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Abstract The cosmological dynamics are rigorously inves-
tigated through the systematic application of autonomous
system analysis to the gravitational field equations in non-
metricity gravity. The systematic procedure to analyze the
late-time cosmic acceleration in higher-order non-metricity
gravity is demonstrated by exploring non-hyperbolic critical
points with the center manifold theory. The stability proper-
ties of these critical points are also evaluated based on the
analysis of eigenvalues and phase portraits. It is explicitly
shown that the stable node can be realized. The critical points
of each model are individually analyzed, and their corre-
sponding cosmological implications are derived. The stabil-
ity properties of these critical points are evaluated based on
the analysis of eigenvalues and phase portraits, revealing that
each model includes at least one stable node. Furthermore,
the evolution plots of the cosmological parameters confirm
the models’ capacity to exhibit accelerated expansion.

1 Introduction

The quest to understand the fundamental nature of our uni-
verse has driven cosmologists to explore a variety of theo-
retical frameworks. A significant challenge that theoretical
physicists have encountered is explaining the universe’s late-
time accelerated expansion. Numerous observational indi-
cators, including Type Ia supernovae (SNIa) [1–3], Large
Scale Structure (LSS), the Cosmic Microwave Background
(CMB), and Baryonic Acoustic Oscillations (BAO) [4–7],
have contributed to the current consensus that the universe is
undergoing an accelerated phase of expansion.
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The most extensively accepted theory posits that the uni-
verse is currently dominated by dark energy. However, none
of the existing dark energy models are entirely satisfac-
tory.The �CDM model, defined by the equation of state
w� = −1, stands as the leading contender among dark
energy models [8–12]. Albert Einstein’s formulation of Gen-
eral Relativity (GR) marked a significant shift in the under-
standing of gravity, redefining it as the curvature of space-
time resulting from mass and energy. Despite its successes
in explaining a wide range of phenomena, GR faces sev-
eral challenges, particularly in explaining the accelerated
expansion of the universe, the nature of dark energy, and the
behavior of gravity at quantum scales. These limitations have
prompted physicists to consider alternative theories of grav-
ity [13–18]. Modifying the geometry of spacetime is another
technique to explain the universe’s current acceleration.

To achieve this, we modify the Einstein–Hilbert action
of General Relativity (GR). With the exception of non-
Lagrangian theories such as Modified Newtonian Dynam-
ics (MOND), modified theories of gravity are often repre-
sented by an altered Lagrangian density, which includes new
geometrodynamical elements in the Einstein–Hilbert action
integral [19]. Numerous such modified theories currently
exist. Among them, f (R), f (R, T ), f (T ), and f (Q) gravi-
ties are the most successful in terms of cosmological viability,
among which f (Q) gravity stands out due to its innovative
approach and promising results. The f (R) gravity theory,
expresses gravity as an arbitrary function of the Ricci scalar
curvature R. This concept was first introduced by Buchdahl
[20] and further explored in the seminal works of Sotiriou
and Faraoni [21]. This theory is of particular interest because
it may provide a geometric method for describing inflation
[22–24] and addressing the dark energy problem [25–28]. In
the f (R, T ) theory [29], the gravitational action is extended
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by incorporating additional terms that involve both the Ricci
scalar R and the energy–momentum tensor T, which char-
acterizes the distribution of matter and energy throughout
spacetime.

An alternative approach to describing gravitational inter-
actions involves incorporating torsion and non-metricity into
the theoretical framework. Gravities derived from these char-
acteristics are referred to as GR analogues, with modified ver-
sions known as f (T ) and f (Q) gravities [26,30–32]. These
gravitational theories can be formulated using non-standard
metric-affine connections, such as the Weitzenbock connec-
tion and metric incompatible connections, which differ from
the Levi-Civita connection used in General Relativity (GR).
These frameworks explore gravitational dynamics beyond
the conventional GR paradigm by incorporating diverse geo-
metric structures and connections. In the realm of General
Relativity, the Levi-Civita connection is associated with cur-
vature while maintaining zero torsion. In contrast, the telepar-
allelism framework employs the Weitzenbock connection,
which is characterized by torsion and zero curvature. This
distinction between the two connections highlights their pri-
mary geometric characteristics and elucidates their respec-
tive roles in describing gravitational interactions within their
theoretical contexts [33]. The f (T ) gravity is recognized as
the most comprehensible teleparallel equivalent of General
Relativity (TEGR) [34–37].

In teleparallel gravity, two prominent theoretical chal-
lenges are frequently discussed. Firstly, there is a lack of
local Lorentz symmetry, implying that the theory does not
remain invariant under local Lorentz transformations. This
issue raises concerns about the physical equivalence of differ-
ent reference frames in the theory. Secondly, the existence of
a ghost mode has been identified, which may introduce non-
physical degrees of freedom leading to instability in certain
regimes of the theory. Despite these challenges, teleparallel
gravity remains an attractive framework as it offers a dif-
ferent geometric perspective on gravity, replacing curvature
with torsion as the fundamental geometric quantity. It is also
useful to explore as it allows for potentially novel extensions
and modifications to General Relativity, which may lead to
resolving cosmological issues such as the accelerated expan-
sion of the Universe. For further details, see: [34,38–40].

Recently, a novel gravitational theory known as the sym-
metric teleparallel equivalent of General Relativity (STEGR)
has been investigated. This theory employs the concept of
non-metricity scalar Q to define gravitational interactions,
characterized by zero torsion and curvature [41,42]. For
a comprehensive review on f (Q) gravity, see [43]. Both
teleparallel and symmetric teleparallel gravities can be devel-
oped within intriguing geometric frameworks provided by
torsion and non-metricity, respectively [42,44–57]. In this
study, we focus on the case of modified symmetric telepar-
allel gravity. The non-metricity scalar Q in f (Q) gravity

is a measure of how much the geometry of spacetime devi-
ates from being purely metric. Unlike f (R) gravity, which
modifies the Ricci scalar R, f (Q) gravity modifies the non-
metricity scalar, providing a different perspective on the geo-
metric properties of spacetime. This modification has sig-
nificant implications for cosmology, offering new ways to
model the universe’s expansion and structure formation with-
out relying on dark energy or other exotic components.

Dynamical systems analysis is a powerful mathematical
tool that allows for the qualitative study of cosmological
models. By transforming the complex field equations into an
autonomous system of differential equations, one can analyze
the stability and behavior of cosmological solutions [58–60].
This approach helps in identifying critical points, understand-
ing their nature, and exploring the evolutionary paths of the
universe within the theoretical model [61,62]. The applica-
tion of dynamical systems theory to cosmology is particularly
valuable for several reasons:

(i) Stability Analysis: Identifying and analyzing critical
points in the dynamical system helps determine the sta-
bility of various cosmological solutions. Stable solu-
tions are particularly important as they can represent
realistic models of the universe’s long-term behavior.

(ii) Qualitative Behavior: Dynamical systems analysis
allows for the exploration of qualitative behaviors of
cosmological models, such as the presence of attrac-
tors, repellers, and saddle points. These features pro-
vide insights into the possible evolutionary trajectories
of the universe.

(iii) Comparative Analysis: By comparing different forms
of the function f (Q), one can study how various mod-
ifications to the non-metricity scalar affect the cosmo-
logical dynamics. This comparative approach is crucial
for understanding the strengths and limitations of dif-
ferent models within the f (Q) framework.

For non-hyperbolic points, linear stability fails. A criti-
cal point, known as a non-hyperbolic point, if it has zero
real part among its eigenvalues (a critical point is consid-
ered hyperbolic if none of its eigenvalues is zero). In these
cases, the stability properties of the system must be studied
using other techniques, such as Center Manifold Theory and
Lyapunov Functions [53,63,64]. In this work, we are using
“Center Manifold Theory” to study the stability properties
of non-hyperbolic points.

This manuscript aims to provide a comprehensive dynam-
ical systems analysis of cosmological models at background
and perturbation level within the f (Q) gravity framework.
By systematically investigating the phase space of these mod-
els, we seek to uncover the conditions under which they
exhibit stable, accelerated expansion solutions. Additionally,
we will explore the impact of different functional forms of
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f (Q) on the dynamical behavior of the universe. These stud-
ies can be utilised to support the findings of the observational
analysis. The paper is organised as follows: In Sect. 2, we
presents the f (Q) gravity field equations, from which the
background and perturbed cosmological equations can be
obtained. In Sect. 3, we describe the formalism of the Center
Manifold Theory. In Sect. 4, we investigate the phase space
analysis of the three models governed by the form of the func-
tion f (Q). Finally, the results are summarised in Sect. 5.

2 Symmetric teleparallel gravity

In f (Q) gravity, the gravitational interaction is described by
a function of the non-metricity scalar Q. This formulation
falls within the broader category of metric-affine theories,
where both the metric gμν and the affine connection �λ

μν are
treated as independent variables [41,42,65,66].

Non-metricity is defined as the covariant derivative of the
metric tensor, given by:

Qλμν = ∇λgμν.

The non-metricity tensor can be decomposed into two inde-
pendent traces:

Qμ = Q ν
μ ν, Q̃μ = Q μν

ν .

The non-metricity scalar Q is then constructed from these
traces as follows:

Q = −gμν(Lα
βμL

β
να − Lα

βαL
β
μν),

where Lλ
μν are the disformation coefficients, defined in

terms of the connection and the metric.
The action for f (Q) gravity is given by:

S =
∫

d4x
√−g

(
1

2
f (Q) + Lm

)
, (1)

whereLm is the matter Lagrangian density. To derive the field
equations, we vary the action with respect to the metric tensor
gμν and the connection �λ

μν. The variation of the action with
respect to the metric yields:

δgS =
∫

d4x
√−g

[
1

2
fQδgQ + 1

2
f (Q)gμνδg

μν

+ δg(
√−gLm)

]
. (2)

Here, fQ denotes the derivative of f (Q) with respect to Q.

Using the chain rule and integrating by parts, we obtain the
metric field equations:

1

2
gμν f (Q) + 1

2
fQ

[
−2Q α

(μν)α + 2∇α(Qα
(μν)

− Q α
(μν))

]
= Tμν, (3)

where Tμν is the energy–momentum tensor.

The variation with respect to the connection yields:

δ�S =
∫

d4x
√−g

[
1

2
fQδ�Q

]
. (4)

This leads to the connection field equations, which, after
some algebra, can be expressed as:

∇λ(
√−g fQg

μν) − 1

2

√−g fQ
(
gμνQλ − gμαQ ν

αλ

) = 0.

(5)

In this work, we shall strictly follow a spatially
flat Friedmann–Lemaître–Robertson–Walker (FLRW)
spacetime. This model is considered the benchmark for rep-
resenting the Universe on a huge scale, assuming that it is uni-
form and isotropic. The metric for this spacetime is defined
by:

ds2 = −N 2(t)dt2 + a2(t)(dx2 + dy2 + dz2).

To investigate the evolution of these spacetimes within the
framework of f (Q) gravity (see Refs. [23–26] for more
details), we must consider the corresponding non-metricity
scalar for the above metric, which is expressed as:

Q = 6H2

N2 .

Following the approach outlined in Refs. [23,24], we
leverage the flexibility of f (Q) theories that permit specific
choices of the lapse function N . This is feasible because Q
retains a residual time-reparametrization invariance, notwith-
standing certain theoretical caveats. Consequently, we can fix
N (t) = 1 for our analysis. In order to obtain the field equa-
tions, we simplify the equation by assuming that 8πG = 1.

We also impose the splitting condition f (Q) = Q + F(Q)

and utilise the FLRW metric. As a result, we derive the related
field equations as [41,42,53,65,67],

3H2 = ρ + F

2
− QFQ, (6)

(2QFQQ + FQ + 1)Ḣ + 1

4
(Q + 2QFQ − F) = −2p,

(7)

where ρ and p denote the energy density and pressure,
respectively. In this context, FQ = dF

dQ and FQQ = d2F
dQ2 .

These equations characterize the evolution of the Hubble
parameter H and the effective energy density ρ, incorpo-
rating contributions from the non-metricity scalar Q and
the function F(Q). This formulation offers a comprehensive
framework for understanding the dynamics of the universe
within the context of f (Q) gravity.

One can easily verify that the Eqs. (6) and (7) are satisfying
the standard conservation equation as stated below,

ρ̇ + 3Hρ = 0. (8)

From Eq. (6), we have
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1 = ρ

3H2 + F
2 −QFQ

3H2 .

Hence the Friedmann’s equation (6) can be simply written as

�m + �de = 1, (9)

where

�m = ρ

3H2 , (10)

and

�de =
F
2 − QFQ

3H2 . (11)

It is possible to define the field equations of F(Q) gravity
in the dark energy sector (pde and ρde) as follows:

ρde = 1

16πG

[
F − 2QFQ

]
, (12)

pde = 1

16πG

[
4(FQ + 2QFQQ)Ḣ − F + 2QFQ

]
. (13)

Substituting the non-metricity Scalar Q = 6H2, the EoS
parameter of the dark energy sector (wde) can be obtained
as,

wde = −1 + 4(FQ + 2QFQQ)

F − 2QFQ

Ḣ

H2 . (14)

Furthermore, the total EoS (wtot) and the deceleration param-
eter (q) can be defined as,

wtot = −1 − 2Ḣ

3H2 ≡ pm + pde

ρm + ρde
, (15)

q = −1 − Ḣ

H2 . (16)

The matter density contrast, δ = δρ

ρ
, signifies the pertur-

bation in the matter energy density, and is the primary focus
of linear perturbation analysis. In the quasi-static regime, the
following equation governs the evolution of matter density
contrast, as described in [68]:

δ̈ + 2H δ̇ = ρδ

2(1 + FQ)
, (17)

where the denominator on the right-hand side signifies the
effective Newtonian constant. It is noteworthy that in the con-
text of scales much smaller than the cosmic horizon, tempo-
ral derivative terms in the perturbation equations are often
neglected. This simplification results in a formulation pri-
marily governed by spatial derivative terms [67,69].

3 Center manifold theory

Central Manifold Theory (CMT) is a specialized area within
dynamical systems theory, focused on examining the behav-
ior of systems in the vicinity of fixed points. The foundational

mathematical framework of CMT was comprehensively out-
lined by Perko [70]. Traditional linear stability theory often
falls short in accurately describing the stability of critical
points when the associated eigenvalues include zero. In con-
trast, CMT enables a stability analysis by effectively reduc-
ing the system’s dimensionality in the neighborhood of these
points. As a system traverses a critical point, its behavior is
governed by the invariant local center manifold, denoted as
Wc. This central manifold Wc is associated with eigenval-
ues possessing zero real parts, and the dynamics within this
manifold encapsulate the key characteristics of the system’s
behavior near equilibrium [66,71].

Consider the dynamical system defined by

ς ′ = F(ς)

where ς = (μ, ν). A geometrical space is deemed a center
manifold for this system if it can be locally expressed as:

Wc = {(μ, ν) ∈ R × R : ν

= h(μ), |μ| < δ, h(0) = 0, ∇h(0) = 0}
for a sufficiently small δ, where h(μ) is a sufficiently regular
function on R.

Definition 1 (Stable fixed point) A fixed point ς0 of the sys-
tem ς ′ = F(ς) is stable if for every ε > 0, we can find a δ

such that for any solution η(t) of system ς ′ = F(ς) satis-
fying ‖η(t0) − ς0‖ < δ, then the solution η(t) exists for all
t ≥ t0 and it will satisfy ‖η(t) − ς0‖ < ε for all t ≥ t0.

In simple words, a fixed point ς0 within a system described
by ς ′ = F(ς) is stable if all solutions ς(t), which begin close
to ς0, stay in the vicinity of this point as time progresses. In
essence, it means that nearby points gravitate towards and
remain near ς0 over time.

Definition 2 (Asymptotically stable fixed point) A fixed
point ς0 of the system ς ′ = F(ς) is called asymptotically
stable if for every ε > 0,we can find a δ such that for any solu-
tion η(t) of system ς ′ = F(ς) satisfying ‖η(t0) − ς0‖ < δ,

then limμ→∞ η(t) = ς0.

In another way, a fixed point ς0 in the system ς ′ = F(ς)

is considered asymptotically stable if a system is both sta-
ble and its perturbations from its equilibrium state gradually
approach zero over time, it is referred to as “asymptotically
stable.” It indicates that after being perturbed, the system
not only returns to its equilibrium state but also converges
towards it, with the deviations decreasing as time approaches
infinity.

The Center Manifold Theory (CMT) analysis is conducted
through the following steps:

1. Coordinate Translation: Initially, the coordinates of the
non-hyperbolic critical points are translated to the origin,
resulting in a set of autonomous equations expressed in
the new coordinate system.
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2. Reformulation of the Dynamical System: The trans-
formed dynamical system is then expressed in the stan-
dard form, facilitating further analysis, given by.

ς ′ =
(

μ′
ν′

)
=

(
Aμ

Bν

)
+

(
ϕ(μ, ν)

ψ(μ, ν)

)
, (18)

where the functions ϕ and ψ meet the following require-
ments:

ϕ(0, 0) = 0 and ∇ϕ(0, 0) = 0,

ψ(0, 0) = 0 and ∇ψ(0, 0) = 0.

The symbol ∇ represents the gradient operator. Within
this system, A and B are square matrices, each possessing
eigenvalues with real portions equal to zero and negative,
respectively.

3. Determining the Function h(υ): After that, a function
h(υ) is found, usually with the help of a series expansion
that incorporates a υ2 term. This function h(υ) satisfies
the following quasilinear partial differential equation:

N h(υ) ≡ ∇h(υ) [Aυ + f (υ, h(υ))

−Bh(υ) − g(υ, h(υ))] = 0,

with the conditions h(0) = 0 and ∇h(0) = 0.

4. Dynamics on the Center Manifold: By substituting the
approximated solution of h(υ) obtained from the previous
equation, the dynamics of the original system restricted
to the center manifold is given by:

υ ′ = Aυ + ϕ(υ, h(υ)), (19)

for υ ∈ R is sufficiently small.
5. Final Form of the Reduced System: The equation υ ′ =

Aυ +ϕ(υ, h(υ) is further reduced to the form υ ′ = kυn,

where k represents a constant value and n denotes a pos-
itive integer, specifically referring to the term with the
lowest order in the series expansion.

• If k < 0 and n is an odd integer, it can be inferred that
the system is stable, which consequently implies the
stability of the original system.

• Under all other circumstances, both the reduced sys-
tem and the original system will display instability.

4 Dynamical system analysis

In this section, we build a dynamical system based on the
background and perturbed equations of a generic function

F(Q). This is accomplished by transforming equations (6),
(7) and (17) into first-order autonomous systems, denoted as:

x = F

6H2 , y = −2FQ, ξ = d(ln δ)

d(ln a)
. (20)

In this case, the variable ξ tracks the expansion of matter
disturbances, whereas the variables x and y are linked to
the evolutionary dynamics of the background of the cosmos.
The matter density contrast is thus positive in all time. The
identification of perturbations in matter is as an increase when
ξ > 0 and a decrease when ξ < 0.

The cosmic background parameters, specifically �m,

�de, and wde, are defined by the following expressions:

�m = 1 − x − y, (21)

�de = x + y, (22)

wde = −1 + (4QFQQ − y)

3(x + y)

Ḣ

H2 . (23)

These parameters enable the reformulation of the cosmologi-
cal equations into a dynamical system, utilizing the variables
defined in Eq. (20), as follows:

x ′ = − Ḣ

H2 (y + 2x), (24)

y′ = − Ḣ

H2 4QFQQ, (25)

ξ ′ = −ξ(ξ + 2) + 3(1 − x − y)

2 − y
− Ḣ

H2 ξ, (26)

where (′) denotes differentiation with respect to ln a and (.)

denotes differentiation with respect to t. Additionally, the
following relation holds:

Ḣ

H2 = 3(x + y − 1)

4QFQQ − y + 2
. (27)

The perturbed space, P, which contains the variable ξ,

and the background phase space, B, which includes the vari-
ables x and y, are both components of the composite space
that constitutes the physical system. This system’s combined
phase space is defined as follows, given the physical condi-
tion 0 ≤ �m ≤ 1:

� = B × P = (x, y, ξ) ∈ R
2 × R : 0 ≤ x + y ≤ 1.

Crucially, when orbits from product space � are pro-
jected onto background space B, the resulting reduction to
the matching orbits in the background space needs to be
observed.

The key to unravelling the system’s dynamical evolu-
tion is in pinpointing and assessing its critical points. When
ξ > 0, the system becomes unstable in the presence of
matter perturbations, suggesting that these disturbances can
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grow infinitely. In contrast, the decay of matter disturbances
is reflected by a stable point with ξ 0, which indicates the
system’s asymptotic stability with regard to perturbations.
It follows that matter perturbations stay constant when the
system attains a stable point with ξ = 0. It should be empha-
sised that the growth of matter perturbations, especially at
unstable or saddle locations where ξ > 0, does not always
indicate a stable condition. The analysis of the universe’s
matter-dominated period requires this comprehension. A sta-
ble late-time attractor, denoted by ξ = 0, which indicates
an acceleration phase, must precede such unstable or saddle
points [41].

Determining the function F(Q) and then establishing the
term QFQQ are crucial for an exhaustive examination. Three
particular models, highlighted for their noteworthy cosmic
phenomenology in Sect. 4, will be easier to investigate in this
way. The next sections will provide a more in-depth expla-
nation of these models.

4.1 MODEL I: f (Q) = α′
2

√
Q ln(γ ′Q) + βQ

The class of models we will investigate is based on the form
of f(Q) given by Refs. [67,72,73]

f (Q) = α′

2

√
Q ln(γ ′Q) + βQ, (28)

where the parameters α′, β, and γ ′, are constants. It is impor-
tant to note that the equivalent of General Relativity (GR) is
recovered by choosing α′ = 0 and β = 1. While the con-
stant β is dimensionless, the dimensions for the other two
parameters are such that [α′] = [Q]1/2 and [γ ′] = [Q]−1.

Defining the following dimensionless constant parameters:

α ≡ α′
√
Q0

,

γ ≡ γ ′Q0,

where the constant Q0 is the present value of Q, i.e., Q0 ≡
6H2

0 . Consequently, Eq. (19) becomes:

f (Q) = α

2

√
Q0Q ln

(
γ

Q

Q0

)
+ βQ,

which is the form we will use throughout this work.
The given f (Q) model is motivated by the need to explain

cosmic acceleration without invoking a cosmological con-
stant or exotic dark energy. It extends General Relativity (GR)
by introducing a logarithmic correction term,

√
Q ln(Q),

which is inspired by quantum corrections, renormalization
group flows, and entropic gravity models. The model ensures
that GR is recovered forα′ = 0 andβ = 1,while the logarith-
mic modification introduces scale-dependent deviations that
become significant at late times, potentially driving cosmic
acceleration. By defining dimensionless parameters using the
present value of Q, the formulation avoids fine-tuning issues

and maintains scale invariance. The model also has implica-
tions for structure formation, modifying the growth of pertur-
bations and potentially offering observable deviations from
standard �CDM predictions.

Imposing the splitting f (Q) = Q + F(Q) the above
equation becomes,

F(Q) = α

2

√
QQ0 ln

(
γ

Q

Q0

)
+ βQ − Q. (29)

Specifically, when evaluating the second derivative of F(Q)

with respect to Q (QFQQ), it follows that

QFQQ = −x
4 .

Therefore the autonomous systems given by Eqs. (24)–(27)
becomes,

x ′ = 3(x + y − 1)

x + y − 2
(y + 2x), (30)

y′ = 3(x + y − 1)

x + y − 2
(−x), (31)

ξ ′ = −ξ(ξ + 2) + 3(1 − x − y)

2 − y
+ 3(x + y − 1)

x + y − 2
ξ. (32)

The singularities of the given system occur at y = 2 and
x = 0, and the EoS parameters and deceleration parameter
becomes,

wde = −1 + (x − 2y)(x + y − 1)

2(x + y)(2 − x − y)
, (33)

wtot = −1 + 2(x + y − 1)

(x + y − 2)
, (34)

q = −1 + 3(x + y − 1)

(x + y − 2)
. (35)

Four critical points have been identified and are detailed
in Table 1, along with their associated cosmological char-
acteristics. Table 2 presents the eigenvalues of the Jacobian
matrix for both background and perturbation levels.

* Critical Point A1 = (1− y, y, 0): At this critical point,
the system exhibits the following eigenvalues: (0,−3,−2).

This scenario represents a de Sitter universe dominated
entirely by dark energy with no contribution from matter
i.e. �m = 0 and �de = 1. The values of the equation of
state parameters, wde = −1, wtot = −1 and the decel-
eration parameter q = −1 indicate an accelerated expan-
sion consistent with a cosmological constant-like behavior.
The eigenvalues suggest that the critical point A1 is a stable
attractor in the phase space of the dynamical system, with
one zero eigenvalue corresponding to a marginal stability
direction and the other two negative eigenvalues indicating
stability in their respective directions. At the perturbation
level, ξ = 0 indicates that matter perturbations are constant.
The one-dimensional equivalent curve has one eigenvalue
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Table 1 Critical points (CP), matter, dark energy, perturbation and EoS parameters

CP (xc, yc, ξc) �m �de ξ wde wtot q

A1 (1 − y, y, 0) 0 1 0 −1 −1 −1

A2 (1 − y, y,−2) 0 1 −2 −1 −1 −1

A3 (0, 0,− 3
2 ) 1 0 − 3

2 – 0 1
2

A4 (0, 0, 1) 1 0 1 – 0 1
2

Table 2 Eigen values and stability conditions

CP Eigen-values Stability condition

A1 (0,−3,−2) Stable

A2 (0,−3, 2) Saddle

A3 ( 5
2 , 3

2 , 3
2 ) Unstable

A4 (− 5
2 , 3

2 , 3
2 ) Saddle

that vanishes and two other eigenvalues are −3 and −2 that,
according to the non-vanishing eigenvalues, are stable. The
fact that the Jacobian matrix has a zero eigenvalue further
confirms that the critical point A1 is non hyperbolic. The
system of equations shows asymptotic stability at this equi-
librium point when the centre manifold theory is used.

The central variable in this context is x, and the stable
variables are (y, ξ). The corresponding matrices A and B

are characterized by A = 0 and B =
(−3 0

0 −2

)
. The struc-

ture of the center manifold takes the form y = h1(x) and
ξ = h2(x), with the approximation N comprising two com-
ponents:

N1(h1(x)) = h′
1(x)

3(x + h1(x) − 1)

x + h1(x) − 2
(h1(x) + 2x)

+3x(x + h1(x) − 1)

x + h1(x) − 2
,

N2(h2(x)) = h′
2(x)

3(x + h1(x) − 1)

x + h1(x) − 2
(h1(x) + 2x)

+h2(x)(h2(x) + 2) − 3(1 − x − h1(x))

2 − h1(x)

−3(x + h1(x) − 1)

x + h1(x) − 2
h2(x).

For zeroth approximation:
N1(h1(x)) = −3x

x−2 + O(x2) and

N2(h2(x)) = 3(1−x)
2 + O(x2).

Therefore the reduced equation gives us

x ′ = −21x

6x − 4
+ O(x2).

The singularity at x = 0 does not affect our conclusions
because the equilibrium is not located at this singular point
but in its vicinity. Moreover, the singularity at y = 2 is not

encountered in the perturbative expansion around the equi-
librium. The derived reduced equation,

x ′ = −21x

6x − 4
+ O(x2),

is valid as long as 6x − 4 �= 0, i.e., away from x = 2
3 . In

our analysis, the equilibrium is considered within a region
where the reduced dynamics remain meaningful. The key
result from our analysis is that the reduced dynamics yield a
negative linear coefficient, indicating the system of equations
(30)–(32) stability. The central manifold reduction provides
an approximation that effectively captures the local behav-
ior, and our stability conclusion remains consistent with the
eigenvalue analysis. Even though singular surfaces exist in
the full system, our analysis is confined to a differentiable
neighborhood around the equilibrium, which satisfies the
necessary conditions for applying the Center Manifold The-
orem.

Finally, at both the background and perturbation levels, the
discussion highlights that the late universe is predominantly
influenced by dark energy.

* Critical Point A2 = (1 − y, y,−2): The critical point
A2 = (1 − y, y,−2) signifies a state where the universe is
completely dominated by dark energy (�de = 1) with no
contribution from matter (�m = 0). The values wde = −1
and wtot = −1 correspond to a cosmological constant-like
dark energy, leading to a de Sitter expansion characterized by
a deceleration parameter q = −1. This critical point can thus
be interpreted as a de Sitter attractor solution, indicating that
the universe undergoes accelerated expansion driven solely
by dark energy. The eigenvalues associated with the critical
point A2 are (0,−3, 2), indicating a saddle point configura-
tion. At the perturbation level, the critical point A2 does not
correlate to a universe dominated by late-time dark energy,
in contrast to A1. Its saddle shape and negative values for
wde and wtot represent that the universe is going through an
inflationary period.

* Critical Point A3 = (0, 0,− 3
2 ): The critical point

A3 = (0, 0,− 3
2 ) represents a universe dominated by matter

(�m = 1) with no contribution from dark energy (�de = 0).
The perturbation parameter ξ = − 3

2 is fixed at this point.
Since dark energy is absent, the equation of state parame-
ter for dark energy (wde) is not defined. The total equation
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of state parameter wtot = 0 indicates a matter-dominated
universe, which corresponds to a deceleration parameter
q = 1

2 . The eigenvalues associated with this critical point

are
(

5
2 , 3

2 , 3
2

)
. Since all the eigenvalues are positive, the

critical point A3 is generally unstable. Also, ξ = − 3
2 , sug-

gests the decay in matter perturbation. The critical point
A3 = (0, 0,− 3

2 ) represents a matter-dominated universe
with no dark energy contribution. The stability analysis via
center manifold theory reveals that this critical point has
unstable directions due to the presence of positive eigen-

values
(

5
2 , 3

2 , 3
2

)
. Consequently, the critical point A3 is gen-

erally unstable.
* Critical Point A4 = (0, 0, 1): The critical point

A4 = (0, 0, 1) signifies a universe predominantly governed
by matter (�m = 1) with no contribution from dark energy
(�de = 0). The perturbation parameter ξ = 1, indicates
growth in matter perturbation. As there is no dark energy
contribution, the equation of state parameter for dark energy
(wde) remains undefined. The total equation of state param-
eter wtot = 0 indicates a matter-dominated universe, corre-
sponding to a deceleration parameter q = 1

2 .

The eigenvalues
(
− 5

2 , 3
2 , 3

2

)
reveals that the critical point

exhibits both stable and unstable directions. In particular,
eigenvalues that are negative suggest stability in one direc-
tion whereas eigenvalues that are positive indicate instability
in other directions. Therefore, A4 is typically susceptible to
saddle instability. After diverging from this point, trajectories
converge on a late-time stable point. This finding implies that
this specific critical point is a key decision for understanding
structure development during the matter-dominated period,
which successfully handles dynamics at both the background
and perturbation levels. The critical point A4 = (0, 0, 1)

represents a matter-dominated universe with no dark energy
contribution. Hence, A4 may be the point, which can explain
how structures are formed, both at background and perturba-
tion level.

The analysis reveals the existence of two dark energy-
dominated critical points ((A1 and A2) and two matter-
dominated critical points (A3 and A4) within the frame-
work of the logarithmic form of f (Q) gravity. The matter-
dominated points, (A3 and A4, are found to be inherently
unstable. Specifically, critical point A3, which functions as a
saddle point, is indicative of a defined growth rate in mat-
ter perturbations. In contrast, critical point A4, identified
as an unstable node, signifies the decay of matter pertur-
bations. Notably, A4 exhibits accelerated expansion behav-
ior at the background level only. On the other hand, critical
point A1 demonstrates this accelerated expansion behavior
consistently at both the background and perturbation levels,
distinguishing it as a stable configuration.

Fig. 1 3D phase portrait for Model-I

Figure 1 presents the phase portrait within a three-
dimensional space, illustrating the evolution of the selected
trajectory as it transitions from matter-dominated to dark-
energy-dominated critical points. The diagram clearly depicts
the sequential progression of the trajectory, transitioning
from the unstable node at critical point A3 to the saddle insta-
bility at A4, and finally settling at the stable node represented
by critical point A1.

Figure 2 (Upper and Middle panels) illustrates the evolu-
tionary history of the density parameter and equation of state
(EoS) parameter. In Upper panel, the universe undergoes a
transition from a matter-dominated phase to an accelerated
expansion era at the late times. The current density parame-
ters for the matter and dark energy sectors are approximately
�m ≈ 0.3 and �de ≈ 0.7, respectively. The Middle panel
shows the total EoS parameter, which begins in a matter
dominated era (wtot = 0) and gradually transitions to the
dark energy sector (wtot ≈ −1) as the universe evolves.
Concurrently, the dark energy EoS parameter approached
−1 in the late stages of evolution, with the present value
of wde = −1 aligning with the current observational range
of wde = −1.028±0.032 [74]. In the Lower panel, the decel-
eration parameter exhibits a transition from a decelerating to
an accelerating phase, with the transition point occurring at
z = 0.59 and the current deceleration parameter value being
q0 = −0.57 [75].

4.2 MODEL II: f (Q) = Q − 6λM2
(

Q
6M2

)α

The polynomial model, as introduced in Refs. [41,67] given
by

f (Q) = Q − 6λM2
(

Q

6M2

)α

(36)
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Fig. 2 The evolution of the density parameters (shown in the Upper
panel), the EoS parameters (illustrated in the Middle panel), and the
deceleration parameter (depicted in the Lower panel) are presented for

Model-III. The initial conditions are set as x = 10−2, y = 10−6. The
vertical dashed line represents the present time

serves as a generalization of the square-root model. While the
square-root model introduces modifications to the evolution
of perturbations without altering the standard General Rel-
ativity (GR) background dynamics, the polynomial model
extends these modifications to both the background and per-
turbation levels. The formulation of the polynomial model is
expressed as follows:

F(Q) = −6λM2
(

Q

6M2

)α

. (37)

In this context, λ and α are dimensionless parameters, while
M represents a mass scale, typically of the order of

√
�,

where � denotes the standard cosmological constant. When
α = 0, the theory reduces to the symmetric teleparallel
equivalent of General Relativity (STEGR) with an additional
cosmological constant term equal to 6λM2. For α = 1,

the theory corresponds to STEGR with a modified gravi-
tational constant, G → G/(1 − λ). More generally, values
of α > 1 are predominantly relevant to early Universe cos-
mology, while α < 1 is pertinent to the description of dark
energy, making it significant for late-time cosmological evo-

lution. Additionally, in the latter case, the theory exhibits
an asymptotic approach to General Relativity in the early
Universe. It is also noteworthy that the case α = −1 has
been tested against late Universe observations, as discussed
in Ref. [76].

The polynomial f (Q) model generalizes GR by modi-
fying both background and perturbation evolution, making
it relevant for both early- and late-time cosmology. Unlike
the square-root model, which primarily affects perturbations
while preserving the GR background, this model introduces
modifications at both the background and perturbation lev-
els, providing a more comprehensive framework for studying
deviations from GR. It reduces to STEGR with an effective
cosmological constant for α = 0 and modifies the gravita-
tional constant for α = 1. Larger values of α impact early
Universe dynamics, while smaller values (α < 1) describe
late-time acceleration, offering a dark energy alternative. The
model smoothly transitions to GR at high energies and has
been tested for observational viability, making it a flexible
extension of standard cosmology.

As
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Table 3 Critical points (CP), matter, dark energy, perturbation and EoS parameters

CP (xc, yc, ξc) �m �de ξ wde wtot q

B1 (1 − y, y, 0) 0 1 0 −1 −1 −1

B2 (1 − y, y,−2) 0 1 −2 −1 −1 −1

B3 (0, 0,− 3
2 ) 1 0 − 3

2 – 0 1
2

B4 (0, 0, 1) 1 0 1 – 0 1
2

Table 4 Eigen values and stability conditions

CP Eigen-values Stability condition

B1 (0,−3,−2) Stable

B2 (0,−3, 2) Saddle

B3 (3, 29997
10000 , 5

2 ) Unstable

B4 (3, 29997
10000 ,− 5

2 ) Saddle

QFQQ = (1 − α)
y
2 .

The system (24)–(27) becomes

x ′ = 3(1 − x − y)(y + 2x)

y(1 − 2α) + 2
, (38)

y′ = 6y(1 − x − y)(1 − α)

y(1 − 2α) + 2
, (39)

ξ ′ = −ξ(ξ + 2) + 3(1 − x − y)

2 − y
+ 3(1 − x − y)ξ

y(1 − 2α) + 2
. (40)

The singularities of the given system are located at y = 2
or y = − 2

1−2α
. The corresponding Eos and deceleration

parameters reduces to,

wde = −1 − y(2 − α)(x + y − 1)

(x + y)(y(1 − 2α) + 2)
, (41)

wtot = −1 − 2(x + y − 1)

y(1 − 2α) + 2
, (42)

q = −1 − 3(x + y − 1)

y(1 − 2α) + 2
. (43)

Four critical points have been identified and are detailed
in Table 3, which outlines their corresponding cosmological
characteristics. Table 4 provides the eigenvalues of the Jaco-
bian matrix at both the background and perturbation levels.

* Critical Point B1 = (1 − y, y, 0): The critical point
B1 corresponds to a state where the matter density parameter
�m = 0 and the dark energy density parameter �de = 1.

This indicates that the Universe is entirely dominated by
dark energy, with no contribution from matter. Given that the
equation of state parameters wde = −1 and wtot = −1, the
critical point represents a de Sitter-like phase, characterized
by a constant Hubble parameter and an accelerated expan-
sion of the Universe. The deceleration parameter q = −1

further confirms this accelerated expansion, as it indicates a
Universe that is expanding at an exponential rate.

The eigenvalues associated with this critical point are
(0,−3,−2). The presence of a zero eigenvalue suggests that
the system has a marginally stable direction, meaning that
small perturbations in this direction neither grow nor decay,
leading to neutral stability. The negative eigenvalues, −3 and
−2, indicate stability in the other directions, as perturbations
in these directions will decay over time. Since the eigenvalues
are of non-hyperbolic nature, we use center manifold theory
for further analysis of the stability of the critical point B1.

In this case, the stable variables are represented by (y, ξ),

and the central variable is x . The corresponding matrices A

and B are characterized by A = 0 and B =
(−3 0

0 −2

)
. The

structure of the center manifold takes the form y = h3(x)
and ξ = h4(x), with the approximation N comprising two
components:

N3(h3(x)) = h′
3(x)

3(1 − x − h3(x))(h3(x) + 2x)

h3(x)(1 − 2α) + 2

−6h3(x)(1 − x − h3(x))(1 − α)

h3(x)(1 − 2α) + 2
,

N4(h4(x)) = h′
4(x)

3(1 − x − h3(x))(h3(x) + 2x)

h3(x)(1 − 2α) + 2

+h4(x)(h4(x) + 2) − 3(1 − x − h3(x))

2 − h3(x)

−3(1 − x − h3(x))h4(x)

h3(x)(1 − 2α) + 2
.

For zeroth approximation:
N3(h3(x)) = 0 + O(x2) and
N4(h4(x)) = − 3(1−x)

2 + O(x2).

Therefore the reduced equation gives us

x ′ = −3

2
+ O(x2).

The leading-order term in the reduced equation is a constant
negative value (− 3

2 ), indicating a globally stable decay in
the x-direction. Our center manifold reduction remains valid
within a well-defined local neighborhood, and the reduced
equation supports the system of equations (38)–(40) asymp-
totic stability.

Overall, the critical point B1 suggests a stable configura-
tion where the Universe is dominated by dark energy, leading
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to a phase of accelerated expansion consistent with a de Sit-
ter universe. The stability analysis through the eigenvalues
implies that this state is robust against small perturbations,
ensuring that the Universe will remain in this accelerated
expansion phase if it reaches this critical point.

* Critical Point B2 = (1 − y, y,−2): The critical point
B2 corresponds to a scenario where the matter density param-
eter �m is zero, indicating the absence of matter, and the dark
energy density parameter �de is one, implying that the uni-
verse is entirely dominated by dark energy. The equation of
state parameters are wde = −1 and wtot = −1, which are
characteristic of a cosmological constant or vacuum energy.
The deceleration parameter q = −1 suggests that the uni-
verse is undergoing accelerated expansion. The eigenvalues
associated with this critical point are (0,−3, 2), which indi-
cate the stability of the point. Specifically, the presence of
a zero eigenvalue suggests the existence of a center man-
ifold, while the negative and positive eigenvalues imply a
saddle-like behavior in the system’s dynamics. The perturba-
tion ξ = −2 represents a specific perturbative mode around
this critical point. This combination of parameters indicates
a universe in a de Sitter-like phase, where dark energy domi-
nates, and the universe’s expansion is accelerating. Nonethe-
less, owing to its saddle nature and the negative wde and
wtot value, this point portrays the inflationary epoch of the
universe.

* Critical Point B3 = (0, 0,− 3
2 ): The critical point B3

corresponds to a cosmological scenario where the universe
is entirely dominated by matter, as indicated by �m = 1 and
�de = 0. At this point, the equation of state parameter for
dark energy, wde, is not defined since dark energy is absent.
The total equation of state parameter, wtot = 0, suggests
that the universe behaves like a pressureless dust, consis-
tent with a matter-dominated era. The deceleration parameter
q = 1

2 implies that the universe is decelerating, as expected
in a matter-dominated phase of cosmic evolution. This is
consistent with the standard cosmological model during the
period before dark energy becomes dominant. The pertur-
bation parameter ξ = − 3

2 at this critical point indicates a
specific perturbative behavior in the system.

The eigenvalues associated with this critical point are
(3, 29997

10000 , 5
2 ). The presence of all positive eigenvalues sug-

gests that the critical point is an unstable node, indicating that
small perturbations around this point will grow, leading the
system away from this equilibrium. This instability reflects
the transient nature of a matter-dominated universe, eventu-
ally giving way to other phases of cosmic evolution, such as
dark energy domination.

* Critical Point B4 = (0, 0, 1): The critical point B4 rep-
resents a scenario where the universe is entirely dominated by
matter, with �m = 1 and �de = 0. In this configuration, wde

is not defined because dark energy is absent in this scenario
(�de = 0). The total equation of state wtot = 0, indicating

Fig. 3 3D phase portrait for Model-II

that the universe behaves as a pressureless matter-dominated
universe, which corresponds to non-relativistic matter. The
deceleration parameter q = 1

2 , which is characteristic of a
universe dominated by matter. This value implies that the uni-
verse is decelerating in its expansion. The eigenvalues asso-
ciated with this critical point are (3, 29997

10000 ,− 5
2 ). The positive

eigenvalues suggest that the critical point is a saddle point in
the phase space, indicating that it is unstable in certain direc-
tions whereas the negative eigenvalue indicates stability in at
least one direction. The perturbation value is ξ = 1, which
corresponds to the specific perturbative analysis around this
critical point.

Hence, the critical point B4 highlights a regime where the
dynamics are dominated by matter, with dark energy playing
no role. The instability suggested by the positive eigenval-
ues indicates that this state is not attractor-like, meaning the
universe may not remain in this state indefinitely, potentially
transitioning to another phase dominated by different com-
ponents, such as dark energy, as the universe evolves.

The analysis identifies two dark energy-dominated crit-
ical points (B1 and B2) and two matter-dominated critical
points (B3 and B4) within the context of the polynomial form
of f (Q) gravity. Both matter-dominated points, B3 and B4,

are characterized by inherent instability. Specifically, critical
point B3, acting as a saddle point, reflects a defined growth
rate in matter perturbations. Conversely, critical point B4,

identified as an unstable node, indicates the decay of matter
perturbations. It is important to note that B4 exhibits accel-
erated expansion behavior solely at the background level.
In contrast, critical point B1 consistently demonstrates this
accelerated expansion behavior at both the background and
perturbation levels, thereby establishing it as a stable config-
uration.

Figure 3 illustrates the phase portrait in three-dimensional
space, depicting the trajectory’s evolution as it transitions
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Fig. 4 The evolution of the density parameters (shown in the Upper
panel), the EoS parameters (illustrated in the Middle panel), and the
deceleration parameter (depicted in the Lower panel) are presented for

Model-III. The initial conditions are set as x = 10−3, y = 10−6, and
α = 0.001. The vertical dashed line represents the present time

from matter-dominated to dark-energy-dominated critical
points. The diagram clearly shows the sequential progression
of the trajectory, beginning at the unstable node correspond-
ing to critical point B3, passing through the saddle instability
at B4, and ultimately stabilizing at the node represented by
critical point B1.

Figure 4 (Upper and Middle panels) provides an illustra-
tion of the evolutionary history of the density and equation
of state (EoS) parameters as functions of redshift z. The ini-
tial conditions are calibrated to correspond to present-day
values (at z = 0). In the Upper panel, the transition of the
universe from a matter-dominated phase to an accelerated
expansion era is depicted. The current density parameters are
approximately �m ≈ 0.3 for matter and �de ≈ 0.7 for dark
energy. The Middle panel shows the evolution of the total
EoS parameter, which starts in a matter-dominated era with
wtot = 0 and evolves towards the dark energy sector, where
wtot ≈ −1. The dark energy EoS parameter approaches −1
in the later stages of evolution, with the present value of
wde = −1 aligning with the current observational constraint
of wde = −1.028±0.032 [74]. In the Lower panel, the decel-
eration parameter transitions from a decelerating phase to an

accelerating phase, with the transition occurring at z = 0.64
and the current value of the deceleration parameter being
q0 = −0.56 [75].

4.3 MODEL III: f (Q) = κQ ln
(

Q
Q0

)

In this subsection we consider

F(Q) = κQ ln

(
Q

Q0

)
− Q. (44)

The given f (Q) model introduces a logarithmic correc-
tion to the standard symmetric teleparallel equivalent of
General Relativity (STEGR), motivated by quantum gravity
effects, renormalization group running, and entropic gravity
considerations. The term κQ ln(Q/Q0) represents a scale-
dependent modification that becomes significant at large cos-
mic scales while preserving GR at small scales. Such loga-
rithmic terms commonly appear in quantum corrections to
gravitational actions and can provide a dynamical explana-
tion for cosmic acceleration without requiring a cosmological
constant. The model naturally recovers GR in the limit κ → 0
and modifies both background evolution and perturbations,
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Table 5 Critical points (CP), matter, dark energy, perturbation and EoS parameters

CP (xc, yc, ξc) �m �de ξ wde wtot q

C1 (x, 1 − x, 0) 0 1 0 −1 + 8κ
1+x+8κ

−1 −1

C2 (x, 1 − x,−2) 0 1 −2 −1 + 8κ
1+x+8κ

−1 −1

C3 (x,−2x,− 3
2 ) 1 + x −x − 3

2 0 0 1
2

C4 (x,−2x, 1) 1 + x −x 1 0 0 1
2

Table 6 Eigen values and stability conditions

CP Eigen-values Stability condition

C1 (0,−3,−2) Stable

C2 (0,−3, 2) Saddle

C3 (0, 5
2 , 3) Unstable

C4 (0,− 5
2 , 3) Saddle

making it a viable candidate for addressing dark energy and
late-time cosmic acceleration.

As

QFQQ = κ.

The system (24)–(27) becomes

x ′ = 3(1 − x − y)(y + 2x)

4κ − y + 2
, (45)

y′ = 12κ(1 − x − y)

4κ − y + 2
, (46)

ξ ′ = −ξ(ξ + 2) + 3(1 − x − y)

2 − y
+ 3(1 − x − y)ξ

4κ − y + 2
. (47)

The given system exhibits singularities only at y = 2. The
corresponding Eos and deceleration parameters reduces to,

wde = −1 + (4κ − y)(x + y − 1)

(x + y)(4κ − y + 2)
, (48)

wtot = −1 − 2(x + y − 1)

4κ − y + 2
, (49)

q = −1 − 3(x + y − 1)

4κ − y + 2
. (50)

Four critical points have been identified and are presented
in Table 5, which details their associated cosmological char-
acteristics. Table 6 provides the eigenvalues of the Jacobian
matrix for both the background and perturbation levels.

* Critical Point C1 = (x, 1 − x, 0): The critical point B4

describes a cosmological model characterized by a universe
where dark energy completely dominates, with �de = 1
and �m = 0. This implies that the energy density is solely
attributed to dark energy, and matter does not contribute sig-
nificantly to the dynamics of the universe at this critical point

with the constant matter perturbation. For the dark energy
equation of state parameter, we have:

wde = −1 + 8κ
1+x+4κ

,

where κ is a constant. This expression suggests that the effec-
tive equation of state for dark energy deviates from the cos-
mological constant value of −1 depending on the values of
x and κ. The total equation of state parameter is wtot = −1,

which aligns with a cosmological constant scenario where
dark energy is the only significant component contributing
to the universe’s expansion. The deceleration parameter is
q = −1, indicating an exponential expansion typical of a
de Sitter-like universe, where the expansion rate is constant
and accelerating. The eigenvalues associated with this critical
point are (0,−3,−2). The presence of a zero eigenvalue sig-
nifies that the stability analysis requires further examination
through the center manifold theory. The negative eigenvalues
suggest stability in the corresponding directions.

The eigenvalue analysis suggests partial stability, with fur-
ther investigation required to fully understand the critical
point’s stability in the context of perturbations and dynamical
behavior. In this framework, x functions as the central vari-
able, while (y, ξ) serve as the stable variables. The associated

matrices A and B are defined as A = 0 and B =
(−3 0

0 −2

)
,

respectively. The structure of the center manifold takes the
form y = h5(x) and ξ = h6(x), with the approximation N
comprising two components:

N5(h5(x)) = h′
5(x)

3(1 − x − h5(x))(h5(x) + 2x)

4κ − h5(x) + 2

−12κ(1 − x − h5(x))

4κ − h5(x) + 2
,

N6(h6(x)) = h′
6(x)

3(1 − x − h5(x))(y + 2x)

4κ − h5(x) + 2

+h6(x)(h6(x) + 2) − 3(1 − x − h5(x))

2 − h5(x)

−3(1 − x − h5(x))h6(x)

4κ − h5(x) + 2
.

For zeroth approximation:
N5(h5(x)) = − 12κ(1−x)

4κ+2 + O(x2) and

N6(h6(x)) = − 3
2 (1 − x) + O(x2).

123



  322 Page 14 of 18 Eur. Phys. J. C           (2025) 85:322 

Therefore the reduced equation gives us

x ′ = 3κ(50x − 15)

2(11 − 3x)
+ O(x2).

Our center manifold construction ensures that the reduced
dynamics remain well-defined away from the singularity
y = 2. Since the denominator remains positive for small
x, the sign of x ′ is largely dictated by 50x − 15. If x is
initially positive and small, the dominant term is negative,
suggesting local stability. This analysis reveals a negative
linear aspect applicable for x ∈ (−∞, 0]. As a result, the
system of equations (45)–(47) exhibits asymptotic stability
at the equilibrium point, in accordance with the center man-
ifold theory.

Overall, the critical point C1 represents a scenario where
dark energy completely governs the universe’s dynamics,
with specific implications for the equation of state and the
expansion history.

* Critical Point C2 = (1 − y, y,−2): The critical point
C2 represents a state in the cosmological model where the
matter density parameter �m is zero, indicating the absence
of matter, and the dark energy density parameter �de = 1 is
fully dominant. This configuration suggests a universe driven
entirely by dark energy, with no contribution from matter. The
equation of state parameter for dark energy, wde, is given
by wde = −1 + 8κ

1+x+4κ
. This indicates a dynamic dark

energy model, where wde depends on the parameters x and
κ. The total equation of state parameter wtot = −1 implies a
universe that is undergoing accelerated expansion, consistent
with a cosmological constant-like behavior with decay in the
matter perturbation (ξ = −2). The deceleration parameter
q = −1 further confirms this, indicating that the universe is
in a phase of exponential expansion, characteristic of a de
Sitter universe. The eigenvalues associated with this critical
point are (0,−3, 2), suggesting a saddle point behavior.

This analysis of the critical point C2 highlights the inter-
play between the dynamic equation of state for dark energy
and the stability characteristics, providing insights into the
late-time cosmological evolution under this modified gravity
theory.

* Critical Point C3 = (x,−2x,− 3
2 ): The critical point

C3) describes a cosmological scenario where the matter den-
sity parameter is given by �m = 1 + x, and the dark energy
density parameter is �de = −x . This configuration sug-
gests a universe where matter dominates, as �m is positive
and greater than 1, while dark energy has a negative density,
indicating an unusual or exotic form of energy. Hence, there-
fore x ∈ [−1, 0]. The equation of state parameter for dark
energy, wde = 0, indicates that the dark energy behaves like
pressureless dust, which is atypical for dark energy but can
occur in specific modified gravity scenarios. The total equa-
tion of state parameter wtot = 0 suggests that the overall
universe behaves like a matter-dominated universe, leading

to a standard decelerating expansion phase. The deceleration
parameter q = 1

2 supports this interpretation, as it indicates
a decelerating universe, characteristic of a matter-dominated
phase in the standard cosmological model.

The eigenvalues associated with this critical point are
(0, 5

2 , 3). The presence of positive eigenvalues implies that
this critical point is unstable, with any perturbations around
this point likely leading to a departure from this state. The
perturbation ξ = − 3

2 further suggests that deviations from
this critical point will grow, confirming the instability of this
cosmological configuration. In summary, the critical point
C3 = (x,−2x,− 3

2 ) describes a matter-dominated universe
with an unstable equilibrium, where dark energy behaves
unusually as pressureless dust. This instability points to the
critical point being a transient state, with the universe likely
evolving away from this configuration over time.

* Critical Point C4 = (0, 0, 1): The critical point C4

represents a scenario where the matter density parameter is
given by �m = 1 + x and the dark energy density param-
eter by �de = −x, with x ∈ [−1, 0]. At this point, the
equation of state parameters for dark energy (wde) and the
total equation of state (wtot) are both zero, indicating a non-
evolving dark energy component and a universe dominated
equally by matter and dark energy. The deceleration param-
eter q = 1/2 suggests that the universe is in a decelerated
expansion phase. The eigenvalues associated with this critical
point are (0,−5/2, 3), indicating that the system has a sad-
dle behavior with growth in the matter perturbation. Given
these characteristics, the critical point C4 is a saddle point
in the dynamical system, with trajectories attracted in some
directions and repelled in others.

The analysis reveals the presence of two matter-dominated
critical points (C3 and C4) and two dark energy-dominated
critical points (C1 and C2) within the framework of the loga-
rithmic form of f (Q) gravity. The matter-dominated critical
points, C3 and C4, exhibit inherent instability. In particular,
critical point C3, functioning as a saddle point, signifies a
well-defined growth rate in matter perturbations. In contrast,
critical point C4, identified as an unstable node, represents
the decay of matter perturbations, with accelerated expansion
observed only at the background level. On the other hand,
critical point C1 displays consistent accelerated expansion at
both the background and perturbation levels, establishing it
as a stable configuration.

Figure 5 presents the phase portrait in three-dimensional
space, illustrating the trajectory’s evolution as it progresses
from matter-dominated to dark-energy-dominated critical
points. The diagram clearly delineates the sequential tran-
sition of the trajectory, commencing at the unstable node
associated with critical point C3, moving through the sad-
dle point instability at C4, and ultimately converging to the
stable node represented by critical point C1.
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Fig. 5 3D phase portrait for Model-III

Figure 6 (Upper and Middle panels) presents the evo-
lutionary trajectories of the density and equation of state
(EoS) parameters as functions of redshift z. The initial con-
ditions are adjusted to match the current values at z = 0.

The Upper panel illustrates the universe’s progression from
a matter-dominated phase to a phase of accelerated expan-
sion. At present, the density parameters are approximately
�m ≈ 0.3 for matter and �de ≈ 0.7 for dark energy. The
Middle panel depicts the evolution of the total equation of
state (EoS) parameter, which begins in the matter-dominated
regime with wtot = 0 and gradually transitions towards the
dark energy regime, where wtot approaches −1. Simultane-
ously, the EoS parameter for dark energy converges towards
−1 in the later stages of evolution, aligning with the cur-
rent observational constraint of wde = −1.028±0.032 [74].
The Lower panel shows the deceleration parameter’s shift
from a decelerating phase to an accelerating phase, with the
transition occurring at z = 0.60. The current value of the
deceleration parameter is q0 = −0.57 [75].

5 Discussion and conclusion

The f (Q) gravity framework provides a rich and versatile
approach to modifying GR. By exploring various forms of

Fig. 6 The evolution of the density parameters (shown in the Upper
panel), the EoS parameters (illustrated in the Middle panel), and the
deceleration parameter (depicted in the Lower panel) are presented for

Model-III. The initial conditions are set as x = 10−3, y = 10−6, and
κ = 0.0001. The vertical dashed line represents the present time
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f (Q), one can address different cosmological phenomena,
from the early universe to late-time acceleration. Further
research into the perturbation and observational aspects of
f (Q) gravity will help in understanding its viability as an
alternative to GR.

Dynamical system analysis serves as a valuable tool
for exploring the qualitative behavior of the universe. This
method involves addressing non-linear differential equations
through the framework of dynamical variables, thereby char-
acterizing the universe’s evolution via the critical points of
autonomous systems. In this study, we employed dynamical
system analysis within the context of f (Q) gravity, exam-
ining both background and perturbation levels. Specifically,
we formulated the general autonomous dynamical systems
(Eqs. (19)–(21)) within the symmetric teleparallel frame-
work, focusing on f (Q) gravity. Here, the dynamical vari-
ables x and y represent the background evolution of the uni-
verse, while the variable ξ captures the perturbative aspects,
including the growth and decay of matter perturbations. The
autonomous systems we defined incorporate the functional
form of f (Q), leading to the proposal of three distinct mod-
els based on different forms of f (Q).

In Model-I, we examined a logarithmic form of f (Q)

as presented in Eq. (22). This approach identified four crit-
ical points, which describe the matter-dominated and dark
energy-dominated phases of the Universe at both the back-
ground and perturbation levels. Critical points A1 and A2 cor-
respond to the dark energy-dominated era, with A2 exhibiting
accelerated expansion at the background level and decay in
matter perturbations, while A1 displays accelerated expan-
sion and stable node behavior at both levels. Conversely,
critical points A3 and A4 are associated with the matter-
dominated era, where A3 indicates a growth rate in mat-
ter perturbations, while A4 signals their decay. In Model-
II, we considered a polynomial form of f (Q), presented
in Eq. (30), which also produced four critical points. The
qualitative behavior of these critical points is similar to that
observed in Model-I, despite the different functional forms
of f (Q). Here, critical points B1 and B2 describe the dark
energy-dominated phase, with B1 uniquely illustrating late-
time cosmic acceleration at both levels, whereas B3 and B4

define the matter-dominated phase. Model-III revisits the
logarithmic form of f (Q), as given in Eq. (38), and similarly
identifies four critical points. The behavior of these critical
points mirrors that of the previous models, maintaining con-
sistency across different functional forms of f (Q). The criti-
cal pointsC1 andC2 characterize the dark energy-dominated
phase, with C1 distinctively demonstrating late-time cosmic
acceleration at both the background and perturbation levels,
while C3 and C4 are associated with the matter-dominated
phase.

The qualitative dynamics of this model align with those
of Models I, II and III, both at the background and pertur-

bation levels. Notably, cosmological perturbation analyses
have been conducted to assess the stability of cosmologi-
cal models in f (Q) gravity, as discussed in Refs. [77,78].
These investigations focus on a class of Einstein teleparallel
geometries characterized by a four-dimensional Lie algebra
of affine connections, with explicit forms of f (Q) derived
for various parameter values. Our study considers three such
forms of f (Q) to demonstrate the Universe’s late-time cos-
mic acceleration through dynamical system analysis.

The cosmological evolution of the Universe has been
assessed by analyzing the density parameters for matter and
dark energy, the equation of state (EoS) parameters, and the
deceleration parameters. Across all models, the decelera-
tion parameter consistently indicates a transition from early-
time deceleration to late-time acceleration, with the transition
occurring at z = 0.59, z = 0.64, and z = 0.60, respectively.
The corresponding present-day values of the deceleration
parameter are q0 = −0.57, q0 = −0.56, and q0 = −0.57.

All three models yield the same present-day value for the
dark energy EoS parameter, wde = −1. Moreover, the den-
sity parameters for matter and dark energy are determined to
be �m ≈ 0.3 and �de ≈ 0.7, respectively, consistent with
current cosmological observations. Phase space trajectories
have been constructed in three-dimensional space for each
model, illustrating the transition from an unstable, matter-
dominated phase to a stable, dark energy-dominated phase.
This study concludes that dynamical stability analysis is a
valuable tool for extensively investigating the cosmological
behavior of the Universe. In f (Q) gravity, the identifica-
tion of such a critical point is significant as it demonstrates
the possibility of achieving a stable accelerated expansion
driven by the modified gravity framework, without the need
for additional exotic matter components.
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