ψ =
∑

j=2k+1/2
k≥0

j∑
m=−j

ψ+
jmΨ+

jm +
∑

j=2k+3/2
k≥0

j∑
m=−j

ψ−jmΨ−jm ,

ψ̄ =
∑

j=2k+1/2
k≥0

j∑
m=−j

ψ̄+
jmΨ̄+

jm +
∑

j=2k+3/2
k≥0

j∑
m=−j

ψ̄−jmΨ̄−jm , (4.221)
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where the spinor harmonics Ψ±j,m are

Ψ±jm =

Y− 1
2
,jm

±Y 1
2
,jm

 , Ψ̄±jm =

 Y ∗1
2
,jm

±Y ∗− 1
2
,jm

 . (4.222)

In terms of the mode variables, the fermionic part of the quadratic action can be

expressed as

Sfchiral = + i
∑

j=2k+1/2
k≥0

j∑
m=−j

ψ̄+
jm

[
j +

1

2
− q

2
+ irσ

]
ψ+
jm

− i
∑

j=2k+3/2
k≥0

j∑
m=−j

ψ̄−jm

[
j +

1

2
+
q

2
− irσ

]
ψ̄−jm . (4.223)

As a consequence, the determinant for the fermion modes equals to

Detψ =
∏
k≥0

(
2k + 1− q

2
+ irσ

)4k+2 (
2k +

q

2
− irσ

)4k
. (4.224)

One can easily generalize the above results for a chiral multiplet of weight w under

G by the replacement σ → w · σ.

Combining these two expressions, we find that the one-loop contribution from a

chiral multiplet in the representation R under the gauge group G is

Zchiral1-loop =
Detφ
Detψ

=
∏
w∈R

∏
k≥0

2k + 1− q
2 + irw · σ

2k + q
2 − irw · σ

. (4.225)

This can be regularized with Gamma function representation

Γ(a) = lim
nmax→∞

nmax!(nmax)a∏nmax
n=0 (a+ n)

, (4.226)
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where we should take care to introduce the UV cutoff Λ via rΛ ' 2kmax since

(2k + · · · )/r are the physical eigenvalues. Then,

Zchiral1-loop =
∏
w∈R

lim
kmax→∞

(kmax)
1
2−

q
2+irw·σ

·
Γ
( q

4 − irw · σ/2
)

Γ
(

1
2 −

q
4 + irw · σ/2

)
=

∏
w∈R

e[
1−q
2

+irw·σ] log(rΛ/2) ·
Γ
( q

4 − irw · σ/2
)

Γ
(

1
2 −

q
4 + irw · σ/2

) · Γ
(
− q

4 + irw · σ/2
)

Γ
(
− q

4 + irw · σ/2
)

=
∏
w∈R

1

2
√

2π
· e[

1−q
2

+irw·σ] log(rΛ) Γ
( q

4 −
irw·σ

2

)
· Γ
(
− q

4 + irw·σ
2

)
Γ
(
− q

2 + irw · σ
) , (4.227)

where we used

Γ

(
1

2
+ x

)
Γ(x) = 21−2x√π Γ(2x) , (4.228)

for the last equality. The exponential factor which diverges when Λ → ∞ is un-

derstood to be one-loop running of the FI-parameter and appearance of central

charge defined as c ≡ 3(
∑

i(1 − qi) − dG) when combined with vector multiplet

contribution.

Odd Holonomy Let us now in turn consider the fluctuation near the second saddle

point with nontrivial holonomy. At the odd holonomy fixed point, the boundary

condition for charged field must be twisted by eiw·h = ±1, where eih·H is the Z2

holonomy with unit-normalized Cartan generators H. The chiral fields can then be

classified into two classes, with even charge we and with odd charge wo, respectively,

depending on the above sign. For even ones, we, one-loop determinant is unchanged

from the even holonomy case, so we focus on a chiral multiplet with odd charge wo

exp
[
i

∫
C
wo ·A

]
= −1 . (4.229)

167



Chapter 4. D-branes and Orientifolds From 2D Partition Functions

Effectively, we impose the twisted projection condition on those carrying odd

charges wo as

φ(π − θ, π + ϕ) =− φ(θ, ϕ) ,

ψ±(π − θ, π + ϕ) = + iψ∓(θ, ϕ) ,

ψ̄±(π − θ, π + ϕ) =− iψ̄∓(θ, ϕ) ,

F (π − θ, π + ϕ) =− F (θ, ϕ) , (4.230)

without a background gauge field. Thus the spectral analysis is parallel to the

previous one except the twisted projection picks exactly opposite eigenvalues, which

were projected out under the original B-type parity action. Therefore, one obtains

Detφ =

∏
k≥0

(
2k + 1 +

q

2
− irwo · σ

)4k+3 ∏
k≥1

(
2k − q

2
+ irwo · σ

)4k−1

 , (4.231)

for bosons, and

Detψ =
∏
k≥0

(
2k − q

2
+ irwo · σ

)4k (
2k + 1 +

q

2
− irwo · σ

)4k+2
, (4.232)

for fermions. Hence the one-loop determinant at this saddle point becomes

Zchiral1-loop =
∏
wo∈R

∏
k≥0

2k + 2− q
2 + irwo · σ

2k + 1 + q
2 − irwo · σ

. (4.233)

With the same procedure, we can further simplify this expression as

Zchiral1-loop =
∏
wo∈R

lim
kmax→∞

(kmax)
1
2
− q

2
+irwo·σΓ

(
1
2 + q

4 −
irwo·σ

2

)
Γ
(
1− q

4 + irwo·σ
2

) (4.234)

=
∏
wo∈R

2
√

2π · e[
1−q
2

+irwo·σ] log(rΛ) Γ
( q

2 − irwo · σ
)

Γ
(
− q

4 + irwo·σ
2

)
Γ
( q

4 −
irwo·σ

2

) · 1

− q
2 + irw0 · σ

.
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Parity Accompanied by Flavor Rotations

For theories with non-trivial flavor symmetry, we can enrich the Z2 projection by

combination with flavor rotations, i.e.,

φi(x) → M i
jφ
j(x′) ,

ψi±(x) → M i
jψ

j
∓(x′) , (4.235)

where M i
j is a flavor rotation which squares to the identity. Let us consider the

simplest example where M i
j exchanges two chiral multiplets Φ1(x)↔ Φ2(x′). The

contribution of these modes to the 1-loop determinant is easily obtained, by noting

that fluctuations of one of Φ1,2 is completely determined by that of the other in the

opposite hemisphere. Hence, these two effectively contribute as one chiral multiplet

without Z2 projection, i.e., that of the full two-sphere partition function

∏
w∈R

e[1−q+2irw·σ] log(rΛ) ·
Γ
( q

2 − irw · σ
)

Γ
(
1− q

2 + irw · σ
) , (4.236)

calculated in Ref. [8, 9].

All other Z2 flavor transformations are generated by combination of the above

rotation and a gauge transformation. For example, we can consider a projection

of type Φ1(x) → −Φ1(x′), when the superpotential respects such symmetry. The

result of this sign flip is the same as in (4.233), so we find

∏
w∈R

2
√

2π·e[
1−q
2

+irw·σ] log(rΛ)·
Γ
( q

2 − irw · σ
)

Γ
(
− q

4 + irw·σ
2

)
Γ
( q

4 −
irw·σ

2

) · 1

− q
2 + irw · σ

. (4.237)

These observations will be useful in the next section where we consider lower-

dimensional Orientifold planes embedded as a hypersurface in the Calabi-Yau am-

bient space.
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Vector Multiplets

Finally, we come to the vector multiplets. We follow the Fadeev-Popov method to

deal with the gauge symmetry, and introduce ghost fields c, c̄. Up to the quadratic

order, the action around the saddle point is

Svector = Sbvector + Sfvector + SFPvector , (4.238)

where

Sbvec =

∫
1

2
Tr
[
Da ∧ ∗Da−

[
σ, a
]
∧
[
σ, ∗a

]
+Dσ1 ∧ ∗Dσ1 −

[
σ, σ1

]
∧
[
σ, ∗σ1

]
+

1

r2
σ1 ∧ ∗σ1 +Dϕ ∧ ∗Dϕ+

2

r
Da ∧ σ1 + iDϕ ∧

[
σ, ∗a

]
+ i
[
σ, a
]
∧ ∗Dϕ

]
,

Sfvec =

∫
d2x
√
g

1

2
Tr
[
λ̄γ3

(
iγ3γiDiλ+

[
σ, λ
]) ]

,

SFPvec =

∫
d2x
√
g Tr

[
Dµc̄Dµc+

1

2
f ∧ ∗f

]
, (4.239)

with the gauge fixing functional

f = ∗D ∗ a . (4.240)

Here a and ϕ are the small fluctuation part of the gauge field and of the scalar field

σ2, respectively,

A = Aflat + a , σ2 = σ + ϕ . (4.241)
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Even Holonomy When the holonomy is trivial, we impose the ordinary type B

projection condition

A(π − θ, π + ϕ) = +A(θ, ϕ) ,

σ1(π − θ, π + ϕ) =− σ1(θ, ϕ) ,

σ2(π − θ, π + ϕ) = + σ2(θ, ϕ) ,

λ±(π − θ, π + ϕ) = + iλ∓(θ, ϕ) ,

λ̄±(π − θ, π + ϕ) =− iλ̄∓(θ, ϕ) ,

D(π − θ, π + ϕ) = +D(θ, ϕ) . (4.242)

First, decompose all the fluctuation fields into Cartan-Weyl basis, and then consider

the off-diagonal modes carrying the charge α, a root of G. In terms of the one-

form and the scalar spherical harmonics Cλjm
7, Yjm, one can expand the bosonic

fluctuations aα, ϕα, and σα1 as

a =
∑
j=2k
k≥1

j∑
m=−j

a1
jmC

1
jm +

∑
j=2k+1
k≥0

j∑
m=−j

a2
jmC

2
jm ,

σ1 =
∑

j=2k+1
k≥0

j∑
m=−j

σ1
jmYjm ,

ϕ =
∑
j=2k
k≥0

j∑
m=−j

ϕjmYjm , (4.243)

under the projection condition (4.242). From now on, the superscript α is sup-

pressed unless it causes any confusion. The Laplacian operator O(1)
b acting on

7Useful properties of Cλjm are summarized in appendix C.
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(a2
jm, σ

1
jm) can be summarized into

O(1)
b

.
=

(
j(j + 1) + (σ · α)2

√
j(j + 1)√

j(j + 1) j(j + 1) + (σ · α)2 + 1

)
, (4.244)

with j = 2k + 1 (k ≥ 0). The determinant of this operator is therefore,√
detO(1)

b =
∏
k≥0

[
(2k + 1)(2k + 2)

](4k+3)rG

×
∏
α∈∆+

∏
k≥0

[ (
(2k + 1)2 + (α · σ)2

) (
(2k + 2)2 + (α · σ)2

) ]4k+3
,

(4.245)

where rG is rank of the gauge group. The operator O(2)
b acting on the modes

(a1
jm, ϕjm) with j = 2k (k ≥ 1) can be read from (4.239),

O(2)
b

.
=

(
j(j + 1) + (σ · α)2 i

√
j(j + 1)(σ · α)

−i
√
j(j + 1)(σ · α) j(j + 1)

)
. (4.246)

When j = 0, the operator has a vanishing eigenvalue that corresponds to the shift

of the saddle point σ2 = σ. The determinant of this operator is therefore√
det ′O(2)

b =
∏
k=1

[
2k(2k + 1)

](4k+1)dG
, (4.247)

where dG is dimension of the gauge group G, and the prime in det ′ denotes the

fact that the zero mode of σ2 is removed. For the ghosts, we require the same

projection condition as ϕ, ϕ̄, and find

detOFP =
∏
k=1

[
2k(2k + 1)

]dG(4j+1)
, (4.248)
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which cancels with O(2)
b determinant exactly. For fermions, the structure of deter-

minants are essentially the same as that of the adjoint chiral multiplet with the

twisted projection condition. Therefore, gaugino with root α contributes

detOλ =
∏
k≥0

[
(2k + 1)(2k + 2)

]rG(4k+2)

×
∏
α∈∆+

∏
k≥0

[ (
(2k + 1)2 + (α · σ)2

) (
(2k + 2)2 + (α · σ)2

) ]4k+2
. (4.249)

Let us combine all these contributions from vector multiplets together. The Cartan

part of the vector multiplets contributes,

∏
j=0

(
2j + 2

2j + 3

)rG
=

[
Γ
(

3
2

)
Γ(1)

· e−
1
2

log(rΛ/2)

]rG
=
(π

2

) rG
2
e−

rG
2

log(rΛ) . (4.250)

while the “off-diagonal part” regularize to

∏
α∈∆+

∏
k=0

(2k)2 + (α · σ)2

(2k + 1)2 + (α · σ)2
· 1

(α · σ)2

= e−
1
2

(dG−rG) log(rΛ/2)
∏
α∈∆+

Γ
(

1
2 + iα·σ

2

)
Γ
(

1
2 −

iα·σ
2

)
4 · Γ

(
1 + iα·σ

2

)
Γ
(
1− iα·σ

2

)
= e−

1
2

(dG−rG) log(rΛ/2)
∏
α∈∆+

2π sin
[
πα·σ

2

]
sinπα · σ

·
sin
[
πα·σ

2

]
2πα · σ

= e−
1
2

(dG−rG) log(rΛ)
∏
α∈∆+

1

α · σ
· tan

(πα · σ
2

)
. (4.251)

As the zero mode part contributes

1

|WG|

∫
drGσ

∏
α·σ>0

(α · σ)2 , (4.252)

with the Vandermonde determinant and the Weyl factor, we obtain the even holon-

omy part of the partition function, where the vector multiplet contributions in the
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even holonomy sector can be displayed explicitly as

Zeven =
1

|WG|

∫
drGσ

(π
2

) rG
2 · e−

dG
2

log(rΛ) (4.253)

×
∏
α∈∆+

α · σ tan
(πα · σ

2

)
× · · · , (4.254)

where the ellipsis reminds us that for the GLSM partition function, we need to

insert, multiplicatively, the 1-loop contributions from the chiral multiplets in the

integrand.

Odd Holonomy At the odd holonomy fixed point, the boundary condition for the

vector multiplet fluctuation must be twisted by eiα·h = ±1, where, as before, eih·H

is the Z2 holonomy with the Cartan generators H. Thus, we only need to modify,

in Eq. (4.253), as

tan
(πα · σ

2

)
→ cot

(πα · σ
2

)
, (4.255)

for each and every root with eiα·h = −1. So, splitting the positive root space ∆+

into the even part ∆e
+ and the odd part ∆e

+, relative to the holonomy eih·H , we

find that the odd holonomy sector contributes additively to the partition function

Zodd =
η

|WG|

∫
drGσ

(π
2

) rG
2 · e−

dG
2

log(rΛ) (4.256)

×
∏

αe∈∆e
+

αe · σ tan
(παe · σ

2

) ∏
αo∈∆o

+

αo · σ cot
(παo · σ

2

)
× · · · ,

where, again, the ellipsis in the integrand denotes multiplicative contributions from

the chiral multiplet 1-loop determinants.

The numerical factor η = ±1 represents our ignorance regarding fermion deter-

minants. As with any determinant computation involving fermions, the signs of

various 1-loop factors are difficult to fix. Among such, η which is the relative

sign between the two additive contributions, from the even holonomy and the odd

174



Chapter 4. D-branes and Orientifolds From 2D Partition Functions

holonomy sectors, is an important physical quantity but is not accessible from the

Coulomb-phase GLSM computation. One needs a different approach that the full

partition function without worrying about the two holonomy sectors. For this rea-

son, and also as a consistency check, we make a short excursion to the mirror LG

computation for the Abelian GLSM, in next section, which will teach about how

this sign distinguishes O− type and O+ type Orientifold planes.

4.5.4 Landau-Ginzburg Model and Mirror Symmetry

Before we consider examples and the large volume limit, let us make a brief look

at the mirror pair of the Abelian GLSM. In particular, we consider U(1) theory

with chiral multiplets Φa with gauge charges Qa. As shown by Hori and Vafa [2],

the mirror theory is a Landau-Ginzburg (LG) type with twisted chiral multiplet

Ya’s and the twisted superpotential W (Ya), generated by the vortex instantons. On

RP2, the supersymmetric Lagrangian of a LG model with twisted chiral multiplets

takes the following form

L = Ltwisted + LW , (4.257)

with

Ltwisted = DµȲ DµY + iχ̄γmDmχ+ ḠG , (4.258)

and the twisted superpotential terms,

LW = +
[
− iW ′(Y )G−W ′′(Y )χ̄γ−χ+

i

r
W (Y )

]
+
[
− iW̄ ′(Ȳ )Ḡ+ W̄ ′′(Ȳ )χ̄γ+χ+

i

r
W̄ (Ȳ )

]
, (4.259)
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where γ± = 1+γ3

2 . One can show that the above Lagrangian is invariant under the

supersymmetric variation rules given by

δY = + iε̄γ−χ− iεγ+χ̄ ,

δY =− iε̄γ+χ+ iεγ−χ̄ ,

δχ = + γµγ+εDµY − γµγ−εDµY − γ+εḠ− γ−εG ,

δχ̄ = + γµγ+ε̄DµY − γµγ−ε̄DµY + γ+ε̄G+ γ−ε̄Ḡ ,

δG =− iε̄γµγ−Dµχ+ iεγµγ+Dµχ̄ ,

δḠ =− iε̄γµγ+Dµχ+ iεγµγ−Dµχ̄ , (4.260)

where ε and ε̄ are the Killing spinors (4.196). The kinetic terms are again Q-exact

[13, 134],

Ltwisted = δεδε̄

[ i
r
Ȳ Y − iḠY − iȲ G

]
. (4.261)

Type B-parity action on the twisted chiral fields resembles the type A-parity on

the chiral fields, naturally, which we first outline. One important fact, perhaps not

too obvious immediately, is that the parity action which flips Y to Ȳ should be

accompanied by a half-shift of the imaginary part, in order to preserve the action.

Due to this, the fixed submanifolds are spanned by

Y = x+ in
π

2
, (4.262)

with n = ±1.

On this mirror side, the role of θ angle becomes more visible. θ = 0, π are the

two allowed values, corresponding to the two types of Orientifolds, O∓. From the

equation of motion for the vector multiplet, we learn allowed values of n’s have to
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be such that

1

2

∑
a

Qan
a =

θ

π
mod Z2 , (4.263)

which restricts the sum over na = ±1 into two disjoint sets, depending on the value

of θ. Comparing the result to the GLSM computation, we learn that the difference

between O∓ lies in the choice of the relative sign η between the even holonomy

contribution (4.253) and the odd holonomy contribution (4.256).

Parity on the Mirror

Under the type B-parity (4.198), one can show that the projection conditions are

Y (π − θ, π + ϕ) = Ȳ (θ, ϕ) + constant , (4.264)

and

χ±(π − θ, π + ϕ) = + iχ∓(θ, ϕ) ,

χ̄±(π − θ, π + ϕ) =− iχ̄∓(θ, ϕ) ,

G(π − θ, π + ϕ) = + Ḡ(θ, ϕ) (4.265)

are consistent to the SUSY variation rules, for free theories. In order to fix the

constant term in (4.264), we need to consider interactions such as twisted super-

potential terms.

First, recall that the gauge multiplet can be written as a twisted chiral Σ, where

Y = σ2 + iσ1 , G = D + i
(
F12 +

σ1

r

)
,

χ = λ , χ̄ = λ̄ . (4.266)
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As discussed above, we impose the projection conditions

σ1(π − θ, π + ϕ) =− σ1(θ, ϕ) ,

σ2(π − θ, π + ϕ) = + σ2(θ, ϕ) , (4.267)

in order to introduce a minimal coupling of a charged chiral multiplet. It implies

that

Σ(π − θ, π + ϕ) = Σ̄(θ, ϕ) . (4.268)

Note also that Σ enters the tree-level twisted superpotential linearly as

W = − i
2
τΣ , (4.269)

with τ = iξ + θ
2π , which leads to the FI coupling and 2d topological term

LW + LW̄ = −iξ
(
D − σ2

r

)
− i θ

2π
F12 . (4.270)

Note that the complexified FI parameter is periodic τ ' τ +n (n ∈ Z). In order to

make the interaction invariant under the type B Orientifold action, the parameter

τ has to satisfy the following condition,

τ + τ̄ = n , n ∈ Z . (4.271)

In other words, the allowed value for the two-dimensional theta angle is either

θ = 0 or π . (4.272)

Second, let us consider a simple example mirror to the U(1) GLSM with n chiral

multiplets of gauge charge Qa where a runs from 1 to n. The chiral multiplets also

carry U(1)V R-charges qa so that the superpotential W carries the R-charge two.
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The mirror Landau-Ginzburg model involves n neutral twisted chiral multiplets

Y a with period 2πi. The dual description also comes with the following twisted

superpotential

W = − 1

4π

[
Σ

(
n∑
a=1

QaY
a + 2πiτ

)
+
i

r

n∑
a=1

e−Y
a
]
. (4.273)

At low-energy, the field-strength multiplet Σ is effectively a Lagrange multiplier,

leading to the constraint:

n∑
a=1

QaY
a = −2πiτ . (4.274)

To make these Toda-like interaction terms invariant under the type B-parity, one

has to fix the constant piece in (4.264) by iπ. That is,

Y (π − θ, π + ϕ) = Ȳ (θ, ϕ) + iπ . (4.275)

Partition Function on RP2

Choosing the kinetic terms Ltwisted as Q-exact deformation terms, one can show

that the path-integral localizes onto

Y = x+ iy , (4.276)

where x and y are real constants [13]. To obey the projection conditions (4.268)

and (4.275), the supersymmetric saddle points are

σ2 = σ , σ1 = 0 , F12 = 0 , (4.277)
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and

Y a = xa +
iπ

2
na , (4.278)

where xa and σ are real constants over RP2. Here na = ±1 obeying the constraint,

for θ = 0,

1

2

∑
a

Qan
a = 2m , m ∈ Z , (4.279)

and for θ = π,

1

2

∑
a

Qan
a = 2m+ 1 , m ∈ Z , (4.280)

obeying the constraint

∑
a

QaY
a = −2πiτ . (4.281)

It is easy to show that one-loop determinants around the above supersymmetric

saddle points are trivial in a sense that they are independent of σ and xa. One

can show that the partition function of the mirror LG model with the twisted

superpotential (4.273) on RP2 reduces to an ordinary contour integral,8

8 We used for the last equality an integral formula∫ ∞
−∞

dx eipx cos
[
e−x + z

]
= cos

[
iπp

2
− z
]

Γ[−ip] , if − 1 < Re[ip] < 0 .
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ZLG '
∫ ∞
−∞

dσ
∏
a

[∫ ∞
−∞

dxae−
qa
2
xa
] ∑

na=±1

1

2

(
1± eiπQana/2

)
· eirσ(Qaxa−2πξ) · eie−x

a
sin(πna/2)

=

∫ ∞
−∞

dσe−2iπrσξ
∏
a

{∫ ∞
−∞

dxa e−
qa
2
xaeirσQax

a
(

cos
[
e−x

a
]
± cos

[π
2
Qa + e−x

a
])}

=

∫ ∞
−∞

dσe−2iπrσξ

{∏
a

cos
[π

2

(qa
2
− irQaσ

) ]
Γ
[qa

2
− irQaσ

]
±
∏
b

cos
[π

2

(qb
2
− irQbσ

)
− π

2
Qb

]
Γ
[qb

2
− irQbσ

]}
,

(4.282)

where “'” symbol in the first line reflects our ignorance of the overall numerical

normalization of the integration measure. Here the factors e−
qa
2
xa reflect the impor-

tant fact that the proper variables describing the mirror LG model areXa = e−
qa
2
Y a

rather than Y a [13]. Below, we compare to the GLSM side up to this normalization

issue. The signs ± are for θ = 0 and θ = π respectively.

The parity projection that leads to Eq. (4.282) assumes no specific flavor symmetry

in the original GLSM, and thus must be the mirror of the spacetime-filling case of

section 3.2. In the trivial holonomy sector, we start with the last line of Eq. (4.227)

and use the identities

Γ

(
1

2
+ x

)
Γ(x) = 21−2x√πΓ(2x) , Γ

(
1− x

)
Γ
(
x
)

=
π

sinπx
, (4.283)

to massage the one-loop determinant into

Ztrivial
1-loop = Γ

[q
2
− iQσ

]
cos
[π

2

(q
2
− iQσ

)]
×
√

2

π
e[

1−q
2

+iQσ] log(rΛ) . (4.284)
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In the nontrivial holonomy, a chiral multiplet carrying the even charge Qa = Qe,

the same result holds,

Znontrivial
1-loop,Qe = Γ

[q
2
− iQeσ

]
cos
[π

2

(q
2
− iQeσ

)]
×
√

2

π
e[

1−q
2

+iQσ] log(rΛ) , (4.285)

while for the odd charge, Qa = Qo, the partition function becomes

Znontrivial
1-loop,Qo =

∏
k≥0

2k + 2− q
2 + iQoσ

2k + 1− q
2 + iQoσ

=
Γ
(

1
2 + q

4 −
iQoσ

2

)
Γ
(
1− q

4 + iQoσ
2

) × e[ 1−q2 +iQoσ] log(rΛ/2)

= Γ
[q

2
− iQoσ

]
sin
[π

2

(q
2
− iQoσ

)]
×
√

2

π
e[

1−q
2

+iQσ] log(rΛ) . (4.286)

Thus one can conclude that the first term in the final expression (4.282) of the LG

partition function corresponds to the partition function of GLSM with the even

holonomy, while the second term corresponds to the partition function with the

odd holonomy.

After interpreting the exponentiated log piece as the renormalization of ξ, we learn

two additional facts. First, the common overall normalization
√

2/π should be

incorporated into the measure on the mirror LG side. Second, an additional relative

sign η ≡ ±
∏
a(−1)[Qa/2] (for θ = 0, π, respectively) should sit between the trivial

and the nontrivial holonomy contributions in the GLSM side, and distinguishes O−

type and O+ type Orientifold planes.9

4.5.5 Orientifolds in Calabi-Yau Hypersurface

In this section, we consider the Orientifolds for a prototype Calabi-Yau manifold

X , i.e., a degree N hypersurface of CPN−1. At the level of GLSM, the chiral field

9Recall that Õ± type Orientifolds involve turning on discrete RR-flux [135], and thus are not
accessible from GLSM.
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contents are
U(1)G U(1)V

Xi=1,···N 1 q

P −N 2−Nq
(4.287)

where we displayed the gauge and the vector R-charges. As usual, the superpoten-

tial takes the form P · GN (X) with degree N homogeneous polynomial GN . For

simplicity, we will call ε = q/2 − irσ below, and assume N odd. For N = even,

the P multiplet contributions from even and odd holonomy are exchanged. The

number q is in principle arbitrary as it can be shifted by mixing U(1)G and U(1)V ,

but we restrict it to be in the range 0 < q < 2/N [13].

The main goal of this section is to extract the large volume expressions for the

central charges of Orientifold planes. Traditionally, the latter were expressed in

terms of the
√
L class, but just as with D-brane central charge, we will see that

Γ̂c class enters and corrects the expression. Γ̂c is a multiplicative class associated

with the function [14, 129–132]

Γ
(

1 +
x

2πi

)
, (4.288)

so that, for any holomorphic bundle F , an important identity

Γ̂c(F)Γ̂c(−F) = A(F) (4.289)

holds. In terms of the Chern characters, it can be expanded as

Γ̂c(F) = exp

 iγ
2π
ch1(F) +

∑
k≥2

(
i

2π

)k
(k − 1)!ζ(k)chk(F)

 , (4.290)

where γ = 0.577... is the Euler-Mascheroni constant, and ζ(k) is the Riemann zeta

function.

The results from this hypersurface examples suggest that, for a general Orientifold
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plane that wraps a cycle M in the Calabi-Yau X , with the tangent bundle TM
and the normal bundle NM with respect to X , we must correct the characteristic

class that appear in the central charge as√
L(TM/4)√
L(NM/4)

→ A(TM/2)

Γ̂c(−TM)
∧ Γ̂c(NM)

A(NM/2)
. (4.291)

We devote the rest of this section to derivation of this, by isolating the perturba-

tive contributions for Orientifolds wrapping (partially) Calabi-Yau hypersurfaces

in CPN−1.

Spacetime-Filling Orientifolds

First, let us consider the case where the Orientifold plane wraps X entirely, i.e., no

flavor symmetry action is mixed with the B-parity projection. With the classical

contribution

Zclassical = e−i2πrξσ = e−2πξ(q/2−ε), (4.292)

we find

ZRP2 =

∫ q/2+i∞

q/2−i∞

dε

2πi

(
β1 · e2πξε

[
Γ
(
ε
2

)
Γ
(
− ε

2

)
Γ(−ε)

]N
·

[
Γ
(

1−Nε
2

)
Γ
(
−1−Nε

2

)
Γ(−1 +Nε)

]

+η · β2 · e2πξε

[
Γ(ε)/ε

Γ
(
ε
2

)
Γ
(
− ε

2

)]N · [Γ(1−Nε)/(1−Nε)
Γ
(

1−Nε
2

)
Γ
(
−1−Nε

2

)]) ,(4.293)

where the constants β1,2 are

β1 = e−πξq · (2π)−N/2+1 · 2−(N+2) · e
c
6
·log(rΛ) ,

β2 = e−πξq · (2π)N/2+2 · 2N · e
c
6

log(rΛ) , (4.294)

and the sign η = ±
∏
a(−1)[Qa/2] (for θ = 0, π, respectively) chooses either O−

type or O+ type Orientifold. The two lines are, respectively, contributions from
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the even and the odd holonomy sector. Another common factor in β1,2, e
c
6

log(rΛ),

renormalizes the partition function. Because X is Calabi-Yau, ξ is not renormalized

but the partition function itself is multiplicatively renormalized with the exponent

c/6 = (N − 2)/2 for this model.

The first factor in β1,2, i.e., e−πξq, with an explicit dependence on the ambiguous

R-charge, should be in principle removable by shift of the R-charges by the gauge

charges; q → q + δ for any δ is such a shift for the present model. This is however

easier said than done. For ratios of correlators, as in computation of the Zamolod-

chikov metric, the invariance is automatic. For the central charges which do depend

on the overall normalization and thus on the normalization of the measure, it is not

completely clear how this unphysical dependence is removed. Below, we choose to

set q → 0+ to satisfy the charge integrality condition, following Ref. [14], and thus

suppress this exponential factor. (Integral converges only when q is positive real

[13].)

When ξ > 0, the GLSM flows to the geometric phase in IR and we should close

the contour to the left infinity. For the even holonomy sector, the relevant poles

are those of Γ(ε/2) at ε = −2k (k = 0, 1, 2, · · · ). For the odd holonomy sector,

the relevant poles are those of Γ(ε)/Γ(ε/2) at ε = −2k + 1 (k = 0, 1, 2, · · · ). Poles

of other factors either cancel out among themselves or are located outside of the

contour. Of these, poles at ε < 0 capture the world-sheet instanton contributions,

which are suppressed exponentially in the large volume limit ξ � 1.

The perturbative part of the partition function, appropriate for the large volume

limit, comes entirely from the pole at ε = 0. With (4.293), therefore, only the even

holonomy sector contributes, giving us

Zpert.RP2 = β1

∮
ε=0

dε

2πi
e2πξε

[
Γ
(
ε
2

)
Γ
(
− ε

2

)
Γ(−ε)

]N
·

[
Γ
(

1−Nε
2

)
Γ
(
−1−Nε

2

)
Γ(−1 +Nε)

]
.(4.295)
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We first invoke the identity

Γ

(
1

2
+ x

)
Γ(x) = 21−2x√π Γ(2x) . (4.296)

to rewrite this as

Zpert.RP2 = 8πβ1

∮
ε=0

dε

2πi
e2πξε

[
Γ
(
ε
2

)
Γ
(
− ε

2

)
Γ(−ε)

]N/[
Γ
(
Nε
2

)
Γ
(
−Nε

2

)
Γ(−Nε)

]
(4.297)

= 8πβ1 · 22(N−1)

∮
ε=0

dε

2πi
e2πξε N

εN−1

×

[
Γ
(
1 + ε

2

)
Γ
(
1− ε

2

)
Γ(1− ε)

]N/[
Γ
(
1 + Nε

2

)
Γ
(
1− Nε

2

)
Γ(1−Nε)

]
.

This can be further rewritten as an integral over X , with H the hyperplane class

of CPN−1,

Zpert.RP2 = C0

∫
X
e−iξH

[
Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)
Γ(1− H

2πi)

]N/[
Γ
(
1 + NH

4πi

)
Γ
(
1− NH

4πi

)
Γ(1− NH

2πi )

]
,(4.298)

with C0 = iN−2(2π)N/22N−2(Λr)c/6. We used
∫
X H

N−2 = N
∫
CPN−1 HN−1 = N .

Since X is a Calabi-Yau hypersurface embedded in CPN−1, we may also write

Γ̂c(T X ) =
Γ̂c(T CPN−1)

Γ̂c(NX )
, (4.299)

so that

Zpert.RP2 = C0

∫
X
e−iJ

Γ̂c
(T X

2

)
Γ̂c
(
−T X2

)
Γ̂c(−T X )

= C0

∫
X
e−iJ

A
(T X

2

)
Γ̂c(−T X )

, (4.300)

where A is the Â class. This shows that in the large volume limit, the conventional
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overlap amplitude between RR-ground state and a crosscap state (see e.g., [133])

are corrected by replacing

√
L(T X/4) → A (T X/2)

Γ̂c(−T X )
. (4.301)

In section 6, we will come back to this expression and explore the consequences.

Orientifolds with a Normal Bundle

Lower dimensional Orientifold planes, from B-parity projection, may wrap a holo-

morphically embedded surface M in the ambient Calabi-Yau X , if X admits Z2

discrete symmetries. At the level of GLSM, this is achieved by combining the parity

projection with such a flavor symmetry, as we considered in section 4.5.3.

For example, the simplest such Calabi-Yau has a superpotential P · GN = P ·∑N
a=1X

N
i which is invariant under exchange of X’s among themselves. Exchanging

a pair of chiral fields X1 ↔ X2 gives rise to a fixed locus defined by X1 + X2 =

0, a complex co-dimension one hypersurface as well as a complex co-dimension

(N − 2) subspace, i.e., a point at X3 = · · · = XN = 0. We can do the similar

analysis for the symmetry exchanging X1 ↔ X2 and X3 ↔ X4 simultaneously.

This action gives complex co-dimension 2 fixed locus defined as (X1, · · ·XN ) =

(X,X, Y, Y,X5, · · · , XN ), and co-dimension (N − 3) fixed locus, (X1, · · ·XN ) =

(X,−X,Y,−Y, 0, · · · , 0). For the quintic, both of these correspond to O5 planes.

These results are summarized in the following table [133].

(X1, X2, X3, X4X5)→ (X1, X2, X3, X4X5) O9 (spacetime filling)

(X1, X2, X3, X4X5)→ (X2, X1, X3, X4X5)
O7 at (X,X,X3, X4, X5)

O3 at (X,−X, 0, 0, 0)

(X1, X2, X3, X4X5)→ (X2, X1, X4, X3X5)
O5 at (X,X, Y, Y,X5)

O5 at (X,−X,Y,−Y, 0)

(4.302)
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As this shows, we generically end up with more than one Orientifold planes, given

a parity projection. The central charges must be all present in the RP2 partition

function, so the latter must be in general composed of more than one additive

terms. What allows this is the holonomy sectors we encountered in section 3. For

a GLSM gauge group U(n), for example, one has n + 1 such distinct holonomy

sectors, and can accommodate several Orientifold planes. For the current example

of U(1) GLSM, we have exactly two such holonomy sectors, and thus up to two

Orientifolds planes.10

In the end, our examples below, combined with the spacetime-filling case above,

will suggest a universal formula for the large volume central charge

Zpert.RP2
= C−s

∫
X
e−iJ

A(TM/2)

Γ̂c(−TM)
∧ Γ̂c(NM)

A(NM/2)
∧ e(NM)

= C−s

∫
M
e−iJ ∧ A(TM/2)

Γ̂c(−TM)
∧ Γ̂c(NM)

A(NM/2)
, (4.303)

for an Orientifold planeM of real co-dimension 2s in a Calabi-Yau d-fold X, with

C−s = id−s2d−2s (2π)(d+2)/2 (rΛ)c/6.

Orientifold Planes of Complex Co-Dimensions 1 & N − 2 Let us consider the

projection involving X1 ↔ X2. As the table above shows, this produces two

different fixed planes; An hyperplane with X1 = X2 and an isolated point at

X3 = · · · = XN = 0. Thus, we expect to recover additive contributions from these

two planes, for which existence of the two holonomy sectors is crucial.

10 For the spacetime-filling case of section 5.1, only even sector contributed to the large-volume
limit, and there was only one type of Orientifold plane. However, the odd holonomy piece is
still important in the following sense: Thanks to the U(1) gauge symmetry of GLSM, one can
alternatively project with X → −X and P → (−1)NP without changing the theory. However, this
flips the even and the odd holonomy sector precisely, which implies that the large-volume central
charge of the spacetime-filling Orientifold planes resides in the odd holonomy sector instead.
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As we are considering the ambient Calabi-Yau X as a hypersurface embedded in

CPN−1, the results of section 4.5.3 reads

(2π)−N/2+2 2−N (rΛ)c/6 resε=0
Γ(ε)

Γ (1− ε)
·

[
Γ
(
ε
2

)
Γ
(
− ε

2

)
Γ(−ε)

]N−2

·

[
Γ
(

1−Nε
2

)
Γ
(
−1−Nε

2

)
Γ(−1 +Nε)

]
,

(4.304)

from the even holonomy sector,

(2π)N/2+1 2N−2 (rΛ)c/6 resε=0
Γ(ε)

Γ (1− ε)
·

[
Γ(ε)/ε

Γ
(
ε
2

)
Γ
(
− ε

2

)]N−2

·

[
Γ(1−Nε)/(1−Nε)
Γ
(

1−Nε
2

)
Γ
(
−1−Nε

2

)] ,
(4.305)

from the odd holonomy sector. Note that, for this case, both sectors contribute to

the residue at ε = 0.

First, let us consider the even holonomy sector contribution. With (4.296), we may

write (4.304) as

−(2π)−N/2+3 2−N+2 (rΛ)c/6 resε=0
1

ε
· Γ(ε)

Γ
(
ε
2

)
Γ
(
− ε

2

)
×

[
Γ
(
ε
2

)
Γ
(
− ε

2

)
Γ(−ε)

]N−1
Γ(−Nε)

Γ
(
Nε
2

)
Γ
(
−Nε

2

) (4.306)

= (2π)−N/2+3 2N−4 (rΛ)c/6 resε=0
N

εN−2
· Γ(1 + ε)

Γ
(
1 + ε

2

)
Γ
(
1− ε

2

)
×

[
Γ
(
1 + ε

2

)
Γ
(
1− ε

2

)
Γ(1− ε)

]N−1
Γ(1−Nε)

Γ
(
1 + Nε

2

)
Γ
(
1− Nε

2

) .
Expressing the residue integral at ε = 0 via an integral over CX with the hyperplane

class H, we find

Zpert., evenRP2
= C−1

∫
X
e−iξH ∧H ∧

[
Γ(1 + H

2πi)

Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)] (4.307)

∧

[
Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)
Γ(1− H

2πi)

]N−1/[
Γ
(
1 + NH

4πi

)
Γ
(
1− NH

4πi

)
Γ(1− NH

2πi )

]
,
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with C−1 = iN−3(2π)N/22N−4(rΛ)c/6. Note that, again in terms of the A and Γ̂c

classes, this formula can be organized as

Zpert., evenRP2
= C−1

∫
M−1

e−iJ ∧ A(TM−1/2)

Γ̂c(−TM−1)
∧ Γ̂c(NM−1)

A(NM−1/2)
, (4.308)

where M−1 denotes for a complex co-dimension 1 fixed locus, parameterized by

(X1, · · ·XN ) = (X,X,X3, · · ·XN ).

Contribution from the odd holonomy sector can be similarly written as

(−1)N−12−N+2 (2π)N/2 (rΛ)c/6 resε=0
1

ε
·

Γ
(
1 + ε

2

)
Γ
(
1− ε

2

)
Γ(1− ε)

(4.309)

×

[
Γ(1 + ε)

Γ
(
1 + ε

2

)
Γ
(
1− ε

2

)]N−1

·
Γ
(
1 + Nε

2

)
Γ
(
1− Nε

2

)
Γ (1 +Nε)

,

which is equivalent to

Zpert., oddRP2
= C−(N−2)

∫
X
e−iJ ∧ H

N−2

N
∧

Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)
Γ(1− H

2πi)
(4.310)

∧

[
Γ(1 + H

2πi)

Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)]N−1/[
Γ
(
1 + NH

2πi

)
Γ
(
1 + NH

4πi

)
Γ
(
1− NH

4πi

)] ,

where C−(N−2) = (−1)N−12−N+2 (2π)N/2 (rΛ)c/6. Again we may rewrite this as

an integral

Zpert., oddRP2
= C−(N−2)

∫
M−(N−2)

e−iJ
A(TM−(N−2)/2)

Γ̂c(−TM−(N−2))
∧

Γ̂c(NM−(N−2))

A(NM−(N−2)/2)
,

(4.311)

overMN−2 which, in this case, is actually evaluation at the fixed point at (X1, · · ·XN ) =

(X,−X, 0, · · · , 0).

Orientifold Planes of Complex Co-Dimensions 2 & N − 3 Next, we consider the

B-parity action that exchanges X1 ↔ X2 and X3 ↔ X4 simultaneously. Similarly,
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from the even holonomy sector, we have

(2π)−N/2+3 2−N+2 (rΛ)c/6 resε=0

[
Γ(ε)

Γ (1− ε)

]2
[

Γ
(
ε
2

)
Γ
(
− ε

2

)
Γ(−ε)

]N−4 [
Γ
(

1−Nε
2

)
Γ
(
−1−Nε

2

)
Γ(−1 +Nε)

]
,

(4.312)

and from the odd holonomy sector,

(2π)N/2 2N−4 (rΛ)c/6 resε=0

[
Γ(ε)

Γ (1− ε)

]2
[

Γ(ε)/ε

Γ
(
ε
2

)
Γ
(
− ε

2

)]N−4 [
Γ(1−Nε)/(1−Nε)
Γ
(

1−Nε
2

)
Γ
(
−1−Nε

2

)] .
(4.313)

Again, both holonomy sectors contribute for the residue at ε = 0.

For the even holonomy sector, a similar procedure gives

Zpert., evenRP2
= C−2

∫
X
e−iξH ∧H2 ∧

[
Γ(1 + H

2πi)

Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)]2

(4.314)

∧

[
Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)
Γ(1− H

2πi)

]N−2/[
Γ
(
1 + NH

4πi

)
Γ
(
1− NH

4πi

)
Γ(1− NH

2πi )

]
.

where C−2 = iN−4(2π)N/22N−6(rΛ)c/6. In terms of the characteristic classes, we

rewrite this

Zpert., evenRP2
= C−2

∫
M−2

e−iJ ∧ A(TM−2/2)

Γ̂c(−TM−2)
∧ Γ̂c(NM−2)

A(NM−2/2)
, (4.315)

withM−2 is complex co-dimension 2 fixed locus, (X1, · · ·XN ) = (X,X, Y, Y,X5, · · ·XN ).

Finally, from the odd holonomy sector, we have

Zpert., oddRP2
= C−(N−3)

∫
X
e−iξH ∧ H

N−3

N
∧

[
Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)
Γ(1− H

2πi)

]2

∧

[
Γ(1 + H

2πi)

Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)]N−2/[
Γ
(
1 + NH

2πi

)
Γ
(
1 + NH

4πi

)
Γ
(
1− NH

4πi

)] ,(4.316)
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where C−(N−3) = i(−1)N−1(2π)N/2 2−N+4. This again can be summarized as

Zpert., oddRP2
= C−(N−3)

∫
M−(N−3)

e−iJ ∧
A(TM−(N−3)/2)

Γ̂c(−TM−(N−3))
∧

Γ̂c(NM−(N−3))

A(NM−(N−3)/2)
,

(4.317)

whereM−(N−3) is a co-dimension N−3 locus spanned by (X,−X,Y,−Y, 0, · · · , 0).

4.5.6 Consistency Checks and Subtleties

In this last section, we explore the disk amplitudes R〈0|B〉R and the crosscap ampli-

tudes R〈0|C〉R further. The most immediate question is whether these two types of

amplitudes, or equivalently the central charges, come out with the correct relative

normalization, for which we kept the overall coefficients carefully in the above. We

will then ask subtler questions of what should happen when M is not Spin but

only Spinc, for which we can only offer a guess for the final expression but not a

derivation.

We then move on to the anomaly inflow and also how we should extract, from

the computed central charge, the RR-tensor Chern-Simons coupling. Having both

R〈0|B〉R and R〈0|C〉R explicitly is most telling in this regard, whereby we discover

that the difference between the conventional central charges and the newly com-

puted ones is universal; the extra multiplicative factor due to Γ̂c class is common

for both D-branes and Orientifold planes and the same again makes appearance

in S2 partition function as well. This strongly suggests that the change should

be attributed to the quantum volume of the cycles in X , rather than to the char-

acteristic class that appears in the world-volume Chern-Simons coupling to the

spacetime RR tensor fields.
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Tadpole

The simplest consistency check comes from the tadpole cancelation condition of

the RR ground states, which can be written as [136, 137]

R〈0|C〉R + R〈0|B〉R = 0 , (4.318)

and demand the boundary state be constrained to satisfy this equality. From

the spacetime viewpoint, this is the Gauss constraint for the RR-tensor fields,

integrated over the compact Calabi-Yau manifold. Recall that the RR-charge of a

single Dp-brane and that of an Op± Orientifold plane must have a relative weight

of

± 2p−4 (4.319)

in the covering space. Obviously, the same numerical factor must appear in the

central charges.

For this numerical factor, we start with Hori and Romo [14], and consider tachyon

condensation to obtain the disk partition function for a D-brane wrappingM in X

ZD2 = (rΛ)c/6 (2π)(d+2)/2

∫
M
e−B−iJ ∧ ch(E) ∧ Γ̂c(T )

Γ̂c(−N )
∧ e−c1(N )/2 , (4.320)

where d is the complex dimension of the Calabi-Yau X . See Appendix C for details

of this procedure. On the other hand, the result of section 4.5.5 can be written as

ZRP2 = 2d−2s(rΛ)c/6(2π)(d+2)/2

∫
M
e−iJ ∧ A(T /2)

Γ̂c(−T )
∧ Γ̂c(N )

A(N/2)
, (4.321)

where the complex co-dimension of M is denoted by s. The last factor in (4.320)

and its apparent absence in (4.321) is the subject of the next subsection; for tadpole

issue, it suffices to know that the 0-form part of the two expressions differ by

the numerical factor of rank(E), prior to the projection, and also by 2d−2s. For
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the familiar Ramond-Ramond tadpole cancelation condition to emerge correctly,

therefore, 2d−2s must equal 2p−4. For ten-dimensional spacetime, d = 10/2 = 5

and p = 9− 2s, so d− 2s = p− 4, precisely as needed.

Anomaly Inflow and Indices

Let |a〉RR denote one of the crosscap or boundary states in the Ramond-Ramond

sector. Then one can naturally define the Witten index as

I(a, b) = lim
T→∞

RR〈a|e−TH |b〉RR , (4.322)

which calculates the indices of open strings attached between D-branes and Orien-

tifold planes. Following figures are three distinguished topologies which give rise

to the indices for brane-brane, brane-plane, and plane-plane respectively.

Due to the Riemann bilinear identity, these indices can be expressed in terms of

the partition functions as follows [133].

I(BE ,BF ) =
∑
ij

〈BE |i〉ηij〈j|BF 〉 , (4.323)

I(BE , C) =
∑
ij

〈BE |i〉ηij〈j|C〉 , (4.324)

I(C, C) =
∑
ij

〈C|i〉ηij〈j|C〉 , (4.325)

where all the states are in the Ramond-Ramond sector, and ηij is the topological

metric of the chiral ring elements. Since the overlap between the RR ground states

and the boundary/crosscap states measures the coupling to the RR gauge fields, this

formula can be thought of as inflow mechanism which cancels the one-loop anomaly

from each open string sector. Since the expression for these indices in the geometric
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Figure 4.4: Two dimensional topologies where indices are defined. The first
one denotes for a cylinder with two boundaries at the ends, and the second one
corresponds to the Möbius strip with one boundary and one crosscap. The last

one is the Klein bottle, with two crosscap states at the ends.

limit are well-known in the literature, we can check whether our results generate

expected indices, and consistency with the original inflow mechanism [97, 98, 140].

Following the discussion of the previous subsection, here we assume that an extra

factor ed(M)/2 is present not only on the world-volumes of D-branes but also on the

world-volumes of Orientifold planes. Otherwise, amplitudes involving boundary

states only and amplitude involving a boundary state and a crosscap cannot be

summed up; this would lead to net world-volume anomaly and make the spacetime

theory inconsistent. Because we assume X itself to be Spin, d(M)/2 is always

expressed as a sum over −c1/2 of the normal bundles of the world-volumes.

Cylinder Index on the cylinder and relation to the disk partition function were

studied in [14] and [29].
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We start with Eq. (4.320) and use the relation (4.323) to calculate the open string

index stretched between two branes with (E1,M1) and (E2,M2) as

I(BE1 ,BE2)

∼
∫
M1∩M2

e−B−iJ ∧ ch(E1) ∧ Γ̂c(T1)

Γ̂c(−N1)
∧ ed(M1)/2

∧ eB+iJ ∧ ch(−E2) ∧ Γ̂c(−T2)

Γ̂c(N2)
∧ e−d(M2)/2 ∧ e(N12) (4.326)

=

∫
M1∩M2

ch(E1) ∧ ch(−E2) ∧ A(T (M1 ∩M2))

A(N (M1 ∩M2))
∧ e(d(M1)−d(M2))/2 ∧ e(N12) ,

where Ti and Ni denote for tangent and normal bundles ofMi and N12 ≡ N1∩N2.

From the first to the second line, we used

Γ̂c(T1) ∧ Γ̂c(−T2)

Γ̂c(−N1) ∧ Γ̂c(N2)
=

Γ̂c(T1 ∩ T2)Γ̂c(−T1 ∩ T2)

Γ̂c(−N1 ∩N2)Γ̂c(N1 ∩N2)
=
A(T1 ∩ T2)

A(N1 ∩N2)
, (4.327)

since

T1\(T1 ∩ T2) = N2\(N1 ∩N2) . (4.328)

Note that, for the first equality, complex conjugation of the normal bundle in the

denominator of Eq. (4.320) is essential.

The factor e(d(M1)−d(M2))/2 in (4.326) can be understood from the fact that the

I-brane fermions onM1∩M2 are naturally sections of S(T1∩T2⊕N1∩N2). When

the latter fails to be Spin, the 2nd Stiefel-Whitney class that measures this failure

is

w2(T1 ∩ T2 ⊕N1 ∩N2) = w2(T1)− w2(T2) ,

where the equality follows from the assumption that the ambient X is Spin. Since

w2 = c1 mod Z2, the relevant correcting factor for the Spinc case is e(c1(T1)−c1(T2))/2.

Note that this factor reduces to 1 when M1 and M2 are coincident, which is

expected since T ⊕N = T X is Spin. Next, we show how this extends to amplitudes

involving Orientifold planes.
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Möbius strip Similarly, the index on the Möbius strip can be obtained via the

relation (4.324). If we let M1 and M2 are locus where D-branes and Orientifolds

exist, we have11

I(BE , C) ∼ 2p−4

∫
M1∩M2

ch2k(F) ∧ Γ̂(T1)

Γ̂(−N1)
∧ A(T2/2)Γ̂(−N2)

A(N2/2)Γ̂(T2)
∧ e(d(M1)−d(M2))/2 ∧ e(N12)

= 2p−4

∫
M1∩M2

ch2k(F) ∧

√
A(T1)L(T2/4)

A(N1)L(N2/4)
∧ e(d(M1)−d(M2))/2 ∧ e(N12) , (4.329)

which exactly reproduce the index formula of the Möbius strip calculated at the

level of non-linear sigma model [99, 133]. Here, p + 1 is the dimension of the

Orientifold plane.

When Dp-branes are on the top of an Op-plane, in particular, we can read off p+3-

form from I(BE , C)+I(C,BE), which gives anomaly inflow on the p+1 dimensional

world-volume as

± 2p−4 · [ch2k(F) + ch2k(F)] ∧ Γ̂(T )

Γ̂(−N )
∧ A(T /2)Γ̂(−N )

A(N/2)Γ̂(T )
∧ e(N )

∣∣∣∣∣
p+3

= ± 2p−4 ·
[
ch2k(F) + ch2k(F)

]
∧ A(T /2)

A(N/2)
∧ e(N )

∣∣∣∣∣
p+3

= ± ch2k(2F) ∧ A(T )

A(N )
∧ e(N )

∣∣∣∣∣
p+3

. (4.330)

Note that, since U(k) gauge group is enhanced to SO(2k) or Sp(k) group, we used

the relation ch2k(F) = ch2k(F). Adding two contributions from the cylinder and

the Möbius indices, we recover the open string Witten index, i.e., anomaly inflow

11 From the first to second line, we used the identity
√
A(T )

√
L(T /4) = A(T /2) .
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for the SO(2N) or Sp(N) gauge group according to the sign of (4.330),

ISO(2k),Sp(k) = [ch2k⊗2k(F)± ch2k(2F)] ∧ A(T )

A(N )
∧ e(N )

∣∣∣∣∣
p+3

= 2 · ch 1
2

2k(2k±1) ∧
A(T )

A(N )
∧ e(N )

∣∣∣∣∣
p+3

. (4.331)

Klein bottle Finally, if there are two crosscap states as in the last diagram of the

figure, we have topology of the Klein bottle whose index is given by the relation

(4.325). Substituting our formula for the crosscap overlap into this identity, we

have

I(C, C) ∼ 2p1+p2−8

∫
M1∩M2

A(T1/2)Γ̂(N1)

A(N1/2)Γ̂(−T1)
∧ A(T2/2)Γ̂(−N2)

A(N2/2)Γ̂(T2)
∧ e(d(M1)−d(N2))/2 ∧ e(N12)

= 2p1+p2−8

∫
M1∩M2

(
A(T1 ∩ T2/2)

A(N1 ∩N2/2)

)2

∧ A(N1 ∩N2)

A(T1 ∩ T2)
∧ e(d(M1)−d(M2))/2 ∧ e(N12)

= 2p1+p2−8

∫
M1∩M2

L(T1 ∩ T2/4)

L(N1 ∩N2/4)
∧ e(d(M1)−d(M2))/2 ∧ e(N12) . (4.332)

This again gives the well-known formula for the Klein bottle index calculated in

non-linear sigma model. Since the B-type parity action corresponds to the Hodge

star operation of the target space, it reproduces the Hirzebruch signature theorem

[133]. Obviously, this index is independent of the open string degrees of freedom,

or the types of planes [144]. For type-I string theory, this inflow precisely cancels

the one-loop anomaly of supergravity multiplet.

4.5.7 RR-Charges and Quantum Volumes

This brings us, finally, to a natural question of what part of the central charge

should be attributed to the RR-charges. Recall that the conventional RR-charges,

or the Chern-Simons coupling to RR-tensors, was deduced indirectly via anomaly
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inflow. For instance, for the simplest case of the spacetime-filling D-brane, the

relevant anomaly polynomial is A(T ), the Â class, which is then reconstructed via

inflow as

Ω(T ) ∧ Ω(−T ) = A(T ) , (4.333)

where Ω is the characteristic class that appears in the Chern-Simons coupling.

With an implicit assumption that log Ω is “even,” i.e., includes 4k-forms only,

this leads to Ω = A1/2 [97, 98, 140]. Some of early literatures were casual about

distinction between Ω(T ) and Ω(−T ), although more careful computations show

the conjugation has to occur for one of the two factors [97, 144]. Thus, in hindsight,

the anomaly cancelation argument fixes only “even” part of log Ω.

As was noted previously, Ω = Γ̂c is one multiplicative class that is consistent with

the anomaly inflow A in the above sense. This happens precisely because “even”

part of log Γ̂c coincides exactly with logA1/2. Our discussion in the previous section

demonstrated that replacements like

A1/2(T )→ Γ̂c(T ), L1/2(T /4)→ A(T /2)/Γ̂c(−T ) , (4.334)

for D-branes and Orientifold planes, respectively, would be still consistent with

anomaly inflow. However, since the central charge is made from RR-charges and

quantum volumes of various cycles, it is hardly clear whether such a change in the

central charge should be attributed to the RR-charge or not.

More generally, for a D-brane wrapping a cycle M in Calabi-Yau X , the gravita-

tional curvature contribution to the central charge is

Γ̂c(T )

Γ̂c(−N )
=

√
A(T )

A(N )
∧ exp

 i
∑
k≥1

(−1)k(2k)!ζ(2k + 1)

(2π)2k
ch2k+1(X )

 , (4.335)
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so the deviation depends only on X . As shown in the present work, something

quite similar happens for the Orientifold planes,

A(T /2)

Γ̂c(−T )

Γ̂c(N )

A(N/2)
=

√
L(T /4)

L(N/4)
∧ exp

 i
∑
k≥1

(−1)k(2k)!ζ(2k + 1)

(2π)2k
ch2k+1(X )

 ,

(4.336)

where the deviation is identical to its D-brane counterpart. So the difference be-

tween the new central charges and the conventional ones can be expressed by a

universal factor, determined by X only, is independent of the choice of the cycle

M, and its logarithm is purely imaginary.

These properties all suggest that this factor should be interpreted as a α′ modifi-

cation of volumes, in the sense,

exp(−iJ) → exp

−iJ + i
∑
k≥1

(−1)k(2k)!ζ(2k + 1)

(2π)2k
ch2k+1(X )

 , (4.337)

rather than as a shift of RR-charges, or the Chern-Simons couplings, themselves.

In fact, this is precisely the same shift of J that appears in S2 partition function,

or its large volume expression,

ZS2 ∼
∫
X
e−2iJ ∧ Γ̂c(T X )

Γ̂c(−T X )

=

∫
X

exp

−2iJ + 2i
∑
k≥1

(−1)k(2k)!ζ(2k + 1)

(2π)2k
ch2k+1(X )

 .(4.338)

Here, the “even” part of the two Gamma classes cancel out completely, suggesting

that they, but not “odd” parts, carry RR-charge information. For Calabi-Yau 3-

fold, the piece
∫
X ch3(X ) is proportional to the Euler number and represents exactly

the quantum shift of the volume that has been seen in the mirror map [12, 132]. This

viewpoint also conforms with the fact that there is no modification for Calabi-Yau
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2-fold (times remaining flat directions), for which the ten-dimensional spacetime

theory has as many as 16 supercharges.

The ambiguity in determining RR-charge from the anomaly inflow remains, as the

D-brane and the I-brane inflow mechanisms always conjugate one of the two factors

as in (4.333).12 However, once we accept (4.337) as the quantum version of the

exponentiated Kähler class, this ambiguity is lifted, and we come back to the same

old Chern-Simons coupling to spacetime RR-tensors for D-branes and Orientifold

planes [97–99, 101, 102, 140, 144].

12Although, in principle, the Chern-Simons coupling may be computable by direct string world-
sheet method along the line of Refs. [99, 100, 145, 146], which had confirmed the first few terms
of Refs. [97, 98].
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Appendix A

Characteristic Classes

Throughout this thesis, the role of the characteristic classes are essential for study-

ing the topological properties of the theories. For a base manifold M and fiber

F over it, characteristic class measures non-triviality of twisting of such bundle.

They are defined in terms of the polynomial of gauge invariant curvatures, which

is referred to as the invariant polynomials. For a detailed discussion of properties

of them, consult the section 2.3.2 and also the references [16, 147].

When E
π−→ M is a complex vector bundle whose fiber is isomorphic to Cn, the

most prequently used characteristic classes are the Chern class and the Todd class.

First of all, the Chern class is defined as

chR(F) ≡ trRe
F/2π =

∑
i

exi , (A.1)

where R denotes the relevant representation, and xi are the two-form-valued eigen-

values of
F
2π

=
Fij
2π

dxi ∧ dxj . (A.2)
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Appendix A. Characteristic Classes

in the representation R. The Todd class, which appears in the discussion of the

Dolbeaux complex of complex manifolds, is defined as

Td(F) =
∏
i

xi
1− e−xi

. (A.3)

Note that the Td(F) is defined only for a complex manifold.

For real bundles, we have the A-roof genus and the Hirzbruch L-class. These can

be expressed in terms of 2-form skew-eigenvalues yi of

R

2π
=

1

4π
Rijkl dx

k ∧ dxl, (A.4)

A(R) ≡
∏
i

yi/2

sinh(yi/2)
, L(R) ≡

∏
i

yi
tanh(yi)

. (A.5)

These two can also be expanded in term of Pontryagin classes,

p1(R) =
∑
i

y2
i , p2(R) =

∑
i<k

y2
i y

2
k , p3(R) =

∑
i<k<l

y2
i y

2
ky

2
l , (A.6)

and so on. Note that pk(R) are 4k-forms, which is consistent with the fact that for

a real bundle R and invariant polynomial I, I(R) = I(RT ) = I(−R). Finally, the

Euler class is

χ(R) =
∏
i

yi , (A.7)

which is given by a top form. We sometimes denote the Euler class with the

notation e(R). With these definition, we can prove various useful identities. For

example, we see

χ(R)

A(R)
=
∏
i

sinh(yi/2)

yi/2

∏
j

yj =
∏
i

(
eyi/2 − e−yi/2

)
= chS+(R)− chS−(R) , (A.8)
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which is a crucial identity when we match 1-loop anomaly to the inflows. Further-

more, we also have

A(R)L(R/4) =
∏
i

2(yi/4)2

sinh(yi/2) tanh(yi/4)
=
∏
i

(yi/4)2

sinh(yi/4)2
= A(R/2)2 . (A.9)

Finally, we discuss the Stiefel-Whitney classes which is valued in Hp(M,Z2). The

first Stiefel-Whitney class w1(M) is zero if and only if the manifold is orientable.

The second Stiefel-Whitney class w2(M) measures the obstrunction to define spinors

on M , i.e., w2(M) is zero if and only if the bundle admits a Spin structure. How-

ever, even if w2(M) is odd, there is a way to define a spinors on M by turning

on additional half-line bundle which cancels the global anomaly. For the manifold

where this procedure is possible, the third Stiefel-Whitney class w3(M) is zero and

we say that the bundle admits a Spinc structure.
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Reduction to Nonlinear Sigma

Model on Mn

With n centers, one starts with 3(n−1) bosonic coordinates and 4(n−1) fermionic

ones, after the free center of mass part is removed from the dynamics. It is con-

venient to work with a coordinate system where n − 1 of them equal to indepen-

dent linear combinations of KA’s. In a slight abuse of notation we will denote

these again by KA, now with A = 1, . . . , n − 1; although there are n K’s, only

n − 1 of them are linearly independent. Thus, we split the relative part of rAa

and ψAa as ZM = (KA, yµ) and ψM = (ψA, ψµ), with M = 1, . . . , 3(n − 1) and

µ = n, . . . , 3(n − 1). Along the same spirit, we also denote by λA, n − 1 linearly

combinations of λ’s that belong to the relative part of the low energy dynamics.

What do we mean by ψM? We wish to preserve at least one supersymmetry, say

Q4, and naturally ψM is the superpartner of ZM ,

ψM =
∂ZM

∂rAa
ψAa , (B.1)

and the kinetic term of ψM includes two factors of ∂rAa/∂ZM .
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As argued in section 4, it suffices to consider the dynamics with flat metric, which

after taking out the center of mass part becomes

gAaBb = mAB δab ,

where mAB is the (n − 1) × (n − 1) reduced mass matrix. Expressing this in the

curved coordinate system, ZM ,

gMN =
∑

mAB
∂rAa

∂ZM
∂rBa

∂ZN
,

we find that partial derivatives of metric coefficients gMN are nontrivial. In con-

trast, nothing much happens to λ’s, other than one of them being taken out as the

center of mass part, so their metric is the same reduced mass matrix,

hAB = mAB ,

and is constant. Thus, no coordinate-dependent transformations are needed for

λ’s. The deformed Lagrangian with flat kinetic term reads in this coordinate,

L =
1

2
gMN (Z)ŻM ŻN − 1

2
ξ2(m−1)ABKA(Z)KB(Z)−W(Z)M Ż

M

+
i

2
gMN (Z)ψM ψ̇N − i

2
∂LgMN (Z)ŻNψLψM +

i

2
mABλ

Aλ̇B

+ iξ∂BKAψBλA + i∂MWN (Z)ψMψN (B.2)

where the crucial middle term in the second line follows from Eq. (B.1) and the

anticommuting nature of fermions. We also used ∂µKA = 0.

Since we anticipate that K directions will decouple as ξ → ∞, we split the metric

as

[gMN ] =

(
HAB CAµ

CTµA Gµν

)
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and the likewise for its inverse

[gMN ] =

(
(H − CG−1CT )−1 −(H − CG−1CT )−1CG−1

−G−1CT (H − CG−1CT )−1 G−1 +G−1CT (H − CG−1CT )−1CTG−1

)

Ignoring W and fermion contributions to the conjugate momentum for now for

simplicity, the bosonic part of Hamiltonian will then looks something like

H ' 1

2
gµνpµpν + gAµpApµ +

1

2
gABpApB + · · ·

=
1

2
(G−1)µνpµpν +

1

2
gABPAPB + · · · (B.3)

where

PA ≡ pA + (H − CG−1CT )ACg
Cµpµ = pA − (CG−1) µ

A pµ

PA’s have the standard canonical commutator with K’s, so it is clear that, together

with ∼ ξ2K2 terms, they form very heavy harmonic oscillators of frequency ∼ ξ,

settle down to its ground state sector, and decouple from ground state counting.

This leaves behind

H ' 1

2
(G−1)µνpµpν + · · · (B.4)

Denoting the canonical conjugate of pµ in this reduced dynamics again by yµ,1 the

corresponding Lagrangian would be

L ' 1

2
Gµν

∣∣∣∣
K=0

ẏµẏν + · · · (B.5)

This makes clear that we could have done the same more simply by imposing K = 0

at the level of Lagrangian.

1Generally K will mix in the definition of this new yµ coordinates, to reflect the shift of the
conjugate momenta, but this becomes irrelevant because dynamics forces K = 0. Therefore, the
same old y coordinates can be used here.
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Procedure leading up to (B.4) can be repeated in the presence ofW’s, which simply

shift the conjugate momenta in the Hamiltonian, and it is clear that onlyWµ’s will

survive. We should ask whether this is consistent, since after all dW’s are Dirac

quantized magnetic fields, and removing some part of the gauge connection could

make the remainder ill-defined. However, we have

dW = ∂BWAdKBdKA + (∂µWA − ∂AWµ) dyµdKA + ∂νWµdy
νdyµ

and the pull-back onto Mn is simply

M∗n(dW) = ∂νWµdy
νdyµ (B.6)

The pull-back of a well-defined bundle to a smoothly embedded submanifold is still

a well-defined bundle, so the reduced gauge connection Wµ(K = 0) is consistent.

Thus, the bosonic part of the action reduces to

L ' 1

2
Gµν

∣∣∣∣
K=0

ẏµẏν −Wµ

∣∣∣∣
K=0

ẏµ + · · · (B.7)

leaving us with the question of how to reduce fermion sector.

The fermions enter the Hamiltonian in two places. One is as bilinear connection

term added to the conjugate momenta, and the other is an additive contribution

of the form

−iξ∂BKAψBλA − i∂AWBψ
AψB − i(∂AWµ − ∂µWA)ψAψµ − i∂µWνψ

µψν

with the canonical anticommutator among ψM ’s equal to gMN . To disentangle

heavy ψA from light ψµ, we shift the light fermions as

ψ̃µ ≡ ψµ + ψA(H − CG−1CT )ACg
Cµ = ψµ − ψA(CG−1) µ

A ,

222



Appendix B. Reduction to Nonlinear Sigma Model on Mn

such that

{ψA, ψ̃µ} = 0 , {ψ̃µ, ψ̃ν} = (G−1)µν .

Let us categorize these fermion bilinears into three difference pieces,

−i∂µWνψ̃
µψ̃ν − iEAµψAψ̃µ +

[
−iξ∂BKAψBλA + · · ·

]
.

Terms in the last bracket involve only ψA and λA’s with eigenvalues ∼ ξ, so these

will decouple from the low energy spectrum. The potential mixing between heavy

and light modes are in

EAµ = ∂AWµ − ∂µWA + (CG−1) ν
A (∂νWµ − ∂µWν) .

For heavy sector, this is of course a minor perturbation and ignorable as ξ → 0.

For light sector, things looks less innocent since the size of this operator is itself not

negligible. However, the heavy fermion enters this operator linearly, and always

will connect excited states and ground states of heavy fermion sector. This forces

the energy eigenvalue differences (En−Ek) in the denominator of the perturbation

series to be of order ∼ ξ, such that the perturbation is suppressed by powers of

∼ E/ξ. In the end, again, the net effect is to turn off the heavy modes ψA and λA

completely, leaving behind

−i∂µWνψ
µψν

only, where well call this light fermion again as ψµ’s. The simplest way to under-

stand this is to recall that any operator linear in heavy fermions will vanish when

sandwiched between heavy sector vacuum.

Combining the reduction processes of the bosonic and the fermionic sectors, it is

clear that the connection term can be equally reduced to

i

2
∂LgMN Ż

NψLψM → i

2
∂δGαβ ẏ

βψδψα .
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Now we can revert from the Hamiltonian to the Lagrangian, after putting all the

heavy modes to their ground states, and arrive at the following reduced Lagrangian,

LN=1
for index only

=
1

2
Gµν(ẏµẏν + iψµψ̇ν)−Aµẏµ +

i

2
Fµνψµψν −

i

2
∂δGαβ ẏ

βψδψα

=
1

2
Gµν ẏ

µẏν +
i

2
ψµGµν(ψ̇ν + Γµγδẏ

γψδ)−Aµẏµ +
i

2
Fµνψµψν , (B.8)

where we introduced the notation, also used in the main text, F =M∗n(dW) and

its gauge field A. We already defined G as the appropriate block of g, but now

valued at Mn. In other words, G = M∗n(g). Remaining fermions live in the co-

tangent bundle of Mn, so the resulting Lagrangian is N = 1 non-linear sigma

model on 2(n − 1)-dimensional manifold Mn, coupled to an Abelian gauge field

W. Supercharge of this dynamics is a Dirac operator on Mn coupled to Abelian

gauge field A, and therefore the index is, under the canonical choice of the chirality

operator, ∫
Mn

Ch(F)Â(Mn) .
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Spherical Harmonics

We summarize basic facts about the (monopole) spherical harmonics. In order to

discuss the projection condition under the parity, it is convenient to choose a gauge

where the monopole background vector field takes the following form

A = −B
2

cos θdϕ , (C.1)

valid in the region 0 < θ < π. In addition, we also need to choose a gauge for the

spin connection, as it affects the harmonics for spinors and vectors. Our choice,

wθ̂
φ̂

= − cos θdϕ , (C.2)

is such that spinor spherical harmonics are antiperiodic along φ→ φ+ 2π.

The scalar monopole harmonics Yq,jm with q = B
2 Q satisfy

−D2
mYq,jm = j(j + 1)− q2 , j = l + |q| (l = 0, 1, 2, ..) , (C.3)

225



Appendix C. Spherical Harmonics

where the covariant derivative denotes

D = d− iQA . (C.4)

For later convenience, we present an explicit expression of the scalar monopole

harmonics below,

Yq,jm(θ, ϕ) = Mq,jm(1− x)α/2(1 + x)β/2Pαβn (x)eimϕ , (C.5)

with

x = cos θ , α = −q−m , β = q−m , n = j +m , (C.6)

and

Mq,jm = 2m

√
2j + 1

4π

(j −m)!(j +m)!

(j − q)!(j + q)!
. (C.7)

Here the Jacobi polynomial Pαβn (x) is defined by

Pαβn (x) =
(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn

[
(1− x)α+n(1 + x)β+n

]
. (C.8)

Using the fact that

Pαβn (−x) = (−1)nP βαn (x) , (C.9)

it is straightforward to show that, for 0 < θ < π,

Yq,jm(π − θ, π + ϕ) =(−1)neiπm Y−q,jm(θ, ϕ)

=(−1)le−iπ|q| Y−q,jm(θ, ϕ) . (C.10)
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For instance,

Y± 1
2
,jm(π − θ, π + ϕ) = (−i)(−1)lY∓ 1

2
,jm(θ, ϕ) for j = l +

1

2
. (C.11)

The complex conjugate of the monopole harmonics satisfy the following two rela-

tions,

Y ∗q,jm(θ, ϕ) = (−1)q+mY−q,j(−m)(θ, ϕ) , (C.12)

and ∫
S2

Y ∗q,jm(θ, ϕ)Yq′,j′m′(θ, ϕ) = δqq′δjj′δmm′ . (C.13)

We now move on to the spinor monopole harmonics. It is useful to consider the

eigenmodes Ψ±q,jm of a modified Dirac operator

−iγ3γmDmΨ±q,jm = iλ±Ψ±q,jm , λ± = ±

√(
j +

1

2

)2

− q2 , (C.14)

where

Ψ±q,jm =

 Yq− 1
2
,jm

±Yq+ 1
2
,jm

 . (C.15)

Here the covariant derivative is

D = d− iQA+
1

4
ωabγ

ab . (C.16)

Using the property of the monopole harmonics (C.11), one can show

Ψ±q=0,jm(π − θ, π + ϕ) = ∓i(−1)l

±Y 1
2
,jm(θ, ϕ)

Y− 1
2
,jm(θ, ϕ)

 , (C.17)
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with 0 < θ < π.

Finally let us discuss about the one-form spherical harmonics defined by

C1
jm = +

1√
j(j + 1)

dYlm ,

C2
jm =− 1√

j(j + 1)
∗ dYjm , (C.18)

where j ≥ 1. Useful properties of the vector spherical harmonics can be summarized

as follow,

∗C2
jm = C1

jm , ∗dC2
jm =

√
j(j + 1)Ylm , ∗dC1

jm = 0 , (C.19)

which lead to

∗d ∗ dC2
jm =− j(j + 1)C2

jm ,

∗d ∗ dC1
jm = 0 . (C.20)

Under the parity action, they transform as

C1
jm(π − θ, π + ϕ) = (−1)jC1

jm(θ, ϕ) ,

C2
jm(π − θ, π + ϕ) = (−1)j+1C2

jm(θ, ϕ) . (C.21)
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One-Loop Determinant on RP2b

We will show that the partition function on the squashed real projective space RP2
b

is independent of the squashing parameter b. This section largely relies on the

discussion in [13]. For details, please refer to Appendix A of the reference.

To compute the one-loop determinant around the SUSY saddle points, it is not

necessary to know all the eigenmodes of boson and fermion kinetic operators. This

is because, as we see in section 3, the huge cancelation between boson and fermion

eigenmodes occurs. It is therefore sufficient to understand how the boson and

fermion eigenmodes are paired by the supersymmetry.

Chiral multiplet

We start with a chiral multiplet of unit U(1) gauge charge. To simplify the com-

putation, we choose a Q-exact regulator

Lreg = −δεδε̄
[
ψ̄γ3ψ − 2φ̄σ2φ

]
, (D.1)
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different to the one used in the main context. The above choice leads to the kinetic

operators around the saddle points (4.209), (4.210)

∆b =−D2
m + σ2 +

q

4
R+

q − 1

f
vmDm + +

q2 − 2q

4f2
,

∆f =− iγmDm − σγ3 − i 1

2f
γ3 + i

q − 1

2f
vmγ

m + i
q − 1

2f
w , (D.2)

where the covariant derivative involves the background gauge field V given in

(4.206),

Dmφ = (∂m − iAm + iqVm)φ ,

Dmψ =

(
∂m − iAm +

1

4
wabγ

ab + i(q − 1)Vm

)
ψ , (D.3)

and

vm = ε̄γmε , w = ε̄ε . (D.4)

Here R denotes the scalar curvature of RP2. As in section 3, it is convenient to

consider spinor eigenmodes for an operator γ3∆f instead of ∆f .

One can show that there is a pair between a scalar eigenmode for ∆b
.
= −M(M+2σ)

and two spinor eigenmodes for γ3∆f
.
= M,−(M + 2σ), subject to either (4.216) or

(4.230) projection conditions. The precise map which pairs the scalar and spinor

eigenmodes is the following; Given a spinor eigenmode Ψ for γ3∆f
.
= M , one can

show that

ε̄Ψ (D.5)
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is a scalar eigenmode for ∆b
.
= −M(M + 2σ). On the other hand, one can define

a pair of spinors

Ψ1 = γ3εΦ , Ψ2 = iγmεDmΦ + γ3ε

(
σΦ + i

q

2f

)
Φ , (D.6)

where Φ is a scalar eigenmode for ∆b
.
= −M(M + 2σ). One can show that

MΨ1 + Ψ2 , −(M + 2σ)Ψ1 + Ψ2 (D.7)

are the eigenmodes for γ3∆f
.
= M and γ3∆f

.
= −(M + 2σ) respectively.

Any modes in such a pair can not contribute to the one-loop determinant due

to the cancelation. As a consequence, the nontrivial contributions arise from the

eigenmodes where either the map (D.5) or the map (D.7) becomes ill-defined.

Unpaired spinor eigenmode If a spinor eigenmode vanishes when contracted with ε̄,

there is no scalar partner. Such an unpaired spinor eigenmode takes the following

form

Ψ = e−iJϕh(θ)ε̄ , (D.8)

where

iJ =

(
Ml + σl + i

q − 2

2

)
, (D.9)

and

1

f
∂θh = tan θ

(
J

l
− q − 2

2l
+ i

q − 2

2f

)
h . (D.10)

For the normalizability, one has to require J to be non-negative. Note that the

function h(θ) is even under the parity, i.e., h(θ) = h(π − θ). One can show that J

should be further restricted to be even (odd) to satisfy the projection conditions

231



Appendix D. One-Loop Determinant on RP2
b

in the even (odd) holonomy, i.e.,

Ml =i
(

2k + 1 + iσl − q

2

)
for even holonomy ,

Ml =i
(

2k + 2 + iσl − q

2

)
for odd holonomy , (D.11)

with k ≥ 0.

Missing spinor eigenmode Suppose that a scalar eigenmode Φ for ∆b
.
= −M(M +

2σ) fails to provide two independent spinor eigenmodes via the map (D.7). It

happens when

Ψ2 = −MΨ1 , (D.12)

which leads to a missing spinor eigenmode for γ3∆f
.
= M . One can verify that

such a scalar eigenmode Φ missing a spinor eigenmode takes the following form

Φ = eiJϕχ(θ) , (D.13)

where

iJ = −
(
Ml + σl + i

q

2

)
, (D.14)

with J ≥ 0 for the normalizability, and

1

f
∂θχ = tan θ

(
J

l
+
q

2l
− q

2f

)
χ . (D.15)

To satisfy the projection condition in the even (odd) holonomy, one can show that

Ml =− i
(

2k − iσl +
q

2

)
for even holonomy ,

Ml =− i
(

2k + 1− iσl +
q

2

)
for odd holonomy , (D.16)

with k ≥ 0.
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One-loop determinant Combining all the results (D.11) and (D.16), one can show

det ∆f

det ∆b
'

det γ3∆f

det ∆b
'


∏
k≥0

2k+1+iσl− q
2

2k−iσl+ q
2

for even holonomy∏
k≥0

2k+2+iσl− q
2

2k+1−iσl+ q
2

for odd holonomy
, (D.17)

where the symbol ' represents the equality up to a sign independent of σ. From

the comparison to the results in section 3, one can fix the sign factor by the unity.

These results are in perfect agreement to those for RP2.

Vector multiplet

We now in turn compute the one-loop determinant from the vector multiplet. De-

noting the various fluctuation fields as follows

A = Aflat + a , σ1 = ζ , σ2 = σ + η , (D.18)

let us decompose all the adjoint fields (a, ζ, η) into Cartan-Weyl basis. From now

on, we focus on the W-boson of charge α, a root of G, and its super partners. The

kinetic Lagrangian for the vector multiplet is chosen as a Q-exact regulator.

As explained in [9] and [13] that the four bosonic modes contain two longitudinal

modes with a ∼ Dη that correspond to a gauge rotation and the volume of the

gauge group G. Using the standard Fadeev-Popov method, one can argue that

these longitudinal modes can not contribute to the one-loop determinant. Thus we

need to find how two transverse modes with ∗D ∗ a = 0 can be paired with spinor

eigenmodes.
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The kinetic operators of our interest are

∆b =

(
− ∗ d ∗ d+ (α · σ)2 − ∗ d 1

f

+ 1
f ∗ d − ∗ d ∗ d+ 1

f2
+ (α · σ)2

)
,

∆f =iγmDm + (α · σ)γ3 , (D.19)

with the gauge choice ∗d ∗ a = 0. The operator ∆b acts on the fluctuation fields

(a, ζ) subject to the projection conditions (4.242) for the even holonomy and the

twisted projection conditions for the odd holonomy. Instead of ∆b, it is convenient

to consider the following operator

δb ≡

(
iα · σ − ∗ d
∗d 1

f + iα · σ

)
. (D.20)

One can show that the operator δb satisfies the relation δ2
b = ∆b + 2i(α · σ)δb, or

equivalently,

δb
.
= −iM ,+i(M + 2α · σ) ↔ ∆b

.
= −M(M + 2α · σ) . (D.21)

Let (A,Σ) and Λ be bosonic eigenmodes for δb
.
= −iM and fermionic eigenmodes

for γ3∆f
.
= −M . They can be shown to be mapped to each other by

A = −i (M + α · σ) ε̄γmΛem − d
(
ε̄γ3Λ

)
, Σ = (M + α · σ)ε̄Λ , (D.22)

and

Λ =
(
γ3γmAm + iΣγ3

)
ε . (D.23)

Again, one can have nontrivial contribution to the one-loop determinant from either

unpaired or missing spinor eigenmodes.
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Unpaired spinor eigenmodes An unpaired spinor eigenmode, annihilated by the

map (D.22), takes the following form

Λ = e−iJϕh(θ)ε̄ , (D.24)

where

i (J + 1) = Ml + α · σl , (D.25)

with J ≥ 0 due to the normalizability, and

1

f
∂θh+ tan θ

(
1

f
− J + 1

l

)
h = 0 . (D.26)

Note that the function h(θ) is even under the parity, h(π − θ) = h(θ). In order

to satisfy the projection conditions in the even (odd) holonomy, the non-negative

integer J should be further constrained to be odd (even), i.e.,

Ml =i (2k + 2 + iα · σ) for even holonomy ,

Ml =i (2k + 1 + iα · σ) for odd holonomy , (D.27)

with k ≥ 0.

Missing spinor eigenmodes One can show from the map (D.23) that a bosonic

eigenmode with missing spinor partner can take the following form

A = ei(J+1)ϕχ(θ)
(
e1 + i cos θε2

)
, Σ = iei(J+1)ϕχ(θ) sin θ , (D.28)

where em denotes the vielbein of RP2
b , and

i(J + 1) = − (Ml + α · σl) , (D.29)
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and

1

f
∂θχ+ tan θ

(
1

f
− J + 1

l

)
χ = 0 . (D.30)

The normalizability requires J to be non-negative. The projection conditions in

even (odd) holonomy are satisfied if J are even (odd), i.e.,

Ml =− i (2k + 1− iα · σ) for even holonomy ,

Ml =− i (2k + 2− iα · σ) for odd holonomy , (D.31)

with k ≥ 0.

One-loop determinant Collecting all the results (D.27) and (D.31), the one-loop

determinant from the vector multiplet becomes

det ∆f√
det ∆b

'
det γ3∆f

det δb
'

{ ∏
α∈∆

∏
k≥0

2k+2+iα·σ
2k+1−iα·σ for even holonomy∏

α∈∆

∏
k≥0

2k+1+iα·σ
2k+2−iα·σ for odd holonomy

. (D.32)

By comparing the results to those in section 3, one can fix the sign factor by the

unity. Again, these results perfectly agree with those for RP2.
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초록 

1 차원과 2 차원 초대칭 이론에서의 

지표와 분배 함수의 정확한 계산과 끈이론에의 응용 

김 희 연 

서울대학교 물리천문학부

이 논문에서는, 칼라비-야우 다양체에 옹골화된 초끈 이론의 기하학적 

구조를 조사할 수 있는 두 가지 방법을 소개한다. 첫째로, 위튼 지표를 

소개하고, 이것이 초끈 이론에 어떻게 사용되는지 살펴 본다. 가장 흥미로운 

예로, II 형 초끈 이론을 칼라비-야우 다양체에 옹골화하여 얻어지는 4 차원 

N ൌ ሺ2,2ሻ  초대칭 게이지 이론의 BPS 상태의 개수를 세는 문제에 대하여

살펴 본다. 특히, 이 이론의 벽넘기 현상을 설명하는 데에 위튼 지표가 

어떻게 사용되는 지에 집중한다. 둘째로, 최근 개발된 2 차원 분배 함수와 

칼라비-야우 다양체의 케일러-모듈라이 공간의 기하학 사이의 관계에 

대하여 살펴본다. 특히, 2 차원 구, 반구 그리고 실사영 평면 위에서 계산한 

N ൌ ሺ2,2ሻ  게이지 선형 시그마 모형의 분배 함수가 케일러 퍼텐셜, D-

브레인과 오리엔티폴드의 중심 전하를 계산한다는 사실을 보인다. 

주요어: 지표, 분배 함수, 끈이론, 초대칭, 칼라비-야우 다양체 

학번: 2009-20408 
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