
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 960 (2020) 115200
www.elsevier.com/locate/nuclphysb

Electron-positron annihilation to photons at O(α3)

revisited

Roman N. Lee

Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia

Received 24 June 2020; received in revised form 20 September 2020; accepted 21 September 2020
Available online 23 September 2020

Editor: Tommy Ohlsson

Abstract

We apply the modern multiloop methods to the calculation of the total cross sections of electron-positron 
annihilation to 2 and 3 photons exactly in s/m2 with the accuracy O(α3). Examining the asymptotics of 
our results, we find agreement with Ref. [1] and discover mistakes in the results of Refs. [2,3]. This mistake 
is due to the terms, omitted in differential cross section in Refs. [2,3], which are peaked in the kinematic 
region with all three photons being quasi-parallel to the collision axis. After restoring these terms, we find 
an agreement of the corrected result of Ref. [3] with our result.
© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Modern methods of multiloop calculations crucially reduce the efforts required to check and 
improve the available results on radiative corrections. In this work we use this fortunate circum-
stance in order to calculate the total cross sections of the processes e+e− → 2γ and e+e− → 3γ

with accuracy O(α3) for arbitrary energies. At high energies, these processes with O(α3) accu-
racy have been considered long ago, see Refs. [1–6]. Surprisingly, we find that several results 
available in the ultrarelativistic limit contain errors. In particular, there is no correct result for the 
total cross section of e+e− → 3γ in the center-of-mass frame.1

E-mail address: r.n.lee@inp.nsk.su.
1 Note that the frame dependence appears due to the restriction of the photon energies from below, necessary to avoid 

infrared divergence.
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Our technique is based on the Cutkosky rule which allows one to represent the phase-space 
integrals via the loop integrals with cut propagators. We apply the differential equations method 
to calculate the emerging two-loop integrals. We use the dimensional regularization d = 4 − 2ε

to treat both infrared and ultraviolet divergences.
The paper is organized as follows. In the next section we present our results and discuss 

important issues related to them. Other sections contain details of the calculation. The conclusion
is presented in the last section.

2. Results

Let us present our results. Below we use the units h̄ = c = m = 1, where m is the electron 
mass. Since the total cross sections σe+e−→2γ and σe+e−→3γ are both infrared divergent, we 
define σe+e−→2γ (ω0) and σe+e−→3γ (ω0) which depend on the soft cut-off ω0. The quantity 
σe+e−→3γ (ω0) is the cross section of the process e+e− → 3γ integrated over the kinematic 
region where the energy of any photon is greater than ω0. The contribution of the complementary 
kinematic region (when the energy of one of the three photons is less than ω0) is then added to 
σe+e−→2γ to form the finite quantity σe+e−→2γ (ω0). Note that the restriction of the integration 
region introduces the dependence of the cross section on the frame, which we denote by the 
upper superscript f, as in σ f

e+e−→3γ
(ω0).

In the center-of-mass frame we have

σ cmf
e+e−→3γ

(ω0) = 2α

π

(
−1 + β2

2β
ln z − 1

)
ln

( √
s

2ω0

)
σ0(β)

+ α3

sβ
S
{

4
(
3 + β4

)
sβ2

[
4Li3(1 − z) − 2Li3(−z) − (2Li2(1 − z) − Li2(−z)) ln z − 3

2
ζ3

]
− 16

3sβ

[
ln3 z + π2ln z

]
− 4

β

(
s − 2 + 16

3s
− 8

s2

)[
Li2(−z) + 1

2
ln s ln z

]
−

(
sβ2 + 7

β2 − 2β2 + β4

3

)
ln2 z + (s − 4/s)β2π2

3
+ 8(2 + β2)

3sβ
ln z + 8

3s

}
. (1)

Here β = √
1 − 4/s, z = 1−β

1+β
,

σ0(β) = πα2

sβ

[
−3 − β4

β
ln z − 2(2 − β2)

]
(2)

is the Born cross section of the process e+e− → 2γ , and we use the symmetrization symbol

S [f (z,β)]
def= 1

2

[
f (z,β) + f (z−1,−β)

]
. (3)

It worth noting that βσ cmf
e+e−→3γ

(ω0) is an analytical function of β2 (or, equivalently, of s − 4) 

in the vicinity of β2 = 0.
The cross section of the process e+e− → 2γ with the account of the first radiative correction 

has the form

σ cmf
e+e−→2γ

(ω0) =
(

1 + π α)
σ0(β) − 2α

(
−1 + β2

ln z − 1

)
ln

( √
s
)

σ0(β)

v π 2β 2ω0

2
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+ α3

sβ
S
{

4
(
2s2 − s − 9
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[
− 2Li3
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1 + z
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− 1
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8
ln z

]

+ 24
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1 + z
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e
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− 1

4
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− 1

8

(
ln s ln

(s − 1)2

s
+ 1

6
ln2 z + π2

18

)
ln z

]
−

(
3 − β2

)[
Li2(−z)ln z + ln s ln2 z

]
+ 2

(
1 + β2

) (
3 − β4

)
β2 Li2(1 − z)ln z − 1

2β

[
ln2 z − π2

]
ln z

+ 9s2 − 8s − 4

(s − 1)sβ
ln z + 3s − 4

s − 1
ln s +

(
3 − β2

) π2

4
+ 16 − 5β2 − β4

4β2 ln2 z + 20

sβ
Li2(−z)

+ 4(1 + β2)(2 − β2)

β
Li2(1 − z) +

[
3s + 2

sβ
+ 3

β(s − 1)2

]
ln sln z

}
. (4)

The first term here, 
(
1 + π α

v

)
σ0, is nothing but the Born cross section σ0, multiplied by the ex-

pansion of the Sommerfeld-Sakharov factor 2πα/v

1−e−2πα/v with v = 2β

1+β2 being the relative velocity. 

It is remarkable that, apart from the contribution of term π α
v

σ0, the cross section σ cmf
e+e−→2γ

(ω0), 

multiplied by β , is again an analytic function of β2 in the vicinity of β2 = 0.
The corresponding cross sections in the rest frame of the electron read

σ rf
e+e−→3γ

(ω0) =σ cmf
e+e−→3γ

(ω0) + δσ, (5)

σ rf
e+e−→2γ

(ω0) =σ cmf
e+e−→2γ

(ω0) − δσ, (6)

where

δσ = − α3

sβ2

[
2β

(
β2 − 2

)
+

(
β4 − 3

)
ln z

]
× S

{
1 + β2

β

[
Li2(−z) + 1

2
ln s ln z

]
+ 2ln z

sβ
+ 1

}
. (7)

Note that the sum σe+e−→2γ (γ ) = σe+e−→3γ + σe+e−→3γ is independent of ω0 and, hence, of 
the frame.

2.1. Asymptotics

Let us now discuss the asymptotics of the presented results.

Threshold asymptotics. We start from the threshold asymptotics β � 1.
The threshold asymptotics of σ cmf,rf

e+e−→3γ
(ω0) reads

σ
cmf,rf
e+e−→3γ

(ω0) = 2α3

3β

{(
π2 − 9

)
+

(
−2 lnω0 − 31π2

24
+ 8

)
β2 + O

(
β4

)}
. (8)

The first term in braces is well known and determines the orthopositronium decay width.
3
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The threshold asymptotics of σ cmf,rf
e+e−→2γ

(ω0) reads

σ
cmf,rf
e+e−→2γ

(ω0) −
(

1 + π α

v

)
σ0(β)

= α3

β

{
π2 − 20

8
+

(
4

3
lnω0 − π2

12
− 20

9

)
β2 + O

(
β4

)}
(9)

The first term in braces is known for a long time, see, e.g., Ref. [7]. In particular, this term 
determines the radiative correction to the parapositronium decay width. Note that the threshold 
expansion of δσ in Eq. (7) starts from O(β4), so Eqs. (8) and (9) hold both for center-of-mass 
frame and electron rest frame.

Ultrarelativistic limit. Let us now discuss the high-energy asymptotics s � 1.
For the cross section = σe+e−→3γ we have

σ cmf
e+e−→3γ

(ω0) ≈2α3

s

{(
2ln

√
s

2ω0
− 1

)
(ln s − 1)2 + 3 − 2π2

3

}
, (10)

σ rf
e+e−→3γ

(ω0) ≈2α3

s

{
2ln

√
s

2ω0
(ln s − 1)2 + ln3 s

2
− 3ln2 s

2
− π2

6
ln s + ln s − π2

2
+ 3

}
.

(11)

The asymptotics of σ rf
e+e−→3γ

(ω0) in the electron rest frame exactly coincides with the corre-

sponding result of Ref. [1]. However, the asymptotics of σ cmf
e+e−→3γ

(ω0) in the center-of-mass 
frame does not coincide with the two available results [2,3]. Moreover, these two results differ 
from each other:

σ
cmf, Ref. [2]
e+e−→3γ

(ω0) ≈2α3

s

{(
2ln

√
s

2ω0
− 1

)
(ln s − 1)2 + 3 + ζ3

}
, (12)

σ
cmf, Ref. [3]
e+e−→3γ

(ω0) ≈2α3

s

{(
2ln

√
s

2ω0
− 1

)
(ln s − 1)2 + 3

}
. (13)

We have been able to trace the origin of discrepancy of our result with that of Ref. [3]. Namely, it 
appeared that Refs. [3,2] have overlooked in the differential cross section the terms that contribute 
to the total cross section in triply collinear kinematic region, see Appendix.2

The ultrarelativistic asymptotics of σe+e−→2γ reads

σ cmf
e+e−→2γ

(ω0) − σ0

≈ 2α3

s

{
2(ln s − 1)2ln

2ω0√
s

+ ln3 s

6
+ 3ln2 s

4
+

(
π2

3
− 3

)
ln s − π2

12

}
, (14)

σ rf
e+e−→2γ

(ω0) − σ0

≈ 2α3

s

{
2(ln s − 1)2ln

2ω0√
s

− ln3 s

3
+ 5ln2 s

4
+

(
π2

2
− 2

)
ln s − π2

4
− 1

}
. (15)

2 Note that the authors of Refs. [2,3] have had in mind the applications to e+e− colliders. For these applications the 
triply collinear region is obviously not relevant. Thus, the omission of this contribution might have been justified by an 
appropriate discussion.
4
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Fig. 1. O(α3) correction to σe+e−→2γ (γ ) . Plotted: (s − 4m2)[σe+e−→2γ (γ )]α3 as function of β =
√

1 − 4m2/s. 
Dashed, dotted, and dash-dotted curves correspond to consecutive approximations of the threshold (truncation at 
β1, β2, β3, left side of the graph) and high-energy (truncation at ( 1

s )0, ( 1
s )1, ( 1

s )2, right side of the graph) asymptotics.

These two asymptotics coincide with the corresponding results of Refs. [3] and [1], respec-
tively.

The comparison of the exact cross section with the asymptotic expansions is demonstrated in 
Fig. 1. Let us present a few terms of high-energy expansion of the cross section σe+e−→2γ (γ ):

σe+e−→2γ (γ ) = α3

s − 4

{
ln3 s

3
− ln2 s

2
+ 2

3

(
π2 − 3

)
ln s − 3π2

2
+ 4

+ 1

s

(
4ln2 s + 26

3

(
π2 − 3

)
ln s + 20ζ3 − 22π2

9
− 1

3

)
+ 1

s2

(
9ln3 s + 17

2
ln2 s − 21π2 + 11

3
ln s + 12ζ3 − 41π2

6
+ 71

18

)
+ 1

s3

(
−12ln3 s − 137

3
ln2 s + 156π2 − 533

9
ln s + 48ζ3 − 266π2

9
+ 1961

108

)
+ O(s−4)

}
It is remarkable that if we diminish by a factor of 2 the term on the last line,3 we will obtain an 

extremely good approximation for the exact cross section σe+e−→2γ (γ ) with the largest deviation 
about 2% taking place at the threshold point.

3. Calculation of σe+e−→3γ

We start with the calculation of the total Born cross section of the 3-photon annihilation.4 The 
diagrams are shown in Fig. 2. We define two LiteRed bases, pdb and xdb, corresponding to 
the denominators of diagrams iv, v in Fig. 2, respectively. These two bases are sufficient for the 
IBP reduction of all scalar integrals appearing in the cross section of the process e+e− → 3γ . 

3 This modification corresponds to taking a half-sum of two consecutive truncations, at 
(

1
s

)2
and at 

(
1
s

)3
.

4 From now on we put the electron mass m = 1 and recover the explicit dependence on it only in the final formulae on 
dimensional ground.
5
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Fig. 2. Diagrams contributing to the total Born cross section of e+e− → 3γ . Denominators of diagrams (iv) and (v)

correspond to the LiteRed bases pdb and xdb, respectively.

Fig. 3. Master integrals entering the cross section of e+e− → 3γ . Solid and dashed lines correspond to denominators 
1 − l2 and −l2, respectively.

There are 7 distinct master integrals which we choose as shown in Fig. 3. We use Libra5

package [8] to reduce the system to ε-form [9,10]. The new set of functions, J1, . . . , J7 is related 
to j1, . . . , j7 via

J1 = 4j1

s
, J2 = 4βεj2

2 − 3ε
, J3 = − 2βsε3j3

(1 − 2ε)(1 − 3ε)2
,

J4 = 4sε
(1 + 2ε)j4 − 2(1 + ε)ε2j3

(1 − 2ε)(1 − 3ε)2
+ 4ε(1 + 4ε)j2

2 − 3ε
+ 12(1 + ε)j1

s
,

J5 = 8ε2βsj6

(1 − 2ε)(1 − 3ε)2
, J6 = −4ε2 sj6 + (1 − 6ε)j5

(1 − 2ε)(1 − 3ε)2
− 2εj2

2 − 3ε
,

J7 = 2ε3(s − 4)s2j7

(1 − 2ε)(1 − 3ε)2
, (16)

where β = √
1 − 4/s and αn = α . . . (α + n − 1) is the Pochhammer symbol. They satisfy the 

differential system in ε-form

∂sJ = εSJ , (17)

where

5 Libra package is available by request from the author.
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S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2
s

0 0 0 0 0 0
1
βs

− s−8
s2β2 0 0 0 0 0

2
βs

0 2(s−2)

s2β2 − 1
sβ

0 0 0

0 1
sβ

4
sβ

− 2
s

0 0 0

− 1
sβ

− 3
s

0 0 − 2(s−6)

s2β2 − 4
sβ

0

0 0 0 0 − 1
sβ

− 2
s

0
4

sβ2 − 3
sβ

0 − 2
sβ2

1
sβ

− 2
sβ2 − 2

s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (18)

We fix the boundary conditions at β → 0 (s → 4) by evaluating the following coefficient in the 
asymptotics:

[j1]β0 , [j4]β0 , [j6]β0 , [j2]β−1+2ε = [j3]β−1+2ε = [j5]β−1+2ε = [j7]β−2 = 0 , (19)

where [jk]βμ denotes to coefficient in front of βμ in small-β asymptotics of jk and we have ex-
plicitly indicated all coefficients which are obvious zeros. Thus, we are left with three nontrivial 
coefficients, 

[
j1,4,6

]
β0 , which are nothing but the naive values of the corresponding integrals at 

the threshold, j th
1,4,6 = j1,4,6(s = 4). Performing the IBP reduction we find that

j th
6 = 3(1 − 3ε)2

16ε(1 + 4ε)
j th

1 + 4

1 + 4ε
j th

4 . (20)

The two remaining integrals j th
1,4 can be calculated exactly in ε in terms of hypergeometric 

function, however we choose to follow the same approach as in Ref. [11] when calculating the 
parapositronium decay width to 4γ . We choose the constant (but ε-dependent) overall normal-
ization so that j th

1 = 1. Then we have

j th
1 = 1, (21)

j th
4 = − 1

8ε
+ 7

16
+ π2ε

48
+ 1

96

(
84ζ3 − 54 − π2

)
ε2

+ 1

96

(
4π4 − 42ζ3 − 27π2

)
ε3 + O

(
ε4

)
, (22)

j th
6 = − 1

8ε
+ 9

16
+

(
π2

12
− 9

16

)
ε +

(
7ζ3

2
− 3π2

8

)
ε2

+
(

π4

6
− 63ζ3

4
+ 3π2

8

)
ε3 + O

(
ε4

)
. (23)

This fully fixes the boundary conditions.
Since the total cross section is infrared divergent at ε = 0, we have to be careful with the 

overall normalization, namely, we should pay attention to the factors which tend to unity as 
ε → 0. We choose the following n-particle phase-space definition in d = 4 − 2ε dimensions:

d�(4−2ε)
n =

(
eγE

4π

)(n−1)ε

(2π)4−2εδ(4−2ε)
(
PI −

∑n

k=1
pk

) n∏ d3−2εpk

(2π)3−2ε2εk

, (24)

k=1

7



R.N. Lee Nuclear Physics B 960 (2020) 115200
where γE = 0.577 . . . is the Euler constant. The factor 
(

eγE

4π

)(n−1)ε

conveniently removes γE

and ln 4π in our intermediate formulae.6 At ε = 0 the definition turns into the usual definition of 
phase-space. We also normalize the trace of Dirac matrices by the condition

Tr 1 = 4 . (25)

Substituting the results for the master integrals Jk , we obtain

σe+e−→3γ = α3

s

{
1

ε

(
2β + (

β2 + 1
)

ln z
) (

2β
(
β2 − 2

)+ (
β4 − 3

)
ln z

)
2β3

− 8β
(
s2 − 2s + 4

)
(s − 4)2s

(
Li3(z

2) − 2Li2(−z)ln z + 2 ln(1 − z)ln2 z − 2ln s ln2 z

− 5

6
ln3 z − π2

2
ln z − ζ3

)
+ 8β(s + 2)

s − 4
ln z

(
Li2(1 − z) + 1

4
ln2 z + 1

2
ln s ln z

)
− 16

3(s − 4)

(
ln3 z + π2ln z

)
+ 8

(
s2 + 3s − 8

)
(s − 4)s

(
Li2(1 − z) + 1

4
ln2 z + ln s ln z

)
− 4

(
s + 17

6β2 − β2

2
− 1

3

)(
Li2(−z) + 1

4
ln2 z + 1

2
ln s ln z + π2

12

)
+ (s2 − 4)β

3s
π2

−
(

s + 16

(s − 4)2 + 4

3s

)
βln2 z+ 4

(
3s2 + 21s − 8

)
ln z

3(s − 4)s
+ 4β(s + 4)

s − 4
ln s − 2β(3s − 4)

3(s − 4)

}
,

(26)

where z = 1−β
1+β

. Note that the cross section contains ε−1 term, which is due to the infrared 
divergent contribution of the region where the energy of one of the outgoing photons is small. 
Thus, in order to obtain the finite quantity, we have to subtract the contribution of this region. We 
derive the corresponding formulae in Section 4.

4. Soft-photon contribution

The probability to emit soft photon is usually regulated by the fictitious photon mass. How-
ever, within our approach, we must stick to the dimensional regularization. As, to the best of 
our knowledge the relevant expressions are not in the literature, we derive them here with some 
details.

4.1. Radiation probability

We start from the following formula7 for the probability of soft photon radiation:

dW = −e2

⎛⎝ ∑
n∈i∪f

σn

qnpn

k · pn

⎞⎠2 (
eγE

4π

)ε
d3−2εk

(2π)3−2ε2ω
. (27)

6 Since n − 1 is the number of cut loops, we introduce 
(

eγE

4π

)ε
per each cut loop. This is exactly the factor which is 

introduced in the MS scheme.
7 The derivation of this formula is identical to that at d = 4, see, e.g., Ref. [12].
8
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Here k = (ω, k) = (|k|, k) is the photon momentum, 
∑

n∈i∪f denotes the sum over initial and 
final particles, en = qn|e| and pn = mnun = mn(γn, γnβn) are their charges and momenta (with 
mn = √

p2
n being the mass), and σn = +1 (σn = −1) when n ∈ i (n ∈ f ). Note that we have again 

introduced a factor 
(

eγE

4π

)ε

for consistency with our previous definitions. The integration over ω
will be restricted from above by the infrared cut parameter ω0 and can be trivially performed. 
Thus, we have

W(ω0) =2α

π

ω0∫
0

2dω

(2ω)1+2ε︸ ︷︷ ︸
(2ω0)

−2ε/(−2ε)

1

2

∑
n,n′∈i∪f

(−σnσn′) qnqn′I (4−2ε)(un,un′), (28)

where

I (4−2ε)(u1, u2) = eεγE (4π)−1+ε

∫
d�

ω2(u1 · u2)

(k · u1)(k · u2)

= eεγE�(1 − ε)

�(2 − 2ε)

∫
d�

�

ω2(u1 · u2)

(k · u1)(k · u2)
. (29)

Here � = 2π(d−1)/2/�[(d − 1)/2] and 
∫

d�
�

. . . denotes the averaging over the solid angle of 
(3 − 2ε)-dimensional vector k. Once we put ε = 0, it is easy to show that the integral is Lorentz 
invariant and evaluates to a well-known result (see, e.g., [12])

I (4) = 1

2β12
ln

1 + β12

1 − β12
, (30)

where β12 = √
1 − 1/(u1 · u2)2 is the relative velocity of the particles. However, we need also 

the O(ε) term, and this term is frame-dependent. In general, the integral depends on three pa-
rameters, β12, β1 = |u1|/u0

1, and β2 = |u2|/u0
2 (β1,2 are the velocities of the particles in the lab 

frame). Remarkably, it is possible to calculate the ε-expansion of I (4−2ε) using the multiloop 
methods. Consider the family of integrals

ĵ (n1, n2, n3, n4)

=
∫

2ddk

�(k · u1)n1(k · u2)n2

1

π
� [

(1 − k · u0 − i0)−n3
] 1

π
�
[
(−k2 − i0)−n4

]
, (31)

where u0 = (1, 0) and we assume that (u1,2 · u0) > 0. It is easy to see that

I (d) = eεγE�(1 − ε)

�(2 − 2ε)
(u1 · u2)ĵ (1,1,1,1). (32)

Performing the IBP reduction, we find four master integrals. We pass to variables x1 =
√

1−β1
1+β1

, 

x2 =
√

1−β2
1+β2

, x3 =
√

1−β12
1+β12

, and reduce the differential systems with respect to x1, x2, and x3 to 
ε-form (using Libra) and find the following ‘canonical’ basis:

Ĵ1 = ĵ (0,0,1,1), Ĵ2 = ε(1 − x2
2)

(1 − 2ε)x2
ĵ (0,1,1,1),

Ĵ3 = ε(1 − x2
1)

ĵ (1,0,1,1), Ĵ4 = ε(1 − x2
3)

ĵ (1,1,1,1). (33)

(1 − 2ε)x1 (1 − 2ε)x3

9
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They satisfy the following differential system in Pfaff form

dĴ = ε d

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

−2 lnx2 2 ln
1−x2

2
x2

0 0

−2 lnx1 0 2 ln
1−x2

1
x1

0

−2 lnx3 ln x̃11̃
x̃3x̃2

ln x̃21̃
x̃3x̃1

ln x̃3x̃2x̃11̃

x2
1x2

2

(
1−x2

3

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Ĵ , (34)

where we have used the notation ã = a − x1x2x3/a. The physical region is defined by the in-
equalities

0 � xρ � 1, x̃ρ � 0 .

We fix the boundary conditions at the point x1 = x2 = x3 = 1 and travel to the generic point 
(x1, x2, x3) in the physical region along the contour γ (0 � τ � 2) defined piece-wise as

γ (τ) =
{

(1 − τ + τx1,1 − τ + τx2, (1 − τ + τx1)(1 − τ + τx2)) , 0 � τ � 1

(x1, x2, x1x2 + (τ − 1)(x3 − x1x2)) , 1 < τ � 2
(35)

The boundary conditions appear to be trivial with the only nonzero constant being

Ĵ1

∣∣∣∣
x1=x2=x3=1

= 1 .

We finally obtain

Ĵ1 = 1, Ĵ2(x) = Ĵ3(x) = J4(x,1, x),

Ĵ4(x1, x2, x3) = −2εlnx3

+ 2ε2
[
f (x1x3/x2) + f (x2x3/x1) + f (x1x2x3) − f (x1x2/x3) − f

(
x2

3

)]
+ O

(
ε3

)
,

(36)

where

f (x) = Li2(1 − x) + 1

4
ln2 x . (37)

Finally, we obtain

I (4−2ε)(u1, u2) = F(x1, x2, x3)

= 1

β12

{
− lnx3 + ε

[
f (x1x3/x2) + f (x2x3/x1) + f (x1x2x3)

− f (x1x2/x3) − f
(
x2

3

)]}
+ O

(
ε2

)
,

I (4−2ε)(u1, u1) = F(x1, x1,1) = 1 − ε
2

β1
lnx1 + O

(
ε2

)
, (38)

where
10
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x1 = u0
1 − |u1| = γ1(1 − β1), x2 = u0

2 − |u2| = γ2(1 − β2),

x3 = u1 · u2 −
√

(u1 · u2)2 − 1 = γ12(1 − β12), γρ = 1/

√
1 − β2

ρ. (39)

4.2. Soft-photon contribution to e+e− → 3γ

Let us now derive the cross section of e+e− → 3γ integrated over the kinematic region where 
the energies of all photons are restricted from below by some experimental cut-off ω0. This 
restriction obviously introduces the frame dependence, and we will specialize our formulae to 
two physically relevant frames: the center-of-mass frame and the rest frame of the initial electron.

The cross section σe+e−→3γ (ωi > ω0) is obtained by subtracting from σe+e−→3γ the contri-
bution of the soft region:

σ f
e+e−→3γ

(ω0) = σe+e−→3γ − W f(ω0)σ0 , (40)

where f = cmf and f = rf for the center-of-mass frame and the electron rest frame, respectively. 
We have

W cmf(ω0) =2α

π

(2ω0)
−2ε

(−2ε)

[
F(

√
z,

√
z, z) − F(

√
z,

√
z,1)

]
,

W rf(ω0) =2α

π

(2ω0)
−2ε

(−2ε)

[
F(z,1, z) − 1

2F(z, z,1) − 1
2F(1,1,1)

]
. (41)

The two-photon annihilation Born cross section σe+e−→2γ should also be calculated with ε1

terms retained:

σ(e+e− → 2γ ) = π α2

s

{
2β

(
β2 − 2

)+ (
β4 − 3

)
ln z

β2

+ 2ε

(
3 − β4

β2

[
Li2(1 − z) + 1

4
ln2 z + 1

2
ln s ln z

]
+ 3 − β2

β2 ln z + 2 − β2

β
ln s − 1

β

)}
. (42)

We finally arrive at Eq. (1).

5. Calculation of σe+e−→2γ at NLO

Let us now briefly describe the calculation of the virtual correction to the total cross section of 
e+e− → 2γ . We calculate the contribution of the diagrams depicted in Fig. 4. The IBP reduction 
of the two-loop diagrams reveals 14 master integrals depicted in Fig. 5. We use Libra to reduce 
the differential system for j̃1−14 to ε-form. The ‘canonical’ master integrals J̃1−14 are defined as 
follows

J̃1 = j̃1, J̃2 = − βsεj̃2

2ε − 1
, J̃3 = (1 − 2ε)j̃3

β(1 − ε)
+ j̃1

β
, J̃4 = − sβεj̃6

2 (1 − 2ε)2
,

J̃5 =
sβε

(
j̃6 + 2j̃5

)
2 (1 − 2ε)2

, J̃6 = sεj̃5 − 2(1 − 4ε)j̃6

(1 − 2ε)2
− (1 − 3ε)j̃4

1 − ε
,

J̃7 = sεj̃7 + 4εj̃1 + sεj̃2
, J̃8 = sεj̃8 − 4εj̃1

,

1 − ε 1 − 2ε 1 − ε

11
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Fig. 4. Diagrams contributing to the virtual correction to the total cross section of e+e− → 2γ . Denominators of diagrams 
(i) and (vi) correspond to the LiteRed bases pdb2 and pdb1, respectively. The diagrams (v) and (x) correspond to 
the mass counterterm.

Fig. 5. Two-loop (one loop cut) master integrals for the virtual correction to the total cross section of e+e− → 2γ .

J̃9 = β(s − 1)εj̃9

1 − ε
− sβ3εj̃6

2 (1 − 2ε)2
− βεj̃2

1 − 2ε
, J̃10 = sj̃11 − 2sε2j̃10 + sεj̃5

(1 − 2ε)2
,

J̃11 = 2sβε2j̃10

(1 − 2ε)2
, J̃12 = 2s2βε2j̃12

(1 − 2ε)2
, J̃13 = −2s2βε2j̃13

(1 − 2ε)2
, J̃14 = (s − 4)s2ε2j̃14

(1 − 2ε)2
(43)

They satisfy the differential system

∂β J̃ = ε

[
S̃0

β
+ S̃1

1 − β2 + βS̃2

1 − β2 + βS̃3

3 + β2

]
J̃ , (44)

where

S̃0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, S̃1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 6 2 0 0 0 0 0 0 0 0 0
0 2 2 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −3 0 0 0 0 0 0 0 0
0 0 0 6 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 2 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −4 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (45)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 8 −2 0 0 0 2 0 4 2 4 0

12
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S̃2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2 0 0 0 0 0 0
0 0 0 6 2 0 0 0 −2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −2 0 0 0 0
0 0 0 −4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 6 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, S̃3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 6 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 6 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(46)

We fix the boundary conditions by considering the asymptotic coefficients at s → 4. Most of the 
nontrivial boundary constants correspond to the naive values of the integrals at the threshold. 
The only exception is the leading threshold asymptotics of j3, proportional to β1−2ε . Namely, 
we explicitly calculate the following constants:

j̃ th
1 = 1, j̃ th

3 ∼ β1−2ε

√
π sin(πε)�

(
ε − 1

2

)
2�(ε − 1)

,

j̃ th
4 = π3/2 csc(πε)

2�
( 3

2 − ε
)
�(ε − 1)

, j̃ th
7 = −1 + ε

2(1 − 2ε)
,

j̃ th
8 = j̃ th

10 = 1

4
(1 − ε)

[
ψ (1/2 − ε) + γ + 2 ln 2

]
.

Here we again have chosen the overall factor so that j̃ th
1 = 1. These boundary conditions, are 

sufficient to fix the specific solutions for the integrals J̃ . Using these solutions, we obtain for the 
“bare” cross section[

σe+e−→2γ

]
α3,bare =

α3

sβ

{
1

ε

[
2(s − 2)

(
s2 + 4s − 8

)
ln2 z

(s − 4)s2 +
(
s3 − 6s2 + 16s − 48

)
ln z

s3β
− 4

(
s2 + 4s − 6

)
s2

]

− π2 1 + β2

β

[
2 − β2 + 3 − β4

2β
ln z

]
+ S

[
6
(
s2 + s − 3

)
s2β

�
[

8Li3

(
e

iπ
3

z+1

)
+ 4Li2

(
e

iπ
3

z+1

)
ln(s z)

− Li2 (−z) ln s − 1

2
ln

(s − 1)2

s
ln s ln z − 1

9
ln3 z

]
− 2

(
2s2 − s − 9

)
s2β

[
4Li3

(
1

z+1

)
+ Li2(−z)ln s

+ 1

4
ln2 s ln z+ 7

12
ln3 z

]
+ (s − 3)(2s + 5)

3s2β

[
ln2 z − π2

]
ln z− 2

(
3s3 + 2s2 − 40s + 32

)
(s − 4)s2 ln s ln2 z

− 2(s + 2)

s
Li2(−z)ln z + 2

(
3s3 + 14s2 − 48s + 48

)
s3β

Li2(1 − z) + 20

sβ
Li2(−z)

− 7s2 + 2s − 56

2(s − 4)s
ln2 z − 2s5 − 25s3 − 12s2 + 80s − 48

(s − 1)2s3β
ln sln z + s + 2

2s
π2

+ 5s3 + 2s2 − 32s + 24

(s − 1)s2 ln s+ 10s4 − 35s3 + 86s2 − 128s + 64

(s − 1)s3β
ln z− (s + 8)(3s − 4)

s2

]}
.

(47)
13
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Table 1
Comparison of our analytic result, Eq. (1), for σ cmf

e+e−→3γ
with that of Monte-

Carlo integration performed using Cuba library [14]. The errors in last column 
are those provided by Cuba.
√

s

me

ω0

me
σ cmf
e+e−→3γ

(mb) σ rf
e+e−→3γ

(mb)

Exact, Eq. (1) Monte-Carlo Exact, Eq. (5) Monte-Carlo

2.001 0.01 10.682 10.672(31) 10.682 10.671(32)

2.01 0.01 3.551 3.551(11) 3.551 3.551(11)

2.1 0.01 1.8194 1.8222(57) 1.8297 1.8321(58)

5 0.01 3.0238 3.0229(96) 3.430 3.428(11)

10 0.01 1.843 1.847(18) 2.2078 2.208(10)

50 0.01 0.3158 0.3128(31) 0.4045 0.4037(41)

50 0.1 0.2161 0.2151(21) 0.3048 0.3023(30)

50 1 0.1163 0.1157(11)
����
0.2051

�������
0.1854(19)

50 5 0.04663 0.04698(47)
�����
0.13539

��������
0.09783(98)

100 0.1 0.08897 0.08842(88) 0.1268 0.1289(13)

100 1 0.05296 0.05181(52)
������
0.09084

��������
0.08371(84)

100 10 0.01695 0.01682(17)
������
0.054833

��������
0.03878(39)

The onshell renormalization procedure is described in the literature, see, e.g., Ref. [13]. For 
our setup, this means that the cross section expressed in terms of the physical parameters reads

σe+e−→2γ = σ0 + [
σe+e−→2γ

]
α3,bare + (Z2

ψZ2
AZ2

α − 1)σ0 + δσm, (48)

where Zψ , ZA, and Zα are the onshell renormalization constants for the electron field, pho-
ton field, and coupling constant, respectively. Since ZAZα = 1 due to Ward identity, we have 

Z2
ψZ2

AZ2
α − 1 ≈ 2δZψ = −2 (4πα)(3−2ε)�(ε)

(4π)2−ε (1−2ε)

(
eγE

4π

)ε

. Note that an additional factor 
(

eγE

4π

)ε

as 
compared to Ref. [13], corresponds to the chosen loop measure. The term δσm corresponds to 
the contribution of diagrams (v), (x) in Fig. 4 associated with the mass counterterm. On those 

diagrams the cross corresponds to the vertex iδm = i
(4πα)(3−2ε)�(ε)

(4π)2−ε (1−2ε)

(
eγE

4π

)ε

. We have

δσm = α3

sβ
S
{

3

ε

[
1

sβ

(
1 + β4

)
ln z + 1

2

(
3 − β4

)]
− 3

sβ

(
1 + β4

)
[2Li2(1 − z) + ln s ln z]

− 3

2

(
3 − β4

)
ln s − 1

2β

(
7 − β2 − 2β4 + 2β6

)
ln z − 2β4 − 12

s

}
, (49)

where we have neglected terms suppressed in ε. Note that the renormalized cross section 
σe+e−→2γ still contains ε−1 terms due to infrared divergence. In order to obtain the observ-
able cross section σ f

e+e−→2γ
(ω0) we have to add the soft-photon contribution W f(ω0)σ0, where 

W f(ω0) is defined in Eq. (41) for f = cmf, rf. Finally, we obtain Eqs. (4) and (6) for the cross 
sections σ cmf

e+e−→2γ
(ω0) and σ rf

e+e−→2γ
(ω0), respectively.

6. Conclusion

In the present paper we have calculated the total cross sections σ f
e+e−→3γ

(ω0) and

σ f+ − (ω0) for arbitrary energies with O(α3) accuracy. The energy cut ω0 for soft photons has 

e e →2γ

14
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been applied in the center-of-mass frame (f = cmf) and in the rest frame of the electron (f = rf). 
We have found errors in the high-energy results available in the literature for σ cmf

e+e−→3γ
(ω0).

As an additional check of our results for the 3-photon annihilation cross section, we have 
performed a numerical integration of the differential cross section using the Cuba library [14]. 
Table 1 demonstrates a perfect agreement of our results with the numerical calculation. The 
exception are the points where the minimal photon energy ω0 is of the order of electron mass in 
the rest frame of the initial electron (marked with wavy lines in the table). This is, of course, quite 
expected as the photon with energy of the order of electron mass in electron rest frame can have 
energy of the order of 

√
s when one passes to the center-of-mass frame (thus, the soft-photon 

approximation breaks).
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Appendix A. Ultrarelativistic limit from approximate differential cross section

Ref. [3] (as well as Ref. [2]) used the approximate differential cross section

dσ cmf
e+e−→3γ

= (4πα)3

s
s|M|2 d�3γ

3!2s
, (A.1)

where

d�3γ = (2π)4δ(4)(p+ + p− − k1 − k2 − k3)

3∏
i=1

dki

(2π)32ωi

, (A.2)

is the phase space of the final particles, and

s|M|2 ≈ 8
κ2

1− + κ2
1+

κ2−κ3−κ2+κ3+
− 8

γ 2

[
κ3+

κ2
1−κ2+

+ κ3−
κ2

1+κ2−

]
+ permutations . (A.3)

Here κi± = 4ki · p±/s = ωi

ε− (1 ± β cos θi). At large angles and ωi ∼ ε− we have κi± ∼ 1, while 

for θi � γ −1 (π − θi � γ −1) we have κi− ∼ γ −2 (κi+ ∼ γ −2). Thus the second term, formally 
suppressed by γ −2 = 4/s, contributes in the region when the momentum of one of the final 
photons is close to forward or backward direction, when one of the squared denominators in 
15
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square brackets gives an amplifying factor ∼ γ 4. Thus, we have the following power counting: 
d2θ1

γ 2κ2
1−

∼ γ −2

γ 2(γ −2)2 ∼ 1. We have checked that the integration of this expression for s|M|2 indeed 

leads to the result (13) of Ref. [3].8 So, the origin of the discrepancy of our result with that of 
Ref. [3] can be only in the initial expression for the differential cross section. Indeed, a thorough 
inspection of the exact expression for the differential cross section from Ref. [15] has revealed 
the overlooked in Refs. [3,2] terms which contribute to the total cross section. Namely, in s|M|2
one has to take into account also the terms

− 8

γ 2

[
1

κ1+κ2−κ3−
+ 1

κ1−κ2+κ3+

]
+ permutations (A.4)

These terms contribute in the kinematic region where simultaneously two photons have small 
scattering angles. Then the third photon necessarily has scattering angle close to π and we 

have the following power counting: d2θ2d
2θ3

γ 2κ1+κ2−κ3−
∼ γ −2γ −2

γ 2γ −2γ −2γ −2 ∼ 1. We have checked that these 

terms, overlooked in Refs. [2,3], give exactly the contribution − 4α3π2

3s
to the total cross section, 

in agreement with our asymptotics (11).
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