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Abstract

Exact Calculations of Indices and Partition Functions
for 1D and 2D Supersymmetric Theories and Their
String Theory Applications

Heeyeon Kim
Department of Physics and Astronomy
The Graduate School

Seoul National University

In this thesis, we introduce two ideas of string theory which can examine geomet-
rical structure of the spacetime compactified on a Calabi-Yau manifold. The first
half of the thesis focuses on the Witten index and their applications in string the-
ory. As one of the most interesting example, we review the counting problem of
BPS states in four-dimensional N' = 2 supersymmetric gauge theory obtained from
the Calabi-Yau compactification of type II string theory. Especially, we concen-
trate on how the Witten index can be used to prove the wall-crossing phenomena
therein. At the second half, we outline recently revealed relation between two-
dimensional partition functions and geometry of the Kahler moduli space of the
Calabi-Yau manifolds. We show that the partition function of N = (2,2) gauged
linear sigma model on S%, D? and RP? calculates the Kahler potential, central

charge of D-brane and Orientifold of A-model respectively.
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Chapter 1

Introduction

String theory is a unique quantum theory in which the gravity consistently arises.
As we have learned from the Einstein’s theory of general relativity, the theory of
gravity is closely related to the geometry of the spacetime which has sophisticated
mathematical structures. Then what kind of geometry can string theory probe and

which mathematics is associated to this new theory of gravity?

In order for the supersymmetric string theory to be well-defined, the spacetime
should be ten-dimensional. In addition, if we want to obtain a four-dimensional
field theory which preserves certain amount of supersymmetries, the six remaining
directions should be compactified on a so called Calabi- Yau manifold. This space

is defined by a complex manifold X whose first Chern class ¢;(X) vanishes.

Understanding the mathematical structure of the Calabi-Yau manifold is extremly
important since the field theories in four-dimensional spacetime are determined by
the geometry and topology of the compactified manifold X. However, since the
Calabi-Yau manifold is very complicated space that a single non-trivial metric is
not known, the standard geometrical approach cannot be easily applied. Actu-

ally, these efforts of string theorists to describe the dynamics of two-dimensional
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worldsheet theory on Calabi-Yau manifolds offered a lot of new insights to modern

mathematics.

The most prominent example is the mirror symmetry. This implies the equivalence
between two topologically different Calabi-Yau manifold, which leads to a duality
between symplectic geometry and complex geometery. It was first discovered by
string theoriest [1], and later motivated the beginning of new branch of pure mathe-
matics. Mirror symmetry is very non-trivial duality in mathematical point of view,
but can be naturally understood in terms of the string theory. This can be easily
seen from the mass spectrum of the string exitation with one direction compactified

on a circle of radius R,
7+E(N+N—2). (1.1)

Here n is a momentum mode and m is the winding mode of the string around the
compactified direction. One can easily see that the spectrum is invariant under the
exchange (R,n,m) <> (Va'/R,m,n). This is what we call a T-duality which is the

prototype of the mirror symmetry.

Interestingly, the mirror symmetry relates the classical theory in one side (B-model)
and the fully quantum corrected theory (A-model) on the other side. Hence, in
order to calculate physical quantities for the A-model, one can use the mirror
symmetry and readily obtain the results by looking at their B-model counterparts.
However, until very recently, this duality has been proven only for very limited case,

when the Calabi-Yau is obtained from the U(1) quotient of the Kahler manifold.

2]

Having understood the structure of the backgroud spacetime, we consider objects
which are embedded in the lower-dimensional submanifolds of the Calabi-Yau am-
bient space. This brings us to the study of D-branes in open string theory. Since

the existence of D-branes breaks the translational symmetry of the spacetime, it

] 2 1_]|

-y
=]
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Chapter 1. Introduction

also breaks the spacetime supersymmetry. In order to preserve the half of the su-
persymmetry, it should satisfy the BPS (Bogomol’'nyi-Prasad-Sommerfield) bound,
which imply

M=1Z|, (1.2)

where Z is the central charge of the supersymmetry algebra. This condition is
translated into the volume minimizing cycles in the Calabi-Yau ambient space,
whose solution is given by solving non-linear differential equations which are ex-
tremly difficult to solve in general. But it can be rather easily dealt with in view
point of the supersymmetric theory, due to the linear killing spinor equations.
Since the D-branes wrapping supersymmetric cycles inherit many properties of the
ambient space, these objects are also crucial in studying the Calabi-Yau manifolds

and mirror symmetry thereof.

Apart from its mathematical importance, studying BPS objects has strong mo-
tivations in string theory. Because of its topological nature, these states remain
invarient along the continuous change of parameters of the theory. This property
enables us to study the non-perturbative aspects of the supersymmetric theories.
Since they can probe the strongly coupled regime of the theory as well, it plays a
significant role in the proof of various dualities in string theory. Furthermore, BPS
states are strongly believed to be candidates of the blackhole microstates, whose
origin is one of the central questions that true quantum gravity should be able to

answer.

In this thesis, we introduce recent developements of string theory to understand the
structure of the Calabi-Yau manifold and D-branes wrapping supersymemtric cycles
in it. The key framework is the sigma model. Superstring theory can be most easily
described by a two-dimensional supersymmetric non-linear sigma model (NLSM)
whose target space is the Calabi-Yau manifold X. The worldsheet scalar fields

¢ : X — X provide coordinates of the target space, and the fermions are valued
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in pull-back of the tangent bundle T'X. It provides very useful tool to understand

the topology of the spacetime, as we shall see in the following chapters.

However, for a complicated manifold such as Calabi-Yau, since we do not have a
metric it is difficult to explicitly write down the NLSM Lagrangian and calculate
some useful quantities. In order to deal with this situation, Witten [3] introduced
the concept of the gauged linear sigma model (GLSM). As the name indicates, it has
a linear space such as CV as a target space. Interestingly, when we properly choose
the field contents and potentials of the theory, and do the renormalization group
flow, it reduces to the NLSM whose target space is a Calabi-Yau manifolds at the
infrared. This machinary turns out to be very powerful to investigate the special
properties of the two-dimensional worldsheet theory such as Calabi-Yau/Landau-

Ginzburg correspondence and the mirror symmetry.

Given these frameworks, we introduce two main tools which encode the topological
and geometrical informations of the supersymmetric theories. These are the Witten
index and partition function. Supersymmetric theories have exceptional property
that theses quantities are exactly calculable. First of all, the Witten index is defined
by the expression

Tr(-1)F, (1.3)

where F' is the fermion number operator. Originally, the concept of the index was
first introduced by mathematicians Atiyah and Singer [4] at the beginning of 60’s, in
order to characterize the topological properties of the solution space of differential
equations. Witten later found that there are similar mathematical structures in
the supersymmetric quantum mechanics, where (1.3) can be used as a measure of
spontaneous breaking of the supersymmetry. [5] Furthermore, this quantity turns
out to be topological, i.e., invariant under the continuous deformation of the theory.
This enables us to deform the theory to the particular limit where we can exactly

calculate this quantity.
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The Witten index has tons of applications in various supersymmetric theories.
The most prominent example is the gauge/gravitational anomalies in quantum
field theory. Alvarez-Gaume and Witten [6] translated the anomaly calculation
problem into the index theorem of the supersymmetric NLSM. From this work,
one can easily extract one-loop anomalies of each field contents in a quantum field

theory just by considering the Atiyah-Singer index theorem.

Secondly, one can use the Witten index to count the number of BPS states, so
that it can be used to probe the non-perturbative properties of the field theories.
Interesting observation is that, for theories with small number of supersymmetries,
the number of BPS states are not constant, but only a piecewise constant on the
moduli space. There exists a co-dimension one wall in the moduli space, and certain
BPS states abruptly disappears across the wall. This is the wall-crossing of the
BPS states. Understanding this phenomenon is of particular importance both in
physics and mathematics, and we will see that again the Witten index and its

variation play central roles in here.

More recently, the partition function arose as another powerful tool for probing the
geometry of the Calabi-Yau space. From the pioneering work of Pestun [7], there
has been much progress on calculating the partition funtions on spheres in vari-
ous dimensions. For theories with superconformal symmetry, one can consistently
map the flat Lagrangian on a sphere with proper curvature corrections. Via the
localization procedure, it is possible to exactly calculate the partition functions for

these theories.

Along the line of these developement, partition function of N = (2,2) GLSM on
two-sphere has been calculated. [8, 9] Surprisingly, it turns out that this quantity
calculates the exact Kahler potential of the A-model moduli space, which has been

extremly difficult to probe due to the worldsheet instanton contributions.

This relation can be further investigated to the worldsheet with a boundary or a

crosscap, which corresponds to the D-branes or Orientifolds wrapping the subsycles

5



Chapter 1. Introduction

of the Calabi-Yau manifold. In this case, the corresponding GLSM is written on a
hemisphere or a real projective plane respectively. We will see that, for these cases
as well, the partition functions provide very useful information on the D-branes or

Orientifolds coupled to the spacetime curvatures.
This thesis is organized as follow.

Chapter 2 summarizes the prerequisites which are required for discussions in the
following sections. First of all, we present the mathematical and physical definitions
of the index and relations between them. We provide various 0 4+ 1 dimensional
NLSM Lagrangian, and see how each of them can be used to derive the index the-
orems for various operators. Most importantly, we give the supersymmetric proof
of the Atiyah-Singer index theorem, which will be prequently used in the various
physical situations. After that, as a direct application of index theorem, we review
the pioneering work of Alvarez-Gaume and Witten calculating the gauge/gravi-
tational anomalies in quantum field theories. At the last section of this chapter,
we include the brief summary of the technique of supersymmetric localization de-
veloped by Pestun, which will be mainly utilized for the calculations of various

partition functions.

As an interesting application of the index theorem, Chapter 3 discusses the BPS
states of 4d N’ = 2 theory and wall-crossing phenomena therein. We first ouline
the 4d N' = 2 supersymmetric gauge theories obtained from the Calabi-Yau com-
pactification of type II string theory, and present the work [10] where the Coulomb

branch wall-crossing formula was derived with the first principle.

Chapter 4 studies the relation between the two-dimensional partition function of
N = (2,2) GLSM and various amplitudes in A-model string theory. First of all,
we reviewed the basic properties of the two-dimensional N' = (2,2) GLSM and
topological string theories. [3, 11] The second section we summarized recent results
on two sphere partition function that exactly calculates the Kahler potential of the

A-model moduli space. [12, 13] Next, we turn to the discussion of the D-brane and

6
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Orientifold. In this regard, at the third section, we review how we have determined
the topological coupling of these obejects traditionally, via the anomaly inflow
mechanism. This gives the central charges of such objects at the leading order of
o/. Finally, at section 4 and 5, we review the exact calculation of hemisphere and
RP? partition function, which turn out to give the o/-exact central charge in the
presence of D-branes and Orientifolds respectively. [14, 15] Especially, at section

5, we present the work [15].



Chapter 2

Exact Calculation of
Supersymmetric Indices and

Partition Functions

Supersymmetric index and partition function are the most important concepts in
studying supersymmetric field theories. These quantities are exactly calculable
for many cases, which enables us to study the non-perturbative aspects of the
theory. First of all, the Witten index, defined by Tr(—1)f, was first taken from
mathematics to physics by Witten [5], as a measure of spontaneous breaking of the
supersymmetry. As a preliminary for the following sections, we review physical and
mathematical definitions of the index, and present a physical proof of the Atiyah-
Singer index theorem [4] which states that the analytical index is given by particular
topological invariants of the theory. From this, we can see that the index calculates
a topological invariant of the supersymmetric quantum field theory. After that,
as an interesting application, we study the relation between gauge/gravitational

anomalies and the index theorem, following the reference [6]. Finally, we briefly
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review the recently developed methods of calculating exact partition functions for

supersymmetric gauge theories, on which the section 4 is based.

2.1 Mathematical and Physical Definition of Tr(—1)"

Consider 0+1 dimensional supersymmetric quantum mechanics with finite volume

which has complex supercarges Q*, @**. The algebra of these operators are
{Q,Q7}=20"H , {Q",Q}={Q",Q7}=0. (2.1)

The Hilbert space can be divided into the fermionic and bosonic states by intro-
ducing an fermion number operator (—1)", which satisfies {Q, (—1)"} = 0. Then,
we can see that every energy eigenstates with non-zero eigenvalue E are paired: If

we define a real supercharge Q = %(Q + Q*), we have
Q|Ep) = VE|Er), Ql|Ep)=VE|Ep), (2:2)

since Q? = H. This equation further implies that supersymmetric states (Q|E) =
0) are always ground states (H|E) = 0), and inverse is also true since Q is a
Hermitian. On the other hand, the ground states are not necessarily paired, and
their number ng(F = 0) and np(E = 0) can be in general mismatch. Note that
their difference np(E = 0) —np(E = 0) does not change as we tune the parameters
of the theory, since only paired states can be excited to the non-zero energy states
and the theory is gapped by finite volume. From this simple argument, we can say
that

lim Tr(—1)Fe ™ = ng(E =0) — np(E =0) (2.3)

B—o00
can be thought of as a topological quantity. If follows that this quantity is indepen-

dent of the value of 3. If we write our states as '(|Eg),|EFr)), then we can express
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(o
a-5(2 ) o

Then, fermionic and bosonic ground state are defined by Q|Ep) = 0 and Q*|Er) =
0, which leads

the supercharge as

Bli_)rgo Tr(—1)e P = ker Q — ker Q* . (2.5)
This expression reminds us a parallel story in mathematics. Consider an elliptic
operator! D : I'(M,E) — I'(M, F) defined on bundles E, F over M. When we
try to solve a differential equation DX =Y with X € I'(M,E), Y € TI'(M, F),
elements of ker D and coker D contains useful information about spectrum of the
solutions: ker D is a space of solutions of homogeneous equation DX = 0, while
coker D = Y/ImD can be thought of as a space of constraints which Y should satisfy
to ensure the existence of a solution. If both of the space is of finite dimensional,
we call D a Fredholm operator. For a Fredholm D, we can define analytical index
of D as follow
Ind D = dimker D — dim coker D . (2.7)

This equation can be further managed into

Ind D = dimker D — dim coker D
= dimker D — (dimY — dimIm D)
= dimX —dimY

!The operator D : T(M,E) — I'(M, F) is said to be elliptic when the symbol of s¢(D) is
invertible. The symbol is defined by dimEXxdimF" matrix s¢(D) = > _n AMe (x)épr where N
is order of D. Here, the matrix A defines the operator D by the relation

[Dy(@)]* = Y AMa(@)Duy”(2) | (2.6)
|[M|<N

where y(x) is a section of the bundle E. [16]

10
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Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

where we used the fact that these spaces are finite dimensional. As we can see
from the last equation, this quantity does not depend on the details of the operator
D, which can be regarded as a rigid quantity. Indeed, the Atiyah-Singer index
theorem states that this is a topological invariant of the theory: For an elliptic
operator D over a compact complex manifold M without boundary, the index is

given by following quantity [17]

M e(M) '
where n is complex dimension of M. Here the ch(E), Td(M), e(M) are characteris-
tic classes which quantify the non-triviality of bundles, being topological invariants
of the theory. See Appendix A for definitions and properties of various charac-
teristic classes. For a Fredholom operator, we can show that coker D = ker D*,
where D* is an adjoint of D. This and eq. (2.5) allows us to identify D with @
in supersymmetric theories. Furthermore, we can say that there exists following

correspondence between mathematical and physical definition of the index.

Differential Eq. SUSY QM
D Q
ker D bosonic ground state
ker D* fermionic ground state
DD* + D*D H
D is Fredholm theory is gapped
Ind(D) Tr (—-1)F

Relying on this correspondence, we are going to prove the Atiyah-Singer index
theorem with the supersymmetric quantum mechanics using the path integral rep-
resentation of the regularized index Tr(—1)Fe=#H. The standard argument of time

slicing, we get the path integral of Euclidean action,
T )7 = [ 186] @t pgoe ¢ 4 EEOONED )

11
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Although the indices are defined in the limit 5 — oo, we are going to use topological
property of this quantity which enables us to work in the limit 8 — 0 instead,
provided that the theory is gapped. In this limit, the higher order interaction
terms become irrelevant, and the quadratic determinant gives an exact answer.
Finally, the insertion of (—1)f" acts as changing boundary condition of fermions
from anti-periodic to periodic one. The following section reviews the original works
by Friedan,Windy and Alvarez-Gaume. [18, 19]

2.2 Supersymmetric quantum mechanics and index the-

orem

2.2.1 Euler number

As the first example of (2.9), let us look at the following sigma model Lagrangian
with n real scalar fields ¢* and two-component real fermions 1!, (a = 1,2), on the

even dimensional target space M with metric g;;.

1 e g . 1 o
L = 595(O)'S + S0 Dl — R biudes (2.10)

In the Euclidean signature, it becomes

Lp= §gij(q§)¢ ¢ + igijwaD’rwé + ZRijkllblw{wglﬁé ; (2.11)

where thé = %@Z)& + I fdgbkwé Bosonic fields are quantized as

[pi, '] = —id] (2.12)

12
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while the fermionic fields should be quantized in terms of flat indices such that

P2 = ;2% If we complexify with y = %(ﬂfl + i9),

{Xa’y(b} — §ab. {Xaij} _ {Xa»—(b} —0. (2.13)

We can check that the Lagrangian (2.10) is invariant under the following super-

symmetry transformation.

5¢1 — EX*i _E*Xz' ’
o' = ied’ —F;-keijxk , (2.14)

where € is a one-component complex supersymmetry parameter. We will denote
it as N/ = 2 supersymmetry. Via the Noether procedure, we can find a complex

supercharge,

Q = X (pi+iwmb>_(axb>a

Q" = ¥ (p— iwiaxx") - (2.15)

In this simple non-linear sigma model, the bosonic fields maps worldsheet coordi-
nate to the target space M, while fermions are spinors valued in pull-back of the
tangent bundle, ¢*(T'M). This and the quantization condition (2.13) imply that
acting a x' corresponds to generating a one-form dz’ on M. The Hilbert space

forms a exterior algebra A*(M), where the wave functions can be written as

Qi iy (a:)eila1 ceeettg, XM |0) . (2.16)

13
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The action of Q* on this state is

)’(bejb(—i(‘)jﬁil...z-k (a:))eilal cee €ikak)zal cee )Zak|0>
k
+ Z)Zbeijilmik () (—i0je"iy,)e gy - - - €lig, - €% g, XM - - X*|0)
=1
+ Xbeijia”'ik (.Z’) (iwicdicxd)eilm T eikak)_(al X ‘0> : (2'17)

Note that the last line can be rewritten as

k
S Qi (@) (100, )M gy - iy - g X XHO) . (2.18)
=1

Then, using the torsion free condition
de+wANe=0, (2.19)

we can see that the second and the third line of eq. (2.17) cancels each other. It

follows that the supercharges and Hamiltonian corresponds to

Q +— d,
QF +— 0 (=—xdx), (2.20)
H:E{Q,Q*} +—— do+dd .

2

This relation implies that the ground states of this supersymmetric theory corre-
spond to the harmonic forms on M. It leads to
dim M
Tr(—1)Fe 7 = Y (1)t = x(M) | (2.21)

k=0

where by are k th Betti number and y is the Euler number of M.

Explicit computation of the index can be done by path integral of the Euclidean

14
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Lagrangian (2.11). Since the saddle point of the Largrangian is given by the con-
stant configuration of each fields, we can expand it as ¢ = ¢g+ ¢ and 1 = g+ .
Using the Riemann normal coordinate (defined by g¢;j(¢0) = i, Orgij(¢o) = 0),

quadratic expansion gives
1 e, L isigo 1 i 1 d ik ol
= §5z‘j5¢ o¢) + 5%‘51%51% + ZRijkl(d)O)wOlwmwOQwOQ : (2.22)

The path integral can be easily done by

_ 1)4/2 A - i i det/(8,)21/2
Tr(_1>F€ BH — 5d/2 /H 0 Hd¢61d¢62 eZRlel(%Wm%W&%z {dem’((a?))} ,
1 T

where d = dim M. The numerical pre-factor comes from the normlization of the
bosonic and fermionic zero mode, (If ng and @@0 are unit normalized quantities,
dg% d% d¢0 dwo = /Bdy)y.) and the sign (—i)%? comes from the fermionice

zZero mode measure,

dxodxy - - dxadxg = (—1)Y2dpg gy - - - dipdy dipy - (2.23)

Note that, in order to saturate the fermion zero mode integral, only d/2 power of
the exponential contributes, and it exactly cancels the S-dependence in front of the

integral. Hence,

1)4/2 d
_N\F-BH _ (—1) i1j1-tas2das2 kilikasalase
Tr(-1)"e (27)4/224/2(d /2)! /Hd%
X Ry jikaty - Rld/z]d/zkd/zld/2
1
= W/Pf(nij) , (2.24)

where R;; = %Rijkldxk A dz!. This is nothing but the Gauss-Bonnet formula.

15
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2.2.2 Hirzebruch signature

Note that the Lagrangian (2.10) has a following symmetry:

U = (039)a (2.25)

which in terms of x

X=X, X X (2.26)

This symmetry of exchanging y and x* corresponds to the Hodge dual operation *
: AF(M) — A?*(M) in the Hilbert space. Since * commutes with the differential

operator, the following is well-defined.
Trxe PH (2.27)

If we write the standard inner product on A(M) as (o, 8) = [« A *3, the index
defined by (2.27) can be thought of as the number of positive eigenvalue minus
negative eigenvalue of “topological” inner product («, *3), for middle-dimensional

forms « and . Hence we can say that
Tr « e P = (signature on M) . (2.28)

Note that this is non-zero only for 4n dimensional M. In the path integral rep-
resentation, the inserted operator * plays a role of flipping boundary condition of
the negative chirality fermion. Hence we impose the periodic boundary condition
to bosonic fields and negative chirality fermions 12, and anti-periodic boundary
condition to ;. It follows that only ¥s and ¢ have zero modes, and quadratic

expansion can be written as
1 e, Lo o d o1 iciiok ol L i dork il
Lg = §5ij5¢ o¢) + 5%’#@}#@ + ZRz’jkl5¢ 0yl Pagthag + ZRijkl(S%(S%%o%o .

(2.29)
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Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

Then the determinant reads

1/2
det [62-]-87 + gRijkl@bSOWQO] o det' [0,

1/2

T —-BH _ d/2 d¢0 d 7
rxe - 5d/2 H H Y20
=1

1/2
det’ [%‘33 + gRijkl¢§o¢éoaf] .

_ (i) / H 4% Hdw20 H x;io}fixa (2.30)

where z,’s are the skew eigenvalues of = R;ju5vh, valued in SO(d). Note that
from the first to second line, only 1/2 power of ng‘jle/)gowlzo contribute to saturate
the fermionic zero mode integral, and this, combined with the definition of z,
cancels the 273 dependent prefactor exactly. The ' indicates the omission of the
zero mode, which yields additional x, in the numerator. The sign (—i)%? comes

from the fermionic zero mode measure,

_ /2 g /2 .
dxbdxh - dxg *dxg” = (—i) 2y - dus | (231)
where y' = %( %ifl + i3"), for i = 1,--- ,n/2. By noting that we can express

fermionic zero mode integral into the spacetime integral with the identity

/dxl .. .agggd/dw1 A Cliyoo WM - - - pHad = (_1)d/2 /M Clyoopyda - - dahd
d

(2.32)
This formula can be neatly summarized in terms of the £-class,
—gH _ U
Tr*e = @mie /M L(TM) , (2.33)
where
az
L(TM) = el 2.34
( ) 1_‘[1 tanh z, ( )

For definitions and properties of various characteristic classes, see appendix A.
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Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

2.2.3 Dirac operator

One of the most important example of the index theorem is the Dirac A-genus.
For a d-dimensional target manifold which is a spin, we consider the following

Lagrangian with d real fermions.

L = 59ij(9)9'¢’ + 591(#)9" D! (2.35)
Note that this Lagrangian can be obtained from (2.10) by setting 1} = % = %W.
Fields are quantized as
pi o] = —idl, {unut)=o. (2.36)
Since the fermions satisfy the Clifford algebra, we find a correspondence
(RS i’ya . (2.37)
V2
This Lagrangian has one supercharge (N = 1)
i
Q=u" <pu - zwuabwaw”> ! (2.38)
which plays a role of the Dirac operator
I 1 ab
B = —59 O+ 0™ (2.39)

and H = Q? = v#4*D,,D,. Hence Tr(—1)" in this case calculates the index of the
Dirac operator. The quadratic expansion of the Euclidean Larangian, again in the

Riemann normal coordinate reads

1 .1 1 .
Lg) = §5ij(5¢l5¢] + §5ij5¢larwj + sz‘jklfsd’ld(ﬁ]lﬁgwé : (2.40)
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Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

Then the index can be calculated as

d
) ' de z det’& 1/2
TH(-1)F e = (—@>d/2/Hr0Hd T
Pl 2T det’ 82+ Rz]klwowoa}

o ¢ dg n>0(2m> 1
= Z)d/Q/iHﬁ/%Hd%H o (%Tﬁ_wz) — (2% 1

where x; are skew eigenvalue of %Rijkﬂ/}g @bé. The last factor can be regularized as

2nm ) 2nm s
H = ;E\%epoln <ﬁ)n

Xq

n>0 n>0
2 s
— lg% exp7%;J [ln (g) n (Inn) ]
= e [ (27 c0) - 0)

= /B (2.42)

where we used ((0) = —1 and ¢’(0) = —In /2. The first factor gives

[T.~0 (%) _ Pr/2

si ) 2.43
Moo (2 — i) sinh B/ (2.43)

which comes from the facts that the LHS has a pole at x = —2’}3”, and the limit

x; — 0 gives 1. To summarize,

§)dr2 -
Te(—1)Fe 7 — ﬁd/Q / H ddp H %Hmﬁh 5; 2 5 24
= (;ﬂw / A(TM) . (2.45)

Note that from the first to second line, 8 pre-factor cancels when we saturate the

fermionic zero modes, and the sign factor again comes from (2.31) and (2.32). For
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the last line, we defined A genus by

Ta/2

_— . 2.46
sinh z,/2 (246)

ATM) =]]

a
2.2.4 Dirac operator coupled to external gauge fields

Now, let us consider the previous N/ = 1 Lagrangian, now coupled to the non-
abelian external gauge field. We introduce another complex ghost fermion n%, 7,

to incorporate the gauge symmetry labeled by «. Lagrangian can be written as

L= 5008 + o806 Dy + ima (D) +

i .
§Fija5¢1¢]nanﬁ ;o (247)
where Df'n® = 9™ + i A 517'8 is a gauge covariant derivative. Quantization of

fermionic fields are given by
{w,w} — §96, {ﬁa,nﬁ} = g . (2.48)
We will restricts our trace to the one particle state of 7 given by
7%|0), where n¢|0) =0, (2.49)

which restricts states to be in a particular representation, not their tensor product
generated by the multiparticle states of 1. Supercharges are shifted by the gauge
field:

i

Q = TW (p,u Qwuabd)awb + ﬁaAu,abnb> . (2'50)

This corresponds to a Dirac operator couple to external gravitational and gauge
fields,
1

1

V2

Before we do the path integral, we first perfom the quantization of the ghost fields
F

Wyapy™ — 1ALT) . (2.51)

n,7. As usual, (—1)f" imposes the periodic boundary condition to the ¢’ and 1,
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and anti-periodic boundary condition to the 1. The quadratic fluctuation near the

saddle point ¢ = ¢y and ¥ = )y gives

. 1 o1 S G 1 .
L —1%q = §5ij5¢ oo’ + §5ij5¢ ol + §Fz‘jw5¢ d¢?n*n” + ZRijkl(SQb STl

1 C 1
+§Fija55¢15¢]77a77 + §Fz‘jaﬂ¢0¢gﬂ7a775 (2.52)

where Fy; = 0;A; — 0;Ai + [A;, Aj], written in Hermitian basis. One-loop determi-

nant can be calculated as

. d¢ 1 1 XN et
lim (- i) /2 / H et ][ Ty exp <2Fija56¢ 567 776> (2.53)
y det’ (8, + Fijagwgngﬁanﬁ)l/?
(det’ 0-)1/2 det' (0 + Fyjapbibdn®n® + 3 Rijrpfvh)1/?

9

where Tr, denotes for the trace in the 7 space restricted to the one particle sector.

The determinant factor in the second line are evaluated as

det || <2gﬁ ZF) : (2.54)
w0 (257) (37 = iF = §Ryuebud)

where F' = Fz-jagdjéwéﬁanﬁ . As before, 1/]],,.((2n7/3) factors are regularized to

yield overall factor # We redefine the fermionic zero mode which absorbs this
factor:
1
o = —=to , dibo — /By - (2.55)
VB
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Then the integral becomes

lim d/Q/H 4o} “dif Try e3F det H (2nm — ZBF) —{2.56)

. dot 1 (x; + BF)/2
= 1 i)4/? / O iy T,y e2¥ : 2.
ﬁlg%) H d¢0 ¢ H sinh((z; + BF)/2) (257)
deé . 1 x;i/2
_ d/2 0 7t Tr F d . 2.
/H dwo n €2 H Slnh(xz/Q) ( 58)
The 7 integral should be evaluated in the one-particle sector. Note that
d 1 o8 i) md
(O exp | 577 Fagijtovy ) 1°10) = Trexp( Fyu600) | (2.59)
we have
P h(F) N A(TM 2.60
Tr(-1)" = —— A : .
(1 = Gy [, ) A AT (2.60)

where ch(F) is the Chern character of the gauge bundle on M.

2.2.5 Dolbeault complex

The last example of the index theorem is the Dolbeault index of Kahler manifold.

Kahler manifold is defined as a Hermitian manifold which admit a metric
ds? = 2g;5dd'de (2.61)

where

8)\9;w = aug)\zu gﬁguﬁ = 5&.9”5\ ) (262)

or equivalently, equipped with Kahler form

Q= g;dz' NdZ | (2.63)
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which is closed (df2 = 0). Note that, this condition ensures that there exist a
function K (¢, ¢) such that 9i; = 0i0; K (9, ¢). A Hermitian manifold is Kahler if
and only if there exist a almost complex structure J, : T,M — T,M with V,J = 0.

This can be locally written as

0 0
— P —idz*
Jp =id2' ® g idz! ® EETR (2.64)

From the definition, it is straightforward to see that only non-zero Chirstoffel sym-
bols are
e, Ths, (2.65)

and other components with mixed indices all vanish. It follows that, if we define
Rij = %Rijkldajk Adat, only R and Ry' are non-zero, which means that holon-
omy group is U(n) subgroup of O(2n). If there is additional constraint that the
Ricci curvature, the trace of R;7, vanishes, the holonomy group becomes SU(n)

subgroup. We call such a manifold as Calabi-Yau manifold.

The non-linear sigma model whose target space is Kahler manifold coupled with

abelian gauge field can be written as

s P At Y . .
L = g50'¢ + 5059 (O + Td"dh) + 50" (0 + T30"9)
A — A5 + Fphipd (2.66)
The quantization of fields are given by

(i, ] = —i6l, (7, &) = —isd, {0, @'} =6, (2.67)

where 7; = p; + A;, ™ = p; + A;. One can show that there are two supersymmetries

preserved. By the Noether theorem, the supercharges are

QR = W(pz +1A; + iwz‘ab&a@bb) )
Q = PP —ids + w1 PP) . (2.68)
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Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

Let us change the order of the fermions in the last term so that

Q = W(Pz‘ +iA; +iw;®, + iwibawb@a) )

Q = (P —id; +iw, + iwg, YY) (2.69)
If we tune the external gauge field by A; = —w;%,, the trace part of the U(n)

holonomy, the supercharge () becomes the holomorphic dolbeault operator 0, acting

on

Qoo (2, 2)€M gy - - ePE g ™ - 0h%(0) (2.70)

This is the element of A*¥C(M). On the other hand, if we choose A; = w;®_, the

1 a’
Q becomes a anti-holomorphic dolbeault operator 5, which acts on elements of
Ao’k(M),
Qﬂl"'ﬂk (Z’ 2)6[“&1 o eﬂk&kial o QZ)ELk |(_)> . (271)

This mechanism, locking the curvature with external symmetry is called twisting.
In the higher dimensional supersymmetric field theory, it plays an important role

in leaving some of the supersymmetries unbroken on the curved space.

The path integral can be easily evaluated with the procedure of the previous section.
For the anti-holomorphic operator 0, we substitute U(1) part of the curvature in

the place of the gauge bundle,

n n

" /2 xi/2 _ " / T; 5 79
(271)” /Mzn Ee Sinh(l’i/Q) (271')” Moy, £[1 1—e’ ( 7 )

where x;’s are eigenvalues of the matrix Rijkl*d(ﬁk A dqgl_. This is defined as the Todd

genus,

Td(M) = /M Hl_x7 (2.73)

which is defined only for the complex manifold.
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Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

2.3 Index and gravitational anomalies in string theory

2.3.1 Gauge/Gravitational anomalies in string theory

Anomalies refers to a breakdown of classical symmetry at the quantum level. In
general, existence of global anomaly offers useful information of the theory, for
example, in understanding pion decay into two photons in the standard model. On
the other hand, gauge/gravitational symmetries cannot be violated at any quantum
level since they govern unitarity and Lorentz invariance of the theory. Existence
of such anomalies implies the breakdown of the theory, and it is crucial to check

weather gauge/gravitational anomaly cancels out.

One of the most important application of the index theorems derived in the previous
section is calculation of anomalies. Among the various ways of obtaining expression
for anomalies, we are going to focus on the Fujikawa’s method [20], which explicitly
reveals the relation between definition of anomalies and their topological nature.
The first example is the 5 anomalies of a dirac fermion. Consider a Dirac fermion

coupled to the external spacetime curvature in even-dimensional spacetime:
L= / A% Py Dy (2.74)
The action has a symmetry under
P — el@any g heie(@an (2.75)

with a conserved current

75 = vy van v - (2.76)

In order to check the full quantum invariance, we should ensure the invariance of

the measure of the path integral. If v, are eigenvectors of the Dirac operator, we
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can expand the fields as
=Y antn(), (@)= buti(x) . (2.77)

Then [dy][dy] = [],, dandb,, transforms under (2.75) as

Hdandb —>Hdandb exp[ ZZ/dez/Jn T)Yar1n(x)| ,  (2.78)

which shows that the quantum theory is not invariant under this transformation.

This is the source of the anomaly. We can say that
(Auomaly) = [ dz 3" vn(o) 10 (e) (279
n

However this quantity is ill-defined since two fields are evaluated at the same point.

We introduce a regulator as
/dwzwn ) Yas1tn(z) = lim Tr 944 e PUD)* (2.80)

Note that the quantity at RHS is exactly what is calculated in the section 2.2.3,
the index of the Dirac operator. Quantum mechanics we need in order to evaluate

this quantity is N’ = 1 non-linear sigma model, which yields

d/2 )2
(Anomaly) = (on d/2/ Hs1nhxl/2 (2.81)

As can be seen in this example, anomalies are closely related to the various index
theorems, which will be further investigated in the next subsection. This method
was widely extended in Alvarez-Gaume and Witten’s work [6] where they calcu-
lated anomalies of string theory and their miraculous cancelation. Following this
pioneering work, we will review the procedure of calculating gauge and gravitational

anomalies of various basic fields contents in quantum field theory.

26



Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

Gravitaional anomalies of spin 1/2 fields

Gravitational anomaly implies quantum non-invariance of the theory under general

coordinate transformation and local Lorentz transformation, which act as

deen = n"0veu + (0un")e"
diey® = Al (2.82)

In the original work [6], they considered a particular combination of the two trans-

formations, which acts covariantly on the chiral spinor as 2

oy =-—n"Dy . (2.84)
Since we are considering chiral fermions, the relevant operator is ilp; = %lD(l —
74*1). Since this operator is not self-adjoint, the determinant is not well-defined.

Hence we expand as

¢ = Zan%, 1[) = ZBan s (2.85)

where for this case v, and y,, are eigenfunctions of (iIp;)t(ilp;) and (ilp;)(ilp;)
respectively. In Euclidean signature, we should integrate over both of them since
they are independent degrees of freedom. As in the previous example, we examine

the variation of the measure under the transformation (2.84). The Jacobian yields

[ kD~ [ oD (2.86)

2Actually it can be shown that the two transformations essentially gives the same anomaly.
[22] In particular, the anomaly only from the local Lorentz transformation can be written as [24]

(covariant anomaly (2.84))(n") = —2(Lorentz anomaly)(D[,7.;) (2.83)
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Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

This quantity can be calculated by proper regularization, which can be written as
lim Tr " (9" D,,) e PP (2.87)
B—0

The operator insertion (n*D,) can be exponentiated to the action, and we can
recover the original quantity by taking terms linear in 7 at the end. Exponentiated
term amounts to D,n,(xo)z"2" in the quadratic Lagrangian. The path integral
reduces to the calculation of the Dirac index, which was done in section 2.2.3, where

this operator insertion effectively shift the curvature as

Rm/paﬂ)gwg — Ruupa%%’ +4Duny (2.88)

If we denote the shifted skew eigenvalue as z}, the result can be written as

(2.89)

Igravity,l/Z = Zd/z/ HL/?

(2m)d/2 [y, - sinh x)/2 Dr-linear
Since the polynomial is even in zf, the integrand consists of the formal sum of
4n-forms. Since we should pick only Dn-linear terms, the anomaly can be obtained
from the 2d + 2 form of the Dirac genus A(T'M/27). We clearly see that only in
4n + 2 dimension, spin-half fields have pure gravitational anomaly. Furthermore,
they are closely related to the -5 anomaly of 4n dimensions. We will further

investigate this relation in the next subsection.

Gauge and gravitational anomalies of spin 1/2 fields

Next, we consider spin-1/2 complex chiral fermion coupled to the external gauge

field additionally. They transform as

0 = i T
M = —iyn T . (2.90)
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The anomaly again comes from the transformation of the Jacobian which can be
written as

lim v 5 ina T PP (2.91)

where D,, is gauge covariant derivative. Similarly, this can be calculated by expo-
nentiating ¢* in,T%c*, and taking only terms linear in 7. As noted in section 2.2.4,
we are only interested in the one-particle state of c-fermions, to avoid generating
tensor product of a given representation. The Lagrangian we need is exactly what
was studied in section 2.2.4, whose path integral reads
/2

I 7

1 po ayTo
gauge,1/2 = W /M Tr (30T , (2.92)
d

n-linear

where F'* = F dz#dz”. When fermions couple to both of the gauge and gravita-

tional field, we can combine the anomaly as

id/2

/
« fo3 [e7 ; 2
I _ [ ARy T il2
mixed,1/2 (27T)d/2 /]\/[d res H sinhxé/?

)

n-linear

id/Z

- oo /Mdch(F’)/\A(TM’) , (2.93)

n-linear

where I’ and T M’ denote that gauge field and curvature are shifted by n and Dn

respectively.

Gravitational anomalies of Rarita-Schwinger fields

The next chiral field which can carry the gravitational anomaly is the spin-3/2
Rarita-Schwinger field. This field v, can be thought of as the tensor product of
spinor representation and the vector representation, [1]® [3] = [2] ® [3], where the
latter spin-1/2 should be factored out at the end. The Dirac operator is in the
SO(2n) representation, where the ghost fields ¢, ¢, transform under SO(2n) with

(T%) g = §%0%3 — 6?46°.. The same procedure as gauge anomaly of spin-1/2 fields
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can be applied to this, which results

d/2

o R z,/2
L2 = (27)d/2 /Mn (Tr c 1) H sinh 7} /2

%

: (2.94)

n—linear

where R is a two-form valued matrix %Rijkldxkdxl and the trace is taken over the
remaining indices. Prime denote for the fact that the eigenvalues are shifted by 7
and D7 as in the previous example. —1 in the parenthesis is due to the factoring
out spin-1/2 degrees of freedom. Note that the gauge field does not couple to the
spin-3/2 field.

Gravitational anomalies of self-dual antisymmetric fields

In Euclidean, bosonic fields are always in real representations, which means that the
complex conjugate should be integrated out together in the path integral. Hence
they do not carry anomaly in general. The problem occurs for the fields which does
not have a Lagrangian description. Anti-symmetric self-dual fields (ASD) are such

examples. In Minkowskian, ASD exists in 4k 4+ 2 dimensions, which satisfies

F V9 YUkl

M1 f2k+1 T (2/€+ 1)!€M1"'u2k+11/1"'n2k+1 (2'95)

Since, in the Lagrangian representation of the index, we are working with Euclidean
signature where such relation does not hold, we will complexify the fields and
calculate the anomaly. Due to this, at the end we should divide the result by
factor of 2. In order to calculate the anomaly, in [6], they introduced other bosonic
antisymmetric tensor fields F),,...,;, with ¢ = 0,---,4k + 2. All of these can be
constructed from the bi-spinor field ¢,s defined by

| 2
Pap = Ziriz D W Fuyep - (2.96)
=1
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It is enough to calculate the anomaly of ¢,g instead of F},,...,,;’s. Since other anti-
symmetric tensor fields with ¢ # 2k +1 does not carry anomaly, this is equivalent to
calculate anomaly coming from self-dual fields only. We can treat the indices o and
B separately, then the procedure parallels that of spin-3/2 fields. The index a can
be thought of as usual spinor index on which Dirac operator acts, while the index
can be thought of as additional spinor representation. From the first factor, we get
A(TM/27), and from the second factor, we get Trexp ( Rapeath@bby Cd) Hence,

1 2+t 1 )
I - - T *R/ cd _ Mile
ASD 4 (27)2k+1 /M4k+2 rexp (4 ed” ) H sinh /2

1 22k‘+1 2k+1

//2
- (2m)2kHT / HCOSh$Z/2 sinh # /2

Majq2 ™

2k+1 / .’L‘;
2k+1 /
(2m) Mg ;- tanhz;

1
8
! / L(TM) (2.97)
8 (2m)2k+1 Marso : :

In the first line, 1/4 factor comes from the reality of fields and chiral projection.
x} denotes for the eigenvalue of the matrix %Rijkldxkdxl + D;n; — Djn;. From the
second to third line, z}’s absorbed factor 22k+2 (Note that, in the integrand, we
need linear term in 1 and 2k + 1 power of z;’s.) We can see that the answer is

given by the £L-class.?

2.3.2 Relation between anomalies and index theorem

As can be seen in the last subsection, gauge/gravitational anomalies of 2n di-

mensions are closely related to the index theorems in 2n 4 2 dimensions. In this

30ne can directly calculate the anomaly for the ASD fields by noting that the Jacobian of
diffeomorphism is given by Tr=dn [24]. Since the equation of motion of ASD fields is OFj}, ...;,, = 0,
the regulator can be chosen to be limg_,o Tr * dn e~ Y. In this viewpoint, two fermion indices are
equally treated and the supersymmetric Lagrangian is reduced to that of section 2.2.2, which has
two supersymmetries.
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subsection, we present the reason why the two quantities are related in general,
following [21, 23]. Furthermore, we will see the universal shift of the curvature
Rij — Rij + Dyn;) are related by so called descent procedure of anomaly polyno-
mials. [22]

In order to see the effect of chiral mismatch, we consider the following Dirac oper-

D=+ <8i+Ai1—;75> = < 0 Py ) . (2.98)

ator,

d_ 0

Determinant of D can be calculated from the square root of

Det(i&Li@)Det(ilD+ilD_):C-Det<; l?)*) : (2.99)

where C' is a constant independent of the gauge fields. Hence,

Det(iD) = 1/ Det(i]p) "®Al . (2.100)

Since the absolute value \/Det(ilp) is a well-defined quantity, the source of the
anomaly comes from the imaginary part of the Euclidean action ®[A], which is a
topological quantity in general. Consider S?" as 2n-dimensional Eucildean space-
time. Let g(0, z) is an element of the gauge group G, where g(0,z) = g(2m,z) =1
and z € S?". Domain of g is therefore S?" x [0,27] with two end point identi-
fied, which is S?"*1. Now, let A? be a transformed gauge field A = A(,z) =
9(0, )" (d 4+ A(z))g(8,z). If we require well-definedness of Det(iD[A?]), from
(2.100), it follows that ®[A(0, x)] = 2mm + ®[A(27, x)], where m € Z. Therefore,

we can say that S
/ d0——"— =2mm . (2.101)
0 de
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Now, consider the gauge variation of the Euclidean effective action Weg[A]:

w — /din' Wer[A(0, )] ) 8‘4?
o0 5A? o0

_ —/d2”a: A(8,z) - DY (?Z‘;ﬁ) : (2.102)

J

where A = g~'0gg, and we used the fact that

dA?
0 0
THJ = 0;A + [A],A] = DjA . (2.103)
The equation (2.102) is the definition of the consistent anomaly, which refers to
the expression of anomaly obtained from the variation of effective action. We note
that this is in fact related to the winding number m defined above:
L0D[A, 0] OWeg

2rmi = i —(—— = —

00 a6 -

(2.104)

This relation implies that the consistent anomaly is given by the winding number,

1 [ 0 o [ IWe[A(0, )]
= — "r A DY | ————— ) 2.1
m 2m'/0 dﬁ/d r A0, z) - Dj ( 5A? (2.105)

How is this quantity related to the index of 2n + 2 dimensional Dirac operator?
Let us introduce yet another parameter r such that (r,f) parametrizes a two-
dimensional disk. Furthermore, we define A(r, 6, x) so that A(r = 1,0,z) = A(0, x).
Then, the following two statements can be shown to be true. [22] 1) The winding
number around the boundary of the disk equals the sum of local winding number
around each zeros of Det(iD[A(p,0,z)]). 2) Zeros of Det(iD[A(p,6,z)]) are in
1-1 correspondence with the zero modes of ilDy, 5. Especially, according to the

chirality of each zero modes, it gives weight +1 to the winding number. Combining
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these facts together, from the definition of the index, we find that

ind(iDopy0) = ;m/de/d%x A6, z) - DY (W) . (2.106)

As can be repeatedly seen in the previous subsections, actual anomaly in 2n di-
mensions can be obtained from 2n 4+ 2-form of certain gauge invariant polynomials.
This procedure of extracting anomaly can be summarized into so called descent
procedure of the characteristic classes. In order to explicitly see this, let us con-
sider the two dimensional auxiliary space parametrized by (r,0). If we glue two
such disks D4 and D_ at the boundaries where the gauge fields are defined through

a gauge transformation,

Ai(r,0,2) = g 10,2)(A(x) +d+d0dg)g(d,z) , at Dy  (2.107)
A_(r,0,z) = A(x), atD_ (2.108)

where d is a differential in the space of z. (Note that, since g is independent of
r, it can be thought of as a differential in the z,r space.) Then, this additional
two-dimensional space can be regarded as S?". Now, consider an index of 2n + 2

dimensional operator given by a characteristic class P(F),

Z'n+l

ind(i Doy 2(A)) = @D /S g Popia(F) . (2.109)

Since the gauge field F is closed, dP(F) = 0, it follows that, locally there exists
2n + 1 form such that
Ponya(F) = dPYY, [(F, A) . (2.110)
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Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

Then we can rewrite the equation as

,L'n—l—l (O) 0
ind(iDy, 9(A) = — dP A+,F+/ dP® (A~ F
1 (ZlDQ +2( )) (27T)n+1 L+stn 2n+1( ) D-x§2n 2n+1( )
i ©) (4t
N (2m)ntt /Sl><52n P (A7, F)

,L'n—l—l

= (27T)n+l/sl><32n PO (A% () + dOA(O, ), FO(z)) — PO, (A%(x), FO(x))

,L'n—l—l
= (ot /S . PV (A0, 2), A (z), F(6,2)) .

701)4—1(‘477 F)

does not contain any differential in 6 direction. And we substracted the second term

From the first to second line, the second term vanishes simply because P2(

in third line for the same reason. For the last line, we further defined a 2n form by
(0) _ gp)
6AP2n+1(A? F) - dPQn (A’ Aa F) . (2112)

Comparing (2.111) with (4.110) and (2.106), and fix 6 at certain value, we obtain

the expression for anomaly in 2n dimension,

Y

SAWer = (;T)n /Szn PN A F) (2.113)
Although the actual anomalies are given by the descent PQ(:L) of the gauge invariant
characteristic classes, when we check the cancelation of anomalies for given theory,
it is enough to check the cancelation of the 2n + 2 form expression Po,42 only. It
does not seem to be enough, since for given Ps,ys form, its descent P2(71L) is not
unique. However, this fact precisely corresponds to the ambiguity in the definition
of the 1-loop anomaly. The first ambiguity comes from the fact that we can always
add a local counterterm I' = f o, to the action, which does not alter the equation
of motion. Since I' does not need to be gauge-invariant, it can be source of the
anomaly, which shift PQ(TIL) + dagy,. Furthermore, from the expression (2.113), we

can see that addition of an exact term df32,—1 to P,,,1) does not change the result,
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Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

if the manifold does not have a boundary. From these facts, there are equivalence

relation at the level of anomaly,
Py ~ Py + dany + dBan-1 - (2.114)

Using the fact that d and 6 commute, it is easy to see that this equivalence class

defines unique gauge invariant form Py, o(F).

2.4 Supersymmetric localization and exact partition

functions

In this section, we turn to the study of partition functions in supersymmetric gauge
theories, which will be substantially used for Chapter 4. Compared to the index
studied in the previous sections which only contains information about ground
states, partition function contains information of all the excited states as well,
and in general very difficult to exactly calculate. However, recently, for theories
equipped with certain amount of supersymmetries, there has been extensive de-
velopements of so called supersymmetric localization technique, which enables us
to exactly calculate indices and partition functions of superconformal theories on
spheres in various dimensions. The most prominent example is exact calculation of
partition functions for A/ = 2 supersymmetric Yang-Mills (SYM) theories and the
Wilson loop expectation values thereof, which was done by Pestun 2007. [7] First
of all, one should construct the Lagrangian on the four-sphere which preserves su-
persymmetries. In general, there are two different ways to put the supersymmetric
theories on curved spaces. The first is so called twisting, which modifies the theory
by turning on the current of global symmetry so that they cancel the curvature
of the manifold. Then, part of the supercharge becomes scalar under new Lorentz
symmetry, and they are preserved for curved spacetime. This procedure makes the

theory topological. The second method is so called rigid supersymmetry on the
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curved manifolds, which is main concern of this section. Given a conformal field
theory on a flat space, one can write the theory on a sphere by a stereographic
projection. The Lagrangian can be written as flat Lagrangian with additional cor-
rection terms which depends on the curvature. For example, the action of N' = 4
SYM on S* can be written as [7]

1 2
S = \[ d'z FWF“” + 0D 0ND" 4 S PID UMDy v, (2.115)

gYM

where fermions are combined and written in terms of a ten-dimensional Majorana-
Weyl fermion W. Here r is a radius of four sphere, and the third term corresponds
to the curvature correction to the flat Lagrangian. This action enjoys N = 4

superconformal symmetry;

55AM = EFM\I/
1 1
5V = 5FMNFMN6—|—§I‘W¢>“V“6. (2.116)

Here € is a supersymmetric transformation parameter which satisfies the conformal

Killing spinor equation,

Ve = fug
- 1
Vue = —@Fue s (2].]_7)

where '), : ST — S is an off-diagonal component of the ten-dimensional gamma
matrix and f‘u is its conjugate. Furthermore, one can show that square of the
(2.116) gives

5 =—L

€

—~R—De , (2.118)

eyMe

where the right hand side are bosonic symmetry generators of the theory which
include the R-symmetry and dilatation. In order to calculate the partition function
defined as

/ [dg] e 5B (@) (2.119)
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where ¢ denotes for all the dynamical fields in the theory, we consider following

deformation,

2(t) = / [dg] e~ SE@—1QV (2.120)
where t is an arbitrary number, () is a supersymmetric variation

o

Q=0- 96’ (2.121)

and V is some fermionic fields. When we choose V such that Q?V = 0, in other
words, when V' is invariant under the bosonic symmetries of the theory (see eq.

(2.118)), one can show that the integral is independent of the parameter ¢.

5 = - [l @v) e s
S / 4] Q (v e S#@=1V) —g

if the integrand behaves nicely at the infinity of field space ¢. From the first to
second line, we used the fact that the classical action is closed under supersymmetric
transformation. For the last equailty, we note that ) becomes total derivative and
the measure is invariant under the supersymmetric variation. This observation tells
us that the result does not change if we take the limit Z(¢t — co). In this limit, the
field field configurations are localized to the locus ¢ = ¢y which satisfies QV = 0,
and other contributions are exponentially suppressed. In this limit, all the fields

can be expanded as

1
¢ = ¢o + %&b ; (2.122)

and one-loop determinant of the fluctuation gives exact answer to the integral.

Most convinient choice of the fermionic term V is

V=> (.Qv) (2.123)
¥
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Chapter 2. Exact Calculation of Supersymmetric Indices and Partition Functions

where the summation is over all the fermions in the theory, and ( , ) is a inner
product defined in the field space. By construction, QV is positive definite, and
the localization locus is given by Qi = 0. For A' = 4 SYM on S*, the result is
given by [7]

2,2 2

—8nrca
Zg1 = /[da] e VM Z1100p(10) | Zinst (ia, v~ r 7t g))? (2.124)

where the result is given in terms of the integral over real parameter a, which is
saddle point value of the one component of vector multiplet scalar ®3. The first
factor is contribution from the classical action, and the second factor comes from
the 1-loop determinant near the saddle configuration. The last factor is instanton
contribution localized at north and south poles of the sphere respectively. Inter-
estingly, Zinst(ia,7~ 1,771, q) is the Nekrasov’s instanton partition function [25-27]
with €; = eo = r~!. This behavior of the factorization of partition function are ob-

served to be general for sphere partition functions in other dimensions. [14, 28, 29]

After this seminal work, the partition functions on spheres in various dimensions
are calculated. In three dimension, Kapustin, Willet and Yaakov obtained partition
functions for the N = 2 theories on S3. [30] With this result, various conjectured
three dimensional dualities are proved, and more recently, it was shown that this
quantity calculates entanglement entropy across S in R*!. [31] In five dimensions,
partition functions for SYM theory on S° are calculated by [32]. This result is
of particular importance since this theory is known to probe the six dimensional
(2,0) theories on M5-branes, which does not admit Lagrangian description. Most
recently, along the lines of these developements, partition functions on S? are stud-
ied. [8, 9] Soon after that, it was realized through a series of works [12-15, 29|
that these results calculates very useful quantity which is related to the geometry
of Calabi-Yau manifolds where string theory is based on. This is the main subject

of the Chapter 4 of this thesis.
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Chapter 3

Applications of Index Theorems

in String Theory

In this chapter, as another important application of the index theorem in string
theory, we study the problem of counting BPS states of supersymmetric theories.
We will mainly focus on theories with eight real supercharge (N = 2) in four-
dimensions, which can be obtained from compactifying Type II string theory on
six dimensional Calabi-Yau manifold. In the first section, we briefly review basics
of four-dimensional A/ = 2 theories obtained in this way, and present the physical
explanation of the wall-crossing phenomena which is the prominent feature of 4d

N = 2 theories. Contents after the section 3.2 are based on the work [10].
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3.1 BPS States and Wall-Crossing in 4d N = 2 theories

Four-dimensional N = 2 theory has two supercharges which will be denoted as Qé,

Qé, where I = 1,2. They satisfy the following supersymmetry algebra,

{Qéa QBJ} = QUZBPLL6§
{Qéa Qé} = 26a,8€[JZ
{Qar, Qgs} = —2¢44e102 (3.1)

where the conjugate supercharge is defined by Qsr = (QL)f. Furthermore, the
index I can be lowered and raised by eUQé = Qo and €2 = ey = 1. Z is
complex central charge of N = 2 algebra. In addition to these, we have bosonic
R-symmetry which is SU(2)g x U(1)r. Here SU(2)g rotates I indices, and under
U(1)r, Q! and Q; has charge 1 and —1 respectively. Let us assume Z # 0, and
consider massive representations of Lorentz group, SO(3). In order to see the

particle spectrum of this algebra, define

aé _ 6—1’5/2Q£v + 6i5/2©6102a
—(5 6 — 5
by, = e PRPQL PRl (3.2)

Here the factor e*/2 denotes for a possible U (1)g rotation of the supercharges.

They satisfy

{aé, (aé)T} = 4(M - Re(Ze_ié))daﬁ(S[J ,
{5, ()T} = 4(M +Re(Ze™?))daps"”
{al, 0D} = {ah, ()T} =0. (3.3)

Then, positivity of the Hilbert space requires
M > Re(Ze %) . (3.4)
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Chapter 3. Applications of Index Theorems in String Theory

The most strict condition comes from the case § = argZ. If we require this, we
have
M|z, (3.5)

which is called the BPS (Bogomol'nyi-Prasad-Sommerfield) bound. If we restrict
to the strict inequality M > |Z|, the states generated by the above algebra are

{10), a3]0), a3]0), a3a3|0)} ® {|0), b3]0), b3|0), b3H3(0)}, (3.6)

where af|0) = b{|0) = 0. These multiplets are sometimes called long multiplets.

The spacetime spin contents are

(200+ 3] )@ (2004 [5]) 010 (3.7

where [j] is a possible representation of the vacuum. When the equality of (3.45)
is met, all the states in the second half of (3.6) vanish. We call these multiplets as
short multiplets, or BPS multipets. The simplest BPS multiplet is

(2 [0] + BD : (3.8)

which is the half-hyper multiplet. In particular, two real scalars transform as spin
[1] in SU(2)g global symmetry. The next simplest BPS multiplet is obtained by

assigning charge [%] to the vacuum. This is the BPS vector multiplet,

1
2 [2} +[1] +[0] . (3.9)
Note that it consists of a massive vector field, a real scalar, and a Dirac spinor.
These BPS multiplets are of particular interests when we study supersymmetric
theories. First of all, they are very useful in investigating non-perturbative aspects
of the supersymmetric theories, since they are rigid under continuous deformation

of the theories. Secondly, these states are believed to be responsible for microscopic
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Chapter 3. Applications of Index Theorems in String Theory

entropy of the extremal black-holes. Finally, they can be used to study properties

of Calabi-Yau varieties and their cycles.

The four-dimensional N = 2 supersymmetric theories can be realized in string the-
ory by compactifying Type II string theory on certain Calabi-Yau threefold (CY3).
For simplicity, let us consider Type IIB string theory on X which is CY3. For this
case, BPS particles in non-compact four-dimensions can be obtained from wrap-
ping D3-branes on special Lagrangian three-cycles in X. If there are N coincident
such D3-branes, dynamics the BPS particles obtained from them are subject to the
gauged supersymmetric quantum mechanics with gauge group U(N), which pre-
serves four real supersymmetry. The resulting four-dimensional low-energy theory
is N = 2 supergravity coupled to h?! abelian massless gauge fields. In particu-
lar, the latter can be obtained from the self-dual five form Ramond-Ramond field

strength G5 coupled to D3-branes. We can write it as
Gs € O2(My) ® H3(X,Z) , (3.10)

where H3(X,Z) is a symplectic lattice structure on X, whose basis oy and B!
(I =1,---h?1) satisfy

(ar,ay) = 0
887 =0
(ar,7) = o7 . (3.11)

As a result, in My, we have two-form abelian gauge field strength F! and their
dual F; = #4F!, by
Gs :Oé]FI-i-,BIF[ . (3.12)
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On the other hand, central charge of the BPS particle obtained from wrapping

D3-brane on a three-cycle I' is naturally defined as

Z(T) = /XF/\Q, (3.13)

where 2 is a holomorphic three-form of X. (We used same notation I' for its
Poincare dual.) We can also define (topological) intersection product between
cycles,

(', Ty) = /XF1 ATy . (3.14)

Now, let us restrict our attention to the four-dimensional supersymmetric gauge
theory obtained as above. If the gauge group is G of rank r, due to the potential

of the scalar component of the vector multiplet,

Tr[of, 6% (3.15)

the moduli space of the coulomb branch is parametrized by abelian U(1)" Maxwell
theory. The parameter of coulomb branch is =1 which is made of VEV of the
vector multiplet scalars. For example, if G = SU(N), u® are chosen to be (Tr ¢*)
for i =2-.- N. Since the low-energy theory is rank r U(1) Maxwell theory, we can
naturally define electric and magnetic charge associated to them. Then the theory
is equipped with symplectic structure of lattice dimension 2r, which is given by
the Dirac-Schwinger-Zwanziger product, (v,,7) € Z. This quantization relation

exactly corresponds to (3.14) of internel Calabi-Yau space.

From the seminal work of Seiberg and Witten [35, 36], it was shown that the low-
energy effective theories are severely constrained by N = 2 supersymmetry. The
effective action is determined by the prepotential F' which is a holomorphic function

in (¢). If we let (¢) = diag(al,--- ,a"), the bosonic part of the effective action can
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be written as

1 O*F O*F
Sop = — Im———— | (da’ A xda” + F' A xF’ Re——— | FIANF/ .
= 4 M, ( m8a18aj> (da” A\ xda” + #F7) + “9alda’
(3.16)

Exact form of the prepotential F' can be determined from the information of BPS
spectrum of the theory. The central charge of a BPS state with charge -, which is
a key quantity to study the BPS spectrum, is a function of moduli «* and ~. In

particular, it is linear in =, i.e.,
Z(u,m) + Z(u,vy2) = Z(y1 + v, u) . (3.17)
We require that of, a basis of the symplectic lattice structure, satisfies
ar = Z(u,ag) . (3.18)

Then, the dual coordinate on the moduli space a”! can be defined by

D,I OF(a)
Oal

a = Z(u, ) . (3.19)
Hence, for a given supersymmetric cycle v = plaj + g7, in X, the central charge

of corresponding particle is

Z(u,v) = pla; + qra! . (3.20)

The BPS states are known to be invariant under the continuous deformation of the
parameters, but this is not true at every point of the moduli space. In the moduli
space, we can find a co-dimension one wall of marginal stability such that as we
cross that, certain BPS states suddenly dissappear. This is what is called the wall-
crossing phenomenon, and this is one of the reason that makes 4d N = 2 theory
much more interesting. This phenomenon can be easily seen from the examaple of

pure SU(2) Seiberg-Witten theory, as in the figure below.
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(2,0), (2n,1), (2n+2,-1)

FIGURE 3.1: Moduli space and BPS spectra of 4d N = 2 pure SU(2) theory. The
line denotes for the wall of marginal stability defined as arg(a) = arg(ap), and the
two points on that indicate where monopole of charge (0, 1) and the dyon (2,—1)
become massless respectively. Being massless, they can be BPS states at both
side of the wall. At the weak coupling regime, there are additional infinite tower
of BPS states which can be understood as the bound states of the two states.

From the work of Denef and Moore, [45-47], the problem of identifying the BPS
states that disappear across the wall has been translated in term of the bound
state formation problem of the BPS states. To illustrate this, let us look at the
BPS equation given by the supersymmetric variation of the fermions in the vector

multiplet, which reads

1 . —
Foi — 5€ijklje = iDi(e”¢) = 0

Do(e%9) — 516161 =0, (3.21)

where § is defined in equation (3.2), the phase of the central charge of this BPS
configuration. For the abelian gauge group U(1)", they imply

Foit = 0i(e7?a’) , dpa’ =0, (3.22)

where FI* is self-dual part of the gauge field strength. These BPS equations can

be solved by assuming spherically symmetric field strength. It can be shown that
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they lead to

2mle 2 (3, u(r))] = ~ 2 ot 2 uo0))] . (3:28)

where 7 is a charge of the configuration (3.21), and =, is that of the probe particle.

If there are two such BPS particle, it becomes

2Im[e "1 Z (g, u(r))] = _ ) + 2Im[e ™ Z (7o, u(o0))] . (3.24)

r

Note that when argZ (1) = argZ(v2), i.e., when they enjoy the same supersymme-
try, the following relation holds,

1Z(yl +12(v2) = 1Z(n +22)] (3.25)

and these two states form a bound state which is BPS. One can easily extract the
radius of the bound state,
1 {71, 72)

= S Tl Z (7, u(o0))] (3.26)

From this relation, normalizable bound state exists only when sin(dy — 1) > 0.
When 2 approaches 7 so that eventually sin(de — d1) < 0, the radius diverges and
the corresponding bound states disappear. This is how we physically understand
the wall-crossing phenomena. In order to explicitly calculate the number of BPS
states at both side of the wall, we should define an index which is non-vanishing
only for the BPS states. For this, we introduce the the second helicity trace, defined
by

Qu, ) = —%Tr(—1)2‘]3(2j3)2 . (3.27)
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The angular momentum operator J used to define the fermion number is SU(2)r,
generator which corresponds to the spatial rotation,
1 T — T,

J=z V) 3.28

J

Here 7; is a three-vector which defines the position of a BPS particle of charge ;.

One can straightforwadly show that Q(u,~y) vanishes for any long multiplet which

include the factor of (3.7). On the other hand, for the half-hyper multiplet, (u,~)

gives 1 and for the BPS vector multiplet, it gives —2. Moreover, for a BPS states

in the representation
1
R = <2 [0] + [2]> ® 4] , (3.29)

where the first hypermultiplet factor denotes for the center of mass degrees of

freedom, the index can be simplifed as
1
Qu,7) = =5 Trr(=1)*(2J5)* = Trj(-1)*> (3.30)

the usual Witten idex. For example, when a state 1 4+ 72 disappears across a
marginal stability wall, and dissociate into ; and 2 on the other side, the indices

of these three kind of BPS particles are known to obey a universal formula

Q7 (71 +92) = (=102 (1, 30)[QF (1) () (3.31)

where £ denote the two sides of the wall. This simplest wall-crossing formula has
been studied in many examples, generalized to the so-called semi-primitive cases
for 1 4 k7o states [47] and most recently embedded into an algebraic reformulation
by Konsevitch and Soibelman [48], which in turn was explained in more physical
basis [49-52].

In Ref. [53], a new approach to the low energy dynamics of dyons in generic N = 2
Seiberg-Witten theory was proposed. Assuming that bound states of interest are

large, which is always true whenever the theory is near a wall of marginal stability,
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the author showed how a A/ = 2 supersymmetric dynamics can be explicitly written
from the special Kahler data of the vacuum moduli space only. When applied
in the limit of a simgle dynamical probe dyon in the presence of another (very
massive) BPS state, the bound states can be constructed explicitly and counted,
again confirming the above primitive wall-crossing formula. It is abundantly clear
that his method can be used for an arbitrary number and varieties of dyons, as well,
as long as the proximity to a marginal stability wall is satisfied. In the following
sections, we substitute the reference [10], where they set up dynamics of arbitrary
number of dyons near such a wall, with A/ = 4 supersymmetry, and generate wall-

crossing formula via index theorem.

The first improvement concerns the question of what is the relevant index theorem.
In the Denef’s Coulomb phase approach, the most comprehensive studies to date
involve a truncation of dynamics where one ends up with a geometric quantiza-
tion problem on the classical moduli space of charge centers, which are typically
compact. In this paper, we denote such moduli spaces for n centers as M,,. For
two-center case, this manifold is always S2?. The Lagrangian has no kinetic term,
but a minimal coupling to certain magnetic field induces a symplectic structure
on the moduli space, making it a phase space. In turns out, however, the naive
low energy dynamics on this classical moduli space on M,, end up with too many
fermionic degrees of freedom. The anticipated and empirically correct answer,
which is a Dirac index [57], results only if one can somehow remove half of the

fermions. This deficiency has remained unresolved until now.

In the sections below, we will explain why the naive truncation to M, was ill-
motivated. It turns out that there is no separation of scales, and all 3n bosons
and 4n fermions are of equal massgap. Instead, one can choose to reduce the index
problem to M,, by deforming the theory with supersymmetry partially broken. As
long as there is one supersymmetry left unbroken and since the quantum mechanics

has a gap, the index is left invariant under the deformation. At the end of the day,
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we will thus have provided an ab initio derivation of the anticipated Dirac index

on M,,, for the first time.

The second concerns the physical interpretation of certain rational invariants, de-

fined and extensively used by Manschot et.al. [54], of the form

Qy) = Q(;Z/p) , (3.32)

ply
where the sum is over divisors of . The expression naturally appears in other
formulation of the wall-crossing, most notably in Konsevitch-Soibelmann. In the
course of enumerating the bound states of Bosonic or Fermionic statistics, we will
encounter (3)/p? as a universal effective degeneracy of p identical particles of

charge 8. It appears as the multiplicative factor from the normal bundle as one

computes contributions from a submanifold fixed by the permutation group of order

p.!

Along the way, our work also clarifies relation between the field theory indices,
namely the second helicity trace and the protected spin character, and the quantum
mechanical ones. Quantum mechanical index usually suffers from ambiguity over
the definition of (—1). Usual index formulae relies on certain (mathematically)
canonical choice of (—1)f. Retaining three bosonic coordinates per dyons allow
us to inherit both the spatial rotation group, denoted by SU(2)r, and the R-
symmetry of N = 2 field theory, SU(2)r. The supersymmetries belong to (2,2)
representation, so both (—1)2% of SU(2); and (—1)%/3 of SU(2)g are chirality
operators. The second helicity trace is then computed unambiguously by Tr(—1)273.
We in turn relate the latter to Tr(—1)2® which turns out to be equivalent to the
canonical choice leading to the usual Dirac index formula. This derives, for the

first time, the well-known sign pre-factors in the wall-crossing formulae universally.

In addition, we also explain why the protected spin character of the field theory is

!This same numerical factor 1/p? had appeared before in the context of the D-brane bound state
problems of 1990’s [58, 59], where identical nature of the D-branes were also of some importance.
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Chapter 3. Applications of Index Theorems in String Theory

actually computed by equivariant index, by showing that the quantum mechanical
“angular momentum” operator that appears in the latter is actually a diagonal

sum, J3 + I3, from the spacetime viewpoint.

The chapter is organized as follows. Section 2 reviews Ref. [53] and generalize the
low energy dynamics to the case of arbitrary number of dynamical charge centers,
and note the universal nature of the potential terms. Section 3 defines the index as a
method of BPS bound state counting, and in particular make contact with the field
theory indices, commonly known as the 2nd helicity trace and its generalization
known as the protected spin character. It turns out that the quantum mechanics
found have SU(2), x SU(2) g R-symmetry, each of which defines chirality operators
(—1)273 and (—1)25. The field theory index corresponds to the former, while
mathematical index formulae are more directly related to the latter. We discuss a
universal relationship between the two, and conjecture that all BPS bound states

in our quantum mechanics are all SU(2)p singlets.

Section 4 sets up index theorem for this dynamics and show how reduction to the
classical moduli manifold may be achieved. Here we show why the naive derivative
truncation leading to the geometric quantization is unjustified by demonstrating
that there is no natural separation of scales between classically massive directions
and classically massless directions. The main point is that M, is of finite size, and
the quantum gaps due to this are always equal to those along the classically massive
directions. We show, nevertheless, how one can deform the theory while preserving
the index, such that classically massive modes are decoupled from the evaluation of
the index, at the cost of partially broken supersymmetry. We also observe that the
reduction process keeps a diagonal subgroup SU(2)7, and identify the generator
Js = J3+ I3 as the operator usually used for equivariant index computations. This
way, we show that the equivariant index of quantum mechanics on M, actually

computes the protected spin character of N = 2 field theory.
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Chapter 3. Applications of Index Theorems in String Theory

After the derivation of Dirac index in section 4, we go on to evaluate in section
5 the wall-crossing formula by taking into account the Bosonic or the Fermionic
statistics. Projection operators are introduced for the purpose, and the index
formula is decomposed into additive contributions from various fixed submanifolds
associated with coincident identical particles. The reduced index problems on the
fixed submanifolds appears in the full index with a universal degeneracy factor
~ 1/p?, which arises from orbifolding action of the p-th order permutation group
S(p). Summing up all relevant contributions, we find an expression identical to
Manschot et.al.’s wall-crossing formula. We close with summary and comments in

section 6.

3.2 N =4 Moduli Mechanics for n BPS Objects

In Ref. [53], a general framework for deriving moduli dynamics of dyons of Seiberg-
Witten theory was given under the assumption that one works in the field theory
vacuum where the central charge are almost aligned in terms of the phases of
the respective central charges; in other words, very near the marginal stability
wall. This program was then carried out explicitly when one can treat only one
dyon as dynamical, with other dyons as external objects. In this note, we wish to
generalize this to arbitrary number of charge centers, be they field theory dyons
or charged black holes. For this, all dyons should be treated as dynamical, and we
will denote their charges as «v4’s. For the above derivation of one dynamical center,
the proximity to a marginal stability wall played an essential role, allowing the
nonrelativistic approximation and thus the moduli space approximation possible,

so we need to retain this assumption.

While the moduli dynamics should have N’ = 4 supersymmetry, as demanded by
the BPS nature of the dyons, simple off-shell N' = 4 descriptions fail to accom-
modate key interaction terms. Furthermore, as we will see in section 4 where we

compute the supersymmetric index, it is more convenient to take one of the four

52



Chapter 3. Applications of Index Theorems in String Theory

supersymmetries, say (4, and give up others. For these reasons, we employ the
N =1 superspace [60] where this supersymmetry, Qy4, is manifest. We package 3n

Aa

bosonic coordinates, 4%, and 4n fermionic superpartners, 4% and A4, as

dAe = gAe _jgypie AL = idA it (3.33)

with n auxiliary field b4’s. The supertranslation generator and the supercovariant
derivatives are then,

Q =0yp+1i00;, D = 0y —1i00; . (334)

3.2.1 Two Centers

The general structure of two dyon dynamics can be inferred from the results in
Ref. [53]. The latter actually derived the effective action of a single dynamical
dyon in the background of an infinitely heavy core BPS state. When the core state
consists of a single dyon, the effective action derived there can also be regarded as
the interacting “relative” part £ of a two-dyon effective action, upon the usual

decomposition,
L = [em +£rel , (335)
where the trivial center of mass part was understood to be

7 1
LT = /d@ §Mt0talD(I)g,m,at(I)g_m, - §Mt0talAc.m.DAc.m. 5 (336)

with Myoer — 0o understood. Here, let us recall basic structures of £7¢ as dictated

by the supersymmetry.
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L7 involves only three bosonic coordinates and four fermionic ones and can be

further decomposed as

£t =Lt 4 cpet (3.37)
where
o = / d (; F(®) D90 — % F(®)ADA + %eabcaa f((I))D@chbcA>3,38)
with a = 1, 2, 3, and
et = /de (iK(P)A — iW(D), DD?) | (3.39)
with the condition
0aK = €ape OpWe (3.40)

imposed. Note that this also implies 9,0,K = 0, which is solved by
B q
K=K(x0)— = . (3.41)

We will see shortly how K(o0) and ¢ can be read off from the underlying Seiberg-
Witten theory.

As was claimed, this Lagrangian is invariant under four supersymmetries,

0ex® = ann €mY"
O0com = Moyn€ %+ €mb
6b = —iepp™ (3.42)

with four Grassman parameters €™ and with ¥ = A\. The N = 1 superspace we
employed is related to €4, so Lo and £ are manifestly and individually invariant

under these supersymmetry transformation rules. A less obvious fact, which is
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nevertheless true, is that the two are also individually invariant under all four

Oe / ALy =0 = o, / dt L7, (3.43)

if the auxiliary field b us kept off-shell. This is the feature that allows an easy
generalization to n dynamical centers. The auxiliary field b takes the on-shell

value,
1 i,
b = bonshell = ? <’C + 4?7pqaafl/)p¢q> ) (344)

which generates bosonic potential terms of type K2/2f and mixes up terms in Lo.
Nevertheless, N = 4 supersymmetry of £ = Ly + £; still holds, now in far more

complicated on-shell form.

3.2.2 Seiberg-Witten

Before we extend this to n dynamical dyons, we need to understand the role of the
core-probe approximation and how it computes f, K and W [53] in terms of the

quantities that appear in the Seiberg-Witten theory.

Let us consider a collection of charges v4, and represent it as a semiclassical state.
The basic information about the semiclassical dyon state comes from the BPS

equations of the Seiberg-Witten theory [61-64]
F—i¢"'We¢i=0, Fih—i("'Ve¢h =0, (3.45)

where F' = B + ¢E with magnetic field B’s and electric field E’s, ¢’s are unbroken
part of the complex adjoint scalars, each of which are labeled by the Cartan index

i=1,2,...,r. Fp's are defined through the low energy U(1) coupling matrix as

- . S YY)
— 7t — ¢D

= 52 (3.46)
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The pure phase factor ( is determined by the supersymmetry left unbroken by the
charge 7 in a given vacuum, and equals the phase factor of the central charge Z,

of the configuration.

In a core-probe approximation, we split y7 = v, + > 4 74r and treat the latter
n—1 as a fixed background of total charge 7. = > 4, 74/ As we saw in the previous
section, the Lagrangian for the dynamical dyon (of charge 7y,) is characterized by

three objects.

The first is the mass function f =|Z,,| as in

1 /dz\?
— i 4
L 2f(dt> + , (3.47)
where
Zy =0+ oD, (3.48)

with the electric part 47 and the magnetic part 7;* of the charge vector ~;,. The
scalar fields here solve the above BPS equation with the other n — 1 charges v4/’s
as the background point-like sources. The fact we treat such dyons as point-like
objects is justified by going very near a marginal stability wall, since this tends to
separate charge centers far apart from one another. As we will see shortly, this
proximity to marginal stability wall plays a central role in allowing us to construct

nonrelativistic low energy dynamics of dyons.

Clearly |Zj| acts as the inertia of the probe dyon, which is position-dependent
because of the background: this sort of identification is in accordance with general
spirit of how one describe well-separated charged objects [65], which has been tested
and used successfully for many soliton systems and even lead to exact moduli space
metric in some cases [44, 66]. We also use the notation Z, for the central charge

of the charge v so that Z, = Z,(00).
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The other two, more important for the discussion of BPS bound states, are the

potential X2/2f and the vector potential W, so that

1 . /dz\?> K2 di .-
== ) o 22 4
L 2f<dt> W + (3.49)

where these two are determined entirely by the charge distribution of v4/’s as [53]

AW = dK, K=Im[("'Z,] = Im[¢"'Z,,] - Z |xq_hiA, (3.50)
with?
qnar = (Yn,vAr)/2

for the Schwinger product.

These are direct consequences of the equations (3.45), combined with the extra
assumption of being near the marginal stability wall. Generically, the bosonic
potential would have been

21| — Rel¢ ™' 23] (3.51)

but this reduces to
K?/2| 2] = (Im[¢ ™" Z4))?/| 23| (3.52)

as we move near the marginal stability wall defined by alignment of Z; and Z,.
[53]. The reason why we need this proximity to the marginal stability wall is
clearly not because of inherent properties of the system, but rather because of the
non-relativistic quantum mechanics approximation we employed. Far away from

the wall, the potential energy would be not small compared to rest mass of the

2 This convention for the Schwinger product here follows the one used by Denef in Ref. [46, 47].
The original derivation of dyon dynamics from Seiberg-Witten theory in Ref. [53] used a different
convention, such that

<77 7/> = <’77 7/>Denef - 2<:}/7 :Y>Lee—Yi-
The tilde emphasizes the fact that the latter also used half-integral electric charges as opposed to
integral ones, which is natural when we compute Coulomb energy. Magnetic charges are integral
in either convention.
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particles involved, which will bring dynamics to a relativistic one. However, we do
not know how to handle interacting and relativistic particles at mechanical level.?
Nevertheless, this approximation is good enough since we already know that BPS

states are stable far away from marginal stability walls.

An important subtlety we wish to point out here is the choice of (. In the core-probe
limit, it appears that ¢ = (. = Z,,./|Z,.| is the right choice, since we are treating -y,
as an external particle in the background given by v, = > 4, v4r. However, ( is tied
to the supersymmetry left unbroken by the configuration and further more we are
interested in the supersymmetric bound states of «. and 7,. Around such a state,
the low energy dynamics should have supersymmetries associated with v = v.4+v,

rather than those associated with ..

One can understand this as capturing the backreaction of the background due to
the probe. Failing to do so clearly will give us nonsensical answers since, otherwise,
the supersymmetry of the bound state in question would not be aligned with the
supersymmetry of the moduli dynamics. In the core-probe approximation, the two
happen to be the same, (v = Z,./|Zy.| = (., simply because the total central
charge is dominated by that of the infinitely heavy core state. As we give up the
core-probe dichotomy, this accidental identity will no longer hold, and the preceding

discussion tells us that one must always use (7.

As we give up the core-probe approximation and treat all charge centers on equal
footing, the moduli dynamics will become quite complicated. The part of the above
action that remains least affected by this extension is the Lorentz force, coming
from —z-W type couplings. The coeflicient ¢ in W keeps track of how one particle’s
quantized electric (magnetic) charges see the other particle’s quantized magnetic
(electric one) charges. W is Dirac-quantized and topological, and furthermore can

arise only from sum of two-body interactions. Therefore, this part of the interaction

3Importance of the wall in the derivation of low energy dynamics of dyons was also recognized
by others [67].
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Chapter 3. Applications of Index Theorems in String Theory

can be reliably computed by adding up all pair-wise Lorentz forces, giving us

dz Ay
- ——=. 3.53
a Vo a VA (3:53)
with
Waa = > qapWP"(Ea — &) , (3.54)
B#£A

where gap = (y4,7v8)/2 and WP is the Wu-Yang vector potential [68] of a
47 flux Dirac monopole. Note that the 47 flux of WPe¢ dovetails nicely with

half-integer-quantized g4p, as demanded by the Dirac quantization.

For general n also, N’ = 4 supersymmetry constrains the Lagrangian greatly and, as
we will see shortly, the potential energy is tied to such minimal couplings. Knowing
the latter will allow us to fix, almost completely, the analog of K2/2f as well.
We will presently see how this works in n center case. A more difficult question
is how the kinetic terms would generalize, to which we will only give a general
statement rather than precise solution. In this note, our primary interest is in
the supersymmetric index for non-threshold bound states, which is independent of

details of kinetic term.

3.2.3 Many Centers

For many centers, it is more convenient not to separate out the center of mass
coordinate. Let us label the centers by A = 1,2,...,n and denote their R? position

as % and the charge v4. The A = 1 superfield content is

A = gAe _jgypie AL =2 it (3.55)
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with A =1,2,...,nand a = 1,2,3. N = 4 transformation rules are,
St =iy
Sy =t it e, bt
54 = —iepyi™ (3.56)

where as before 4% = A4, We again split the Lagrangian into the kinetic part and

the potential part,
L =Ly+ L, (3.57)

and look for Lo separately, with off-shell bAs.

The n-center version of £; is, given (3.54), quite obvious,
L, = / d9 (iIKa(®)A? — iWaa(®) DDA (3.58)

since the second term gives precisely the Lorentz force among dyons and while the
first is induced from the second by N = 4 supersymmetry; One can check easily
that

5. / di Ly =0 (3.59)

under all four supersymmtries, provided that

1
0adKB = ieabc (aAbWBc_chWAb) s (360>
and
€abc040B K = 0,
8AaaBalCC’ = 07 (361)
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for any A, B,C. We already learned that

Wiy = Z <7A’273>WaDiTaC(CL_"A _ fB) ’
B

so K’s also follow immediately via the N' = 4 constraints as

FYAa’YB
Ka=Ka(o) -5 Z FA 7B (3.62)

Note that this obeys the constraints except at the submanifold, say A = {ccA“ :
A = Zp, (va,7B) # 0}. The quantum mechanics can be very singular at such
places also, meaning that we should excise A from R3" and impose the regular

boundary condition instead.

It remains for us to determine K4 (00)’s. These K’s and W’s can be traced back
to the original BPS equations (3.45), and found by keeping track of how motion of
each center is affected by the presence of the other n — 1 centers. After solving the

BPS equations, similarly as in the core-probe limit, we learn that

Ka=Tm[('24] =Im [ 2Z4] - = Z | ”"_’VB - (3.63)
B¢A ta— 2B

where Z4 is computed from the solution to (3.45) with the other n — 1 charge
centers taken as the background but, nevertheless, with the phase of the total
charge, ¢ = >4 Za/|>_ 4 Za|, used in the equations. As we noted above, this is
because we must make sure to use the supersymmetries that are preserved by the
bound state of all centers. This can be also seen from K 4(00) = Im[¢(™1Z 4], which
allows ) , Ka(0c0) = 0 as demanded by the antisymmetric Schwinger product. Note
that this consistency condition would have been violated if we had used different
(’s for different KC4’s.

The other piece Ly, containing kinetic terms, is a little more involved. The simplest

way to find the most general Ly is via an N = 4 superspace. For this, note that the
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collection {®% A} can be thought of as dimensional reduction of a D =4 N =1
vector superfield [69, 70].* In this map, 2%’s come from the spatial part of the
vector field, the fermions from the gaugino, and the auxiliary field b from that of
the D =4 N = 1 vector superfield. Here, we are mainly interested in A/ = 1 form

of such a general Ly, which is available in Maloney et.al. [60],
. 1 ‘
Ly = / dé %gAaBchbAaa@Bb —5h ABAADAB — ik 4, p®A9AP + .. (3.64)

where the ellipsis denotes four cubic terms that we omit here for the sake of sim-

plicity. This Ly is also invariant under the four supersymmetries we listed above,
5 / dt Lo = 0 (3.65)

on its own with b4’s off-shell, provided that various coefficient functions derive from

a single real function L(z) of 3n variables as

9aanp(®) = (5251{ + eceaecfb> Dac0BfL(P) ,
hag(®) = 6%04,08,L(D) ,
kaap(®) = €7 ,04.05;L(D) ,

(3.66)

Figuring out the precise form of L for n charge centers requires further work. For
a single dynamical dyon in the core-probe limit, we know that it is related to the
central charge function as 9L = | Z|. We expect that there exists a similarly
intuitive generalization for n particles case as well. In this note, we are primarily

interested in counting nonthreshold bound state, for which details of L does not

“In this version of N = 4 superspace, £; is not obvious. On the other hand, a more extended
harmonic superspace form has been found to accommodate both kinetic terms and potential terms
[71].
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enter. Determination of L can become an important issue, when we begin to

consider non-primitive charge states. See next subsection for related comments.

Again, the main point here is that £y and £, are invariant under the four super-
symmetries separately when we keep the auxiliary fields b4’s off-shell. Combining

the two, it follows that the full Lagrangian

Lo+ L4 (3.67)

is also invariant under all four supersymmetries. Integrating out b4’

S generates po-
tentials of type ~ K? and mixes up terms in £y and £, but N = 4 supersymmetries

of the entire Lagrangian remain intact.

3.2.4 Kinetic Function L : BPS Dyons vs BPS Black Holes

Note that the potential part £ of the Lagrangian looks identical to the similar
expression previously found by Denef [46], which has been later used extensively
for counting BPS black holes bound states [54, 57]. The latter relied on N' = 4
quantum mechanical supersymmetry. Although we started with Seiberg-Witten
theory for the derivation of L1, this part of Lagrangian is entirely determined by
N = 4 supersymmetry combined with long-distance Lorentz forces among charge
centers. Thus appearance of the same L£; is hardly surprising. In fact, when
we apply £; to BPS black holes, it is even more trustworthy, since the Abelian
approximation that would underlie such an interaction form is valid all the way to
horizon. One cannot say the same for field theory dyons, since at short distance
non-Abelian nature must be taken into account. Nevertheless, as long as we are
near a marginal stability wall and only long-distance physics matters, it is clear

that £; is capable of describing both dyons and black holes.

This does not mean that the moduli dynamics of BPS dyons and those of BPS black

holes are identical. The difference resides in the kinetic part Lg of the Lagrangian.
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As demanded by N = 4 supersymmetry, L is determined by a single scalar function
L of the n position vectors £4. For instance, L for many BPS black holes of an

identical charge was found by Maloney et. al. [60]

L 1
L(xl,xg,...):—ﬁ da3y* (3.68)

where ¢y = 1+ > 4,(m/|Za — Z|) with the mass m. On the other hand, for two-
center dyon case, we expect smooth behavior near 7 = 0 [53] since, when the
mutual distance is small, non-Abelian cores cannot be ignored and will smooth
out Coulombic singularities. Even if we use the naive Abelian results, 0*L ~ 1/r
at most. Comparing this to the two-body case of the supergravity result shows a

substantial difference when the two objects begin to overlap.

Indeed, there are situations when the two theories are expected to give different
answers. No example of N = 2 field theory dyon which is a bound state of two or
more identical dyons. For black holes, however, no such restriction seems to exist.
If a BPS black hole of charge ~ exist, we expect BPS black holes of charge N~y
also to exist, in fact with large entropy. In the present context of moduli quantum
mechanics, the latter corresponds to a collection of many charge centers with many
flat directions extending to spatial infinities and may be realized as threshold bound
states thereof. In such cases, the kinetic term of the effective action at both short
distances and long distances could be important. This problem is an important
outstanding issue in wall-crossing phenomena in general, for it provided much-
needed input data on what dyons or black holes are available, to begin with, to

form bound states.

Explicit forms of L for n BPS dyons and for n BPS black holes, respectively, will

be studied in a separate work.
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3.3 R-Symmetry, Chirality Operators, and Indices

We wish to compute index of the preceding quantum mechanics
Tr ((—1)Fe ) . (3.69)

Since the quantum mechanics is gapped, of which much discussion will follow in
next section, this quantity is truly independent of the parameter s. Thus, following
the standard arguments, we will compute this in small s limit. Before proceeding,
however, it is important to clarify what we mean by the operator (—1)". In order for

the index to make sense, this operator needs to anticommute with supercharge(s),

{-D",Qr=0,

which is the condition needed for 1-1 matching and thus cancelation between
bosonic and fermionic states for nonzero energy eigenvalues. Clearly this is not

F on the Hilbert space, and an index is also

enough to fix the overall sign of (—1)
plagued by this ambiguity. When we compute an index of standard Dirac opera-
tor or de Rham operators, there is usually a canonical choice that is used widely.
We will come back to this, later in next section, but the choice is a matter of

convenience only and, a priori, has no physical significance.

At field theory level, however, we have an unambiguous and useful definition of

such an index, say, the second helicity trace,
1
Q= Tr ((-=1)*3(2J5)?) | (3.70)

where the trace Tr is over a single particle sector of a given charge. We wish to
fix the sign of the quantum mechanical index, in accordance with this. Irreducible

BPS multiplets, tensor products of half-hyper-multiplet and a spin j multiplet,
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have the index
Q] @ (1/21®2(0) = (-1)¥ (2 + 1), (3.71)

so often we also write,

Q="Tr((-1)*") , (3.72)

with the factored-out half-hypermultiplet understood. This naturally reduces to
the low energy dynamics of dyons, which then must correspond to an index defined

with a chirality operator that acts exactly like (—1)2/
Q = Tr((-1)*7), (3.73)

but of course we need to ask here how such an operator is realized in the quantum

mechanics.

As can be inferred from discussions in Ref. [53], the quantum mechanics of previous
section are equipped with SO(4) = SU(2) x SU(2)g R-symmetry. This is easiest
to see in how the fermion bilinear couplings to dKC and dWV combine to give,

i

5 0, 1akp A B" (3.74)

in the component form, where, as before, YpAm=123 = ¢pAa=123 A4 = \A apnd
n is the ‘t Hooft self-dual symbol. The above form is precise when the metric is
flat, but appropriately modified preserving SO(4) symmetry when it is not. For
each particle indexed by A, bosonic coordinates are in (3, 1) representations while
the fermions are in (2,2). Since spatial rotations rotate 4 as 3-vectors, SU(2),
should be interpreted as the rotation group, while SU(2)r must be descendant of
SU(2)r R-symmetry of the underlying Seiberg-Witten theory. The latter rotates

only fermions and leaves the position coordinate intact.’

°In the core-probe approximation of Ref. [53], only SU(2)r were generically there, but this was
an artefact of treating some of dyon centers as fixed background.
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In particular, the four supersymmetries are labeled by the SO(4) vector index, and
thus are in (2,2) representations. Denoting generators of these two SU(2)’s by J
and I, respectively, we thus find

{(=D*",0} =0 = {(-1)*",Q} . (3.75)

The quantum mechanics have two unambiguous and physically meaningful chirality
operators that can be used for index computation. The desired (—1)2/ is one of
them, therefore, we have an unambiguous way of computing the field theory index

from the low energy quantum mechanics.

On the other hand, there is an interesting and universal relationship between these
pair of chiral operators in the quantum mechanics. Restricting our attention to the

relative part of the low energy dynamics again, we have
(—1)273 = (—1)Xa<srans)itn=1(_1)2ls (3.76)

This is easy to see by considering how the two SU(2) generators are constructed

in the quantum mechanics. For SU(2) g, which rotate only fermions, we have

L= (- g a0+ {434 (3.77)

where the hat signifies the unit normalized fermion. The spatial rotation generators
1 - - i~ .
Jo=La+)_ (—8 €ave [0A°, A — i [(pAe, xﬂ) : (3.78)
A

are similar but differ in two aspects: first, since SU(2) g rotates Z4’s, the generators
include the orbital angular momentum L; secondly the fermions rotate differently,
as reflected in the sign of the last term. This latter difference generates a relative

sign between the two chiral operators for each (2,2) representation of fermions,
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n—1

thus explaining (—1)""". The other sign is equally simple, and come from well-
known piece of charge-monopole physics, where the orbital angular momenta is

schematically something like

r — — <7Aa’YB> ‘/EA - fB
Lo @axia)+ Y ErE (3.79)
A A>B A—LB

with the covariantized momenta 7 4. The orbital angular momentum is constructed
from tensor product of spin (y4,v5)/2 representations times usual integral angular
momentum. Then regardless of which particular SU(2); multiplet the state is,
integrality vs half-integrality of the orbital angular momentum is unambiguously

determined as
(_1)2L3 — (_1)ZA>B<'YA7'YB> . (380)

Note that this does not require L being symmetry operators.

Thus, we have the second helicity trace of N = 2 dyons which can be computed

via the low energy quantum mechanics as
Q=Tr((—1)*e7sH) = (1) Za<slanertn=l oy (—1)2se=sH) | (3.81)

In the subsequent computation, with this relation in mind, we will eventually iden-
tify (—1)25 as the canonical chirality operator (—1). For this, there is another
sign issue to settle, later when we begin to quote index formula from literature,
since the latter come with a canonical choice of (—1)¥', which may or may not equal

to our choice, (—1)2%3, but we postpone this to end of next section.

Another reason why (—1)2 is useful, even though we ultimately want (—1)2/3,

can be found in the observation [73] that all explicitly constructed field theory
BPS states, to date, are in SU(2) singlets times the universal half-hypermultiplet
(from the center of mass part in quantum mechanics viewpoint). If this is gen-

erally true, we can see that the index with (—1)?3 is always positive and truly
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counts the degeneracy. An interesting question, therefore, is whether in the low en-
ergy quantum mechanics we derived all supersymmetric bound states are SU(2)r

singlets.

An interesting variant of the second helicity trace is the protected spin character
[73].6
Tr ((—1)*%y?/+20) (3.82)

where again we took out the universal half-hypermultiplet from the trace for sim-

plicity. This clearly reduces to, in quantum mechanics,
Tr ((—1)*73y2/3128s) (3.83)

Later we will also see how this quantity is naturally computed, after we reduce the
index problem to the more familiar one that relies only the classical moduli space
K = 0, by the equivariant index that counts “angular momentum” representations.
As we will see, this reduction process cannot carry the entire A’ = 4 supersymmetry,
and, of SO(4) R-symmetry, only a diagonal SU(2) subgroup generated by J + I
survives as global symmetry. The equivariant index on K = 0 space does not count
representations under spatial rotations but under simultaneous rotation of spatial
SU(2);, and N = 2 R-symmetry SU(2)g.” See section 4.4. for more detail.

3.4 Index Theorem for Distinguishable Centers

Now we turn to the problem of counting ground states of the above quantum me-

chanics, or equivalently counting BPS bound states of n dyons. Since the quantum

5We are indebted to Boris Pioline and Jan Manschot for bringing the question of the protected
spin character to our attention.

TOf course, if the SU(2)r singlet hypothesis actually holds for the ground state sector, the end
result would not know about I3, anyway. In fact, on the basis of this hypothesis, this equivalence
was anticipated previously [54]. Our argument in section 4.4 will prove the identity without such
an assumption.

69



Chapter 3. Applications of Index Theorems in String Theory

mechanics has a potential, ~ K2, one may expect that the problem can be reduced
naturally to another problem on the classical moduli space of 2(n — 1) dimensions,
say,

M, ={z4|Ka=0, A=1,2,...,n}/R?, (3.84)

where the division by R? is to remove the flat center of mass part. This classical
moduli space is generically a little more complicated since some of the centers could

be associated with identical particles, which we will deal with in the next section.

This reduction is not as straightforward as one might think, however. Ref. [57], for
example, suggested that one can ignore the (then unknown) kinetic part of the La-
grangian. Effectively, in our notation, this would involve a geometric quantization
of £1,

. Aa i a m,; Bn
ﬁgeometric = ﬁl = _bA]CA - WAa«TA + iaAaK:BnmnwA T/JB ) (385)

which is obtained by truncating higher-derivative parts in £g. The auxiliary fields,
b’s, are now Lagrange multipliers, imposing K4 = 0 as constraints and leaving a
lowest Landau level problem on M, with the magnetic fields ) , dW4. However,
computation of the resulting index, if we take Lgjeometric verbatim, generates wrong
results relative to other known spectrum; The geometric quantization of Lgyeometric

would lead to index formula that is known to generate empirically incorrect answers.

For two body case, for example, the degeneracy 2|q| has been known to be the
correct answer for many explicit constructions. See, for example, Ref. [41] and
Ref. [53] for explicit two-dyon bound state construction in the weakly coupled and
in the strongly coupled regions of Seiberg-Witten theory, respectively. On the
other hand, the naive lowest level Landau problem (or equivalently the geometric
quantization problem) gives 2|q| + 1. One would hope that the effect of fermions
in Lgeometric Will fix this, but this apparently does not happen.
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The truncation of the kinetic terms in the presence of fermions is quite subtle, since
while bosons acquire a symplectic structure thanks to the magnetic field, there is no
such analog for fermions. Setting the kinetic term of fermions to zero will cause the
canonical commutator ill-defined, making the whole reduction process ambiguous.
One can try to reinstate kinetic terms on M,, as a regulator, but then, the main
issue is that the number of fermions in £; is 4(n — 1) real while the number of
bosons is 2(n — 1) real, and these lead to de Rham cohomology problem on M,,.
For not too small ¢ and when M, is Ké&ehler, for example, the index of such
a quantum mechanics coincides precisely with the state counting of the bosonic

geometric quantization problem,® again giving us wrong result for the index.

Really at the heart of the problem is, however, the fact that the classical massive
directions are in fact no more massive than the classically massless directions.
Because the classical moduli space M, is of finite size’, it comes with various
gaps at quantum level, and it so happens that these quantum gaps are one-to-one
matched and identical to the gaps associated with the classically massive directions:
the dynamics cannot be really split into two distinct sectors of heavy and light
modes, at all, and contrary to initial expectation, the reduction to M,, cannot be
justified. In fact, this lack of separation of scales is easiest to see in how fermions
enter the Hamiltonian. Half of fermions get mass from dXC while the other hand
get mass from dWW. However, N' = 4 supersymmetry of the quantum mechanics
tells us that the two are one and the same object, and fermions coupling to dK are

no more heavier than those coupling to dW.

Fortunately, we can still decouple these classically massive directions in the com-
putation of the index problem. This involves a deformation that breaks all but one

supersymmetry, yet because the quantum mechanics is gapped and the surviving

8 See for example Ref. [72], where in effect a regularized version of these problems were con-
sidered with kinetic terms on M, and for its fermionic partners present.

9There are also some exotic cases corresponding to the scaling solutions. In these cases, the
moduli space is non-compact, from short distance side, but its volume in the naive flat metric is
still finite.
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Chapter 3. Applications of Index Theorems in String Theory

supercharge is effectively a Fredholm operator, it can be done while preserving the
index. Later in the section and in Appendix B, we explicitly show that, as far as
computation of the index goes, we may reduce the moduli dynamics to an effective

N =1 supersymmetric quantum mechanics with target M,,,
N=1 1 gy IR S
ﬁfor index only(Mn) = 5 GMVZ 25+ 5 G/ll/w dj o= Auz T, (386)

where A is a gauge field on M,, such that

dA=F=d (Z WAadxA“)
A

(3.87)

Mn

and G is the induced metric on M,. This Lagrangian must be used only for the

purpose of computing index.

The key point here is that the number of fermions is exactly half of that in
Lgeometric-  Since these fermions live on the tangent bundle of M,,, we have a
nonlinear sigma model with real fermions. The relevant wavefunctions are spinors

on M, and the index in question becomes a Dirac index,

L)) = [ Ch®amn) = [ o) (389)

My My,
with the Chern character Ch of F. A is the A-roof genus of the tangent bundle,
which will be shown to be trivial for all M,,’s. This formula counts the index when
we view individual charge centers as distinguishable; in section 5, we will extend
the formula appropriately when identical particles are involved and along the way
see why the rational invariants of the form ~ Q/p? with integer p > 1 appears in

various wall-crossing formulae.

The Dirac index found here is consistent with de Boer et. al.’s observation [57] that
empirically correct answers emerge for n = 2 and n = 3 if one assumes that the

relevant quantum mechanics admit spinors on M, as the wavefunction. This can
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be then generalized to the refined index (or equivariant index) and make contact

with a series of recent works by Manschot et.al [54, 55].

3.4.1 Two Centers: Reduction to S?

Supersymmetric ground states were found and counted for n = 2 case in Ref. [53],
which gave the correct answer of 2g at the end of the day. expected, the wavefunc-
tions are all maximized near the classical “true” moduli space K = 0, which was
nothing but a two-sphere threaded by a flux of 4mq. However, the wavefunctions

can also be seen very diffuse, too much so to let us call it “localized” there.

Here, we will illustrate why a naive reduction to My = S? by throwing away entire
kinetic term is wrong. After the latter procedure, one ends up with Lgeometric for
which we need to either geometrically quantize over S? or regularize the dynamics
by reinserting kinetic term on S? and concentrate on the lowest Landau level. If
we follow the second viewpoint, we end up with a two dimensional nonlinear sigma
model with four real fermions, so effectively we will have thrown away only the

bosonic radial coordinate from the original moduli dynamics.

Let us consider the zero point energy of the relative part of the two-center mechan-
ics. Three bosons can be split into “radial” directions, on which K and the mass
function f depend, and flat “angular” directions. With L = a — ¢/r and positive
a and ¢, the ground state is at r = rop = ¢/a, and the radial direction becomes a

harmonic oscillator of frequency w = a?/f(rg)q, so

a2

; 1
E . radial - >_ - 3.89
radial (mb + 2) w=z 2f(7'())q ( )

The angular part, although classical flat, also comes with a gap due to the finite

volume, and the energy quantization there goes as

EQ_q2 a2
E ~ , 3.90
where = 5t = 2 (ro)q (3.90)
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since the angular momentum is bounded below, in the presence of the flux, by
q. The four real fermions are paired up into two fermionic oscillators of the same

frequency w as above, so we get contribution from the fermion sector as

Efermion = (mf + m/f - 1) w2z — (391)

fro)g
where we again see that there is only one scale in the fermion sector also. Of course,
the behavior of fermionic degrees of freedom must be the same as the bosonic ones,

since we have supersymmetry.

This shows that, without further deformation, the gap of the classically massive
radial direction is exactly the same as the rest of the degrees of freedom. If we
wish to localize the problem to Ms = S? by removing the radial mode, we must
do something else so that the gap along the radial direction and the gap along Ms
are different, but this seems impossible under the N' = 4 supersymmetry of the

quantum mechanics.

Let us remember here that, for the evaluation of index, one needs only two things:
a Dirac operator of some kind and a chirality operator that anticommutes with it.

One would like to compute the index
Tr(—1)Fe s | (3.92)

for interacting part of the theory. Let us, for the sake of definiteness, take H = Q3,
and evaluate
Tr(—1)Fe 5@ | (3.93)

N = 4 supersymmetry is useful since it constrains dynamics but all of them are
not really necessary to define an index. It is clear that, as long as we preserve this

quantity, we can even break A/ = 4 supersymmetry.

Of course, N' = 4 supersymmetry is important when it comes to generating correct

supermultiplet structure to the bound state, but that only concerns the free center
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of mass part. The index must be computed from relative interacting part of the

dynamics, only for which we will break N' = 4 supersymmetry.

Thus we are motivated to give up dK = *dW condition, thereby keeping only
(Q = Q4 unbroken. Let us replace

K — &K (3.94)

with some arbitrarily large number £ while keeping W as it is. The ground state

energy counting is now

w w w —+ w
£ +§_§

Eradial + Esphere + Efermion > 2 )

-— 3.95
> & (3.99)
since the half of the fermions (A and ") get the mass from d((K) and the other
half from dW. The angular momentum sector mass-gap, w/2 = q/2f(ro)r3, is
unchanged since the classical vacuum, K = 0 and thus the radius r9, and W are

intact under this rescaling.

It is not difficult to see that the reduced dynamics, after integrating out heavy
modes, is a A/ = 1 nonlinear sigma model onto My = S? coupled to an external
vector field W. See Appendix B for complete detail of the reduction process. We
note that since My = S? happens to be Kiehler, the unbroken supersymmetry gets

accidentally extended to N = 2, although this is not important for our purpose.

3.4.2 Many Centers: Reduction to M,

Similarly, we wish to deform the theory by rescaling 4 — (K4, when we have

many dynamical charge centers, as well
i 1 ] .
iieformed = /d0 (2 gAaBbD(I)Aaat‘I)Bb — 5 hABAADAB — ZkAan)AaAB + -

+iKC A (D)AA — iWAa((I))D(I)Aa> , (3.96)
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where ¢ is an arbitrarily large number. As in the two-center case, the bosonic
potentials are quadratic in K 4’s and there are n — 1 “radial” directions that are of
mass ~ . There are also 2(n — 1) fermions that couple to d({K4)’s, so they are
also of mass ~ &. The two sets can be decoupled together, thereby reducing the
index problem to M,, with real fermions. It leaves behind a N' = 1 supersymmetric
quantum mechanics onto M,, with 2(n — 1) bosons and 2(n — 1) real fermions. The
process does not affect the free center of mass part, so the latter still comes with 3

bosonic coordinates and 4 fermionic ones.

We may further deform the kinetic part, £y, by taking the simplest form of the

kinetic function,

1 LA A
LZQXA:mAx ST (3.97)

which amounts to

GAaBb = 0ABOaM A, hag = dapma, kaap =0, (3.98)

and setting cubic terms to zero as well. The simplest way to justify this deforma-
tion is that the kinetic function approaches this flat metric when distances between
charge centers approach infinity. This asymptotic form is more than good enough
since we can always tune the field theory vacuum, so that we stay arbitrarily near
the marginal stability wall. There, Im[¢~!Z4] approaches zero, and the submani-
fold M,, is arbitrarily large. Since the index cannot change under the continuous
and sign-preserving deformation of Im[(~!Z4], and since the ambient metric is

effectively flat for large M,,, the index will be unaffected by this choice of metric.

This leaves us with a very simple N/ = 1 quantum mechanics

J 1
Edeformed = /d@ <; mAD(I)Aaat(I)Aa — 5 mAAADAA

+iEK A (P)AA — iWAa(q))D(I)Aa> , (3.99)
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with target R3" modulo submanifolds given by 4 = +00. Of this, the free center
of mass positions R® and the accompanying four real fermions decouples, leaving

(n=1) " This free part is

behind the interacting part of the moduli dynamics onto R?
also essential since it generates the basic BPS multiplet structure (whose content
equals half of a hypermultiplet) to the bound state. Then, by taking & — oo,
we decouple n — 1 “radial” directions and 2(n — 1) accompanying heavy fermions,
and end up with a nonlinear sigma model onto M,, with real 2(n — 1) fermionic

partners. See appendix for detailed derivation of this fact.

Thus, we arrive at the effective Lagrangian, which can be used for the purpose of

computing the index of the original n center problem,

_ 1 i o N i ,
Eé\o/;iidex only — 5 G#V'Z“Z - AM’ZN + 5 Guzﬂ/}’% + 5 GMV¢MZAFA5w5 + 5 fuﬂﬂ“w

(3.100)
again with the induced metric G on M, and, as we already noted,
dA=F=d <Z WAadxA“> (3.101)
A My,
Since each W, is a sum of Dirac monopoles at ¥ = Zg’s, we find
F = d Z Z <7A7273> WaDiraC(fA — Zp) dxAe ‘
A B#A M.,
= d (Z <’YA’2’YB> WaDirac(fA _ fB) d(an . xBa)) ‘
A>B My
= ¥ <7A’273> FPiree(z, — 7p) (3.102)
A>B

where FPa¢ is the Dirac monopole of flux 47. Of four supercharges, Q4 survives
the deformation process above, which is then further reduced to Qa4, as heavy

modes are integrated out.
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3.4.3 Index for n Distinguishable Centers

Since this is the plain old nonlinear sigma model twisted by the minimal coupling
to A, the reduced supercharge is represented geometrically as the Dirac operator
with a U(1) gauge field

Qi = Qum, =7"({Vut+A) (3.103)
whose index, according to Atiyah-Singer index theorem, is given by

To({rah) = Tr (-)™ee @) = [ CR(F)AM,) ,
My,
as promised, where we must assume a canonical choice of the chirality operator.
This is,
(~1)0 = (@) Hgh gD

in terms of properly normalized and ordered fermions. See next subsection for how
this choice squares off with physically motivated chirality operators (—1)2/3 and

(—1)%3 of section 3 and how the latter chirality operators reduce on M.,.

Curiously enough, the A-roof genus A does not contribute to the index, thanks to
the simple topology of M,,. To see this, let us first note that the ambient space,
in which M,, is embedded is essentially R3". For instance, take #; = 0 to remove
the translation invariance and make the ambient space R*™~1_ and then impose
K4 = 0, of which n — 1 are linearly independent. Therefore, M,, is a complete

(n=1) " Since A-roof genus is a multiplicative class, we have an

intersection in R3
identity,

ATM)ANM,) = A (TR3<”—1>\ Mﬂ) —1 (3.104)

among the tangent and the normal bundles. However, dK 4’s are nowhere vanishing

normal vectors on M,,, and thus the normal bundle NM,, is also topologically
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trivial'®, and
ATM,)=1. (3.105)

It is important to note that this decoupling depends only on the topology of the
ambient space, namely the original 3n dimensional moduli space, near the surface

Ka=011

Note that similar argument will not lead to triviality of other multiplicative class
since typically they require complex bundles in order to be defined. For instance,
T'd(May) or ¢(Mayy) cannot be argued to be trivial in this manner since the normal
bundle of My, inside the relative position space R32~1) is of odd dimension and,
if irreducible, cannot be complex. In particular My = S2, which has a clearly

nontrivial c¢1, shows this clearly; its normal bundle has a real line as the fibre.

3.4.4 Reduced Symmetry, Index, and Internal Degeneracy

Since we arrived at the nonlinear sigma-model on M, only after the deformation of
the dynamics, which in particular removes the extended supersymmetry, we must
first ask whether various operators survive this procedure of deformation and the
subsequent reduction process & — oo. Of the four original supersymmetries, (4
survives the deformation. It’s on-shell form will be smoothly deformed as well,

which goes like
Qi=-+ MK 5 Qi=-- +NKA. (3.106)

The ellipsis denotes parts unaffected by the deformation. We emphasize again that
this supersymmetry is explicitly preserved since the deformed Lagrangian (3.96) is
written in the superspace associated with 4. Then, given that Q4 is a gapped

elliptic operator, at £ = 1, this deformation preserves the index as we increase £ [43].

10WWe are indebted to Bumsig Kim for pointing this out to us.
' However, it turns out that A(M,) factor does make a difference when one evaluate the
equivariant index [55].
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This Q4 reduces to Qay, of the nonlinear sigma model on M,,, and obviously the
Hamiltonian, Q?/2, gets similarly deformed and eventually reduced to the natural

one on M,,.

This leaves the global symmetry operators and the chirality operators. With the
N = 4 supersymmetry partially broken, the SO(4) R-symmetry can be easily seen
to be broken. On the other hand, the deformation commutes with rotation of Z4’s,
so we expect to see some SU(2) symmetry does survive the process. The question
is which SU(2) in SO(4) = SU(2)r, x SU(2)r remains unbroken. The answer is
the diagonal subgroup, SU(2) 7, generated by

ja = Ja + Ia . (3107)

One can see this in several different ways.

Firstly, both J (SU(2)r) and I (SU(2)1) are broken by themselves, since they
both act nontrivially on heavy fermion sector. The diagonal generators [J’s, on the
other hand does not involve A fermions and leave the heavy sector ground state
untouched. Secondly, after deformation and reduction to M,,, the dynamics is a
nonlinear sigma model, where fermion transform identically to bosons. Recall that
bosons and fermions used to belong to (3,1) and (2,2) of SU(2)r x SU(2)g. In
the reduced dynamics, symmetry properties of the bosons and fermions cannot be
different, and indeed under the diagonal subgroup, bosons and fermion transforms
identically. Finally, after the deformation, the dynamics has only one real super-
symmetry Q4 so no R-symmetry is expected. However this supercharge originate
from a (2,2) multiplet under SU(2)r x SU(2)g, so has to transform nontrivially
under either of the two individually. On the other hand, becaues J does not ro-
tate A’s, J commutes with @4 and also with its reduced version Qaq,. At the
level of reduced dynamics on M,,, this SU(2) 7 is not an R-symmetry but a global

symmetry that arises from the universal isometry of M,,.
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While we are on the question of symmetry, let us digress a little and consider the
equivariant index or refined index one encounters in literature on wall-crossing, of
the generic form

Tr ((—1)Fy*®) (3.108)

with a “rotation” generator j3 along z-axis. Most such computations are based on
some version of low energy quantum mechanics on the classical moduli spaces, our
M, ’s, but as we saw above, the “rotational symmetry” of M,, is in fact not the
purely spatial rotation but a diagonal subgroup of spatial rotation SU(2);, and the
field theory R-symmetry SU(2)gr. Therefore, the refined indices that have been

computed are in fact
Tr ((-1)Fy*73) = Tr ((—1)Fy?/s+20) (3.109)
so actually would equal the protected spin character
Tr ((_1)2J3y2J3+213) (3.110)

of the field theory, if we are allowed to choose the chirality operator (—1)% of the

quantum mechanics to be (—1)2/3.

So this brings the question of what happens to the two natural chirality operators,
(=1)2% and (—1)23, when we deform and reduce the dynamics in favor of a M,
nonlinear sigma-model. As we saw, the two SU(2) symmetries are lost individ-
ually, so operators like J3 and I3 can no longer be used to classify eigenstates.
Nevertheless, (—1)2/ and (—1)%/ are still sensible chirality operators. Even after
the deformation, one can show directly (—1)?® as a product of all fermions while
(—1)2’3 is again the same product of all fermions times (—1)2a>5{478)4n=1 Both
anticommute with the surviving supercharge ()4, so still defines chirality operators.
This is not much of surprise since they simply measure the most rudimentary in-
formation about the states, i.e., whether, before deformation, the state was in a

integral or in a half-integral representations.
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When we reduced the dynamics to M, however, we must properly redefine these
chirality operators by evaluating them on vacuum of the heavy oscillators. For
instance, consider (—1)2/3 for the simplest n = 2 case. The canonical chirality

operator on M,, = S? is, as noted before,
(-1)Fs = 21

with the natural orientation arising from embedding of S? to R3. To relate this to
(—1)23| we remember to set the heavy fermions, 1/ and ), to their ground state,
which gives precisely

(O1(=1)*2[0) peavy = (~1)7s2

it turns out.'? Clearly, we may repeat this for each sector of 4 fermions labeled by
A, and find

<0|(_1)213‘0>hecwy = HQZQ&%QZJ% = (_1)FM" . (3.111)
A

Therefore, the chirality operator (—1)%/3 prior to the deformation, smoothly de-
scend to the canonical chirality operator on (—1)F Mn upon deformation and sub-

sequent reduction of dynamics, and leads to the standard Dirac index Z,.

Since the desired index 2 needs (—1)2/3 as the chirality operator, we then use (3.81)

to relate (—1)%/3 to (—1)?/3, and find an unambiguous answer,
qQistnet — (1) s0ATH 5 T ((4)) (3112)

On the left hand side, we emphasized the fact we are yet to incorporate the statistics
issue. We will see in next section how this generalizes when we impose statistics
to the index computation. Before asking the question of statistics, however, there
is still one more ambiguity to the expression above, since so far we did not take

into account of the internal degeneracy and quantum numbers of the individual

12 This can be seen most easily when we choose the ordering of y4’s such that (ya,ys) are all
nonnegative for A > B, which is also the convention chosen in Ref. [54] for non-scaling cases.

82

] 2 1_]|

-y
=]

1



Chapter 3. Applications of Index Theorems in String Theory

charge centers. The left hand side is still defined with respect to (—1)2/3, so adding

internal degeneracy factor can be accomodated by writing
) . n
destmct _ (_1)ZA>B<7A,VB>+71—1 % In({')/A}) X H QA (3113)
A=1

2J3 (as usual modulo

where individual Q4’s are also computed as the trace of (—1)
the universal half-hypermultiplet part). As usual, we assume that there is no
significant coupling of these internal degeneracy to the quantum mechanical degrees

of freedom. Sometimes, we will also write this as

(_Qdistinct) « (_1)ZA>B<’YA7’YB> — In({’YA}) X H(—QA) (3.114)
A

which is more convenient when keeping track of statistics, since, for SU(2)g sin-

glets, the Bose/Fermi statistics are naturally correlated with the sign of —{4’s.

3.5 Index with Bose/Fermi Statistics and Rational In-

variants ()

So far, we pretended that dyons involved are all distinct, and studied the supersym-
metric bound state thereof. In reality, this is not quite good enough since we often
need to understand bound states of many identical dyons, obeying either fermionic
or bosonic statistics. The effective true moduli space, for example, has to be an
orbifold of type

M, /T (3.115)

where I is a union of permutation groups that mix up labels for identical particles,

with proper action on wavefunctions. Equivalently, the index should be computed
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with appropriate projection operator inserted,
Q="Tr((-1)*8e " Pp) (3.116)

where Pr projects to wavefunctions obeying either Bose or Fermi statistics under

the exchange of identical particles.

The orbifolding reduces the volume of the moduli space, so given the index formula
which is an integral over the manifold, we should expect to see factors like 1/d! as
a result of having d identical centers. However, action of I' is not everywhere free,
since when identical particles are on top of one another, the action is trivial. There
are complicated fixed submanifolds under I', making the problem very involved,
and in particular there should be additional contributions from the fixed manifolds

under the orbifolding action.

3.5.1 The MPS Formula

Before we carry out such a computation directly, it is instructive to recall a re-
cent result by Manschot, Pioline, Sen (MPS), who evaded this complication alge-
braically, and replaced it by a sum of many index problems with distinct charge
centers [54]. They argued that one can recover the correct index, by adding indices
for a series of artificial problems with a smaller number of charge centers. In this
set of effective index problems, the trick requires the following rules: When the
reduced problem has d particles of the same kind, MPS divides the index by 1/d!.
When one has a particle of nonprimitive charge as a part of such a reduced prob-
lem, one must also use, in place of the true intrinsic degeneracies €2 of the particles,

a mathematical one €,

Qv =) @0/ (3.117)

2
ply
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where the sum is over the positive integer p such that v/p belongs to the quantized
charge lattice of the theory. Note that Q(vy) = Q(v) whenever v is primitive and
Q(py) = Q(7)/p? if no non-primitive charge state exists.

For illustration, let us take two primitive charges 81 and B2. Suppose that, among
all possible linear combinations of the two, only these two states exist on one side
of the marginal stability wall. Labeling the degeneracy by + depending on which

side of the wall we are considering, we thus assume that
QF(mpBy + kB2) =0, unless (m, k) = +(1,0) or (m, k) = +(0,1) .  (3.118)

The sign of Q12 = QF(B12) are correlated with the statistics assignment of the
particle; a hypermultiplet has 2 = 1 and must be treated as Fermions while a vector
multiplet has 2 = —2 and must be treated as Bosons. Under this assumption, we

have Q(pB1.2) = Q(B1.2)/p?. Manschot et.al.’s formula then simplifies to,

—Q7 (mpB1 + kP2) x (—]_)ZA>B<'YA>'YB>

= ﬁ:[m+k(/8laﬂl7"'7/827627"‘)(_Ql)m(—QQ)k

0
+ (,rn_12)!k,!Im—1+/€(2/81751a617"'aﬁ?aﬁ%---)221(—Ql)m_2(—ﬂ2)k

0
+ (’rn_lg)!k!Im—2+k‘(3ﬁlyﬂlaﬁla---,52,[32,...)321(_(21)771—3(_92)k

—0\ 2

+ MIm2+k(26172517617/31"'7527627"-) <221> (=)™ =)k
o (3.119)

where the sum is over all unordered partitions of mpB; + k(2 respectively, although
we listed above only part of the partitions of m. For the overall sign, we re-labeled
the individual charges 51, f81,...,082,52,... and called them ~4’s. This sum and

each term in it can be characterized by the following set of rules:
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(i)

(i)

(iii)

(iv)

The sum is over all unordered partition of mpBy + kB2 = ) dsBs where
Bs = (ps1f1 + ps232). For each By, we will have a factor Q(3;), so we can,
with the current assumption on Q"’s, consider only a subset where only one

of ps1 and pso is nonzero for each s.

The index Z,, with n’ = d, effective charge centers. For Z,/, we treat all
charge centers as distinguishable, so it is computed by the index theorem of

the previous section with n’ < n distinguishable centers.

The combinatoric factor of 1/ds! for each s. This takes into account of the
reduced volume of the moduli space due to the orbifolding by the permutation
subgroup S(ds) acting on the reduced n'-center quantum mechanics, but does

not address the contribution from the submanifolds fixed by S(ds).

For each effective particle of charge pS, with primitive # and p > 1, that shows
up in computation of Z,,/, one further assigns an effective internal degeneracy
factor —Q(pB) = —Q(B)/p?, in addition to (—Q;)™ (—Q)* | which reflects
the fact that m/ number of 31 centers and k' number of 35 centers are left as

individual.

The last —Q(pB) = —Q(B)/p? should be compared to the naive (—Q(3))P degen-

eracy factor that would be the correct factor if we were considering p separable

particles of charge (8 instead of one particle of charge p3. Finally, the appearance

of —(2’s instead of 2’s is natural, since for example a half-hypermultiplet with 2 = 1

acts like Fermions, while a vector multiplet with 2 = —2 acts like Bosons.

From the quantum mechanics viewpoint, the decomposition (i) clearly has some-

thing do with the orbifolding action I'. Each term in (3.119) arises from a submani-

fold which is fixed by the product of permutation groups of order p, [, S(ps) C T

For each sector, origins of (ii) and (iii) are also evident as coming from a re-

duced problem of n’ charge centers and the subsequent volume-reducing action of
[1,S(ds) =T/]I, S(ps). The only part of this formula which is not evident, so far,
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from the moduli quantum mechanics viewpoint is the rational degeneracy factor
of (iv). Here, we would like to isolate where this comes from, and later derive it

directly from the moduli dynamics.

After some careful thinking, it becomes evident that this rational degeneracy factor
should come from quantum mechanical degrees of freedom normal to the subman-
ifold fixed by S(p)’s. Let us consider only p > 1 cases and label them py, since
otherwise the internal degeneracy factor is (8) as expected. Subgroup S(pg)’s
ps—1) inside My, This

fixed submanifold has a codimension 2> (py — 1) in M, since it is spanned by

permuting these py > 1 charges fixe a submanifold M,,_y~(

coincidence of py centers, each of which span two directions in M,,.

Consider the reduced dynamics on the intersection, M,—, s 1), for compu-
tation of Z,» with all such py By center treated as single particle, respectively. If
we start with this reduced index problem, impose the statistics, and pretend that
the centers associated with py By comes with a unit degeneracy we will find a

contribution of type
1

I d:!
where m/f1 + k' s = mp1 + kB2 — > py By and n' =m/ + k' 4+ 3", dy. Note that
we took care to include the volume-reducing effect of [[, S(ds) = I'/[[ S(ps) via
the denominator [[ ds! = m/IK'!(]] dy!).

T x (=)™ (=) | (3.120)

This expression is obtained after ignoring the quantum degrees of freedom that
are normal to the fixed manifold M,,_s~,,1)’s, and does not agree with MPS

formula. The latter is

1 m ! —Q(Bs
Ld T % (=)™ ()" x H p(g,) (3.121)

so the difference is precisely the rational degeneracy factor of (iv). Clearly it comes

from quantizing the normal bundles of M,,_s~( ’s inside M,,. On the other

psr—1)
hand, for all intent and purpose, this part of quantum mechanics is free, since they
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Chapter 3. Applications of Index Theorems in String Theory

have something to do with many identical particles and has no interaction of type

L1, except for the statistics issue.'

This leads us to conclude that the factor, 2(3)/p?, should arise from an index of
p noninteracting identical particles of charge 3, modulo the center of mass part
which already contributed to Z,—,_,11. The relative dynamics of such identical
particles carry 2(p — 1) bosonic degrees of freedoms, 2(p — 1) fermionic degrees of
freedom, and additionally internal degeneracy of |Q2(3)| for all p particles. In next
subsection, we will show that precisely such a factor arises from the dynamics of

non-interacting and identical p particles with the internal degeneracy Q(f).

The full MPS formula follows the same set of rules, except that one must in general
consider an arbitrary set of charges on the + side, and all the partitions of the total
charge v in terms of charges of states that exist on + side of the wall. Since the +
side of spectrum may then include states of charges hf31 + jB2 with h+ 7 > 1, more
diverse charge centers will appear for the individual index problems on the right
hand side. As we will discuss later, this can be incorporated by treating all such
particles on the + side as independent. The only subtlety is when non-primitively
charged states exist on the + side; this can be remedied by employing the fully
general form, Q(y) = Y by Q% (v/p)/p? as the effective degeneracy factor. We will

also see this most general Q emerging from our index computations.

13There is a subtlety, again related to whether threshold bound state of identical charges can
form. Since we started with the assumption that such nonprimitive state do not exist, it is safe to
assume this issue does not complicate our problem. Whether or not we can extend this to theories
with threshold bound states, i.e. supergravity, is an open problem.
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Chapter 3. Applications of Index Theorems in String Theory

3.5.2 Physical Origin of (3)/p* from p Non-Interacting Identical

Particles

Let us first restrict ourselves to bound states involving several identical dyons of
charge 3 with —Q*(8) = £1.'* As in the previous discussion, let us consider the
bound state of n charge centers, v = > 474, m of which are 8’s. The identical
nature of the 8 dyons means that the orbifolding group includes the m-th order
permutation group S(m). We start with the assumption, for simplicity, that kS
state exists only for |k| = 1 on the + side, and then come back for the fully general

case in next subsection.

Consider the index reduced on the true moduli space M,, as described in the pre-

vious section, with proper account taken of the Bosonic or the Fermionic statistics,

o (Zm) —ar <zm> = [ (CiepPe @ prx)) ax @az)
1 A My,

via the orbifolding projection operator Pr. Here tr means the trace over the
fermionic variables as well as other internal discrete degrees of freedom, and we
integrate over the bosonic variables X with an appropriate measure. Matching the
sign of —Q with (—1) value of the component dyon states, as we noted in the case
of bound state counting in distinguishable centers, this index naturally computes

the degeneracy €27 ’s as

d({rahiT) = [ (X112 Polx)) ax (3.123)
so we would like to ask whether this reproduces (3.119) and rediscover the rational
invariant Q. For this, let us concentrate on the permutation group S(m) part of T

and see how it generates a series of terms, similar to MPS’s wall-crossing formula.

MBecause of spin-statistics theorem, there is no irreducible BPS multiplet in D = 4 N = 2
theories with 2 = —1. The half-hypermultiplet has 1 and vector multiplet has -2. The assumption
here is strictly for the illustrative purpose only.
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Inside M,, there are various fixed submanifolds, M., of dimension 2(n’ — 1). The
simplest are M,,_p 1, fixed under S(p) subgroup of S(m). Note that we use the
same notation M for the fixed submanifolds as the full classical moduli manifold
M. This is because all of them are of exactly the same type. For example, the
manifold M, _,+1 would also emerge if we started with a different low energy
dynamics involving a single center of charge mg in place of m centers of charge (.

Ignoring contributions from these fixed manifolds would simply give

|IF"|> x [ 24 (3.124)
A

(_1)ZA>B<’YAa’YB>+n—1 <
due to the volume-reducing action of I' when it is acting freely. This is the very
first term in the MPS formula. Since there are many fixed submanifolds, however,

each of them will contribute additively on top of this.

Without loss of generality, let us consider the fixed manifold M,_,;1 associated
with the partition mg8 = p8+ 6+ 8+ --- + 3, and label the coordinates along the
fixed manifold M,,_p+1 by X’ and those normal to it by Y. Note that among X’ are
the two coincident (or center of mass) coordinates for the pf charge center, so we
can think of Y’s as the relative position coordinates among these p charge centers;
therefore there are 2(p — 1) Y’s. We then formally write the additive contribution

from the fixed submanifold M,,_, 1 as
Ap x Ind({yar} = {pB,8,... 1)
— A, x / tr/ (<Y =0, X'|(—1)2 e sH' Py = o,x’)) dX'(3.125)
Moy —pt1

where IV = T'/S(p) is the remaining orbifolding group that acts nontrivially on
My _pt1. Here tr’ denotes trace over fermionic and other internal degrees of free-
dom, except those associated with the p identical §’s that are held together at
My _py1.

90



Chapter 3. Applications of Index Theorems in String Theory

We factored out the contribution A, from the normal directions, Y, and the super-
partners thereof. On the other hand, the second factor is the index of a reduced
n—p—+1 center problem, modulo the internal degeneracy factor of pg charge center.
Other than this, the computation of this latter factor proceeds on equal footing as
(3.122),

/ 1/ (<Y =0, X'|(~1)>5e=*H Py =0, X'>) dx’
Mop—pt1

n—p+1
~ (_1)ZA/>B/<'YA/7’YB/>+TL*I’ M X ﬁ Q —+ (3 126)
~ ‘F/| A e .
A'=2

so we may compute the full index recursively. A, plays the role of the missing
internal degeneracy factor 21 here, as it computes the effective contribution from
these p coincident 3’s. The ellipsis denotes terms from other fixed submanifold

inside M,,_p41 etc.

We will show that A, = £1 /p?, regardless of precise nature of the 3 particles,
which also reproduces MPS formula for Q(8) = +1 entirely from the dynamics.

Schematically, this factor can be written as
~ /tr (<Y|(—1)2Jef e_SHlP|Y>) ay (3.127)

with ' and H | defined on Y’s and the superpartners, again with suitable measure

for the bosonic integral. The projection operator

P = ;W;S(:p)(:pl)”(ﬂMﬁ (3.128)
ensures that we isolate wavefunctions of correct Bose/Fermi statistics. Note that
the sign in the projection operator is the same as that of —Q(3). M is the (p—1)
dimensional representation of m € S(p), common for (p — 1) coordinate doublets
Y’s and for their fermionic partners, ¢)’s. Naturally o(7) is odd or even when 7 is

odd or even.
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Since the embedding of M,,_,1’s in M,, could be very complicated, the exact na-
ture of the decomposition is not entirely clear. On the other hand, the initial index
problem is gapped and allows us to take s — 0. At least in this limit, the decom-
position makes sense intuitively, and, as we will see shortly it suffices to consider
an arbitrarily small tubular neighborhood around the fixed manifold M,,_, 1. We

take the Y directions as a ball By(,_1) insides a flat R2(p=1) | Therefore, we have

A, = lim r ((Y\ (—1)J§e<s/2>v27>|Y>) dy . (3.129)
s—0 B2(p—1)
Precisely how we cut-off this neighborhood will not matter, as we will see shortly

that a Gaussian integral of squared width s emerges along Y directions.

Interestingly, exactly the same kind of object was studied when solving for the fa-
mous DO bound state problems in the 1990’s. The first such computation appeared
in Ref. [58] on two-body problem and was later expanded to many body case in
Ref. [59]. Here we will adapt and expand the computations in these works. Since
there are 2(p — 1) real fermions, we will choose a polarization of type {v, 1/1! }, so

that a general wave function | ¥) can be expanded as
, 14
W) = (\II(Y) + Wl (y)yl) + 5\1;{“22}()/)@&&1)1/;&2) +> 0y,  (3.130)

where Wii-ink(y) =3, )\El'”im}\lfk(Y) and {¥y} are complete basis of Y-space
wave functions. Since the Hamiltonian is free and do not mix sectors of different
fermion numbers, we may evaluate the bosonic and fermionic trace independently.

The fermionic trace, for each of M, is given by
(£1)P try ((—1)@*1(—1)%T Mﬂ> , (3.131)

where (£1)? arises from the value of (—1)2/3 on p individual 3 states. Also the
orbital part of JgL is always integral in the absence of the minimal coupling contri-

bution, so (—1)2‘]3l acting on the quantum mechanical degrees of freedom becomes
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Chapter 3. Applications of Index Theorems in String Theory

purely fermionic expression (—l)p_l(—l)NwT. The sign in front of the latter comes
from converting the chirality operator to a form involving the fermion number

operator that counts the creation operators 1.

Then the contribution from Y direction reads

a, = B S Gy oyt (<))

|
Pt esm)

X / Y] e'V2ML|Y)dY | (3.132)
Bap-1)
in the limit of s — 0. A crucial observation that allows us to proceed systematically
is
try ((—1)FLMW)
/ 1 / !
= {0[0) — {0[* Mrqr*$110) + 5 (01" ¢ Mo * My 0103 |0) + - -
= det(l — M), (3.133)

and furthermore

p , 7 is a cyclic permutation of order p

det(1 — M,) = { (3.134)

0 , otherwise

for which it is important to remember that M is a p—1 (rather than p) dimensional

representation of S(p). Since (—1)?* = (—1)P~! for any cyclic permutation of order

p, we find
A, = (ipl!)p SO (1P (= 1) det(1 — My) / (V] V2 M Y)Y
-4 ;Zem Caty b [y
= jll ;M (3.135)
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Chapter 3. Applications of Index Theorems in String Theory

where the sum is now only over the cyclic permutations of order p. There are pre-
cisely (p—1)! such permutations and they each contribute 1/p, via the determinant,

so the result is
+1

A, = | 3.136
P2 (3.136)

as promised. Clearly, we can repeat this when there are several such factors simul-
taneously, to give,
+1
Ay =115 (3.137)
7 Dy

reproducing Q(3)/p? of the MPS formula with Q(3) = +1.

The more general case of () = +d can be derived similarly. Let us write one

particle state as
) = ¥, 4)|0; ) (3.138)

so that n = 1,2,...,d labels the internal degeneracy, and p-particles wave function

(without center of mass degree of freedom) can be written as a sum of terms like

WUTEH s ()l l bl 051, 2, ) (3.139)

none of which mixes under the free Hamiltonian. Thanks to this, Just as the
fermionic part and the bosonic part separately contributed, this internal part also
factorizes under each m. Expressing A, as a sum over the elements of permutation

group again, we now have an extra factor

<npa s 7171|777T(1)a SRR 777r(p)> ;

for each permutation 7, and the trace over these internal indices. Thus, we arrive

at a similarly simple form,

(Mps -+ MM (1)s -+ -5 M)
Z Z dot 1_M 3 (3.140)
Nis--5Mp !
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As before, the sum is over the permutations of cyclic order p. For such 7/, the
inner product vanishes identically unless all 7;’s are equal to one another, and

gives unit if all are equal. The sum over n’s thus collapses to a single sum over

n=mn=1mn2 =" =1, and
1 1 +d Q)
p = )Zn: Xp!;det(l—Mw') P p? (3.141)

This gives us the only essential ingredient in confirming (3.122), and in fact the

fully general version thereof.

For a complete derivation, a recursive argument is needed and we need to consider
possibility of low energy dynamics with charge centers both primitive and non-
primitive charges simultaneously. This naturally brings us to the most general

wall-crossing formula, next.

3.5.3 General Wall-Crossing Formula

Most of what we derived generalizes to cases with arbitrary spectrum on + side,
without much modification, but here we need to point out one subtlety. Suppose
the + side of spectrum contains not only a pair of primitively charge states v and +/
but also states like hy + j7 a little more involved, and includes states of composite
charges such as m+y or linear combinations with other charges. (One can also have
states with charges completely unrelated to these but those will not participate in
the wall-crossing, and therefore irrelevant.) Such a state cannot be considered as
a bound state of h v’s and j 7'’s, since the two are mutually repulsive on the +
side. Rather, it should be regarded as a completely independent particle of different
origin. In fact, for SU(2) theory with a single flavor, a monopole v, a quark 4/ and

a dyon v+~ are known to coexist in the central part of the moduli space.

Let us denote charges of these independent particles as 3,. Since one can form

bound states of a given total charge yr on the “—” side from different combinations
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of these + side state,. We will label each of these physically distinct combination

by the upper index inside a parenthesis such that
A v v

In such circumstances, the total degeneracy for v has to be computed for each of

such bound state problems and summed over,

O~ (vr) = O r) = D@ (m®}) (3.143)
q

where each term on the right hand side is computed from the n(?) = mef)
(9)

center quantum mechanics. For each of Q({m,"’})’s, computation of the previous

subsection goes through without modification, and will be computed as

Q <{m5}” }) = Q (EA: V4 = ;mm) . (3.144)

One important detail to remember is that, even if some of charge (,’s might be a
linear combination of other 3,’s, each of them are physically unrelated independent
particles: The permutation group is simply I' =[], S (mg,q)) for each of these index

problems.

Combining this with the results of previous subsection, we reproduce MPS formula
in its most general form. Note that, when we reorganize this formula in terms of

the index of distinct particles of unit individual degeneracy,

To({....7,... 1) = ; Ch(F)A(M,) (3.145)
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the rational invariants Q(v), multiplying them, will accumulate additive contribu-

tions of the form, including p = 1 case,

Q*(v/p)

7 (3.146)

for each v/p = B, that appears in one of the expansion yp =, ml(,q) By. Since we
are summing over all possible such expansions, it implies that

Ay = 270/p) (3.147)

2
ply

will appear as the effective degeneracy factors that multiply Z,’s. p = 1 terms
arises only when + is one of the 3,’s, while p > 1 terms arise from the orbifold fixed

sector as in the previous section when ~/p is one of 3,’s. The final expression is

Q (yr) = (yr) =

’ ’ ’ Ty Ilv /’? e 0
+(_1)7” T s (Y Vpr) ¢ 20 ({71“—:’)/’2 }) x HQ(P}I;‘/)

4. (3.148)

/
where we wrote a representative form for the partition v = >}, _; /4, into n’

centers and the associated orbifolding group I'” permuting among identical elements

in {74 }.
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3.6 Summary and Comments

In this section, we showed how n generic BPS dyons of Seiberg-Witten theory
interact with one another, and how the relevant low energy dynamics with A/ = 4
supersymmetry can be derived in the vicinity of a wall of marginal stability. The
resulting quantum mechanics is specified by three classes of quantities: kinetic
term, potentials, and minimal couplings. The latter two turn out to be constrained
to each other by supersymmetry and can be derived exactly, and are universal, in
that the general structure is applicable to BPS black holes as well. The kinetic
term may differ, but for counting non-threshold bound states via index theorem,
we only need the asymptotic form of the kinetic terms, which fixes effectively the
entire Lagrangian. Thanks to the universal form, this Lagrangian can also be used
to compute non-threshold bound states of BPS black holes as well as those of

Seiberg-Witten dyons.

We showed how the usual truncation (in the previous BPS black hole studies) down
to zero locus, M,,, of potentials is misleading because the massgaps along the clas-
sically massive direction are always the same as the quantum massgaps along M,,,
due to the latter’s finite size. Instead, one must sacrifice N' = 4 supersymmetry, in
favor of an index-preserving A/ = 1 deformation, in order to reduce the problem to

a nonlinear sigma model on M,,.

This gives a definite prescription, hitherto unknown, on how to handle the fermionic
superpartners, and the final form of the index is that of a Dirac operator on M,
with an Abelian gauge field F determined unambiguously by the minimal couplings
among dyons/black holes. Along with n — 1 radial, classical massive directions,
2(n — 1) fermionic partners become decoupled from the problem, leaving behind
a supersymmetric quantum mechanics on M,, with real supersymmetry. (Three
bosonic and four fermionic variables decouple also, playing the role of the center
of mass degrees of freedom.) This shows rigorously why the Dirac index is the

relevant one, as was anticipated by de Boer et.al. [57].
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Since typical wall-crossing problem involves only two linearly independent charge
vectors, and thus bound states of many identical BPS states, statistics is of major
importance. We address this directly for the index problem by inserting the rele-
vant projection operator Pr, and expanding the index to a series involving various
fixed submanifolds. Each such contribution consists of two multiplicative factors:
one is usual Dirac index on the fixed submanifold and the other is contribution
from the normal direction. The latter turns out to be universal and generates a
numerical factor ~ 1/p? for each p coincident and identical particles, times the in-
trinsic degeneracy of the particle in question. This eventually lead to the rational
invariants, Q(y) = th Q(v/p)/p?, as the effective degeneracy factor, as was also
noted by Manschot et.al. [54] In the end, we have derived the general wall-crossing
formula, from the viewpoint of spatially loose BPS bound states by starting from

Seiberg-Witten theory, ab initio.

After this work, Sen [74] showed that this wall-crossing formula agrees with that
of Higgs branch and Kontsevich-Soibelman (KS) formula, in the limit where there
is no scaling solution. The latter solution appears when the quiver description has
closed loops, so when the theory allows the superpotential. Although the Coulomb
description described in this section offers clear physical picture in understanding
the wall-crossing phenomena, when there exist such solutions, this description be-
comes ill-defined and fails to capture all the BPS states. These states which are
accessible only in the Higgs branch description are called the Higgs invariants, and
they are known to be insensitive to the wall crossing phenomena. Furthermore,
theses states are singlet under the spatial rotation, and believed to be responsi-
ble for the exponentially large microstates of the single centered blackhole of the
supergravity. Recently, there has been several developments which try to clarify
the properties of these states. [75—80] They started from the original quiver quan-
tum mechanics, and investigated the Higgs branch solution of the theory in various
ways. In this description, the index calculation in question is translated into the

cohomology counting of the moduli space of the given quiver theory. Especially, we
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would like to emphasize the recent work [81], where they started from the gauged
quiver quantum mechanics Lagrangian, and carried out the path integral honestly
to obtain the index of the theory. This work generalizes the relation between su-
persymmetric quantum mechanics and the index theorem which was reviewed in

section 2.2 of this thesis, to the level of gauged linear sigma models.
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Chapter 4

D-branes and Orientifolds From
2D Partition Functions

Two-dimensional gauged linear sigma model (GLSM) with A = (2, 2) supersymme-
try provides a very useful tool to investigate the Calabi-Yau spaces which the string
theory is based on. At the first section, we study the basic features of this model,
which include brief summary of two-dimensional mirror symmetry and Calabi-Yau
(CY)/Landau-Ginzburg (LG) correspondences, based on reviews of [3] and [11].
From the second to the last section, we intoduce the new framework of studying
the mirror symmetry and the properties of CY, recently developed in [12-15]. We
will see that the exact partition functions on various two-dimensional manifold
calculated via the method reviewed in section 2.4 plays a crucial role. Especially,
at the second section, we will see that the two-sphere partition function exactly
calculates Kahler potential of the A-model conformal manifold. From the third
section, we focus on the D-branes/Orientifolds which wrap subcycles of ambient
Calabi-Yau manifolds. We first present the review on how we traditionally have

determined the topological coupling of the D-brane/Orientifolds, which gives the
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central charges at the tree-level of /. Finally, we will see that the exact calcula-
tions of partition functions on hemisphere/ RP? gives the o/-exact central charges
in the presence of D-branes and Orientifolds. All these series of works provide a
way to exactly calculate the fully quantum corrected A-model quantities. We will

see that these works clarify the several subtle issues regarding RR-charges as well.

4.1 Basics of 2d N’ = (2,2) Gauged Linear Sigma Model

4.1.1 2d N = (2,2) algebra

= 20+ 2% In order

Let us denote the two-dimensional wordsheet coordinate as x
to deal with the N = (2,2) supersymmetry, we include fermionic coordinates 6%,
6*. Tt is particularly useful to study the theory in terms of various superfields.

Define supersymmtry transformation and derivatives acting on superfields as

o .

Qj: - aoﬁ‘i"laiai

_ 0 )
Qe = —5pp —i070s
D O _igta

+ = 90 v +

. o)
Dy = —aaﬁﬂ'eiai. (4.1)

The chiral multiplet ®(z*,0%,0%) is a superfield defined by
Di®=0. (4.2)
The solution of this equation can be written in terms of

® = B(yT) + 0Paly™) + 0707 F(y*) | (4.3)
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where y* = 2% — i6*6%, ¢ is a complex scalar field and ¢,, is a Dirac fermion. The

anti chiral multiplet is defined as
Di®=0, (4.4)
which is solved by
O = p(yh) + 0o + 0707 F(yF) . (4.5)

For two-dimensional N' = (2,2) theory, we can additionally define twisted chiral
multiplet, which satisfies
Dy =D _¥=0. (4.6)

This equations is solved by
V= 0(5F) + 0 X4 (7)) + 0 x-(F7) + 0707 G(5) (4.7)

where §* = 2t 7 i0%0*F. Similary, the twisted anti-chiral multiplet can be defined
by

D2W=D V=0, (4.8)

and this is solved by
U =3(5") + 0" X+ (57) + 0 - () + 070 G(7") . (4.9)

For the theories with gauge symmetry, we define the real multiplet V' which contains
a gauge fields. If the chiral field transforms under the gauge transformation as
d — AP, where A is another chiral fields, the gauge invariant kinetic action can

be written as
/ d0 deV @ | (4.10)
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and the gauge field transform as V' — V +i(A — A) at the same time. In the

Wess-Zumino gauge, it can be expended as

V = 00A +0Y0TA, —00Tc—0T0 G
+i070T (O A+ 0T A) +i0 0 (07N +0TAL) +070T0T6 D (4.11)

One thing to note is that the gauge invariant vector multiplet can be written in

the twisted chiral multiplet and its conjugate, which is
S=D.D_V. (4.12)
This is automatically invariant under V — V +i(A — A). In the component form,
S =0(F) + 0N () + 0 X () + 0707 (D +iFi)(5T) - (4.13)

Given these ingredients, the supersymmetric action can be easily written with

following three possibilities. 1) D-term for chiral and twisted chiral fields,
/ d?zd'9 K(®,®) . (4.14)
2) F-term for chiral fields,
/ d?xdf=doT W (®) + / d?zdfd—doT W (o) , (4.15)
3) Twisted F-term for anti chiral fields,
/ d?xdf=doTW () + / A2z~ doTW () . (4.16)

As an example, we present the action for the gauged linear sigma model (GLSM)

which is the main subject of this chapter. The D-term is given by the chiral
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multiplet charged under the gauge group G and the vector multiplet kinetic action,

. . 1 _
Shinetic = / d?xd*0 D@Vl + oA (4.17)
We allow the F-term which is given by
Sw = /dedH_d<9+ wW(®) + /dedé_d§+ W(o) . (4.18)

Finally we have the twisted F-term which is linear in %,
Spr —t/d2xd267 Y+ {/d%cﬂé z, (4.19)

where t = & — i%, is a combination of the Fayet-Iliopoulos parameter and the

topological theta term parameter. When G = U(1), all of these action can be

written as, in the component form,

L = Lginetic+ Lw + Lpr
= —DFGIDL' + i) Dyt + i Dy + DI¢'f + |F'P = |o ¢’
—pL ot — P eyt — i A + i At + i A_gt — it A ¢
L [—0VG0,0 +iA_03 A= +iX 0_\y + F§ + D?|

%2¢ 2
ow . PW o W PW
Y5 " agea "t ot ogea VY-
0
—&D + %F()l . (4.20)

Note that this action can be obtained from the dimensional reduction of the 4d

N =1 theory. One can show that the action is invariant under the supersymmetry
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transformation given by

SAL
AL
-
do
oD
0¢
0y
S
OF

1A WY PN

i€y (D +iFp1) +2e_040

ie_(D —iFp1) + 2€40_0

—deg A —ie Ay

—E64 0Ny — € 04N+ e 0Ny +e 04N
et —e_thy

ie_Dip+ e F —epog

—iexD_¢o+e F+e_ o

—7;€+D_¢+ — Z.E_D+w_ig_5\+¢ — i€+5\_¢ + EO’?,/)_ + E_UT,D+ (421)

Two-dimensional N' = (2, 2) theories have important global symmetries, which are
U(l)y x U(1)a. The vector-like R-symmetry U(1)y is inherited from the U(1)g
R-symmetry of the 4d N =1 algebra. It acts on the fields as

d(zh, 0F,0%) — VOP(ah, e 0T eihF) |

(4.22)

On the other hand, the axial R-symmetry, U(1)4 comes from the rotation of di-

mensionally reduced two internal coordinates. It acts as

D(zH, 0%F,0%) — Ma9p (g, eTig, eFipT) |

These imply that they acts on the supersymmetry generator as

UMWy, Qs] = —Q«

[U(l)Va Qi] = Qi

U(D)a,Qx] = FQx

[U(1)a,Q+] = +Qx
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As can be clearly seen from (4.23), U(1) 4 couples asymmetrically to the left and the
right moving fermion. This implies that there can be an anomaly associated to this
symmetry. Anomaly comes from the 2-gon 1-loop Feynman diagram, with currents
for the gauge field and U(1)4 symmetry attatched at both ends respectively. This

diagram evaluates to

RN > Qi (4.24)

27 »

where @; is a charges of the chiral fields under the U(1) factor of the gauge group.
This result can be reproduced from the index theorem studied in the Chapter 2,
which gives

o [y nam =5 [am) =5 [ (4.25)

If this is equal to k, it means that the number of i, 1_ zero modes are k larger
than that of ¢_, 4. This mismatch implies thet the measure of the path integral

becomes

/ LAy - dkt gk [y [dy ) [do ) [dg ) (4.26)

where [di]’s are non-zero modes as well as remaining zero modes of the fermion
whose numbers match. From this expression, the measure is definitely non-invariant

under the U(1)4 action, which rotates the partition function as

Z — e*hag (4.27)
Note that there remains unbroken subgroup Zs;, which corresponds to a = 2;,?

with p=1,---2k.

One of the most important remarks on the global symmetries of the N' = (2,2)

theory is that, one can find a duality that exchanges

U)a & U1y, (4.28)
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which can be done by exchanging

0= < 0, ie, Q- < Q-_. (4.29)

This is what is called mirror symmetry. Equivalently, the mirror symmetry can be

rephrased as exchanging the chrial and twisted chiral multiplet,

> o V. (4.30)

4.1.2 Phases of 2d N = (2,2) GLSM and the mirror symmetry

The theory of two-dimensional string worldsheets in ten-dimensional spacetime
can be most easily described by the non-linear sigma model (NLSM) whose target
space is R x Mg, where Mg is a compact six-dimensional Calabi-Yau manifolds.
However, since the geometry of the CY is very complicated and no explicit metric
is known, this NLSM is very hard to deal with. The reason why we have been
interested in the GLSM of 2d N = (2,2) theory is that, it can serve a very useful
tool to investigate the properties of CY and the string theory based on it.

The N = (2,2) GLSM, whose action is given in (4.20), flows under renormalization
group (RG) action to the NLSM whose target space is the Kahler manifold. In
order to explicitly show this, take the simplest example of GLSM with G = U(1)
gauge group and N fundamental chiral fields coupled to G with charge 1. From
the action given in (4.20), after integrating out the auxiliary field D, we can read

off the bosonic potential, which is

4 2
V=3 loPle + S IeP &) (4:31)
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The energy is minimized when
Z\tﬁilzzi, oc=0. (4.32)
Hence the moduli space is given by
M={¢|}_¢'¢"' =€}//U(1) = CPY1. (4.33)

As can be seen from this example, the moduli space is discribed by the zero of the
D-term potential quotiented by the gauge group, and this naturally produces the
toric manifold when gauge group is abelian. Under the RG flow, we can see that
this GLSM flows to the NLSM whose target space is CPY ~. First, let us look into
the RG flow of FI parameter £, which determines the volume of the moduli space.

It comes from the one-loop diagram as follows.

FIGURE 4.1: One-loop diagram for D|¢|?

This diagram evaluates to

Avv g2 1 AUV>
— = log | —/%) . 4.34
/u (2m)? k? g( u (4.54)

In general, when gauge group has U(1)" factor, and if there are chiral multiplet

with charge Q;, under the a-th U(1) factor, the Fl-parameter runs as

€ =¢"(n) + Z Qialog(Auv /1) - (4.35)
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When moduli space is CPY~1 along the radial direction, there are one bosonic
and fermionic massive modes for the chiral multiplet whose mass is equal to ey/2€.
Hence the effective theory of massless modes only can be obtained by taking e — oo
limit. In this limit, the kinetic terms for the vector multiplet vanish and A, and o

become auxiliary. The equations of motion of these give

{ 1 Y Tin i Tiod o, Ti i
AM = §m (;(ba,u¢ _8u¢¢ -l-i/lp;ﬂﬁ) 9 (436)
_ XL il 137
AN -

If we put (4.36) back to the Zf\il |D,¢" %, it becomes ggsﬁudgia“qu, where 955 is

homogeneous Fubini-Study metric of CPV 1,

SN |62l — Gdgig;ddd

ds® = -
Y e

(4.38)

Secondly, the topological theta term % | Fo1 reduces to the anti-symmetric B-field
in the NLSM,

/ B;jd¢" A d¢’ (4.39)
¥

where B = %'IUFS, and wrgg is the Kahler two form of the Fubini-Study met-
ric. Finally, subsitution of the fermion part of (4.36) and the equation (4.37) to

lo 2|6t + W_awﬂr + &ic’ﬂ,ﬁi_ give a four fermion interaction term in the NLSM.

Calabi-Yau/Landau-Ginzburg correspondence

The Calabi-Yau manifold can be obtained if we restrict to special cases that the

charges of each U(1) factor satisfy
> Qi=0 (4.40)
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For example, consider U(1) theory with N chiral multiplet ® with charge 1, and a
chiral multiplet P with charge —N. Then we can add a superpotential

W = PG(®) (4.41)

where G(®) is a homogeneous polynimial of degree N. In order to preserve the
U(1)y symmetry of the action, the vector R-charge of this superpotential should
add up to 2. Furthermore, for later convenience, we assume that solution for

‘ggi =0 is given only by ¢’ = 0. The bosonic potential for this GLSM reads

2
o (Z 6% + N2|p|2> + (Z 6> = Nlp|* — §> +p

oG

2
9 +|G(@))? . (4.42)

The moduli space, zero loci of the above potential crucially depends on the sign of
the FI parameter £. On the other hand, due to the condition (4.40) and equation
(4.35), & does not vary under RG flow. Hence we can define a notion of phase,
distinguished by the sign of £. First of all, consider the case £ > 0. The solution

that minimizes the potential is
ZW\QZ& p=0,0=0, G(¢)=0. (4.43)
i

Due to the last condition, the moduli space is a degree d hypersurface in CPY 1,
where d is a degree of the polynomial G. For this case, d = N, it is well-known
that the moduli space is CY hypersurface in CPY~!. Note that, the CY condition
is equivalent to the non-anomalous axial R-symmetry condition. The moduli of the
CY target space obtained like this is particulary easy to deal with, by tuning the
parameters of the GLSM. Volume of the CY is controlled by the FI parameter &,
and the complex structure is determined by the form of the superpotential W (®).
Next, let us consider the case & < 0. For this case, the moduli space is given by

¢ =0, |p|* =¢/N, (‘;ﬁ =0,0=0. (4.44)
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The low-energy theory given by the above equation is nothing but the Landau-
Ginzburg (LG) theory with potential

Wesr = \/EG(@ : (4.45)

Note that we fix the VEV of p to be real using the U(1) gauge symmetry. Since the
charge of P is —N, after this gauge fixing, there still remains Zy subgroup which
we should mod out at the end. Finally, we get the LG Zy orbifold theory.

The singularity which divides two phases of low-energy theory lies at £ = 0. In
order to determine the singularity structure, we should note an important subtlety
in the presence of the topological 6§ term. For 141 dimension, when 6 # 0, it is
very well-known [83] that the topological 6 term induces additional electric field
and the vacuum energy is shifted. For example, consider a pure gauge theory with
the action
1 0
d*r —F3 + —Fo 4.46
/ 2¢2° 01 + on (4.46)
We can integrate out Fpi1, which yields the vacuum energy
272
e“0
Evoe = — 4.47
vac 87'('2 ( )
where 0 satisfies \é\ < 7 and 0 = 0 mod 277Z. This implies that the real singularity
where the phase transition can occur exists only at the point £ = § = 0. This is
a real codimension two singularity which always can be by-passed. The argument
allows us to conclude that the CY and LG phases can be thought of as a pair of

equivalent theory. This is a crucial difference from the one-dimensional theory we

have seen in the previous chapter.
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4.1.3 Twisting and Topological Field Theories

On a curved worldsheet, it is not possible to preserve all the supersymmetries in
general. In order to deal with the super-string worldsheet with arbitrary curvature,
we introduce a notion of twisting. This is done by mixing two-dimensional Lorentz
symmetry which is SO(2) = U(1)g with one of the global symmetry of the theory,

so that the Killing spinor equation becomes
(Op + wy + AilObal)e =0. (4.48)

If we tune A%bbal = —wy, the equation admits a constant Killing spinor as a
solution, and the corresponding supersymmetry is preserved. Since N = (2,2)

theory has two global symmetries, we have two possibilities as follow.

U(I)IE = U(l)E—i—U(l)v . A-twist
Ul)Yy, = Ulg+U(1)a : B-twist (4.49)

In order to see which supersymmetries are left preserved under these two choices,
let us look at the following table of charges of supersymmetries under the global

and original Lorentz symmetries.

Q: Q- Qs Q-
ULy | -1 -1 1 1
UDa|-1 1 1 -1
Ubg|—-1 1 -1 1

(4.50)

This ensures that for the A-twisted theory, Q_ and Q)4 becomes a scalar, hence a
preserved supersymmetries. On the other hand, for the B-twisted theory, Q. and
Q_ are preserved supersymmetries. We are going to use the particular combination

of these suparcharges by defining Q4 = Q4 + @_ and Qp = Q4 + Q_. Then we
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have

Q45 =0, (4.51)

meaning that @4 g respectively defines cohomology which are one to one corre-
spondence to the supersymmetric ground state of the theory. In order to explicitly

construct the states, we define chiral operator ¢ which satisfies

@, 6] =0, (4.52)

and twisted chiral operator y by

[@a,y] =0. (4.53)

We can see that the lowest component of chiral and twisted chiral multiplet serves
as chiral and twisted chiral operators respectively, if we look at their supersymmetry
transformation rules. Furthermore, when ¢ and ¢9 are chiral operator, it is obvious

that ¢ ¢s also is a chiral operator. It means {¢'} form a chiral ring, with a relation

Dip; = CZ¢]€ + (Q—exact) , (4.54)

where ij is a structure constant of the ring. One of the most important aspects
of this chiral ring theory with A- or B-twist is that the twisted energy momentum
tensor

~ 1
T = Tp + Z(eZ@;Jf +eporJ ) (4.55)
can be shown to be Q4 or (p-exact. This implies that the metric variation of an

arbitrary correlation function of chiral operator becomes

Og(P1 - dk) = </ Pr{Qp, A} g™ d1 - b1 (4.56)

which vanishes in Qg cohomology. The same happens for the () 4 cohomology with

twisted chiral operators. This analysis implies that the correlation functions are
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independent of the metric, which means the theory is topological.

Then, on which parameters do the twisted theories depend? let us consider the
A-twisted theory with a twisted chiral multiplet Y and chiral multiplet ®. First of
all, the D-term for Y and ® can be shown to be Q4 exact:

/d49 K(Y,Y) {Q+; [Q_,/dé‘d&*K(Y, Y)\ewo}}

{o.+q o [arar k9, _pn] | a5

Secondly, the chiral and anti-chiral superpotentials are also Q4 exact:

/d%/d@*d@‘ W(@) = {Q+[Q-,W(o)]}
= /dQCE {Q+ [Q— +Qy, W((b)]}
— - [ (oo +QulQu W@} (159)

where for the second line, we used the definition of the chiral field, and for the
third line, we applied the Jacobi identity and ignored a total derivative term. In
a similar manner, one can show that [ dfTdd~W(®) can be also written as a Q4

exact term. Finally, the anti-twisted superpotential is also Q4 exact:

/ aFEW(Y) = {Q4. Q- Wy}
= (G4 Q. QW) (4.59)

Hence, the A-twisted theory only holomorphically depends on the twisted chiral
parameters. On the other hand, the B-twisted theory only depends holomorphi-
cally on the chiral superpotential parameters. Recall the example of GLSM which
reduces to the NLSM with compact CY target space. The A-twist of this theory
only depends on the twisted chiral parameters of the theory, which is nothing but

the FI parameter. On the other hand, the B-twist of this theory only depends on
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the form of the superpotential. As can be seen from this example, The A-twisted
theory carries information about the volume of given CY space, while the B-twisted

theory carries infomation about the complex structure of the CY space.

The statement of the mirror symmetry, (4.29), relates A-twisted theory of given
CY and and B-twisted theory of mirror CY, obtained via the T-duality. One of the
reason this duality is useful is that, while the B-twisted theories are classical (due
to the F-term non-renormalization theorem), the A-twisted theories get quantum
corrections in general, including non-perturbative ones. However, since the mirror
symmetry is proven only for the abelian gauge theories [2], there has been no general
prescription to obtain exact correlation functions for A-twisted theory until very

recently.

On the other hand, after the pioneering work of Pestun [7], there has been much
progress on calculating exact partition functions on supersymmetric gauge theories
on spheres in various dimensions. [7-9, 30, 32] Along the line of these works,
exact partition function of N' = (2,2) GLSM on S? was recently calculated by
[8] and [9]. Suprisingly, it was claimed [12, 13] that the partition function on
52 exactly calculates the Kahler potential of the A-model moduli space, which
provides a direct method of computing wordsheet instanton contributions to various

correlation functions.

These works has been further exptended to the partition function on a hemisphere
[14, 29, 127], and on a real projective plane [15], which was argued to compute the
central charge of D-brane and Orientifolds respectively, in the A-twisted theory. In
the following sections, we are going to review the series of these works in details,

focusing on the Orientifold case.

Before going into the detailed calculations, let us briefly summarize the vacuum
structure of the topologically twisted N' = (2,2) theories developed in [126], and

explain the properties of quantities we are going to study in the following sections.
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i >0 >

10) |o7)

FIGURE 4.2: Ground states 0?|0) = |o;) of A-twisted theory can be realized as in-
finite hemisphere with a twisted chiral field insertion at the tip of the hemisphere.
We associate the field configuration at the boundary of the hemisphere with a
ground state |o;). This is illustrated in the right figure. Among the ground states
constructed as such procedure, we can define a distinguished (canonical) ground
state |0) with identity operator insertion (no insertion) as depicted in the left.

First, let us consider an A or B twisted theory with supercharge Q = Q4 or Qp.
Then, the ground states |0) of the theory are defined as

Q[0) = Q'|0) =0 (4.60)

Due to the relation (4.52) and (4.53), for a given ground state |0), we can construct

the other ground states by acting

¢'[0) (4.61)

where ¢’ are twisted chiral and chiral operator for A- and B-twisted theory re-
spectively. Due to the property of chiral operators, this set of the ground states
#'|0) = |i) also forms a ring. In order to realize these set of ground states, we con-
sider the infinite hemisphere with (twisted-) chial field inserted at the tip of it, as
depicted in the above figures. Since the wavefunction propagates along the infinite
time direction along the neck of the hemisphere, which is equivalent to acting the
operator limg_, e PH the states at the end circle of the hemisphere are projected
to the ground state. We associate the field configuration at the equator of the hemi-
sphere with a state |i). Then, there exists a canonical choice of the distinguished
ground state |0) which corresponds to the identity operator insertion. All the other

ground states are then related to this state by the relation ¢?|0) = |i). Note that,
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thanks to the topological nature of the theory (4.56), this states are invariant under

the metric variation of the hemisphere or the position of the operator insertion.

Due to the N = (2,2) supersymmetry, the moduli space of these theory has a
complex structure. One of the most important quantity in the study of this moduli

space is a Hermitian metric of the moduli space which is given by

g = (il7) (4.62)

where (i| denotes the states obtained from the anti-topological (A- or B-) twist.
Furthermore, one can show that the connection on these vacuum bundle over the

parameter space is holomorphic, i.e.,
A = (KIOilj) =0, (4.63)

and satisfies the so called ¢t* equations [126], which guarantee the existence of
the Gauss-Manin flat connection. Using these relations, one can show that the
Zamolodchikov metric on the moduli space can be obtained from the relation
Y95

=——L = 9;0;Ingy , (4.64)
900

Gij
which means that In(0|0) equals to the Kahler potential of the Zamolodchikov met-
ric for the family of the Calabi-Yau space. As can be inferred from the discussion
above, (0|0) can be obtained from the partition function on the sphere with topo-
logical twisting in the northern hemisphere and anti-topological twisting in the
southern hemisphere. For B-twisted theory, this quantity can be easily calculated

since there are no quantum correction to the F-term potential. This is given by
(0[0) = / QAQ =K (4.65)
X

where K is a Kahler potential for the complex structure moduli space, and 2

is a holomorphic volume form of the Calabi-Yau space. On the other hand, for
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A-twsted theory, the corresponding quantity is not easy to calculate because of
the non-trivial worldsheet instanton correction. The following section presents the
recently developed ways to calculate this quantity exactly for A-twisted theories,

via the method of the supersymmetric localization reviewed in the section 2.4.

Since the worldsheet topology is a sphere in the above case, the string theory in
question is naturally the closed string theory. Next obvious step is to consider the
case when the worldsheet has a boundary, which is the open string theory. Since
these strings can end on the subspace of the Calabi-Yau ambient, which has been
dubbed D-brane, this theory naturally captures information of such D-brane which
wraps the sub-cycles of the Calabi-Yau ambient space. For this case, we should
impose certain boundary condition at the boundary of the hemisphere which is
properly twisted. Note that this boundary condition should compatible with the
supersymmetry of the worldsheet. Then we can consider the following overlap
between A- (or B-) twisted canonical ground state and the boundary state |B(;))
defined by the sub-cycle v; that the string ends,

II; = (0[B(7)) - (4.66)

This quantity is called the period integral. For a B-twisted theory, it is known
that [141] the boundary cycle 7; should be a middle dimensional cycle called the
Lagrangian subcycle. Hence the period integral can be naturally mapped to the

integral

1P = / Q, (4.67)
Vi
which again is not quantum corrected. This quantity is nothing but the central
charge of the N' = 2 string theory, which appears on the right hand side of the
commutation relation of the two supersymmetries. The A-twisted counterpart is

i — / B 4 0@ (4.68)

i
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which depends holomorphically on the complexified Kahler parameter B+:.JJ. This
quantity, on the other hand, can not be easily calculated in a direct manner because
of the worldsheet instanton correction. In section 4.3, we are going to review what
have been known about this quantity before recent developement of the exact
calculations, by means of the anomaly inflow. In section 4.4, we introduce a new
method to directly calculate the central charge of given D-brane data including
all the o/ corrections, and will see how these works corrected and improved the

previously known results reviewed in section 4.3.

Finally, there are one more class of defect localized at a subcycle of the Calabi-Yau
ambient space, which is the Orientifold planes. For this case, the relevant quantity
is

L = (0|C (%)) , (4.69)

where |C(7;)) is a crosscap state which is a fixed point of a certain Z, projection of
fields accompanied by exchange of both ends of the string. This quantity is known
to calculate the central charge of the type IIA string theory in the presence of such
Z5 action. As in the D-brane case, for the A-twisted theory, this quantity has
been calculated only for the tree-level until very recently. In the last section of this
chapter, we are going to present the work [15] where the exact calculation of the
central charges of the Orientifold planes are given. In this work, several subtleties
regarding the RR-charges of D-brane/Orientifolds and issue with Spin® manifolds

are also addressed and solved partially.

Studying the vacuum structure of these topological theories has an important ap-
plications in Calabi-Yau compactfication of the string theory. For example, when
we consider Type II stirng theory compactified on six-dimensional Calabi-Yau, the
vacuum-to-vacuum amplitude (0]0) we mentioned above, exactly determines the

gauge coupling of the four-dimensional N' = 2 effective theory

0i0;Fy =145 , (4.70)
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hence the Seiberg-Witten prepotential Fy. The D-branes/Orientifolds to the vac-
uum amplitudes (0|B(~;)) and (0|C(v;)) also play crucial role in the Calabi-Yau
compactification, which calculates the charge and mass of the BPS states in four-
dimensional spacetime obtained from compactifying D-branes wraping supersym-

metric cycles.

4.2 Kahler Potential and the Two-Sphere Partition Func-

tion

Recently, there has been drastic improvement in understanding two-dimensional
N = (2,2) theories along with the development of the localization technique which
enables us to exactly calculate the quantities for supersymmetric theories. As
advertised in the last section, we are going to review such development for the 2d
GLSM, and study how these series of works can be used to exactly calculate the
fully quantum corrected quantities in the A-twisted theory. In this section, we start
with a short review of [8, 9], where the partition function of 2d N' = (2,2) GLSM

on a two-sphere was calculated.

First of all, we should write down the action which preserves N' = (2,2) supersym-
metry on the sphere. As was reviewed in section 2.4, this can be done by adding
proper curvature correction terms to the flat Lagrangian. For 2d GLSM, it turns

out to be

L= ‘Cvector + Echiral + ‘CW + LFI ) (471)
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where the kinetic terms for the vector and the charged chiral multiplets are, re-

spectively,

1 01\ 2
Loyector = @TI' |:<F12 + 71) + (D#01)2 + (DNJ2)2 - [Ula 02]2 + D2

+ iIMP DA + iX[o1, Al +z’)\73[02,>\]] : (4.72)
_ -1 92— _
Lonival = & (—D“Du to?+o2+iD+il — o2+ q(wq)) 6+ FF
— it (V"D = 01 = 700 + Sy ) ¥ ipAG — A (4.73)
and the potential terms take the following form,
— = J . 4.74
Zad)l Zaqszad)]/lpw—’_cc ( )

Finally the Fayet-Illiopoulos (FI) coupling and the two-dimensional topological

term are
Lrp = —%Tr D-224 z’FIQ} + ;&[D _ 2 iFm] , (4.75)
r r

where 7 =i + £, (£ € R, 6 € [0,27]). Note that the superpotential W(¢) should

carry R-charge two to preserve the supersymmetry. This Lagrangian is invariant
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under the following supersymmetry transformation rules,

with

and

A =(iViyt + iVay? +iV34° — D)e
X =(iViy! + iVoy? +iV3y3 + D)e ,
1 _ _
64 == 2 (ev:A = e |
1/ -
o =5 (e/\ — Ae) ,

dog = — %(E%)\ - 5\736) ,
1

7 1 _ _

0D = — 567“DM)\ ~3 [01, 6)\] ~3 [02, e*y?’)\] ,
1 - 1 - 1 _

+ 56’7MDu)\ —3 [01,)\6] ~3 [02,)\736] ,

. 1
1% E<+D1U1 + Dyog, +Dsoy — Dyoa, Fia +iloy,02] + ;01) ;

- . 1
V E( — Doy + D203, —Dyoy — Dyog, Fia —iloy,00] + ;01) :

i =&y
5p =€

0 =iv'eD, ¢ + ieo1¢ + Verap + i%”yge(ﬁ +€eF
5 =iy"eD, + iehoy — VPepoy — %we@ +eF |
OF (i Dity — iovp + 7 owtp — iA0) —i5uy'Dye

5F :g(wpﬂz — oL — oy + Z-w) _ ig@@fyiDié .
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Here the spinors € and € can be chosen to be

€ = ei@/Q ( Coszjj ) 5 = e_i@/Z < sin 9/2 ) ) (479)
sin

cos /2
which are solutions to the Killing spinor equations

M|

1 3 — 1 3=
V€= 57’” €, V€= —Z’y,/y €. (4.80)

There are two different localization method which can be applied in general. The
first one is the Coulomb branch localization where we use the fact that the above
Lagrangian Lyector, Lehiral @and Ly can be expressed as a Q-exact terms. For

example,
Loeetor = = 5,6.Tr [15\73/\ —2iDoy + 302} (4.81)
vector 92 eVe ) r 21 » .
and
_ - q T -
Echiral = _566€ [T;Z)’Y 7;[) - 2¢(02 + ’Lg)(b + ;QZ)CZ)] . (482)

Since these terms are Q-exact themselves, the one-loop determinant calculated from

these quadratic action yields exact partition function. The saddle configuration is

B B
A= E(/{—cosﬁ)dqb, o1=5

6=0, F=0, (4.83)

oo=0, D=0,

where o is arbitrary constant and B is quantized magnetic flux. Since the fields
are localized to the constant value of the lowest component of the vector multiplet,

this solution is referred to as a Coulomb branch localization. The result can be
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written as

1 ) .
A _ § : d0_6747m§Tro'+10TrB
5 (W] /
B
w-B|

(a’B)er(a-a)?]H F(% e J+‘2) (4.84)

weRF( —d+irw-o+ lw-B| )

In the integrand, the first line correponds to the classical contribution of the action.
At the second line, the first factor comes from the gauge multiplet with roots «,
and the rest of them which is expressed in terms of the ratio of the gamma function

are chiral multiplet contribution, charged with weight w.

The other choice of the Q-exact term is also possible and presented in [8, 9]. This is
the Higgs branch localization. For this choice, one can clearly see that the solutions
are localized at the north and south pole of the sphere. Furthermore, these solutions
are the vortex and anti-vortex configuration on R? with Q backgroud parameter
e = 1/r. Since the choice of Q-exact term should not affect the results, the result
must agree with that of the Coulomb branch calculation, and it can be shown to

be true.

As can be clearly seen in (4.84), the result only depends on the parameter of A-
model moduli space 7 = £ + % and 7. Then what does this quantity calculate?
A few month later, there appeared a conjecture [12] that (4.84) exactly gives the
Kahler potential of the A-model moduli space. l.e.,

252 (T, 7:) — e_KKahler(Tﬂ_—) — <(_)|0> . (485)

This conjecture has been checked against various known examples of the mirror
symmetry. Especially, it was shown that (4.84) captures the well-known term in

the perturbative correction of e =¥ which is proportional to ¢(3).
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(0] 10)

FIGURE 4.3: Geometry of the squashed two-sphere and the Kahler potential. At
the tip of the hemisphere, the preserved supersymmetry is A- and A-type.

Later, the physical argument on why this conjecture should hold was offered by [13].
They observed two crucial facts. 1) The Zg2(7,7) is invariant under the squashing
of the sphere which preserves U(1) isometry. 2) At the two poles of the sphere, the
preserved supersymmetry (4.79) is exactly A- and A-type respectively. Combining
these two facts, the geometry of the partition function calculation are very similar
to the tt* picture. The state at the tip of the hemisphere, which corresponds to
the the identity operator of the A-twisted theory, propagates through the infinite
time direction and projected to the canonical ground state |0). On the other half
of the hemisphere, anti-topological counterpart happens and the partition func-
tion over the whole squashed sphere yields a overlap amplitute between these two
states. Although this is not exactly the same as the original ¢t* situation since the
supersymmetry is continuously interpolating between A- and A-type in this case,
it gives very plausible argument why the conjecture (4.85) holds in general. More
recently, there appeared another proof of this conjecture without using the local-
ization argument. [128] In this work, it was also claimed that the similar relation
between the sphere partition function and the Kahler potential of the conformal

manifolds holds for four-dimensional superconformal field theories as well.

Compared to the fact that the original mirror symmetry was proven only for the
GLSM with U(1) gauge symmetry, this results can be easily generalized to the non-
abelian gauge groups. We can say that these results offer a new way to suggest
and prove the mirror symmetry for general Calabi-Yau manifold obtained from
non-abelian GLSMs.
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4.3 Ramond-Ramond Charges from the Anomaly In-

flow

Having understood that the two-sphere partition function of N' = (2,2) GLSM
calculates the Kahler potential of the A-model moduli space, the next natural step
is to consider the worldsheet with boundary, which would be applicable for the
open string theory. For this case, the worldsheet topology is a disk (a hemisphere).
As can be inferred from the discussion of section 4.1.3, we can expect that the exact
partition function of the same GLSM on a hemisphere would calculate the overlap

amplitude
(0[B(m)) (4.86)

where the boundary state |B(;)) is determined by the cycle ; which the D-brane
attached at the end wraps. This boundary data will be translated to GLSM lan-
guage properly. For the exact calculation of this quantity, we should check whether
the saddle configuration and fluctuations satisfies the boundary conditions. More
importantly, if the Killing spinors (4.79) satisfy the boundary condition, we expect
that, for the same reason in the two-sphere case, (4.86) obtained via the localization
would give the overlap amplitute between the A-twisted canonical ground state and
the boundary state which corresponds to the even-dimensional holomorphic sub-
cycle embedded in the ambient space. As studied before, this quantity maps to
the period integral at the level of NLSM, and the period integral gives the central
charge of the N/ = 2 supersymmetry algebra. On the other hand, central charge
are closely related to the BPS states of the supersymmetric theory, which are real-
ized as D-branes coupled to the Ramond-Ramond (RR) fields. As a consequence,
if we denote this coupling Y (F,R), where F, R are gauge and gravitational field

strength respectively, the general form of the central charge can be written as

(D-brane central charge) = / e BT AY(F,R)+0(d) . (4.87)
X
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This formula is analogous to the Z(p,q) = pa + gap in the 4d N' = 2 Seiberg-
Witten theory obtained from a Calabi-Yau compactification. Here Y (F,R) is the
topological RR coupling to the spacetime curvature, which has been renowned
to be exactly determined by the anomaly cancelation mechanism of the D-brane
worldvolume theories. [97, 98, 140] In the presence of the Orientifold planes, the
analogous quantity is

01C () (4.88)

where |C) denotes for the crosscap states whose relavant Orientifold planes are
even-dimensional holomorphic manifold. The precise definition will be given in the
section 4.5.2. The worldsheet topology now becomes RP?, which is non-orientable.
RR coupling to the spacetime curvature also has been calculated in a similar man-

ner, which yields

(O-plane central charge) = + /X e Y ANZ(R)+0O() . (4.89)
Note that, for this case, the NSNS two-form field e~ 2 takes discrete value denoted
as factor £, and the polynomial Z does not depend on the gauge fields since the
strings cannot ends on the Orientifold plane. Before going into detailed discussion of
the exact form of the equation (4.87), in this section, we review the well-established
mechanism of the anomaly inflow which determines polynomial Y (F,R) and Z(R),
hence the tree-level central charge. We follow the recent work [144], which reviewed

and improved the original study done by [97, 98, 140].

4.3.1 Anomaly Inflow for Intersecting Branes

The axial and gravitational anomaly are quite prevalent and in fact most supersym-
metric Yang-Mills theories with d > 4 have such anomalies. Many of these theories
are realizable as world-volume theories from D-branes and Orientifold planes. From

the pioneering work of Alvarez-Gaume and Witten which we reviewed in section
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2.3.1, one can straightforwardly calculate the one-loop anomalies of such theories.
For a d-dimensional worldvolume theory of intersecting branes, anomaly polyno-

mial can be collectively written as

L2 = (=) D27 ([ch(F) A A(T) Alchg+ (N) = chg-(N)]) w2 form”
(4.90)

where 7 and N are tangent and normal bundle of the worldvolume respectively.
These 1-loop anomaly can be canceled via so called anomaly inflow mechanism,
which was developed by [97, 98, 140]. The main claim is that the topological
couplings between Ramond-Ramond (RR) tensor fields and the spacetime curvature
should be properly chosen so that they exactly cancel (4.90). This mechanism has
been widely discussed in the context Mb5-brane worldvolume theory as well [96],

which is well known to produce the N3 behaviour of the six dimensional A = (2,0).

We will shortly review how this anomaly inflow mechanism can determine the RR
couplings of the D-branes and Orientifolds. The original anomaly inflow mechanism
of [97, 98, 140] contains essentially all the necessary ingredients. However, there
has been several unsatisfiactory issues in these arguments until very recently. One
is that, for self-dual brane configurations such as D3 brane or D1-D5 intersecting
brane system, they fail to generate any anomaly inflow although they apparently
suffer from the 1-loop anomalies. In the following, we present the work [144] which
settled this problem by modifying the inflow mechanism properly, and showed that
the RR couplings are allowed to be written in a more natural form. Note that, for

simplicity, we restrict to the case where D-brane wrap a Spin manifold.
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Consider the Chern-Simons coupling in a form!

Scs—/;”/ Y 5 (Crt1) , (4.92)
Dp

T<p
where Y = ch(F)A(T)2AN)~1/2 and s* is the pull-back to the world-volume.

The equation of motion that follows from this coupling is

d (+(Hry2)) = Z 2r101q YB NAF q° (4.93)
B

with some “delta function” (9 — ¢)-form, A | representing the D-brane position.

9—q’
Because this is not a scalar object, however, the expression becomes ill-defined
unless we carefully regularize and covariantize it. This smearing of the magnetic
source is a recurring and necessary step when we discuss the anomaly inflow, es-
pecially when the anomaly associated with normal bundle needs to be discussed.

Thus, we write instead,

A (x(Hys2)) = —(=1) S 22011 Y2, AT, | (4.94)

B
where we smeared the sources due to the Dg-branes by introducing a “delta-
function” (9 — ¢)-form 78 g» well-identified in the mathematical literatures as the

Thom class of the normal bundle A [110].

T9—q = d(pés—q) - (4.95)
! Note that this not equivalent to the originally conjectured formula
Sos =22 S (Com) A Yo+ (=1) S s (Hruo) AY, ) (4.91)
Dp r<p
of [97, 98].
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The “radial” function p, whose support determines the smearing of the source,
interpolates between —1 on the brane and 0 at infinity. The global angular form
€g—q is essentially a covariantized volume-form, normalized to unit volume, of a
(8 — ¢)-sphere surrounding the Dp-brane. In particular dég_, = 0, and dég_q = 0
for even ¢ and dég_q = —x(N)g—4 with the Euler class x for odd ¢. By choosing p
to have increasingly small support near the origin, we can localize the source with
arbitrary precision, and with diffeomorphism invariance preserved. In addition we
will also choose p'(0) = 0. With arbitrary small support of p, we can take Y’s to

be uniform along the normal direction, which allows (4.94) to make sense.

Since this equation of motion exists for all Cyy1’s, it also implies, with xH, =
(—1)("=2+9)/2 . the modified Bianchi identities

dHs = = " 23opq (—1) T2 AYE Arf (4.96)
B

with Y’s being the complex conjugated Ys,

(4.97)

VA = [ch(fA)A A7) ”

A(Ny)

Before solving this Bianchi identity, we need to clarify an important difference
between the Thom classes of even and odd dimensional bundles. For odd fibre
dimensions (applicable to even ¢ and thus type IIA branes), 19—, = d(p - €g—q)
behaves in much the same way as Tp5 of the previous section. For even fibre
dimensions (applicable to odd ¢ and thus type IIB branes), the global angular form

decomposes into two pieces [110, 112]

€8—g = Us—q + QS—q(N) ) (4.98)
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where the first term involves at least one normal vector field § and can be written

locally as
vsg = dipr_q . (4.99)

while the last term is nothing but the Chern-Simons term of the Euler class with
a sign flip, i.e.,

dQg_q(N) = —x(N)g—q . (4.100)
Clearly, this behavior of the Thom class is responsible, with p(0) = —1, for the
identity s*(7) = x. Finally the gauge-invariance of é implies that

r—q = =080, = x(\N)}Y, . (4.101)

Q) exists for even-dimensional normal bundles, and so this is relevant for all type
IIB branes.

Note that vg_, (and its descent ¢7_,) is singular at the origin, being a normalized
volume form of S84, In contrast, Q(N)s_, is composed only of the gauge fields of
the normal bundle and is well-defined and smooth everywhere. For regular solutions

of H, we must then choose the following descent for 7,

7—8(07)(1 = _dp A ¢7*q +p- QS*Q ) (4102)
which results in
= —p-x(N)Y, . (4.103)

Note that both expressions are regular at the origin, with p’(0) = 0. This gives

)2 (O 0
Hyyo = d(Cop1) = Y 2Kigpq (—1) 702 (YE A TB)EJZQ ; (4.104)
B
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where, for type IIB theory,

(YA TB)QQ = ﬁ(YB)éoﬁM AT g+ (1=B) (Y P)grs 6 A(—dpAtr_g+p-Qs¢)7 .

(4.105)
Although f3 is an arbitrary real number in general, we must take 3 = 0 when Y on
the left hand side is a O-form (here, ¢ + s = 6). Its gauge variation gives

_ 1 _ _
(V2 ATB) = BOP)D, ATl + (1= BTE o A (—p x)P . (4.106)

With this understood, the gauge transformation of C' is,

5C1 =3 263og ()T (TE A B) Y (4.107)
B

Let us concentrate on the case of a single stack of type IIB Dp-branes. The gauge

variation of Scg (4.92) is

05¢cs = (—1)(_p+1)/27r/

; s ((YerrfG A Tg,p)(l)) ANYpy (4.108)
P

r

Just as s*(7) = x, it is easy to show that

s* (1) = s* (= pxM) = x| (4.109)
and that
8Scs = (=) 2 [N (Vg A X9—p(N))(l) ANYpr (4.110)
Dp .
which equals
AT) K A(T)
_(—1\(pt1)/2 — YAV
(1) W/Dp (ch( F) A AN /\X(N)) N <Ch(~7:)/\ A(N))
(4.111)
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With p < 9, x(N)g—p is never 0-form, allowing us to rewrite this as, up to local

counter terms,2
_ . A(T) W
58cs = —(—1) +1>/27r/Dp (ch(f)/\ch(—}')/\A(N)/\x(/\/')> (4.112)
= ()2, / (1eh$20) (F) 1 A ACT) Ak V) — ch-(V)])
Dp

Of these, for p = 1, the expression is null and no inflow is generated. For others,
p = 3,5,7, this is precisely the right inflow to cancel one-loop anomaly (4.90) for
d=4,6,8.

We have re-analyzed the Bianchi identities of RR field strengths by requiring the
regularity of physical variables. This is not by a choice but required, since the
D-brane inflow analysis must have the magnetic sources regulated anyway. To

summarize, the RR coupling should be written in a form

Sos =) “2”/ D 5" (Cri1) A ch(F) A j((p) : (4.113)
Dy

Dy r<p

in order to cancel all the possible one-loop anomalies. In the following paragraph,
we present an example of the D3-brane worldvolume theory, where precise definition
of the global angular forms are explicitly given, emphasizing the fact that this

mechanism can be safely applied to the self-dual systems.

Axial Anomaly Inflow onto D3-Branes

One-loop anomaly of the maximal U(N3) super Yang-Mills theory can be com-
pletely canceled by the anomaly inflow onto N3 coincident D3-branes. Previous

analysis [97, 98] produced a null inflow for this case, seemingly requiring another

2p = 9 requires a separate discussion since this case involves Orientifold planes. See next
section.
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inflow mechanism. The crucial difference between the old and the revised inflow
is whether one has a 6-form s*(75) = x¢ as a blind overall factor (which kills off
all terms) or one also has an exceptional term with 4-form S*(Til)) = Xfll) instead.
Here we wish to retrace the case of D3-branes, with more care given to details of

the Thom class, for a pedagogical reason.

Upon close inspection of the inflow, one can see easily that, for Dp-branes, only
those RR gauge fields from Cp;1 down to its dual C7_, contribute to the inflow.
For an N3 coincident D3, Cjy is self-dual, and the only relevant term for D3-brane

inflow is the minimal coupling

N.
SEd = “32 - /D3 s*(Ca) (4.114)

with the constant O-form Yy = N3 = Y. This is also related to the fact that
8*(7‘(1)) =y is already a 4-form, saturating all the world-volume dimensions.
From this, combining with the self-duality constraint on Cy, we have the Bianchi
identity of Hs

dHs = 2k2,13N376(D3) | (4.115)

again with the regularized and covariantized 74(D3).

Recall that this Thom class is defined by
76(D3) = d(p-és5) , (4.116)

with the global angular five-form é5 of unit volume. More explicitly,

1
¢ = —1z€uan DI DI DY DY DIy
1 1
— g €arao P DI D D — Zea,a Py F D" (4.117)
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which can be decomposed as

é5 :dw4+95 s (4118)
with
1
Ay = — 1505 Caragdy™ dY* - dYTGT 4 (4.119)
and
1 q
s = 225 Carea [FRUCFRUAR® -] . d% = —xs(Fr) . (4.120)

Of course the six-form xg and the five-form (25 vanish identically when evaluated

on the four dimensional world-volume of D3, but what matters at the end is the

appearance of the 4-form Xfll) from the variation of 14. In what follows, we obtain

the same final answer if we remove yg and 25 from all the formulae but remember

that dv4 is trivially closed on the D3 world-volume.

As before, from the regularity requirement of Hs and C4, we must choose among

many naive choices of [75(D3)](©),
Hy = dCy + 262013Ns (1(D3))) = dCy + 262013 N3 [p A &5 — d(p Aa)] . (4.121)
On the other hand, since
5és =0, oy =x", (4.122)
the gauge invariance of Hjy yields
s*(8C1) = —2k2ou5 N3 X 5* (76(D3)<1>) = —2k2u3Ns x V. (4.123)
If we substitute this to 5Sg§%, we finally have

3508 = —H?ou?)Ns?/ Y = N3 x <—7r/ xff’) , (4.124)
D3 D3
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with k2,03 = [(2m)7(a/)*/2] x [1/(27)3(¢/)?]?> = m. This cancels exactly the one-

loop anomaly on the D3-branes.

As we saw in the introduction, the SO(6)g axial anomaly polynomial at one-loop
of the U(N3) theory is

2

N.
Iy = f;uﬁﬂ% = N2 .21 - chg+(FR)

6—form

= Ni 7-[chg+(FRr) — chg-(Fg)] : (4.125)

6—form

where Fp is the curvature tensor of an external SO(6) g in the Weyl representation.
The bracket in the last line equals the Euler class divided by the A-roof genus, and

the Euler class is already 6-form, so the one-loop anomaly polynomial equals
Is = N2 x wx(FR) , (4.126)

which is precisely canceled by the inflow (4.124).

The case of D3 is special in that the minimal coupling to C4 alone generates the
anomaly inflow and there is no need to invoke lower-rank RR gauge fields. This
happens due to the self-dual nature of D3. A toy model of such self-dual objects,
namely dyonic string in six dimensions, was studied previously in Refs. [118-120].
Our inflow argument is related most directly to that of Ref. [119]. There is also
some relation to Ref. [118] in that vs = dip4 is the generalization of the Wess-
Zumino-Witten term of the latter, but the inflow here is a direct consequence of
the standard topological coupling, rather than with additional modifications. In

particular, the smearing function p plays a crucial role here.

137

T [

Sl = L



Chapter 4. D-branes and Orientifolds From 2D Partition Functions

4.3.2 Chern-Simons Couplings on Orientifold Planes

Extending all of these to the presence of Orientifold planes should be straightfor-
ward. The main extra ingredient is how the various Orientifold planes couple to
the space-time curvature. For Op™ plane, the relevant Chern-Simons coupling is

known to be,

1 iy L(T/4
Sop- = 5 ( g4 /Op S 5 (Cran) E((N//4))> , (4.127)

r

where £ is the Hirzebruch class [99-102]. There are various studies in the past
that worked out analog of this for other three classes of Orientifold planes, but the

answers seem to disagree partially with one another [103—107].

In this section, we will show that the one-loop anomaly from the gauge sector
cancels away by the anomaly inflow, if we assume the most obvious choices of the

Orientifold Chern-Simons couplings, which in addition to the above O,

) , (4.128)

reflecting the usual statement that this case has a single, unpaired D-brane stuck

at the Orientifold plane. For Op™,

Sop+ = % x ( — /sz Covt) f((AT//i)) ) , (4.129)

and the same expression for S ot This last one associated with symplectic type
orbifolding agrees with Refs. [103, 104].

B " . —4 [L(T/4)
5077_2><<—2/07 S(Cr-i-l)/\[ A(N)_2p4 LN/4)

T

As before, the overall factor 1/2 exists only when we write the kinetic terms of RR
tensors in the duality symmetric form, and does not enter the equation of motion.

The other 1/2 factor accompanying s, is due to the Orientifolding projection.

138



Chapter 4. D-branes and Orientifolds From 2D Partition Functions

Dp-Op Inflow

We work in the covering space of the Orientifold and take care to divide by two
at the end of everything. For example, equation of motion and the Bianchi iden-
tity are unaffected by this, but the action written in the covering space must be
either divided by two (e.g., world-volume part) or restricted to the half space (e.g.,

spacetime part). Similarly, the D-brane Chern-Simons couplings are

1 (1 ) A(T,
Sop = 3 x 2%: " /A S5 (Crit) A chog(Fa) A A((j&)) O (4130)

r<p

Note that here we assumed these 2k Dp branes are on the top of the Op™ plane,
so they share the Thom class 7, the tangent bundle 7", and the normal bundle N.

Note that, upon the Orientifold projection, some of the RR tensor fields are absent.
With Op planes, C,_1+4, maps to its negative and thus are projected out, while
Cp+1+4n remains intact. This can potentially modify inflow argument. However,
we do not really lose any term since choi(F) is a sum of 4n-forms for SO(2k) and
Sp(k) gauge groups, and since the Euler character x9_p, is a (9 —p)-form monomial.
An exception to this is p = 9, for which one of the relevant RR gauge field, C19=9+1,
does not exist, and Yl(()l ) type of inflow cannot be generated. This is precisely what

leads to the tadpole condition 2k = 32 for type I string theory.

With this, we may proceed as before except that Y = chay,(F)A(T)V2AN) /2 is
shifted by —2P~* times

L(T/4)
Z =], 4.131
L) A5
and the Bianchi identity reads
A(Hopo) = = 3 2630ug(~)CHI2(VE =228 YArP, . (4132)
B
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from which we repeat the procedure of the D-brane cases and arrive at the world-

volume expressions,

S(Sop- +5op) = ~(-DFH2. 2 [ (7 Ay Ax())®

H(—1)en/2. T 2p4/ (YANZ+ZAY)A X(J\/))(I)

il
2
_(—et/2 T
(-1 2

- 22— / (Z A ZAxN))Y

= (—1)(p+1)/2/(ABB + Apo-+o-B +Ao-0-) »  (4.133)

where in the last line we classified the contribution to brane-brane(BB), brane-

plane(BO), and plane-plane(OO) type.

Again we denote by ch, the trace over p representation of SO(2k). In particular,

char, = chgg and chy o7 = chakgor = [chok)?, thanks to the reality of the vector

representation of SO groups. Then, we find contributions with gauge group factors

1
App = —— <Ch2k®2k(]:) A .A(N) AN X(N)> R (4.134)

p+1

and?

Bposon = &2t ([chgk(}') t chyp(F)] A \/ j((p) A \/ f((/(///i)) A x(N))

(1)

I3

A(T
— Z.or <[Ch2k(.7:) + chgp(F)] A A((N//QZ)) A X(N))

o

p+1
_ (1) '
_ 2<ch2k(2.7:)/\A(N)/\X(N)) :

p+1

3A useful identity throughout here is

VAT)VL(T/4) = A(T/2)
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which combine to

(—~1)® 2 (App + Apo-10-B)

= 7(71>(p+1)/2 (721' [Ch2k®2k(]:) - Chgk(Qf)] A A

Purely Orientifold contribution is

Loy ((L(T/4) )
DA = () etD)/2T 92(0-9) A
(~1)®H 20 (~1)er/2? v W)
L(T) 1)
- _(—1)rDel < A X N) . 4.136
S (Zag ) (4136)
We will see later how these cancel various one-loop contributions.
Extending this to Op™ plane is immediate with
Sop+t = —Sop- (4.137)

as motivated by the fact that the two planes differ by a sign of the charge. Again

writing
8(Sop+ + Spp) = (—1)PTH/2 / (App + Apo+io+B +Doro+)

the only change from O~ case is the sign flip of Ago+.0+p = —Apo-10-p- As

such, we have

(=1)PV/2(App + Aot o+ B)

(1)
AMNQ (4.138)

p+1

A(T)
AN

= _(_1>(p+1)/2 (; [Ch2k®2k(f) + Chgk(Q}_)] A

where the trace in ch, should be understood as taken in p representations of Sp(k)

gauge group. The defining representation 2k is pseudo-real, so the algebra goes the

141

T O +11 =
43 '||'1_.]| ot ¥



Chapter 4. D-branes and Orientifolds From 2D Partition Functions

same as SO(2k) cases. The Orientifold contribution
Ap+o+ = Ap-o- (4.139)

remains the same, begins quadratic in the p-brane charge.

Inflow in the presence of 6}9/_ ’s can be similarly obtained. Since the charge of 6;)/—
equals to that of an Op~ plus an half D-brane, the obvious candidate for the CS
coupling of (/);)/_ is

1 P * -AT p— £T4
Sor = 5 (—“2/27;3 (Cri1) A [’/A((N))_Q 4’/£((N§4))] ) . (4.140)

App is unaffected as before, while AO"‘: BBO= is modified as
A, — — = 2 [cho(2F) — 2chor(F)] A AT) 5 ) v (4.141)
BO—+0-B _ o \ [tk chok AN) X i :

Thus, the analog of (4.135) and (4.138) here is

~ ()P (T oo () — chan(27) + 2eh(F)] A
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Finally, the purely Orientifold contribution may look more involved than before,

but turns out to be the same:

N (e

T ((T) — 9p- s A(T/2) 4 22(p—49) L(T/4) ) >(1) A X(N)g—
2 2p—6 ?

) (,/\/')9,1,

A(N) AN/2) LN /4)
(1)
W T oy [ (L(T/4)
= <<5<N/4>”W)>,,+3>
7w ((L(T) (1) B
e <,c<N>AXW >)p+1 T foon )

where the equalities hold because we are supposed to extract p + 3-form parts of

the anomaly polynomial.

One-Loop from Open String Sector

Consider the situation where 2k coincident D-branes are on the top of one of an
O—, an O, or an O~ plane. There is one more type of Orientifold plane O™, but
this leads to the same gauge group as the O™ case and thus the same world-volume

one-loop anomaly is induced.

First, in the presence of the O~ planes, the gauge group of the open strings ending
on Dp-branes is enhanced from U(k) to SO(2k). Hence a SO(2k) adjoint fermion

contributes to the world-volume anomaly polynomial of amount
27 - ch%%(%fl) NA(T) A chg+(N) (4.144)
for 4n-dimensions, and

7 chigpop1) A A(T) A [chg+(N) — chg-(N)] (4.145)
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for 4n+2-dimensions. Thanks to the reality of SO(2k), two of these can be written

uniformly as

750@k) _ ch gy o1y NA(T) A lchgs (N) — chg- (N)] . (4.146)

1—loop

By the way, we have an identity

1 1
chigpanen)(F) = 5choraan(F) £ 5 chan(2F) (4.147)

and it leads to

So@2k) _ T

Il—loop - 9

[chokgar — chorp(2F)] AN A(T) A [chg+ (N) — chg- (N)] (4.148)

Again, with the identity

XWN) _
A ~ s (N) = chg-(N) | (4.149)

we see that they have the precise form and the factor that can cancel inflows (4.135)

from BB and BO + OB intersection.

Similarly, the other cases follow. The symplectic case is
Sp(k
LR = 7 chagorsny N AT) Alehss (V) = chs- (V)

= g [chakgak (F) + cha(2F)] A A(T) A fchgt (N) = chg-(N)],

which are again canceled by the anomaly inflow Agp + Ao+, 0o+p (4.138) in the
presence of an OT plane. SO(2k + 1) type gauge theory can be also dealt with by

expanding its adjoint representation in terms of the SO(2k) representation as

SO 1 1
Chadj.(QkJrl) = chigpar—1)+2k = 5 hareen(F) = 5 chaw(2F) + char(F) - (4.150)
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whereby the world-volume anomaly can be decomposed as

T
If—()lgi];+1) = 5 [Ch2k®2k(./.") - Chgk(zf) + QChgk(]:)]
NA(T) A [chg+ (N) = chg-(N)], (4.151)
which again is neatly canceled by Agpp + ABajJrajB (4.142).

Hence, we conclude that the part of anomaly and inflow that depend on the gauge
group exactly cancel regardless of the brane types, after the overall chirality (or

the orientation issue) is properly taken into account.

On Universal Inflow App

As App 4+ Apo+op are canceled by the open string sector one-loop, App is left
uncanceled so far. Clearly this part of inflow has nothing to do with the open
string degrees of freedom; it exists even in the absence of any D-branes. As such,
Aopo should be canceled by one-loop anomaly from the closed string spectrum. We
wish to emphasize here that, even before checking cancelation against closed string
one-loop, the proposed Chern-Simons couplings stand out because they lead to a

universal inflow

1)
T (E(T) /\X(N)> 1 , (4.152)

Arre = A = A— = —
0-0 o+o+ 5=0- s \zov) -

from all types of Orientifold planes. This has to be the case, as the closed string
part of the low energy spectrum does not care what kind of projections are taken
on the Chan-Paton factors. This obvious and basic requirement is met by our

Chern-Simons couplings, which may be compared to those in Refs. [105-107].

Checking the cancelation of App by closed string one-loop for p < 9 is a bit
nontrivial, however. The simplest thing to try would be the compact version of the

same problem of T97?/Zy with 2°~P Orientifold planes distributed, one at each fixed
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point. The low energy spectra here would be identical to type I theory compactified
on T97P, producing one gravity multiplet and (9—p) vector multiplets, transforming
as vector representation under SO(9 — p)gr. For p = 5,7, in particular, one can see
that the one-loop of this spectra does not completely cancel 2°"PApp. That is,
unless we set the normal bundle A to be trivial. In the latter case, both the inflow

and the one-loop vanish individually.

In retrospect, this mismatch is to be expected since the one-loop computation
based on the massless spectra in p+ 1 dimensions only is really computing smeared
version of the anomaly, over T97P, rather than the localized ones. As such, the
normal bundle information, which measures nontrivial curvature effect along 797
direction to begin with, is inevitably lost along the way [121]. One must rely on
more complete information, where higher modes such as Kaluza-Klein modes are
taken into account, along the line of Ref. [122]. This is not an easy task, since
one must also keep track of nontrivial internal curvatures. Instead we will consider

p = 9 case that sidesteps this complication.

4.4 D-brane Central Charges and Hemisphere Parti-

tion Function

In the last section, we have learned that the central charge of the D-brane wrapping
a spin manifold can be written as
; A
(D-brane central charge) = / e B N ch(F) A AT +0(d), (4.153)
X AN)

at the tree-level of o/. Following the exact calculation of the Kahler potentials via
the two-sphere partition function, we naturally expect that the GLSM partition
function on the hemisphere with proper boundary condition will exactly calculate

the central charge of the D-brane, as was briefly reviewed in section 4.1.3. The
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calculation has been carried out recently by [14, 29, 127], which found various

interesting features for the complete expression of (4.153).

4.4.1 Partition Function of 2d N' = (2,2) GLSM with a boundary

Constructing the supersymmetric Lagrangian for N = (2,2) GLSM on the hemi-
sphere are exactly same as that of the two-sphere, except for the additioanl bound-
ary terms at the equator. Especially, in order to preserve the supersymmetry chosen

as in (4.79) on the northern hemisphere, one has to add the Chan-Paton factor

Try [77 exp <—i/dg0 .,4@) } (4.154)
with
Ay =ps (Ap +io2) — ;—; — i{Q, Q}

A ) 1 . _. _
YL —Y) 0,9+ — (V. — L) 9,9 . (4.155)

1
A vz

Here V denotes a Zs graded Chan-Paton vector space. The tachyon profile Q(¢)

is an operator acting on the vector space V, anti-commuting with fermions, and

obeys the following relation
Q*=wW- 1y, (4.156)

where W(¢) denotes a given superpotential. The G x U(1), representation of the
Chan-Paton vector space V is specified by p, and r,,

p(9)Q(#)p(9)~" = Qg9)
AN QOAT = Q(Ng) (4.157)

where g € G.
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In order to study the field configuration on hemisphere, we need to choose the
boundary condition of chiral multiplets, either Neumann or Dirichlet boundary
condition. This choice would determine the dimension of the D-branes wrapping
subcycles of the ambient space. At first sight, it seems to be natural to impose
the Dirichlet boundary condition to the chiral multiplets which become a coor-
dinates of normal direction and Neumann to the tangential direction. However,
for some reason which will be explained in the next subsection, it turns out to
be better to work with imposing the Neumann boundary condition to the all the
chiral multiplet. After that, we can obtain the lower dimensional brane via well-
established tachyon condensation mechanism. Among the saddle solution of the
Coulomb branch localization for the sphere (4.83), surviving configuration after

imposing the boundary condition is
A=0, =0, o9=0, D=0, ¢=0, F=0. (4.158)

For the one-loop determinant, we again pick out modes which satisfies the boundary
condition. As a result, the exact hemisphere partition function can be expressed
by

1 , )
ZD2 o W(Gv”/do- e—27rzfrentra—0tro x Try |:627rp*(0)+17r7’*:| % Zl—loop (4‘159)
t
with

Ziroop = | [ [a .osinha - a} [t (%“ g a> , (4.160)

a>0 wqeER2

where t is the Cartan subalgebra of the gauge group G, and W (G) is the Weyl
group.
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In what follows, we consider the U(1) GLSM describing the degree N hypersurface

of CPV~! studied in section 5 for simplicity.
W = PGn(XY), (4.161)

where G'n(X'%) denotes a homogeneous polynomial of degree N. This model de-

scribes the non-linear sigma model whose target space is a CY hypersurface X in
CPV-L.

Taking into account for the Knorrer map to relate the GLSM brane Byy to the
NLSM brane B;r [141], one can show that

1

ch [%IR} ~ 1 _ ¢—2miN(¢/2—io)

x 111,{62”9*(0>+4”T*} , (4.162)

where V denotes the Chan-Paton vector space of 871,. Note that the Knorrer map
also leads to the shift of the theta angle

Oyy =0ir — TN . (4.163)

The central charge of the NLSM brane B then takes the following form

q/2+io0 de ; N L(1+e)N
271'56719[]{6 K5
. T Ty g B

Z (B1R) —22#5/
(4.164)

with 8 = (rA)/6/(2m)(N=2)/2_ Focusing on the perturbative part of the central

charge, one can finally obtain the large-volume expression [14, 29]

L1+ LN

Zer B =(2 N2 / _iSH_(gi"fRHXiX h|B
P t( IR) ( 7.”) 5 « € F(l—'—gﬁ) & |: IR]
:ZQWQN%B/)e“BAfAXAAchth], (4.165)
X
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where H is the hyperplane class of CPY =1, For the last line, we defined the new
characteristic class I'.(X), which is defined by

fo(x) = [Ir (1+ ;TZ) . (4.166)

In terms of the Chern characters, it can be expanded as

. . k
L(F) = exp Z/rChl(f)‘f‘Z(Zﬂ_) (k — DIC(k)che(F)| , (4.167)

where v = 0.577... is the Euler-Mascheroni constant, and ((k) is the Riemann zeta

function. Gamma class satisfies an identity

L(F)Te(=F) = A(F) , (4.168)

which will turns out to be useful. In fact, the appearence of this new characteristic
class has been very well-known in the mirror symmetry literature [129-131], where
their physical derivation was understood recently by the localization technique.
[14, 132]

Expression for lower-dimensional branes can be obtained as well, via the tachyon

condensation procedure. To be more concrete let us consider a tachyon profile Q
Q = X%, + Pij+Gn7 , (4.169)
where the fermionic oscillators satisfy the following anti-commutation relations

{ﬁv’?]} =1, {navﬁb} = 5ab (4.170)
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with a = 1, 2,..,n. Since the boundary potential becomes
n .
{Q, Q} =3 IXP 4 [P+ |Ga (X)) (4.171)
a=1

the above tachyon profile describes a lower-dimensional brane wrapping a subman-
ifold at X* = 0 in the Calabi-Yau space X in the geometric phase. One can easily
show that the Chern character of the brane B;g is

ch[Br] = e~ Tine (22’ sin(we))n , (4.172)

where € = q/2 —io. Then, the central charge of the brane in the large volume limit

(4.165) can be written as

_ ; 4 I‘(l_‘_i)an nH
Zoert (Brr) = (2im)Y 15/ e IEH—G I H 2mé x H" x e "2
p t( IR) ( ) < F(l—%)”r(l—i—gﬁ)
. \N— T r (T) 1
:227TN15/6ZJB/\AC/\6N Ae 2N 4.173
(2im) . LA (W) ( )

Note that one can see the very subtle factor e—aaN)/2 emerges from the partition
function computation again. As a byproduct, we also confirmed that the overall
normalization factor (2wi)N=18 = (2r)N/2iN=1(rA)°/ are the same for any di-
mensional D-branes, which turns out to be consistent with the tadpole cancelation

condition in the presence of Orientifold planes.

4.4.2 Freed-Witten Global Anomaly and Spin® Structure

A well-known subtlety with D-branes occurs when they wrap a manifold M which
is not Spin. This causes a global anomaly in 2D boundary CFT, whereby the
world-sheet fermion determinant has an ill-defined sign. As pointed out by Freed

and Witten [138] this ambiguity is cancelable by additional phase factor, provided
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exp <z /a ) A) , (4.174)

with some world-volume Abelian “gauge field” A. The latter is equally ill-defined,

that M is Spin®,

precisely such that the sign flip due to the world-sheet global anomaly is canceled
by the sign ambiguity of the latter.

A related observation is that spacetime spinor is ill-defined on a Spin® manifold,
which is nevertheless correctable if we think of the spinor as a section of 2 g
S(TM), where A is the “connection” on the ill-defined bundle L'/2. This implies
that the Dirac index on M is equally ill-defined unless we twist the Dirac operator

by L2 and once this is done we have an index theorem,
/ 12T AN A(TMYA - (4.175)
M

with F = dA, where the ellipsis denotes contributions from the well-defined part of
the gauge bundle. A little experiment with this index formula® suggests that a good
de Rham cohomology representative for F'/2r is ¢1(M)/2. One can understand this
from the fact that it is ¢; (M), or more precisely the 2nd Stiefel-Whitney class

wa(M) = (M) mod Z,
that determines whether the manifold is Spin. With ws(M) = 0, therefore,
¢1(M)/2 determines whether the manifold is Spin or Spin®.

For M embedded in an Calabi-Yau ambient X so that ¢1(7) + ¢1(N) = 0, this

implies an additional factor
efl2m — gmer(V)/2 (4.176)

in the central charge (and in the RR-charge) of the D-brane, whose presence was

argued by Minasian and Moore [140]: the correct central charge must have this

4With the aim at obtaining integer values of the index for completely smooth an compact
examples like CP** or other toric Spin® manifold. See also [139].

152



Chapter 4. D-branes and Orientifolds From 2D Partition Functions

extra factor,
Zp2 N/ e B NCh(EYA -+ Nem W2 (4.177)
M

In view of its origin as the “half line bundle” LY2 it makes more sense to think of

it as part of the “gauge bundle” £ - £ ® 2,

When M is Spin, however, this is a mere redefinition of £ since L'/? is a proper line
bundle when F/2r = ¢1(M)/2 is integral. The D-brane spectra is, as expected,
not affected by such factor when M is Spin. For this reason (and also because the
Orientifold cannot admit gauge bundles), the right thing to do is to keep this factor
explicitly only when M is Spin®. With this in mind, we will write, instead

Zp2 ~ / e BTN Ch(EY A -+ N M2 (4.178)
M

where

M) = 0 M is Spin
1 (TM) = —c1(NM) M is Spin® |

again by redefinition of the gauge bundle £.

For D-branes, section 4.4.1 outlines how one can compute the hemisphere partition
functions, starting with the result in [14, 29], via the tachyon condensation. In this

—a1(NM)/2 where the key point lies with charge

approach, one does find the factor e
assignment for the Hilbert space vacua [14, 29, 141] associated with the boundary
degrees of freedom. With “correct” choice of the charges, we find Eq. (4.320).
In view of the global anomaly, this result is quite natural. Since the original
Calabi-Yau manifold is always Spin and thus free of the global anomaly, the lower
dimensional D-brane induced from it must be equipped with the necessary twist to
countermand the potential anomaly on the induced D-brane, as it must flow to a

well-defined boundary CFT again.

However, if one imposes the Dirichlet boundary condition from the outset, to obtain

lower dimensional D-branes in the hemisphere partition function [14], the origin of
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such a factor is at best subtle. The naive computation from imposing the Dirichlet
boundary condition, in contrast to the tachyon condensation above, does not seem
to generate the factor in question. It remains an open question to clarify the GLSM
origin of the hidden global anomaly when the Dirichlet boundary conditions are

explicitly imposed.

4.5 Orientifold Central Charges and RP? Partition Func-

tions

In this section, we initiate extending these works to the presence of Orientifold
planes. The simplest quantity one can compute is the vacuum-to-crosscap ampli-
tude,

rO|C)R . (4.179)

Pictorially, this is computed by a cigar-like geometry with the identity operator
at the tip and a crosscap at the other end. There are two possible choices for the
crosscap, say, A-type and B-type. The former corresponds to Orientifold planes
wrapping Lagrange subcycles. In this note, we are led to consider B-type parity for
GLSM, for much the same reason as in Ref. [133], which corresponds to Orientifold
planes wrapping the holomorphic cycles. Topologically the world-sheet is that of
RP?, and the same squashing deformation as in Ref. [13] is allowed, the partition
function of GLSM on S?/Z, = RP? is expected to compute the vacuum-to-crosscap
amplitude,

RrR(O|C) R = Zpp2 (O, T) . (4.180)

In the convention of Brunner-Hori [133], the relevant parity action for our purpose
here is of type B, which leads to, generally, holomorphically embedded Orientifold

planes.
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For Orientifold plane that wraps the Calabi-Yau X entirely, we also take the large
volume limit of the central charge. As we have seen in section 3, Orientifold planes,
O, have £1/2 class as the counterpart of D-branes’ A1/2 class. Here we find that
one must also replace

A(T/2)

L(T/4) — e (4.181)

The parity action on S? can be augmented by additional Z action on the chi-
ral fields, which induces various combinations of Oy4_,) planes, say wrapping a

submanifold M. For these cases, we must also replace

L(T /4) A(T/2) | Te(N)

LN T BT AT )

with the normal bundle N and the tangent bundle 7 of holomorphically embedded
M in the Calabi-Yau X. For more complete expression for the large volume limit,

see section 5.

The results found here should be consistent with the hemisphere computation of
the D-brane central charges. Among those issues discussed are anomaly inflow and
a twist that is known to be present when the world-volume wraps a Spin® (rather
than Spin, i.e.) submanifold. Also, one outfall from having both D-brane and
Orientifold plane central charges available is the interpretation of exactly what the
Gamma class corrects. The central charge does not by itself tells us whether the
correction goes to the RR-charge or the vacuum expectation values of spacetime
scalars, or equivalently the quantum volumes. Our conclusion is that the correction

should be attributed entirely to the o/ correction of volumes.

4.5.1 GLSM on RP? and Squashing

In this section, we start with a brief review on general aspects of parity symmetries
in 2d (2,2) theory on R*! which were thoroughly studied in Ref. [133]. To begin
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with, the parity action on the 2-dimensional superspace (z* = 20 + 2!, 6% 6%)

1 1

is x* — —x, accompanied by the proper action in the fermionic coordinates.

Depending on the latter there are two distinct possibilities,

Qa : (zF,6%,60%) = (2T, —07,—67) |

Qp : (25,60%,0%) = («7,07,07) (4.183)

which we will call A and B-parity respectively. Under this action, the four super-

charges transform as

A Qi—>Q¥a Qi—>Q3F7
B : Q+—Qs, Q+— Qx,
Dy — Dg, Dy — D . (4.184)

Hence, under the A-parity action, half of the supersymmetry is broken, leaving
Qa=Q4+Q_ and QL invariant. Under B-parity, and Qp = Q4 + Q_ and QE

survive.
Furthermore, the simplest transformation rule for a chiral field (¢, ¢, F') is

A g(x) = o(a')
Yi(z) — QEHF(QC/) )

F(x) = F(2'), (4.185)
B i () = (2,

v (z) = Yx(a’)

F(z) — —F(2') , (4.186)

and one can check that these leave the kinetic lagrangian of the chiral multiplet
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invariant. For a twisted chiral multiplet, transformation rules under A and B-

parities are exchanged.

For each parity projection, we can associate a crosscap state denoted by |Ca ).
Then we can think of the overlap between this state and a (twisted) chiral ring

element, such as
(alCp) . (4.187)

We naturally expect that this quantity calculates the Orientifold analogue of the D-
brane central charge. Among these overlaps, there are distinguished element (0|Cp)
that no chiral field is inserted at the tip of the hemisphere. The path integral can
be done by doubling of the hemisphere by gluing its mirror image. Topology of the
world-sheet is that of a two sphere with antipodal points identified, i.e., RP2.

GLSM on RP?

The supersymmetric Lagrangian we are considering is the same as that used in
[8, 9J;

L= £vector + £chi7‘al + £W + £FI 5 (4188)

where the kinetic terms for the vector and the charged chiral multiplets are, re-

spectively,

1 01\ 2
Evectm‘ = ngTr |:<F12 + 71> + (Duo—l)z + (DM02)2 - [017 02]2 + l)2

+ i DA + iN[o1, Al —l—i)\’yg[ag,)\]] : (4.189)
- —1 2 — _
Lehiral = ¢ <—D“DH + cr% +a§ + 11D +z’q " o9 + q(4r2@> o+ FF
— i (YD — o1 —ior + ) b+ NG —idA,  (1190)
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and the potential terms take the following form,

2
aldd Pl +cc. . (4.191)

ow ;1
EWZ;WF W%waw

Finally the Fayet-Illiopoulos (FI) coupling and the two-dimensional topological

term are
Lrr=——Tt|D- 22+ z'Flg} + i1y [D 2 iFlg] : (4.192)

2 T 2 r
where 7 = i€ + %, (£ € R, 0 €[0,27]). Note that the superpotential W(¢) should

carry R-charge two to preserve the supersymmetry on RP2.

The Lagrangian is invariant under the supersymmetry transformation rules,

OX =(iViyt + iVoy? 4+ iV3y® — D)e ,
O\ =(iViy! + iVoy? 4+ iV3y3 + D)e ,
0A; = — %(E’)@)\ — 5\%6) s
1/ -
o =5 (e/\ — Ae) ,
i _

dog = — §<€V3>\ - >\73€) :
1

7 1 _ _
0D = — §€7MDM)‘ ~3 [01, 6)\] ~3 [02, e'y?’)\] ,

+ %ev“Dux — %[01, 5\6] — %[02, 5\’)/36] , (4.193)

with

1% <+ Dio1 + Dyoa, +Doo1 — Dyoa, Fia+ijo1,09] + ;(H) )

(4.194)

1% (— Doy + Doy, —Dyoy — Dyog, Fia —ijoy,02] + ;Ul> ;
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and

op =€

8¢ =€t

0 =ivyt'eD, ¢ +ieo1¢ + Veoap + i%'ygegb +eF
) =in"eD,é + ichoy — VPedos — z‘%yggé teF |
OF =(i' Dyt — iov + 7 owip — idd) —iduy'Dye

A :e(wgﬂz — oy — Vo + w) - igd}yiDiE . (4.195)

Here the spinors € and € are given by®

e = ei¥/? ( cos /2 ) , I < sin /2 ) , (4.196)

sin /2 cos /2

satisfying the Killing spinor equations

1

1 _ _
pe = ?%736 ; Ve = —5%736 : (4.197)

\Y

Note that the surviving supersymmetry (4.196) becomes A-type and B-type super-
symmetry at the pole (6 = 0) and the equator (§ = 7/2), respectively.

In order to define the theory on RP?, we further impose a suitable parity projection
condition on the dynamical fields so that the Lagrangian is invariant under the par-
ity. Particularly, one has to consider the type B-parity in the following discussion.

This is because the Killing spinors (4.196) transform as

under the parity action (0, ¢) — (7—0, p+7). It implies that the B-type Orientifold
plane can be naturally placed at the equator 6 = /2.

See Appendix A for our gauge choice.
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We remark here that, as in the case of the S?, the Lagrangian except Lz can be

made Q-exact with the supersymmetry chosen by (4.196). For instance,
Lyector = 725566':[‘1“ |:*)\’7 A —2iDoy + *0'2} s (4199)
g 2 T
and
_ _ . q 7 -
Echiral = _565€ [w"ygw - 2¢(02 + 15)(? + ;¢¢] . (4200)

Consequently, the partition function on RP? contains only the A-model data.

4.5.2 Squashed RP? and Crosscap Amplitudes

We propose that the partition function of N' = (2,2) GLSM on RP? computes the
overlap between the supersymmetric ground state and the type B-crosscap state in

the Ramond sector
Zgp2 = r{O[CB)R , (4.201)

which is the central charge of the Orientifold plane. To understand the above
proposal, it is useful to consider a squashed RP?, denoted by ]RIP’%, where the

Hilbert space interpretation of the results in section 3 becomes clear.
The squashed RP? can be described by

z? +x% x%

Fotg =l (4.202)
with Z5 identification below
Z2 : (.%'1,.%'2,.%3) — (—1'1, —Z9, —xg) . (4.203)
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The metric on this space is
ds* = f2(0)d6* + 1% sin® dyp? | (4.204)

where f2(0) = 2sin?0 + 12 cos? 0. The world-sheet parity Z» acts on the polar

coordinates as follows
Zy : (0,0) - (m—0,m4+¢) . (4.205)

An Orientifold plane is placed at the equator § = 7/2. By turning on a suitable
background gauge field coupled to the U(1)y current,

V= % <1 - f(l€)> do (4.206)

valid in the region 0 < 6 < m, one can show the Killing spinors (4.196) on the
squashed RP? satisfying the generalized Killing spinor equations

1

Dpe = ﬂ')/m'ygé ) Dy = _ﬁVm’V €, (4.207)

where the covariant derivative denotes D,, = 0,, — iV,,. Here we normalize the

R-charge so that the Killing spinor € (€) carries +1 (—1) R-charge.

As in Ref. [13], one can show that the partition function is invariant no matter how
much we squash the space RP?, i.e., it is independent of the squashing parameter
b=1/ L. Appendix D shows detailed computations for this. In the limit b — 0,
we have an infinitely stretched cigar-like geometry where the type B-crosscap state
|Cp) is prepared at § = 7/2. Near 6 ~ 7/2, all the fields can be made periodic
along the circle S due to the background gauge field V ~ Ldy, which implies that
the theory is in the Ramond sector near 6 ~ 7/2. Moreover, as mentioned earlier,

the partition function on the squashed RP? contains only the A-model data.

Combining all these facts, we can identify the partition function on RP% as the
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overlap in the Ramond sector between A-model ground state corresponding to the
identity operator at the tip and the B-type crosscap state defined by an appropriate

projection condition we discuss soon,

b—0
Zger = Zgpz = R(OICB)R - (4.208)

4.5.3 Exact RP? Partition Function

In this section, we compute the partition function of GLSM on RP? exactly, via the
localization technique. The analysis is parallel to the computation of the two-sphere

partition function [8, 9].

As we will be working with the Coulomb phase saddle points, the gauge group is
effectively reduced to the Cartan subgroup U(1)"¢, whose scalar partners will be
collectively denoted by o. The relevant gauge charges are expressed via weights and
roots. For chiral multiplets in the G-representation R, these U(1)"¢ gauge charges
will be denoted collectively as w, so the 1-loop determinant of a chiral multiplet
with weight w is a function of w-o. When the gauge group is Abelian as in sections
4, 5, and 6, we also use the notation () for the gauge charges, so w - ¢ is written as
Q - 0. Similarly, contribution from each massive “off-diagonal” vector multiplet is
determined entirely by its charge under the unbroken U(1)"¢; the determinant is
then written in terms of « - . In the end, we take a product over all the weights,

w, and all the roots, a.

Saddle points

To apply the localization technique, we choose the kinetic terms Lyector and Lepiral

as the @-exact deformation and scale them up to infinitely. The path-integral then
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localizes at the supersymmetric saddle points satisfying the equations

o B
Fig=——

02
, :ﬁ’ DMUIZDH02:[01702]:O7 D+7:O7 (4-209)

with all the other fields vanishing. Among these saddle configurations, the only

one invariant under the B-type Orientifold projection is

Fio=0, 01=0, Dyoo=0, D+2=0. (4.210)
T

However, since RP? has a non-contractible loop C' which connects two antipodal
points in the equator, Fio = 0 is solved by a flat connection with a discrete Zs

holonomy
P exp [z/ A] €Zy. (4.211)
C

Hence there are two kinds of saddle points, which we call even and odd holonomy.
Near the odd holonomy, fields effectively satisfy twisted boundary condition that
picks up additional sign along the loop.

Finally, using U (V) gauge transformation, we can make A, holonomy and constant
mode of o2 both diagonal, as the two must commute with each other. Then the

saddle point configurations all reduce to

: (4.212)

o
oo =0, D=——
r

where ¢ is arbitrary constant element in the Cartan subalgebra. The classical

action at the saddle points is,

ZLelassical = 67227”150- (4213)
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Chiral multiplets

In this section, we calculate one-loop determinants of chiral multiplets, say, in the
representation R of the gauge group G. To compute the one-loop determinant, we
truncate the regulator action up to quadratic order in small fluctuation, around
each saddle point

Schiral = Sch?/ral + S

chiral

with
S I e, 2, .a-1 q2-9)
Schiral_/dl‘\/ggb[ DN+U +1 r o+ 12 ](25, (4214)
and
_ , q
Sthiral = /d2$\/§ o’ { — iy’ D, — (a + Zg) }w : (4.215)

We refer readers to Appendix C for properties of the relevant spherical harmonics.

Even Holonomy First, we will calculate the contribution near the first saddle point,
where the holonomy is trivial. For this, we impose the B-type Orientifold projec-

tion®,

P —0,m+ ) =+¢(0,9) ,
Yu(m— 0,7+ ) = — iz (0, ) ,
( ) = +w¢(9,s0)

( ) =

F,9) . (4.216)

&i 7T—9,7T+§0
Fm—0,m+ ¢

5This choice of projection condition is consistent with the supersymmetry (4.195) and (4.196).
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For simplicity, let us first consider a single chiral multiplet of charge +1 under a

U(1) gauge group. Thanks to the property, with our gauge choice,
Yajm(m — 0,7+ @) =(=1)e Yo 50,(0,9) , (4.217)

we can write scalar fluctuations that survive under the projection (4.216) as

j
0,0) = Y bimYim - (4.218)

=2k m=—j
k>0

The bosonic part of the quadratic action then becomes

Seniral = Z Z ¢gm[ (] T~ 27"0) (] +1- 5 + m“a) }qum , (4.219)

j =2km=—j
k>0
which leads to
4k+1 4k+1
Dety = k];[g (2k: + g - ira) <2k +1- % + mf) . (4.220)

Next, the mode expansion of the fermion fluctuation invariant under the projection
(4.216) takes the form

J
DD URCATIED S ST T

j=2k+1/2m=—j j=2k+3/2m=—j
£>0 k>0
J
D2 UVt ) Z Wi (4.221)
j=2k+1/2m=—j j=2k+3/2m=—j
k>0 k>0
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where the spinor harmonics \Il]im are
K

Y 1. B Yr.
\I/;tm = 2™ , \Ij;tm = Q*Jm ) (4222)
Y1, YL

In terms of the mode variables, the fermionic part of the quadratic action can be

expressed as

Shhivas =+ Z Z [J+*—§+WU}¢

j=2k+1/2m=—j

k>0
j
R I S
D> v, [y t5t - m—} Vi (4.223)
j=2k+3/2m=—j
k>0

As a consequence, the determinant for the fermion modes equals to

4k+2 4k
Dety = [ <2k F1- % + ira) <2k n g . ira) . (4.224)
k>0

One can easily generalize the above results for a chiral multiplet of weight w under

G by the replacement 0 — w - 0.

Combining these two expressions, we find that the one-loop contribution from a

chiral multiplet in the representation R under the gauge group G is

- Det 2k+17 +irw - o
Zchz’r’al ¢ _ ) 4.995
I-loop ™ Dety, 11“61:[0 4 _jrw-o ( )

This can be regularized with Gamma function representation

Pla)= lim e (imar)®

—_— 4.226
Nmaz—>00 Hnmaz (a + n) ’ ( )
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where we should take care to introduce the UV cutoff A via rA =~ 2k,,.. since

(2k + ---)/r are the physical eigenvalues. Then,

%—%-Hrw-d r (% —rw - 0'/2)

Zchiral _ 1; k
e wllt km“ggoo( mas) r(i-94irw-o/2)
= el rireclioatar. [ (f—irw-0/2) T (-f+irw-o/2)
weR F(%_%+irw'0/2) F(—%-i-irw 0/2)
= 1 . [1;q+irw-o] log(rA)F (% - %) T (_% + img'a) 4.99
= U 55 (45  (4.227)
weR T (*5 +rw - o

where we used

r (; + x> [(z) =2""2"\/7 T'(2z) , (4.228)

for the last equality. The exponential factor which diverges when A — oo is un-
derstood to be one-loop running of the FI-parameter and appearance of central
charge defined as ¢ = 3(>_,(1 — ¢;) — dg) when combined with vector multiplet

contribution.

Odd Holonomy Let us now in turn consider the fluctuation near the second saddle
point with nontrivial holonomy. At the odd holonomy fixed point, the boundary
condition for charged field must be twisted by e'*"" = £1, where ¥ is the Z,
holonomy with unit-normalized Cartan generators H. The chiral fields can then be
classified into two classes, with even charge w, and with odd charge w,, respectively,
depending on the above sign. For even ones, w,, one-loop determinant is unchanged

from the even holonomy case, so we focus on a chiral multiplet with odd charge w,

exp [i/CwO-A} — 1. (4.229)
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Effectively, we impose the twisted projection condition on those carrying odd

charges w, as

P(r— 0,7+ ) =—9(0,¢)

Yi(m —0,m+ @) =+ ivx(0,9) ,

Ya(m— 0,7+ ¢) = —ithx(0,9) ,
F(r—0,m+¢)=—F(0,), (4.230)

without a background gauge field. Thus the spectral analysis is parallel to the
previous one except the twisted projection picks exactly opposite eigenvalues, which

were projected out under the original B-type parity action. Therefore, one obtains

4k+3 4k—1
Det¢ = H <2k + 1+ g — 1w, - 0') H (Qk - g + 1w, - U) ) (4'231)
k>0 k>1
for bosons, and
4k 4k+2
Dety, = [ (2k - g + irw, - a) (2k +1+ g — irw, a) . (4.232)

k>0

for fermions. Hence the one-loop determinant at this saddle point becomes

2k+2—7+zrw o
chzral o
. 4.233
Zloop = HHQk—i—l—i—g—zer o ( )
wo€R k>0

With the same procedure, we can further simplify this expression as

Zf}iiral _ H lim (k )%—%—i—irwo.ar (% + % — irug).a) (4 234)
“loo = max rwe- .
P woER kmaz—00 F (1 — % =+ 7’“3 U)
g L (4 —irw,-o) 1
_ N2 - e[T+zrwo-o] log(rA) \2 o . ) : ‘
e F(d+ 25T (- 55=) ~F im0
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Parity Accompanied by Flavor Rotations

For theories with non-trivial flavor symmetry, we can enrich the Zs projection by

combination with flavor rotations, i.e.,

¢'(x) — M;¢' ),
Yi(z) — Mpi(a) (4.235)

where M ij is a flavor rotation which squares to the identity. Let us consider the
simplest example where M?; exchanges two chiral multiplets ®!(z) «» ®?(2’). The
contribution of these modes to the 1-loop determinant is easily obtained, by noting
that fluctuations of one of ®2 is completely determined by that of the other in the
opposite hemisphere. Hence, these two effectively contribute as one chiral multiplet

without Z, projection, i.e., that of the full two-sphere partition function

I(%—irw-o)

r(1-%+irw-o)’

H 6[1—q+2irw~o} log(rA) |

weR

(4.236)

calculated in Ref. [8, 9].

All other Z, flavor transformations are generated by combination of the above
rotation and a gauge transformation. For example, we can consider a projection
of type ®!(x) — —®!(2’), when the superpotential respects such symmetry. The
result of this sign flip is the same as in (4.233), so we find

H 2@_6[%4-2'”0-0] log(rA) r (% —rw - U) 1

C(-f+ o5o) T (] - 57) ~T+ire o

. (4.237)

weR

These observations will be useful in the next section where we consider lower-
dimensional Orientifold planes embedded as a hypersurface in the Calabi-Yau am-

bient space.
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Vector Multiplets

Finally, we come to the vector multiplets. We follow the Fadeev-Popov method to
deal with the gauge symmetry, and introduce ghost fields ¢, ¢. Up to the quadratic

order, the action around the saddle point is

Svector = Sgector + Sl{ector Sﬁilcjtor ) (4238)
where
1
Sgec :/2Tr {Da A *xDa — [07 a} A [U, *a] + Do AN xDoq — [O‘, 01] A [a, *al]

1 2
+ —01 Axo1 + Do A *xDyp + Da/\01+zDg0/\ [a *a] —i—z[a a] /\*D(p}
ST /d%f =Tr [)\fy (i'y Y D + o, )\])} ,
1
SEP / d%0\/g T | DyeDye + SFAs 7. (4.239)
with the gauge fixing functional

f=*Dxa. (4.240)

Here a and ¢ are the small fluctuation part of the gauge field and of the scalar field

09, respectively,

A=Aq +a, oo =0+ ¢ . (4.241)
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Even Holonomy When the holonomy is trivial, we impose the ordinary type B

projection condition

Alr =0, +¢) =+ A(0,9) ,

o — 0,7+ ) =—01(6, ) ,

oo(m— 0,7+ ) =+ 02(0,¢) ,

Ap(m—0,m+ ) =+irs:(0, ) ,

Ai(m— 0,7+ ¢) = —2/\1(9&),

D(m — 0,7+ ) =+ D(0, ) . (4.242)

First, decompose all the fluctuation fields into Cartan-Weyl basis, and then consider
the off-diagonal modes carrying the charge «, a root of G. In terms of the one-

form and the scalar spherical harmonics C’j/\m7, Y;m, one can expand the bosonic

fluctuations a®, ¢, and of* as

a_zzaﬂm ]m+ Z Za]m jm >

j=2km=—j j=2k+1m=—j
k>1 k>0

SY Y e,

J=2k+1m=—j
k>0

J
e=> Y oimYim, (4.243)

Jj=2km=—j
k>0

under the projection condition (4.242). From now on, the superscript « is sup-

pressed unless it causes any confusion. The Laplacian operator (’)151) acting on

"Useful properties of C’;‘m are summarized in appendix C.
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(a? o} ) can be summarized into

i+ 1) JG+1)+ (0 a)* +1

with j =2k + 1 (k > 0). The determinant of this operator is therefore,

4k+3)r
det O =] [(2k: F1)(2k + 2)}( r

k>0
4k+3

< T TT [(@k+ 102+ (@ 0)?) (@k+ 22+ (@ 0)) |

aEAL k>0
(4.245)

where rg is rank of the gauge group. The operator (9152) acting on the modes
(ajl-m, ©jm) with j = 2k (k > 1) can be read from (4.239),

022)i<j(j+1)+(0‘04)2 i j<j+1><;f-a>). (4.246)

J(G+1(o-a) JG+1

When j = 0, the operator has a vanishing eigenvalue that corresponds to the shift

of the saddle point 0o = 0. The determinant of this operator is therefore

4k+1)d
}( o (4.247)

det'OfY = T [2k(2k + 1)

k=1
where dg is dimension of the gauge group G, and the prime in det’ denotes the
fact that the zero mode of g9 is removed. For the ghosts, we require the same

projection condition as ¢, @, and find

det Opp = [[ [2k(2k: + 1)rc(4j+1)

k=1

: (4.248)
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(2)

which cancels with O, determinant exactly. For fermions, the structure of deter-
minants are essentially the same as that of the adjoint chiral multiplet with the

twisted projection condition. Therefore, gaugino with root o contributes

det 05 = ] [k +1)(2k +2) k)
k>0
< 1] 11 [ ((2k + 1)% + (o - 0)?) ((2k +2)* + (o - 0)2)]4“2 . (4.249)

acAL k>0

Let us combine all these contributions from vector multiplets together. The Cartan

part of the vector multiplets contributes,

2/ +2\" _|T(3)  _1ligeay C g TG Jog(rA)
_ o~ L log(r _(T og(rd) (4.2
],1;[0<2j+3> [F(l) © (2> ¢ (4.250)

while the “off-diagonal part” regularize to

(a-0)? 1
H H 2k+1 f(a-0)? (a-0)2

acAL k= 0
1, da 1 o
e s ] F(3+%9)T (%%
s, 1T ST (- 5)
= e_%(dc rg) log(rA/2) H 27 sin [”02‘0] ‘Sin [%]
wen, Sma-o 2na - o
+
= 7l(d077"c)10g(’r‘A) L ) <7TO( . O_) 4 2 1
e 2 H - tan 5 . (4.251)
a€A+

As the zero mode part contributes

d o a-0)?, 4.252
’WG’/ 11 ¢ (4.252)

a-0>0

with the Vandermonde determinant and the Weyl factor, we obtain the even holon-

omy part of the partition function, where the vector multiplet contributions in the
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even holonomy sector can be displayed explicitly as

even 1 T T TTG —da ), (rA)
Z = W d'Co (5) e 2 g (4253)
G
T - O
xHaatan(z)x ) (4.254)
aEA L

where the ellipsis reminds us that for the GLSM partition function, we need to
insert, multiplicatively, the 1-loop contributions from the chiral multiplets in the

integrand.

Odd Holonomy At the odd holonomy fixed point, the boundary condition for the
vector multiplet fluctuation must be twisted by e’ = +1, where, as before, e'»#
is the Zs holonomy with the Cartan generators H. Thus, we only need to modify,

in Eq. (4.253), as

«- a-
tan (W U) —  cot (W U) , (4.255)
2 2
for each and every root with e/ = —1. So, splitting the positive root space A,

into the even part A and the odd part AS, relative to the holonomy ehH - we

find that the odd holonomy sector contributes additively to the partition function

ra
godd  _ \I/IZ ‘/dma <g) 7 o~ % log(rh) (4.256)
e

TQe * O TQ * O
X H oze~0tan< ; ) H ozo-acot( ; >><~~,

aoeAi

where, again, the ellipsis in the integrand denotes multiplicative contributions from

the chiral multiplet 1-loop determinants.

The numerical factor n = 41 represents our ignorance regarding fermion deter-
minants. As with any determinant computation involving fermions, the signs of
various 1-loop factors are difficult to fix. Among such, n which is the relative

sign between the two additive contributions, from the even holonomy and the odd

174



Chapter 4. D-branes and Orientifolds From 2D Partition Functions

holonomy sectors, is an important physical quantity but is not accessible from the
Coulomb-phase GLSM computation. One needs a different approach that the full
partition function without worrying about the two holonomy sectors. For this rea-
son, and also as a consistency check, we make a short excursion to the mirror LG
computation for the Abelian GLSM, in next section, which will teach about how

this sign distinguishes O~ type and O type Orientifold planes.

4.5.4 Landau-Ginzburg Model and Mirror Symmetry

Before we consider examples and the large volume limit, let us make a brief look
at the mirror pair of the Abelian GLSM. In particular, we consider U(1) theory
with chiral multiplets ®, with gauge charges Q,. As shown by Hori and Vafa [2],
the mirror theory is a Landau-Ginzburg (LG) type with twisted chiral multiplet
Y,’s and the twisted superpotential W (Y, ), generated by the vortex instantons. On
RP?, the supersymmetric Lagrangian of a LG model with twisted chiral multiplets

takes the following form
L = Liwisted + Lw (4.257)
with
Liwistea = D'Y D,Y +ixy" Dypx + GG (4.258)
and the twisted superpotential terms,

Lw =+ [ W ()G~ WV )yx + LW ()]

+ [ —iW'(Y)G + W"(Y)xv4x + %W(Y)} ) (4.259)
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3
where v+ = HT7 One can show that the above Lagrangian is invariant under the

supersymmetric variation rules given by

OY =+ iey_x —ieysX ,

8Y = —ieyyx +iey-X ,

oX =+ V'v1eD,Y —AFy_eD,Y —v1eG — v_€G |

6X =+ V'y41€D,Y —AHy_eD,Y +v4eG + v &G ,

0G = —iey'y_Dyx +iey" v Dyux

6G = —iey" 4 Dyx + iey"y-Dpx (4.260)

where € and € are the Killing spinors (4.196). The kinetic terms are again Q-exact
[13, 134],

Luvisted = 3¢ [“VY —iGY —iV G| . (4.261)
T

Type B-parity action on the twisted chiral fields resembles the type A-parity on
the chiral fields, naturally, which we first outline. One important fact, perhaps not
too obvious immediately, is that the parity action which flips Y to Y should be
accompanied by a half-shift of the imaginary part, in order to preserve the action.
Due to this, the fixed submanifolds are spanned by

Y =2+ mg : (4.262)

with n = 1.

On this mirror side, the role of 6§ angle becomes more visible. § = 0,7 are the
two allowed values, corresponding to the two types of Orientifolds, OF. From the

equation of motion for the vector multiplet, we learn allowed values of n’s have to
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be such that

0
=) Qan"=— mod Zy, (4.263)
m

which restricts the sum over n, = 1 into two disjoint sets, depending on the value
of §. Comparing the result to the GLSM computation, we learn that the difference
between OT lies in the choice of the relative sign 7 between the even holonomy

contribution (4.253) and the odd holonomy contribution (4.256).

Parity on the Mirror

Under the type B-parity (4.198), one can show that the projection conditions are
Y(r— 0,7+ ) =Y(0,¢)+ constant , (4.264)
and

X£(m = 0,7+ ¢) =+ixz(0,¢) ,
X:I:(ﬂ- - 9)7T + 90) = Z)Z:F(07 90) 5
G(r—0,m+p) =+ G0, 9) (4.265)

are consistent to the SUSY variation rules, for free theories. In order to fix the
constant term in (4.264), we need to consider interactions such as twisted super-

potential terms.

First, recall that the gauge multiplet can be written as a twisted chiral 3, where

Y = o9 +i0 G:D+¢(F12+ﬂ) ,
.

X=X, X=AX. (4.266)
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As discussed above, we impose the projection conditions

oi(m—0, 71+ ¢)=—01(0,9) ,
oo(m— 0,1+ @) =+ 02(0, ) , (4.267)

in order to introduce a minimal coupling of a charged chiral multiplet. It implies
that

S(r— 0,7+ ) =%(0,p) . (4.268)
Note also that 3 enters the tree-level twisted superpotential linearly as
W = —%TZ , (4.269)
with 7 =€ + %, which leads to the FI coupling and 2d topological term

0
Ly + Ly = —i€ (D - %) i Fis . (4.270)

Note that the complexified FI parameter is periodic 7 ~ 7+n (n € Z). In order to
make the interaction invariant under the type B Orientifold action, the parameter

7 has to satisfy the following condition,
TH+T=n, new. (4.271)
In other words, the allowed value for the two-dimensional theta angle is either

0=0 or 7. (4.272)

Second, let us consider a simple example mirror to the U(1) GLSM with n chiral
multiplets of gauge charge @), where a runs from 1 to n. The chiral multiplets also

carry U(1)y R-charges ¢* so that the superpotential W carries the R-charge two.
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The mirror Landau-Ginzburg model involves n neutral twisted chiral multiplets
Y® with period 27i. The dual description also comes with the following twisted

superpotential

W= —ﬁ [z (; Q.Y + 27rz'T> + % azl e—Y“] . (4.273)

At low-energy, the field-strength multiplet Y is effectively a Lagrange multiplier,

leading to the constraint:
n
> QaY* = —2mir . (4.274)
a=1

To make these Toda-like interaction terms invariant under the type B-parity, one

has to fix the constant piece in (4.264) by i¢w. That is,

Y(r—0,7m+¢)=Y(0,¢)+ir . (4.275)

Partition Function on RP?

Choosing the kinetic terms Lyyisted as Q-exact deformation terms, one can show

that the path-integral localizes onto
Y =x+iy, (4.276)

where z and y are real constants [13]. To obey the projection conditions (4.268)

and (4.275), the supersymmetric saddle points are

o9 =0, 01=0, Fy=0, (4.277)
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and

YO = g%+ %n“ , (4.278)

where 2% and ¢ are real constants over RP2. Here n® = 41 obeying the constraint,
for § =0,

% Y Qun*=2m, mezZ, (4.279)
a
and for 0 =,
%ZQan“:2m+1, me7Z, (4.280)
a

obeying the constraint

> QaY* = —2mir . (4.281)
a

It is easy to show that one-loop determinants around the above supersymmetric
saddle points are trivial in a sense that they are independent of o and x%. One
can show that the partition function of the mirror LG model with the twisted

superpotential (4.273) on RP? reduces to an ordinary contour integral,®

8 We used for the last equality an integral formula

/ dz e'P* cos [€7w + Z] = cos [? — z} T[—ip] , if —1 < Relip] <0 .
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o0 o0 a a ]. y a y a y 71“ ]
7L ~ / do |:/ dwaef%x :| - (1 4 ezﬂ'Qan /2> . ezra(QEx —2m€) . ele sin(mng/2)
K. . 3

- nt==+1

= ~ doe=2imrog {/OO Azt e~ %t piroQaz® —x® m . —z® }
/_Oo oe 1:[ . xhe 2% e (cos[e }:l:COS{2Q +e D
= /0; dae_2i7rm§{ IZICOS [g (%a — i?”Qaa> }F[%a - Z'TQan|

+ IZICOS [g (% — irQba) — ng}F{% — iTQbU]} )
(4.282)

”

where “~” symbol in the first line reflects our ignorance of the overall numerical

normalization of the integration measure. Here the factors e~ 5" reflect the impor-
tant fact that the proper variables describing the mirror LG model are X% = e~ BY"
rather than Y* [13]. Below, we compare to the GLSM side up to this normalization

issue. The signs + are for § = 0 and 6 = 7 respectively.

The parity projection that leads to Eq. (4.282) assumes no specific flavor symmetry
in the original GLSM, and thus must be the mirror of the spacetime-filling case of
section 3.2. In the trivial holonomy sector, we start with the last line of Eq. (4.227)

and use the identities

r (; + x) T(x) =22 al(22), T(1-2)0(z)=—— (4.283)

to massage the one-loop determinant into

. 2 1-q,.
Zymial = F[g — Z'QO'} cos [g (% — iQU)} X \/;e[IZQHQU] log(rd) (4.284)
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In the nontrivial holonomy, a chiral multiplet carrying the even charge @), = Q.,

the same result holds,

. 2 g,
Zitast =T[4~ i@uo] oo [§ (4 - 1Qu0)] o Zek w0 a

while for the odd charge, Q, = @,, the partition function becomes

Z??ntrivéal — H 2k +2 - % + iQOU
00P,%o 0 2k+1 -4 4+1iQo0
1 'QOU
:F(ﬁ"“%_y ) < el
o1+ %)

= 1 [£ — iQu0] sn [ 3 (& - iug) | x o Zel 5 i@l i0n (4256

Thus one can conclude that the first term in the final expression (4.282) of the LG

1%(1 +iQoa] log(rA/2)

partition function corresponds to the partition function of GLSM with the even
holonomy, while the second term corresponds to the partition function with the

odd holonomy.

After interpreting the exponentiated log piece as the renormalization of £, we learn
two additional facts. First, the common overall normalization \/2/7 should be
incorporated into the measure on the mirror LG side. Second, an additional relative
sign n = 4+ [[,(—1)[9/2 (for § = 0, 7, respectively) should sit between the trivial
and the nontrivial holonomy contributions in the GLSM side, and distinguishes O~

type and Ot type Orientifold planes.’

4.5.5 Orientifolds in Calabi-Yau Hypersurface

In this section, we consider the Orientifolds for a prototype Calabi-Yau manifold
X, i.e., a degree N hypersurface of CPV~!. At the level of GLSM, the chiral field

9Recall that OF type Orientifolds involve turning on discrete RR-flux [135], and thus are not
accessible from GLSM.
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contents are
U Uy
Xi=1,.N 1 q (4.287)
P —N 2—- Ng

where we displayed the gauge and the vector R-charges. As usual, the superpoten-
tial takes the form P - Gn(X) with degree N homogeneous polynomial Gp. For
simplicity, we will call € = ¢/2 — iro below, and assume N odd. For N = even,
the P multiplet contributions from even and odd holonomy are exchanged. The
number ¢ is in principle arbitrary as it can be shifted by mixing U (1) and U(1)y,
but we restrict it to be in the range 0 < ¢ < 2/N [13].

The main goal of this section is to extract the large volume expressions for the
central charges of Orientifold planes. Traditionally, the latter were expressed in
terms of the v/£ class, but just as with D-brane central charge, we will see that

I'. class enters and corrects the expression. I, is a multiplicative class associated
with the function [14, 129-132]

X
1“(1 —) , 4.288
+ 211 ( )

so that, for any holomorphic bundle F, an important identity

~

Lo (F)Lo(—F) = A(F) (4.289)

holds. In terms of the Chern characters, it can be expanded as
. i i \*
T(F) = exp |5—chi(F)+ ) <> (k — 1)IC(k)chy(F)| , (4.290)
7r T

where v = 0.577... is the Euler-Mascheroni constant, and {(k) is the Riemann zeta

function.

The results from this hypersurface examples suggest that, for a general Orientifold
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plane that wraps a cycle M in the Calabi-Yau X', with the tangent bundle 7 M
and the normal bundle N'M with respect to X, we must correct the characteristic

class that appear in the central charge as

LOMMA A(TM/2) Lo(NM)
LINM/4) Co(—=TM)  ANM/2) "

(4.291)

We devote the rest of this section to derivation of this, by isolating the perturba-
tive contributions for Orientifolds wrapping (partially) Calabi-Yau hypersurfaces
in CPN—1,

Spacetime-Filling Orientifolds

First, let us consider the case where the Orientifold plane wraps X entirely, i.e., no

flavor symmetry action is mixed with the B-parity projection. With the classical

contribution
chassz'cal = e—i27r7"§o = e_QﬂS(q/Z_E), (4292)
we find
100 € € N —Ne —Ne
g /"”* de (5 mee|TE)T(5) | DT (157)
RP 4/2—ico 2T I'(—¢) ['(—1+ Ne)
N
I'(e)/e I'(1 — Ne)/(1 — Ne)
+1) - By - €27 - - . — — 293)
r(5)r(-5) D (=) (—57)
where the constants 31 o are
ﬁl — e*ﬂ'ﬁq . (27_‘_)7N/2+1 . 27(N+2) . e%-log(rA) 7
By = e ™. (2m)N/2H2 9N oilos(rh) (4.294)

and the sign n = +][,(~1)@a/2 (for § = 0,7, respectively) chooses either O~

type or O type Orientifold. The two lines are, respectively, contributions from
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the even and the odd holonomy sector. Another common factor in (o, es log(r)
renormalizes the partition function. Because X is Calabi-Yau, £ is not renormalized
but the partition function itself is multiplicatively renormalized with the exponent

¢/6 = (N — 2)/2 for this model.

The first factor in S o, i.e., e~ ™4 with an explicit dependence on the ambiguous
R-charge, should be in principle removable by shift of the R-charges by the gauge
charges; ¢ — ¢ + ¢ for any 0 is such a shift for the present model. This is however
easier said than done. For ratios of correlators, as in computation of the Zamolod-
chikov metric, the invariance is automatic. For the central charges which do depend
on the overall normalization and thus on the normalization of the measure, it is not
completely clear how this unphysical dependence is removed. Below, we choose to
set ¢ — 07 to satisfy the charge integrality condition, following Ref. [14], and thus

suppress this exponential factor. (Integral converges only when ¢ is positive real

[13].)

When £ > 0, the GLSM flows to the geometric phase in IR and we should close
the contour to the left infinity. For the even holonomy sector, the relevant poles
are those of I'(¢/2) at e = —2k (kK = 0,1,2,---). For the odd holonomy sector,
the relevant poles are those of I'(¢)/T'(¢/2) at e = =2k + 1 (k =0,1,2,---). Poles
of other factors either cancel out among themselves or are located outside of the
contour. Of these, poles at € < 0 capture the world-sheet instanton contributions,

which are suppressed exponentially in the large volume limit £ > 1.

The perturbative part of the partition function, appropriate for the large volume
limit, comes entirely from the pole at € = 0. With (4.293), therefore, only the even

holonomy sector contributes, giving us

Y g [FGF)F(—@]N,[r<1—2N6)r<—1-2N6)}4.295)

RP? —o 2mi I'(—1+ Ne)
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We first invoke the identity

r <1 + x> T(z) = 212 /7 T'(2z) . (4.206)

to rewrite this as

€ _a 1y Ne _Ne
Y [NQ(N))] / [F(;()_F N<E)2>] (L.297)

de N
- 8 _22(N1)% B onge LY
™ o 2mi € eN-1

N
Fa+5)r@-s
I'(1—e¢)
This can be further rewritten as an integral over X', with H the hyperplane class

of CPN—1,
ri+&)ra-4)1"
ra— )

with Co = iV =2(2m)N/22N=2(Ar)¢/6. We used [, HN"2 = N [opv1 HV71 = N.

I'(1 — Ne)

FU+@ﬂFU—@3]

pert. __ —iEH
ZRPQ =Cy [ e €
X

F(l _ NH)

21

Since X is a Calabi-Yau hypersurface embedded in CPY !, we may also write

L. (TCPN—1)

L(T2) = I (NVX)

, (4.299)

so that

TX
= Cp / e M (4.300)
X

where A is the A class. This shows that in the large volume limit, the conventional
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overlap amplitude between RR-ground state and a crosscap state (see e.g., [133])

are corrected by replacing
LTX/4) — ———7=—. (4.301)

In section 6, we will come back to this expression and explore the consequences.

Orientifolds with a Normal Bundle

Lower dimensional Orientifold planes, from B-parity projection, may wrap a holo-
morphically embedded surface M in the ambient Calabi-Yau X, if X admits Z,
discrete symmetries. At the level of GLSM, this is achieved by combining the parity

projection with such a flavor symmetry, as we considered in section 4.5.3.

For example, the simplest such Calabi-Yau has a superpotential P - Gy = P -
Z(JIV:I XZ-N which is invariant under exchange of X’s among themselves. Exchanging
a pair of chiral fields X' <+ X? gives rise to a fixed locus defined by X! + X? =
0, a complex co-dimension one hypersurface as well as a complex co-dimension
(N — 2) subspace, i.e., a point at X3 = --- = XV = 0. We can do the similar
analysis for the symmetry exchanging X' <+ X? and X3 < X* simultaneously.
This action gives complex co-dimension 2 fixed locus defined as (X!,--- X%V) =
(X, X,Y,Y,X5 ... X™) and co-dimension (N — 3) fixed locus, (X!, ---X") =
(X,—-X,Y,-Y,0,---,0). For the quintic, both of these correspond to O5 planes.

These results are summarized in the following table [133].

(X1, X2, X3, X4 X5) — (X1, X9, X3, X4 X5) 09 (spacetime filling)
07 at (X, X, X3, X4, X5)
03 at (X, —X,0,0,0)
05 at (X, X,Y,Y, X5)
05 at (X, —X,Y,~Y,0)

(X1, X2, X3, X4 X5) — (X2, X1, X3, X4 X5)

(X1, X2, X3, X4 X5) = (X2, X1, X4, X3X5)

(4.302)
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As this shows, we generically end up with more than one Orientifold planes, given
a parity projection. The central charges must be all present in the RP? partition
function, so the latter must be in general composed of more than one additive
terms. What allows this is the holonomy sectors we encountered in section 3. For
a GLSM gauge group U(n), for example, one has n + 1 such distinct holonomy
sectors, and can accommodate several Orientifold planes. For the current example
of U(1) GLSM, we have exactly two such holonomy sectors, and thus up to two
Orientifolds planes.!°

In the end, our examples below, combined with the spacetime-filling case above,

will suggest a universal formula for the large volume central charge

pert.  _ is ATM/2)  Te(NM)

rp, = C‘/ ( TM)A (/\[/\4/2)A WM)
ATM/2) | TN M)

- / TM)AA(NM/Z)’

(4.303)

for an Orientifold plane M of real co-dimension 2s in a Calabi-Yau d-fold X, with
C_s= jd—s9d—2s (27‘(‘)(d+2)/2 (TA)C/G‘

Orientifold Planes of Complex Co-Dimensions 1 & N — 2 Let us consider the
projection involving X' <+ X2. As the table above shows, this produces two
different fixed planes; An hyperplane with X! = X? and an isolated point at
X3 =... = XN = 0. Thus, we expect to recover additive contributions from these

two planes, for which existence of the two holonomy sectors is crucial.

10 For the spacetime-filling case of section 5.1, only even sector contributed to the large-volume
limit, and there was only one type of Orientifold plane. However, the odd holonomy piece is
still important in the following sense: Thanks to the U(1) gauge symmetry of GLSM, one can
alternatively project with X — —X and P — (—1)" P without changing the theory. However, this
flips the even and the odd holonomy sector precisely, which implies that the large-volume central
charge of the spacetime-filling Orientifold planes resides in the odd holonomy sector instead.
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As we are considering the ambient Calabi-Yau X as a hypersurface embedded in

CPN~1, the results of section 4.5.3 reads

r(l—e I'(—1+ Ne) ’
(4.304)

@mMMQMWmmNIMyFGW(ﬂMqN%WNL#)

from the even holonomy sector,

(27[_)N/2+1 9N -2 (TA)C/ﬁ rese—o

I'(e) | T(e)/e N_Q_ I'(1— Ne)/(1 — Ne)
M- [FETED] [TE Y]

(4.305)

from the odd holonomy sector. Note that, for this case, both sectors contribute to

the residue at € = 0.

First, let us consider the even holonomy sector contribution. With (4.296), we may

write (4.304) as

['(e)
(5)T (=

1

_(9\—N/2+43 o—N+2 c/6 L

(2m) 2 (rA)¢® rese=o =T 9

. ISR
Xr@u2>

I'(—Ne)

r (3T (%)
I'(1+e)

FI+gr(1—3)

FﬁﬂﬁﬁﬁqM1 r(1 - Ne)
K(1—o P+ 3T (-5

(4.306)

I'(—e)

- - c N
= (2m)"N/23 N4 (1 A)°/6 res.—g N3

Expressing the residue integral at ¢ = 0 via an integral over C'X with the hyperplane
class H, we find

Zpert., even Cl/ e—ifH/\H/\
X

RP, DL+ 57) )] (4.307)

ri+4)ria-L

uugw<4%rl/?uﬂ?ulmﬂ,

47 471
T(1-45) N
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with C_; = ¢N=3(2m)N/22N=4(rA)¢/6, Note that, again in terms of the A and T,

classes, this formula can be organized as

ert., even —3 A(TM_l/Q) fC(NM_l)
zZpert-, =C_ / WA A , 4.308
K2 "l € To(—TM_y)  ANM_1/2) (4.308)

where M_; denotes for a complex co-dimension 1 fixed locus, parameterized by
(X1> o XN) = (X7X7X37 o XN)

Contribution from the odd holonomy sector can be similarly written as

o 1 T(1+5)r@a-%)
_1\N-19-N+2 N/2 c/6 L. 2 2
(-2 (2m)N = (rA)® rese=o ; T(1—e)

[ rate ]“_ruwzﬁ)r(l—f;f)
)

r1+§)ra-s

which is equivalent to

S HN?2 T+ )T (1- K
Zﬂ}gpzt., odd _ C—(N—2)/X€_ZJ/\ ~ A ( 1—\4(7;)_ I({) 47(2) (4310)

271
T(1+ o) ]N_l/
P(1+45)T (1~ 45)

F(1+54) ]
where C_(y_g) = (=1)N=12=N+2 (27 )N/2 (£A)°/6. Again we may rewrite this as

4mi 4me

an integral

Zper’t.7 odd C —iJ A(TM—(N—Z)/Q) IA‘C(j\/’-/\/l—(N—Q))

= _ _ (& = 5
RP, (N-2) Meovon, Po(—TM_(n_2) ANM_(n_5/2)
(4.311)

over M _o which, in this case, is actually evaluation at the fixed point at (X!, --- XV)
(X,—X,0,---,0).

Orientifold Planes of Complex Co-Dimensions 2 €/ N —3 Next, we consider the
B-parity action that exchanges X! <+ X2 and X3 < X* simultaneously. Similarly,
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from the even holonomy sector, we have

I(l1—e [(—1+ Ne)
(4.312)

(2)~N/2H8 9= N42 (L A)e/6 pog [ I'(e) r [F (5)T (—5)]N4 [F (59T (-55)
. )

and from the odd holonomy sector,

N—4
_ L) 1°| T(e)/e (1 — Ne)/(1 — Ne)
(2m)N/2 2N=4 (1 A)¥/6 res— [ } — —
“lra-al [roren)  [rEmreEy
(4.313
Again, both holonomy sectors contribute for the residue at ¢ = 0.
For the even holonomy sector, a similar procedure gives
o 2
Zﬂggprt., even 2/ e—i{H A H2 A F(l + Tm) (4 314)
_ 7 7 .
’ x D1+ 45) T (1 - 45)
-2

47i

1—\(1 o NH)

2mi

r<1+;;>r<1—;;>r /

r(i- )

2mi

r(1+1gj)r(1—NH)]

where C_o = iN=4(2m)N/22N=6(rA)¢/0. In terms of the characteristic classes, we

rewrite this

Zﬂ[é%rt., even __ 072 e_iJ .:4(7-./\/1_2/2) A fC(NM_2> :
’ My Lo(=TM_s)  ANM_y/2)

(4.315)

with M _5 is complex co-dimension 2 fixed locus, (X1, -+ Xn) = (X, X, V.Y, X5, - - Xn).

Finally, from the odd holonomy sector, we have

e HV3 [T+ )r (- 2)]
L odd _
Zﬁg o = C—(N—?,)/Xe LSEN N A F‘*(“f_%) Ami
\.
L (1+45)T(1-45) D1+ 55T (1= 55)
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where C_(y_3) = i(=1)N=1(2r)N/2 2=N+4. This again can be summarized as

A(TM_(n-3)/2) N L(NM_(y_3)

fc(—TM_(N_3)) A(NM—(N—S)/Q) ’
(4.317)

where M_(y_3) is a co-dimension N —3 locus spanned by (X,-X,Y,-Y,0,---,0).

pert., odd __ —iJ
Zgp, - C—(N—i%)/ e A
M_(n_3)

4.5.6 Consistency Checks and Subtleties

In this last section, we explore the disk amplitudes (0|B) g and the crosscap ampli-
tudes r(0|C) g further. The most immediate question is whether these two types of
amplitudes, or equivalently the central charges, come out with the correct relative
normalization, for which we kept the overall coefficients carefully in the above. We
will then ask subtler questions of what should happen when M is not Spin but
only Spin€, for which we can only offer a guess for the final expression but not a

derivation.

We then move on to the anomaly inflow and also how we should extract, from
the computed central charge, the RR-tensor Chern-Simons coupling. Having both
r(0|B)r and r(0|C) g explicitly is most telling in this regard, whereby we discover
that the difference between the conventional central charges and the newly com-
puted ones is universal; the extra multiplicative factor due to I, class is common
for both D-branes and Orientifold planes and the same again makes appearance
in S? partition function as well. This strongly suggests that the change should
be attributed to the quantum volume of the cycles in X', rather than to the char-
acteristic class that appears in the world-volume Chern-Simons coupling to the

spacetime RR tensor fields.
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Tadpole

The simplest consistency check comes from the tadpole cancelation condition of

the RR ground states, which can be written as [136, 137]
rR{OIC)r + R(OIB)R =0, (4.318)

and demand the boundary state be constrained to satisfy this equality. From
the spacetime viewpoint, this is the Gauss constraint for the RR-tensor fields,
integrated over the compact Calabi-Yau manifold. Recall that the RR-charge of a
single Dp-brane and that of an Op® Orientifold plane must have a relative weight
of

4 o4 (4.319)

in the covering space. Obviously, the same numerical factor must appear in the

central charges.

For this numerical factor, we start with Hori and Romo [14], and consider tachyon

condensation to obtain the disk partition function for a D-brane wrapping M in X

Zon = () (2m) @202 [ B ey p AT

. Ae W2 (4.320)
M Lo(—=N)

where d is the complex dimension of the Calabi-Yau X. See Appendix C for details

of this procedure. On the other hand, the result of section 4.5.5 can be written as

Zpp2 = 2d28(rA)0/6(27r)(d+2)/2/ e A 14(7/2) A L)

TR e o 1777 R

where the complex co-dimension of M is denoted by s. The last factor in (4.320)
and its apparent absence in (4.321) is the subject of the next subsection; for tadpole
issue, it suffices to know that the O-form part of the two expressions differ by

the numerical factor of rank(€), prior to the projection, and also by 24=25  For
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the familiar Ramond-Ramond tadpole cancelation condition to emerge correctly,
therefore, 29725 must equal 2P~*. For ten-dimensional spacetime, d = 10/2 = 5

and p =9 — 2s, so d — 2s = p — 4, precisely as needed.

Anomaly Inflow and Indices

Let |a)rr denote one of the crosscap or boundary states in the Ramond-Ramond

sector. Then one can naturally define the Witten index as
I(a,b) = lim gr(ale T2 |b)pp , (4.322)
T—o00

which calculates the indices of open strings attached between D-branes and Orien-
tifold planes. Following figures are three distinguished topologies which give rise

to the indices for brane-brane, brane-plane, and plane-plane respectively.

Due to the Riemann bilinear identity, these indices can be expressed in terms of

the partition functions as follows [133].

I(Bg,Br) = Y (Belin”(j|Br) , (4.323)
ij

I(Bg,C) = > (Belim”(jlC) , (4.324)
(]

1c.c) = Y (Clim?le) (4.325)

ij

where all the states are in the Ramond-Ramond sector, and 1/ is the topological
metric of the chiral ring elements. Since the overlap between the RR ground states
and the boundary /crosscap states measures the coupling to the RR gauge fields, this
formula can be thought of as inflow mechanism which cancels the one-loop anomaly

from each open string sector. Since the expression for these indices in the geometric
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FIGURE 4.4: Two dimensional topologies where indices are defined. The first
one denotes for a cylinder with two boundaries at the ends, and the second one

corresponds to the Mobius strip with one boundary and one crosscap. The last
one is the Klein bottle, with two crosscap states at the ends.

limit are well-known in the literature, we can check whether our results generate

expected indices, and consistency with the original inflow mechanism [97, 98, 140].

Following the discussion of the previous subsection, here we assume that an extra

d(M)/2 ig present not only on the world-volumes of D-branes but also on the

factor e
world-volumes of Orientifold planes. Otherwise, amplitudes involving boundary
states only and amplitude involving a boundary state and a crosscap cannot be
summed up; this would lead to net world-volume anomaly and make the spacetime
theory inconsistent. Because we assume X itself to be Spin, d(M)/2 is always

expressed as a sum over —cy /2 of the normal bundles of the world-volumes.

Cylinder Index on the cylinder and relation to the disk partition function were
studied in [14] and [29].
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We start with Eq. (4.320) and use the relation (4.323) to calculate the open string
index stretched between two branes with (£1, M7) and (€2, M3) as

I(B& ’ 852)

N / BT 5 enien) n ) a2
MiNMa

A BT A ch(—E5) A A e MM/2 A e(Np) (4.326)

_ / ch(E1) A ch(—E) A ATMLOM2)) - (amn)—d(ma) /2 Ae(Nia)
MiNMa

where 7; and N; denote for tangent and normal bundles of M; and N2 = N1 NN

From the first to the second line, we used

F(TOAT(=T3) _ TTiNT)T(=TiNnT) _ A(TiNTs)
Do(—N) AT(N2)  To(—N1NANL(NNANo) AN NANR) Y

(4.327)

since

TI\N(TiNT2) = No\(M1 NAN2) . (4.328)

Note that, for the first equality, complex conjugation of the normal bundle in the

denominator of Eq. (4.320) is essential.

The factor e(*M1)=dM2))/2 iy (4.326) can be understood from the fact that the
I-brane fermions on Mj N .My are naturally sections of S(71 N T2 & N1 NN32). When
the latter fails to be Spin, the 2nd Stiefel-Whitney class that measures this failure
is

wa (T N Ta @ N1 N N2) = wa(Th) — wa(To) ,

where the equality follows from the assumption that the ambient X’ is Spin. Since
wy = ¢1 mod Zs, the relevant correcting factor for the Spin® case is eler(T)—c(72))/2,
Note that this factor reduces to 1 when M; and My are coincident, which is
expected since T ®N = T X is Spin. Next, we show how this extends to amplitudes

involving Orientifold planes.
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Chapter 4. D-branes and Orientifolds From 2D Partition Functions

Mébius strip Similarly, the index on the Mobius strip can be obtained via the
relation (4.324). If we let M; and My are locus where D-branes and Orientifolds

exist, we have!l

 opd . (T)  A(T/2)T (=N LAM)—d(M2))/2 5
I(Bg,C) 2 /MmM2 how(F) A PN )/\ AN /2T (T A A e(Ni2)
= 2P 4/M » chao(F \/m (dM)=dM2))/2 A e(N5) , (4.329)

which exactly reproduce the index formula of the Mobius strip calculated at the
level of non-linear sigma model [99, 133]. Here, p + 1 is the dimension of the

Orientifold plane.

When Dp-branes are on the top of an Op-plane, in particular, we can read off p+ 3-
form from I(Bg,C)+1(C, Bg), which gives anomaly inflow on the p+1 dimensional

world-volume as

— . DT AT/2RN)
+ 2 [choi(F) + chgp(F)] A P A AN 2T (T Ae(N) »
+ 207 [chog(F) + chyg(F)] A j((;,//? Ae(N)
p+3
= =+ chok(2F) jfj\?) Ae(N) (4.330)
p+3

Note that, since U(k) gauge group is enhanced to SO(2k) or Sp(k) group, we used
the relation chgy(F) = chgp(F). Adding two contributions from the cylinder and

the Mobius indices, we recover the open string Witten index, i.e., anomaly inflow

' From the first to second line, we used the identity /A(T)/L(T/4) = A(T/2) .
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for the SO(2N) or Sp(N) gauge group according to the sign of (4.330),

Isok),spk) = [charsar(F) & char(2F)] A

A(T)

= 2. Ch%Zk@kil) A W A C(N) (4331)

Klein bottle Finally, if there are two crosscap states as in the last diagram of the
figure, we have topology of the Klein bottle whose index is given by the relation
(4.325). Substituting our formula for the crosscap overlap into this identity, we

have

1c,c) ~ 2p1+p28/ A(Ti/2T (M) A A(T2/2)T(—=N2) A dMD=dNR)/2 (A7)
7 MMy ANY/2T(=T)  AN2/2)T(T2)

2
_ opitmes /M y < A(Ti 07'2/2))) A ANLOND) ) -aMa/2 o ey
1 2

AN N N/2)) AT N T
_ L(T1NT2/4) 3
MiNMs [:(./\ﬂ ﬁ,/\fg/4) € e(Ni2) ( )

This again gives the well-known formula for the Klein bottle index calculated in
non-linear sigma model. Since the B-type parity action corresponds to the Hodge
star operation of the target space, it reproduces the Hirzebruch signature theorem
[133]. Obviously, this index is independent of the open string degrees of freedom,
or the types of planes [144]. For type-I string theory, this inflow precisely cancels

the one-loop anomaly of supergravity multiplet.

4.5.7 RR-Charges and Quantum Volumes

This brings us, finally, to a natural question of what part of the central charge
should be attributed to the RR-charges. Recall that the conventional RR-charges,

or the Chern-Simons coupling to RR-tensors, was deduced indirectly via anomaly
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inflow. For instance, for the simplest case of the spacetime-filling D-brane, the
relevant anomaly polynomial is A(7), the A class, which is then reconstructed via
inflow as

QT AQU=T) = A(T) , (4.333)

where () is the characteristic class that appears in the Chern-Simons coupling.
With an implicit assumption that log() is “even,” i.e., includes 4k-forms only,
this leads to Q = A!/2 [97, 98, 140]. Some of early literatures were casual about
distinction between Q(7) and Q(—7), although more careful computations show
the conjugation has to occur for one of the two factors [97, 144]. Thus, in hindsight,

the anomaly cancelation argument fixes only “even” part of log €.

As was noted previously, ) = I, is one multiplicative class that is consistent with
the anomaly inflow A in the above sense. This happens precisely because “even”
part of log I, coincides exactly with log A2, Our discussion in the previous section

demonstrated that replacements like
AVHT) = TU(T),  LY2(T/4) = A(T/2)/Te(~T) , (4.334)

for D-branes and Orientifold planes, respectively, would be still consistent with
anomaly inflow. However, since the central charge is made from RR-charges and
quantum volumes of various cycles, it is hardly clear whether such a change in the

central charge should be attributed to the RR-charge or not.

More generally, for a D-brane wrapping a cycle M in Calabi-Yau X, the gravita-

tional curvature contribution to the central charge is

Le(T) _ [AT) -y (CDFER)C(2E +1)
FA) A(N)/\exp z; ) chok1(X) | ,  (4.335)
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so the deviation depends only on X. As shown in the present work, something

quite similar happens for the Orientifold planes,

A(T/2) TeN) _ LT/, oo Z,Z(—l)k(2k)lc(2k+1)

W)
L.(—T) AN/2) LN /4) (2m)2k chap1(X) |

k>1
(4.336)

where the deviation is identical to its D-brane counterpart. So the difference be-
tween the new central charges and the conventional ones can be expressed by a
universal factor, determined by X only, is independent of the choice of the cycle

M, and its logarithm is purely imaginary.

These properties all suggest that this factor should be interpreted as a o/ modifi-

cation of volumes, in the sense,

k(2k)IC(2k 4+ 1)
271' 2k

exp(—iJ) — exp —zJ—i—zZ
k>1

Ch2k+1 (X) s (4337)

rather than as a shift of RR-charges, or the Chern-Simons couplings, themselves.
In fact, this is precisely the same shift of J that appears in S? partition function,

or its large volume expression,

Zoo [ e p BT
X L.(=TX)

_1\k
- /X exp | —2iJ + QiZ( D (?I;;!)gfkﬂ)ch%ﬂ()c) (4.338)
k>1

Here, the “even” part of the two Gamma classes cancel out completely, suggesting
that they, but not “odd” parts, carry RR-charge information. For Calabi-Yau 3-
fold, the piece [ ch3(X) is proportional to the Euler number and represents exactly
the quantum shift of the volume that has been seen in the mirror map [12, 132]. This

viewpoint also conforms with the fact that there is no modification for Calabi-Yau
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2-fold (times remaining flat directions), for which the ten-dimensional spacetime

theory has as many as 16 supercharges.

The ambiguity in determining RR-charge from the anomaly inflow remains, as the
D-brane and the I-brane inflow mechanisms always conjugate one of the two factors
as in (4.333).12 However, once we accept (4.337) as the quantum version of the
exponentiated Kahler class, this ambiguity is lifted, and we come back to the same
old Chern-Simons coupling to spacetime RR-tensors for D-branes and Orientifold
planes [97-99, 101, 102, 140, 144].

12 Although, in principle, the Chern-Simons coupling may be computable by direct string world-
sheet method along the line of Refs. [99, 100, 145, 146], which had confirmed the first few terms
of Refs. [97, 98].
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Appendix A

Characteristic Classes

Throughout this thesis, the role of the characteristic classes are essential for study-
ing the topological properties of the theories. For a base manifold M and fiber
F over it, characteristic class measures non-triviality of twisting of such bundle.
They are defined in terms of the polynomial of gauge invariant curvatures, which
is referred to as the invariant polynomials. For a detailed discussion of properties

of them, consult the section 2.3.2 and also the references [16, 147].

When E — M is a complex vector bundle whose fiber is isomorphic to C”, the
most prequently used characteristic classes are the Chern class and the Todd class.

First of all, the Chern class is defined as

chr(F) = trpe”/?" = 3 e | (A1)

i

where R denotes the relevant representation, and z; are the two-form-valued eigen-

values of
F _ Fij i j
o = o dx' Nda? . (A.2)
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Appendix A. Characteristic Classes

in the representation R. The Todd class, which appears in the discussion of the

Dolbeaux complex of complex manifolds, is defined as

L
1—e @’

Td(F) =]

)

(A.3)

Note that the T'd(F) is defined only for a complex manifold.

For real bundles, we have the A-roof genus and the Hirzbruch L-class. These can

be expressed in terms of 2-form skew-eigenvalues y; of

R 1

o = 3 Rigw da A da, (A.4)

) 2 4
A(R) = 1:[ smﬁ(é,/Q) , L(R) = 1:[ tangl/lw . (A.5)

These two can also be expanded in term of Pontryagin classes,

p(R)=>_vi, pa(R)=D wvivi, ps(R)= > vivivi . (A.6)

% i<k i<k<l
and so on. Note that py(R) are 4k-forms, which is consistent with the fact that for
a real bundle R and invariant polynomial I, I(R) = I(RT) = I(—R). Finally, the

Euler class is

(8 =Tu. (A7)

which is given by a top form. We sometimes denote the Euler class with the
notation e(R). With these definition, we can prove various useful identities. For

example, we see

X(R) _ I Sin;-(%m [T =11 (eym _ e—w/?) = chg+ (R) — chg-(R) , (A.8)
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which is a crucial identity when we match 1-loop anomaly to the inflows. Further-

more, we also have

2(yi/4)? i/4)?
Finally, we discuss the Stiefel-Whitney classes which is valued in HP(M,Zs). The
first Stiefel-Whitney class wi (M) is zero if and only if the manifold is orientable.
The second Stiefel-Whitney class wa (M) measures the obstrunction to define spinors
on M, i.e., wa(M) is zero if and only if the bundle admits a Spin structure. How-
ever, even if wo(M) is odd, there is a way to define a spinors on M by turning
on additional half-line bundle which cancels the global anomaly. For the manifold
where this procedure is possible, the third Stiefel-Whitney class ws (M) is zero and

we say that the bundle admits a Spin® structure.
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Appendix B

Reduction to Nonlinear Sigma
Model on M,,

With n centers, one starts with 3(n — 1) bosonic coordinates and 4(n — 1) fermionic
ones, after the free center of mass part is removed from the dynamics. It is con-
venient to work with a coordinate system where n — 1 of them equal to indepen-
dent linear combinations of K4’s. In a slight abuse of notation we will denote
these again by K4, now with A = 1,...,n — 1; although there are n K’s, only
n — 1 of them are linearly independent. Thus, we split the relative part of r4¢
and 4 as ZM = (K4, y*) and M = (A, 9*), with M = 1,...,3(n — 1) and
uw=mn,...,3(n —1). Along the same spirit, we also denote by A, n — 1 linearly
combinations of A\’s that belong to the relative part of the low energy dynamics.
What do we mean by ©M? We wish to preserve at least one supersymmetry, say
Q4, and naturally ™ is the superpartner of ZM

M
oM = 92 e (B.1)

~ Orda

and the kinetic term of ¢ includes two factors of dr4/9ZM.
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As argued in section 4, it suffices to consider the dynamics with flat metric, which

after taking out the center of mass part becomes

9AaBb = MAB Ogp ,

where map is the (n — 1) x (n — 1) reduced mass matrix. Expressing this in the

curved coordinate system, ZM

orAa grBa
JMN = Z mABWW )
we find that partial derivatives of metric coefficients gpsn are nontrivial. In con-
trast, nothing much happens to \’s, other than one of them being taken out as the

center of mass part, so their metric is the same reduced mass matrix,

hap =mag ,

and is constant. Thus, no coordinate-dependent transformations are needed for

N’s. The deformed Lagrangian with flat kinetic term reads in this coordinate,

1 Co
L = 5gMN(Z)ZMZN—

%§Q(m’1)ABICA(Z)ICB(Z) —W(Z) M

+ B gun(Z)pM N — 3 Orgun(Z2)ZN M 4 B map AP

+ W€K AEA + i0y Wi (Z2) MV (B.2)

where the crucial middle term in the second line follows from Eq. (B.1) and the

anticommuting nature of fermions. We also used 9,K4 = 0.

Since we anticipate that K directions will decouple as £ — oo, we split the metric

lgmN] = ( Hap Cay )

Cua G

as
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and the likewise for its inverse

M) = (H-cGctch)! —(H -cG'ch)~lcg?
g —G'CT(H -ca eyt g '+ G eT(H - cc'e)yteTa !

Ignoring W and fermion contributions to the conjugate momentum for now for

simplicity, the bosonic part of Hamiltonian will then looks something like

H

12

. 1
59" Pupy + g pap, + igABpApB N

1ot 1
= (G pupy+ 59" PaPs + -+ (B.3)

where

Py=pa+ (H—CGCT) acg“"p, = pa — (CG™) }'p,

P4’s have the standard canonical commutator with X’s, so it is clear that, together
with ~ €2C? terms, they form very heavy harmonic oscillators of frequency ~ &,
settle down to its ground state sector, and decouple from ground state counting.
This leaves behind

H ~ 5(G*l)#l/pupy 4. (B.4)

Denoting the canonical conjugate of p, in this reduced dynamics again by y*. ! the

corresponding Lagrangian would be
1 .
L:§GW gy 4 (B.5)
K=0

This makes clear that we could have done the same more simply by imposing K = 0

at the level of Lagrangian.

!Generally K will mix in the definition of this new y* coordinates, to reflect the shift of the
conjugate momenta, but this becomes irrelevant because dynamics forces I = 0. Therefore, the
same old y coordinates can be used here.
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Procedure leading up to (B.4) can be repeated in the presence of WW’s, which simply
shift the conjugate momenta in the Hamiltonian, and it is clear that only W,’s will
survive. We should ask whether this is consistent, since after all dWW’s are Dirac
quantized magnetic fields, and removing some part of the gauge connection could

make the remainder ill-defined. However, we have
AW = ApWadKBdKA + (0, Wa — 0aW,,) dytdKA + D, W, dy” dy"
and the pull-back onto M,, is simply
M (dW) = O W, dy” dy" (B.6)

The pull-back of a well-defined bundle to a smoothly embedded submanifold is still
a well-defined bundle, so the reduced gauge connection W,,(K = 0) is consistent.
Thus, the bosonic part of the action reduces to

1 "
L~ iGW y'yr =Wy

K=0

Pt (B.7)
=0

leaving us with the question of how to reduce fermion sector.

The fermions enter the Hamiltonian in two places. One is as bilinear connection
term added to the conjugate momenta, and the other is an additive contribution

of the form
—i€ARK AP — i0AWp Y WP — i(0aW,, — W) Pt — 10, W, M

with the canonical anticommutator among ¥™’s equal to ¢™. To disentangle

heavy 1 from light ¥*, we shift the light fermions as

P =t A H — OGTIOT) 4cg®r = — A (CGT) 4
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such that
ARy =0,  {Pr v =(GHm .

Let us categorize these fermion bilinears into three difference pieces,

Terms in the last bracket involve only ¢4 and A\*’s with eigenvalues ~ &, so these
will decouple from the low energy spectrum. The potential mixing between heavy

and light modes are in
Eap = 0aW, — O Wa + (CG™H) L (W, — O WV,) .

For heavy sector, this is of course a minor perturbation and ignorable as & — 0.
For light sector, things looks less innocent since the size of this operator is itself not
negligible. However, the heavy fermion enters this operator linearly, and always
will connect excited states and ground states of heavy fermion sector. This forces
the energy eigenvalue differences (E,, — Ey) in the denominator of the perturbation
series to be of order ~ &, such that the perturbation is suppressed by powers of
~ £/&. In the end, again, the net effect is to turn off the heavy modes ¢ and A
completely, leaving behind
—i0, W,

only, where well call this light fermion again as 1*’s. The simplest way to under-
stand this is to recall that any operator linear in heavy fermions will vanish when

sandwiched between heavy sector vacuum.

Combining the reduction processes of the bosonic and the fermionic sectors, it is

clear that the connection term can be equally reduced to

i . i . N
FOLgun 2NN S 05Gag Yy
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Now we can revert from the Hamiltonian to the Lagrangian, after putting all the
heavy modes to their ground states, and arrive at the following reduced Lagrangian,

N=1
‘Cfo

r index only
= SGw(" + i) = A + 5 Fuat"V” — S0sGapy v

= G+ S ) — At 4 L Fudt (BS)
where we introduced the notation, also used in the main text, F = M} (dW) and
its gauge field A. We already defined G as the appropriate block of g, but now
valued at M,,. In other words, G = M (g). Remaining fermions live in the co-
tangent bundle of M,,, so the resulting Lagrangian is A/ = 1 non-linear sigma
model on 2(n — 1)-dimensional manifold M, coupled to an Abelian gauge field
W. Supercharge of this dynamics is a Dirac operator on M, coupled to Abelian
gauge field A, and therefore the index is, under the canonical choice of the chirality
operator,

Ch(F)A(M,,) .
My
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Appendix C

Spherical Harmonics

We summarize basic facts about the (monopole) spherical harmonics. In order to
discuss the projection condition under the parity, it is convenient to choose a gauge

where the monopole background vector field takes the following form
B
A= ) cosOdy , (C.1)

valid in the region 0 < # < 7. In addition, we also need to choose a gauge for the

spin connection, as it affects the harmonics for spinors and vectors. Our choice,

wéé = —cosfdy , (C.2)

is such that spinor spherical harmonics are antiperiodic along ¢ — ¢ + 2.

The scalar monopole harmonics Yq jn,, with q = gQ satisfy

—D2Yqim=jG+1)—a*, j=1l+]a (1=0,1,2,.), (C.3)
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where the covariant derivative denotes

D=d—iQA.

(C.4)

For later convenience, we present an explicit expression of the scalar monopole

harmonics below,

Yajm(0:9) = Mqgm(L = 2)**(1 + )PP PP (z)e™?
with

r=cosh, a=—q—-m, B=q—m,n=j+m,

and

27 +1(j —m)l(j !
Mo = 2m |2 F U —m)g +m)t
dr o (G-l +a)!

Here the Jacobi polynomial P2 (x) is defined by

mn

PT?B(SU) = (—1)n<1 — x)*a(l + x)*ﬁdd? |:(1 _ x)aJrn(l + 1‘)B+n] ‘

2nn

Using the fact that
PP (—a) = (=1)"P(x) ,
it is straightforward to show that, for 0 < 6 < m,

Yo jm(m — 0,7+ ) =(=1)"™ Y_q jm (0, ¢)
=(—D)lem™aly_ (6, @) .
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For instance,

. . 1
Yi%,jm(w -0, 7+ @) = (—z)(—l)quE%,jm(H, @) for j =1+ 3 (C.11)

The complex conjugate of the monopole harmonics satisfy the following two rela-

tions,
Y(;jm(e’ S0) = (_1)q+mY—q,j(—m)(97 ()0) ) (012)
and
g2 Yf;jm(e’ SD)quvj’m’(ev QO) = 6qq’5jj’5mm’ . (0.13)

We now move on to the spinor monopole harmonics. It is useful to consider the

eigenmodes \I/(j; m of a modified Dirac operator
1\2
—i’yg’ymDm\IIijm = i)\i\I/;t’jm , Ar ==+ (j + 2> -q?, (C.14)
where
Y 1.
+ _ q—3,Jm
Vo jm = Ly 21 . (C.15)
Here the covariant derivative is
: 1 ab
D=d—-iQA+ W (C.16)

Using the property of the monopole harmonics (C.11), one can show

:l:Yl j (07 90)
Ut o (m—0,7+ ) = Fi(—1) 2 , C.17
a=0,jm( ®) (—1) Y00 (C.17)

2
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with 0 < 6 < .

Finally let us discuss about the one-form spherical harmonics defined by

1
Cim =+ ——=dYi ,
i +1)
J+

where j > 1. Useful properties of the vector spherical harmonics can be summarized

as follow,
«C5 =Cj, . %dCi, =\/j(j +1)Yim ,  *dCj,, =0, (C.19)
which lead to

xd * dC3,, = — j(j + 1)C;

Jm >

xd * dCj,, =0 . (C.20)
Under the parity action, they transform as

lem(Tr —0,m+ (P) = (_1)]C]1m(07 ‘10) >
Copm — 0,7+ ¢) = (=1)11C3,(0, ) - (C.21)
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One-Loop Determinant on R]P%

We will show that the partition function on the squashed real projective space ]R]P’g
is independent of the squashing parameter b. This section largely relies on the

discussion in [13]. For details, please refer to Appendix A of the reference.

To compute the one-loop determinant around the SUSY saddle points, it is not
necessary to know all the eigenmodes of boson and fermion kinetic operators. This
is because, as we see in section 3, the huge cancelation between boson and fermion
eigenmodes occurs. It is therefore sufficient to understand how the boson and

fermion eigenmodes are paired by the supersymmetry.

Chiral multiplet

We start with a chiral multiplet of unit U(1) gauge charge. To simplify the com-

putation, we choose a Q-exact regulator

['reg = —0c0¢ @573@& - 2&’0—2@1)} ) (Dl)
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different to the one used in the main context. The above choice leads to the kinetic

operators around the saddle points (4.209), (4.210)

2

_ 2 2, 4 q—1 q° —2q
Ab——Dm+0' +ZR+Tvam++ 4f2 5
1 —1 —1
Af:—i’ymDm—a’f—iﬁ’yi;—l—ti vm’ym+iq2f w, (D.2)

where the covariant derivative involves the background gauge field V' given in
(4.206),

Dy = (am — A, + Z'(]‘/m) ¢,

Dyt = (am —iAm + %waw“b +ig - 1)Vm) v, (D.3)

and
o™ =éy"e w = €€ . (D.4)

Here R denotes the scalar curvature of RP?. As in section 3, it is convenient to

consider spinor eigenmodes for an operator v3A s instead of Ay.

One can show that there is a pair between a scalar eigenmode for A, = —M (M +20)
and two spinor eigenmodes for v3A; = M, —(M + 20), subject to either (4.216) or
(4.230) projection conditions. The precise map which pairs the scalar and spinor
eigenmodes is the following; Given a spinor eigenmode ¥ for v2A = M, one can

show that

e (D.5)
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is a scalar eigenmode for Ay, = —M (M + 20). On the other hand, one can define

a pair of spinors

\Ill = 736@ s \IIQ = Zﬁ)/memq) + 736 (U(I) + 12(3(.) o ) (DG)

where @ is a scalar eigenmode for A, = —M (M + 20). One can show that
MUy + Uy | *(M+20)\I’1+\I’2 (D?)

are the eigenmodes for v3A f=M and VA ¢ = —(M + 20) respectively.

Any modes in such a pair can not contribute to the one-loop determinant due
to the cancelation. As a consequence, the nontrivial contributions arise from the

eigenmodes where either the map (D.5) or the map (D.7) becomes ill-defined.

Unpaired spinor eigenmode If a spinor eigenmode vanishes when contracted with €,

there is no scalar partner. Such an unpaired spinor eigenmode takes the following

form
U = %n(h)e, (D.8)
where
‘ q—2
sz(Ml+al+z 5 ) ) (D.9)
and
1 B J q—2 q-2
fagh—tan0<l 57 +1 57 >h. (D.10)

For the normalizability, one has to require J to be non-negative. Note that the
function A(#) is even under the parity, i.e., h(8) = h(m — 6). One can show that J

should be further restricted to be even (odd) to satisfy the projection conditions
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in the even (odd) holonomy, i.e.,

Ml =i <2k + 1+ 0l — g) for even holonomy ,

MI =i (2k +2+iol — %) for odd holonomy , (D.11)

with k£ > 0.

Missing spinor eigenmode Suppose that a scalar eigenmode ® for A, = —M (M +
20) fails to provide two independent spinor eigenmodes via the map (D.7). It

happens when
Uy =—MU, , (D.12)

which leads to a missing spinor eigenmode for v3A ¢t = M. One can verify that

such a scalar eigenmode ® missing a spinor eigenmode takes the following form
d = eoy() , (D.13)
where
i = (Ml Vol + zg) , (D.14)
with J > 0 for the normalizability, and
}89)( = tand (J + L q> X - (D.15)
To satisfy the projection condition in the even (odd) holonomy, one can show that

Ml =—1 (Zk — ol + g) for even holonomy |,

Ml=—i (Zk +1—iol+ g) for odd holonomy | (D.16)

with k& > 0.
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One-loop determinant Combining all the results (D.11) and (D.16), one can show

2k+1+i0l—1
det Ay det VA, N [Tis0 5= wl+q2 for even holonomy

— - 2k+2 -1
det A, — det A, TTiso %L*”ZZM for odd holonomy

. (Da7)

where the symbol ~ represents the equality up to a sign independent of . From
the comparison to the results in section 3, one can fix the sign factor by the unity.

These results are in perfect agreement to those for RP?.

Vector multiplet

We now in turn compute the one-loop determinant from the vector multiplet. De-

noting the various fluctuation fields as follows
A= Agas +a, o1=q, o2 =0+, (D18)

let us decompose all the adjoint fields (a,(,n) into Cartan-Weyl basis. From now
on, we focus on the W-boson of charge «a, a root of G, and its super partners. The

kinetic Lagrangian for the vector multiplet is chosen as a Q-exact regulator.

As explained in [9] and [13] that the four bosonic modes contain two longitudinal
modes with a ~ Dn that correspond to a gauge rotation and the volume of the
gauge group G. Using the standard Fadeev-Popov method, one can argue that
these longitudinal modes can not contribute to the one-loop determinant. Thus we
need to find how two transverse modes with *D x a = 0 can be paired with spinor

eigenmodes.
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The kinetic operators of our interest are

A —xdxd+ (a-0)? —*d%
b +%*d —*d*d—}—%%—(a-a)Q ’

Af =iy Dy + (- o)y, (D.19)

with the gauge choice *d x @ = 0. The operator A; acts on the fluctuation fields
(a, () subject to the projection conditions (4.242) for the even holonomy and the
twisted projection conditions for the odd holonomy. Instead of Ay, it is convenient

to consider the following operator

oo —xd
I = : (D.20)
1 .
*d f—i-zoz-a

One can show that the operator & satisfies the relation 62 = Ay + 2i(a - )8y, or

equivalently,

O0p = —iM ,+i(M+2a-0) <> Ay=—-M(M+2a-0) . (D.21)

Let (A,X) and A be bosonic eigenmodes for §, = —iM and fermionic eigenmodes

for v3A; = —M. They can be shown to be mapped to each other by
A=—i(M+a-o)eyAe™ —d(e7°A) , Y=(M+a-o0)eA , (D.22)
and
A= (P Ay +i57%) € . (D.23)

Again, one can have nontrivial contribution to the one-loop determinant from either

unpaired or missing spinor eigenmodes.

234

T [

."'\.\.I -ll'



Appendix D. One-Loop Determinant on R}P’g

Unpaired spinor eigenmodes An unpaired spinor eigenmode, annihilated by the

map (D.22), takes the following form
A =e"en(0)e, (D.24)
where
i(J+1) =Ml +a-ol, (D.25)
with J > 0 due to the normalizability, and

1 1 J+1
_ —_——_— = . D.2
f69h+tan9(f 7 )h 0 (D.26)

Note that the function h(f) is even under the parity, h(m — 6) = h(f). In order
to satisfy the projection conditions in the even (odd) holonomy, the non-negative

integer J should be further constrained to be odd (even), i.e.,

M1 =i (2k + 2+ ia - o) for even holonomy |,
Ml =i(2k +1+ia-0) for odd holonomy , (D.27)

with k£ > 0.

Missing spinor eigenmodes One can show from the map (D.23) that a bosonic

eigenmode with missing spinor partner can take the following form
A = UHey(9) (e' +icosbe®) ¥ = ie'Tey(0) sin b | (D.28)
where ¢ denotes the vielbein of RPZ, and

i(J+1)=—(Ml+a-ol) , (D.29)
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and

1 1 J+1
— _— = . D.
fagx—i-tanﬁ(f 7 )X 0 (D.30)

The normalizability requires J to be non-negative. The projection conditions in

even (odd) holonomy are satisfied if J are even (odd), i.e.,

Ml=—1i(2k+1—ia-0) for even holonomy ,
Ml =—-1i(2k+2—ia-0) for odd holonomy |, (D.31)

with &k > 0.

One-loop determinant Collecting all the results (D.27) and (D.31), the one-loop

determinant from the vector multiplet becomes

det Ay det VA - { [Toea [Tiso 2kt34iao 41 even holonomy

~ krl=ioo . (D.32)
Vdet A det dp [Toea Iliso SZI%% for odd holonomy

By comparing the results to those in section 3, one can fix the sign factor by the

unity. Again, these results perfectly agree with those for RP2.
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