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Abstract

String theory possesses duality symmetries that relate different string backgrounds. One
symmetry is known as T-duality symmetry. In general, when n dimensions are toroidally
compactified, the T-duality group is O(n,n,Z). String theory has another duality symmetry
known as S-duality, which does not commute with T-duality. The full S-duality group is
SL(2,7Z). The last duality symmetry is U-duality symmetry, which is E, 1 (n11)(Z) for type II
string theory on T™. Duality symmetries tell us that strings experience geometry differently
from particles. In order to understand string theory, a new way to understand string geometry
is required.

In this thesis, first we introduce some basic ideas on duality symmetries in string theory,
namely, T-duality, S-duality, and U-duality. Next, we review string field theory. We, then,
provide the basic constructions of DF'T and EFT. Next, we consider the finite gauge trans-
formations of DFT and EFT. The expressions for finite gauge transformations in double field
theory with duality group O(n,n) are generalized to give expressions for finite gauge transfor-
mations for extended field theories with duality groups SL(5,R), SO(5,5) and FEg.

Another topic is the T-duality chain of special holonomy domain wall solutions. This example
can arise in string theory in solutions in which these backgrounds appear as fibres over a line.
The cases with 3-torus with H-flux over a line were obtained from identifications of suitable
NS5H-brane solutions, and are dual to D8-brane solutions. This T-duality chain implies that
K3 should have a limit in which it degenerates to a long neck of the form A x R capped off
by suitable smooth geometries. A similar result applies for the higher dimensional analogues
of the nilfold. In each case, the space admits a multi-domain wall type metric that has special
holonomy, so that taking the product of the domain wall solution with Minkowski space gives

a supersymmetric solution.
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1. Introduction

In the standard model of particle physics, three forces in nature, namely, electromagnetic,
weak interaction, and strong interaction can be explained by quantum field theory. On the
other hand, gravity can be described in terms of the geometry of the spacetime in the theory
of general relativity. At some energy scale, one believes that gravity could be unified with the
other three forces. However, due to the non-renormalizable property of gravity, it is difficult to
combine gravity into quantum theory. String theory [5]- [8] is an alternative theory that might
show a way to quantum gravity because it contains the graviton in the spectrum.

In string theory, the concept of point particles is broken down and replaced by strings. The
interactions between particles are also replaced by the string world-sheet interaction. The
divergence from the non-renormalizable property of gravity is soften when the interaction is
given by the exchange of strings. The extended objects like strings have an infinite number
of degrees of freedom, which is given by the Fourier modes or the shapes of the objects. By
replacing particles by extended objects, it smeared out the space-time divergence, however,
it introduces new divergences from the internal degrees of freedom, which will become worse
as the dimension of the extended objects increases. String theory is the only one that the
divergences for both space-time and internal are under control. That makes string theory more
interesting than the higher dimensional object theory.

Another interesting feature of string theory is that it possesses duality symmetries that relates
different string backgrounds. One symmetry is known as T-duality symmetry [9]. When one
of the dimensions where strings propagate is compactified into a circle, strings can wind along
this compact direction. A number of times that strings curl along the circle gives rise to the

winding mode w. The mass spectrum of the closed string state with one circular direction is

given by
9 - 5 12 , R?
M :(N+N—2)—|—pR—s2+wl—2, (1.0.1)

where N and N are number operators for right and left-movers respectively, p is a momentum

mode along the circle, w is the winding mode and [, is a string length. This closed string state



also satisfies the level-matching condition
N — N = puw. (1.0.2)

If the momentum mode p is exchanged with the winding mode w as well as the quantity
R/ls becomes [s/R, the mass spectrum (1.0.1) and the level-matching condition (1.0.2) are
still invariant. It implies that in the string point of view, strings cannot distinguish between
propagating along the circle with the radius R or 1/R. In general, when n dimensions are
toroidally compactified, T-duality is generalized into the T-duality group O(n,n,Z).

T-duality symmetry tell us that strings experience the geometry differently from particles.
In order to understand string theory, a new way to understand the string geometry is required.
In [10], T-duality is realized as a symmetry of string field theory [11,12]. In string field theory
on the torus, the winding modes are treated on an equal footing as the momentum modes and
this gives rise to coordinates that are dual to the winding modes. Although the full closed
string field theory on a torus is so complicated and cannot be studied in more detail, the
massless sector has been developed and it is known as double field theory (DFT) [13], with
fields depending on a doubled spacetime in which the periodic coordinates z* on the torus are
supplemented by dual periodic coordinates x; conjugate to the winding numbers.

Key features of double field theory are that T-duality is manifest and the fields depend on
all the doubled coordinates. The double field theory corresponding to the metric, b-field and
dilaton of the bosonic string was derived from string field theory in [13] to cubic order in the
fields. The full theory has proved rather intractable, and much work has been done on a small
subsector of the theory, obtained by imposing the ‘strong constraint’, which locally implies that
locally all fields and parameters depend on only half the doubled coordinates.

The origin of the strong constraint arises from the level-matching condition Ly — Ly = 0.
In terms of field representation, it implies that fields A are annihilated by E)iéi(A) = 0. This
constraint is know as the weak constraint. Additionally, the generalized diffeomorphism is
also considered in order to construct the invariant action. The gauge transformation in DFT
[14] is given by the generalized Lie derivative generated by a vector field £ and a one-form
éz-. These gauge parameters can be rearranged in to an O(D, D) vector representation such
that ¢M = (él,fz) In the limit when the theory is independent of dual coordinates, the
gauge transformation has reduced into the ordinary diffeomorphism and the two-form gauge
transformation. For the closure of the generalized Lie derivative, the constraint that is stronger
than the weak constraint is required and known as the strong constraint.

The strongly constrained theory has been found to all orders in the fields [15,16], and is locally
equivalent to the conventional field theory of metric, b-field and dilaton, and DFT reduces to
the duality-covariant formulation of field theory proposed by Siegel [17], and can be thought of

as a formulation in terms of generalized geometry [18] - [31].

10



In [15], the background independent action of double field theory has been constructed and

taken the form
1 ., . 1 . . _ . _ .
S = /dCC dz 672d< — Zglkgjlppglepgij + Z(D]gikplgjl —+ ’DJ(":MDZSU)
+ (D'dDIE,; + D'dDIE,) + 4Did1>id>, (1.0.3)

where derivatives D; and D; are defined by

(1.0.4)

and the field &;; is defined as &;; = g;; + b;;, and the field d is related to the dilaton field via
e 2 = \/§6_2¢. In this action, indices are raising and lowering with the metric g;; and each
terms is invariant under the O(D, D) T-duality group. The gauge transformations of fields are

given by
0cEij =Di€j — Dy&i + EMOnEij + Dit"Exj + D" Ex, (1.0.5)
1
bed = — 50M5M + M9y, (1.0.6)
where £M0y; = €0, 4+ £ and 0y M = €' + 9'€;. However, proving the gauge invariance of

this action is so difficult and requires a long calculation. Therefore, in [16], a new action that

related to (1.0.3) has been created from the generalized metric H,ny and field d as

S = /dl‘ dz 6_2d< 47—[MN8M8Nd — 8M8N’HMN — 47—[MN8Md8Nd + 48M’HMN8Nd

LHMN O HEL O gy, — %’HMN(?MHKL@KHNL>. (1.0.7)
The gauge transformations of H,,n and d are given by the generalized Lie derivative

SeHun = LeHan =67 0pHun + (0mE" — 0P Ea)Hpn + (OnEF — 07 En) Harp, (1.0.8)
(5&(6_261) = £§€_2d :8M(€M€_2d). (109)

From the action (1.0.7), the O(D, D) structure of each terms is manifest and proving gauge
invariant property is simpler than (1.0.3).

String theory also has a duality symmetry known as S-duality [32]. S-duality is a non-
perturbative symmetry of type IIB superstring theory, which is not accessible from string
perturbation theory. It relates a strong coupling theory of type IIB with a weak coupling
theory of type IIB. It also exchanges the fields in the NS-NS sector with the R-R sector. For
example, two-form the b-field is exchanged with the RR two-form. With the fields in the NS-NS

11



sector and the R-R sector are exchanged, the objects charged under these gauge fields are also
exchanged. For example, the role of the Fl-string is swapped with the solitonic string, D1.
The full S-duality group is expected to be SL(2,Z) [32]. This group relates the F1-string to a
whole set of strings with quantum numbers (p, ), where p is the number of the Fl-string and
q is the number of the D1-string for p, ¢ are relatively prime.

There is another duality group is string theory. This duality group is known as U-duality
group [32] gives rise the idea of M-theory, which is an eleven-dimensional theory. In M-theory,
there exist extended objects known as M2-branes and M5-branes. When M-theory is compact-
ified on an n-dimensional torus, M2-branes and M5-branes can be wrapped along cycles of the
torus, which gives rise to wrapping modes. U-duality which relates momentum modes with M2-
brane and M5-brane wrapping modes is given by the exceptional group E,, [32]. Upon toroidal
compactification, M-theory can be related to type IIA superstring, which is also related to type
IIB superstring via T-duality. That means U-duality symmetry is also a duality symmetry of
type II superstring. To be precise, type II superstring on n-torus would have U-duality group
E, 1. The extension from T-duality group to U-duality can be explained by the extension of
momentum modes and winding modes of strings to wrapping modes of Dp-branes in super-
string theory. That is U-duality transformation in type II superstring will mix momentum and
winding modes of strings with wrapping modes of Dp-branes.

U-duality symmetry in M-theory and superstring theory tells us that in order to obtain
a duality invariant geometry one needs a formulation that includes momentum modes and
winding modes of strings as well as wrapping modes of Dp-branes. In this formulation, the
space-time coordinates are extended to include coordinates conjugated to wrapping modes.
This theory goes by the name of ‘Extended Field Theory’ (EFT). Extended field theories [33] -
[59] generalize strongly constrained DFT to a theory on an extended geometry that is covariant
under F, U-duality transformations. The total number of extended spaces in each case are

given by the below table

d Eaq,a) Ry
31 SLG3) x SL2) | (3,2)
4 SL(5) 10
5| Spin(s,5) 16
6 Eo ) 27
7 o 56
8 s (s) 248

In EFT, the actions are constructed in terms of the generalized metric, which consists of the
metric, the 3-form gauge field and possibly the 6-form gauge field on the internal space. The
gauge symmetries of the theories are given by the generalized Lie derivative. The closure of

the gauge algebra requires a constraint to be imposed on the fields and gauge parameters in

12



the theories. This constraint is known as the section condition. One way to solve the section
constraint is to demand fields and gauge parameters to be independent of dual coordinates.
This would lead to generalized geometry formulation, where the tangent space is extended to
include winding modes of string and branes.

In DFT and EFT, the truncation to strong constraint or section constraint results in fields
depending on the conventional coordinates, x™. This leads to the field theory on the space
parameterised by the coordinates, x™. The formulation of strongly constraint DFT may be
formulated on a general double manifold M [61] - [64]. The strong constraint results in the
fields depend on an n-dimensional submanifold N C M. This is a conventional field theory on
a space-time N, with a metric, g;;(2™), a 2-form gauge field, b;;(2™), and a dilaton, ¢(z™).
The symmetry of this theory is the diffeomorphism of N and the 2-form gauge transformation,
(N).

In general, this picture need only to be true locally. For example, let us consider the double

which leads to the symmetry group Diff(N) x A2 4
space with a coordinate patch . The solution of the strong constraint can be chosen such that
all the fields are independent of winding coordinates, z,,. By taking the quotient of & by the
action of 9/0%,,, this give some patch U of R™. The strong constraint allows to take the quotient
so that the fields, such as, the generalized metric, are defined on U C U. The generalized Lie
derivative of DFT reduces to the generalized Lie derivative fo generalized geometry on U. In
general case, these patch U will not necessary form the submanifold N. They can formulate a
non-geometric space [65] - [72], such as T-fold [67], where the transition functions between the
patches are given by the T-duality transformation. In the double space formalism, the transition
functions are given by the O(n,n,Z) transformation, which acts geometrically through large
diffeomorphism on the double space.

In order to understand the geometry of DFT, there have been a number of attempts to
explore the relationship between the gauge symmetries of DFT and the diffeomorphisms of
the doubled space [73] - [77]. However, the gauge group and the diffeomorphism group are
not isomorphic [78] because the former acts through the generalized Lie derivative while the
latter acts through the Lie derivative. The DFT gauge transformations acts on fields at a
point X € M. This transforms fields at X to fields at X, A(X) — A’(X). Recall that
diffeomorphisms can be written in terms of an active or a passive form. It is natural to ask if
the DF'T gauge transformation can be written in the form that the coordinate X transforms.

To address such questions requires a better understanding of transition functions and a global
structure, and for this one needs formulae for gauge transformations with finite parameters.
The infinitesimal gauge transformation of DF'T is given by the generalized Lie derivative. The
expression for the gauge transformation with finite parameters in which fields transform at a

point X, A(X) — A'(X), is obtained by exponentiating the generalized Lie derivative. For

13



example, for a generalized tensor A,,,
A (X) = eFe Ay (X)), (1.0.10)

where all fields and parameters depend on X and satisfy the strong constraint. In [78], explicit
forms were found for finite gauge transformations in DFT that have the correct gauge algebra.
This finite transformation is in agreement with the finite transformations for the metric and
b-field, and make explicit contact with generalized geometry. The same question can be asked
for the EFT. In [1], the result of finite transformations of EFT was found. In that paper, the
cases By = SL(5,R), E5 = SO(5,5) and Es were considered. The result agrees with the finite
transformation for the metric and the 3-form gauge field.

Another interesting question is the interpretation of the double space M. The double space
of string theory on the toroidal background 7™ is the double tori 7%". The extra coordinates
arise from the winding modes. However, in a non-toroidal background, there is no generic
interpretation of winding coordinates. In [64], the double space M was constructed from the
quotient space of a group manifold ¢ with its discrete cocompact subgroup I', such that M =
G /T is a compact space. This group structure arises from the gauge algebra of the compactified
theory [62,64].

For example, first let us consider a theory on a (d + n + 1)-dimensional space-time. By
compactifing on 7™, this gives a theory with a gauge group U(1)?" and an O(n, n,Z) symmetry.
The generators of U(1)?" consist of Z,, which generate the U(1)" action on 7", and X, which
generate the b-field gauge transformation with one leg on 7" and the other on the external
space . Next, consider a Scherk-Schwarz reduction [79] on a circle with a periodic coordinate,
r ~ x + 1, with an O(n,n) duality twist around the circle. This results in the theory with a
non-abelian gauge symmetry. One can construct the double geometry in terms of 7** bundle
over S', which can be given by a quotient of (2n+ 1) dimensional group by a discrete subgroup.
It is natural to consider doubling the coordinates on the base space. This results in a (2n 4 2)-
dimensional space, which can be though of as the quotient space of a (2n + 2)-dimensional

group manifold with a discrete subgroup. The Lie algebra of this group manifold is given by
[Tar, T] = tan " Tp. (1.0.11)

The group generators T, can be decomposed into Z,, and X™ [64].

On the double group manifold G, there are two sets of globally defined vector fields [64],
namely, left-invariant vector fields, K7, and right-invariant vector fields, K. The left-invariant
vector fields K, generate a right action of G and the right-invariant vector fields K, generate
a left action of G. On M = G/T", where ' acts on the left, only the left-invariant vector fields
K, are globally defined. The gauge symmetry acts through the right action generated by K,,.

14



At a given point on M, the basis of the tangent space is given by the right-invariant, Ky,
which can be split as Z,,, X™. The conventional space can be obtained by the quotient of M
by the action of X™ [64].

In the case that X™ generate a subgroup G, if the subgroup Gy is preserved by I, that is
forally e T and k € Gy,

Yyt =K, (1.0.12)

for some k' € G, the quotient of G/G, by T is well-defined and defines a subspace of M = G/T.
In general, I' will not preserve the subgroup G, in this case taking quotient by I' is inconsistent
with taking the quotient by Gy. The conventional space is locally given in the local patches,
which is locally G/ G 1. These patches will not fit together to form a submanifold of M.

The double space M is described as a universal background which includes many different
string backgrounds. The well-known example is a 7% with H-flux [80]. This background is
T-dual to a nilmanifold, which is a 72 bundle over S*. By performing T-duality along one of
T?2-direction, T-fold background is obtained. These backgrounds can be described in terms of
6 dimensional space, which is a quotient of a nilpotent Lie group by its discrete subgroup. The
detail of this double space is given by [64].

These examples are instructive but have the drawback of not defining a CF'T and so not giving
a solution of string theory. However, these examples can arise in string theory in solutions in
which these backgrounds appear as fibres over some base, related by a T-duality acting on
the fibres. The simplest case is that in which these solutions are fibred over a line, defining a
solution that is sometimes referred to as a domain wall background. The cases with 3-torus
or nilfold fibred over a line were obtained in [81] from identifications of suitable NS5-brane or
KK-monopole solutions, and are dual to D8-brane solutions.

The NS5-brane with the transverse space given by R x 7% maps to a Kaluza-Klein monopole
with a Gibbons-Hawking metric [82] which is a circle bundle over a base space R x T2, giving
the product of R with a circle bundle over 72 known as a nilfold or a nilmanifold. On the other
hand, the same chain of dualities takes the type I string on 7% to type IIA string theory on
K3 [83] - [85]. Remarkably, a recent work on a limit of K3 [86] reconciles these two pictures,
providing confirmation of our approach. There is a region near the boundary of K3 moduli
space in which the K3 develops a long neck which is locally of the form of a the product of
a nilfold with a line, with Kaluza-Klein monopoles inserted in that space. The ends of the
long neck are capped with hyperkahler spaces asymptotic to the product of a nilfold with a
line, known as Tian-Yau spaces [87]. These Tian-Yau caps can be viewed as the duals of the
regions around the ON [88] - [90] or orientifold planes [91] - [93] and it is remarkable that
these are realised as smooth geometries, similar to the realisation of certain other duals of

orientifold planes as smooth Atiyah-Hitchin spaces [94]. Moreover, the singular domain walls
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of the supergravity solution obtained by dualising D8-brane solutions are also smoothed out in
the K3 geometry as Kaluza-Klein monopole geometries. The classification of Tian-Yau spaces
leads to the maximum number of Kaluza-Klein monopoles being 18, which is precisely the
maximum number of D8 branes possible in the type I’ theory [95].

Taking the product of the 3-dimensional nilfold with the real line gave a space admitting
a hyperkahler metric. Remarkably, a similar result applies for the nilmanifolds arising as
higher dimensional analogues of the 3-dimensional nilfold [96]. Each of the spaces is a T"
bundle over T™ for some m,n. In each case, the space M x R admits a multi-domain wall
type metric that has special holonomy [96], so that taking the product of the domain wall
solution with Minkowski space gives a supersymmetric solution. Duality transformation of this
supersymmetric solution gives an intersecting brane background [97], which preserves the same
amount of supersymmetry. In each case, the multi-domain wall solution is dual to D4-D8 brane
system [98,99].

The objective of this thesis is to represent the relation between a geometry and duality
symmetries in string theory. Particularly, we will consider the relation between a double space
formalism and a T-duality transformation. In chapter 2, we begin by introducing a bosonic
string theory. Next, we consider the bosonic string theory on a toroidal background. This
leads to the T-duality symmetry on the string spectrum. After that we will provides a basic
introduction to superstring theories and M-theory. The last section in this chapter will be the
U-duality symmetry.

In chapter 3, we introduce the string field theory. We explain the basic features of the string
field theory, such as, a closed string state, a closed string field action, and a gauge transformation
of a closed string state. We also provide the example of a first massive closed string field state
and a T-duality transformation of this state.

In chapter 4, we introduce Double Field theory and Extended Field theory. In this chapter,
we will construct the Double Field Theory action from the massless closed string state on a
toroidal background up to the cubic order. The action of DFT can be written in terms of the
background metric £ and the dilaton d or in terms of the generalized metric Hy;ny and the
dilaton d. Next, we will discuss the gauge transformation of the DFT and the importance of
strong constraint in order for the closure of gauge algebra. After that we will move to EFT
and the strong constraint in EFT, which is known as the section constraint.

In chapter 5, we discuss the finite gauge transformations of DFT and EFT. In the first section,
we consider the finite transformation of DFT. In the second section, the finite transformations
of By = SL(5,R), E5 = SO(5,5) and Eg are considered. Next, we will discuss the finite
transformation of the generalized tensor of DFT and EFT. The last section will devote to the
generalized metric of DFT and EFT.

In chapter 6, we focus on the T-duality chain of special holonomy domain wall solutions.
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This example can arise in string theory in solutions in which these backgrounds appear as
fibres over a line. The cases with a 3-torus or a nilfold fibred over a line were obtained from
identifications of suitable NS5-brane solutions, and are dual to D8-brane solutions. This T-
duality chain implies that K3 should have a limit in which it degenerates to a long neck of the
form of a nilfold fibred over a line capped off by suitable smooth geometries.

In chapter 7, we generalize the 3-dimensional nilfold to the higher dimensional analogues of
the nilfold. In each case, the space admits a multi-domain wall type metric that has special
holonomy, so that taking the product of the domain wall solution with Minkowski space gives
a supersymmetric solution. This solution is dual to D4-D8-brane system.

In chapter 8, we will provide the double space formulation to the nilmanifold.
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2. String Theories, M-theory, and

Dualities

The interesting feature of string objects [5] - [8] is that strings can wrap along the compact
dimension. As a result, it leads to the existence of winding modes that have not been seen in
the particle theory. Along with the momentum mode, there exists a symmetry that exchanges
momentum modes and winding modes known as “Target Space Duality” or T-Duality [9].
When supersymmetry is included, string theory becomes superstring theory. There are five
different string theories in ten dimensions, namely, type IIA, type IIB, type I, Het SO(32),
and Het Fg x Eg. Upon a toroidal compactification, these theories are related to each other.
In some limit, such as a strong coupling limit, type ITA theory becomes an eleven-dimensional
theory, known as, M-theory. When M-theory is compactified on n-torus, the theory has another
symmetry, known as U-duality [32]. In this chapter, the background on string theories is

provided as well as dualities in string theories.

2.1. String theory

First, let us consider a string moving on a d-dimensional target space-time with coordinates
X0 = ¢, X' .., X% The two-dimensional string worldsheet can be parametrised by world-
sheet coordinates (7, 0). The string evolution in the target space-time is given by the evolution

of functions X*(7, o), which is governed by the string action

1
P / Po {7 06X "0 X" Gy (XP) + €700, X 03 X" By (X?) }
1
o *oVho(X?)RP, (2.1.1)
T

where o/ is a parameter relating to the string tension, 7' = (27a’)~!. The first term in the
action (2.1.1) describes strings propagating on some general manifold M with the metric G,.
The second term introduces the effect of the Kalb-Ramond two-form B, on the world-sheet.
This term can be thought of as a pull-back of the two-form gauge field B, on the target space-

time M on to the string world-sheet. Note that the second term changes by a total divergence
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under the gauge transformation
0B, = O\, — O N, (2.1.2)

where A is a one-form. The gauge-invariant field strength H, which is a three-form, can be
defined as

H =dB, (2.1.3)
or in terms of components
H,,,=0,B,,+ cyclic permutation. (2.1.4)

The last term in the action (2.1.1) describes the interaction between the dilaton field ®(X*)
and the string world-sheet.

The conditions that the string action (2.1.1) is conformally invariance are given by [5]

1
O - R/Jy + ZHH‘ )\le/)\p - QVMVV(I)a
0 = VaH",, —2(V,\®)H" ,, (2.1.5)
D — 26 1
O == (ST) + 4(V“<I>)2 - 4V“V“CI> + R + EHyupH#Vpa

where R, is a Ricci tensor, R is a Ricci scalar, and V, is a covariant derivative. The equations
(2.1.5) has a physical interpretation. They are the equations of motion of the supergravity

action

1 " e 1 L (D —26)
52—2—%2/d v/ —Ge (R—4VM<I>V“<I>+EH,W,,H“”+T : (2.1.6)

This action describes the the long-wavelength limit of the interactions of the massless modes

of the bosonic string.

2.2. Toroidal compactification

Following from [9], let us consider string theory on a D-dimensional space with n directions
are toroidal compactified. The target space manifold can be expressed as a product between a
d-dimensional Minkowski space-time and an n-torus, such that R¥1! x T™ where D = n + d.
In this case, the critical string theory, which has no Weyl anomalies, is considered. That means

it can be either D = 26 for the bosonic string theory or D = 10 for superstring theory. The
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string action is given by

2w
L o i ; o ; A
S = o /da/d7<ﬁ7 PO X 0 X’'Gij + € B0, X 85X]Bij>, (2.2.1)
0
where 7,5 is a world-sheet metric, €*? is an antisymmetric tensor with ' = —1, Gijis a

constant target space metric, and B;; is a constant target space two-form.
In the action (2.2.1), the string coordinates X' are split into non-compact directions repre-

sented by X* and compact directions represented by X™,
Xt={Xx™ X"}, (2.2.2)

where p=0,...,d—1land m=1,...,n.
By using a notation and following from [9, 13|, the constant background metric G;; with an

inverse metric G¥ satisfying GYG,, = d}, is written as

Gij = Gn - 0 : (2.2.3)
0 Nw

where G, is a flat metric on the n-torus 7" and 7,, is a Minkowski metric on the R4~1!.

Similarly, the constant background two-form B;; is written as

B, 0
B;; = . 2.2.4
j ( 0 o) (2.2.4)

For later convenience, the background matrix E;; [9] is defined by

Epn 0
0 7w

where Enn = Gon + B
In this case, it is restricted to the closed string theory, so that the string boundary conditions

in compact directions and non-compact directions are given by

X"o+2m) = X"(o)+ 2rw™, (2.2.6)
X*o+2m) = X*(0), (2.2.7)

respectively, where w™ is a winding number and takes an integer value. It represents the

number of times that string wraps along X coordinate.
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Recall the action (2.2.1), since the critical string theory is considered, the string world-sheet

metric can be chosen such that it is a Minkowski metric in 2-dimension,

Ta = Tag- (2.2.8)

By substituting this metric into (2.2.1), the action becomes

2
S — _ﬁ ‘0/1 dade{n"‘fBaaXiangGij + eaﬁﬁaXiE)ﬂXjBij},
2 < . . .. .
= g | do [ dr{-X'XIGy + X"XGyy — 2X X By}, (2.2.9)

where "and ’ represent derivatives with respect to the world-sheet time-like coordinate 7 and the
space-like coordinate o, respectively. The canonical momentum FP; conjugated to the coordinate
X7 is defined as

)
i = S (2.2.10)
0X"?
Therefore, from the action (2.2.9), the canonical momentum is given by
2nPi(o, 1) = Ginj(U, 7) + By X" (0, 7). (2.2.11)

A momentum excitation p; from the canonical momentum is defined by

2

pi = /dchi. (2.2.12)
0

Recall that from the Kaluza-Klein theory, the momentum excitation along the compact dimen-
sion p,, is quantised and normalised such that it takes an integer value. The reason for the
Kaluza-Klein momentum must be quantised is because exp (ip,,Y™) must be a single value
function.

The expansion of modes for coordinate X? is given by
X'(o,7) = 2"+ w'oc + 7GY(p; — Bjw®) + L Z — (6/ e mrHo) 4 a;e_m(“")) ,
(2.2.13)

where 2 is the centre of mass of the string, o/, and a‘, are the n-mode oscillators for right-mover

and left-mover, respectively. In this expression, there is no winding number in non-compact
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directions,
w' = {w™, 0} (2.2.14)

By substituting the coordinate expression (2.2.13) into the conjugate momentum expression
(2.2.11), it becomes

1 S S
27 P = pi+ —= »_ (Eyahe ") + Elale ) (2.2.15)
\/§ n#0

where E;; is the background matrix defined in (2.2.5).

2.3. Hamiltonian and level-matching condition

In order to determine the spectrum of string theory, the Hamiltonian will be determined and

its definition is given by

21

"= /daﬂ(a, ), (2.3.1)

where H(o, 1) is a world-sheet Hamiltonian density given by
H(o,7) = X'+ (—X’X]Gij +XIXIGy — 2X’X’JBij) . (2.3.2)

By substituting the coordinate expression (2.2.13) and the momentum expression (2.2.15) into

the above equation, the Hamiltonian density becomes

AvH = ( X' 27 P ) H(E) ( Qj; ) , (2.3.3)

where H(FE) is a 2D x 2D symmetric matrix and constructed from the metric G;; and the

two-form B;;. It is known as the generalized metric and takes the form

Gy — BaGMBy;  BiGM
H(E) = o ! 3 : (2.3.4)
( —G* By, G

Therefore, the Hamiltonian can be calculated by substituting the expression of the coordinate
(2.2.13) and the canonical momentum (2.2.15) into the Hamiltonian density (2.3.3). The result
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is
H = 127’7'-[(E)Z —i—l E (o_/ Gyl + o G--aj) . (2.3.5)
2 9 o —ntn —n—tn

However the Hamiltonian (2.3.5) is not in the normal-ordering due to ambiguous order in the
second term. By performing normal-ordering and discarding the constant from the normal-

ordering, the Hamiltonian becomes

1 _
H = §ZT%(E)Z+N+N, (2.3.6)

where Z is a generalized momentum, that unifies the momentum excitations p; with the winding

Z = (wi ) , (2.3.7)
Di

and N, N are number operators for right and left-moving modes, and written by

modes w!, and defined by

N =3 (a,Gyad), (2.3.8)
n>0

N =3 (a',Gyal). (2.3.9)
n>0

In the string theory, the physical state |¢) satisfies the Virasoro constraints

Lo —al¢) =0,Lylo) =0, (2.3.10)
Ly —alg) =0,Ly,|¢) =0,withm > 0. (2.3.11)

These conditions give rise to the level-matching condition which takes the form,
Lo — Lo|g) = 0. (2.3.12)
After substitute the expression of Ly and Ly, the level-matching condition becomes
Ly—Ly=N— N —pw' =0. (2.3.13)
As a result, the level-matching condition gives

N-N = piwia
1
= §ZTnZ, (2.3.14)

where Z is the generalized momentum defined in (2.3.7) and 7 is a constant matrix which will
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play a major role in the next section and defined as

n= ( ]? 3 ) , (2.3.15)

2.4. T-duality and O(n,n,Z)

with 1 is an identity D x D matrix.

From the previous section, the Hamiltonian (2.3.6) and the level-matching condition (2.3.14)

are obtained. Now let us consider the transformation symmetry of the generalized momentum
Z such that

7 Z=hn"7Z, (2.4.1)

where h is a transformation matrix that mixes w™ and p,, after operating on the generalized
momentum. The requirement of this transformation is that the level-matching condition and

the Hamiltonian are preserved. Therefore, from the level-matching condition and (2.4.1), it

gives
N7 1 T ! 1 T
N-N=cz"z = 727
1
= 5Z’TfthZ’. (2.4.2)

From the above relation, the transformation matrix A must preserve n
hnh' =n. (2.4.3)

That means h is an element of O(D, D, R) group and 7 is an O(D, D, R) invariant metric. Since
we must encounter this group several times in this thesis, let us introduce the basic feature of
this group.

The element h belongs to the O(D, D, R) group if it preserves the O(D, D, R) invariant metric

O(D,D,R) = {h € GL(2D,R) : hnh" =n}. (2.4.4)

Let a, b, ¢, and d be D x D matrices, h can be represented in terms of these matrices such that

h:(i Z) (2.4.5)
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The condition in which A preserves n gives the conditions for a, b, ¢, and d, namely,
a'c+c’a=0,b"d+d"b=0,and a’d+c'b=1. (2.4.6)

From (2.3.6), let us consider the first term which is

Hy = %ZT’H(E)Z. (2.4.7)

This term which is invariant under the O(D, D, R) transformation induces the transformation
property for H(E)

ZTH(ENZ = ZTH(E)Z,
= ZThH(E)WZ'. (2.4.8)

From the above equation, the generalized metric transforms as
H(E') = hH(E)h". (2.4.9)

From (2.4.9), it leads to the transformation rule for E by the following method. First, the

generalized metric is formulated in terms of a vielbein hp which is an O(D, D, R) element
H(E) = hpht, (2.4.10)
and hg is defined by

Iy — ( ; Ezi‘;?_:l ) , (2.4.11)

where e is a vielbein of the metric G = ee’. Next, the action of O(D, D,R) group element h
on D x D matrix F is defined by

h(F) = (aF +b)(cF +d)™". (2.4.12)
From this group action, the background matrix F is obtained from
E = hg(1). (2.4.13)
From (2.4.9), the transformed vielbein A/, is obtained from the original hg

hp = hhp. (2.4.14)
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Therefore, the transformation rule for £ is obtained by
E' = hp(1) = hhp(l) = h(E) = (aE +b)(cE +d) .. (2.4.15)

In order that the full Hamiltonian is invariant under O(D, D, R) transformation, N, and N
should be invariant under this transformation. From the transformation rule for £ (2.4.15),

the symmetric part of E’ is corresponding to G’, then we get the relation between G and G’ [9]

(d+cE)'G'(d+cE) = G, (2.4.16)
(d—cE"Y'G'(d—cET) = G. (2.4.17)

After the transformation of the metric is obtained, and using the commutation relations between

the oscillator

0k, (B), al(E)] = 6L, (E), &(E)] = mG8psno. (2.4.18)

m m

The transformation rules for a!  and a‘, are obtained [9]

an(E) — (d—cE") o, (), (2.4.19)
an(E) — (d+cE)a,(E). (2.4.20)

Therefore, the number operators are invariant. This means the full spectrum is invariant under
the O(D, D, R) transformation.

Moreover, there is another symmetry which is known as the world-sheet parity. The operation
of the symmetry flips the sign of the two-form (B — —B) and exchanges the right-moving and

left-moving oscillators into each other as
Q> Q. (2.4.21)

The full Hamiltonian is also invariant under this action.

As we mention before, from the restriction that w™ and p,, take the discrete values due to the
boundary condition of the n-dimensional toroidal space, so that the symmetry group should be
restricted to O(n,n,Z) subgroup of O(D, D,R). This O(n,n,Z) is known as the the T-duality
group in string theory. However, it is useful to represent h € O(n,n,Z) in terms of O(D, D, R)

h= ( Z Z ) : (2.4.22)

representation and represented as
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with

a:<a 0>,b:<5 0>,c:<é 0),d:<d 0), 2423
01 00 00 01

where @, b, ¢, and d are n X n matrices and can be rearranged in terms of O(n,n,Z) element h

X

In this report, the representation of O(D, D) and O(n,n) are both used.

as

O ¢
Q¢ O«

) . (2.4.24)

2.5. Example of O(n,n,Z) transformation

In previous section, the string theory on the space with n dimensions are toroidal compactified
background leads to the existence T-duality O(n,n,Z) group. In this section, the examples of
the O(n,n,Z) element are provided. At the point, one wonders that every O(n,n,Z) can be
used to generate the transformation. However, the answer is no because there are some group
elements that break the upper triangle of the vielbein (2.4.11) after transformation. These
kinds of group elements do not give the metric and the two-from in the transformed theory,
whereas they introduce the bivector 3%. So that in this section, we will focus only on group

elements that preserve the upper triangle of (2.4.11).

Integer theta-parameter shift ©,,,

The first O(n, n, Z) element that we would like to introduce is the theta-parameter shift ©,,,.
In the string-world sheet action, the term that correspond to the constant two-form in fact gives
the total derivative. That means if the two-form is shifted by the constant integer, it will not
contribute to the path integral because it gives only the topological contribution. On the other

hand, this transformation can be thought of as a two-form gauge transformation such that
Bin = B + O (2.5.1)

The group elements that correspond to the theta-parameter shift are

) 10
he = ( - ) (2.5.2)

where 0©,,,, € Z and ©,,,, = —6,,,,,.
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Basis change A

The n-torus T™ is the quotient space of R™ with the lattice A. The transformation of the
lattice A by the GL(n,Z) transformation does not change the torus. Thus, the spectrum is in-

variant under this transformation. The group element of this transformation can be represented

. A 0
() s

as

where A € GL(n,Z).

Factorized duality T}

The factorized duality T} is corresponding to the exchange of the radius Ry — 1/Ry along
the circle in X* direction and leaves the other direction unchanged. This gives rise to the

interchange between the winding mode and the momentum mode in this direction,
w & py. (2.5.4)

In the literature, this transformation is referred to the T-duality along X* direction. The group

elements that represent this transformation are

. 1-—
th = ( * o ) ) (255)
€l 1-— €k

where e, is a matrix that has zero component everywhere except kk component. Not only
the winding mode and momentum excitation are exchanged, but also some component of the

metric and the 2-from in the compact direction. This is know as the Bushcer rules [100,101] .

Inversion

The transformation that interchange Ry — 1/Rj have been previously discussed. If one try
to do n successive factorized T-dualities in all the n-dimensional compact space, it gives the

inversion of the background matrix F,

E=G+B—FE =G +B =E" (2.5.6)

The group element is represented by the O(n,n) invariant metric
: 01
h; = . 2.5.7
: ( o ) 25.7)

28



2.6. Superstring theories and M-theory

In the previous section, the toroidal compactification of the bosonic string is discussed. In
this section, we will consider superstring theories [5] - [8]. There are five different superstring
theories in ten dimensions, namely, type ITA, type IIB, type I, heterotic SO(32), and heterotic
Egs x Es. Upon compactification on a circle, these superstring theories are dual to each others.
Moreover, the strong coupling limit of type IIA and heterotic Fg X Eg can be described by an

11-dimensional theory known as M-theory.

2.6.1. Open superstring

Consider the generalization of the open bosonic string theory to include fermions, in the

conformal gauge, the action is given by

1

4o

S:

/ o (0X10X, — VO, — 0D, ) (2.6.1)

where the world-sheet of the open string is the strip 0 < o < 7w, —00 < 7 < 00. The world-sheet
fermions admit two possible boundary conditions, namely Ramond sector (R), and Neveu-
Schwarz sector (NS).

R sector : (0, 7) 21;“(077)

(
WH(m,7) = P, T) (2.6.2)
NS sector : *(0,7) = —p*(0,7)
i (m,m) = (7). (2.6.3)
The mode expansion of the fermions is given by
w‘u(z)zzﬂWhGI‘GTEZ(R)OI‘TEZ—Fl(NS) (2.6.4)
- zr+%7 9 . .0.

Along with the mode expansion of the bosonic excitation o , the mass formula of the open

string is given by

1
M2 — J (Z oy, - Oy, + T¢—r . ¢7‘ — a) , (265)

where a is related to the zero point energy

o= % (NS) or 0 (R). (2.6.6)
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The ground state of NS sector is a tachyon and is a Lorentz singlet with odd fermion number,
which is a state of eigenvalue -1 of the operator (—1)F.

In order to get the spacetime supersymmetry in this theory, the tachyon state need to be
projected out, while keeping the massless state. This projection is known as the GSO projection
[102]. The GSO projection will project out the state with odd fermion number in the NS
sector. The tachyon state has (—1)" = —1 so it is removed from the spectrum. After the GSO
projection, the ground state in the NS sector is tachyon-free. This massless state of the NS

sector is a vector field, A*,
k), MP=0 (2.6.7)
2

Since a massless particle state in ten dimensions is classified by SO(8), which is little group of
SO(1,9), this massless state is a vector representation of SO(8),8,.

In the R sector, the ground state is massless since the zero point energy vanishes. This state
is a spinor state, which has 32 complex components in ten dimensions. However, by imposing
Majorana and Weyl constraints, these will reduce the number of components to 16 real numbers.
With the Dirac equation in ten dimensions, the degrees of freedom of Majorana-Weyl spinor
will be 8 propagating modes. There are two types of massless Majorana-Weyl spinors in ten
dimensions. Both of them have 8 degrees of freedom, labeled by 8, and 8.. In the R sector,
the GSO projection picks out the 8;. The other choice, 8., can also be chosen. The difference
between these two spinors is meaningful if only they are both present.

From the GSO projection of the NS sector and the R sector, the ground state spectrum of
the open string theory is 8, @ 8,. This is a vector multiplet in ten dimensions with N/ = 1
supersymmetry. When the Chan-Paton factors are included, this gives the U(N) gauge theory
in the oriented theory and the SO(N) or the USp(N) in the unoriented theory.

This theory on its own is inconsistent. One of the reason is this theory is a chiral theory, for
example, the fermion 8, has a specific chirality. The chiral theory contains gauge and gravity

anomalies in ten dimensions.

2.6.2. Closed string theory: type II

The closed string state is the product of two open string states with the level matching
condition. The two choices of GSO projection in the open string theory are equivalent. However,

in the closed string theory there are two inequivalent choices of the ground state, namely,

Type ITA : (8, ®8;) ® (8, ® 8.)
Type IIB : (8, ® 8;) ® (8, ® 85). (2.6.8)
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The ground state of the closed string theory can be classified into 4 sectors, namely, NS-NS,
NS-R, R-NS, and R-R sectors.
Type ITA and IIB have the same NS-NS sector, which is

8, ®8, =G, ® B, & 0. (2.6.9)
In the R-R sector, the states are the product of two spinors giving the space of n-form as

Type IIA : 8,®8.=[1] @ [3] (2.6.10)
Type IIB : 8,®8, = [0] & [2] @ [4]., (2.6.11)

where [n] represents n-form of SO(8), and [4] represents self-dual 4-form. In NS-R and R-NS,
the products 8, ® 8. and 8, ® 8, are given by

8, ®8. = 8,® 56, (2.6.12)
8, ®8, = 8,56, (2.6.13)

where 56, and 56, represents gravitinos with different chiralities.

The massless spectrums of type ITA and type IIB are summary as

A : GW®B,®Pa[1] & [3]®8,% 56,8, & 56, (2.6.14)
B : G,®B,@®®[0]®[2]® 4]+ ®8.® 56,8, @ 56, (2.6.15)

In the type ITA, the two gravitinos (and supercharges) have different chiralities, while they are
the same in the type IIB. Type IIB is a chiral theory, therefore, should have a gravitational
anomaly. However, the massless spectrum is anomaly free. This is because the cancellation
between the anomalies of 8., 56, and [4] .

Now, let us consider the role of each fields in the massless spectrums of type ITA and IIB.
The first one is the Kalb-Ramond two-form, B,,. This field is electrically coupled to the
fundamental string, F1, and magnetically coupled to the NS5-brane. This two-form are present
in both type ITA and IIB, therefore, both theories have the F1l-string and the NS5-brane.

In the type ITA, the R-R sector contains odd-forms, namely, 1-form and 3-form. This 1-form
is electrically coupled to the DO-brane and is magnetically coupled to the D6-brane. The 3-form
is electrically coupled to the D2-brane and is magnetically to the D4-brane. Therefore, apart
from F1-string and NS5-brane, type ITA string also contains Dp-branes, where p is even. These
objects are solutions of the supergravity theory of type IIA, which is a low-energy limit of string
theory of type ITA. There is also an D8-brane, which is a solution of massive supergravity [103].

In the type IIB, the R-R sector contains fields of even-forms, namely, 0-from, 2-from, and self-
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dual 4-form. the O-form is electrically coupled to the D(—1)-brane and is magnetically coupled
to the D7-brane. The 2-form is electrically coupled to the D1-brane and is magnetically coupled
to the D5-brane. the self-dual 4-form are both electrically and magnetically coupled to the D3-
brane. These Dp-branes are solutions of supergravity theory of type IIB. There is also an

D9-brane, which appears in type I string.

2.6.3. Typel

From the last section, the spectra of closed string theories have been shown. In the type I1B,
the left-moving and the right moving sections have the same GSO projection, for example, they
have the same chiralities in the R sector. Therefore, the spectrum of type IIB is invariant under
the world-sheet parity €2, which is a symmetry that reverses left- and right-moving oscillators.
By gauging type IIB with €2, the unoriented string theory is obtained. This theory is known as
type I string theory.

The spectrum of type I consists of even states under €2 of type IIB. In the NS-NS sector,
G, and @ are symmetric under €2 and survive the projection, while, B, is projected out. In
the R-R sector, [2] state is an even state of Q. In the NS-R sector and the R-NS sector, one
linear combination of gravitinos survives the projection so as the supercharges. Therefore, the

massless closed string states of type I consist of G,,, ®, an RR two-form, and a gravitino.

s
These are an N = 1 supergravity multiplet in ten dimensions. This theory in fact contains
an anomaly because the state 8., 56, and [4], has been projected out. This theory needs an
additional sector to cancel the anomaly. The additional sector is an N' = 1 vector multiplet
with the gauge group SO(32), which is the massless sector of the unoriented open string theory.

Type I can be thought of another way as when projecting the type IIB with €2, the spacetime
of type IIB is filled with O9-brane making the unoriented string theory. The anomaly appears
because of the O9-charge which has -16 unit of the D9-brane charge. Therefore, to get a
consistent theory, 16 D9-branes need to be filled in the spacetime to cancel the O9-brane
charge. This is equivalent to introduce open string states that end on D9-branes in the theory.
When the 16 D9-branes are coincide with O9-brane, the gauge group SO(32) is obtained. This

theory contains the RR two-form, therefore, it includes D1-brane and D5-brane.

2.6.4. Heterotic string theory

In additions to the three superstring theories, namely, type ITA, IIB, I, there are two more
superstring theories in ten dimensions. They have non-Abelian gauge symmetries, namely,
SO(32), or Eg x FEg. The word ‘heterotic’ means that these theories are a hybrid of two
different constructions of the string theory on the left and the right sectors. On the right

moving sector, this is a state of superstring theory, while the left moving state is the bosonic
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string theory, which is the consistent theory in 26 dimensions.

The heterotic theory makes sense in ten dimensions if the left moving sector is compactified
on a 16-torus, T1¢. The generic gauge group U(1)'® can be enhanced to one of two rank 16
gauge groups, namely, SO(32), and Eg x Es. This enhance gauge symmetry happens when the
lattice A, which defines 16-torus as R1®/A, are self-dual even lattice. There are two self-dual
even lattices in 16 dimensions corresponding to I''® or I'® x I'®. The I''6 gives the SO(32) gauge
group, while I'® x I'® gives the Eg x Eg gauge group. The massless spectra of these theories are
the same of type I, which consist of N = 1 supergravity multiplet and N = 1 vector multiplet
with gauge group SO(32), or Eg X Fg.

2.6.5. M-theory

In the type ITA string theory, there are two free parameters, namely, a string coupling, g,,

and a string length, [,. The tension of the Dp-brane in type ITA is given by

1

Counsider the tension of the D0O-brane which is
1
Tpho ~ oL (2.6.17)

at the strong coupling limit, g — oo, this state becomes light. For any number n of DO-branes,
there is a short multiplet of a bounded state with masses nTpg. This mass is exact since D0-
brane is a BPS state. This spectrum matches the spectrum of the momentum state of the

higher dimensional theory compactified on a circle with a radius R given by
R = gls. (2.6.18)

Therefore, as g, — 00, the eleventh dimension appears. This strong coupling theory of type
ITA string is known as M-theory. There are 2 parameters in M-theory on a circle, namely,
the radius of eleventh dimension, R, and the Planck’s constant, /,. These two parameters of

M-theory are relate to those of type ITA as

R = g, (2.6.19)
3 3
B o= gl (2.6.20)

The low-energy limit of M-theory is the eleven-dimensional supergravity. The field contents
of this supergravity are the metric, Gy, the three-form, Ay;yp, and the gravitino, W,,;. The

three-form is electrically coupled to the M2-brane and is magnetically coupled to the M5-brane.
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Tensions of the M2-brane and the M5-brane are proportional to the Planck constant, [,, in the

11 dimensions as

1 1
~ ~ = (2.6.21)

Upon compactification on S, the ten dimensional supergravity of type IIA can be obtained.

For example, the eleven-dimensional metric gives the ten-dimensional metric and the 1-form,
Gun — G, Aq). (2.6.22)
The three-form gives the ten-dimensional three form and the two-form,
Ayne = B, A (2.6.23)

The BPS states in type IIA, namely, the F1-string, the NS5-brane, and Dp-branes ,where p is
even, can be obtained from the M2 and the Mb5-brane. F1-strings are obtained from wrapped

M2-branes along the circle. The tension of wrapped M2-branes is

R
Twrapped M2 ™ l_3 (2624)
P
From the relations (2.6.19) and (2.6.20), the tension of Fl-string is obtained
1
Ty ~ 2 (2.6.25)

S

The other BPS-states are summary in the below table [60].

M-theory Mass/tension | type ITA
wrapped M2-brane % = % F1-string
M2-brane é = gsll;; D2-brane
wrapped Mb-brane l}—g = ﬁ D4-brane
Mb5-brane % = gglls NS5-brane
KK-mode % = gslls DO-brane
KK-monopole ?—; = gsllz D6-brane

The origin of D6-brane in M-theory is the Kaluza-Klein monopole solution. This solution is a

product of the flat-metric and the Taub-NUT space,

dst, = ds*(RY") + dsiy(y),
dsty = Hdy'dy'+ H '(d + Vi(y)dy')?, (2.6.26)
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where H = 1+ |’;—‘ and V; satifies V x V = V- H. This solution is localised in the four Taub-NUT

directions. Upon compactification in t-direction, it becomes D6-brane in type IIA.

2.7. U-duality

In the previous section, the T-duality group of the bosonic string theory is considered. In this
section, the T-duality of superstring theory is considered. Along with the S-duality of Type
IIB, the large group of duality, which is known as U-duality [32] is constructed.

2.7.1. T-duality of type ITA and IIB

As we mentioned before, upon compactification on the n-torus, 7", the T-duality group is
O(n,n,Z). The momentum state, p,,, and winding state, w™, of strings is the fundamental
representation of O(n,n) group. There are also states coming from Dp-brane wraps along the
n-torus which will be the representation of O(n,n) group.

For example, let us consider a simplest case, the compactification of type IIA on the S with

1
R

l}—§ as we mentioned this before. The interesting part is the Dp-brane wrapping state. In type
ITA, there are DO-branes, D2-branes, D4-branes, and D6-branes. Let us consider the D2-brane

wrapping on the S'. The tension is

the radius R. The momentum mode with the mass + is T-dual to winding mode with the mass

T QSPZ? (2.7.1)
Using T-duality along S*,
R+ E,gs > gsl—s, (2.7.2)
R R
the D2-brane wrapping state becomes
ro B! (2.7.3)

~ — :
gl gsl?

This is a tension of the D1-brane. That means T-duality transformation transforms type ITA
into IIB, and vice versa.

The wrapped states of the Dp-brane in type IIA transform into the unwrapped state of
D(p—1)-brane. In ten dimensions, type IIA and type IIB is distinguishable. Upon compatifing
on the n-torus, these two theories become the same theory. The states between two theories

are related by O(n,n,Z), T-duality group.
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2.7.2. S-duality of type 1IB

In type IIB, there is another duality that relates the strong coupling limit of type IIB with
the weak coupling limit of type IIB. This duality is known as S-duality. In type IIB, there are
two types of strings, namely, the F1-string, and the D1-string. The simplest S-duality exchange
the role of the Fl-string and the D1-string. The full S-duality group is SL(2,7Z) [32]. This
SL(2,7Z) relates the F1-string not only to the D1-string but to the (p, ¢)-string which is a bound
state of p Fl-strings and ¢ D1-strings for p, q are relatively prime.

2.7.3. U-duality

Upon toroidal compactification on the n-torus, type I[IA and type IIB are related by O(n,n, Z),
T-duality group. This T-duality group does not commute with SL(2,7Z), S-duality group. They
are the discrete subgroup of a larger group, which known as U-duality group. The U-duality for
type II string compactifies on the n-torus or M-theory on the (n+1)-torus is E,1,(n11)(Z) [32].
The notation Eg 4 denotes a non-compact form of the exceptional group Ejy.

The scalar fields in these theories are given by the coset space [104,105]

En+1,(n+1)/Hn+1- (274)

The scalar manifolds in each dimension are given by

D|d Eqa H, Eq/Hg

101 | RT 1 Rt

9 |2 | SL2 R) x RF o) SL2R)/U(1) x R

S |3 | SL(3.R) x SL2.R) | SOB3) x U(1) | SL(3.R)/SO(3) x SL(2.R)/U(1)
7 |4 [ SLG.R) S0(5) SL(5.R)/SO(5)

6 |5 |S0(5.5R) SO(5) x SO(5) | SO(5.5.R)/(SO(5) x SO(5))

5 |6 | Ege) USp(8) FEs 6)/USp(8)

4 | 7| Erm SU(8) Eq71/SU(8)

3 | 8 | Lgs) SO(16) Eg}(g)/SO(l(;)

In each dimension, the representations of Ej ) can be interpreted in terms of momentum
states along 79, and M2-and M5-brane wrapping states. U-duality will relate momentum
states with M2- or Mb5-brane wrapping states. The detail in each dimension will be mentioned

in chapter 4, when we consider extended field theory.
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3. String Field Theory

The main objective of the string field theory is to explain string dynamics in terms of target
space fields by introducing a string field ¥(X*). Due to a gauge fixing of the world-sheet
symmetry, there are ghost and anti-ghost modes, which also contribute to the string field
U(X* ¢,b). Based on [12], the ways of constructing string fields in terms of a basis state of

conformal field theory will be discussed in the next section.

3.1. Conformal field theory

In a two-dimensional conformal field theory with a complex coordinate z = exp(7 + i0), a

holomorphic field ¢(z) is a primary field of dimension d if

d

(- w)?

T(z)¢(w) ~ ¢(w) +

Bud(w) + . .., (3.1.1)

(2 —w)

where T'(z) is a stress tensor. A transformation law of the conformal transformation 2z’ = f(z)

1S

¢() (A=) = ¢(2)(d2)", (3.1.2)

The primary field ¢(z) of dimension d can be expanded in terms of Laurent series as

¢(z) = % (3.1.3)
where
d
Pn = / ﬁiz”*d”qﬁ(z). (3.1.4)

A conformal vacuum |0), which is equivalent to an asymptotic past z = 0, is defined by

¢n|0) =0 for n > —d + 1. (3.1.5)
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Its dual (0|, which is equivalent to an asymptotic future z = oo, is defined by
(0|, =0 forn < d—1. (3.1.6)

The bosonic string theory is a conformal field theory and the action is given by

1
Y e

S = / 2o/ =7 0, X 05 X 15, (3.1.7)

where 7;; is a flat target space metric, 7,5 is a world-sheet metric and X'(o) are target space

coordinates. By fixing the gauge, v,5 = ¢?1.4, the string action becomes

S:

— /dzzaxianmj + = /d22(680+ boc), (3.1.8)

dma/ T
where ¢ and ¢ are ghost fields, and b and b are anti-ghost fields. String theory with the gauge
fixing, therefore, is a conformal field theory with bosonic fields 10X (z),i0X () and fermonic
fields c(z),&(2),b(z),and b(Z).

The bosonic fields 10X (z),i0X (2) are primary fields of conformal dimension (1,0) and
(0,1), where (d,d) means the field has holomorphic part of conformal dimension d and anti-
holomorphic part of conformal dimension d. The fields i0X?(z),i0X7(Z) can be expanded in
terms of Laurent series as
i0X'(z) =Y fo_tl Xz =Y fo;l (3.1.9)

n n

where the zero-modes af, & correspond to a centre of mass momentum p’. The non-vanishing

commutation relations of o’ ,a’ are given by
[0, 0] = [@5,, 7] = 1076 s (3.1.10)
The conformal vacuum |0) and its dual (0| of the bosonic string field theory are defined by

al|0) = a0y = 0 for n > 0, (3.1.11)
(0lal, = (0]al, = 0 for n < 0. (3.1.12)

A string state is defined by acting the vacuum with creation operators,

noalm o). (3.1.13)

—ni —Nm,

«

However, the state is not completely determined because one degree of freedom which is the
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centre of mass momentum missing. Therefore, a new vacuum, |0, p), can be defined such that

»[0,p) = pl0,p), (3.1.14)

where p is the momentum operator. This conformal vacuum and its dual are annihilated by

the following operators,

al|0,p) = a@4]0,p) =0 for n > 0, (3.1.15)
(0, plat, = (0, plat, = 0 for n < 0. (3.1.16)

The ghost fields ¢(z) and ¢(2) are primary fields of conformal dimension (—1,0) and (0, —1).
The anti-ghost fields b(z) and b(2) are primary fields of conformal dimension (2,0) and (0, 2).

These fields can be expanded in terms of Laurent series as

) =D )= % (3.1.17)

b, o by,
M) = o - W=D 5 (3.1.18)

The non-vanishing anticommutation relations of the mode expansions of these fields are

{bmscn}t = {bm: Cn} = dinino- (3.1.19)
The following modes annihilate the vacuum and its dual as

cn|0,p) = ,|0,p) =0 for n>—1,
ba|0,p) = b,]0,p) =0 for n>2
0,ple, =(0,p|lé, =0 for n<1,
(0,plb, = (0,p|b, =0 for n < -2,

By fixing the conformal gauge, the string action is no longer gauge invariant. However, it is

invariant under the BRST symmetry with the BRST operator given by

Q= / %c(z) (Tb(z) + %Tg(z)) + / ga(z) (Tb(a + %Tg(2)> | (3.1.24)

™

where T,(z) and T,(z) are stress tensors of the bosonic sector and ghost sector, respectively,
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and are defined as

Ty(z) = —%  (OX(2)) -, (3.1.25)
Ty(2) = —:2b(2)-0c(z):—:0b(2)-c(z):. (3.1.26)

The total stress tensor is given by
T(z) =Ty(z) + T,(2), (3.1.27)

and can be expanded in terms of Laurent series as

()= T =Y o (3.1.28)

n n

The vacuum |0, p) is not annihilated by Ly and Lg. This means there is another vacuum state

that has Lo and L, lower than |0, p). This state is known as a BRST vacuum and defined as

| W p) = aal0,p). (3.1.29)

3.2. BPZ conjugate

Given a conformal field theory, a linear inner product can be defined from a BPZ conju-
gate state [106]. For a state |A) = A(0)|0), where A(0) is a normal order operator which is

constructed from creation operators: o, at c,, ¢,, b,,and bs. Its BPZ state is defined as
(A| = (0| - A(0), (3.2.1)

where [ is a conformal transformation I(z) = 1/z, which relates the state at z = 0 to the state

at z = 0o. The BPZ conjugate of the state ca,b,c, ... |0) is
(0lc (am)" (bp) " (c,)" ..., (3.2.2)

where

O =16, = / 92 iy,

271
dz' /+d+1_% 1 d

- n Z 2 ) = (=1)%,. 2.3
[ (2) = (-1t (323)
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In the BPZ conjugation, the order of operators does not change and the c-number is not complex

conjugate. For the BRST vacuum, its BPZ conjugate is then given by

(ol = (0, —plc_1c_;. (3.2.4)

Due to the fact that c_q, cg, c1, ¢1, ¢ and ¢ do not annihilate the states |0, p) and (0, p|, the

ghost overlap can be defined as
(0, ple_1é_1ctcgeiar|0,p)) = (2m)46%(p — '), (3.2.5)
where
1 -
g = 5(00 + &). (3.2.6)
From the BPZ conjugation, the inner product can be defined as

(A, BY = (Alcg |B). (3.2.7)

3.3. Closed string field action and gauge transformation

A closed string field |¥) is a vector in the Hilbert space of a conformal field theory,
T) = ha|@s), (3.3.1)

where 1), which is a target space field and is a component of the closed string field, and |®)
is a string state constructed from string and ghost oscillations. The closed string field is not
arbitrary. It must satisfy certain conditions. The first condition is known as the level-matching

condition and is given by
(Lo — Lo)| W) = (b — bo) W) = 0. (3.32)

Furthermore, the closed string field is restrict to the field with ghost number two and grassma-
nian even.
From the closed string field |U), the free theory action can be constructed from the inner

product

szqum:%@mey (3.3.3)

This action has ghost number six, which are two from ¢, () and four from the string field state.
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By varying the action, the field equation is given by
Q|v) = 0. (3.3.4)
The field equation (3.3.4) is invariant under a gauge transformation
o|W) = Q[A), (3.3.5)

because of the nilpotent property of ). The gauge parameter |A) satisfies the following condi-

tions
(Lo — Lo)|A) = (bo — bo)[A) = 0. (3.3.6)

The gauge parameter has ghost number one and is grassmanian odd.

3.4. 1st-massive open string state

In the last section, we provide the construction for the closed string field theory. The open
string field theory can be constructed in the same way as the closed string field theory. Instead
of having two ghost modes and two anti-ghost modes, the open string field theory will have
only one ghost mode and one anti-ghost mode. The general open string field will be a state
with ghost number one.

The first massive open bosonic string field in can be expanded as

W)= [l ( ip)asen + G Hy ol sl e + Bl e
+D(p)b_ococy + E(p)c_1> Ip). (3.4.1)

For the free theory, this string field is invariant under the gauge transformation
|W) = QIA), (3.4.2)

where ) is a BRST operator, and a gauge parameter |A) is given by

3) = [l (et s+ b ) ) (3.43)
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This gauge transformation leads to transformations of the component fields as

oV, = N\ — Qi X,
5Hij — Z'Q/OZ-)\j —+ iaoj/\i + XNij

1

1
oD = — (§a§+1> X

OE = iap\; + 3x.
The free theory equation of motion is
Q¥) =0,

which leads to the field equations of the component fields as

1
i <§a3 + 1) V; —iB; + apD = 0,

1
(50‘3 T 1> Hy; — 100 B; — ag;Bi + Dy = 0,

1 .
<§a(2) + 1) E —iayB;+3D = 0,

’ 1
2iagVi + 5 H +4D —3E = 0,

where H is a trace of H;;.

By define a new field A,
1
A=—(H -2FE),
20
it transforms as
0A = x.

From equations (3.4.11) and (3.4.12), the equation of motion of A is identified

1

(3.4.9)

(3.4.10)
(3.4.11)

(3.4.12)

(3.4.13)
(3.4.14)

(3.4.15)

(3.4.16)

(3.4.17)

By using the field A, a new vector field V; can be defined such that it transforms only under
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A; parameter

Vi = Vi4iagA, (3.4.18)
oV, = . (3.4.19)
Its equation of motion is given by
1,
5% +1)V,—B;,=0. (3.4.20)

Similarly, a new tensor field lflij can be defined as

H;; = H;; — Anj, (3.4.21)
which transforms as
OHij = i \j + i\ (3.4.22)
It field equation is
1, = . 4
(5040 + 1) H;j —io B; —iag; B; = 0. (3.4.23)

By using (3.4.13) and (3.4.14), the auxiliary field B; is

~ 1 ~ 1 ~
B = Vi— zao/gH,ﬂ- - anl-a’gvk, (3.4.24)
- 1 = 1 -
= Vi— z§onHki + ZaOiH’ (3.4.25)

where H is a trace of f]ij.
From the tensor field Flij and the vector field V;, a new gauge invariant field hi; can be defined

as

hij = [N{ij — ’iCYOi‘/;' — Z'CYOJ'V;. (3426)
Its field equation is
1 1 1 1
(5&3 + 1) hz‘j - 50[01'0/8]1]”’ — éa()jhki + 50[01'040]']1 =0. (3427)

This is an equation of motion from Fierz-Pauli action describing the massive gravity theory. It
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can also be shown that
iaghy; = h =0, (3.4.28)

which leads to
1,

The free open string field theory at 1st massive level gives the theory of massive gravity
described by the gauge invariant field h;; which is transverse and traceless. h;; is, therefore, a

2nd rank symmetric tensor of SO(25).

3.5. The first massive closed string state

The first massive closed string field can be expanded in terms of 23 fields as

|\If> :/[dp] ( Hﬁ(p)oz 2a 20101+Azgk( )a 10 lakQClcl+szk< )ai—2d3—1dli10151

__ j o=k =l i j =k 4+
Cz‘jkl(p)a 10 a0 10101+Dmk( Jal ol at 160 C1

Diil}(p)a—la 1dk CO 1 +W'( Jorl COC 1+ W( Jaz ca'c !

N~

j(p)of_ga 100 ¢+ V; (p)a’ 154—200 C1+ Xij(p)a—1a—1clé—l

(p)a’ 1a 1Cico1 + Yi(p)a! 201571+}7ZO7€_251071

o

ol

p)a’ @ jcicoy + Gg(p)at & ey + Z(p)e_ie-

o

N

3 @

J(p)a yb_octcier + Ei(p )022(),203015,1 + Fij(p)a’ 1o 1b_gcl ey

*-(p)o_zflo_zflb_gco cic + Kz‘(p)Oéifll_?_QClC_lEl

.

g@i_lb_gclélé_1> |p> (351)

+ o+ + + + + +

In the case of free theory, it is invariant under gauge transformation
o|W) = Q[A), (3.5.2)
where |A) is given by
|A) = /[dp] ( gijl%(p)al—laj;lo_élilcl +§ijk(p)05£10_45;15/3151 +1/’z‘3(p)04i725‘{101
+ &i}(p)ail‘j‘j—ﬂl + 0:i(p)o’ 1 + O;(p)a’ 1C 1+ G5(p)at 15‘3—103

+ )\Z( )Ozi l_) 20151 +5\’( )O_é b_20151—b—pij(p)oz,lozflb_gclcl
+ ﬁ]( ) 106 b_ 26101)|p> (353)
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It implies gauge transformations of component fields as

50@'121‘

5D, ;

ijk

ow;

_ 1 -~ B
gijl_c + aoﬂ/Jﬂ; + 551‘]')\;; + Qi pij
_ - 1 )

_ B 1. 1
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+
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Qi
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_O_“/ggijl_»c + il
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—20/851%‘3 — 25 + G5 + 04010_3
—2a¢&57 — 2055 + G + aggbs
—djwij + 0;

—afisi + 0;

i ~ig.
agl; — a't;

2)\2 + 2@6/)]1
—2/_\g — 20_45,55.
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3.5.1. T-duality transformation of the first massive level

Next, let us consider a T-duality transformation of the first massive level. Let the background

field £;; is given by

where G;; is the metric on a torus and B;; is a constant 2-form gauge field on the torus.
The T-duality of this background field is given by

E' = (aFE +0b)(cE+d)™, (3.5.28)

where a, b, ¢, and d are the components of O(n,n,Z) matrix h as

h= ( Z Z ) . (3.5.29)

The oscillators a! and &’ transform under T-duality as [9]

an(E) — (d—cE")a,(E), (3.5.30)
an(E) — (d+cE) 'a,(E). (3.5.31)

Define a matrix M,/ and a matrix M;7 as

M = d" - Ec, (3.5.32)

M = d"+E"". (3.5.33)
That means under the T-duality transformation the oscillators transform as

WE) = Ma,(B), (3.5.34)
a,(E) = M'an(E). (3.5.35)

(67

The fields will transform non-linearly under the O(n,n,Z) transformation. For example, con-
sider the first field in the the first massive level, which is

/ [dp] Hij(p)a’sa yeréa|p). (3.5.36)
Under the T-duality transformation, this state transform into

HE ()56 ye16p). (3.5.37)
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The string field state is invariant under the T-duality transformation. This implies the trans-

formation of field Hyj, as
Hyi(p) = Hy(p')M; *MI; " (3.5.38)

In general, a field with indices such as A;,..; 7,5, (p) will transform under the T-duality as

ko, B NG, (3.5.39)

Ay g (D) = A (p') My, ™ -+ M; -

k1'~'an1~im in
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4. Double Field Theory and Extended
Field Theory

In this chapter, Double Field Theory (DFT) [13] will be constructed from the closed string
field theory on the toroidal background base on references [10,12,13]. In [10], it is well known
that T-duality is a symmetry of the closed string field theory. DF'T, therefore, inherits the T-
duality symmetry from the closed string field theory. We will also provide a brief introduction
to Extended Field Theory (EFT) in this chapter.

4.1. Double field theory

4.1.1. Free Theory action

In a RLE x T™ background, a general string field is given by [13]
) = Z/dk’z‘Pl(hp,w)@ﬂku,pa,w“% (4.1.1)
T oo

where I represents all possible states of string fields, ®/(k,p, w) is a target space field, and O’
is an operator constructed from string and ghost oscillators. This string state is characterized
by continuous momenta k, in the Minkowski directions, discrete momenta p, in the n-torus
directions, and discrete winding numbers along cycles of the n-torus. The target space field
is a function of momenta and winding modes. By performing Fourier transform on the target
space field, the field will depend on the usual coordinates z¢ as well as another set of periodic

coordinates, I, conjugated to winding modes,
' (kyy, pa, w*) — & (2, 2%, 7). (4.1.2)

This new set of coordinates is a coordinate of a dual n-torus, 7. The target space field on the
R4=L1 x T™ becomes a function of the R4~ x 727,

By defining #; = (0,%,), a commutation relation between winding modes and its winding

49



coordinates is given by
[, w'] = i6;7 with &;7 = diag{d,,0}. (4.1.3)

In this background, the zero-modes of string oscillations depend on the momentum modes and
the winding modes,
: 1 , 1
abh = —G(p; — Ej®), al = —
0 \/i (pj Jk ) 0 \/5

where E;; = G;; + B;j. The lower indices of these operators can be used to define a new set of

G (p; + Ejuw"), (4.1.4)

derivatives

i (0 ) - i (0 0
Qo 1D NG <8xl kajk) ; Qo v NG <axz + By, 8@) (4.1.5)

By using these derivatives, operators which are quadratic in «g and @y can be defined as

0= %(D2 + DY), A= %(DQ _ DY), (4.1.6)

where D?> = D'D,; and D?> = D'D,. Note that these quadratic operators can be written in

terms of ordinary and winding derivatives as
1 IaJ 1 IaJ
0= §H1J8 0 s A = 577[]8 0 s (417)

where H is the generalized metric, and 8! = (9%, 0;) is the generalized derivative. The level-
matching condition of the closed string state with N = N gives a condition on the target space

field as,
(Lo — Lo)|¥) = 0 < AP = 0. (4.1.8)

Double field theory is constructed from the closed string field theory on the massless level.

The massless closed string field is given by [13]

1 o
|U) = /[dp] ( — §eij(p)a11dj_10161 +e(p)cic_1 + é(p)cic_y

+1 (fi(p)CJclai_l + JEj(P)C(J)rEl@g) ) D), (4.1.9)
where f [dp] represents an integration over continuous momenta in Minkowski directions, and

summations over discrete momenta and winding numbers in compact directions, and e;;(p) =

€ij(ku, Pa; w®). This closed string field has ghost number two because each terms contains two
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ghost oscillators and the field satisfies the conditions [12]
(Lo — Lo)|W) = (by — bo)|¥) = 0. (4.1.10)
The first condition leads to the fields e;;, e, €, f, and f satisfying the conditions,
Nejj=Ne=Ne=Nf=NAf=0. (4.1.11)

The latter condition constrains the closed string field in order not to have the form of ¢ |p).

From the closed string field theory action (3.3.3), the free theory action is given by
s = Sulgelw)
= /[dajd:ﬁ] (ieijDe” +2ele— fif' — fif — f° (Djeij — 2Dl~é)
+f7 (D’es; + 2Dje) ) : (4.1.12)

where [[dzdZ] represents an integration over R4~ x T2, This free theory action is invariant

under the gauge transformation
o ¥) = Q|A), (4.1.13)

where |A) is a string field gauge parameter and given by

A) = /[dp] (é&(p)oﬁ_lcl - %Ai(p)ailcl + u(p)60+> [p). (4.1.14)

This gauge parameter has ghost number one because each term contains one ghost oscillator

and it is grassmanian odd. This gauge parameter also satisfies the following conditions
(Lo — Lo)|A) = (by — bo)|A) =0, (4.1.15)
which constrains \;, \;, and g such that
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The gauge transformation (4.1.13) gives the following field transformations

Se;j = Di\j+ D\, (4.1.17)
5fi = —%D)\H—Diu, (4.1.18)
§fy = %D/_\iJrDiu, (4.1.19)
de = —%Di)\i—F,u, (4.1.20)
o = %Di/_\i+u. (4.1.21)

By introducing new fields d and y such that

1 1
d= 5(6 —é), and x = 5(6 +e). (4.1.22)

The gauge transformations of d and y become

1, _
6d = —L(D'A+ DX, (4.1.23)
1 . _

In this case, p can be used to fix a gauge condition x = 0. This gauge choice will affect the
gauge transformations of f; and f;. However, f; and f; are auxiliary fields and will be eliminated
by their equations of motion.

After choosing the gauge choice x = 0, which leads to the condition d = e = —e, and

eliminating fields f; and f;, the free theory action becomes
(1 i Yomioove Lomi e i 7y

The remainning fields in this action are e;; and d. The former is the fluctuation of the metric

and the two-form gauge field,
€ij = hz‘j -+ bij7 (4126)

while the latter is the dilaton field. This action has gauge symmetries generated by \; and \;,

which are
_ 1 .
5)\6” = D )\ 5,\d = _ZLDZ)\Z" (4127)
_ 1-.-
0xei; = DiAj, 05d = _ZDZ)\i' (4.1.28)
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4.1.2. Cubic interaction action

A cubic interaction of the string action is the result of a following term [12],
{U, U, U} = (Ve [V, T]), (4.1.29)
where [V, U] is a closed string product. The gauge transformation is modified as
AWV =QA+ A V] + ..., (4.1.30)

where . .. represents the higher-order terms of string fields. The string field action is constructed

by keeping the terms with a number of derivative less than or equal to two. After fixing the

gauge x = 0, setting d = e = —e and fields redefinitions, the complete action is
(1 i Yo e Lomio 2 i 7y
1 , _ . _ o
+ e ((D'ew) (D) = (Diew)(D'e) — (Dre')(Dlew) )

1 ) _ . 1 1 -
+ §d((DZ%‘)2 + (Des;)* + Q(Dk%‘)Q + g(Dkez‘j)2)
+ de’(D;D"ey; + D;jD"ey) + 4dey;dD D7 d + 4d2md) . (4.1.31)

This action is invariant under the following gauge transformations,

_ 1
(S)\é’ij = Dj)\i + 5 [(D,)\k)ekj — (Dk)\i)ekj + )\kaeij] , (4.1.32)
fid = — DA+ (WD), (4.1.33)
_ 1 _ _ -
55\61‘3‘ = Dz)\] + 5 [(Dl)\k)ek] — (Dk)\l)ek] -+ )\kaeij] s (4134)
1-.— 1 —. _
bd = —7D'N+5(ND))d. (4.1.35)

This action is also T-duality invariant.

4.1.3. Double field theory action

Double field theory is focused on a cubic interaction rather than higher order interaction
terms. The cubic interaction hints a way to construct the action in terms of full fields instead

of background fields and fluctuations. In [15], a background independent action is constructed
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in terms of the field &;; = g;; + b;; and the dilaton d, as

= fd:cd:ie‘Qd( 19* g DPELD,E;; + 1gM (DIELDE) + DigiDE)
+(D'dDIE;; + DIADIE;;) + 4DidDid) ,
where the derivatives are defined as
D, =0, — Ex0*, D= 0; + &y (4.1.36)

This action is invariant under the O(D, D) transformation and the following gauge transfor-

mations,

0cEij = Diky — Diki+ EM0uEij + Dic*Exj + Dic €, (4.1.37)
Sed = 0" + D, (4.138)

where new gauge parameters are defined by
A==€+ B8, N =& + By (4.1.39)

These new gauge parameters ¢ and éz form a vector representation of the O(D, D) group,

u_ [ ¢
I ( : ) . (4.1.40)

This action require a strong constraint, 825’( ..) = 0, where ... represents fields and gauge
parameters, in order to make the gauge transformation closed. The strong constraint restricts
the theory depending on half of coordinates. When the set of coordinates is in the supergravity

frame, i.e. = 0, this action reduces to the bosonic part of the supergravity action,

S = /daz\/—e 2¢(R+4(a¢) ——H2) (4.1.41)

In order to verify the gauge invariant property, one needs to go through a long calculation.

In [16], an alternative form of the action is provided in terms of the generalized metric Hpsn,

i — bz klb ) bz kj
Hagn = | 977 OR9 0 I (4.1.42)
— g by g"

which is defined as
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and the dilaton d
S = fdxdfe_Zd (%’HMN(?M/HKL(()N'HKL — %/HMNaN/HKLaLHMK

—200dONHMN + 4”HMNE)Md8Nd) : (4.1.43)

It is obvious that this action is O(D, D) invariant because every field in this action is written
in terms of O(D, D) objects and their indices are totally contracted. For example, H,/y is an
O(D, D) tensor, the dilaton d is an O(D, D) singlet, and the gauge parameters are combined
into an O(D, D) vector. An O(D, D) index, such as M, N, runs from 1 to 2D and can be raised
and lowered by the O(D, D) invariant metric, npsx.

The gauge transformations of the generalized metric and the dilaton are given by

SHMY = €POpHMY 4+ (0MEp — 9" YHY + (0N Ep — OpEM)HMT (4.1.44)
Sed = MOyd — %aMgM, (4.1.45)

When the strong constraint is imposed, i.e. dl = 0, the gauge transformation of the generalized

metric becomes

0cgij = Leijy (4.1.46)
0cbij = Lebij+ ﬁgbz’j + aigj — ajéi- (4.1.47)

The &i(z) is the parameter of the ordinary Lie derivative, while & (z) is the parameter of the
two-form gauge transformation.

From the gauge transformation of the generalized metric, the generalized Lie derivative can
be defined such that

SeHMN = LeHMN. (4.1.48)

. Mpn,

The generalized tensor T N...N,, can be defined such that under the gauge transformation,

it transforms as

For example, the generalized Lie derivative of the generalized vector with the lower index, Ay,
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and with the upper index, BM, are given by

ﬁgAM = fPaPAM + (8M§P — ang)Ap, (4150)
LeBM = ¢P0pBM 1 (0Mep — 0pe™)BY. (4.1.51)

Furthermore, the invariant metric ny;x and the Kronecker delta ¢ 5 are invariant under

the gauge transformation, which are given by the vanishing of the generalized Lie derivative,
ﬁgnMN = O, Eg(sMN = 0. (4152)

When éM = 9My, where y is a function, and the strong constraint holds, the generalized Lie

derivative of any generalized tensor with this gauge parameter vanishes
Lo T = 0. (4.1.53)

This case is known as the redundant gauge transformation.

The commutation relation of any two generalized Lie derivative gives rise to a C-bracket,
LeLe| = Lo (4.1.54)
where [, ]¢ is the C-bracket and is defined by
(€1, &) = &V onE" — %&NaMggV —(12). (4.1.55)
This C-bracket has a non-vanishing Jacobiator J (&, &, &3),

61, [§2, &3l cle + cyclic = J(&1, &2, &3)- (4.1.56)

However, this Jacobiator corresponds to the redundant transformation, J¥ = 0MAN. The

generalized Lie derivative with the strong constraint, therefore, satisfies the Jacobi identity.

4.2. Extended field theory

The idea of extended field theory is to make a U-duality manifest theory by enlarging the

internal space to accommodate brane wrapping modes as

MY — MM MY — MU M (4.2.1)
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where M4™E1 g an enlarged space with dimensions equal to dimR;, and R, is a representation

of the generalized vector given in the below table.

d Eqa) R,
3| SL(3) x SL(2) | (3,2)
4 SL(5) 10
5| Spin(5,5) 16
6 Es (o) 27
7 Er ) 56
8 Ex s) 248

This generalized vector transforms under the generalized Lie derivative as [26]
LoVM = LyVM 4+ YMN b0 UP Ve, (4.2.2)

where the Y-tensor, Y™V pg, can be constructed for each symmetry group, Ej 4. It measures
the deviation of the extended geometry from the Riemannian geometry. The algebra of the
generalized Lie derivative is closed and the Jacobi identity is satisfied if a strong constraint is
imposed. The strong constraint in extended field theory is known as the section constraint,

which is given by [26]
YMN b0 (.)On(...) = 0. (4.2.3)

This constrain will ensure that the fields are locally depend on an d-dimensional subspace of
extended space.
The bosonic degrees of freedom of the theory are given by the metric and 3-form gauge field.

These fields parameterized the coset space E(g q) /H4 and are known as the generalized metric.
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5. Finite Transformation for Double
Field Theory and Extended Field
theory

In order to understand the geometry of DFT, there have been a number of attempts to
explore the relationship between the gauge symmetries of DFT and the diffeomorphisms of
the doubled space [73] - [77]. However, the gauge group and the diffeomorphism group are
not isomorphic [78] because the former acts through the generalized Lie derivative while the
latter acts through the Lie derivative. In this chapter, we generalize the result from [78], which
is a finite transformation for DFT to a finite transformation for EFT. The cases SL(5,R),
Spin(5,5) and Eg ) are considered.

5.1. Finite transformations for double field theory

In this section, we review the results of [78]. Double field theory has fields on a doubled
spacetime M. Consider a patch U of M with coordinates

XM = (xm> (5.1.1)

where m = 1,...,D. A generalized vector W transforms as a vector under O(D, D) and

WM = (wm> , (5.1.2)

under GL(D,R). The strong constraint is solved by having all fields independent of Z,, so that

decomposes as

I =0 (5.1.3)

on all fields and parameters. Then the fields depend on the coordinates z™, parameterizing
a D-dimensional patch U (which can be thought of as the quotient of & by the isometries
generated by 9/0z™).
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The generalized Lie derivative
LyWM =vVPopWM + WF(0MVp — 9pV™M) (5.1.4)

for VM (x), WM (z) then gives
) g

~

(Ly W)™ = 0POw™ — wPou™ = L,w™ (5.1.5)

and
(LyW) = 0Py, + WypOnt? + WP (8T — Oy ) (5.1.6)
= Loy + WP (DT, — Oyim) (5.1.7)

where £, is the usual Lie derivative on U.

Under an infinitesimal transformation with a parameter V™, WM™ transforms as

SWM = £, WM (5.1.8)

giving
ow™ = L™ (5.1.9)
Sy = Lot + WOy — Oyim) (5.1.10)

It will be convenient to rewrite the components of the generalized vector W as
e m

w=w"e, Wy = Wpe™, (5.1.11)

where e, = 0/0z™ and e™ = dx™ are the coordinate bases for TU and T*U, respectively. Then

the generalized vector can be written as
W:w@ﬁ)(l). (5.1.12)
Under an infinitesimal transformation with a parameter V', these transform as

hww = Lyw, (5.1.13)
o) = Lya) = twdiqy, (5.1.14)

where L, is a Lie derivative on patch U.
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Next, we introduce a gerbe connection B,y on U,

1
B(Q) = §an€m A 6",
which transforms under the gauge transformation as

5VB(2) = ,CUB(Q) + d{)(l)-

Then

transforms as

5Vw(1) = va(l).

and so is a 1-form on U, and is invariant under the ¢ transformations. Then

A

W:w@ﬁ)(l)

is a section of (T"® T*)U.

The finite transformation of W is given by

w'(@') =w(z) (@) = da)(@),

where 2/(z) = e™" 9. Using the finite transformation of the coordinate bases

ox" m w0z
e (') = en(z)ax’m eM@') =e ($)W’
the finite transformation of the components of W are then
" n 0x™ . . oz"
W) = @) S () = o)

The finite transformation of the gerbe connection can be taken to be
By (') = Bez)(x) + di (),

so that
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(5.1.17)

(5.1.18)

(5.1.19)

(5.1.20)

(5.1.21)

(5.1.22)

(5.1.23)
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This then gives the finite transformations of w):

@21)@/) = UA)El)(x/) - Lw’BE2) (),
= W) (@) = tw(Be)(z) + dig (z)),

= w(l)(x) - Lwdﬂ(l)(x). (5.1.25)
To summarize, the transformation of W is given by

w'(z") = wx), (5.1.26)
u?El)(x’) = ﬁ)(l)(x)—Lwdf}(l)(:E). (5.1.27)

which implies the components (w™,w,,) transform as

w™(@) = w"(x)%g;/: (5.1.28)
B(a') = [iylx) — 0" (@) Oty (x) — ()] (5,129

5.2. Finite Transformations for Extended Field Theory

5.2.1. SL(5,R) Extended field theory

In SL(5,R) extended field theory [35,42], a generalized vector W™ transforms as a 10
of SL(5,R) where the indices M, N = 1,...,10 label the 10 representation of SL(5,R). It
decomposes under GL(4,R) C SL(5,R) into a vector and 2-form:

WM = (wm> , (5.2.1)

where m,n =1,...,4 and W,,,, = —Wy,,. The coordinates in a patch U consist of 7 spacetime
coordinates y*, ;. = 0,...,6, together with 10 internal coordinates X™ transforming as a 10
of SL(5,R). This decomposes under GL(4,R) C SL(5,R) as

XM = (f“"m> , (5.2.2)

where, in a suitable duality frame, 2™ are the usual coordinates on 7% and Z,,, are periodic
coordinates conjugate to M2-brane wrapping numbers on 7%, Fields and gauge parameters

depend on both y* and X, but we will suppress dependence on y* in what follows.
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The strong constraint of SL(5,R) EFT is given by

EiMNEinaM(. .. )8N( .. ) = 0, (523)

where (...) represents fields and gauge parameters, and the indices 7,7 = 1,...,5 label the
fundamental representation 5 of SL(5,R). An index M can be regarded as an antisymmetric
pair of indices [myms], so that eMN = ¢mmamnz - The strong constraint can be solved such

that the fields are independent of wrapping coordinates Z,,, so that
om(...) =0, (5.2.4)

where 0™ = -2 The gauge transformations of SL(5,R) extended field theory are given by

OZmn

the generalized Lie derivative, which is defined as
LyWM = yNoyWM — WNay VM 4 MV e pnanVEW e, (5.2.5)

It is convenient to rewrite the components of the generalized vector as

w o= w'en, (5.2.6)
1
Then the generalized vector W is
W =w® ﬁ)(g). (528)

Under a gauge transformation with gauge parameter V', a generalized vector W transforms as

SyW = LyW . (5.2.9)

This decomposes into
hww = Lyw, (5.2.10)
vy = Lol — twdie), (5.2.11)

where L, is the ordinary Lie derivative with a parameter v.

Next we introduce a gerbe connection C3),

1
C(g) = gcmnpem VAN e” A ep, (5212)
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which transforms under a gauge transformation as
Oy Ca) = L,Cz) + digy) . (5.2.13)
This allows us to define w ) by
Wy = W) + twl3). (5.2.14)
Under a gauge transformation, this transforms as a 2-form
oyt = Ly (5.2.15)

and is invariant under the ¢ transformations. Therefore, W = w & W2y is a section of (7" @

A?T*)U. This allows us to immediately write down the finite transformation of W, which is

given by
w'(2') = wx), (5.2.16)
Wiy (@) = (@), (5.2.17)
where 2/ = ey,

Using the finite transformation of the coordinate bases given by

a n a m
¢ (') = en() 8;”% ™ (z') = e"(x)%, (5.2.18)
the finite transformation of the components of W are then
ox'™
) = wh(z)—— 5.2.19
W) = () (52.19)
. . oxP Ozt
w, () = wpq(x)ax—/maxm. (5.2.20)
The finite transformation of the gerbe connection can be taken to be
Cég) (ZL‘/) = 0(3)(1‘) + df)(g)(l’), (5.2.21)
so that
wEQ) () = wg2) (') + Lw10€3) (). (5.2.22)
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This then gives the finite transformation of ws):

71'}22)(.1',) = UA}Ez) x/> — Lw/C(g) Jf/),

= @(2) 33) — Lwd@(g)(ﬂf). (5.2.23)

w'(2') = w(x), (5.2.24)
@22)(1'/) = U~)(2)($)—Lwd’l~}(2)($), (5.2.25)

which implies the components (w™, W,,,) transform as

w™(z) = w"(x)%, (5.2.26)
- N . . oxP Oxt
W (2) = (wpq(x) — 3w (x)(dv(g))rpq(l')) 9m i’ (5.2.27)

where (dﬁ(g))rpq = 8[7«’[}1)(1].

5.2.2. SO(5,5) Extended field theory

In SO(5,5) extended field theory [41], a generalized vector WM transforms as a spinor of
SO(5,5), where the indices M, N = 1,...16 label the positive chirality spinor representation.
It decomposes under GL(5,R) € SO(5,5) into

wm
WM =1 @ |, (5.2.28)
wmnpqr
where m,n =1,...,5, Wy = —Wnm, and Wpnpgr = Wimnpgr)-
The coordinates in a patch U consist of 6 spacetime coordinates y*, u = 0,...,5, together

with 16 internal coordinates X™ transforming as a 16 of SO(5,5). This decomposes under
GL(5,R) C SO(5,5) into

xm

XM=1 z. 1, (5.2.29)

ajmnpqr

where, in a suitable duality frame, 2™ are the usual coordinates on 7° and Z,,, are periodic

coordinates conjugate to M2-brane wrapping numbers on 7 and Z - are periodic coordinates
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conjugate to M5-brane wrapping numbers on 7°. Fields and gauge parameters depend on both
y* and XM, but we will suppress dependence on y* in what follows.
The strong constraint of SO(5,5) EFT is given by

YNV OM (. )oN(...) =0, (5.2.30)

where (...) represents fields and gauge parameters, 7§,y is a gamma matrix of SO(5,5) and
a = 1,...10 labels the vector representation of SO(5,5). The strong constraint can be solved

such that the fields are independent of wrapping coordinates Z,,, and Z,,per S0 that

I™(...) =0 and 0™P(...) =0, (5.2.31)

where 9™ = -2 and 9™ = 9 The gauge transformation of SO(5,5) extended field

afmn ammnpqr
theory is given by the generalized Lie derivative, which is

. 1
LyW = VNOy WM = WNONVM 4 Sy N0y VTG, (5.2.32)

It is convenient to rewrite the components of the generalized vector as

w = wen, (5.2.33)
T 1 e m n
W) = iwmne Ae”, (5.2.34)
1
W) = awmnmrem Ne" NeP Nel Ne". (5.2.35)

Then the generalized vector W is
W =w & W) & we). (5.2.36)

Under a gauge transformation with gauge parameter V', the generalized vector W transforms

as
SyW = Ly W, (5.2.37)
which decomposes into
hyw = Lyw, (5.2.38)
Oyl = Lole) — twdie), (5.2.39)
vy = Ly — W) A di). (5.2.40)

where L, is an ordinary Lie derivative with a parameter v.

65



Next we define a gerbe connection Cfs),

1
Cry = aCmnpem ANe AeP, (5.2.41)

which transforms under a gauge transformation as
5\/0(3) = ,CUO(g) + df)(g). (5.2.42)
This allows us to define w2y and W) by

111(2) = lZJ(g)-}-LwO(g), (5.2.43)

~

- - 1
W) = W) +we) ACE) + 5twlie) A Ce). (5.2.44)
Under a gauge transformation, these objects transform as a 2-form and a 5-form, respectively,

(5V1Z)(2) = ,CWUAJ(Q), (5245)
5Vw(5) = va@, (5246)

and are invariant under the © transformations. Therefore, W =uwd W) D W(s) is a section of
(T @ A°T* @ A°T*)U. The finite transformations are then

w'(z) = w(z), (5.2.47)
iy (x) = (@), (5.2.48)
sy (2') = (@), (5.2.49)

_am
where 2/ = e V" Omy.

Using the finite transformation of the coordinate bases given by

8:17” - N al,/m
e ()= en(m)ax/m em(z') =e (x)—axn : (5.2.50)
the finite transformation of the components of W are
a m

w™(@) = w"(x)%, (5.2.51)

. . OxP Ozt
w;m(x’) = wmn(l")@z/mw, (5.2.52)

a s a t a U a v a w

W (@) = g () e o T2 ZL O (5.2.53)

ox'™ gx'™ Ox'P 0x'1 Ox'"
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The finite transformation of the gerbe connection can be taken to be

Clay () = Crap (@) + diiey (), (5.2.54)
so that
Wiy (2) = Wig)(2') + L Clg (2). (5.2.55)
1
W) (2) = s (a") + Wiy (') A Cla) (') + §Lw/023) (') A Clg) (). (5.2.56)

w&) (') = %)(9«“’) - Lw’Oés)(x/)-
= W) () = tw(C) () + dige) (z)),
= W) (®) = twC)(x) — twdle) (),
= W) (®) = twdl)(z). (5.2.57)

Furthermore, the finite transformations of ws) are

Wy (&!) = il (@) iy (&') A Cly (&) — 50 Clay (&) A Cly(a),
= (i (2) + By () A Oy (1) + 50 Ci(2) A Cip(2)
—(we) () = Lwdvm( ) A (Clg)(x) + dig) ()

_%Lw(qg) (&) + digs) () A (Czy (@) + digy (@),

- - . 1 .
= W (x) — W) (x) A dig(x) + §Lwd?}(2) (x) A dogy(z). (5.2.58)

To summary, the transformation of W is given by

w'(x') = w(x), (5.2.59)
U~}E2)<x/) = 12)(2) (SL’) — Lwdﬁ(g) (13), (5.2.60)
Wi (7)) = W) (r) — Dy (r) A dig)(r) + %Lwdﬁ(g) (x) A dig)(z), (5.2.61)
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which implies the components (W™, Wy, Winnpgr) transform as

w™(@) = w"(x)%, (5.2.62)
~/ ! ~ r ~ ozP 0x1?
W () = (Wpg() = 30" () (dD(2) ) g () 3o B (5.2.63)

w;nnpq'r(‘r/> = (wstuvw(x) - 30@[3,5 (x)(dﬁ@))uvw}(x) + 15wl(x) (d6(2)>l[st(m) (df)(Q))uvw] (17>)
ox® Ozt Oz“ Ox¥ Oxv
ox'™ dz'™ Ox'P Ox'1 Oz’

(5.2.64)

where (df)(Q))qu = 8[T@pq].

5.2.3. Es Extended field theory

In Es extended field theory [26,27,55], a generalized vector W™ transforms in the funda-
mental (27) representation of Fg with M, N =1,...,27. It decomposes under GL(6,R) C FEg

into

w™
WM =1 wm |, (5.2.65)
Winnpgr
where m,n =1,...,6, Wy = —Wnm, and Wpnpgr = Wimnpgr)-
The coordinates in a patch U consist of 5 spacetime coordinates y*, u = 0,...,4, to-

gether with 27 internal coordinates X™ transforming as a 27 of Es. This decomposes under
GL(6,R) C Es into

xm

XMz |, (5.2.66)

Tmnpqr

where, in a suitable duality frame, 2™ are the usual coordinates on 7° and Z,,, are periodic
coordinates conjugate to M2-brane wrapping numbers on 7% and Z,,,4- are periodic coordinates
conjugate to M5-brane wrapping numbers on 7. Fields and gauge parameters depend on both
y* and XM, but we will suppress dependence on y* in what follows.

The strong constraint of Eg EFT is given by

CMNRCPQRaM(. .. )8N( .. ) = 0, (5267)

MNP

where (...) represents fields and gauge parameters,and ¢ and cy;yp are the Eg invariant

tensors. The strong constraint can be solved such that the fields are independent of wrapping

coordinates T, and Zp,nper S0 that

d™(...) =0 and d™P(...) =0, (5.2.68)
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where ™" = 2 and gmrrer = % 9 __ The gauge transformation of Fg extended field theory

OZmn Tmnpqr

is given by the generalized Lie derivative, which is defined as
LyWM = VNONIWM — WNONVM 4 106N e pp oy VOWE, (5.2.69)

It is convenient to rewrite the components of the generalized vector as

w o= wem, (5.2.70)
1

UNJ(Q) = Eﬁ)mnem N e", (5271)
1

Wy = awmnmrem Ne" NeP NeT Ne". (5.2.72)

Then the generalized vector W is
W =w @ W) ® we). (5.2.73)

Under a gauge transformation with a gauge parameter V', the generalized vector W transform

as
Sy W = Ly W, (5.2.74)
which decomposes into
yw = Lyw, (5.2.75)
5\/71)(2) == EUQD(Q) - Lwdf)(g), (5276)
5\/@(5) = EUQI)(g,) — @(2) A le)(Q) — Lwd@(g,). (5277)

where L, is an ordinary Lie derivative with a parameter v.

Next we introduce gerbe connections C(3) and Cg),

1 m n

Ca = ngnpe Ae" AeP, (5.2.78)
1

Ce) = ECmnpq,«sem Ne" NeP Nef Ne" Ne’, (5.2.79)

which transform under gauge transformation as

1 i
OvCie) = LuCo) + dis) — 503 A di). (5.2.81)
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This allows us to define oy and ws) by

1@(2) = w(g) + LwC(g), (5.2.82)
- - 1
Wy = W)+ wWe) A 0(3) + §Lw0(3) VAN 0(3) + LwO(ﬁ). (5.2.83)

Under a gauge transformation, these objects transform as a 2-form and a 5-form, respectively,

(5Vw(2) = ﬁvﬁl(g), (5.2.84)
6Vw(5) = L‘UUAJ(5), (5.2.85)

and are invariant under the v transformation. Therefore, W=uwa& W) @ W) is a section of
(T & A*T* & A°T*)U. Their finite transformations are given by

w'(z) = wx), (5.2.86)
12122)(93’) = W)(z), (5.2.87)
Wi (@) = (@), (5.2.88)
where 7/ = e 9m g,

Using the finite transformation of the coordinate bases given by

a n a m
e (2') = €"<x>axx/m () = e”(x)%, (5.2.89)
the finite transformations of the components of the W can be written as
a m
w™(@) = w”(x)%, (5.2.90)
. . OxP Oxt
Wy (@) = Wpg(2) 522 (5.2.91)
R . Ox* Oxt Ox* Ox¥ Oxv
w;nnpqr(x,) - wstuvw<x> 9™ Oz O2'P O/ ' (5292)
The finite transformation of the gerbe connections can be taken to be
OE3)(I/> = 0(3) (ZE) + dﬁ(g)(l‘), (5293)
- 1 -
Cloy(@) = Clo(@) + i) (z) — 5C0) (@) A ) (2), (5.2.94)
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Wig) (7)) = Wigy(2") + tur Oz (2) (5.2.95)
N - - 1
w25) (') = w25)(x') + sz) (') A 023)@’) + §Lw’0é3) (') A Oés) (') + Lw’OEG) ().
(5.2.96)
This then gives the finite transformation of ws:
@22) () = wEQ)(x’) — Lw/CEg)(:E/).
= 121(2)(1‘) — Lw(C(g)(Zlf) + df)(g)(l‘)),
= ’L@(g)(fl)) — LwC(g) ([B) — Lwdf}(g) (.73),
= UNJ(Q) (:L‘) - Lwdﬁ(g) (QL’), (5.2.97)
and the finite transformation of ws):
- . - 1
wE5) (') = w25) () = wzz) (') A Cés) () = ébw’cf?,) (') A Cés) () = Lw’Oéﬁ) (@),
- - 1 ~
= () (2) + @z (2) A Cy) () + 5tuCs) () A O (2) + 10 Cr) ()
— (W) (2) = twdb)(z)) A (Crg)(z) + die) (z))
1 . -
—§Lw(O(3)($) + dU(Q)(JZ)) A\ (O(g)(l’) + dv(g) (ZL’))
. - 1 -
~iw(Cle)(2) + dis)(2) — 5Cs) () A diz)(2)),
N - . . . .
= W) (x) — W) (x) A dig)(z) + §Lwdv(2) () A d)(r) — Lwdis) ().
(5.2.98)
In summary, the transformation of W is given by
w'(z) = wx), (5.2.99)
’LTJZQ) (ZL'/) = U?(Q)(l‘) — Lwdﬁ(g) (:L‘), (5.2.100)
- - - - IR - -
Wi (') = W) (r) — D) () A dig)(r) + §Lwdv(2) (x) A dvgy(x) — Lpdies) (),
(5.2.101)
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which implies the components (W™, Wy, Winnpgr) transform as

wm(z) = w"(x)%, (5.2.102)
~/ ! ~ r ~ ozP 0x1?
W () = (Wpg() — 30" () (dD(2) ) rpg () 30 B (5.2.103)

Whnpar (@) = (Wstuwns (%) — 3005 (2) (dD(2) ] () + 15w (%) (dD(2))igst () (dD(2) )] (%)

ozx® Oxt Oz* Ox® Ox%
J— l 0
ow (l‘) (dU(5))lstuvw (:C)) ox'™ O™ Ox'P Ox'e 8;(;"”’

(5.2.104)

where (dﬁ(Q))qu = 8[?“771091 and (d5(5))mnpqrs = 8[m@npq?“S]'

5.3. Generalized tensors

In this section, we review the construction of tensors and twisted tensors in DEFT of [78] and
then generalize this to EFT .

5.3.1. Generalized tensors of double field theory

A generalized vector W tranforms as a vector under O(D, D), so that under GL(D,R) C
O(D, D) it transforms reducibly as

~

W — ROW (5.3.1)

ROV = (3 (A?l)t> (5.3.2)

The untwisted version of W is WM , which can be written as

where A\, € GL(D,R) and

W =LW (5.3.3)
where
1 0
L= (5.3.4)
-B 1
denotes the matrix with components
o 0
My = " : 5.3.5

W/(X') = R(A)W(X) (5.3.6)
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where
8x/m

= orn

The coordinate transformation acts only on the x:

A",

(5.3.7)

m
XMy xM (Zf/ ) , (5.3.8)

with
™ = 2™ (x), T — Th = T (5.3.9)

The transformation of the twisted vector W was found by twisting the untwisted transfor-

mation and is

W'(X') = RW(X) (5.3.10)
where
R=L(X)'R(A)L(X) = R(A)S (5.3.11)
and
(X' = (_B}(x/> (1)> (5.3.12)
with B’(z) given by (5.1.23), and
6 0
S = <28[m% 6m") : (5.3.13)

The matrices R, R, L, S are all in O(D, D).

Lowering indices with n gives similar formulae for a generalized vector with lower index

Upr = (“Z) . (5.3.14)
u
o Am ~m - an n
Uy = (“ ) _ (“ Y ) (5.3.15)
u™ u™

Uy = LUy (5.3.16)

The untwisted vector

transforms with

and is invariant under v transformations. Then the untwisted vector is

A

U=UL"! (5.3.17)
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(ie. Uy = Un(L )Ny recall nLy~ = (L')™' as L is in O(D, D)) and transforms under a
finite transformation as

U'(X")=U(X)R™ (5.3.18)
where here and in what follows R = ]%(A) For the twisted vectors
UX)=UX)R™ (5.3.19)

TMN"'

This extends to arbitrary generalized tensors po.... We define the untwisted tensor

TMN-pg = LM LN g TS0y (L7)Tp(L7)g. .. (5.3.20)

which transforms as

A

TN (X') = RMpRN g TPy (R p(R7)g... (5.3.21)
so that the original tensor transforms as
TN po (X') = RMpRNg ... TRy (R p(RT)g ... (5.3.22)

Raising all lower indices with 7 gives a generalized tensor TM~Mr of some rank p which is a

section of EP while TM~Mr is a section of (T'@ T*)?. In particular,

NMN = MN (5.3.23)

as L € O(D, D), and is invariant, ' = n.

5.3.2. Generalized Tensors of Extended Field Theory

For each of the extended field theories, a similar structure applies, with matrices L, L', R, fi, S,
all of which are in the duality group G which is SL(5,R), SO(5,5) or Eg. The untwisted form

WM of a generalized vector WM can be written as
W =LW. (5.3.24)

The generalized vector transforms as a representation of G' and decompose into a reducible
representation of GL(d,R) (where d is the rank of G) under which A € GL(d,R) acts on W to
give W — R(A\)W. The transformation of the untwisted vector W is then

A

W'(X'") = R\)W(X) (5.3.25)
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where
8x/m

= orn

The transformation of the twisted vector W was found by twisting the untwisted transformation

A",

(5.3.26)

and can be written as

W'(X') = RW(X) (5.3.27)

where
R=L'(X)"'R(A)L(X) = R(\N)S (5.3.28)

where L' generates shifts of the antisymmetric tensor gauge fields and S is the corresponding
gauge transformation; see below for explicit forms.
As for the DFT case, this extends to arbitrary generalized tensors TMV- pq...- We define the

untwisted tensor
TMN« o = LMLV . TRy (LY (LYY, ... (5.3.29)
which transforms as
TMN- b (X)) = RM RN g ... TF 0y (RHTp(RH)Yq ... (5.3.30)
so that the original tensor transforms as
TMN oo (X)) = RMeRNg .. TRy (R (R .. (5.3.31)

We now give the explicit forms of the matrices appearing above. For the SL(5,R) case, the

< o 0 !
WM = LM W = (C : s pq) (f" ) 7 (5.3.32)
Imn mn Wpq

where 0,,,?? = %(5mp5n‘1 — 0,,99,7). For the SO(5,5) case, the untwisted vector is

untwisted vector is

o 0 0 w!
WM = LMNWN = Crmn Ormn® 0 wpq ) (5333)
5C’l [mn Cpqr] 1 Oé[mnpq Crst] 5mnpqr stuvw Wstuvw

where Opppgr ™" = Opm® ... 0, For Eg case, the untwisted vector is

5ml 0 0 U)l
WM = M W = Chom SmnPd 0 Wpg (5.3.34)
Clmnpqr + 5Cl[mncpqr] 105[mnpqcrst} 5mnpqr8tuvw wstuvw
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Then the L matrix for the SL(5,R) theory is

o 0
LMN = : )
Clmn 6mnpq
while for the SO(5,5) theory it is
o™ 0
LMN = C1lmn 5mnpq

5C’l [mn Cpqr] 105[mnpq Crst] 5mnpqr stuvw

and for the Fjg theory it is

o

LMN = C(lmn

Clmnpqr + 5Cl[mn0pqr] 105[mnpqorst] 5mnpq7"5tuvw

The matrices R for the SL(5,R), SO(5,5) and Eg theories are given by

= (0 s
0 (AT)mP(AT]),
A™ 0 0
RMy =1 0 (A Y),P(A1),¢ 0
0 (A7) (ATHR (AT, (AT (A7),
A™ 0 0
RMy=1 0 (A1), P(A™1),¢ 0
0 (AT (AT (AT, (A7) (A7),

respectively.
The L' matrix for the SL(5,R) theory is

L/MN<X/) — (

0

5mnpq

o 0

Cl

Imn
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(X/) Ormn?

0
0

(5.3.35)

(5.3.36)

(5.3.37)

(5.3.38)

(5.3.39)

(5.3.40)

(5.3.41)



while for the SO(5,5) theory it is

o 0 0
LX) = Clonn (X') Omn? 0 (5.3.42)
5Cl/[mn (X/>Czqur] (X,) 105[mnpqc7/«st] (X’) 5mnpqr8tuvw

and for the Eg theory it is

o™ 0 0
L/MN(X/) = Cl/mn<X,) 6mnpq 0 ) (5343)
Clrmpar(X) 4 5C] (XNCL (X)) 1080 CLy (X7) G ™™™

Finally, the matrix S for the SL(5,R) theory is

o™ 0
SMy = ! (5.3.44)
_3<dv(2))lmn 5mnpq

while for the SO(5,5) theory it is

o™y 0
SMN = _3<d1~}(2))lmn 5mnpq 0 (5345)
15(d2))ifmn (d0(2))pgr)  —300mn™10rVst)  Opnpgr ™"

and for the Eg theory it is

o™ 0 0
SMN = _S(d@@))lmn 5mnpq 0 ) (5346)
_6(d1~}(5))lmnpqr + 15(dﬁ(2))l[mn(d7~}(2) )pq'r} _305[mnpqar7~)st} 5mnpqr8tuvw

where (dﬁ@))rpq = a[Tﬂpql and (dﬁ(5))mnpqrs = a[mﬁmoqm]'

5.4. The generalized metric in DFT and EFT

For DFT and EFT, there is a duality group G (which is O(D, D) for DFT and Ep for
EFT) with maximal compact subgroup H. Remarkably, the fields (gmn, Bmn) in DFT and
(Gmns Connps Crnnpgrs) In EFT can be regarded as a field taking values in the coset G/H — the
coset space can be locally parameterized by Gmn, Bimn O Gmn, Crnps Cmnpgrs [21]. A field taking

values in the coset G/H can be represented by a vielbein V4,;(X) € G transforming as

V — hVg (5.4.1)
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under a rigid G transformation ¢",; € G and a local H transformation h* s(X) € H. If kap
is an H-invariant metric (h'kh = k for all h € H) then the degrees of freedom can also be

encoded in a generalized metric
Hun = kas V' uVPy (5.4.2)

which by construction is invariant under H transformations.
We now show how the coset is parameterized by the fields (¢mn, Bmn) O (gmns Crmnps Conpgrs) -

Let €%, be a vielbein for the metric g,,,, with
Imn = 6ab eamebn (543)

and inverse vielbein e,. The indices a, b transform under the tangent space group O(D). Then

the vielbein V can be written in terms of €%, and (¢mn, Bimn) O (Gmns Crmnps Crnpgrs) 88

A

V = hR(e%)L (5.4.4)

(This can be viewed as a consequence of the Iwasawa decomposition theorem.) Here h € H
and can be chosen to be h = 1 by a local H transformation. The dependence on the gauge
fields is given by the matrix L(B) in DFT and L(C(3), C(s)) in EFT; L is of the form L = 1+ N
where N is lower triangular. Finally R(e) is the matrix R(\) given above, with A%, = e%,, and
serves to convert ‘curved’ indices m,n to ‘flat’ indices a, b.

Then the generalized metric is given by
H(V, W) =H(V, W) (5.4.5)

for any generlized vectors V, W where

H(V, W) = k(R(e)V, R(e)W) (5.4.6)
Explicitly,
Hun = kapR(e)* v R(e)® y (5.4.7)
and
Han = HpoL L9y (5.4.8)

Then H p@ is the untwisted form of the generalized metric, and is the natural metric on gener-
alized or extended tangent vectors induced by the metric g for ordinary vectors.

We now show how this works for the cases discussed here. For DFT, we recover the discussion
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of [78]. An untwisted vector decomposes as

WM = (w ) : (5.4.9)
W,

R(e)W = <w> (5.4.10)

SO

where as usual

w® = e w™, Wy = €4 Wy, (5.4.11)

The metric kap decomposes under O(D) to give

dap O
kap = <0 5ab> (5.4.12)

E(R(e)V, R(e)W) = dapvw” + 6% 10, (5.4.13)

SO

This is equal to H(V, W) = Hyun VYWY so

9 mn O
Hun = <g ) (5.4.14)

0 gmn

which is the standard metric on 7"@ T™ induced by the metric g on 1. Then the generalized
metric is
Hun = HpoL L9y (5.4.15)

where L(B) is given by (5.3.4). This gives the standard result
9mn — Bmkgleln Bmkgkn
Hun = ( ’ (5.4.16)
Consider now EFT with G = Ep for D = 5,6. An untwisted vector decomposes as
wm
WM =1 G | (5.4.17)

wmnpq?"

SO

R(G)W = UA)ab ) (5418)
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with all indices converted to tangent space indices using e%,,. The metric k4p decomposes
under O(D) to give

A 1 1
E(R(e)V,R(e)W) = v'w, + §@abwab + 5@abcdewabcd@ (5.4.19)

where indices have been raised or lowered with d,,. The matrix can then be written as

5ab 0
kap = 0 gabed 0 5100
0 O 5a1"'a5,b1-..b5

where §9¢d = %50[“5“6! and a similar expression for §% %1% Then (5.4.20) is equal to
’H(V,W) = HunVMIWY so
1

o 1
Han VW = 0w+ S ™ g™ (5.4.21)

where indices have been raised and lowered with g¢,,,. The corresponding matrix is

Gmn 0
Huy = | 0 gmmea 0 (5.4.22)
0 0 gm1...m5,n1...n5

where g'tmn = 1gmllghn and a similar expression for g*-sb1--bs Then Hn is the standard
metric on T @ A*T™* & AST* induced by the metric g on 7.

The generalized metric is then the twisted from of this
Hun = HpoLl mLCy (5.4.23)

where L(C(3),Cs)) is given by (5.3.36) or (5.3.37). This then gives explicit forms for the
generalized metric, in agreement with [21,41,46,48, 54, 57].
For SL(5,R), there is no Cs) or W), but similar fomulae apply with

» mn 0
Fary = (g ) . (5.4.24)

and (5.4.8) with L(Cs) given by (5.3.35) gives the

mn CmTSCT'STL lCmpq
Hun = (g - 2 ) , (5.4.25)

1 vkl ki,
cH, g
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recovering the generalized metric given in [21].
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6. Degenerations of K3, Orientifolds

and Exotic Branes

In this chapter, we are consider the T-duality chain of the 7% with H-flux background [80].
T-duality in one direction gives the nilfold background. A further T-duality gives the T-fold
background [67]. Last T-duality will result in the R-flux background [64,72]. However, these
solutions do not define conformal field theories so cannot be used as string theory backgrounds.

These solutions, however, can arise in string theory as fibres in string backgrounds. The
simplest case is that in which these spaces are fibred over a line. There is a hyperkéhler metric
in the case of nilfold fibred over a line. Doing T-duality in one direction of this background will
result in a background 7° with H-flux fibred over a line, while T-duality in another direction
gives T-fold fibred over a line. The product of T° with H-flux fibred over a line and a Minkowski
space can be identified as a smeared NS5-brane solution, which is dual to a D8-brane solution
[98].

The D8-brane is a domain wall separating regions with different values of Roman mass [103].
The various duals of this considered above are then all domain wall solutions too, depending
on a single transverse coordinate. The D8-branes can be consistently incorporated in a string
theory background in the type I’ string [85]. There is an O8-plane at either end of the interval
and 16 D8-branes located at arbitrary positions on the interval in type I’. This solution is dual
to type IIA string theory on K3. In this limit, K3 develops a long neck which is locally of the

form of a nilfold fibred over a line [86].

6.1. The Nilfold and its and T-duals

Consider the 3-torus with H-flux given by an integer m. The metric and 3-form flux H are
dsys = dz* + dy® + dz* H = mdx Ndy N dz (6.1.1)
with periodic coordinates

T~ x4 27 y~y+2r z~z42m
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Here flux quantisation requires that (in our conventions) m is an integer.
Choosing the 2-form potential B with H = dB as

B =muady Ndz (6.1.2)
and T-dualising in the y direction gives the nilfold N
dsy, = dz® + (dy — mxdz)? +d2*>  H =0 (6.1.3)

This is a compact manifold that can be constructed as a quotient of the group manifold of
the Heisenberg group by a cocompact discrete subgroup [64], [86]. It can be viewed as a circle
bundle over a 2-torus, where the 2-torus has coordinates x, z while the fibre coordinate is y.
Here the first Chern class is represented by mdx A dz and again m, which is the degree of the
nilfold, is required to be an integer.

A complex structure modulus 71 + iy for the 2-torus with coordinates x, z and a radius R

for the circle fibre can be introduced by choosing the identifications
(x,2) ~ (x4 2, 2), (x,2) ~ (x4 2771, 2 + 27T2)
so that for the nilfold we have

(x,y,2) ~ (x42m, y+27z, 2), (x,y,2) ~ (x4277, y+2771 2, 242773, (x,y,2) ~ (x,y+27R, 2)
(6.1.4)
To simplify our formulae, we will here display results for the simple case in which R = 1,7 =
0,7 = 1 but the generalisation of the results presented here to general values of these moduli
is straightforward; see e.g. [81].
The nilfold can also be viewed as a 2-torus bundle over a circle, with a 2-torus parameterized
by y, z and base circle parameterized by x. This viewpoint is useful in considering T-duality in
the y or z directions, resulting in either case a fibration over the circle parameterized by x [64].

T-dualising this in the z-direction gives the T-fold T with metric and B-field given by

mx

ds7_poq = do° + (dy* + d2?) B sdy N dz (6.1.5)

1+ (mx)? It (mz)

which changes by a T-duality under x — x + 1, and so has a T-duality monodromy in the z
direction. A generalized T-duality [107] in the x direction gives something which is not locally
geometric but which has a well-defined doubled geometry given in [63,64].

These examples are instructive but have the drawback of not defining a CF'T and so not giving
a solution of string theory. However, these examples can arise in string theory in solutions in

which these backgrounds appear as fibres over some base, related by a T-duality acting on
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the fibres. The simplest case is that in which these solutions are fibred over a line, defining a
solution that is sometimes referred to as a domain wall background. The cases with 3-torus
or nilfold fibred over a line were obtained in [81] from identifications of suitable NS5-brane
or KK-monopole solutions, and are dual to D8-brane solutions. We discuss these and their

T-duals in the following section.

6.2. Domain wall solution from NS5-brane solution

6.2.1. Smeared NS5-brane solution

The NS5-brane solution has metric
dsiy = V(2")ds*(R*Y) + ds*(R™), (6.2.1)

where z are coordinates of the transverse space R*. The function V' (z") is a harmonic function

satisfying Laplace’s equation
V2V (z') = 0. (6.2.2)

The H-flux is
H = %4dV 1, (6.2.3)

where %, is a Hodge dual on the space transverses to the world-volume of the NS5-brane.
Explicitly, this gives
Hijk = 6ijk15lmamv (6-2-4)

where €, is the alternating symbol with €1934 = 1. The dilaton is
e =V (6.2.5)
Therefore, the T-duality invariant dilaton is given by
e = fg=V. (6.2.6)

If V is independent of one or more coordinates, the NS5-brane is said to be smeared in those
directions. These directions can then be taken to be periodic and we can then T-dualise in
them. In what follows, we shall review the various dual spaces that emerge in this way. In each
case, we get a string background preserving half the supersymmetry.

We shall be particularly interested in the case in which V' = V/(7) is independent of 3

coordinates, x,y, 2z, which can then be taken to be periodic. The NS5-brane is then said to
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be smeared over the x,y, z directions, and the there is H-flux on the 3-torus with coordinates
x,y, z. The solution (6.2.1), (6.2.3), and (6.2.5) then represents the product of flat 6-dimensional
space R with the 4-dimensional space given by a 3-torus with H-flux fibred over a line with
coordinate 7. Successive T-dualities will then take the 3-torus with flux fibred over a line first
to a nilfold fibred over a line, then to a T-fold fibred over a line and finally to a space with
R-flux fibred over a line.

Consider first the case in which V is independent of one of the coordinates x' = (7,2, ¥, 2),
y say. We take y to be periodic (i.e. we can identify under y — y 4 27) and T-dualise in the y

direction to obtain the KK-monopole solution
dsi, = ds*(GH) + ds*(R"?), (6.2.7)
where ds?*(GH) is a Gibbons-Hawking metric
ds*(GH) = V(dr* + da® + dz*) + V H{dy + w)? (6.2.8)
with V(7, z, z) a harmonic function on R* and w a 1-form on R? satisfying
Vx&d=VV (6.2.9)

and

H =0, ® = constant (6.2.10)

The metric is hyperkahler.

If V is independent of y, z, so that V = V(7,x) is a function on R?, then the smeared NS5-
brane solution can be taken to be periodic in the y, z directions and can be dualised in one
or both directions. T-dualising in both the y and z directions is the same as T-dualising the

KK-monopole solution (6.2.7) in the z direction and gives
ds® = ds*(X) + ds*(R"), (6.2.11)
where X is a four-dimensional space with metric

vV

ds*(X) = V(dr* + dz®) +
with V (7, 2) a harmonic function on R? and w is a function on R? which satisfies

8V_8w 8V_ ow

o "o o or (6:2.13)
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and
w
To find the dilaton, we note that
e =e2 /g (6.2.15)
is invariant under T-duality, so that if under T-duality
G = Go» o — P (6.2.16)
we have that
1
P =0+ log(+/9'/\/9) (6.2.17)

For the metric (6.2.8) we have \/g = V while for (6.2.12) we have

V2
; ) 6.2.18
Vo V2 + w? ( )
so the dilaton for the space X is
1 V
o =—1 S 2.1
5 log (V2+w2> (6.2.19)

Finally, if V' is independent of z,y, z, so that V' = V(7), then we can take x,y, z as periodic
and can T-dualise in one, two or three directions. For V' = V(7) to be a harmonic function on

R, V" =0, it must be a linear function. The simplest case is to take
V(T) =m7+c, (6.2.20)
where m and ¢ are constant. The form V' (7) implies the form of w (6.2.13) as
w=V'(1)x =muz. (6.2.21)
Then for the NS5-brane solution we obtain the following conformally flat metric on 7% x R

ds* = V(7)[dr? + d2* + dy® + d2?] (6.2.22)
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together with the H-flux on T
H = %4dV ' = —mdx Ady N dz. (6.2.23)

and dilaton
e’ =V(7) (6.2.24)

The usual flux quantisation condition implies that the coefficient m is quantized; we adopt
conventions in which m is an integer. By changing coordinates 7 — o(7) = log V', one could
arrange for the dilaton to have linear dependence on the coordinate o.

This 4-dimensional space has topology R x T3. The geometry is a 3-torus with flux fibred
over R — the metric of the 3-torus and the dilaton depend on the coordinate 7, but the flux
Jps H = m remains constant and is quantised.

More generally, V' can be taken to be piecewise linear, e.g.

c+m't, <0
V(r) = (6.2.25)
c+mr, 7>0

This is continuous but not differentiable at 7 = 0. The singularity corresponds to a domain
wall at 7 = 0 separating two ‘phases’ with fluxes m,m’. This can be thought of as a brane
that has a tension proportional to m — m/. This can be understood [81] as a dual of the D8-
brane solution [98], as we will discuss in section 6.3. A full string solution is then obtained by

introducing O8-planes in the D8-brane solution and dualising.

A multi-brane solution with a domain wall at 7 = 7,7, ... 7, is given by
2
1 +mqT, T<T1
Co + MaT, <7T<T
V(r)=<: (6.2.26)
Cp +m,T Tho1 < T < Ty
\an + My 1T T > Ty

for some constants c;, m;, and for continuity the constants c, for r > 1 are given in terms of
C1, My by

Cry1 = ¢+ (Myp — Mypy1) T (6.2.27)

The brane charge of the domain wall at 7, is the integer

N, = myqp1 —m,. (6.2.28)
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Note that the derivative M (1) = V'(7) of V(7) with respect to 7 will be piecewise constant

away from the domain wall points 7,

mq, T<T
ma, T <T<Ty
M(r)=<" (6.2.29)
my, Tn-1 < T < Tp
(Mt T > T

The solution is then given by the metric (6.2.1) and dilaton (6.2.5) with (6.2.26) and the H-flux
on T3 given by

H = #,dV~" = —Mdz A dy A dz. (6.2.30)

Taking the product of the solution (6.2.22), (6.2.30) with 6-dimensional Minkowski space
RY5 gives a space R x T3 x R with NS5-branes smeared over the T3 inserted at 7 = 7;. The

transverse space for the NS5-branes is R x 7.

6.2.2. Nilfold background

The background (6.2.22) has isometries in the x,y and z directions. Performing T-duality in
the y-direction gives a background that is R x A/, with a metric dependent on the coordinate

7 of R, so that it is nilfold fibred over the real line. The metric is

1

V(r)

ds? = V(r)(dr* + da® + d2%) + —— (dy + M()zdz)? (6.2.31)

and the other fields are trivial
H =0, ® = constant (6.2.32)

This 4-dimensional metric can be viewed as a Gibbons-Hawking metric with a harmonic function
V' depending linearly on a single coordinate. It preserves half the supersymmetry and so is

hyperkahler. The three complex structures are given by

J' = dr A(dy + M(7)xdz) + V(r)dz A dz (6.2.33)
J* = dx A(dy+ M(T)xdz) + V(7)dr A dz (6.2.34)
J = dz A(dy+ M(7)xdz) + V(1)dT A dz. (6.2.35)
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For V of the form (6.2.26) it represents a multi-domain wall solution and we will refer to this as
the hyperkahler wall solution N. In the region between walls 7; < 7 < 7,47 or for 0 < 7 < 717 or
T, < T < 7 it has the topology I x N where I is a line interval. The dilaton and antisymmetric
tensor gauge fields are all constant but the metric depends on the coordinate 7. The space is
singular at 7 = 0, 7;,  and we will discuss the resolution of these singularities in later sections.

For fixed 7, the geometry is a nilfold, which can be viewed as a circle bundle over a 2-torus,
where the circle fibre has coordinate y and the torus base has coordinates x, z. The geometry is
warped by the factor of V: the circumference of the circle fibre is 1/V while the circumference
of each of the circles of the 2-torus is V.

Taking the product of this with R gives a space which can be viewed as a background with
Kaluza-Klein monopoles. The usual Kaluza-Klein monopole is given by the product of self-dual
Taub-NUT space with R'® and has a transverse space which is R? with a point removed, and
the Taub-NUT space is a circle bundle over this space. We shall be interested later in the
Kaluza-Klein monopole whose transverse space which is R x T2 with a point removed, so that
the Gibbons-Hawking circle bundle over the transverse space is R x N with a circle removed.
Here, we are obtaining a version of this smeared over the coordinates of the transverse 72, and
the geometry can be thought of as R x A" x RYS with a smeared Kaluza-Klein monopole at

each ;.

6.2.3. T-fold and R-fold backgrounds

Performing T-duality along the z-direction results in the T-fold 7 fibred over a line. The
metric and B-field of this background are given by

V(r)
V(7)? + (M(7)x)?

ds®> = V(7)(d7)* + V(7)(dw)* + (dy* + dz?), (6.2.36)

5dy N dz. (6.2.37)

while the dilaton is
1 V(7)

v =3 (vt )
For fixed 7 we obtain the T-fold (6.1.5). In the region between walls 7, < 7 < 7,41 the space
is the product of the interval I with the T-fold (6.1.5) with the fields depending on 7 through
the warp by factor V.

(6.2.38)

Finally, a further T-duality in the x direction gives something which is not locally geometric
but which has a well-defined doubled geometry which is given by the doubled configurations
of [63,64] fibred over a line. This will be discussed futher elsewhere.
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6.2.4. Exotic Branes and T-folds

T-dualising the NS5-brane on a transverse circle gives a Kaluza-Klein monopole [32]. The
transverse space of the NS5 brane is taken to be S* x R? and the harmonic function determining
the solution is taken to be independent of the circle coordinate, so that the NS5-brane is smeared
over the transverse circle. Then both the KK-monopole and the NS5 solutions are given by a
harmonic function on R3.

If the NS5-brane solution is smeared over T2, then a further T-duality is possible. The
transverse space of the NS5 brane is now taken to be T? x R? and the solution is given by
a harmonic function on R2. T-dualising on one circle gives a KK-monopole smeared over a
circle, with transverse space R? x S' and the solution given by a harmonic function on R%. The
harmonic function in R? leads to a monodromy round each source. A further T-duality on a
transverse circle gives what has been termed an exotic brane, referred to in [60] as a 53-brane
and in [108] as a (5,2%)-brane. This was interpreted in [70,71] as a T-fold, with a T-duality
monodromy round each source in the transverse R2.

Here we are interested in an NS5-brane smeared over 7%, so that the transverse space is
T3 x R and the harmonic function is a linear function on R. Then the first T-duality gives
a KK-monopole smeared over T2 with transverse space 7% x R. The second T-duality gives
a an exotic H3-brane or (5,2?)-brane smeared over S! with transverse space S x R. A third
T-duality gives an exotic brane referred to in [108] as a (5, 3%)-brane. In the notation of [60],
this would be a 53-brane. This is the solution with R-flux.

The background (6.2.22), (6.2.24), (6.2.30) was interpreted as Rx T3 xR with smeared NS5-
branes inserted at 7 = 7; and the geometry (6.2.31), (6.2.32) was thought of as R x A" x R'® with
a smeared Kaluza-Klein monopole at each 7;. In the same spirit, the T-fold solution (6.2.36),
(6.2.37), (6.2.38) can be thought of as the T-fold background R x 7 x R with a smeared
exotic brane at each ;.

For the T-duality of the NS5-brane on a transverse circle, it is not necessary to assume that the
NS5-brane is smeared over the circle. Instead, one can take an NS5-brane localized on S* x R3.
This can be constructed by taking a periodic array of NS5-branes on R* located at points
arranged on a line (0,0,0,27Rm) for integers m = 0,41,42,... and then identifying 2% ~
2%+ 27 R. The resulting harmonic function defining the NS5-brane solution depends explicitly
on z*. The T-duality of this solution has been discussed in [109]; see also [107,110-112]. The
T-dual solution depends explicitly on the coordinate z* of the T-dual circle. This then gives
a modification of the Kaluza-Klein monopole geometry with explicit dependence on the dual

coordinate.
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6.2.5. Single-sided domain walls and the Tian-Yau space

Consider a domain wall of the kind discussed in the previous subsections, with a profile given

by a function V(7) of the transverse coordinate.
V =c+ml7| (6.2.39)
gives a domain wall at 7 = 0 of charge m that is invariant under the reflection
T — —T (6.2.40)

Orbifolding by this reflection identifies the half-line 7 < 0 with the half-line 7 > 0 resulting in
a single-sided domain wall solution defined for 7 > 0, with a singular wall at 7 = 0 [113]. For
the applications to string theory in the next section, we will be interested in the case in which
the 7 direction is a line interval with a single-sided domain wall at either end.

For the case of the nilfold fibred over a line with metric (6.2.31) with (6.2.39), this orbifold
singularity has a remarkable resolution to give a smooth manifold, as was proposed in [113].
The Tian-Yau space [87] is a smooth four-dimensional hyperkéhler manifold fibred over the
half-line 7 > 0 such that for large 7 it approaches the metric (6.2.31) for a nilfold fibred over a
line, so that it can be regarded as a resolution of the single sided brane [86].

The Tian-Yau space [87] is a complete non-singular non-compact hyperkéhler space that is
asymptotic to a nilfold bundle over a line. The Tian-Yau space is of the form M \ D, where
M is a del Pezzo surface and D C M is a smooth anti-canonical curve. The del Pezzo surfaces
are complex surfaces classified by their degree b, where b = 1,2,...,9. The del Pezzo surface
of degree nine is a complex projective plane CP?. A del Pezzo surface M, of degree b can be
constructed by blowing up a point in the del Pezzo surface of degree b + 1, M,,;. That is, the
degree b del Pezzo surface can be constructed from blowing up 9 — b points in CP?, and there
are restrictions on the positions of the points that can be blown up. There are two types of del
Pezzo surface of degree eight, CP' x CP' and the result of blowing up one point in CP?.

The Tian-Yau space X, = M,\D is a non-compact space that is asymptotic to R x Nj,
where N, is a nilfold of degree m = b. In the asymptotic region, the Tian-Yau metric can be
approximated by the metric (6.2.31) where V(7) is a non zero linear function V' = ¢+ mr so
that V(1) — oo as 7 — o0o. The degree m of the nilfold is given by the degree b of the del
Pezzo surface, so only degrees m = 1,2,...,9 can arise.

Note that starting from a del Pezzo surface of degree nine and blowing up nine points gives a
rational elliptic surface M [114]. This space has the structure of elliptic fibration, f : M — CP*
with the fiber being elliptic curve or 2-torus, D. For zero degree, the nilfold reduces to a 3-torus
and the space M\D is a non compact space that is asymptotic to a cylinder 7% x I. It is then

an ALH gravitational instanton. It will be convenient to refer to this case as a Tian-Yau space
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of zero degree, so that we can take extend the range of the degree to b=0,1,2,...,9.

The m # 0 case gives a generalisation of the ALH case which is asymptotic to the product

3/2

of a nilfold of degree m with an interval. Changing variables to s = (m7)%/*, the metric takes

the following asymptotic form for large s:
4
g~ Wdf + 523 (dx? + d2?) + 573 (dy + brdz)? (6.2.41)
m

Then for large s, the size of the S! fibres falls off as s~!/% while the size of each 1-cycle of the

2-torus base grows as s/3.

6.3. Embedding in string theory

6.3.1. The DS8-brane and its duals

The D8-brane solution of the ITA string [98] has string-frame metric
ds’ = V7 2ds*(RY®) + V2dr? (6.3.1)

with dilaton
e =V(r)i (6.3.2)

and RR field strength

F(IO) = dt AN d$1 VANERIVA dl’g A d(V(T)il),

Mt
= _VQ((T))dt/\ dxy N -+ Ndxg N\ dT,
where
Qvol = V/—gdt Ndxy A --- Ndxg ANdt (6.3.4)

is the volume form. The Hodge dual of F{;¢) is a zero-form,
Foy=—M(1). (6.3.5)

This zero-form F{g) gives the mass parameter in the massive type IIA supergravity [103]. For
our solution it is piecewise constant as in (6.2.29), so that the Romans mass parameter is
different on either side of a domain wall. There is an 8+1 dimensional longitudinal space and
a one-dimensional transverse space with coordinate 7. Here V(7) is piecewise linear. Taking it

to be of the form (6.2.25) gives a D8-brane of charge m —m’ at 7 = 0 while the multi-brane
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solution (6.2.26) represents multi-D8-branes at positions 79, - , 7.
If 3 of the transverse dimensions are compactified to a 3-torus with coordinates x,y, z, the

metric can be written
ds? = V7 12[da? + dy? + d2° + ds*(RY)] + V2472 (6.3.6)

T-dualising in the z,y, 2z directions gives a D5-brane IIB solution smeared over T

ds? = V12d2(RYD) + V2(dr? + da® + dy? + d2?) (6.3.7)
L (6.3.9)

where V' is of the form (6.2.25), or (6.2.26). The Hodge dual of Fi7y is the RR field strength

three-form, which is given by
Figy = xF7y = =M(1)dx N dy N dz. (6.3.10)

Next, S-duality gives a smeared NS5-brane solution, which is precisely the solution (6.2.22),
(6.2.24), and (6.2.30) given in section 3, with a transverse space given by a T° bundle over a

line.

6.3.2. The type I’ string

The multi-D8 brane solution has a dilaton depending on the transverse coordinate in such a
way that the dilaton becomes large and hence the string becomes strongly coupled in certain
regions. A well-behaved solution of string theory with D8-branes arises in the type I’ string [85],
which arises from compactifying the type I string on a circle and T-dualising. This can be viewed
as an orientifold of the type ITA string compactified on the dual circle, resulting in in a theory
on S'/Z, with O8 orientifold planes introduced at the fixed points, and with 16 D8-branes
(together with their mirror images under the action of Z,) located at arbitrary locations. It
can also be viewed as a theory on the interval I arising from the quotient S*/Z, with O8-planes
at the end points, and with 16 D8-branes located at arbitrary points on the interval.

The supergravity solution corresponding to the type I’ string with 16 D8-branes has string
frame metric

ds? = V245> (RY®) 4+ VV/2dr?, (6.3.11)

where V(7) is a harmonic function on the interval I with coordinate 7, 0 < 7 < 7. The dilaton
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is given by

e =V(r) i, (6.3.12)
and the RR field strength is given by

Foy = —M(7). (6.3.13)

where M (1) = V(7).

The orientifold planes are located at 7 = 0 and 7 = 7, while the 16 D8-branes are located
at arbitrary points, 71, ..., 76 between 7 = 0 and 7 = 7. The function V(1) is piecewise linear
and for general positions of the D8-branes, it is given by (6.2.29) with n = 16, m; = -8,
mir1 = m; + 1 so that m; = ¢ — 9 and my7; = 8, so that the orientifold planes are treated as
sources of charge —8 at the end-points of I. The gradient of V' jumps by 41 at each D8-brane.
Then

;

c1 — 87, 7T<T7
co — 1T, 1 <7T<7
V(T) =46C¢ + (Z — 9)7’, Ti1<T< T (6314)
cie+ 7T Ti5 < T < Tig
\017 + &1 T > Tie
with
Cry1 = Cp — Tp (6315)

The slope of the function V' is M (7) = V/(7) and is given by

p
-8, 7<T

-7, M<T<Ty

M(r)=1<" (6.3.16)
7 T < T < T16
k8 T > Ti6.
For r coincident branes with 7, = 7,44 = --- = 7;1,_1 the slope jumps from m; for 7,_; <
T <7 tom; +r for ;, <7 < 7y1. In general this leads to domain walls at 7 = 77,7, ...7,

with positive charges Ny, No, ... N, corresponding to N — ¢ D8-branes at 7;. If there are N,
D8-branes coincident with the O8-plane at 7 = 0 and N,,.; D8-branes coincident with the

94



O8-plane at 7 = 7 then
n+1

> N =16 (6.3.17)
i=0
Then V is given by (6.2.26) with N, = m,; —m, and
my = —(8 - No), Mmp+1 = 8 — Nn+1 (6318)

while M is (6.2.29).
At strong coupling, new effects can arise. Each orientifold plane can emit a further D8-brane,

leading to a non-perturbative enhancement of the gauge symmetry [95].

6.4. Duals of the type I’ string

The type I string can be obtained as an orientifold of the type IIB string

1B

I
Q

(6.4.1)

where 2 is the world-sheet parity operator. This has 16 D9-branes to cancel the charge of
the O9-plane. Compactifying on a circle in the X? direction and T-dualising gives the type I’
string. This is now a quotient of the ITA string [85]

1A

= _——
QR

(6.4.2)
where Ry is reflection in X, This results from the fact that the T-duality 7} in the X* direction
acts as [115]

T, : Q) — QR; (6.4.3)

The periodic coordinate X? ~ X? + 27 is identified under the action of the reflection Iy :
X9 — —X? so that after the quotient, the X? circle becomes S'/Z,. An orientifold O8-plane
is introduced at each of the fixed points X? = 0 and X° = 7. These each have charge —8
(in units in which a single D8-brane has charge +1) which is cancelled by the charge of the
16 D8-branes arising from the T-dual of the 16 D9-branes of the the type I string. The space
Sl/ Zs can be viewed as the interval 0 < X° < 7 with an orientifold plane at either end of the
interval.

Next compactifying on X® and T-dualising should give, from (6.4.2), an orientifold of the
IIB string by 2Rgg where Rgg = RgRg. However, this leads to a problem, as this orientifold is
not supersymmetric, but T-duality is expected to preserve supersymmetry. The resolution of

this [116] results from the fact that the T-dualities Ty and Ty do not commute in the superstring,.
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The T-duality 7T} in the X? direction acts as a reflection on the left-moving bosonic world-sheet
fields:
(X1, Xp) = (=X1, XR) (6.4.4)

On the left-moving spin-fields Sy, this reflection acts through S; — #;S1, where t; = I'''T";. As't;
and t; anticommute for 7 # j, it follows that T;T; # T;T; when acting on fermions, the result of
two T-dualities is only determined up to a factor of (—1)*Z. Thus there is an ambiguity in how
one takes two T-duals of the type I string: one gives IIB/Q2Rgg which is not supersymmetric,
and one gives 1IB/QRgo(—1)"t which is supersymmetric. Here and in each case that follows,
we will define T-duality to be the transformation that preserves supersymmetry. See [93,116]
for further discussion.

In this way, we obtain the standard chain of supersymmetric orientifolds by successive T-

dualities for the type I string compactified on the 4-torus in the X% X7, X8 X? directions:

1B 5, A g 1B T 1A n, 1B

I
Q - QRQ - QRgg(—l)FL - QR'ygg(—l)FL - QR6789

(6.4.5)

Here R;; _x denotes a reflection in the directions X%, X7 ... X*. After p < 4 T-dualities, a p-torus
T? is identified under reflections so that the T* becomes T*"? xT? /Zy where T? /Zy = TP/ R;, .,
identified under the reflection R;, ;. This has 2P fixed points with an O(9 — p)-plane at each
fixed point of charge —16/2P, which is cancelled by 16 D(9 — p)-branes.

The final case 1B/ Rgrsg is an orientifold of type IIB compactified on T*/Zs, which has 16
O5-planes at the 16 fixed points, each of charge —1, together with 16 D5-branes to cancel the
charge. Acting with S-duality takes [89]

S:Q— (1) (6.4.6)

giving the orbifold IIB/(—1)!% Rgzs9. The 16 D5-branes become 16 NS5-branes and the 16
O5-planes become 16 ON-planes [88,89].

Next, acting with a T-duality in the X direction gives the supersymmetric orbifold ITA / Rg7sg
giving the ITA string compactified on the K3 orbifold T%/Z,.

11B _g_) 1IB _T@_> ITA
QRers9 (—1)Fr Rersg Rergo

(6.4.7)

Combining (6.4.5) and (6.4.7) we have a duality between the type I string compactified on
T* and the type ITA string compactified on the K3 orbifold T%/Z,. As the type I string is
dual to the heterotic string, this gives the duality between the heterotic string on 7% and the
type IIA string on K3 [32]. Each orbifold singularity of 7%/Z, can be resolved by gluing in an
Eguchi-Hansen space, and the 16 NS5-branes of the IIB/(—1)t Rgyg9 theory can be thought of
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as corresponding to the ALE spaces glued in to resolve the singularities.

6.4.1. Moduli spaces and dualities

In the orientifolds considered in the previous subsection, the total charge cancels between
branes and orientifold planes and in general the dilaton is non-constant. However, in each case
there is a particular configuration where the charge cancels locally and the dilaton is constant.
In the type I’ theory there are two orientifold planes of charge —8 and 16 D8-branes of charge
+1, so that if there are 8 D8-branes at each orientifold plane, the charge at each plane is
zero and the dilaton is constant. This configuration has an SO(16) x SO(16) gauge symmetry
perturbatively, enhanced to Eg X Eg in the non-perturbative theory [117,118]. In this case,
the function V' is a constant, V = ¢;, and the length of the interval with respect to the metric
(6.3.1) is L = m(cy) /4.

For the theory obtained from the type I string on 7?7 (p < 4) by performing a T-duality on
each of the p circles, the charge-cancelling configuration has 16/2” concident D(9 — p)-branes
at each of the 2”7 O(9 — p) orientifold planes. For p = 4, there is a single D5-branes at each
of the 16 fixed points, and S-dualising gives a single NS5-brane coincident with each of the 16
ON-planes.

The general configuration for each case is obtained by moving in the corresponding moduli
space. The type I’ string is defined on 7 x R%® where I is the interval 0 < 7 < 7 with coordinate
7, with 16 D8-branes at positions 71, ..., 716 and O8-planes at the end-points 7 = 0, 7. It has

a 17-dimensional moduli space
O(1,17;Z2)\O(1,17)/O(17) (6.4.8)

which is the coset space O(1,17)/O(17) identified under the action of the discrete duality group
O(1,17;Z). (Here and in each of the following cases, there is a further factor of R corresponding
to the dilaton; this factor will not be discussed explicitly.) The 17 moduli consist of the 16
D8-brane positions 7, ..., T¢ and the length of the interval L. The duality group O(1,17;7Z)
(corresponding to the T-duality symmetry of the heterotic string compactified on S*) acts on
all 17 moduli.

For the theory obtained from the type I string on 7?7 (p < 4) by performing a T-duality on

each of the p circles, the moduli space is
O(p, 16 + p; Z)\O(p, 16 + p) /O(p) x O(16 + p) (6.4.9)

The moduli consist of the 16p parameters determining the positions of the D(9 — p)-branes
on TP /Zy and the p* moduli of constant metrics and RR 2-form gauge-fields on T?/Z,. The
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moduli space for metrics and 2-form gauge-fields on T is

O(p, p; Z)\O(p, p)/O(p) x O(p) (6.4.10)
For p = 4, we obtain [119]
0(4,20;Z)\0(4,20)/0(4) x O(20) (6.4.11)

After S-duality, this becomes the 80-dimensional moduli space consisting of 4 x 16 positions of
NS5-branes and 16 moduli for metrics and NS-NS 2-form gauge fields on T%/Z,. An O(4,4;7Z)
subgroup of O(4,20;7Z) acts as T-duality on T*, while the remaining transformations mix the
NS5-brane positions with torus moduli.

For K3, the moduli space is again (6.4.11) identified under O(4,20;Z), which is the auto-
morphism group of K3 CFTs and contains large diffeomorphisms and mirror transformations.
Moving in the moduli space away from the orbifold point blows up the singularities, and generic

points in the moduli space correspond to smooth K3 manifolds.

6.5. Degenerations

We will start with the type I’ string compactified on 7°. With the charge-cancelling configu-
ration of 8 D8-branes coincident with each O8-plane, the geometry is I x T3 xRS (where [ is the
interval [0, 7]) with constant dilaton. For general positions of the D8-branes, the corresponding
supergravity solution is (6.3.1), (6.3.2), (6.3.3) with z,y, z periodically identified.

Performing T-dualities in the x,y, z directions takes each D8-brane to a D5-brane smeared
over the T%. In other words, instead of getting a D5-brane localized at a point on the 4-
dimensional transverse space with a harmonic function V (7, z,y, z), we get a harmonic function
V(7) depending only on 7. Applying the standard Buscher T-duality rules takes the solution
(6.3.1), (6.3.2), (6.3.3) to the solution (6.3.7), (6.3.8), (6.3.9). This suggests that the O8-
planes could behave like negative tension D8-branes under T-duality, transforming to O5-planes
smeared over the T°. However, this picture is too naive, as we now discuss. Under T-duality,
the transverse space T° x S'/Z, transforms not to the product of the dual 7% with S'/Z, but
to T/ Zs.

The quotient S'/Z, is the circle with coordinate 7 ~ 7 + 27 identified under the action of
the Zy acting as a reflection 7 — —7, so that 7 = 0 and 7 = 7 are fixed points. It can be
represented by the line interval [ with 0 <7 < 7.

The orbifold T%/Zy can be realized similarly. First, 7% has 4 periodic coordinates z# =
(1,2,vy, 2) each identified with z* ~ z#* + 27. Then this is identified under the reflection acting

as # — —a*. It can be viewed as a quotient of I x T2 where [ is the interval with 0 < 7 < 7
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and the 7 has periodic coordinates z, 3, z each with period 27. There is then a further quotient
at the end points of I, so that I x T? is identified under the Z, acting as

0,z,y,2) = (0, —x, -y, —2), (m,z,y,2) = (7, —x, —y, —2) (6.5.1)

Thus we have T° “fibred’ over I with the fibre a T® for generic points 7 with 0 < 7 < 7, but
at the end points 7 = 0,7, the fibre becomes T°/Z, with 8 fixed points on each T%/Z,. If
we take the length of the interval L to be large, then the naive supergravity solution can be a
good approximation a long way away from the end points, but will need to be modified near
T=0,m7.

Dualising the D8-brane configuration then gives a configuration that, for |7 — 7/2| << 7/2,
is well approximated by the supergravity solution (6.2.22), (6.2.24), (6.2.30) consisting of the
three-torus with flux fibred over a line, but this will need modification near the end points
7 = 0,7. This then is a space with a long neck of the form 7% x R capped at the two ends. A
further T-duality takes the fibres from a 3-torus with flux to a nilfold A/, giving the solution
(6.2.31), (6.2.32). This then implies that K3 should have a limit in which it degenerates to
a long neck of the form N x R capped off by suitable smooth geometries. Remarkably, such
a limit of K3 has recently been found [86], with an explicit understanding of the geometries
needed to cap off the neck and to resolve the domain wall singularities, as we review in the

next subsection.

6.6. A degeneration of K3.

In [86], a family of hyperkdhler metrics on K3 was constructed labelled by a parameter 3 in
which the limit § — oo gives a boundary of the K3 moduli space in which the K3 collapses to
the one-dimensional line segment [0, 7]. For large [, the metric is given to a good approximation
at generic points by the multi-domain wall metric (6.2.31). The domain wall solution N (6.2.31)
has singularities at the end points 0, 7 where there are single-sided domain walls and at the
domain wall locations 7;, but the K3 metric of [86] smoothly resolves these singularities to give
a smooth geometry. The geometry is obtained by gluing together a number of hyperkahler
spaces, and these then give approximate metrics for different regions of K3. There is a long
neck consisting of a number of segments, with each segment a product of a nilfold with a line
interval, with metric of the form (6.2.31) with V' = ¢+ m7. The degree m of the nilfold jumps
between segments. The domain wall connecting two segments is realized as a smooth Gibbons
Hawking space corresponding to multiple Kaluza-Klein monopoles. At either end the geometry
is capped with a Tian-Yau space, resolving the single-sided domain wall geometry, as discussed

in section 6.2.5.
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For large B > 1, there exists a continuous surjective map from K3 to the interval I

Fs: K3 — [0, 7]. (6.6.1)

and a discrete set of points S = {0,7,...,7,, 7} C [0,7]. It will be convenient to let 79 = 0
and 7,,.1 = 7. Let R. be the interval

Ri={r:mi t+te<t<m—¢€=(ri1+67—¢) (6.6.2)

for some small €. Then for each + = 1,...,n + 1, the region of K3 Fﬂ_l(Ré) projecting to R’
is diffeomorphic to the product of the interval R! with a nilfold of degree m; for some m;.
The metric is approximately given by the hyperkdhler metric (6.2.31) with V' = ¢; + m;7. The
degree jumps at 7; by

Ni=my 1 —my (6.6.3)

The degree of the nilfold fibres is piecewise constant:

my, T<TL—E€
ma, T+e<T<T9—€
M(r)=<" (6.6.4)
my, Tno1 TE<TL<T, —€
\mnH T>T, +e

and jumps across the domain walls at 7 = 71, 79, ..., Ty.
For the end regions Fﬁ_l(Se_), Fﬂ_l(Sj) projecting to

€

S =10,¢) St =(r—e¢n (6.6.5)

the singularities of the single-sided domain walls at the end points are resolved as in section
6.2.5 by Tian-Yau spaces. The region Fj 1(8+) is approximately a Tian-Yau space X, . of

) is a Tian-Yau space X,_ of negative degree —b_, where b

€

degree b, and the region Fﬁ_l(S_
are some integers 0 < b. < 9. Asymptotically, these give the product of a line with nilfolds
of degree —b_,b, and so to match with the solutions projecting to R!, R"™ we must take
my = —b_ and m,,1 = b,. The case of zero degree gives an ALH Tian-Yau space X, that is
asymptotically cylindrical, with fibres given by 7. Then the sum of the charges at the domain

walls is

> ONi=b_+b, (6.6.6)
i=1
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and so is an integer

0<) N <18 (6.6.7)
=1

The number n of domain walls then satisfies 0 < n < 18 if all domain wall charges N; are
positive.
Consider now the interval

S'=(r—e1+¢) (6.6.8)

In [86], the geometry in the region F/B_l(Sé) is taken to be a Gibbons-Hawking metric (6.2.8)
specified by a harmonic function V' (z, z, 7) on T?% x 8! with N; sources. This gives a hyperkihler
space which is an S! fibration over the space given by removing the N; singular points from
T? x 8'. This can be constructed from a Gibbons-Hawking space on R? x S’ with a doubly
periodic array of sources by taking the quotient by a lattice to obtain N; sources on 72 x S°.

For the case b_ = by = 0, both X, and X,_ are asymptotically cylindrical ALH spaces. A K3
surface can be constructed by glueing the two cylindrical ends of two ALH space together [120].
This means there are no domain walls, so that n = 0 for this case. This K3 surface is dual to
the locally charge-cancelling type I configuration, in which one end of the interval at 7 = 0
there is an O8-plane and 8 D8-branes, while at the other end, 7 = 7, there is also an O8-plane
and 8 D8-branes, so that the RR field strength Fg) is zero.

In the general case we have a geometry capped by two spaces X;,_ and X, of degrees b_, b,
which are integers with 0 < by < 9. For by > 0 these are Tian-Yau spaces asymptotic to the
product of a nilfold of degree by and a line interval, while for by = 0 these are ALH spaces
asymptotic to the product of a 3-torus and a line interval. These are joined by a neck region
which can be thought of as a Gibbons-Hawking space on the product of a line interval and a
nilfold with b_ + b, Kaluza-Klein monopoles inserted. For N; Kaluza-Klein monopoles inserted
at 7 = 7, the degree of the nilfold jumps from m; for 7 < 7; to m; + N; for 7 > 7,. The
smooth K3 geometry is constructed by gluing together the Tian-Yau spaces, the product of
the nilfold with a line interval and the Gibbons-Hawking spaces as shown in [86], and these
various hyperkéahler metrics provide good approximate metrics for the corresponding regions of
the K3.

The form of the solution away from the domain walls is (6.2.31) with V' given by (6.2.26)
with

my = —b_, Mpy1 = by, N; =mi 1 —m; (6.6.9)
and the charges N; satisfy (6.6.6).
The geometry is smooth if all the of the Kaluza-Klein monopoles are at distinct locations,

so that the geometry is approximately that of self-dual Taub-NUT near each monopole. If k

of the Kaluza-Klein monopoles are coincident, the K3 surface has an A;_; orbifold singularity
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and so there is a resulting A;_; gauge symmetry. If b_ = b, = 9, there are 18 Kaluza-Klein
monopoles and if these are coincident, there is a resulting SU(18) gauge symmetry.
In the next section, the duals of the IIA string compactified on this degenerate K3 will be

considered.

6.7. Duals of the degenerate K3.

In this section, we revisit the chain of dualities discussed in section 6.4 that led from the type
I string theory to the ITA string on K 3. Starting from the local charge-cancelling configuration
of the type I’ string on I x RY® with 8 D8-branes at each O8-plane, dualising took us to the
type ITA string on the K3-orbifold T%/Z, and to the quotient IIB/(—1)'t Rggo of type 1B
compactified on T%/Z, with one NS5-brane coincident with one ON-plane at each of the 16
fixed points. The equivalence of these theories at one point in moduli space then, in principle,
should define an embedding of the moduli space O(1,17;Z)\O(1,17)/O(17) of the type I string
theory into the moduli space of the IIA string on K3 and of the IIB quotient. The domain wall
supergravity solutions provide a guide as to how this should work. Moving in the moduli space
of the type I string moves the 16 D8-branes away from the O8-planes to generic points 7; on the
interval, corresponding to the solution (6.3.1) for generic points away from the locations of the
branes. Dualising the solution takes the solution (6.3.1) with D8-branes to the solution (6.2.22)
with smeared NS5-branes and a T fibration over a line or to the solution (6.2.31) of smeared
KK-monopoles with a nilfold fibration over a line. The locations of domain walls arising from
the smeared NS5-branes or KK-monopoles are at the same locations 7;. The geometry discussed
in the previous section then provides a non-singular K3 geometry that resolves the singularities
of the domain-wall supergravity solution, and its existence supports the picture arising from
duality arguments.

The type I’ configuration with two O8-planes of charge —8 and 16 D8-branes then corresponds
to the K3 geometry with end-caps given by Tian-Yau spaces with b, = b_ = 8 and with 16
Kaluza-Klein monopoles distributed over the interval. If by = 8 —ny and b_ = 8 — n_ with
16 — b_ — b, Kaluza-Klein monopoles, this corresponds in the type I’ string to having n_ D8-
branes at the O8-plane at 7 = 0 and n, D8-branes at the O8-plane at 7 = 7, with 16 —b_ — b,
D8-branes distributed over the interval.

However, the K3 geometry also allows b, = 9 and/or b_ = 9, which would lead to up to 17 or
18 Kaluza-Klein monopoles. This corresponds to the possibility in the type I’ string at strong
coupling for an O8-plane to emit a D8-brane leaving an O8*-plane of charge —9 [95], [121].
Then the K3 with b, = b_ = 9 and 18 Kaluza-Klein monopoles corresponds in the type I’
string to two O8*-planes of charge —9 and 18 D8-branes. The configuration in which the 18

Kaluza-Klein monopoles are coincident corresponds to the one in which the 18 D8-branes are
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coincident, and either picture gives an enhanced gauge group SU(18) (together with a further
U(1) factor). For the type I’ string, up to 16 D8-branes are possible at weak coupling and 17
or 18 D8-branes are only possible at strong coupling. However, for the K3 geometries, the ITA
string on K3 can be taken at weak ITA string coupling and in particular 17 or 18 KK-monopoles
and the gauge group SU(18) can arise at weak coupling. The S-duality in the chain of dualities
in section 6.4 has mapped strong coupling physics of the type I’ string to weak coupling physics
in the ITA string.

Consider now the type IIB dual of the K3 compactification. Compactifying the weakly-
coupled I’ string on 7% and dualising on all three toroidal directions gave 16 D5-branes smeared
over the T3 16 O5-planes. The IIB theory is an orientifold on T*/Z,, which can be regarded as
I x T3 with an identification of the 3-tori at the ends 7 = 0, 7 of the interval to become T3 /Z,,
with an O5-plane at each fixed point. S-dualising gives the quotient IIB/(—1)t Rgrg9 with 16
ON-planes and 16 NS5-branes smeared over the 7. This should be dual to the ITA string on
K3, and for the orbifold T /Z, they are related by a T-duality. However, the relation between
the ITA and IIB pictures cannot be a conventional T-duality at generic points in the moduli
space, as T-duality requires the geometry to have an isometry and a smooth K3 does not have
any isometries.

The degenerating K3 geometry of [86] is constructed by gluing a number of hyperkéhler
segments. The segment with geometry N (6.2.31) with a nilfold fibred over a line segment
dualises to (6.2.22) with a 3-torus with flux fibred over a line segment. The Tian-Yau caps do
not have the required isometries and so do not have conventional T-duals. However, from the
duality with the type I theory, they should be dual to the region around the 8 ON-planes. The
Tian-Yau caps are asymptotic to the nilfold fibred over a line, and so their duals should be
asymptotic to a T° with flux fibred over a line.

The segment near the domain wall of charge N; at 7 = 7; is realized in the K3 geometry as
N; Kaluza-Klein monopoles on N x I, realized as a Gibbons-Hawking metric with V; sources
on the base space T2 x I. T-dualising on the S* fibre of this Gibbons-Hawking space takes the
N; Kaluza-Klein monopoles on N x I to N; NS5-branes on T x I. This can be understood
by first looking at the covering space R? x I of T2 x I. A single Kaluza-Klein monopole in R3
is given by (6.2.7) in terms of the the Gibbons-Hawking form of the Taub-NUT metric (6.2.8)

with V (7, z, 2) a harmonic function on the R?

V=c+

(6.7.1)

lr — ro|

with 3-vector r = (7,x,z). T-dualising gives the NS5-brane (6.2.22) with harmonic function
V (1, x,vy, 2) on the transverse R* given again by (6.7.1). It is independent of the coordinate y. T-

dual to the Gibbons-Hawking fibre coordinate and so the solution is smeared in the y direction.
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Taking a periodic array of such solutions in the x, z directions allows periodic identification
of the x, 2 coordinates and gives the GH solution localized on T? x R. T-dualising in the y
direction gives the NS5-brane on 7% x R, smeared over one of the y direction. For the segment
near 7 = 7;, one takes a superposition of IN; sources giving the Gibbons-Hawking solution with
N, sources on 72 x 1.

At the level of supergravity solutions, the DS8-brane domain wall supergravity solutions
wrapped on 7% map to the KK-monopole domain walls with Gibbons-Hawking metric smeared
over two transverse directions (z, z), so that V (7, z, z) is independent of (z,z). We have seen
that these singular domain walls are smoothed out to give a Gibbons-Hawking metric with
local sources at points (7,2, z) in 7% x I. This suggests that the smeared NS5-brane domain
walls too should be smoothed out to give an NS5-brane solution with sources localized at N;
points in the transverse 7% x I. Then S-dualising to D5-branes, this would lead to the D5-brane
domain wall T-dual to a D8-brane of charge N; realized as NN; localized D5-branes on 7% x 1.
T-dualising to Dp-branes, we would then expect the singularity of the smeared Dp-brane to be

smoothed by having N; local sources on the transverse 7% x I.

6.8. Non-geometric string theory

Compactifying the type I string on 7% and T-dualising in all four torus directions and then
taking the S-dual gives the quotient IIB/(—1)f% Rggg of the IIB string on T%/Z,. One could
then in principle T-dualise this in one, two, three or four directions and this should lead to new
string theory configurations.

The first T-duality works well, as has been discussed in the preceding sections. At the locally-
charge-cancelling orbifold point, the T-duality takes this to the orbifold ITA/Rgrse of the TTA
string on the K3 orbifold T%/Z,. At generic points in the moduli space of configurations dual
to the type I’ string, this becomes a duality between a IIB configuration of NS5-branes and ON-
planes and the ITA string on a smooth K3 manifold near the boundary of moduli space in which
the K3 becomes a long neck capped with Tian-Yau spaces. As a smooth K3 has no isometries,
this duality is not properly a T-duality but instead a dual form of the duality between ITA
on K3 and the heterotic string on T* [32] (which is in turn dual to the type I string on T%).
However, in the long neck region, the geometry is well approximated by a Gibbons-Hawking
space and the T-dual of this gives the appropriate configuration of NS5-branes, so dualising
the corresponding supergravity solutions gives a good guide to how the duality works.

The first T-duality can be understood as taking NS5-branes to KK-monopoles, with NS5-
branes on 73 x I mapped to KK-monopoles on A/ x I. T-dualising in two or more directions takes
the NS5-branes to exotic branes, so will result in string theory in a non-geometric background.

We now explore this in more detail.
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Consider first T-dualising I1B/(—1)T Rgrg9 in two directions, taking an NS5-brane to an
exotic 53-brane or (5,22)-brane In the last section, we have seen how the naive T-duality
between the supergravity solutions representing KK-monopole domain walls and NS5-brane
domain walls becomes a proper string theory duality between a smooth K3 geometry and an
NS5-brane configuration. A T-duality in the z direction takes the nilfold (6.1.3) to the T-fold
(6.1.5), and takes the solution (6.2.31) with the nilfold fibred over a line to the solution (6.2.36)
with a T-fold fibred over a line. If this is subsumed in a proper string theory duality, then this
suggests that the degenerate K3 solution with a long neck given by the nilfold fibred over a line
should be dual to a non-geometric configuration with a long neck given by the T-fold fibred
over a line. The ends of the neck should be capped off by configurations that can be thought
of as the duals of the geometries that cap off the degenerate K3 or as the double T-dual of the
ON-planes on the fixed points of the ends T3 /Zy of T*/Zy ~ I x T3, and these are presumably
non-geometric. The domain walls might then be expected to become localized configurations
of exotic branes.

Similar remarks apply to T-dualising IIB/(—1)f% Rgrg9 in three directions, taking an NS5-
brane to an exotic (5,3%)-brane or 53-brane. This takes the configuration 7% x I with H-flux
to the configuration with R-flux that is not geometric even locally. It cannot be formulated as
a conventional background but can be formulated as a doubled geometry, with explicit depen-
dence on the coordinates dual to string winding. The doubled geometry of this configuration

will be discussed elsewhere.

105



7. Special Holonomy Domain Walls,

Intersecting Branes and T-folds

In this chapter, we generalize a 3-dimensional nilmanifold to a higher-dimensional nilman-
ifold. In the previous chapter, taking a product of a nilfold with a real line gives a space
admitting a hyperkahler metric. A special honolomy space can be obtained in the same way
by replacing the 3-dimensional nilmanifold with higher-dimensional one [96]. In each case, the
product of this space with Minkowski space gives a supersymmetric solution. This supersym-

metric solution is T-dual to an intersecting brane solution [97].

7.1. Nilmanifolds as torus bundles over tori

In this section, we review certain generalizations of the 3-dimensional nilfold to higher di-
mensions [96]. The Heisenberg group is replaced by a higher dimensional nilpotent Lie group
g, and taking the quotient by a cocompact discrete subgroup gives a nilmanifold, which is a
compact space which is a T™ bundle over T™ for some m, n.

A Lie algebra g is nilpotent if the lower central series terminates, that is

for all Xy, ---,X,,Y € g, for some integer p. For a nilpotent Lie group G, the smallest such p
is known as the nilpotency class of G and G is called a p-step nilpotent Lie group. Note that

an abelian group is 1-step nilpotent Lie group since
(X, Y]=0 (7.1.2)
for all XY € g. The 3-dimensional Heisenberg group is a 2-step nilpotent Lie group since
[T,,T.] = mT, (7.1.3)

and T}, commutes with T, and T,.

For a general 2-step nilpotent Lie group G, the commutator of any two generators X,Y of
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the Lie algebra g must be in the centre Z(g) of g (consisting of generators commuting with all
other generators):

X,Y] € Z(g) (7.1.4)

In general, a 2-step nilpotent Lie group G is non-compact. A compact space M can be con-

structed from a nilpotent Lie group G identified under the left action of a cocompact subgroup
I
M=G/T. (7.1.5)

If the dimension of Z(g) is n and the dimension of the quotient g/Z(g) is m, the compact space
M can be regarded as a T™ bundle over T™. For example, the Heisenberg group (G5 has a
centre Z(g) of dimension n = 1 and the dimension of g/Z(g) is m = 2, and the nilfold is an S*

bundle over T2.

Local coordinates z® on the group manifold G can be introduced by the exponential map

giving a group element g as g = Hexp(z“Ta) where T}, are the Lie algebra generators. The

general left-invariant metric on G cczlm be written as

ds* = x4 P PP, (7.1.6)
where x4, is a constant symmetric matrix. and P* are the left-invariant one-forms

g 'dg = PT,, (7.1.7)
In this paper, z,, will be chosen as x,, = d45 S0 the left-invariant metric is

ds? = 0 P P". (7.1.8)

The discrete subgroup I' consists of group elements with integer coordinates, g(n) = H exp(n®Ty,)

for integers n®. Taking the quotient of G by the left action of the discrete subroup I' gives the
nilfold M = G/T" and (7.1.8) gives a metric on M. Taking the quotient imposes identifications

on the coordinates so that the space becomes a torus bundle over a torus.

7.1.1. S! bundle over T*

Our first example is the five-dimensional nilpotent Lie algebra whose only non-vanishing
commutators are
[TQ, Tg] = mTl, [T4, T5] == mTl. (719)
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With coordinates 2%, ..., 2, the left-invariant one-forms are then given by

P! = d2' +m(Pd* + 2Pd2?),
P? = d2? PP = d2?,
P* = dz*, P° = di°. (7.1.10)

The metric (7.1.8) is then

2
ds* = (dzl +m(2°d2? + z5dz4)) + (d2?)? + (dz*)? + (d2")* + (d=°)*. (7.1.11)

This is an S' bundle over T* with fibre coordinate z' and T* coordinates 22,23, 2%, 2°, with

first Chern class represented by
m (dz3 A dz? 4 dz5 A dz4).

The metric is invariant under shifts of 2!, 22, and 2* so that T-dualising in these directions
is straightforward, applying the standard Buscher rules [100,101] . We will not give all dual
backgrounds explicitly, but focus on some interesting examples.

T-duality in 2! direction gives a T° with H-flux. The metric and H-flux of this space are

given by

ds* = (dz")? + (d2*)* + (d2*)* + (dz*)? + (d2°)?, (7.1.12)
H = —mdz' Nd2® Ndz® — mdz' A dz* A d2P. (7.1.13)

T-dualising the metric (7.1.11) in the 2% and z* directions gives a T-fold background. The
metric and B-field are given by

2 _ 1 L1)2 2)2 A2
S 1+ m? [(z3)2 + (z5)2] <<d J ()" + (d=) )
+ ! <mz5dz2 — m23d24)2 + (d2*)? + (d2°)?,  (7.1.14)
14 m? [(23)2 + (25)2]
B = m @%fA@Mﬁwa@ﬁ. (7.1.15)

1+m?2 [(23)2 + (25)2]

7.1.2. T? bundle over T°

Next consider the five-dimensional nilpotent Lie algebra whose only non-vanishing commu-
tators are
[Tg, T4] = mTl, [Tg, T5] = ng. (7116)
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Introducing coordinates z',... 2% the left-invariant one-forms are given by

P = dz' +mztd?,
P? = d2* +mzid,
P} = d2*, P' = dt, PP = d2°. (7.1.17)

and the metric on the manifold is
2 2
ds* = <dzl + mz4d23) + <d22 + mz5d2’3> + (d2*)* + (d2*)* + (d2°)% (7.1.18)

This space is a T2 bundle over 7% with fibre coordinates z', 2.

T-duality in the 2! direction gives an S bundle over T* with H-flux; the metric and H-flux

are

2
ds* = (dz')?+ <d22 + mz5d23> + (d2*)? + (dz*)? + (d2°)?, (7.1.19)
H = —mdz' Ndz> Ndz*, (7.1.20)

A further T-duality in the 2?2 direction gives T° with H-flux. The metric and H-flux of this

Space are

ds® = (dz")? + (dz?)? + (d2*)® + (d2*)* + (d2°)?, (7.1.21)
H = —mdz' Nd2* Ndz* — md2® A dz° A d2°. (7.1.22)

After a change of coordinates, this is the same solution as (7.1.12),(7.1.13), establishing that
the S bundle over 7% is T-dual to the T2 bundle over T3.

Starting from the metric (7.1.18) and doing a T-duality in 2z direction gives a T-fold with
metric and B-field

1 1 2
ds* = - - [(dz1)2 + (d2%)? + (dz?’)ﬂ + <z5dzl — z4dz2>
1+ m?2 (24)2 + (25)2 1+ m2 |:<Z4)2 + (25)2]
+(dz*)? + (d2°)?, (7.1.23)
B = M . (Z4d21 Adz? + 2°d2? A dz3>. (7.1.24)
14+ m?|(24)2 + (2°)?
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7.1.3. T? bundle over T*

Consider the six-dimensional nilpotent Lie algebra whose only non-vanishing commutators

are

[T37 T4] = mTl: [T37 TS] = mT2>
{Tfn TG] = mTl, [T4, TG] = —mTQ. (7125)

Note that this six-dimensional Lie-algebra corresponding is the complexification of the standard

1

3-dimensional Heisenberg algebra. Introducing coordinates z!,...z%, the left-invariant one-

forms are given by

P! = dz' +m(*d2? + 25d2P),

P? = d2? + m(2°d2? — 25d2?),

P = d2*, P* = d*,

P = d2°, P’ = d:° (7.1.26)

and the metric on the manifold is

2 2
ds® = <dzl+m(z4dz3+z6dz5)> + (dz2—|—m(z5dz3—zﬁdz4)) +(dz*)? + (d2*)? + (dz”)* + (d=°)2.
(7.1.27)

This space is a T2 bundle over T# with fibre coordinates z', 2.

T-duality in z! gives a S bundle over T° with H-flux, given by

2
ds* = (dz')*+ (d22 +m(2°dz* — zﬁdz4)) + (d2°)? + (d2")? + (d2°)? + (d=°)*(7.1.28)
H = —mdz' Nd2? ANdz* — mdz' A d2° A d2°. (7.1.29)

A further T-duality in the 22 direction gives T° with H-flux, with a flat metric

ds® = (dz')* 4 (d2*)? + (d2*)? + (d2*)? + (d2°)? + (d2°)?, (7.1.30)
and H-flux
H = —mdz' Nd2* Ndz* — mdz' A d2° A d2°
—mdz* Adz* A d2® +mdz? A d2t A dz°, (7.1.31)

Starting from the metric (7.1.27) and doing T-duality in the 2® direction gives a T-fold with
metric and B-field given by (C.0.1) and (C.0.2).
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7.1.4. T3 bundle over T°

The next case is the six-dimensional nilpotent Lie algebra whose only non-vanishing commu-

tators are

[Tg,, Tﬁ] = 77”L1ﬁ17 [T4, Tﬁ] = —77’L1ﬁ27
[7—'47 T5] = ng. (7132)

The left-invariant one-forms are given by

Pl = dz' + m2bdP,

P? = dz*> —m28d*,
P} = d2® +m2Pd?,
PY = d2t, P° = d°, P® = d2°. (7.1.33)

The metric is
2 2 2
ds* = <d21+m26dz5> +<d22—m26dz4> +<d23+mz5dz4> +(dz*)2 4 (d2°)2 4+ (dz5)?. (7.1.34)

This is a 7% bundle over T? with fibre coordinates z!, 22, 23.

T-duality in the 2! direction gives a 72 bundle over T* with H-flux. The metric and H-flux

are

2 2
ds* = (dz')*+ <d22 - m26d24) + (dzg + mz5dz4> + (dzh)? + (dz°)? + (d2°)37.1.35)
H = —mdz' Ndz® A 25, (7.1.36)

A further T-duality in 22 gives an S! bundle over T° with H-flux. The metric and H-flux are

, 2
ds* = (dz")? + (dz?)? + (dz3 + mzsdz4> + (d2*)? + (d2°)? + (dz%)?, (7.1.37)
H = —mdz' Nd2° A28 +mdz? A dz* A d25. (7.1.38)

A final T-duality in the z? direction gives a T° with H-flux
ds® = (dz')? + (d2*)? 4 (d2*)? + (dz*)? + (d2°)* + (d=°)?, (7.1.39)

H = —mdz' Nd2° Nd2® — md2® A dz* A dz® +mdz? A d2* A d2°. (7.1.40)

Starting with (7.1.34) and T-dualising in the z? direction gives a T-fold with metric and

111



B-field given by

1
14+ m?2 [(25)2 + (26>2]

ds® = (dz' + m2%d2")* + [(dz)2 + (d2*)? + (dz*)?

1

1+ m? [(ZS)Q v (z6)2]

B = i (z5d23 Adzt — 25d22 A dz4> (7.1.42)

14 m? [(z5)2 + (26)2}

2
+ (mz5dz2 + mzﬁdz?’) + (d2°)? + (dz°)? (7.1.41)

7.1.5. T2 bundle over T*

Next consider the seven-dimensional nilpotent Lie algebra whose only non-vanishing commu-

tators are

[T4, T5] = mTl, [T67 T7] = mTl,
[T4, Tﬁ] = m1s, [T5,T7] = —m5,
[T4, T7] = ng, [T5, Tg] = ng. (7143)

The left-invariant one-forms are given by

P! = d' +m(2Pdt + 27d20),

P? = d2* +m(Pd2t — 27d2P),

PP = d2* +m(2"d2t + 2%d2P),

P* = dzt, P° = d2°,

P’ = df, PT = d:". (7.1.44)

The metric is

2 2 2
ds* = (dz1 +m(2°dz* + z7dz6)> + (d22 + m(2%dz* — Z7d25)> + <d23 +m(zdz* + z6dz5)>
+(dz*)? + (d2°)* + (dz%)? + (dz")2. (7.1.45)
T-duality in the 2! direction gives a nilmanifold with H-flux. The metric and H-flux are
given
2 2
ds* = (dz")? + <d22 +m(2%dz* — z7dz5)> + (dz3 +m(27dzt + ZGdz5)>
+(dz")? + (dz°)? + (d2°)* + (d=")?, (7.1.46)
H = —mdz' Ndz* Ndz® —mdzt A d2® A d2. (7.1.47)
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T-duality again in 22 direction gives a nilmanifold with H-flux. The metric and H-flux are

given

2
ds® = (dz")? + (d2?)? + <d23 +m(2"d* + zﬁdz5)>

+(dz")? + (d2°)? + (d2°)? + (d=2")?, (7.1.48)
H = —mdz' Ndz* Ndz® — mdz' Adz28 A dz™ — md2? A dz* A d2° (7.1.49)
+mdz? N d2® N dz". (7.1.50)

T-duality again in 2z direction gives a 77 with H-flux. The metric and H-flux are given

ds® = (dz")? + (d2°)* + (d2°)* + (dz*)? + (dz°)* + (dz°)* + (d=")?, (7.1.51)

H= = —mdz' Ndz* Ndz® — mdz' Ndz® A dz2" — mdz? A dz* A dz2®
—mdz® Adzt Adz" — md2® Adz® A d2® + md2® A d2 A d2T (7.1.52)

While starting from the metric (7.1.45), and doing T-duality in z* direction gives T-fold with
metric and B-field given by (C.0.3), (C.0.4).

7.1.6. S! bundle over T

The last case is the seven-dimensional nilpotent Lie algebra whose only non-vanishing com-

mutators are

[Tg, Tg] = mTl, [T4, T5] = mTI,
[T@, T7] = mTl. (7153)

The left-invariant one-forms are given by

P! = d2' +m(2Pd? + 2Pdt + 27d25),

P? = d2? P = d°

Pt o= d2t, PP = d2,

P = d2° PT = d2'. (7.1.54)

The metric is

2
ds? = (! + m(2de? + 22t 4 2740) ) (d22)2 + (d2%)? + () o (d2°)2 o (d9)% + (d=T)2,
(7.1.55)
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T-duality in the z! direction gives a 77 with H-flux. The metric and H-flux are given
ds® = (dz")? + (d2®)? + (d2°)? + (dz")? + (d2°)* + (d2°) + (dz7)?, (7.1.56)

H = —mdz' Nd2? Ndz® —mdz' Ndz* Ad2® —mdzt Ad28 AN d2T (7.1.57)

Starting with (7.1.55) and T-dualising in the 22, 2%, and 2° gives a T-fold with metric and
B-field given by
1
ds? = [(dzl)Q +(d22)2 + (dzY)? + (de)Q]
1+ m2 [(23)2 +(25)2 4 (27)2}

1

+(d2*)? + (d2°)? + (dz")? +
1+ m?2 [(23)2 F(25)2 4 (27)2}

<m25d22 — mz3d24> i

1
+ (mz7dz2 — mz3d26>
Lok m2|(29)2 + (9)2 + (7)2]
1 2
+ <mz7dz4 - mzsdz6> , (7.1.58)
L m2| ()2 + (25)2 + (27)2]
B= m (z3dz1 Ad2? + 2Pdet Adet + 2Tdet A dzﬁ). (7.1.59)

1+m2 |:(Z3)2+<Z5)2_|_(Z7)2:|

7.2. Supersymmetric domain wall solutions

In the previous chapter, taking the product of the 3-dimensional nilfold with the real line
gave a space admitting a hyperkédhler metric. Remarkably, a similar result applies for the
nilmanifolds arising as higher dimensional analogues of the nilfold of section 7.1 [96]. Each of
the spaces

M =G/T. (7.2.1)

discussed in section 7.1 is a T™ bundle over T™ for some m,n. In each case, the space M x R
admits a multi-domain wall type metric that has special holonomy [96], so that taking the
product of the domain wall solution with Minkowski space gives a supersymmetric solution.
The solutions all involve a piecewise linear function V(7) given by (6.2.26) with derivative
M =V’ given by (6.2.29), corresponding to domain walls at the points 7;. We now discuss each

case in turn.

114



7.2.1. 6-dimensional domain wall solutions with SU(3) holonomy

6-dimensional solutions with SU(3) holonomy can be constructed on M x R for the two cases
of 5-dimensional nilfolds discussed in section 7.1, the S bundle over T* and the 7 bundle over
T3.

Case 1 S! bundle over T*

The six-dimensional domain wall metric for this case is given by

ds? = VAr)(dr)? + V() ((d2)? + (d=") + (d=")? + (d=°)?)
+V=3(7) <dzl + M(2*dz* + z5dz4)>2, (7.2.2)

3 2% and 2° are coordinates on 7%, and 2! is a

coordinate on S'. The harmonic function V(1) is given by (6.2.26) and M = V' (6.2.29).

This metric is Kéhler Ricci-flat so it has SU(3) holonomy and preserves % supersymmetry.

where 7 is a coordinate on the real line, 22, 2

The Kahler form is given by
J =dr A (dzl + M(2*dz* + z5dz4)> —V(r)d2* Ndz® — V(1)dz* A d2°. (7.2.3)

Case 2 T? bundle over T°

The six-dimensional domain wall metric for this case is given by

ds® = V(r)(dr)? + V*(1)(dz*)?* + V(1) ((dz4)2 + (dz5)2>
+V ) (dzl v Mz4d23>2 V() <d22 + Mz5dz3>2, (7.2.4)

3 5

where 7 is a coordinate on the real line, 23, z*, and 2% are coordinates on 7%, and z', and 22
are coordinates on T?. The harmonic function V(7) is given by (6.2.26). This metric is also

Kahler Ricci-flat with a Kahler form

J = V(r)dr A d2® + (dzl + Mz4dz3> Adzt o+ (dz2 + Mz5dz3> A d25. (7.2.5)

7.2.2. 7-dimensional domain wall solutions with G5 holonomy

7-dimensional solutions with G5 holonomy can be constructed on M x R for the two cases
of 6-dimensional nilfolds M discussed in section 7.1, the 7 bundle over 7% and the 7° bundle
over T3. The G5 holonomy implies the metrics are Ricci-flat metrics and preserve % of the
supersymmetry.

Case 1 T? bundle over T*
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The domain wall metric in this case is given by

ds? = VAT)(dr)? + VA(r) ((d=)? + (d=*)? + (d=°)? + (d°)?)
TV A7) (A2t + M2+ z6dz5)>2
+V=3(7) <dz2 + M(2°dz* — 26d24)>2, (7.2.6)

3

where 7 is a coordinate on the real line, 23, 2%, 2%, and 2% are coordinates on T#, and 2!, and 22

are coordinates on T2.
Case 2 T2 bundle over T°

The domain wall metric in this case is given by
2
ds* = V3(7)(dr)? + V*(7) ((dz4)2 + (d2°)? + (dz6)2) + V(1) <d21 + Mzﬁdz5)
2 2
+VHr) <d22 - Mzﬁdz4> +V(7) (dz3 + Mz5dz4> : (7.2.7)

4 2

where 7 is a coordinate on the real line, 2%, z°, and 25 are coordinates on 7° base, and 2!, 22,

and 2% are coordinates on T® fibre. The harmonic function V() is given by (6.2.26).

7.2.3. 8-dimensional domain wall solution with Spin(7) holonomy

In this case, an 8-dimensional solution with Spin(7) holonomy can be constructed on M x R
with M the 7-dimensional nilfold which is a 7° bundle over T#.The domain wall metric is given
by

ds* = VO(r)(dr)* + V3(7) ((dz4)2 + (d2°)? + (dz°)* + (dz7)2) +V73(1) (dzl + M(2Pdz* + z7d26))2
+V73(7) <d22 + M(2%dz* — z7dz5)>2 +V73(7) (dz3 + M(2"d2* + 26d25)>2, (7.2.8)

5

where 7 is a coordinate on the real line, z*, 2% 2% and 27 are coordinates on 7% base, and

21,22, and 2* are coordinates on T fibre. The function V(1) is given by (6.2.26). The Spin(7)

holonomy implies the metric is the Ricci-flat metric and preserves 1—16 of the supersymmetry.

7.2.4. 8-dimensional domain wall solution with SU(4) holonomy

In this case, an 8-dimensional solution with SU(4) holonomy can be constructed on M x R

with M the 7-dimensional nilfold which is a S' bundle over T%. The domain wall metric is
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given by
ds? = VI(r)(dr)? + V() ((d22)? + (d2°)2 + (d=') + (d°)° + () + (d=T)?)
+V3(r) (dzl + M (22 + 2Pdet + z7dz6))2, (7.2.9)

where 7 is a coordinate on the real line, 22, 23, 2%, 25, 25 and 27 are coordinates on 7 base, and

2! is a coordinate on S! fibre. The function V(7) is given by (6.2.26). The SU(4) holonomy

implies the metric is the Ricci-flat metric and preserves % of the supersymmetry.

7.3. Special holonomy domain walls and intersecting

branes

In this section, we will T-dualise each of the special holonomy domain wall solutions of the last
section to obtain a system of intersecting branes. In each case, we obtain a standard intersecting
brane configuration and check that they preserve exactly the same fraction of supersymmetry

as the corresponding special holonomy domain wall solutions.

7.3.1. S! fibred over T*

The supersymmetric domain wall solution has ten-dimensional metric
ds3y = ds*(R"?) + dsg, (7.3.1)

where ds?(R'™) is the flat metric of (n+1)-dimensional Minkowski space and the 6-dimensional

SU(3) holonomy metric is

dsy = VAr)(dr)? + V(r)((d=2)? + (d2%) + (d=")? + (d2°)?)

2
+V73(7) <dz1 + M(23d2* + z5dz4)> : (7.3.2)

The H-flux and the dilaton are trivial,
H =0, ® = constant. (7.3.3)

T-duality in the z!-direction gives the background with metric

dsg = VA(r)((dr)? + (d2)?) + V(r) ((d22)? + (d2%)2 + () + (d2°)?), (7.3.4)
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H-flux
H = —Mdz' Nd2* Ndz® — Mdz* Adz* A d2P, (7.3.5)

and dilaton
e® =V (7). (7.3.6)

These solutions describe two intersecting smeared NS5-branes.

0|1 |23 |24 ]22]28 24287

NSHl | x| X | x| x|e | | | x| x

NS52 | X | X | X | X|e® | X | X |e | @

Here and in what follows, a x represents a world-volume direction and a e represents a smeared
direction. This then represents an NS5-brane lying in the 1232*2° directions and smeared over
the 2'2223 directions intersecting an NS5-brane lying in the 1232223 directions and smeared
over the z'z%z* directions, with the intersection in the 123 directions. This intersection of two
NS5-branes preserves 1/4 supersymmetry [97].

S-duality give a background with intersecting D5-branes with metric
dsl = VH(T)ds (R2) + V(1) ((dr)? 4 (d2)2) + ((d22)? + (d2%)? + ()2 + (d=°)2), (7.3.7)
and RR field strength
Fgy = —Mdz' Ndz* Nd2® — Mdz' A dz* A dz2P, (7.3.8)

and dilaton

e? = V1), (7.3.9)

These solutions describe two intersecting D5-branes solutions.

0|1 |2 |3 |21 ]2212224]2% 7
Dl | X | X | X|X|® |e | e X | %
D2 | X | X | X | X |e X | X |e | @

T-duality in the 2!, 22 and 22 directions gives a D4-brane inside a D8-brane with the metric
dsiy = Vfl(T)dsz(Rl’g)—i—V(T)(dT)Z—i-V*l(T)(dz1)2+((d22)2+(dz3)2+(dz4)2+(dz5)2>, (7.3.10)

and RR fluxes
Foy=—-M,  Fu=-Md*Ndz> Ndz* Nd2°. (7.3.11)

and dilaton

e? = V32(r). (7.3.12)
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This solution consists of a number of parallel D8-branes with a D4-brane inside each. The

D4-branes each lie in the 1232! directions and are smeared over the z2z32%2° directions.

0 |1 |2 |3 |28 22]28|24]257

DRI X | X | X | X | X | X |Xx|X]|X

DI | X | X | X | X | X |e® | |o | e

This is a standard example of a 1/4 supersymmetric brane configuration and is T-dual to a
DO-brane inside a D4-brane.

7.3.2. T? fibred over T°
The SU(3) holonomy metric in this case is
dsy = VAr)(dr)? + VA(r)(d=)7 + V(r)((d")? + (d°)?)
V) (dzl v Mz4d23>2 V() <d,22 + Mz5dz3>2. (7.3.13)

The ten-dimensional metric is

dsi, = ds*(R"®) + ds;. (7.3.14)

The H-flux and the dilaton are trivial,
H=0, $ = constant. (7.3.15)
T-duality in the 2! and 2? directions gives the metric
asy = VAr)((dr)? + (d=*)?)
FV () ((d2)? + (d22)% + (d=")? + (d2°)?)

and H-flux
H = —Mdz' Nd2* Ndz* — Mdz* ANdz® A d2P, (7.3.16)

and dilaton

e? =V (7). (7.3.17)

These solutions describe two intersecting NS5-branes.

0|1 |23 |2 ]22]22 24287
NSHl | x| X | x| x|e | x|e | | x
NSH2 | X | X | X | X | X |® | | X | e
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S-duality give a background with intersecting D5-branes with metric
ds?y = V=L (1)ds? (RY®) + V(r) ((czf)2 + (dz3)2> + ((dz1)2 +(d2)? + (d2)? + (dz5)2>, (7.3.18)
and RR field strength
Fzy = —Mdz' Ndz® Ad2t — Mdz* A d2° A d2°, (7.3.19)

and dilaton
e? =VIHr). (7.3.20)

This solution represents two intersecting Db-branes.

0 [1 |2 |3 |21 ]22128|24]2°|7

Dl | X | X | X|X|e | X |e | @ | X

D2 | X | X | X | X|X |e | | X |e

T-duality in the 2!, 2% and z* directions gives a metric
dsty = V7 (T)ds? RV (1) (dr)*+V 7 (7)(d") 2+ ((d2! P4 (d22)+(d2*)+(d27)? ), (7.3.21)

and RR fluxes
Foy=—-M,  Fu=—-Mdz"Ndz* Ndz* Nd2°. (7.3.22)

and dilaton
e? = V32(r). (7.3.23)

This solution again represents a D4-brane inside a D8-brane:

0 |1 (2 |3 |28 22]2824]2°%7

D8I X | X | X | X | X | X |X|x|X

DA | x| X | X | X|® | | X |o |o

This was to be expected as the S over T# case is T-dual to the T2 over T® case.

7.3.3. T? fibred over T*
The domain wall metric in this case is given by
ds? = VA(R)(dr)? + VA7) ((d2)? + (d=)? + (d=)2 + (d=°)?)
2
+V=3(7) (dzl + M(2*d2* + 26d25)>

2
+V (1) <dz2 + M(2°dz* — 26d24)> : (7.3.24)
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The ten-dimensional metric is

ds3, = ds*(R"?) + dsz. (7.3.25)

The H-flux and the dilaton are trivial,

H =0, ® = constant. (7.3.26)

T-duality in the 2! and 2?2 directions followed by the coordinate transformations z% <+ 2% and

2% ¢+ 28 gives the metric

ds2 = V*A(r)(dr)? + V2(r) ((dz1)2 +(d22)2 + (d2%)2 + (d2*)? + (d2°)* + (dz6)2>, (7.3.27)

and H-flux
H = —Mdz' Nd2® Ndz® — Mdz" A dz* A d2°
—Md2 Nd22 A d2t — Md2® A d2 A d2S, (7.3.28)
and dilaton
e? = V(7). (7.3.29)
This solution represents four intersecting smeared NS5-branes:
0 [1 |2 |28 |22 2422257
NS5l | x| X | X |® | X |® | X |X|e
NS52 | x| x| x|® | X |[x|e | |Xx
NS53 | X [ X | X | X |e |@ | @ | X | X
NSS4 | X [ X | X | X |e | X | X |e |

This intersection of four NS5-branes preserves 1/8 supersymmetry [97].

S-duality give the metric

dsi, = V2(1)ds*(RY?) + V(1) (d7)? + ((dz1)2 + (d2*)* + (d2*)? + (dz*)? + (d=2°)* + (d26)2>,

(7.3.30)
and RR field strength
Fa) = —Mdz* ANdz2 A d28 — Mdzt A dz* A dZP
—Mdz? ANd2® Adzt — Md2? A d2° A d2°, (7.3.31)
and dilaton
e? =V72(1). (7.3.32)

These solutions describe four intersecting D5-branes.

121



0 |1 |2 |28 ]2 282428520 7
D5l | x| X | X |® | X |® | X |[X|e
D52 | x| X | x|® | X | X |e | |X
D53 | x| x| X o (o |o | X | X
D54 | x| x| x e [ X | X |o | o

T-duality in 2!, 2® and 2% directions gives the metric

A5l = V7AT)AS(R2) + VA(R)(dr)? + ((d21)2 4 (d22) 4 (d2°)2 4 (d2*)2 o+ (d=)2 + (d=°)?)),

(7.3.33)
and RR fluxes
Fo = —M, (7.3.34)
Fua = —Md2*> Ndz* Ndz® ANdz® — Mdz' A d2? A d2* A d2°
—Mdzt Nd22 A d2P A d2 (7.3.35)
and dilaton
e? =V73(r). (7.3.36)
This solution represents 3 intersecting D4-branes inside a D8-brane.
0 [1 |2 |28 222832222287
D8 X | X | X | X | X | X |X|X]X
D4l | X | X | X|X | X |® | |[@ |@
Di2 | x| X | X |® | | X |@ [ X |e
D43 | x| x| xX|® |@ |@ | X |® | X

T-dualising in the 1,2 directions and relabelling coordinates gives three mutually orthogonal
D2-branes inside a D6-brane, with D2-branes in the 12, 34 and 56 planes all inside a D6-brane

in the 123456 directions. This is a standard 1/8 supersymmetric brane intersection.

7.3.4. T3 fibred over T
The G2 holonomy metric in this case is given by
At = V3 (dr) + V2 (r)((d2) + (022 + (d292) + V() (d) o+ Me0de?)
V() <dz2 . Mzﬁdz4)2 +V(r) (dz3 + Mz5dz4)2. (7.3.37)

The ten-dimensional metric is

ds3, = ds*(R"?) + dsz. (7.3.38)
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The H-flux and the dilaton are trivial,

H=0, ® = constant. (7.3.39)

T-duality in the z!, 22 and 2? directions followed by the coordinate transformation 22 — —2z2
gives the metric

dst = VAr)(dr)? + V(r)((d=)? + (d2)? + (d)?)

+V2(7) ((d:/*)? F(d25)? + (dz6)2). (7.3.40)

and H-flux
H = —Mdz' Ndz° ANd2® — Mdz* Adz* Adz® — Mdz?* A dz* A d25, (7.3.41)

and dilaton
e® = V32(7). (7.3.42)

These solutions describe three intersecting smeared NS5-branes:

0 |1 |2 |22 28242828 |7
NSS51 | X | X |X|® [ X |X|X|e |@
NS52 | x | x | x X |o |o |® | X
NS53 | x | x | X o | X |o | X |e

This intersection of three NS5-branes preserves 1/8 supersymmetry [97].

S-duality then gives the metric

dsiy = V732(r)ds*(RY) + V32(r)(dr)? + VY3(7) ((dz1)2 + (d2?) + (dz3)2>
FVI(r) ((d2)? + (d2)2 + (d2)?). (7.3.43)
and RR field strength
F = —Mdz' Ndz® Nd2® — Mdz* Adz* Adz® — Mdz? A dz* A d2°, (7.3.44)

and dilaton
e? = V32(r). (7.3.45)

These solutions describes three intersecting D5-branes.
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0 |1 |2 |28 ]2 282428520 7
D5l | X | X | X |® | X |[X |X |e® |e
D2 | X | X | X | X | X |e | | | X
D3| X | X | X | X |® | X |® [ X |e

T-duality in the 2!, 2° and 2% directions then gives the metric

dsiy = V_3/2(T)d52(R1’2)—I—V3/2(T)(d7)2+V_1/2(T)<(dz2)2+ (d=%)? + (dz5)2+(dz6)2>
FVH(r) (@) + (d4)2), (7.3.46)

and RR fluxes

Foy=—-M,  Fu = —Mdz' Nd2® Ndz* Nd2® — Mdz' A d2? Adz* Adz®, (7.3.47)

and dilaton

e® = V4. (7.3.48)
This solutions represents two intersecting D4-branes within a D8-brane:
0 [1 ]2 [2F]22]23 2025|207
D8 | x| X | X | X | X |X|[X]|X]|X
D4 | x| x| x|® | X |® |0 | X |e@
Di| x| x| x|e® |@ | X |0 |0 | X

This is T-dual to two orthogonal D2-branes within a D6-brane, a standard 1/8 supersymmetric
brane configuration.

7.3.5. T° fibred over T"
This Spin(7) holonomy metric is given by
N2
ds; = VO(r)(dr)* + V3(r) ((dz4)2 + (d2°)? + (d=°)* + (dz7)2) +V72(1) (dzl + M(2°dz* + z7d26))
2 2
+V3(7) (d22 + M(2%dz* — z7dz5)> +V73(7) (dz3 + M(2"d* + 26d25)> . (7.3.49)

The ten-dimensional metric is
ds3, = ds*(RM) + dsz. (7.3.50)
The H-flux and the dilaton are trivial,

H=0, ® = constant. (7.3.51)
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T-duality in the z!, 2% and z* directions gives the metric
ds; = VO(r)(dr)* + Vz((dzl)2 + (d2%)? + (d23)2>
TV ((d2)? + (d2)2 + (d=)2 + (d=T)?). (7.3.52)
and H-flux

H = —Mdz' Ndz* ANd2® — Mdz' ANd28 AN dz" — Mdz* A dz* A dz®
—Md2 ANdZ* Ndz" — MdzP Ad2® ANd2S + Mdz? A d2® A d2T (7.3.53)

and dilaton
e® = V3(r). (7.3.54)

This solutions represents an intersection of five NS5-branes and one anti-NS5-brane

0 |1 |2 2222422282 |71
NS5l | x| X |e | X | X |e | @ | X |[X
NS52 | x| x|e | X | X |X|X|e |@
NSH3 | x| x| X |e | x |e | X |e |x
NS4 | X | X | X | X | | | X | X |e
NSES | X | X | X [ X |e | X |e® |@ | X
NS5 X[ X | X |® | X |X|® |X|e

This intersection of six NS5-branes is one of the cases given in [97] and preserves 1/16 super-
symmetry .

S-duality then gives the metric
dsly = VTSR + V() ()P + VI (r) ((d2)? o (d22)2 + (d2)?)
(@292 4 (@) 4 (d=)2 + (d=7)?)). (7.3.55)
and RR field strength

Fg = —Mdz' Ndz* Ndz® — Mdz' Nd2° Ad2" — Mdz® A dz* A dz°
—Mdz* Ndzt Ad2" — Md2* ANd2® Ad2® 4+ Md2? Ad2® Ad2T,  (7.3.56)

and dilaton
e® =V73(1) (7.3.57)

changing the NS5-branes to D5-branes:
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0 |1 |22z 2|2 |=%
D5l | x| x|e | X | X |e |® | X
D52 | x| x|e® | X | X |X|[X|e
D3| x| X | X | | X |e | X |e@
D4 | x| x| X | X |e | | X |X
DS | X | X | X | X |e | X |e |e@
D5 | x|x|x|e |x o | X

T-duality in the 2!, 2* and 2 directions then gives the metric

dsty = V() (ds®)(RYY) + V3(7)(dr)® + V(7)(dz")* + V(1) ((dz2)2 + (d23)2>

+((dz4)2 4 (d29)? + (d=5)2 + (di)?). (7.3.58)
and RR fluxes
Fo = —M, (7.3.59)
Fug = —MdzAANdZP NdZ8 AN dZT — Mdzt A d2? A d2? AN dZS — Mdzt A d2P A dZS A d2T
—Mdzt NdZ2P A dt A d2® 4+ Mdzt A d2? Adzt A dzT (7.3.60)
and dilaton
e® = V(1. (7.3.61)

This then gives a 1/16 supersymmetric configuration of four D4-branes and one anti-D4-brane

intersecting inside a D8-brane:

0 |1 |2t 2228242020
D8 X | X | X | X | X | X |X|X
D4l | X | X | X | X | X |e |e |@
Di2 | x| x|® |@ [ X | X |® | @
D43 | x| x|e® | X |® | X |@® |X
Did| x| x|® | X |0 | @ °
Di |[x|x|e | | x|e X

7.3.6. S! fibred over T°

This SU(4) holonomy metric is given by

dst = VA(R)(dr)? + V() ()2 + (d2%)? + (d2*)? + (d2°)2 o+ (d=°)2 + (d=")?)

2
+V=3(7) (dz1 + M(2%dz2* + 2°d2" + z7dz6)> :
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The ten-dimensional metric is
ds3, = ds*(RM) + ds;. (7.3.63)
The H-flux and the dilaton are trivial,

H=0, ® = constant. (7.3.64)

T-duality in the z! direction gives the metric

dsg = V3(T)(<dr)2+(dz1)2) +V(T)((dz2)2+(dz3)2+(dz4)2+(dz5)2+(dz6)2+(dz7)2> (7.3.65)

and H-flux
H = —Mdz' Ndz* Ndz® — Mdz" Ndz* Adz® — Mdz' A d2 A d27, (7.3.66)
and dilaton
e® = V32(7). (7.3.67)
These solutions describe three intersecting smeared NS5-branes:
0 |1 |2t |22 |28 2428|2827
NSS51|x|x|e |@ | [ x| x|Xx|X
NS52 | x| x| e e o | X | X
NS53 | x| X |e® | X | X |[X|X|e |e

S-duality then gives the metric
dsly = VAT (RY) + V(7 ((dr)? + (d21)?)
LV () ((dz2)2 +(d2%)2 + (d2Y)2 + (d2°)2 + (d28)* + (dz7)2>. (7.3.68)

and RR field strength

Fz = —Mdz' Ndz* Nd2® — Mdz' Ndz* Adz® — Mdz" A d2° A d2T, (7.3.69)
and dilaton
e? = V32(r), (7.3.70)
changing the NS5-branes to D5-branes
0 |1 [ 2822232428282 |71
Dl | x| x|e | |® | x| x| x| x
D2 | x| x|e X | o | @ X | x
D53 | x| x| e X | X | X |o | @
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T-duality in the 2!, 22, and 23 directions then gives the metric

dsi, = V_3/2(T)d32(R1’1) + \/3/2(7')(0%')2 + V_?’/Q(dzl)2
FV((d22)2 + (d2%)7) + V2 (7) ((d2")? + (d2°)F + (d20) + (d27)?)(7.3.71)

and RR field strength

Foy = —M

(7.3.72)
Fuy = —Md2*> Ndz> ANdz* Ndz® — Md2® Ndz® A d2° A d2T, (7.3.73)

and dilaton
e® = V(7). (7.3.74)

This solutions represents two intersecting D4-branes within a D8-brane:

0 |1 |28 222324252802 |71
D8 | X | X | X | X | X | X | X |X|X
DId| x| X | X |® |@ |0 | | X | X
DI | X | X | X |® |@ | X | X |o® |o@

This intersection of three NS5-branes preserves 1/8 supersymmetry [97].

7.4. T-folds fibred over line

7.4.1. T-fold from S! bundle over T* fibred over a line

Starting from the metric (7.3.2) and doing T-duality along the z? and 2* directions gives
T-fold background with the metric and B-field

dsi = V3(7)(d7)* + Vir) dz')? + Vi) (dz?)?
Vi(r) + M2 ()2 + (2] Vi(r) + M2[ ()2 + ()]
+ M (2°dz* — 22dz*)? + o) (d=")?
V(r) (VA(r) + M2 | (22)2 + (972 ) Vi(r) + M2[(2%)2 + (9)2]
+V(1)[(dz*)? + (d=°)?], (7.4.1)
B = M (Pdz' AN d2? + 2Pd2t A dzt) (7.4.2)
V3(r) + M? [(23)2 4 (z5)2}
and the dilaton Vir)
S ECETE (E ey 74
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Since the S' bundle over 7% is T-dual to the 72 bundle over T3, doing T-duality in 23
direction of the metric (7.3.13) will result in the same T-fold.

7.4.2. T-fold form 73 bundle over T? fibred over a line

Starting from the metric (7.3.37) and doing T-duality in the 2* direction gives T-fold back-
ground with the metric and B-field

ds* = V3(7)(d7)* + %(dz1 + M25dz°)? + ) [(dz*)? + (dz*)]
T VI(r) + M2| ()2 + (:97]
- Vi) (dz*)? + M (2°dz* + 2°d2°)?
VI(r) + M2|(25)2 + (290 V(r) (VA(r) + M2 | (22)2 + (002 )
+V3(7)(d2")? + V3(7)(d=°)?, (7.4.4)
B = M (25d2* N dz* — 2%d2* A d2?). (7.4.5)

V3(r) + M2 [(25)2 + (26)2}

and the dilaton
e2® — Vi) . (7.4.6)

V3(r) + M? [(25)2+ (26)2]

7.4.3. T-fold form S! bundle over T° fibred over a line

Starting from the metric (7.3.62) and doing T-duality in the 2%, 2%, and 2% direction gives
T-fold background with the metric and B-field

V()
VA(T) + M2 ()2 + ()2 + (=7)7]

ds? = VA(r)(dr) + V(r)((d2") + (d2°) + (d=)?) + (dz")”

+ V() [(d22)? + (d2*)? + (d°)’]
VA(T) + M? [(23)2 + (25)2 + (27)2]
M? 5052 _ B354 2
+V(7’) <V4(T) + M2 :(z3)2 +(25)2 + (z7)2> (Z d d )
M? 7022 _ B30 2
+V(7’) <V4(T) + M2 :(23>2 + (292 + (z7)2> (2 d d )
M? gt — 50 2 n
+v(7) <V4(7') M2 :<Z3)2 +(25)2 + (z7)2> (Z d d ) ; (7.4.7)
B = M <z3dz1 Adz? 4+ 22d2t Adet + 2Td2t A dz6>. (7.4.8)

VA(T) + M2 ()2 + ()2 + (7))
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and the dilaton
e*® = (7.4.9)
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8. The Doubled Geometry of

Nilmanifold Reductions

8.1. The doubled formalism

Dimensional reduction on a group G has been well-studied. Using a Scherk-Schwarz ansatz
[79], the dependence of fields on the internal coordinates is given by a G transformation and
leads to a consistent truncation to a lower dimensional field theory; see [122] for details of
the Scherk-Schwarz dimensional reduction of the N'=1 supergravity action. However, for non-
compact G this does not give a compactification, and considering the full theory on such a
non-compact space gives a continuous spectrum without a mass gap. In [61] it was argued that
in order to lift the Scherk-Schwarz dimensional reduction to a proper compactification of the
full string theory, it is necessary to instead consider compactification on a compact space G /T’
with I' a discrete subgroup. A discrete subgroup that gives a compact quotient is said to be
cocompact, and so this construction in string theory is restricted to groups G that admit a
cocompact subgroup.

Lie groups G that are nilpotent necessarily admit a cocompact subgroup and the resulting
quotient N' = G/T is referred to as a nilmanifold. A Lie group G is nilpotent if the Lie algebra
g of GG satisfies

X0, (X [+ [X, Y] -] = 0 (8.11)

for all Xi,---,X,,Y € g, for some integer p. For a nilpotent Lie group ¢, the smallest such p is
known as the nilpotency class of G and G is called a p-step nilpotent Lie group. A nilmanifold
N = G/T is the compact space given by the quotient of a nilpotent group G by a cocompact
discrete subgroup I'. For a d-dimensional 2-step nilpotent Lie group G with centre of dimension
n, the nilmanifold is a 7" bundle over T™ where m = d — n. For example, the 3-dimensional
Heisenberg group G5 has a centre of dimension n = 1 and the quotient is known as the nilfold
and is an S! bundle over 72. Nilmanifolds are sometimes referred to as twisted tori.

The Lie algebra generators T, satisfy an algebra

[T'fm Tn] - fminp (812)
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and the the left-invariant one-forms P™ are

g tdg = P™T,,, (8.1.3)
Then the general left-invariant metric on G is

ds® = Ty P P", (8.1.4)

where ,,, is a constant symmetric matrix, and descends to a metric on the nilmanifold N =

G/ if T is taken to act on the left. Here x,,, will be chosen as ., = d,,, so the metric is
ds® = §,,, P P". (8.1.5)

The Scherk-Schwarz reduction of the standard theory of gravity coupled to a 2-form gauge
field B with field strength H = dB and dilaton ¢ in D dimensions

1 1
S:/ e 2 (R*1—§dq)/\*d<1>—§HA*H) (8.1.6)

for a group G is given in [61,122]. In the abelian case G = U(1)?, this gives a theory with 2d
gauge fields, d from the metric and d from the B-field, and gauge group G = U(1)??. There are
d? scalar fields taking values in the coset O(d,d)/O(d) x O(d) in addition to the dilaton and
the field theory in D — d dimensions has an O(d, d) global symmetry. For non-abelian G, the
reduction gives a gauging of this theory, with gauge group G' x U(1)? with algebra

T To) = fod? Ty, [Ty T = fonp™ TP, [T T, =0 (8.1.7)

where the factor GG generated by 7,,, comes from the isometries of the group manifold generated
by left-invariant vector fields and the abelian factor generated by 7™ comes from the B-field
symmetries. This can be thought of as a gauging of a 2d-dimensional subgroup of O(d,d).
In addition, there is now a potential for the d? + 1 scalar fields, and for generic groups G,
Minkowski space in D — d dimensions will not be a solution. If G admits a cocompact subgroup
', compactification on G/T" gives the same D — d dimensional effective field theory but lifts to
a compactification of the full supergravity or string theory. A nilmanifold is a 7" bundle over
T™ and this reduction can be regarded as compactification on 7™ followed by a reduction with
duality twists on 7™, with a monodromy round each circle in 7™ that is a large diffeomorphism
of T", in SL(n,Z).

For superstring theory, D = 10 and (8.1.6) is the action for the massless graviton, dliaton
and B-field of the type LII or heterotic superstring. In this case, there is an interesting set

of nilpotent groups G such that the resulting supergravity theory in 10 — d dimensions has no
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Minkowski vacuum but has supersymmetric domain wall solutions [96]. These each then lift to
10-dimensional solutions on B x RY" where R is (r + 1)-dimensional Minkowski space with
r=8—dand Bis G xR or N xR [96]. Remarkably, as the domain wall was supersymmetric,
the metric on B must have special holonomy, with the holonomy group determined by the
number of supersymmetries [96]. For example for the Heisenberg group with N the nilfold, the
four-dimensional space B is hyperkéhler. These cases were further analysed in [3] and we will
focus on these examples in this paper. The 10-dimensional space B x RY" then incorporates
the nilmanifold into a string solution.

In [3], the T-duals of these solutions were considered. In each case, a set of T-dualities took the
nilmanifold to a torus 7¢ with H-flux. These T-dualities acting on the special holonomy domain
wall solution B x R resulted in a configuration of intersecting NS5-branes [97], preserving
exactly the same amount of supersymmetry. Other T-dualities took these solutions to non-
geometric backgrounds, including T-folds and spaces with R-flux.

These duals can thought of as follows. If the dimension of the centre of G is n, the nilmanifold
can be regarded as a T™ bundle over 7™, but in each of the cases we will consider it can also be
regarded as a T" bundle over T for some r > n with s = d — r, and we will take the maximal
choice of r. For example, the 3-dimensional nilfold can be regarded as a T2 bundle over S!.
The original nilmanifold compactification can be regarded as compactification on 7" followed
by a reduction with duality twists on 7, with a monodromy round each circle in 7 that is in
SL(r,Z). There is an O(r,r,Z) group of T-dualities acting on the 7" fibres, and an O(r,r,7Z)
transformation will take this to a twisted reduction in which the monodromy round each circle
in T° is now a transformation in O(r,r,Z). On T-dualising to a torus 7% with H-flux, the
monodromies all consist of shifts of the B-field. Other T-dualities will take it to cases in which
the monodromies are T-dualities in O(r,r, Z), giving a T-fold [65].

These duals can be represented in a doubled formalism, in which the torus fibres 1" are
replaced with fibres that are given by a doubled torus 7T%", with an extra r coordinates con-
jugate to the string winding modes on T". The O(r,r,7Z) monodromies act geometrically as
diffeomorphsims of the doubled torus 72", so that a geometric 72" bundle over T* is obtained.
This doubled solution can be thought of as a universal space containing all T-duals: different
T-dual solutions are obtained by choosing different polarisations, that is by choosing different
splittings of the 2d coordinates into d coordinates that are to be regarded as the coordinates
of a spacetime and d coordinates that are to be regarded as conjugate to winding numbers.
T-duality can then be thought of as changing the polarisation [61]. This is worked out in detail
for the nilfold in [61].

T-duality on the T base is less straightforward and gives results that are not geometric
even locally and are sometimes said to have R-flux. The metric of the nilmanifold A" depends

explicitly on the coordinates ¢ of the T base. T-duality takes the coordinate z* of the i’th
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circle to the coordinate z; of the dual circle, and so takes the original z-dependent solution to
one dependent on the dual coordinate Z; [64,107]. The monodromy round the original circle
transforms to monodromy round the dual circle [64,107]. This was shown to give the correct
T-duality in asymmetric orbifold limits in [107]. In such cases, the explicit dependence of the
solution on Z; in general means there is no way of extracting a conventional background from
the doubled one.

In [64], a doubled formulation of all these dualities was proposed. Instead of just doubling
the torus fibres, all d dimensions were doubled to give a space which is a 2d dimensional
nilmanifold. The Lie algebra (8.1.7) is that of G = G x R¢, with group manifold given by
the cotangent bundle T*G of GG. This is itself a nilpotent group, and taking the quotient by
a cocompact subgroup r gives a compact nilmanifold M = G/ [. This is sometimes referred
to as the doubled twisted torus. The different choices of polarisation select the different dual
backgrounds. This was checked in detail in [64] for the nilfold. Our purpose here is to extend
that to each of the nilmanifolds of [96], constructing the doubled geometry on M = G/T', and
extracting the various dual solutions. Then the special holonmy space B = N x R is doubled
to B = M x R — there is no motivation to double the non-compact direction R as there are no

winding modes and there is no T-duality for this direction.

8.2. The doubled nilmanifold

The doubled group is G = G' x R? with Lie algebra (8.1.7), which we write as
[T, T) = tarn " Tp. (8.2.1)

where M, N = 1,...,2d. Note that it preserves a constant O(d, d)-invariant metric 1,y and
so is a subgroup of O(d, d).

On G, there are two sets of globally-defined vector fields, the left-invariant vector fields, Ky,
and the right-invariant vector fields, Kj;. The left-invariant vector fields generate the right
action Gg, while the right-invariant vector fields generate left action G;. The left-invariant

one-forms PM, dual to left-invariant vector field K,;, can be written as
g tdg =P Ty (8.2.2)
and satisfy the Maurer-Cartan equations
dPM + %th MpNAPP = 0. (8.2.3)

We introduce a left-invariant metric and three-form on G constructed from the left-invariant
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one-forms, given by

ds> = MuynP” @ P", (8.2.4)
1
K :EWMM$MAPNAPﬁ (8.2.5)

where M/ is a constant symmetric positive definite matrix and ty;yp = tyn QnQ p,and tynp
is totally antisymmetric. The matrix M,y parameterizes the coset space O(d, d)/O(d) x O(d)
and represents the moduli of the internal space which become scalar fields in 10 — d dimensions
on compactification.

Taking the quotient by a cocompact subgroup I' gives M = G/I". Taking I' to have a left
action g — 7yg, then the left-invariant 1-forms P™ | the metric (8.2.4) and 3-form (8.2.5) descend

to well-defined 1-forms, metric and 3-form on the quotient M.

8.2.1. Sigma model

In [64], a doubled sigma model is formulated for maps from a 2-dimensional world-sheet %
to M. These maps pull back the one-forms PM to one-forms PM on 3. Introducing a 3-
dimensional space V with boundary 0V = ¥ and extending the maps to V', the sigma model
is given by

1 ~ . 1 [ .
Spm= - f MMNPM A PN 4 —/ I, (8.2.6)

where K is the pull-back of K to V and  is the Hodge dual on .. This theory is subjected to
the constraint
75M = nMPMPN * 75N, (827)

which implies that half the degrees of freedom are right-moving on > and half are left-moving.
This constraint can be imposed in a number of ways; in [64] it was imposed by choosing a

polarisation and then gauging.

8.2.2. Polarisation

A polarisation is a projector that projects the tangent space of G into a physical subspace
which is to be tangent to the spacetime. Different choices of polarisation select different
dual backgrounds. We introduce a projector 11", (with m,n = 1,....,d) mapping onto a
d-dimensional subspace of the 2d dimensional tangent space of M, which is totally null (max-

imally isotropic) with respect to the metric nyy, i.e.

MNT™ ) 11"y = 0. (8.2.8)
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Introducing such a projector at the identity element of the group manifold then defines one
everywhere; in a natural basis, the projector is constant over the manifold. The complementary
projector 1 — II is denoted by ﬁm m- The polarisation splits the tangent space into two halves,

and we will consider the case in which the frame components I1",; are locally constant, i.e.

there is a constant matrix H(Z) a in each patch U, of G, but there can be different polarisation

matrices in different patches.

A vector VM is then projected into
V=" VMV, =T VY. (8.2.9)
It is useful to introduce the notation

VM= ( v > = oMV, (8.2.10)

where

1_ImN

oMy = ( Wy ) : (8.2.11)

so that the polarisation can be seen as choosing a basis for the tangent space.

The polarisation projects the generators Ty, into
Ty = W™ Ty, X" =Ty N Ty (8.2.12)
The Lie algebra (8.2.1) will now take the form
(Zms Zn| = [’ Zp + Kpnp X7, [X™ X" =Q,"" X+ R Z,, (8.2.13)

(XM, Z,) = frp" XP — Q" Z,, (8.2.14)

for tensors Kp, frmn?, @p™", R, sometimes referred to as fluxes, obtained by projecting the
structure constants ¢y;n? with II, II. Different choices of polarisation will give different forms

for these fluxes.

8.2.3. Recovering the physical space

For a given polarisation, we introduce coordinates XM = (2™, 7,,) by writing a general group
element as
g = hh, (8.2.15)
where
h = exp(z™Zy,), h = exp(Em, X™). (8.2.16)
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The action of h(x) on the generators Ty = (Z,,, X™) defines an z-dependent vielbein Vy, Y (z)
by
W Tyh = VN Ty (8.2.17)

Then defining
® = dMTy, = h~'dh + dhh ™1, (8.2.18)

the left-invariant forms can be written as
P =PMTy = MYy N (2)Ty. (8.2.19)
We define a generalized metric which depends on the coordinates z* only by
Haun(2) = MpoVM pV9y. (8.2.20)
With a polarisation tensor © ", we can define
Hy(x) =0 Hun(2)0N ¢, (8.2.21)

whose components define a metric g,,, and B-field B,,, by

Gmn = BmpG™ Ban. . Smpd ) (8.2.22)

Hyrxo(r) =
MN ( gmanp gmn
The metric g, (r) and B-field B,,,(x) depend only on the z° coordinates. The physical metric
is given by [64]

ds® = G ()7 7T™. (8.2.23)

The physical H-field strength is given by [64]

1 1
H =dB = Sd (™ Agn) + 5K (8.2.24)
where
h=tdh = 0" Z,, + 0, X™, dhh™' = 1" Z 4+ 1 X™, (8.2.25)
and
Gm = T + . (8.2.26)

If the R-tensor R™"P vanishes, the X™ generate a subgroup Gcg

X™, X" = Q" X, (8.2.27)
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Then the generalized metric Hysn(x), the metric g, and B-field B,,, and H are all invariant
under the left action of G. Then the reduction to the physical subspace is obtained by taking
a quotient by the left action of G. In the sigma model, this is achieved by gauging the action
of G. On eliminating the worldsheet gauge fields, one obtains a standard sigma model whose
target space G/ G has coordinates z and the metric and H given above.

If the R-tensor is not zero, then the model will depend explicitly on both z and z. In this
case, the expressions above give formal expressions for the metric and H that depend on both

x and T, so that there is no interpretation in terms of a conventional d-dimensional spacetime.

8.2.4. Quotienting by the discrete group

The above structure was derived for the doubled group manifold G. In the case of a vanishing
R-tensor, the result is a conventional sigma model on G/ G. The next step is to consider the
structure for the nilmanifold M = G/T.

A conventional background is obtained from double geometry by gauging X™. The types of
string theory background can be classified into three catagories [63, 64]:

Type I: Geometric Backgrounds

If the generators X™ generate a subgroup G C G and this subgroup is preserved by I, so

that
vyl =K, (8.2.28)

where k, k' € G, v € T, then the quotient space M/ G is well-defined and gives a global
description of a conventional geometric background.
Type II: T-fold Backgrounds

If the generators X™ generate a subgroup G but this subgroup is not preserved by I, then the
quotient space M/ G is not well-defined. The conventional background can be recovered locally
as a patch of G/ G. These patches are then glued together together with T-duality transition
functions, resulting in a T-fold.
Type III: R-flux background

If the generators X™ do not close to form sub-algebra, then a conventional d-dimensional
background cannot be recovered even locally, as there is dependence on both ¢ and 7;. Such

a background is sometimes called a R-flux background.

8.3. The nilfold example

The doubled formalism was developed for the 3-dimensional nilfold in [64]. Here we summa-

rize the results and refer to [64] for the details. For this example, the nilpotent Lie group G is
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taken to be the three-dimensional Heisenberg group with Lie algebra
T,,T.] = mT, T,,T.] =0 T,,T,] =0 (8.3.1)

with m an integer. The quotient of G by a cocompact subgroup I" gives the nilfold N = G/T.
Then the corresponding 6-dimensional group ¢ = G x R? has a Lie algebra whose only

non-zero commutators are

[T,, T.] = mT, [T, TY) = mX* [T, TY] = —mX*® (8.3.2)

8.3.1. The nilfold

Choosing the polarisation © = 1, the algebra (8.3.2) is
(20, Z.) = mZ,,  |Zo,XY] =mX®,  [Z.,XY] = —mX" (8.3.3)

The X™ generate an abelian subgroup G, and taking the quotient by G gives the nilfold
N = G /T with metric
dsy, = dr* + (dy — mwxdz)* + d2?, (8.3.4)

and H = 0. This can be viewed as a T? bundle over S' where the 72 has coordinates ¥, z and

the S' has coordinate z.

8.3.2. T3 with H-flux

Choosing the polarisation

1 00000
000010
001000
@ == )
000100
01 00O0O
00 0O0O01
the algebra becomes
(Z:, 7] = mXY, (Zs, Zy] = mXZ, Z.,Z,] = —mX*,

where all other commutators vanish. The X’ generate an abelian subgroup G = R?. Taking
the quotient gives the 3-torus with H-flux given by an integer m. The metric and 3-form flux
H are

dsis = do* +dy* + dz*,  H =mdz Ady A dz. (8.3.5)
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The 2-form potential B with H = dB can be chosen as

B = maxdy A dz. (8.3.6)

8.3.3. T-fold

The polarisation tensor for the T-fold is given by

1 00000
01 00O0O
00 0O0O01
O —
000100
00 0O0T1O0
001000
The algebra then becomes
(Zy, X7] = mZ,, [Z2, XY =mZ,, (X7, XY] = —mX",

where all other commutators vanish. Now X7* XY, X* generate a subgroup G which is isomor-
phic to the Heisenberg group.
The T-fold has metric and B-field given by

mx

dst_pog = da® + (dy® + dz?), B = Sdy N dz, (8.3.7)

1+ (mx)? 1+ (ma)

which changes by a T-duality under x — x + 1, and so has a T-duality monodromy in the x

direction.

8.3.4. R-flux

In this case, the polarisation © is

0001O0O0
010000
o_ 001000
1 0000O0
000010
000O0O0T1
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The gauge algebra is now
(X*, X?| = —mZ,, [(X* XY] = —mZ,, [X*, XY =mZ,, (8.3.8)

where all other commutators vanish. The X? do not generate a subgroup, so there is no way

of relating to a conventional theory on a 3-dimensional space, even locally.

8.4. Higher dimensional nilmanifolds

8.4.1. S!' bundle over T*

For this example, the five-dimensional nilpotent Lie group has non-vanishing commutators
[TQ, Tg] = mTl, [T4, T5] = mTl. (841)

The corresponding ten-dimensional group has a Lie algebra whose only non-zero commutators

are

[T27 T3] - mTla [T47 TB] = mTl)
[TY,Ty] = mT?, [T, Ts) = —mT?, (8.4.2)
[Tl, T4] = TTLTB, [Tl, T5] = —mT4.

The left-invariant one-form are given

Pl = dz' + m23dz2? + mzdzt, Q= dz,

P? = d22, Qs = dZy — m23dz,
P3 = dz3, Qs = dzs +mz2dz, (8.4.3)
P* = d2*, Qs = dzy — m2°dz,
P> = dz2°, Qs = dzs + mztdz;.

Choosing the polarisation © = 1, the algebra (8.4.2) is

[Z27 Z3] =mdy, [Z4, Zs] = mdi,
[Xl, Zg] = mX3, [Xl, Zg] = —mXQ, (8.4.4)
[Xl,Z4] = mX5, [Xl,Zg)] —mX*.
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The left-invariant one-forms in this polarization are given The left-invariant one-form are given

Pl = dz' + m23d2? + m25dzt, Q) =dz,

P? =d2?, Qo = dzy — m23dz,,
P3 =dz23, Qs = dzs +mz2dz, (8.4.5)
Pt = dz*, Qi = dzy — m2°dz,
P? =dz°, Qs = dzs + mztdz.

Let h = [[exp(2™T},) and h = []exp(Z,1™), then the one-form (8.2.18) is
® = oM TN = h~'dh + dhh . (8.4.6)
In this case, dhh~ and hdh are
dhh~! = (dzl +mzdsd + mz4dz5>T1 V(A2 Ty + (d2) Ty + (2T + (d25)Ts,  (8.4.7)

h=tdh = (dz)T" + (dZ)T? + (dZ)T3 4 (d2,)T* + (dz5)T°. (8.4.8)

The one-form ® is given

Pl = dzt + mz2d23 + m2tdZ®, @, = dz,

P2 = {22, Oy = dz,,
3 = dz?, Dy = dzs, (8.4.9)
@4 = d247 q~)4 = d24,
@5 = dZ5, i)5 - dg5

From the equation (8.2.19), one gets

1 mz2 —mz2 mz> —mz* 0 0 0 0 0
0 1 0 0 0 0 0 00O
0 0 1 0 0 0 0 00O
0 O 0 1 0 0 0 00O
P 0 O 0 0 1 0 0 00O ’ (8.4.10)
0 0 0 0 0 1 0 00O
0 O 0 0 0 —mz® 1 0 0 0
0 O 0 0 0 mz2 0 1 0 0
0 0 0 0 0 -mz> 0 0 1 0
0 O 0 0 0 mzt 0 0 0 1

From VM y, one obtains the generalized metric Hy;n. The X™ generates an abelian subgroup
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G and taking the quotient by G gives the S* bundle over T* with metric
4 = (42! 4 m(2d2 + 2d2")) 4 (32 + (@) + (@) + (a2 (8.4.11)
The H-flux is given in (8.2.24), which is
H=dB— d(r™ Adw) + K. (8.4.12)
In this case, I and 7™ A G, is
K =m2z ANdz? Adz® +mdz Adz* A dZ2°. (8.4.13)

" A Gy = (dz1+m22dz3+mz4dz5> NdZ +d2* NdZy+d2* NdZs+dz NdZy +dzt AdZy, (8.4.14)

and d(r™ A Gp,) is
d(r™ A Gm) = mZ Ad2® Ad2® +mdZ Adzt A d2P. (8.4.15)

In this case, H = 0. This construction will work in the following cases.

While choosing the polarization

, (8.4.16)

O O O O = O O o o <o
oS O O O O o o o+~ O
S O O O O O O = O O
S O O O O o = O o O
o O O O O = O o o o
S O O O O o o o o =
o O O = O O O o o o
S O B O O O O o o O
S = O O O O O o o O
_ o O O O O o o o o

the algebra (8.4.2) is

[22723] :mX17 [Z47Z5] :mX17
(20, 2] = mX®, (74, Zs] = —mX2, (8.4.17)
(21, Z4) = mX°®, [Z,,Z5] = —mX".

143



The X™ generates an abelian subgroup G. Taking the quotient gives the 5-torus with H-flux

ds* = (dz")? + (d2*)* + (d2*)* + (dz*)? + (d2°)?, (8.4.18)
H = —mdz' Nd22 ANd2® —mdz' A d2* A d2° (8.4.19)

While choosing the polarization

, (8.4.20)

o O O = O O O o o o
S = O O O O o o o o
O O O O B O O o o <©
S O B O O O O o o O
_— o O O O O o o o o

S O O O O O o o o =
o O O O O o o~ O O
o O O O O = O o o o
S O O O O o o o~ O
S O O O O o = O O O

the algebra (8.4.2) is

[X2, Zg] = le, [X4, Z5] = le,
(X1, X2 = mX3, [X!,Z5] = —mZs, (8.4.21)
(XY, XY = mX®, [X!,Zs] = -mZ,.

The X™ generates a subgroup G. Taking the quotient gives the T-fold with the metric and
B-field

2 1 12 2)2 42
o 1+ m2 [(23)2 + (25)2] <(d ) )
+1 + m?2 [(zi%l)2 + (25)2] <mz5dz2 - mz3dz4)2 + (d23)2 + (d2’5)2, (8.4.22)
b= o (ngzl A dz? + 2°dzt A dz4)- (8.4.23)

14+ m?2 [(23)2—1—(,25)2]

8.4.2. T? bundle over T°

For this example, the five-dimensional nilpotent Lie group has non-vanishing commutators

[Tg, T4] = mTl, [Tg, T5] = ng. (8424)

144



The corresponding ten-dimensional group has a Lie algebra whose only non-zero commutators

are

[T37 T4] = mTla [T37 TS] - ng,
[TV, Ty) = mT?, [TV, Ty] = —mT?, (8.4.25)
[TQ, Tg] = TTLTB, [TQ, T5] = —mT?’.

The left-invariant one-form are given

Pl = dzt + m2tdz3, Q= dz,
P? = d2? + m2°dz3, Qo = dZ,

P3 =dz3, Qs = dZs + mztdz, — mz°dz,, (8.4.26)
P* = dz2*, Q4 = dzZy + mz3dz,
P’ = d25, Q5 = dgg) + stdég.

Choosing the polarisation © = 1, the algebra (8.4.25) is

[Zg, Z4] = le, [Zg, Z5] = mZg,
(X', Z3) = mX*, [X',Z)) = —mX?, (8.4.27)
[X27 ZS] = mX57 [X2’ ZS] = —mX?®.

The X™ generates an abelian subgroup G and taking the quotient by G gives the T2 bundle

over T3 with metric
2 2
ds® = (dzl + mz4d23) + (dz2 + mz5d23> + (d2*)? + (d2*)* + (dz°)% (8.4.28)

Choosing the polarization

: (8.4.29)

o O O O = O O O o O
SO O O = O O O o o o
SO O = O O O O o o o
S = O O O O O o o O
_ O O O O O o o o o

oS O O O O o o o = O
S O O O O o o = o O
o O O O o o = o o Oo©
S O O O O = O O O O
S O O O O o o o o -
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the algebra (8.4.25) is

(Z3, Z4) = mX*,  [Zs, Zs| = mZs,
[Zl, Zg] = TTLX4, [Zl, Z4] = —mX?’, (8430)
[X27 ZS] = mX57 [X27 Z5] = _mX3'

The X™ generates an abelian subgroup G. Taking the quotient gives the S* bundle over 7
with H-flux.

2
ds? = (dz')? + <dz2+mz5dz3> 4 (d2?)? + (d2h)? + (d2°)?, (8.4.31)
H = —mdz' ANd2* A d2* (8.4.32)

Choosing the polarization

: (8.4.33)

SO O O O = O O o o o
o O O R O O O o o o
O O O O O O o = O O
SO O O O O o = O o O
o O O O O = O o o o
SO O O O O o o o o =
S O O O O o o o~ O
S O B O O O O o o O
S = O O O O O o o O
_— O O O O O o o o o

the algebra (8.4.25) is

[Z3724] :le, [Z3aZ5] :sz,
[Zh Zg] = mX4, [Zl, Z4] = —mX?’, (8434)
[ZQ, Zg] = mX5, [ZQ, Z5] = —mX3.

The X™ generates an abelian subgroup G. Taking the quotient gives the 7% with H-flux.

d82 — (d21)2 + (dZQ)Q + (d23)3 + (d2’4)2 + (dZS)Q, (8435)
H = —mdz' Nd2* Adz* — md2® A d2® A d2P. (8.4.36)
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Choosing the polarization

, (8.4.37)

SO O B O O O O o o O
O O O O = O O o o <o
o O O =B O O O o o o
S = O O O O O o o O
_ o O O O O o o o o

S O O O O O o o o =
o O O O O o o o+~ O
O O O O O o = O o O
SO O O O O = O o o o
S O O O O o o = O O

the algebra (8.4.25) is

(X3, Z,) =m2Zy,  [X?,Z5) = mZs,
X1, X3 = mXY, (XY, Z4] = —mZs, (8.4.38)
[X27X3] = mX57 [qu Z5] = _mZ3-

The X™ generates a subgroup G. Taking the quotient gives the T-fold with the metric and
B-field

2 1 Zl 2 Z2 2 Z3 2 1 25 Zl o Z4 Z2 2
at = — (EEs [(d2)? + (a2 + (a2)7] + e (% az?)

+(dzh)? + (dz°)?, (8.4.39)

B = m <z4dzl Adz® + 2°dz? A dz3>. (8.4.40)

14 m? [(24)2 + (25)2}

8.4.3. T? bundle over T*

Consider the six-dimensional nilpotent Lie algebra whose only non-vanishing commutators

are

[Tg, T4] = mTl, [Tg, T5] = TI’LT‘Q7

(8.4.41)
[T5,T5) = mTy, [Ty, Ts] = —mTs.
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The corresponding twelve-dimensional group has a Lie algebra whose only non-zero commuta-

tors are
[T37 T4] = mTla [T37 TS] - ng,
[T57 T6] = mTI, [T4, T6] = —mTQ,
[~1, Tg] = mT4, [Tl, T4] = —mT?’, (8 4 42)
[Tl,Tg)] = mTG, [Tl, Tﬁ] = —mT5, o
[TQ, Tg] = mT5, [TZ, T5] = —mT3,
[TZ’ TG] = TTLT4, [TQ, T4] = —mTG
The left-invariant one-form are given
Pt = dz' + m2tdz? + m28dz5, Q) = dz,
P? = d2? + m2°dz3 — m2bdzt, Qo = dz,,
P3 = dz23, Qs = dzs — mz*dzZ, — m22dz,, (8.4.43)
P* = dz4, Q4 = dZy + m23dz, + m28dz,, o
P5 = dZs, Q5 = d25 — mzﬁdil + ngd,gg,
P = d25, Q¢ = dzg + mz%dz, — mztdz,.
Choosing the polarisation © = 1, the algebra (8.4.42) is
(23, Za) = mZy,  [Z3,Z5] = mZs,
[Z5, Z@] = le, [Z4, Zﬁ] = —mZg,
(X1, Z3) = mX*?, (XY Z4) = —mX3, (8.4.44)
(X', Zs] = mX6, [X', Zg] = —mX®, o
(X2, Z3) = mX°®, [X? Z5] = —mX3,
(X2, Zg) = mX*, [X2% 7] = —mX®

The X™ generates an abelian subgroup G. Taking a quotient of G gives the metric

2 2
ds® = <dzl+m(z4dz3+z6dz5)> + (dz2+m(z5dz3—26dz4)> +(d2*)? 4 (d2*)* 4 (d2°)* + (d2°)?.
(8.4.45)
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Choosing the polarization

(8.4.46)

Y

0000O0OO0O1O0O0O0O0O0

0000O0O0OO0O1O0O0O0O

00100O0O0O0OO0O0OO0O
000100O0O0OO0OO0O0®O
000010O0O0O0OO0O0O
0000O0O1O0O0O0OO0O0OO
10000O0O0O0OO0O0OO0OO
010000O0O0O0OO0O0O

0000O0OO0OO0OO0OT1TO0®O0O0

0000O0OO0OO0OO0OO0CT1TO0OO

0000O0O0OO0OO0OO0OO0OT1PO0

000O0O0OO0OO0OO0OO0OO0OGO0T1

the algebra (8.4.42) is

5
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The X™ generates an abelian subgroup GG. Taking the quotient gives the T° with H-flux.

(8.4.48)

ds? = (dz')? 4 (dz*)? + (d2°)* + (dz*)? + (d2°)? + (dz2°)?,

and H-flux

—mdz* Ndz® A dz* — mdzt A d2® A dZ8

(8.4.49)

—mdz? Ndz® A dz2® + md2? A dzt A d2S.
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Choosing the polarization

10000O0O0OO0OOGOO0OO®O
01 000O0O0OO0OO0OO0OTO0O@O
0000O0OO0OO0OO0OTO0O®O0OO
00010O0O0O0OO0OO0CDO0@ O
00001O0O0O0O0OO0CDO0T@ O
o_ 0000O0O1O0O0O0OO0DO0T© O 7 (8.4.50)
0000O0OO0O1O0O0OO0OO0@ O
0000O0OO0OO0OT1TO0OO0OO0@ O
00100O0O0OO0OO0OO0DO0@ O
0000O0OO0OO0OO0OO0CT1TO0OO
0000O0OO0OO0OO0OODODT1TO® O
0000O0O0OO0OO0OOO0OO 071
the algebra (8.4.42) is

(X3, Zy) =mZy, [X3,Z5] = mZ,,

(Zs, Z| = mZy,  [Z4, Zg) = —mZs,

(X1, X3 =mX*, (XY 2Z4) = —mZs, (8.4.51)

(X1, Zs] = mX6, (X, Zg] = —mX,

(X2, X3 = mX®, [X? Zs| = —mZs,

(X2, Zs| = mX*, [X2,Zy] = —mXP,

The X™ generates a subgroup G. Taking the quotient gives a T-fold with metric and B-field
given by (C.0.1) and (C.0.2).

8.4.4. T2 bundle over T°

Consider the six-dimensional nilpotent Lie algebra whose only non-vanishing commutators

are

[T5, TG] = mTl, [T4,T6] = —mTQ,

8.4.52
[T4, T5] = ng. ( )

150



The corresponding twelve-dimensional group has a Lie algebra whose only non-zero commuta-

tors are
15, T5) = mTv, [Ty, Te] = —mTs,
[T47 T5] = mT37 [Tla T5] - mT67
[TQ, Tﬁ} = ?TLT4, [TQ, T4] = —mTG,
[T3, Ty = mT?, [T, Ty) = —mT?,
[T?,’ T5} = —mT4
The left-invariant one-form are given
P! = dz' + m28d2°, Q) = dz,
P? = dz? — mz28dz*, Qy = dz,,
P3 = d23 4+ m2Pdzt, Qs = dzs,

P* = dz*,
P =dz,
PY = d2b,

Q4 = d24 + szdZQ + mz5d£3,
Q5 = d25 — m26d21 + mz4d§3,

Q6 = d§6 + mz5d§1 — mz4d,§2.

Choosing the polarisation © = 1, the algebra (8.4.53) is

[Zs, Zsl = mZi,  [Za, Z) = —m o,
[Z4,25] =mZs,  [XY,Z5] = mX°,
(X2, Zg) = mX*,  [X2, 7] = —mX6,
(X3, 2] = mX5,  [X!,Z] = —mX,
[

The X™ generates an abelian subgroup G. Taking a quotient of G gives the metric

(8.4.53)

(8.4.54)

(8.4.55)

2 2 2
ds* = <d21+m26dz5> +<dz2—m2z6dz4> +<d23—|—mzsdz4> +(dz")?+(d2°)*+(dz°)?. (8.4.56)
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Choosing the polarization

(8.4.57)
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the algebra (8.4.53) is
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The X™ generates an abelian subgroup G. Taking a quotient of G gives a T°® with H-flux

(8.4.59)

ds® = (dz')? 4 (d2*)? + (d2*)? + (d2*)? + (d2°)? + (d2°)?,

(8.4.60)

H = —mdz" Ndz® Adz® — mdz>® A dz* A dz® +md2? A dz* A d2S.
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Choosing the polarization

1 0 00
0100
0010
0000
0000
o_ 0000
0000
0000
0000
0001
0000
0000
the algebra (8.4.53) is
[Zs, Zs| = mZ;,
(X4, Zs) = mZs,
(X2, Zs] = mZy,
(X3, X4 = mX?,
(X3, Zs] = —mZi.

S O O O O o o+~ o o o o

0000000
0000000
0000000
0000100
0000000
1000000 | (.461)
0100000
0010000
0001000
0000000
0000010
0000001
(X4 Zg) = —mZs,
(X1, Zs] = mX6,
(X2, X4 = —mXS, (8.4.62)
(XY, Zg) = —mX?,

The X™ generates a subgroup G. Taking the quotient of G gives a T-fold with metric and

B-field given by

1

ds* = (dz'+m2°dz")* + [(dz)2 + (dz®)* + (dz*)?
1+m?2 [(25)2 + (26)2}
1 2
+ <mz5d22 + mz6dz3> + (d2°)? + (dz°)? (8.4.63)
1+ m2 [(25)2 + (26)2]
B = o (zsdz3 Adz* — 2%d2* A dz4> (8.4.64)

1+ m? [(25)2 + (26)2}
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8.4.5. T° bundle over T*

Consider the seven-dimensional nilpotent Lie algebra whose only non-vanishing commutators

are

[Ty, T5) = mTy, [Ts,T7] = mTh,
[T4, Tﬁ] = ng, [T5, T7] = —ng. (8465)
[T47 T7] = mT37 [T57 Tﬁ] = ng.

The corresponding fourteen-dimensional group has a Lie algebra whose only non-zero commu-

tators are
[Ty, T5] = mTy, [Ts, T7] = mTh,
[Ty, Tg) = mTy, [T5,T7] = —mTs.
[Ty, T7] = mTs, [Ts,Ts] = mTs,
[TY,Ty] = mT5, [T',Ts] = —mT*,
[TV, Ts] = mT7, [T',Ty] = —mT5, (8.4.66)
[T2,T)) = mT®, [1? Ts] =—mT*,
(T2, Ty) = mT°, (1?15 = —mi",
(T3, Ty] = mT7, [T3 Ty = —mT*,
(T3, Ty = mT®, [13,Ts] = —mT®.
The left-invariant one-form are given
P! = dz' + m2ddz* + m2"dz®, Q, = dz,
P? = d2? 4+ m28dzt — mz27d2?, Qy = dz,,
P3 =dz? +mz2"dz + m2%dz5, Q3 = dzs,
Pt = dz2*, Qs = dzy — m2°dz — mz%dzy + mztdzs, (8.4.67)
P> =d2°, Qs = dzs + mz*dz; + mz2"dZy, — m2%dzs,
PS = d25, Q¢ = dZg — mz"dz + mztdz, + m2Pdzs,
PT =", Q7 = dZ; + m2%dz; — mz°dzy + m2tdzs.
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Choosing the polarisation © = 1, the algebra (8.4.66) is

g

~

x
GRS SR I I
CY G EEEEEE
s 7o Lo
T T L L | | A 1 |
TSN YNNNE
ST RS

AR R R R S Y

— — — — —— —

(AR R L L L N 1

=mX?,
mX’
mX©
The X™ generates an abelian subgroup G. Taking a quotient of G gives the metric

2
+ (dz3 +m(zdz* + zﬁdz5)>

+ (d22 +m(2%dz* — z7dz5)>

(dz1 +m(2°dz* + z7dz6))
+(dz")? + (d2°)? + (d2°%)? + (d2")*.

ds?

(8.4.69)

Choosing the polarization

(8.4.70)
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the algebra (8.4.66) is

(8.4.71)

— — — — — —— —— —

e e e e e e

— — — —— —— —— —— —— ——

e e e e e s e

(8.4.72)
(8.4.73)
(8.4.74)

?

The X™ generates an abelian subgroup G. Taking the quotient of G gives the T7 with H-flux.
156

10000O0O0OO0OO0OO0OOO0O0O0

0601000O0O0OO0OO0OOO0OO®O0O®O
00100O0O0O0OO0O0OO0OO®O0®O0
0000O0OO0OO0OO0OO0OO0O1O0®O0G®O
060o000100O0O0O0OO0OO0®O0G®O
0000O0O1O0O0OO0O0OO0OO®O0OQO
0000O0OO0O1O0O0OO0OO0OO0O®O0G®O
00000O0OO0O1O0O0OO0OO0O®O0O®O
0000O0O0OO0OO0OT1TO0O0O0O®O0O
0000O0O0OO0OO0OO0O1O0O0®O0G®O
000100O0O0OO0OO0OO0O0O®O0G®O
0000O0O0OO0OO0OO0OO0OO0OTIT®O0O®O
0000O0OO0OO0OO0OO0OO0OO0OO0OT1OQO0
0000O0OO0OO0OO0OOO0OO0OTO0G®O0T1

—mdz' ANdz* Adz® — mdzt AdzZ8 A dz" — md2? A d2t A d2S
—mdz® Ndzt ANdz" — mdz® A d2® A d28 + mdZ? A d2® A dE

ds* = (dz")? + (d2?)? 4 (d2*)? + (d2*)? + (d2°)* + (d25)? 4 (dz7)?,

Choosing the polarization



the algebra (8.4.66) is

(X4 Zs) =mZy, | Zs, Z7) = mZy,

(XY Zs) =mZy, [ Zs,Z7] = —mZsy

(X4 Z) = mZs,  [Zs, Z) = —mZs,

(XY, XY = mX?, [XY,Zs] = —mZ,

(XY, Ze] = mX", [X',Z] = —mX5, (8.4.75)
(X2, X4 = mX®, [X? Z] = —mZs,

(X2, Z4] = mX®, [X?, Zs] = —mX",

(X3, XY =mX7, [X? Z] = —mZi,

(X3, Z5) = mX®,  [X3 Ts] = —mX°®,

The X™ generates a subgroup G. Taking the quotient gives the T-fold with the metric and
B-field given by(C.0.3), (C.0.4)

8.4.6. S!' bundle over T°

Consider the seven-dimensional nilpotent Lie algebra whose only non-vanishing commutators

are

[T27T3] =mT, [T4,T5] = m17,

8.4.76
[Tg, T7] = mTl . ( )

The corresponding fourteen-dimensional group has a Lie algebra whose only non-zero commu-

tators are
[T, T5] = mTy, [Ty, T5] = mTy,
[T, T5) = mTy. [T, Ts] = —mT?,
[TY, Ty] = mT?, [T",Ts) = —mT*, (8.4.77)
[TV, Ty] = mT®, [T',Ty] = —mT5S,
[TY, Ty = mT7.
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The left-invariant one-form are given

P! = dzt + m23d2? + m2Sdzt + m27d2®, Q) = dz,

P? = dz2?, Qo = dzy — m23dz,
P3? =dz23, Qs = dzs +mz2dz,
P* = dz*, Qs = dzy — m2Pdz, (8.4.78)
P> =dz’, Qs = dzs + mztdz,
P =25, Q¢ = dZg — mz"dz,
P" =d", Q7 = dz; + mz%dz;.
Choosing the polarisation © = 1, the algebra (8.4.77) is
(Zs, Z3| = mZy, [Z4, Zs| = mZy,
Zs, Z7) = mZy. X', Z5] = —mX?,
X1, Zo) = mX?, [X',Z5] = —mX*, (8.4.79)
(X1 Z,] =mX°, [X',Z;] = —mX6,
(X1, Zg) = mXT

The X™ generates an abelian subgroup G. Taking a quotient of G gives the metric

2
ds® = (dz1 +m(2Pd2* + 2°dz + z7dz6)> + (d2?)* + (d2*)? + (dz*)? + (d2°)* + (d2%)* + (d=2")*.

Choosing the polarization

O O O O O O B O O oo o o o o
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O O O O O O O+ O o o o o o
S O O O O O O O o o o o o -
O O O O O BH O O o oo o o o o
O O O O BH O O O o o o o o o
SO O O B O O O O o o o o o o
SO O = O O O O O o o o o o o
O = O O O O O o o o o o o o

158

_ O O O O O O O O o o o o o

(8.4.80)
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the algebra (8.4.77) is

(8.4.82)

—_— — — —— —

AR

The X™ generates an abelian subgroup G. Taking the quotient gives the 77 with H-flux.

(8.4.83)

ds® = (dz")* + (dz%)? + (d2*)? + (dz*)? + (d2°)* + (d2°)* + (d27)?,

(8.4.84)

H=—mdz' Ndz> Ndz® — mdz" Ndz* A dz® — mdzt A dz2® A dzT.

Choosing the polarization

(8.4.85)
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the algebra (8.4.77) is
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The X™ generates a subgroup G. Taking the quotient gives the T-fold with the metric and

159



B-field given by

ds? = ! ()2 + (d22)? + (d=)? + (d=")°]
Lok m2|(29)2 + (9)2 + (7)2]

1 (
1_|_m2 [(2’3)2%—(25)2—}—(27)2}

2
+(d2*)? + (d2°)? + (dz")? + mz°dz* — mz?’dz4>

1
+ (mz7dz2 — mz3dz6>
1+ m2 [(23)2 +(25)2 + (z7)2}
1 2
+ <mz7dz4 — mz5dz6> , (8.4.87)
1+ m2 [(Z:a)z +(25)2 4 (27)2}
B= m (z3dz1 Ad2? + 2Pdet Adet + 2Tdet A dz6>. (8.4.88)

1+m2 |:(Z3>2+<25)2_|_(z7)2i|

8.5. Nilmanifolds fibred over a line.

In the previous section, the double geometry of the nilmaniold has been constructed. In this
section, we will constructed the double geometry of a special holonomy space. Generally, the
special holonomy domain-wall solution will be in the form of ' x R, where N is a nilmanifold.
The doubled formulation of this space is constructed by doubling d-dimensional nilmanifold N
to 2d-dimensional nilmanifold M. That is the space N x R is extended to M x R

Consider the non-linear sigma model of a special holonomy space N x R

1
Shxr = 3 ]{ <Vp(7')d7' A *dT + Ty (T)P™ A *P”), (8.5.1)
>

where V(1) is a harmonic function of a line with a coordinate 7, p is a constant depending on
a nilmanifold, z,,, is a symmetric matrix constructed from V(7), and P™ is a left-invariant
one-form on NV. This action can be generalized to the non-linear sigma model of M x R, which
is given by

1 1 A N 1
SMxR = 3 % VP(T)dr A *dT + 1 7{ My (T)PM A PN + 5/ K, (8.5.2)
2 5 v

where My, x (7) is a symmetric matrix constructed from V(7), PM is pull-back of a left-invariant
one-form on M to ¥, and K is a pull-back 3-form on M to V defined in (8.2.5). This non-linear
sigma model includes all the detail about T-dualtiy background of nilmanifold . To obtain
each T-dual background, the polarization need to be specified as in the section 8.4 and gauging
G will result in the T-dual background.
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8.5.1. Example: 3-dimensional nilmanifold

The doubled space of the 3-dimensional nilmanifold N is given by the 6-dimensional nilman-

ifold M. The non-vanishing commutation relation is
[Ty, T.] = mT, [T, TY] = mX*  [T.,TY] = —mX*® (8.5.3)

The left-invariant one-form on this space is

P? =dx PY =dy —mxdz P?=dz (8.5.4)
Q. = di —mzdj Q, =dj Q. = dZ + madj o
In this case, the non-linear sigma model on M x R is
1 1 ~ N |
SMX]R = —- V(T)dT A *dT + = MMN(T>7D N\ %P + = ’C, (855)
2 Js 4 /s 2y
where My (7) is given
V() 0 0 0 0 0
0 1/V(r) 0 0 0 0
0 0 V(r) 0 0 0
M ) — 8.5.6
s (7) 0 0 0 1/V(r) 0 0 (8:5.6)
0 0 0 0 V(7) 0
0 0 0 0 0 1/V(r)

To obtain a nilfold bundle over a line, the polarization is chosen as ©® = 1. In this case, the

generalized metric (8.2.20), which is the second term in (8.5.5), is given by
1 M n_ 1 my g, M N
7‘[ = §MMN(T)7D ®P = éfHMN<T,Z' )CI) ®(I) . (857)

With polarization tensor, we define H (7, 2™) as in (8.2.21). Its components can be used to

define g, and By, as in (8.2.22). The metric (8.2.23) and the H-flux (8.2.24) can be obtained

1

2 _ 2 2 _ 2
ds; = V(1) (dx +dz ) - e (dy — mzdz)”, (8.5.8)
H = o (8.5.9)
This results in the metric
1
2 _ 2 2 2 _ 2
ds® = V(T)((dT) + (dx)* + (dz) > + V) (dy — mxdz)”. (8.5.10)
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To obtain a T° with H-flux, the polarization is chosen as

1 00000
000010
001000
© =
000100
01 00O0O0
00 0O0O01
In this polarization, the scalar moduli is given by
V(ir) 0 0 0 0 0
0 V() o0 0 0 0
0 0o VvV 0 0 0
Man (1) = (7) (8.5.11)
0 0 0 1/V(r) 0 0
0 0 0 0 1/V(7) 0
0 0 0 0 0 1/V(7)
In this polarization, the left-invariant one-form is
P*=d PY=d P*=d
v Y : (8.5.12)

Qr =dt —mzdy Q,=dy—madz Q,=dz+ mady

With this polarization tensor, we define H (7, 2™) as in (8.2.21). Its components can be
used to define gy, and By, as in (8.2.22). The metric (8.2.23) and the H-flux (8.2.24) can be

obtained

ds; = V(1) (dx2 +dy* + d22> (8.5.13)
H = mdxANdyNdz. (8.5.14)

This results in the metric and three-form as

ds® = V(T)((d7)2+ (da)? + (dy)2+(dz)2>, (8.5.15)
H = mdzNdyANdz. (8.5.16)
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To obtain T-fold background, the polarization is chosen as

1 00000
01 00O0O
00 0O0O01
o —
000100
000010
001000
In this polarization, the scalar moduli is given by
V(r) 0 0 0 0 0
0 1/V(r) 0 0 0 0
0 0 1/V 0 0 0
My (1) = Vi) (8.5.17)
0 0 0 1/V(r) 0 0
0 0 0 0 V(ir) 0
0 0 0 0 0  V(n)
In this polarization, the left-invariant one-form is
pPr = da:" o Py = dg{ —maxdz P*= d% + maxdy (8.5.18)
Qr =dz —mzdy Q,=dy Q. =dz

With this polarization tensor, we define H (7, 2™) as in (8.2.21). Its components can be
used to define ¢, and By, as in (8.2.22). The metric (8.2.23) and the B-field from the H-flux
(8.2.24) can be obtained

ds? = V(T)dx2+v2<T;/f()mx)2 <(dy)2+(dz)2>, (8.5.19)
B = Y _dy A de. (8.5.20)

V(1) + (mx)
This results in the metric and B-field as

V(r) ) )
() + (ma)? ((dy) + (dz) ) (8.5.21)

B = V() £ (m:c)2dy Ndz. (8.5.22)

ast = V(D) ((dr)? + (o)) + o

While choosing the polarization (8.3.4) will result in the R-flux background. This construc-

tion can be generalized to the higher dimensional nilmanifold.
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9. Conclusion

In chapter 5, we generalize the finite transformation of double field theory to extended field
theory. The cases of Ey = SL(5,R), E5 = Spin(5,5), and Eg have been studies. These finite
transformations agree with the finite transformation for the metric and the 3-form gauge field
and make explicit contact with generalized geometry.

In chapter 6, we have studied T-duality chain of famous example, which is a 7% with H-flux.
T-duality in one direction gives a nilfold background. A further T-duality in another direction
gives a T-fold background. Last T-duality will result in an R-flux background. However, these
solutions are not string backgrounds because they do not define conformal field theories. One
can, however, construct string backgrounds from these solutions as fibres over some space. The
simplest case is T° with H-flux fibred over a line. This solution can be identified as a smeared
NS5-brane solution. For a general NS5-brane, transverse directions are R*, while for a smeared
case, transverse directions are R x T3. T-duality transformation of a smeared NS5-brane will
result in a KK-monopole, which has a hyperkéahler metric. While S-duality of a smeared NS5-
brane gives a smeared D5-brane over T%. T-duality of a smeared D5-brane in 3 directions of
T3 gives a D8-brane solution.

Normally a D8-brane solution will not give a good string solution because the harmonic
function depends linearly on the transverse coordinate. The dilaton field, which is proportional
to the harmonic function, will diverge at a large distance away form the D8-brane. To get a
sensible solution, one start from type I theory on a circle and do T-duality along this direction.
This gives type I’ theory on I = S'/Z with O8-planes located at fixed points and 16 D8-branes.
The type I’ on I x T? is dual to type I on T*, which is dual to type IIA on a K3 surface. This
implies the duality between the type I’ and the type ITA on a K3 surface.

The type I’ configuration with two O8-planes at end point of I and 16 D8-branes distributed
on the interval corresponds to the K3 geometry with end-caps given by Tian-Yau spaces with
b, =8 and b_ = 8 and 16 Kaluza-Klein monopoles distributed over the interval. If b, =8 —ny
and b_ = 8 —n_ with 16 —n, —n_ Kaluza-Klein monopoles, this configuration corresponds to
the type I’ in which there are n_ D8-branes on top of O8-plane at 7 = 0 and n, D8-branes on
top of O8-plane at 7 = 7 and 16 — n, — n_ D8-branes distributed over an interval.

The K3 geometry also allows by =9 and/or b_ = 9, which will lead to up to 17 or 18 Kaluza-

Klein monopoles. This configuration corresponds to the type I’ at the strong coupling where
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O8-plane can emit a D8-brane leaving O8* of charge -9. For the type I’ up to 16 D8-branes are
possible at the weak coupling and 17 or 18 D-branes will be possible at the strong coupling.
However, for the type IIA on the K3 geometry 17 or 18 Kaluza-Klein monopoles can arise at
the weak coupling since S-duality in the chain of dualities maps a strong coupling of the type
I’ to a weak coupling of type ITA on K3 surface.

In chapter 7, we generalize the domain-wall solution of the 3-dimensional nilfold to the
higher dimensional nilfold. This higher dimensional nilfold, which can be constructed from
the nilpotent Lie group identified with a left action of the cocompact subgroup, is in the form
of T™ bundle over T™ for some n,m. Each domain-wall solution solution admits a special
holonomy, namely, SU(3), Go, Spin(7), and SU(4). The product of Minkowski space with
these domain wall solutions give supersymmetric solutions, that preserve 1/4, 1/8, 1/16, and
1/8, respectively.

T-duality transformation of these domain-wall solutions will result in 7" with H-flux fibred
over a line for some m. These solutions can be thought of as intersecting smeared NS5-brane
solutions, which preserve the same amount of supersymmetry as T-dual domain-wall solutions.
S-duality of intersecting NSH-brane solutions gives intersecting D5-brane solutions. A further
T-duality of these solutions will result in intersecting D4-D8-brane solutions.

In this thesis, we have studies K3 surface in the limit that it becomes a 3-dimensional nilfold
fibred over a line. It would interesting to generalize this idea to find the analogues of K3 surface
to other cases, such as Calabi-Yau 3-fold in the case of SU(3) holonomy, G5 manifold in the
case of G5 holonomy, Spin(7) manifold in the case of Spin(7) holonomy, or Calabi-Yau 4-fold
in the case of SU(4) holonomy. In other examples, one expects that compact special holonomy
manifolds would have limits that they becomes higher dimensional nilmanifold fibred over a
line.

It would interesting to generalize the our analysis to find the analogue of domain-wall solu-
tions from the arbitrary configuaration of intersecting branes. In our analysis, each of domain-
wall solution is dual to the system of D4-D8 brane system. If one start form the supersymmetric
configuration, such as NS5-D4-DS8, it would be interesting to see the supersymmetric solution
that dual to that configuration.

It will be interesting to study the configuration of a non-geometric background, such as T-fold.
In our cases, a T-fold backgrounds appear in T-dual backgrounds of a supersymmetric domain-
wall solution. It would be interesting to classify the configuration of T-fold. For example, it
might be able to classify the configuration of T-fold in terms of intersecting exotic branes and
NS5-branes.
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A. Left-invariant one-forms of

five-dimensional nilmanifold

Let G5 is a five dimensional nilpotent Lie group with non-vanishing commutators

[TQ, Tg] = mTl, [T47 T5] = mTl.
Let the element g be written as
g = exp(2'T}) exp(2*Ty) exp(2°T3) exp(2*Ty) exp(2°T5),

where z!,---, 2% are local coordinates on Gs. The inverse of g can be written as

g~ = exp(—2°Ts) exp(—2*T}) exp(—2°T3) exp(—2>Ty) exp(—2'Ty).

From (A.0.2), dg is given by

2T exp(22Ty) exp(2°Ty) exp(2*Ty) exp(2°Ts)

[d=

dg = [dz"Ty]exp(
(='T1)[d2"T: ) exp(2°T5)
+exp(2'Th) exp(22Ty)[d2° T3] exp(2°T3) exp(2*T}) exp(2°T5)
(='T1) exp(=* Ty) exp(2°T5)
(27T1) exp(z Jexp(2°T5)

+exp(2'Th)[d2*Ty) exp(22Ty) exp(2°Ty) exp(2*T}) exp

+exp(2'Th) exp(2°Ty) exp(2°T3)[d2* Ty exp(2*T}) exp

+exp(2'T7) exp(2°Ty) exp(2°Ty) exp(2*Ty) [d2°Ts] exp
The left-invariant one-form is given

g 'dg = PT,.
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—2%T3) exp(—2°Ty) exp(—2'T1) x
exp(2°Ty) exp(2*T}) exp(2°Ts)

g ldg = exp(—2z"Ts)exp(—2*Ty) exp(
([dlel] exp(2'Ty) exp(2*T3)

+exp(2'T) [d2*Ty) exp(2*Ty) exp(2°T3) exp(2*Ty) exp(2° Ty
] 5

5

25

5

) exp(z°T5)
+exp(2'Th) exp(22Ty)[d2*Ts) exp(2°T3) exp(2*T}) exp(2°T5)
+exp(z'Th) exp(2°Ty) exp(2° Ty ) [dz"Ty] exp(2'Ty) exp(2°T)
+exp(2'Th) exp(2°Ty) exp(2°Ty) exp(2*Ty)[dz" T3] exp(z5T5)>. (A.0.6)
Since Ty commutes with every generator, the first term of (A.0.6) will be
d='Ty. (A.0.7)

The second term of (A.0.6) is

exp(—2°Ts) exp(—2*Ty) exp(—2°T3) [d2*Ty] exp(2°T3) exp(2*Ty) exp(2°Ts). (A.0.8)
Since Ty and T5 commute with 75 and T3, the second term will be

exp(—23T3)[d2*Ty) exp(2°T3). (A.0.9)

Consider Baker-Campbell-Hausdorff formula

1 1
XYe X =Y +[X,Y] + 5[X, (X, Y]] + a[X, (X, [X, Y]]+ (A.0.10)
Therefore, the equation (A.0.9) will be
dz*Ty — 22d22 [Ty, Ty) + - - - . (A.0.11)

Since the group is 2-step nilpotent Lie group, the terms with [T3, [T3, T5]] and higher will be

zero. The result is

dz*Ty + m2*d2*Ty. (A.0.12)
The third term of (A.0.6) is
dz*Ty. (A.0.13)
while the forth term is
exp(—2°T)[d2*Ty] exp(2°Ts). (A.0.14)

With the same reason as (A.0.11), this term becomes

dz*Ty + mz°dz*T). (A.0.15)
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The last term is
dz°Ts. (A.0.16)

Therefore, the left-invariant one-form is

g 'dg = P'T, = (dz' + m2°dz* + m2"dz"\Ty + (d2*) Ty + (d2*) Ty + (dz*) Ty + (d2°)Ts. (A.0.17)
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B. Cocompact subgroup of

five-dimensional nilpotent Lie group

Let G5 is a five dimensional nilpotent Lie group with non-vanishing commutators
[TQ, Tg] = mTl, [T47 T5] = mTl. (BOl)

The element g can be written as

g = exp(2'T}) exp(2*Ty) exp(2°T3) exp(2*Ty) exp(2°T5), (B.0.2)
where z1,--- , 2° are local coordinates on Gs. Let I" be a cocompact subgroup of G5 with group
element

h = exp(n'Ty) exp(n®Ty) exp(n®T3) exp(n*Ty) exp(n°Ts), (B.0.3)
where n' € Z, and i = 1,--- ,5.

Consider the left action of A on g

h-g = exp(n'Ty)exp(n®Ty) exp(n®Ts) exp(n*Ty) exp(n°Ts) -
(exp(lel) exp(22Ty) exp(2°T3) exp(2*Ty) exp(Z5T5)> : (B.0.4)

Since T} commutes with every element and 75 and T35 commute with T, and Tj, we get

heg = exp((z +n!)Ty) (ep(n’Ty) exp(n’Ty) exp(*Ty) exp(:*Ty) )

( exp(n*Ty) exp(n’°Ty) exp(2*Ty) exp(z5T5)> . (B.0.5)

Consider a product
exp(n®Ts) exp(2%T3). (B.0.6)

Using the product rule

eXeY — 6(Y+[X7Y]+%[X7[X7YH+%[X7[X7[X7Y]”+)€X7 (BO?)
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the product (B.0.6) becomes
exp(n®T3) exp(2*Ty) = exp(2°Ty — mn*2°Ty) exp(n’T3). (B.0.8)
Therefore, the product h - g becomes

h-g = exp((z' +n' —mn®22 — mn®2")T1) exp((2* + n?)Ty) exp((2* + n*)Ty) exp((z* + n®)T3)
exp((z* +n")Ty) exp((2° + n®)Ty). (B.0.9)

The quotient space Gs/T" is obtained by identifying g with & - g,
g~h-g. (B.0.10)

That is the global structure of Gs/T" required the following identification of local coordinates

2o~ bt —mnd? — mnsz47

22~ 22 +n2,
2~ 28 +n3,
2~ —|—n4,

22~ 224l (B.0.11)
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