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Experimental study of quantum coherence decomposition and
trade-off relations in a tripartite system
Zhe Ding1,2,12, Ran Liu1,2,12, Chandrashekar Radhakrishnan 3,4,12, Wenchao Ma1,2,11, Xinhua Peng 1,2,5, Ya Wang 1,2,5,
Tim Byrnes6,7,8,9,10✉, Fazhan Shi 1,2,5✉ and Jiangfeng Du 1,2,5✉

Quantum coherence is the most fundamental of all quantum quantifiers, underlying other well-known quantities such as
entanglement. It can be distributed in a multipartite system in various ways—for example, in a bipartite system it can exist within
subsystems (local coherence) or collectively between the subsystems (global coherence), and exhibits a trade-off relation. In this
paper, we experimentally verify these coherence trade-off relations in adiabatically evolved nuclear spin systems using an NMR
spectrometer. We study the full set of coherence trade-off relations between the original state, the bipartite product state, the
tripartite product state, and the decohered product state. We also experimentally verify the monogamy inequality and show that
both the quantum systems are polygamous during the evolution. We find that the properties of the state in terms of coherence and
monogamy are equivalent. This illustrates the utility of using coherence as a characterization tool for quantum states.
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INTRODUCTION
Quantum coherence has been the focus of investigation in
numerous fields such as quantum optics where the fundamental
nature of coherence has been investigated using phase-space
distributions and higher order correlation functions1–3. It was
quantified recently in a quantum-information theoretic way4 and
the modern view is that it is the broadest quantum properties and
is at the root of various quantum quantifiers such as discord,
entanglement, EPR steering, and Bell correlations5,6. A set of
axioms were formally introduced which need to be satisfied by a
coherence quantifier4. This gave rise to the field of resource
theories of quantum coherence7–10, along with an explosion of
interest in the measurement of coherence11–15 and its applica-
tions16–19.
Quantum coherence has some unique features not present in

other quantifiers such as entanglement and quantum discord (for
a review see ref. 9). One feature is that coherence is a basis
dependent property and hence the amount of coherence
depends upon the chosen measurement basis. Additionally,
coherence can localize in a unipartite system as quantum
superposition, or be present as correlations between different
qubits12. For example, in a bipartite entangled state
ð 00j i þ 11j iÞ= ffiffiffi

2
p

, the coherence is delocalized and cannot be
attributed to any particular qubit. On the other hand, in a
separable state þþj i ¼ ð 0j i þ 1j iÞð 0j i þ 1j iÞ=2, the coherence is
localized within the qubits. In fact, a maximally entangled state
has only global coherence and no local coherence; meanwhile
product states are the opposite. This example illustrates the
presence of a trade-off between the local and the global
coherence in a quantum system. This trade-off is the simplest

case and highlights the different complementary distributions of
coherence in two qubits. In a multipartite system, there are more
possible distributions of coherence and hence other types of
trade-off relations.
In this work, we use an adiabatically evolved spin system to

experimentally measure coherence and investigate the trade-off
relations in tripartite systems. The tripartite trade-off relations are
an application of the theory presented in ref. 12, where it was
found that the total coherence could be decomposed into local
and global coherence. We theoretically define three new inequal-
ity trade-off relations for the tripartite system which further
characterize the quantum state. In the experiment, we consider
two different classes of quantum systems with two and three-
body interactions. The quantum coherence is measured at
different stages of an adiabatic evolution and various trade-off
relations are verified. An example of this process is shown in Fig.
1a, where initially the coherence is completely localized within the
qubits. When the system is adiabatically evolved, it has both local
and global coherence. At the end of the adiabatic evolution, the
system has only global coherence. In addition to verifying
the trade-off relations and coherence distributions, we analyze
the monogamy of coherence. Monogamy, first introduced in
the context of entanglement20,21, implies that, when Alice and Bob
are maximally entangled, they are impossible to be simultaneously
entangled with a third party Charlie. This concept was later
extended to quantum correlation22,23 and quantum coherence12.
We show that using the various coherence quantifiers and
monogamy, one can reveal that despite the apparent differences
between the two Hamiltonians, the decompositions of the
coherence are in fact similar. This illustrates the utility of our
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approach where coherence can be used to characterize a state to
reveal hidden similarities between different systems.
We note that several other works have examined quantum

coherence experimentally recently24–27. A coherence witness was
introduced in ref. 24 to detect the total coherence through a
violation of Leggett–Garg type inequality28. Meanwhile the
amount of coherence in a single photonic qubit was measured
experimentally25 using the robustness of coherence13. These
works studied coherence in unipartite systems and did not
analyze the coherence decompositions, their distribution and the
consequent trade-off relations in multipartite systems. Such
experimental demonstrations, and our work in this paper, show
that quantum coherence can be an effective characterization tool
for quantum states. In particular, using the coherence decom-
position methods as introduced in this work and ref. 12, one can
obtain insights into the nature of the quantum state that may not
be obvious from the examination of the density matrix.

RESULTS
Models
In this work, we study two different tripartite quantum systems.
The first system is an Ising model described by the Hamiltonian

HzzðtÞ ¼ ωz

X
i¼1;2;3

Szi þ ωx

X
i¼1;2;3

Sxi þ 2J2ðtÞ
X

1�i<j�3

Szi S
z
j ; (1)

where Sz=xi is the nuclear spin in the z/x-direction and J2 represents
the two-body interaction strength with ωz=−2 being the
magnetic field in the longitudinal direction. A small transverse
field ωx= 0.1 is provided to lift the degeneracy of the ground state
so that the adiabatic evolution is possible. Initially when we set
J2= 0 and ωx≪ωz, the ground state is nearly a separable state
000j i. The state is adiabatically evolved by increasing J2 from 0 to
∣ωz∣ in order to obtain a state close to Wj i ¼ ð 001j i þ 010j i þ
100j iÞ= ffiffiffi

3
p

at the end of the evolution29. The fidelity between the
final ground state and Wj i is 0.9978 while our experimental final
state has a fidelity to Wj i as high as 0.9578.
The second quantum system we consider has the following

form:

HzzzðtÞ ¼ ωx

X
i¼1;2;3

Sxi þ 4J3ðtÞSz1Sz2Sz3; (2)

where J3 is the three-body interaction strength which varies from 0
to 5 during the adiabatic evolution. The corresponding initial and
final ground states are ���j i and, in the sense of zero-order
perturbation, Gj i ¼ ð 001j i þ 010j i þ 100j i þ 111j iÞ=2, respectively.

The fidelity between the final ground state and Gj i is 0.9996 while
our experimental final state has a fidelity to Gj i as high as 0.9661.
The final state has both bipartite and tripartite coherences. For both
the quantum systems, the coherence is measured at each stage
of the evolution using quantum tomography methods.

Quantifying coherence
To measure coherence we use the square root of quantum version
of the Jensen–Shannon divergence (QJSD)30–33

Dðρ; σÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
Srðρkðρþ σÞ=2Þ þ Srðσkðρþ σÞ=2Þ½ �

r
: (3)

Here ρ and σ are two density matrices of the same dimensionality
and Srðρ1kρ2Þ ¼ trρ1log ðρ1=ρ2Þ is the quantum relative entropy.
Using this measure, the total coherence in the system is

CTðρÞ � Dðρ; ρdÞ; (4)

where ρ is the density matrix and ρd ¼ P
k kh jρ kj i kj i kh j is the

diagonal density matrix with kj i representing the eigenstates of Szj .
The global and local coherence are defined, respectively, as12

CGðρÞ � Dðρ; πðρÞÞ; CL � DðπðρÞ; ½πðρÞ�dÞ: (5)

Here π(ρ)≡⊗ iρi, where ρi ¼ tr8j≠i ρ and footnotes i, j are indices of
subsystems. Subscript d indicates the diagonal part of the density
matrix in the Sz-basis. In terms of the coherence trade-off, the
more relevant quantity is the absolute coherence defined as

CAðρÞ � Dðρ; ½πðρÞ�dÞ; (6)

which is different from the total coherence CT and is the total
amount of coherence in the product basis. The reference state [π
(ρ)]d for absolute coherence contains neither coherence or
correlations between the subsystems, while the reference state
for total coherence ρd can potentially contain classical correla-
tions. Since our measure Dðρ; σÞ satisfies the triangle inequality
for a multipartite system up to five qubits according to numerical
studies34, we have the trade-off relation (see Fig. 1b).

CA � CL þ CG: (7)

The total coherence CT does not satisfy this trade-off relation since
the reference state π(ρ) is used.
One of the interesting aspects of tripartite systems is that

coherence can be distributed in different ways. It is well-known
that for entanglement, GHZ and W states are two different classes
of tripartite entangled states35. The entanglement in a GHZ state
is genuinely tripartite, whereas in a W state, the entanglement is
bipartite in nature. In this context, it is interesting to examine the
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Fig. 1 Demonstration of the coherence distribution. a Quantum coherence trade-off is described in tripartite systems with circles
representing the qubits. The blue discs and red leaves represent the local coherence CL and the global coherence CG. The strength of the color
indicates the strength of the coherence. b A geometric picture of different coherences. Coherences are shown as distances between two
different density matrices. ρ is the original density matrix; π(ρ) and [π(ρ)]d are as described in (5); ρ1 ¼ tr2;3 ρ and ρ23 ¼ tr1 ρ are the reduced
density metrices.
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coherence additionally in a bipartite fashion. To this end, we
introduce a geometrical picture as shown in Fig. 1b, by
considering ρ1⊗ ρ23. We evaluate the coherence between qubit
1 and the bipartite block 23 according to

C1:23 � Dðρ; ρ1 � ρ23Þ; C2:3 � Dðρ23; ρ2 � ρ3Þ: (8)

Here C1:23 measures the coherence between qubit 1 and the
bipartite block 23 and C2:3 is the coherence in the bipartite block
23. We note that including ρ1 does not make any difference to the
global coherence, and C2:3 ¼ Dðρ1 � ρ23; πðρÞÞ; the proof is given
in the Supplementary Note 1. Complementary to the coherence
C1:23 we have the contribution

C1:23A � Dðρ1 � ρ23; ½πðρÞ�dÞ: (9)

Based on these coherence distributions we have the following
trade-off relations

CA � C1:23 þ C1:23A ; C1:23A � C2:3 þ CL: (10)

Since C1:23 and C2:3 are global coherences, they give another
trade-off relation

CG � C1:23 þ C2:3: (11)

The four equations in (7), (10) and (11) correspond to the four
triangles that are present in Fig. 1b. They are also four trade-off
relations that can be verified for the generated tripartite states.

Coherence trade-off
The variation of the coherence contributions during the evolution
is shown in Fig. 2. There are mainly four types of errors leading to
the deviation between experimental and theoretical results: initial
state imperfection, decoherence, pulse error and measurement
error. Please refer to Supplementary Note 4 for a detailed analysis.
For Hamiltonian Hzz, at J2= 0, the interactions are turned off and
the ground state is a product state. It is locally rotated from the
state 000j i (CL ¼ CG ¼ 0), due to the transverse field ωx which
induces a small local coherence. We observe that there are two

regions, J2∈ [0, 1) with CL and CG increasing and J2∈ [1, 2] with CL
decreasing and CG increasing. The crossover at J2= 1 corresponds
to a quantum phase transition in a spin system with two-body
interactions29. For the Hamiltonian Hzzz, at J3= 0, the ground state
is ���j i, a coherent product state and hence CG ¼ 0 and CL is
maximal. At J3= 5, the ground state is nearly Gj i for which CL ¼ 0
and CG is maximal. The two distinct regions of Hzzz are J3∈ [0, 0.25)
(CL > CG) and J3∈ [0.25, 5] (CL < CG) with the crossover at J3= 0.25.
They are related to a critical point at J3=ωx for a spin system with
three-body interaction in the thermal dynamic limit29,36–41. We
note that there are regions where CG > CT for both Hzz and Hzzz.
This is due to our definition of global coherence, where all
correlations between the qubits are broken by forming a product
state, whereas in the definition of total coherence, classical
correlations can be present in the decohered state. This verifies
that CA is the more appropriate quantity in the context of trade-off
relations.
To visualize the expected trade-off relations according to (4), (7)

and (11), we look at the ratios CG=CL, C2:3=CL, C1:23=C1:23A and
C2:3=C1:23 using both experimental data and the corresponding
theoretical results as shown in Fig. 3. We observe three types of
trade-off behavior corresponding to complete, partial and no
trade-off. For ratios of CG and C2:3 to CL, there is a complete trade-
off between these quantities, since there is a complete exchange
from locally to collectively distributed coherence. Meanwhile the
comparison of C2:3 and C1:23A to C1:23 only results in a partial trade-
off, where the ratios saturate to a finite value. In these cases, since
both quantities in the ratio are types of global coherence, the
ratios saturate to these particular values decided by large J2, J3. For
Hamiltonian Hzz, the ratio C2:3=C1:23 remains constant throughout.
We attribute this to the fact that for this Hamiltonian, there is a
complete qubit symmetry, such that the entangled component of
the state is always of the form of a W state. Hence when
comparing two types of correlation-type coherences, although the
amount of coherence both become small as J2→ 0, their ratio
remains the same.
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Fig. 2 The variation of different coherences as a function of the interaction parameters. Plot for the Hamiltonian Hzz in (a, b) and Hzzz in
(c, d). The experimental data are shown by the points and the lines show the theoretically obtained results.
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Fig. 3 Visualization of the trade-off relations. The ratio between the different pairs of coherences and monogamy of coherence is shown in
a Hamiltonian Hzz and b Hamiltonian Hzzz as a function of interaction parameters. The points represent the experimental data and the solid
lines correspond to the theoretical calculation. c,d Geometric plots of the coherence in three-dimensional Euclidean space for the Hzz and Hzzz,
respectively, for the values of interaction parameters as marked (top to bottom). The lengths of the edges are taken to be the coherence
contributions as shown in Fig. 1b. The coordinates of the state ρ are (0, 0, 0); [π(ρ)]d is ðCA; 0; 0Þ; π(ρ) is ðCG cos θ; CG sin θ; 0Þ; ρ1⊗ ρ12 is
ðC1:23 cosϕ; C1:23 sinϕ cos ξ; C1:23 sinϕ sin ξÞ, where the angles are chosen to match the coherences as in Fig. 1b.

Z. Ding et al.

4

npj Quantum Information (2021)   145 Published in partnership with The University of New South Wales



The different kinds of coherences can also be visualized
geometrically as shown in Fig. 3c, d. Here, we plot the various
coherences by assigning them Euclidean distances in three
dimensional space. From the results, we find that while Hzz and
Hzzz have different kinds of interactions, their coherence distribu-
tions evolve similarly. The general behavior is that the states π(ρ)
and ρ1⊗ ρ12 start in the vicinity of ρ, then eventually move to a
location near [π(ρ)]d, along different trajectories. The primary
difference between the two Hamiltonians is that Hzzz always has a
constant CA, hence the size of the tetrahedron is of the same
order, whereas for Hzz the tetrahedron starts from a point.
However, apart from the overall magnitude of the coherence, the
distribution of coherences are remarkably similar for both cases.

Monogamy of coherence
The monogamy of coherence describes the trade-off between the
bipartite and tripartite global coherences of a three-body quantum
system12. We can quantify the monogamy according to
M ¼ C1:2 þ C1:3 � C1:23, where M > 0 corresponds to a polygamous
system and M ≤ 0 to a monogamous system. The monogamy of
coherence for the two Hamiltonians is shown in Fig. 3a, b. We find
that the quantum systems are polygamous for every value of the
interaction parameter except for the initial value J2, J3= 0. This points
to the fact that for both the quantum systems, the most dominant

form of global coherence is the bipartite global coherence. Since the
coherences C1:23 and C2:3 are global coherences, it is only natural that
they are related to CG, the total global coherence as explained in (11).
This confirms the picture provided by Fig. 3c, d, that the coherence
generated in the two Hamiltonians is of the same type. This arises
fundamentally because of the similar nature of the Wj i and Gj i state,
which both have an bipartite-like entanglement structure.

DISCUSSION
We extended the notion of coherence trade-offs introduced in
ref. 12 and experimentally studied all the trade-offs that are
possible with the four-point decompositions as shown in Fig. 1b.
Each point in the diagram corresponds to removing a coherence
contribution. For example, the state π(ρ) removes all the inter-
qubit coherence and the state [π(ρ)]d removes all the coherence
including that lying within the qubits. Since we are dealing with a
tripartite system, we further performed a bipartite decomposition
where the coherence between site 1 and bipartite block 23 is
removed. Our results point to the fact that the trade-off relations
are generic behavior and are always obeyed as we move from a
separable state to an entangled state. The trade-off behavior is
also consistent with approaches where coherence is considered a
resource, and coherence is converted into different forms42, which
may have different sensitivities to decoherence19,43. We also

Fig. 4 Experimental setup. a Molecular structure of Diethyl fluoromalonate. The three nuclear spins 13C, 1H and 19F adopted in the
experiment are labeled. The corresponding qubit index is also marked in red for each nuclear spin with a black arrow. b Parameters of the
natural Hamiltonian of the three-spin system are shown in this table. The diagonal terms are the values of the chemical shift and the off-
diagonal terms represent the scalar coupling between the different nuclei. c and d shows the schematic diagram explaining the experimental
procedure for Hzz and Hzzz, respectively. In the initialization part, we prepare the system from a pseudopure state (PPS) into the designed
Hamiltonian’s ground state. In the evolution part, a discrete refocusing scheme is used to perform two Hamiltonians. Combining with Trotter
expansion, we can perform adiabatic evolution under any interaction. The wide and narrow unfilled pulses represent π and π/2 pulses,
respectively while the rotation axes are labeled above each pulse. The filled pulses represent a rotation of ωxτ/2, where τ means the length of
each Trotter slice. The measurement part is carried out using quantum state tomography.
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examined the distribution of global coherence using the property
of monogamy of coherence and it was found that both the states
were polygamous except when the interactions were turned off.
The characterization of a quantum system through the coherence
distribution diagrams in Fig. 3c, d was shown to be an effective
tool to visualize the quantum state.
It is interesting to note that while Hzz and Hzzz have different

types of interactions and different initial states, the final quantum
states have similar quantum properties. In fact, they are both
highly entangled states and symmetric under spin permutations,
which is not necessarily obvious by simply examining their
wavefunctions. For instance, the final state of Hzzz is
Gj i ¼ ð 001j i þ 010j i þ 100j i þ 111j iÞ=2, which is not a well-
known entangled state in comparison to the W state, the final
state of Hzz. As a matter of fact, Gj i is a result of a local Hadamard
operation of a GHZ state, which is more entangled than a W state.
By comparing the two final states’ coherence contributions
quantitatively, it is revealed that the global coherence of Hzz is
lower than that of Hzzz. Hence, using the coherence decomposi-
tions and the trade-off relations, one can gain insights into the
essential character of a given state, which may not be obvious
simply by examining the wavefunction.

METHODS
Setup
We experimentally simulate Hzz and Hzzz with nuclear spin qubits in this
work. Diethyl fluoromalonate molecules are used to perform the target
adiabatic evolution via a Trotter decomposition on a 400 MHz (9.4 T) NMR
spectrometer at 303K. The molecular structure of diethyl fluoromalonate is
shown in Fig. 4a. The three nuclear spins 13C, 1H and 19F in the molecule
acts as the qubits. The natural Hamiltonian of the system is

Hspin ¼
X

i¼1;2;3

2πδiSzi þ
X

1�i�j�3

2πJijSzi S
z
j (12)

where δi is the chemical shift of the nuclear spin and Jij is the coupling
between the ith and the jth nucleus as given in Fig. 4b.
In the first step of the experiment, a pseudopure state (PPS) of the form

ρ ¼ ð1� μÞI=8þ μ ψj i ψh j is prepared from thermal equilibrium state using
a line-selective method44, where ψj i is an arbitrary pure state. Here the
mixing parameter μ ≈ 10−5 and I denotes the 8 × 8 identity matrix. The
adiabatic pathway is numerically optimized to generate the desired
ground state. The schematic diagram of the sequence to fulfill Hzz and Hzzz

are shown in Fig. 4c, d. At each stage, the corresponding density matrices
are reconstructed using tomographic techniques.

Sequence design
The adiabatic evolution is performed in discrete steps in the experi-
ment29,45,46. We label Hamiltonians Hzz and Hzzz as Hk, where index k∈ {zz,
zzz}. Notice that Hk can be decomposed into different basis, Hk ¼ Hx

k þ Hy
k ,

in which Hx
k contains only S

x
i and Hy

k contains only S
y
i . The evolution of each

segment Uk;expðtmÞ, is a Trotter expansion of the ideal one Uk,ide(tm), which
can be expressed as

Uk;ideðtmÞ ¼ e�i½Hx
kþHz

k ðtmÞ�τk

¼ e�iHx
k τk=2e�iHz

k ðtmÞτke�iHx
k τk=2 þ Oðτ3Þ

¼ Uk;expðtmÞ þ Oðτ3Þ
(13)

where τk is the interval of each step and m∈ [0,Mk] is the index of each
step. We use a refocusing scheme to achieve each step in our work. In this
method, tuned pulses are applied during each Trotter slice, and the
Hamiltonian in each short time period is accurately controlled.
For Hamiltonian (1), the quantum system is adiabatically evolved by

tuning the two qubit interaction strength adiabatically over the range [0, 2].
Experimentally, the adiabatic state transfer (ASP) is performed in discrete
steps, such that J2(t) assumes discrete value J2(tm) with m= 0, . . . ,Mzz. At
each time step, the evolution is generated using multipulse sequence
Uzz;expðtmÞ using Trotter expansion formula as described in Eq. (13).

The resulting Hamiltonian is

Hx
zz ¼ ωx

P
i¼1;2;3

Sxi ;H
z
zzðJ2ðtmÞÞ

¼ ωz
P

i¼1;2;3
Szi þ 2J2ðtmÞ

P
1�i�j�3

Szi S
z
j

(14)

A schematic description of the refocusing scheme is shown in Fig. 4c where
the narrow unfilled rectangles denote π/2 pulses, and the wide ones show π
pulses. By defining dij= 1/(2Jij), the width of filled pulse in the figure are all
ωxτzz/2 and the radio-frequency offsets for three channels are set as FQ1m=
ωz/(4J2(tm)d12), FQ2m=ωz/(4J2(tm)(d12+ d13+ d23)) and FQ3m=ωz/(4J2(tm)
d23), the delays are τ1m ¼ J2ðtmÞτzz

π ´ ðd12 þ d23Þ; τ2m ¼ J2ðtmÞτzz
π ´ ðd12 þ d13Þ,

and τ3m ¼ J2ðtmÞτzz
π ´ ðd13 þ d23Þ.

Next we consider the Hamiltonian of a tripartite quantum system with J3
being the three-body interaction strength as shown in Eq. (2). The
interaction parameter J3 is tuned adiabatically in the range [0, 5]. Again, we
use a discrete refocusing scheme in which J3(t) is discretized into tm, m=
0, . . . ,Mzzz. The schematic diagram is shown in Fig. 4d in which the width
of the filled pulse are all ωxτzzz/2 and the delay dm ¼ J3ðtmÞτzzz

π ´ d12.
From above, one can see that the unit of studied quantities like J2,ωz, τk

always cancel out when they come into the parameters of the experiment.
This means that the units of them do not matter in the experiment, only
the relative relations between them matter. So, they are in arbitrary units
and we need not mention the unit during discussion. We use 0.7 and 0.4 as
the value of τzz and τzzz when we design the experimental sequences.
Please refer to Supplementary Note 3 for the optimization details of the
parameters.

DATA AVAILABILITY
Data are available from the authors on reasonable request.

CODE AVAILABILITY
The codes used for calculating coherence components and error analysis are written
in MATLAB and available from the authors on reasonable request.

Received: 18 March 2021; Accepted: 8 September 2021;

REFERENCES
1. Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131,

2766 (1963).
2. Sudarshan, E. Equivalence of semiclassical and quantum mechanical descriptions

of statistical light beams. Phys. Rev. Lett. 10, 277 (1963).
3. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge University Press, 1999).
4. Baumgratz, T., Cramer, M. & Plenio, M. Quantifying coherence. Phys. Rev. Lett. 113,

140401 (2014).
5. Ma, Z.-H. et al. Operational advantage of basis-independent quantum coherence.

EPL 125, 50005 (2019).
6. Adesso, G., Bromley, T. R. & Cianciaruso, M. Measures and applications of quan-

tum correlations. J. Phys. A Math. Theor. 49, 473001 (2016).
7. Winter, A. & Yang, D. Operational resource theory of coherence. Phys. Rev. Lett.

116, 120404 (2016).
8. Chitambar, E. & Gour, G. Critical examination of incoherent operations and a

physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117,
030401 (2016).

9. Streltsov, A., Adesso, G. & Plenio, M. B. Colloquium: quantum coherence as a
resource. Rev. Mod. Phys. 89, 041003 (2017).

10. Streltsov, A., Rana, S., Boes, P. & Eisert, J. Structure of the resource theory of
quantum coherence. Phys. Rev. Lett. 119, 140402 (2017).

11. Shao, L.-H., Xi, Z., Fan, H. & Li, Y. Fidelity and trace-norm distances for quantifying
coherence. Phys. Rev. A 91, 042120 (2015).

12. Radhakrishnan, C., Parthasarathy, M., Jambulingam, S. & Byrnes, T. Distribution of
quantum coherence in multipartite systems. Phys. Rev. Lett. 116, 150504 (2016).

13. Napoli, C. et al. Robustness of coherence: an operational and observable measure
of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016).

14. Girolami, D. Observable measure of quantum coherence in finite dimensional
systems. Phys. Rev. Lett. 113, 170401 (2014).

15. Radhakrishnan, C., Ding, Z., Shi, F., Du, J. & Byrnes, T. Basis-independent quantum
coherence and its distribution. Ann. Phys. 409, 167906 (2019).

Z. Ding et al.

6

npj Quantum Information (2021)   145 Published in partnership with The University of New South Wales



16. Streltsov, A. et al. Entanglement and coherence in quantum state merging. Phys.
Rev. Lett. 116, 240405 (2016).

17. Karpat, G., Çakmak, B. & Fanchini, F. Quantum coherence and uncertainty in the
anisotropic xy chain. Phys. Rev. B 90, 104431 (2014).

18. Radhakrishnan, C., Ermakov, I. & Byrnes, T. Quantum coherence of planar spin
models with dzyaloshinsky-moriya interaction. Phys. Rev. A 96, 012341 (2017).

19. Radhakrishnan, C., Parthasarathy, M., Jambulingam, S. & Byrnes, T. Quantum
coherence of the heisenberg spin models with dzyaloshinsky-moriya interactions.
Sci. Rep. 7, 13865 (2017).

20. Coffman, V., Kundu, J. & Wootters, W. K. Distributed entanglement. Phys. Rev. A
61, 052306 (2000).

21. Koashi, M. & Winter, A. Monogamy of quantum entanglement and other corre-
lations. Phys. Rev. A 69, 022309 (2004).

22. Giorgi, G. L. Monogamy properties of quantum and classical correlations. Phys.
Rev. A 84, 054301 (2011).

23. Prabhu, R., Pati, A. K., Sen, A. & Sen, U. et al. Conditions for monogamy of
quantum correlations: Greenberger-horne-zeilinger versus w states. Phys. Rev. A
85, 040102 (2012).

24. Zhou, Z.-Q., Huelga, S. F., Li, C.-F. & Guo, G.-C. Experimental detection of quantum
coherent evolution through the violation of Leggett-Garg-type inequalities. Phys.
Rev. Lett. 115, 113002 (2015).

25. Wang, Y.-T. et al. Directly measuring the degree of quantum coherence using
interference fringes. Phys. Rev. Lett. 118, 020403 (2017).

26. Wu, K.-D. et al. Quantum coherence and state conversion: theory and experiment.
npj Quantum Information 6, 1–9 (2020).

27. Yuan, Y. et al. Direct estimation of quantum coherence by collective measure-
ments. npj Quantum Information 6, 1–5 (2020).

28. Leggett, A. J. Realism and the physical world. Rep. Prog. Phys. 71, 022001 (2008).
29. Peng, X., Zhang, J., Du, J. & Suter, D. Ground-state entanglement in a system with

many-body interactions. Phys. Rev. A 81, 042327 (2010).
30. Lin, J. Divergence measures based on the shannon entropy. IEEE Trans. Inf. Theory

37, 145–151 (1991).
31. Briët, J. & Harremoës, P. Properties of classical and quantum Jensen-Shannon

divergence. Phys. Rev. A 79, 052311 (2009).
32. Majtey, A., Lamberti, P. & Prato, D. Jensen-Shannon divergence as a measure of

distinguishability between mixed quantum states. Phys. Rev. A 72, 052310 (2005).
33. Lamberti, P., Majtey, A., Borras, A., Casas, M. & Plastino, A. Metric character of the

quantum Jensen-Shannon divergence. Phys. Rev. A 77, 052311 (2008).
34. Lamberti, P. W., Majtey, A. P., Borras, A., Casas, M. & Plastino, A. Metric character of

the quantum Jensen-Shannon divergence. Phys. Rev. A 77, 052311 (2008).
35. Dür, W., Vidal, G. & Cirac, J. I. Three qubits can be entangled in two inequivalent

ways. Phys. Rev. A 62, 062314 (2000).
36. Igloi, F. Conformal invariance and surface critical behaviour of a quantum chain

with three-spin interaction. J. Phys. A: Math. Gen. 20, 5319–5324 (1987).
37. Penson, K. A., Debierre, J. M. & Turban, L. Conformal invariance and critical

behavior of a quantum Hamiltonian with three-spin coupling in a longitudinal
field. Phys. Rev. B 37, 7884–7887 (1988).

38. Penson, K. A., Jullien, R. & Pfeuty, P. Phase transitions in systems with multispin
interactions. Phys. Rev. B 26, 6334–6337 (1982).

39. Igloi, F., Kapor, D. V., Skrinjar, M. & Solyom, J. The critical behaviour of a quantum
spin problem with thee-spin coupling. J. Phys. A: Math. Gen. 16, 4067–4071 (1983).

40. Baxter, R. J. & Wu, F. Y. Exact solution of an ising model with three-spin inter-
actions on a triangular lattice. Phys. Rev. Lett. 31, 1294–1297 (1973).

41. Pachos, J. K. & Plenio, M. B. Three-spin interactions in optical lattices and criticality
in cluster hamiltonians. Phys. Rev. Lett. 93, 056402 (2004).

42. Wu, K.-D. et al. Experimental cyclic interconversion between coherence and
quantum correlations. Phys. Rev. Lett. 121, 050401 (2018).

43. Cao, H. et al. Fragility of quantum correlations and coherence in a multipartite
photonic system. Phys. Rev. A 102, 012403 (2020).

44. Peng, X. et al. Preparation of pseudo-pure states by line-selective pulses in
nuclear magnetic resonance. Chem. Phys. Lett. 340, 509–516 (2001).

45. Mitra, A., Ghosh, A., Das, R., Patel, A. & Kumar, A. Experimental implementation of
local adiabatic evolution algorithms by an NMR quantum information processor.
J. Magn. Reson. 177, 285–298 (2005).

46. Peng, X., Zhang, J., Du, J. & Suter, D. Quantum simulation of a system with
competing two- and three-body interactions. Phys. Rev. Lett. 103, 140501 (2009).

ACKNOWLEDGEMENTS
The researchers at USTC are supported by the National Key Research and
Development Program of China (Grants No. 2018YFA0306600 and
2016YFA0502400), the National Natural Science Foundation of China (Grants Nos.
81788101, 91636217, 11722544, 11761131011, and 31971156), the CAS (Grants Nos.
GJJSTD20200001, QYZDY-SSW-SLH004, and YIPA 2015370), the Anhui Initiative in
Quantum Information Technologies (Grant No. AHY050000), the National Youth
Talent Support Program. T.B. and R.C. are supported by the National Natural Science
Foundation of China (62071301); State Council of the People’s Republic of China
(D1210036A); NSFC Research Fund for International Young Scientists (11850410426);
NYU-ECNU Institute of Physics at NYU Shanghai; the Science and Technology
Commission of Shanghai Municipality (19XD1423000); the China Science and
Technology Exchange Center (NGA-16-001); the NYU Shanghai Boost Fund. R.C.
was supported in part by a seed grant from IIT Madras to the Centre for Quantum
Information, Communication and Computing.

AUTHOR CONTRIBUTIONS
J.D., F.S. and T.B. supervised the project. Z.D., R.L., C.R. and W.M. designed the
experiments through discussion with X.P., Y.W., T.B., F.S. and J.D. R.L. and Z.D.
performed the experiments, Z.D. and C.R. performed the calculations. Z.D., C.R., R.L.,
T.B. and F.S. wrote the paper. All authors analyzed the data, discussed the results, and
agreed with the conclusions.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41534-021-00485-0.

Correspondence and requests for materials should be addressed to Tim Byrnes,
Fazhan Shi or Jiangfeng Du.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

Z. Ding et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2021)   145 

https://doi.org/10.1038/s41534-021-00485-0
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Experimental study of quantum coherence decomposition and trade-off relations in a tripartite system
	Introduction
	Results
	Models
	Quantifying coherence
	Coherence trade-off
	Monogamy of coherence

	Discussion
	Methods
	Setup
	Sequence design

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




