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Abstract

We apply the modern multiloop methods to the calculation of the total cross sections of electron-positron
annihilation to 2 and 3 photons exactly in s/ m? with the accuracy 0(ad). Examining the asymptotics of
our results, we find agreement with Ref. [1] and discover mistakes in the results of Refs. [2,3]. This mistake
is due to the terms, omitted in differential cross section in Refs. [2,3], which are peaked in the kinematic
region with all three photons being quasi-parallel to the collision axis. After restoring these terms, we find
an agreement of the corrected result of Ref. [3] with our result.
© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Modern methods of multiloop calculations crucially reduce the efforts required to check and
improve the available results on radiative corrections. In this work we use this fortunate circum-
stance in order to calculate the total cross sections of the processes et e~ — 2y and eTe™ — 3y
with accuracy O (o) for arbitrary energies. At high energies, these processes with O (a?) accu-
racy have been considered long ago, see Refs. [1-6]. Surprisingly, we find that several results
available in the ultrarelativistic limit contain errors. In particular, there is no correct result for the
total cross section of eTe™ — 3y in the center-of-mass frame.'
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! Note that the frame dependence appears due to the restriction of the photon energies from below, necessary to avoid
infrared divergence.
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Our technique is based on the Cutkosky rule which allows one to represent the phase-space
integrals via the loop integrals with cut propagators. We apply the differential equations method
to calculate the emerging two-loop integrals. We use the dimensional regularization d =4 — 2¢
to treat both infrared and ultraviolet divergences.

The paper is organized as follows. In the next section we present our results and discuss
important issues related to them. Other sections contain details of the calculation. The conclusion
is presented in the last section.

2. Results

Let us present our results. Below we use the units # = ¢ = m = 1, where m is the electron
mass. Since the total cross sections o,+,-_,7, and o,+,-_,3, are both infrared divergent, we
define 0,+,- 2, (o) and o, +,-_, 3, (wp) which depend on the soft cut-off wp. The quantity
Oe+e-—3y (@0) is the cross section of the process ete™ — 3y integrated over the kinematic
region where the energy of any photon is greater than wg. The contribution of the complementary
kinematic region (when the energy of one of the three photons is less than wy) is then added to
O¢+e- 2, to form the finite quantity oo+, ., (wp). Note that the restriction of the integration
region introduces the dependence of the cross section on the frame, which we denote by the
upper superscript f, as in o‘;e,_ﬁy (wo).-

In the center-of-mass frame we have
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is the Born cross section of the process ete™ — 2y, and we use the symmetrization symbol
def 1 —1
S E S [r@h+ e =p)]. 3)
It worth noting that Bomb (wp) is an analytical function of 8% (or, equivalently, of s — 4)

ete =3y
in the vicinity of g2 = 0.
The cross section of the process e
has the form
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+Te~ — 2y with the account of the first radiative correction

2



R.N. Lee Nuclear Physics B 960 (2020) 115200

2

T €7 1.
+ TSt[ZLu (1 +Z> + In(s z)Lip (1—+z) - Zle(—Z)lns

1 - 1 2
~3 <lnsln (s ) +-In’z+ 71_) lnz:| — (3 - ,4‘32) [Liz(—z)lnz +1ns1n2z]

2Li ! 1L’( )1 11 51 l1 3 7T21
i3] —— ) — zLi2(—=2z)lns — -In“sInz — —In"z — —In
3 . 2(—z 3 2= gz = Iz

s el TR
20+ ﬂ22(3 ) Lt — inz # 1022 — 7] nz
e Yo (=) S e By
+4(1+52;(2—,32)Li2(1_z)+|:3ss;2+ﬁ(sil)z}lnslnz}. “

The first term here, (1 + ”T"‘) 00, 1s nothing but the Born cross section oy, multiplied by the ex-

pansion of the Sommerfeld-Sakharov factor % %
cmf

It is remarkable that, apart from the contribution of term %00, the cross section Opto-—2y (wo),

with v = being the relative velocity.

multiplied by 8, is again an analytic function of 82 in the vicinity of 8% = 0.
The corresponding cross sections in the rest frame of the electron read

Tt o3y (@0) =05 (w0) + S0, (5)
Otk o sny (@0) =0 (wp) — b0, ©6)
where
3
_ Y 2 _ 4_
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Note that the SUm oo+~ 2, () = Opte——3y + Octe— 3, 18 independent of wp and, hence, of
the frame.

2.1. Asymptotics
Let us now discuss the asymptotics of the presented results.

Threshold asymptotics. We start from the threshold asymptotics 8 < 1.
The threshold asymptotics of ojfef’ff_)3y (wp) reads

2

ete=—3y 3

oM () = E {(n2 _9> + (—21na)0 _ 3lm + 8) B>+ 0 (,34)} . (8)

The first term in braces is well known and determines the orthopositronium decay width.
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The threshold asymptotics of aeJre’ 2y (wo) reads
b4
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The first term in braces is known for a long time, see, e.g., Ref. [7]. In particular, this term
determines the radiative correction to the parapositronium decay width. Note that the threshold
expansion of §o in Eq. (7) starts from 0(,34), so Egs. (8) and (9) hold both for center-of-mass
frame and electron rest frame.

Ultrarelativistic limit. Let us now discuss the high-energy asymptotics s >> 1.
For the cross section = o+,-_,3, we have

' 203 NG 27
f ~ 2
0t 3y (00) M {(mnz—wo - ) (ns—1)>+3 - T} : (10)
~2a3 s 2, In®s  3In’s  x? 7?2
ae+e _)3),(600) — Zln—(lns—l) - —T—Zlns—i—lns—?—f—S
an
The asymptotics of ae+e _)3y(wo) in the electron rest frame exactly coincides with the corre-
cmf

sponding result of Ref. [1]. However, the asymptotics of o (wp) in the center-of-mass

ete~—3y
frame does not coincide with the two available results [2,3]. Moreover, these two results differ

from each other:
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We have been able to trace the origin of discrepancy of our result with that of Ref. [3]. Namely, it
appeared that Refs. [3,2] have overlooked in the differential cross section the terms that contribute
to the total cross section in triply collinear kinematic region, see Appendix.”

The ultrarelativistic asymptotics of o+, _,2, reads

cmf
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2 Note that the authors of Refs. [2,3] have had in mind the applications to eTe™ colliders. For these applications the
triply collinear region is obviously not relevant. Thus, the omission of this contribution might have been justified by an
appropriate discussion.
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Fig. 1. 0(a3) correction to 0,4+ ,— S29(p) Plotted: (s — am? Mo+ ﬁ2},(},)] 3 as function of B = /1 —4m?2/s.
Dashed, dotted, and dash-dotted curves correspond to consecutlve approxlmatlons of the threshold (truncation at
ﬂl, ;‘}2, /33, left side of the graph) and high-energy (truncation at (S )0, (X )1, (5 )2, right side of the graph) asymptotics.

These two asymptotics coincide with the corresponding results of Refs. [3] and [1], respec-
tively.

The comparison of the exact cross section with the asymptotic expansions is demonstrated in
Fig. 1. Let us present a few terms of high-energy expansion of the cross section op+e— 2 ()
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It is remarkable that if we diminish by a factor of 2 the term on the last line,> we will obtain an
extremely good approximation for the exact cross section o+~ _, 2, ;) With the largest deviation
about 2% taking place at the threshold point.

3. Calculation of 6,+,-_,3,

We start with the calculation of the total Born cross section of the 3-photon annihilation.* The
diagrams are shown in Fig. 2. We define two LiteRed bases, pdb and xdb, corresponding to
the denominators of diagrams iv, v in Fig. 2, respectively. These two bases are sufficient for the
IBP reduction of all scalar integrals appearing in the cross section of the process eTe™ — 3y.

2 3
3 This modification corresponds to taking a half-sum of two consecutive truncations, at (%) and at (%) .

4 From now on we put the electron mass m = 1 and recover the explicit dependence on it only in the final formulae on
dimensional ground.
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Fig. 2. Diagrams contributing to the total Born cross section of e*e¢™ — 3y. Denominators of diagrams (iv) and (v)
correspond to the LiteRed bases pdb and xdb, respectively.
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Fig. 3. Master integrals entering the cross section of eTe™ — 3y. Solid and dashed lines correspond to denominators
1—12 and —I2, respectively.

There are 7 distinct master integrals which we choose as shown in Fig. 3. We use Libra’

package [8] to reduce the system to e-form [9,10]. The new set of functions, Ji, ..., J7 is related
to ji,..., j7 via
41 4B¢ej 2Bs€ j
Jl =, J2 = ) 3= ’
s 2 —3¢ (1 —-2¢e)(1 —3¢)
= dse (142€)js—2(1 +e)ezj3 de(l+4e)jr 12(14¢€)ji
4= (1 —26)(1 — 3¢), 2 3¢ s :
Js— 862,3sj6 ’ J6=—4€2 Sje + (1 — 6€)js _ 2¢€jp ’
(1-=2e)(1 —3¢), (1-26)(1 —3¢); 2-—3¢
2 30 4 2
J €’ (s —4)s” j (16)

T =20 =36y’

where 8 = /1 —4/s and o, =« ... (¢ +n — 1) is the Pochhammer symbol. They satisfy the
differential system in e-form

osJ =€SJT, an

where

5 Libra package is available by request from the author.
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We fix the boundary conditions at 8 — 0 (s — 4) by evaluating the following coefficient in the
asymptotics:

Lilgo s Lalgo s Ljslgo . [2lg-142e = [j3lg-142¢ = [Jslg-142¢ = [j7lg-2 =0, (19)

where [jk]gx denotes to coefficient in front of g in small-g asymptotics of jx and we have ex-
plicitly indicated all coefficients which are obvious zeros. Thus, we are left with three nontrivial
coefficients, [ j174,6] 50> which are nothing but the naive values of the corresponding integrals at

the threshold, j{h4 ¢ = J1.4,6(s =4). Performing the IBP reduction we find that

th 3(1 —3e) .th

-th
]6 156(1 16) ]1 ]4 ( )

14 4e

The two remaining integrals j{{‘4 can be calculated exactly in € in terms of hypergeometric
function, however we choose to follow the same approach as in Ref. [11] when calculating the
parapositronium decay width to 4y. We choose the constant (but e-dependent) overall normal-
ization so that j {h = 1. Then we have

=1, 1)
7 e 1

1
-th 2\ 2
J4 8e 16 48 96 ( & )E

1 4 2 3 4
+%<4n — 420 - 277 )e +0<e), (22)
oL, 2 7 9N\ L (T8 37\ .
8 "16 ' \12 16 2 78
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This fully fixes the boundary conditions.

Since the total cross section is infrared divergent at € = 0, we have to be careful with the
overall normalization, namely, we should pay attention to the factors which tend to unity as
€ — 0. We choose the following n-particle phase-space definition in d = 4 — 2¢ dimensions:

d3—2e

vE\ (1—De n "
Jpé-20 _ (€5 9 )A—2€ 5(4-26) (P _ ) ¢ P 24
n o (2m) 1 Zk:l Pk I!j[l (27)3-2€2¢;.° 24
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(n—1)e
where yg = 0.577... is the Euler constant. The factor (%) conveniently removes yg

and In47 in our intermediate formulae.® At € = 0 the definition turns into the usual definition of
phase-space. We also normalize the trace of Dirac matrices by the condition

Trl=4. 25)

Substituting the results for the master integrals Ji, we obtain

a_3{l (28 + (B> +1)Inz) (28 (B> —2) + (B* — 3) Inz)

Octe=—3y =

s 283
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where z = 1=8 Note that the cross section contains ¢! term, which is due to the infrared

5 2 8 1 1
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<1n3z+n21nz)+ <L12(1—2)+ —In z—i—lnslnz)

)

3(s — 4)s s—4 C 3(s—4)
(26)
1+8

divergent contribution of the region where the energy of one of the outgoing photons is small.
Thus, in order to obtain the finite quantity, we have to subtract the contribution of this region. We
derive the corresponding formulae in Section 4.

4. Soft-photon contribution

The probability to emit soft photon is usually regulated by the fictitious photon mass. How-
ever, within our approach, we must stick to the dimensional regularization. As, to the best of
our knowledge the relevant expressions are not in the literature, we derive them here with some
details.

4.1. Radiation probability

We start from the following formula’ for the probability of soft photon radiation:
2

qnPn eVENE 3%k
dW = —é? — ) ———. 27
¢ n;f T Pn <47‘[ ) (2m)3-2€ 2w N

6 Since n — 1 is the number of cut loops, we introduce ( T ) per each cut loop. This is exactly the factor which is

introduced in the MS scheme.
7 The derivation of this formula is identical to that at d = 4, see, e.g., Ref. [12].

8
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Here k = (w, k) = (|k|, k) is the photon momentum, ), ’ denotes the sum over initial and
final particles, e, = g, le| and p, = muyun = My (Vu, YuB,) are their charges and momenta (with
my, = ,/p% being the mass), and 0, = +1 (0, = —1) whenn € i (n € f). Note that we have again

eVE

€
introduced a factor ( v ) for consistency with our previous definitions. The integration over

will be restricted from above by the infrared cut parameter wp and can be trivially performed.
Thus, we have

wp
200 2dw 1 _
W(”O):?[ Gyt 3 2 Conow) and I ), (28)
0 n,n'€ivf
| —;

(2wp) ™% /(—2€)
where

w?(uy - uz)
(k- up)(k - uz)
_eVEN(1—€) [dQ o’ (uy-um) 29
T2 -2e¢) Q (k-up)k-u)’
Here Q = 27“=D/2/T'[(d — 1)/2] and f % ... denotes the averaging over the solid angle of
(3 — 2¢)-dimensional vector k. Once we put € = 0, it is easy to show that the integral is Lorentz
invariant and evaluates to a well-known result (see, e.g., [12])

o Lo T+hw

212 1—pia’
where B12 = /1 — 1/(u; - u2)? is the relative velocity of the particles. However, we need also
the O (¢€) term, and this term is frame-dependent. In general, the integral depends on three pa-
rameters, B2, 1 = |uj |/u(l), and B, = |u2|/u(2) (B1,2 are the velocities of the particles in the lab
frame). Remarkably, it is possible to calculate the e-expansion of 1#~2€) using the multiloop
methods. Consider the family of integrals

194720 (4 up) = e€VE (dp) 1€ /dSZ

(30)

j(ni,n2,n3,n4)

2d%% 1 1
- —3[A—k-up—i0)™" —t[—k2—'o—"4]’ 31
/Q(k'ul)"'(k-uz)”zng[( uo — i0) ]7'[5 ( i0) 3D
where ug = (1, 0) and we assume that (u; 2 - ug) > 0. It is easy to see that
w_eTT1-0
I'2—2e)

(ur-u2)j(1,1,1,1). (32)

Performing the IBP reduction, we find four master integrals. We pass to variables x| =,/ %,

Xy =,/ i;gi, x3 =,/ }:ng , and reduce the differential systems with respect to x1, x, and x3 to
e-form (using Libra) and find the following ‘canonical’ basis:

—~ e(l —x%) ~

Ji=70011, Jh=—2250.1,1.1),
1 =J( ), J2 a —26))62]( )
- e(1—x2 ~  e(l—x3
3= u}'\(l,o,l,l), Jy= (73)7‘(1,1,1,1)- (33)
(1 —2¢)x; (1 —2€)x3

9
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They satisfy the following differential system in Pfaff form

0 0 0 0
1—x2
2l 2520 0
dJ =ed i 7 i
“hx 0 2mH 0 .
~ ai ol _ Gl
2y gy Ihngm LTy

where we have used the notation @ = a — x1x2x3/a. The physical region is defined by the in-
equalities

O<Xp<1, xp?().

We fix the boundary conditions at the point x; = x; = x3 = | and travel to the generic point
(x1, x2, x3) in the physical region along the contour y (0 < t < 2) defined piece-wise as

(1) = lI—1t4+tx,1—1t4+tx0,(I—-—17+1x)(1—-7+7x2)), 0<7<1 35)
T G+ (= D —xix) | l<7<2

The boundary conditions appear to be trivial with the only nonzero constant being

o~

J =1.

x1=x3=x3=1

We finally obtain

Ti=1, D) =) =, 1,x),

Ta(x1, x2, x3) = —2€ln x3

+262 [ f (rixs/x2) + f (axsfx) + f (rxexs) = f nixa/a) = f () |+ 0 ()

(36)

where

f(x)=Lix(1 —x) + %lnzx. (37)
Finally, we obtain

19729y, up) = F(x1, x2, X3)

= i{ —Inxs + e[f (x1x3/x2) 4 f (x2x3/x1) + f (x1%2X3)
— f ixa/xy) = f () } } +0(e).
T429 () u) = Fxp,x, =1 — 6’33 Inx; + O <e2) , (38)
1

where

10
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xp=ud —lu|=yi(1 = B1), x2=ud— |uz] = ya(l — Ba),

x3=up-uy =+ (u-up)? = 1=y -pn), y,=1/,/1-42 (39)
4.2. Soft-photon contribution to eTe™ — 3y

Let us now derive the cross section of e"e~ — 3y integrated over the kinematic region where
the energies of all photons are restricted from below by some experimental cut-off wg. This
restriction obviously introduces the frame dependence, and we will specialize our formulae to
two physically relevant frames: the center-of-mass frame and the rest frame of the initial electron.

The cross section op+,-_,3, (w; > wp) is obtained by subtracting from o,+,-_,3,, the contri-
bution of the soft region:

Gef+e—_)3y (W0) = Opte-—3y — Wf(a)o)d() , (40)

where f = cmf and f = rf for the center-of-mass frame and the electron rest frame, respectively.
We have

20 (2w0) > —2€

W““f(w)_n 29 [F(Vz.v/z.2) = F(WzZ, /2, D] .
" 20 Qwp) %€
Wt(cuo):;(_o—ze)[F(z,l,z)—%F(z,z, - 1F1,1,1]. 1)

The two-photon annihilation Born cross section o,+.,-_,2, should also be calculated with €l
terms retained:

2 2 _ 4 _
o(e+e_—>23/)=7[a {2ﬂ(ﬁ 2)+ (B —3)Inz

,32
2

3-8 2—p? 1
52 Inz + 5 lns—E>}. 42)

+2 Sl 1Y -2+ 2o+ Linstng | +
€| —— [Li2(1 — —In —~InsIn

2 2 3+ yIn"z+ Slnslinz
We finally arrive at Eq. (1).
5. Calculation of 6,+,-_,5, at NLO

Let us now briefly describe the calculation of the virtual correction to the total cross section of
eTe~ — 2y. We calculate the contribution of the diagrams depicted in Fig. 4. The IBP reduction
of the two-loop diagrams reveals 14 master integrals depicted in Fig. 5. We use Libra to reduce
the differential system for ]1 14 to e-form. The ‘canonical’ master integrals J 1—14 are defined as
follows

+

o7 7 __,3S6f2 J _(1_26)j3 J1 Fo_ Sﬁe.}:ﬁ
1=J1, J2 1 B Bl—e B 72(1_26)2,
P sPe <j6 + 2js) P sejs—2(1—4€)js (1 —3€)js

T T2 =20, T (1-2e), l—e

- sejitdefi  seh - sejy—4e])
J7: ’ 8= ——7F—— >

1—¢ 1—2¢ 1—¢

11



R.N. Lee Nuclear Physics B 960 (2020) 115200
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Fig. 4. Diagrams contributing to the virtual correction to the total cross section of ¢t e~ — 2y . Denominators of diagrams
(i) and (vi) correspond to the LiteRed bases pdb2 and pdb1, respectively. The diagrams (v) and (x) correspond to
the mass counterterm.
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Fig. 5. Two-loop (one loop cut) master integrals for the virtual correction to the total cross section of eTe™ — 2y.
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We fix the boundary conditions by considering the asymptotic coefficients at s — 4. Most of the
nontrivial boundary constants correspond to the naive values of the integrals at the threshold.
The only exception is the leading threshold asymptotics of j3, proportional to 8'~2¢. Namely,
we explicitly calculate the following constants:

|—2e /T sin(e)T (e - %)
2l (e — 1)

73/2 csc(me) fth _ —1+e€

rE-—ere-n 7202

=1 BB

3

~th
Ja =

== %(1 -y a/2—e)+y+2mn2].

Here we again have chosen the overall factor so that j{h = 1. These boundary conditions, are

sufficient to fix the specific solutions for the integrals J. Using these solutions, we obtain for the
“bare” cross section

[0€+€_ﬁ2}’]a3,bare =

o3 {1 [2@ —2) (s2+4s — 8)In’z

sBle (s — 4)s2 + s3B 52

1+ B2 34 6(s*+s—3 (. s
—nzTﬂ[Z—ﬂ2+ P lnz]+8|:(sziﬁ)m|:8h3<;r—31>~|—4L12<§+—31)1n(sz)

(s — 65>+ 165 —48)Inz 4 (s> +4s —6):|

2

. 1 (s—1)? 1, 2022 =5 =9 . /, ,
—Lip (—z)Ins — Eln S InsInz — §]n z|— T 4Li3 <z+_l> + Lip(—2)Ins
—3)2s+5 2 (353 + 252 — 405 + 32
3528 (s — 4)s2
2(3s3 + 145? — 485 + 48)
s3B
752 +25 =56,  2s°—2553 — 1252 4+ 80s — 48 s+2 ,
— In“z — Inslnz + —mn
2(s — 4)s (s — 12538 2s
553 + 252 — 325 + 24 10s* — 3553 4 8652 — 1285 + 641 (s +8)(3s —4)
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Ins In? Z
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20
Lip(—z)lnz + Li(1—2)+ ELiz(—z)

(47)
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Table 1

Comparison of our analytic result, Eq. (1), for U:jrn:—_>3y with that of Monte-
Carlo integration performed using Cuba library [14]. The errors in last column
are those provided by Cuba.

Js o .
m_e m_e J;Ernef*%f%y (mb) Gerie*ﬁf%y (mb)

Exact, Eq. (1) Monte-Carlo  Exact, Eq. (5) Monte-Carlo
2.001 0.01 10.682 10.672(31) 10.682 10.671(32)
2.01 0.01 3.551 3.551(11) 3.551 3.551(11)
2.1 0.01 1.8194 1.8222(57) 1.8297 1.8321(58)
5 0.01 3.0238 3.0229(96) 3.430 3.428(11)
10 0.01 1.843 1.847(18) 2.2078 2.208(10)
50 0.01 0.3158 0.3128(31) 0.4045 0.4037(41)
50 0.1 0.2161 0.2151(21) 0.3048 0.3023(30)
50 1 0.1163 0.1157(11) 0.2051 0.1854(19)
50 5 0.04663 0.04698(47)  0.13539 0.09783(98)
100 0.1 0.08897 0.08842(88)  0.1268 0.1289(13)
100 1 0.05296 0.05181(52)  0.09084 0.08371(84)
100 10 0.01695 0.01682(17)  0.054833 0.03878(39)

The onshell renormalization procedure is described in the literature, see, e.g., Ref. [13]. For
our setup, this means that the cross section expressed in terms of the physical parameters reads

Tere 2y =00 + [0ty |45 pare + (23,2325 — D)oo + 8o, (48)

where Zy, Z4, and Z, are the onshell renormalization constants for the electron field, pho-
ton field, and coupling constant, respectively. Since Z4Z, = 1 due to Ward identity, we have

~ 47a)(3—26)T e \© s ve \©
Z@Zizg —1=~28Zy = —2% (%) . Note that an additional factor (%) as
compared to Ref. [13], corresponds to the chosen loop measure. The term 8o, corresponds to

the contribution of diagrams (v), (x) in Fig. 4 associated with the mass counterterm. On those

€
diagrams the cross corresponds to the vertex idm =i (ra)3-26)[(c) (ﬂ> . We have

@m)2—<(1-2¢) \ 47
o (31 4 1 4 3 A
8O'm:$8{g|:§(l+ﬂ)1nz+§<3—,3)]_E(l_i_ﬂ)[ZLIZ(l_Z)—l—lnSan]
3 4 1 2 4 6 4 12
_§<3_’3)ln3_ﬁ(7_ﬁ —28 +2,B)lnz—2,3 —?}, (49)

where we have neglected terms suppressed in €. Note that the renormalized cross section
Oc+e-—2y still contains e~! terms due to infrared divergence. In order to obtain the observ-

able cross section aef ey (wp) we have to add the soft-photon contribution Wi(wo)oo, where

Wf(a)()) is defined in Eq. (41) for f = cmf, 1f. Finally, we obtain Eqs. (4) and (6) for the cross

: cmf f .
sections Opto-—2y (wp) and O pte-—2y (wo), respectively.

6. Conclusion

In the present paper we have calculated the total cross sections of (wp) and

ete=—3y
O.f

cte-—2y (wo) for arbitrary energies with O (a>) accuracy. The energy cut wy for soft photons has
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been applied in the center-of-mass frame (f = cmf) and in the rest frame of the electron (f = rf).
We have found errors in the high-energy results available in the literature for oecfg,_ﬂy (w0).-

As an additional check of our results for the 3-photon annihilation cross section, we have
performed a numerical integration of the differential cross section using the Cuba library [14].
Table 1 demonstrates a perfect agreement of our results with the numerical calculation. The
exception are the points where the minimal photon energy wy is of the order of electron mass in
the rest frame of the initial electron (marked with wavy lines in the table). This is, of course, quite
expected as the photon with energy of the order of electron mass in electron rest frame can have
energy of the order of /s when one passes to the center-of-mass frame (thus, the soft-photon
approximation breaks).
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Appendix A. Ultrarelativistic limit from approximate differential cross section

Ref. [3] (as well as Ref. [2]) used the approximate differential cross section

3

doglt_, = ———sIMP3" (A1)

where
dk;
oy, = n)'8 W (py+ p- — ki — k2 — k3) H | G20 (A.2)
1
is the phase space of the final particles, and
2
— Ki_+k 8 _
s|M|2 ~g o T — 2K3+ + 2K3 + permutations . (A.3)
K2—K3_K24+ K3+ 14 Ki_K2+ ki K2~

Here ki1 = 4k;- p+/s = ;"—i(l + Bcos6;). At large angles and w; ~ e_ we have ;1 ~ 1, while
for6; <y~ ' (m —60; <y~ 1) we have ki ~ y 2 (ki3 ~ y ). Thus the second term, formally
suppressed by y 2 = 4/s, contributes in the region when the momentum of one of the final
photons is close to forward or backward direction, when one of the squared denominators in
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square brackets gives an amplifying factor ~ y*#. Thus, we have the following power counting:
a’291 ~ B
v yATH?
leads to the result (13) of Ref. [3].% So, the origin of the discrepancy of our result with that of
Ref. [3] can be only in the initial expression for the differential cross section. Indeed, a thorough

inspection of the exact expression for the differential cross section from Ref. [15] has revealed

~ 1. We have checked that the integration of this expression for s|M|? indeed

the overlooked in Refs. [3,2] terms which contribute to the total cross section. Namely, in s|M |2
one has to take into account also the terms

8 1 1
) |: + } + permutations (A4)
Y K14+K2—K3— K1—K24+K34+

These terms contribute in the kinematic region where simultaneously two photons have small
scattering angles. Then the third photon necessarily has scattering angle close to 7 and we

. . 20,72 —2,,-2

have the following power counting: Zd 0pd763 LY ~ 1. We have checked that these
YiKipko—k3— YTy Iy TRy i,

terms, overlooked in Refs. [2,3], give exactly the contribution — 4“3 s” to the total cross section,

in agreement with our asymptotics (11).
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