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1 General introduction

It is often said that quantum mechanics and gravity are incompatible. Recent

progress in string theory has changed this perspective, showing that they are ac-

tually intertwined in a deep and surprising way, making them instead inseparable!

This progress originated from the realization that black holes are quantum objects.

This eventually led to the holographic principle which showed that gravity is not

fundamental but emerges from quantum mechanics. A rich connection between

spacetime and quantum information was then uncovered, in which fundamental

aspects of quantum mechanics, such as entanglement, are equivalent to simple

properties of spacetime, such as geometric connections. This thesis will develop

some aspects of these ideas around three key topics.

The first topic is the holographic principle, in the form of the AdS/CFT correspon-

dence, which is a precise equivalence between quantum gravity in AdS spacetimes

and conformal field theories. The power of this duality comes from the fact that

it gives a precise definition of quantum gravity while also providing a window into

the strong coupling dynamics of field theories. Chapter 2, based on the paper [1],

reviews the nAdS2/nCFT1 correspondence, and explains how to apply it to the

Kerr black hole. One goal is to obtain simplified models of quantum gravity for re-

alistic black holes. A motivating question can be: What is the quantum mechanics

of the Kerr black hole?
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1. General introduction

The second topic is black hole thermodynamics. Developed in the seventies, it

has been one of the main inspiration behind the more recent insights and develop-

ments. Chapter 3, based on the paper [2], investigates the properties of quantum

corrections to black hole entropy in the context of string theory, focusing on a

special class of corrections of logarithmic type, which are fully captured in the

low energy theory. The driving question is: What can semiclassical gravity tell us

about the black hole microstates?

The third topic is the connection between quantum information and spacetime.

A powerful idea is that spacetime connectivity and entanglement are essentially

the same thing, which is often referred to as “ER=EPR”. This relationship was

recently strengthened by showing that wormholes can be made traversable with

a particular quantum teleportation protocol. Chapter 4, based on the paper [3],

investigates the limits of this construction. The broad motivation is the question:

How large can quantum effects be in gravity?

At the beginning of each chapter, we give an introduction to the relevant back-

ground. In this general introduction, we paint a broad overview of these topics,

trying to highlight recent developments.

1.1 Black holes thermodynamics

In 1973, Bekenstein conjectured that black holes carry an entropy proportional to

their horizon area in Planck units [8]. This proposal was put on firmer footing a

year later, when Hawking demonstrated that quantum effects implied that black

holes had a temperature [9]. This led to the Bekenstein-Hawking formula for black

hole entropy

S =
A

4G~
, (1.1)

and the recognition that quantum black holes behave as standard thermodynamical

systems. This formula shows that quantum gravity has very unexpected features

such as the scaling of the number of degrees of freedom like the area instead of

the volume. This counterintuitive fact has been at the root of the holographic

principle, which is discussed in the next section.

1.1.1 Euclidean path integral

Hawking’s derivation of black hole radiation was a difficult computation of quan-

tum field theory in curved spacetime. A simpler and more conceptual approach

was described later by Gibbons and Hawking [10]. They showed that the thermo-

dynamical properties of general relativity can be derived using a Euclidean path

integral, as for ordinary quantum systems.
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1.1. Black holes thermodynamics

The idea is that the partition function of quantum general relativity should be

given by the Euclidean path integral

Z =

∫
Dg e−S[g] , (1.2)

with prescribed boundary conditions. For example, to obtain the thermal parti-

tion function at inverse temperature β, we should take Euclidean time to be a

circle of length β. This path integral can then be evaluated in a saddle-point ap-

proximation. The leading saddle-point is the Euclidean black hole geometry and

reproduces correctly the Bekenstein-Hawking formula.

This also provides a simple derivation of the Hawking temperature. The period-

icity in Euclidean time of the saddle-point is fixed by demanding regularity at

the horizon. The fact that black hole thermodynamics can be derived from the

usual path integral approach suggests that black holes should be considered as

ordinary quantum systems. However, black hole radiation and evaporation lead

to an apparent conflict with quantum mechanics. This is Hawking’s information

paradox [11] which we will discuss in more details below.

The advantage of the Euclidean gravity approach is that it provides a tentative

definition for the exact quantum entropy of the black hole. It suggests that the

exact partition function is the full path integral, while the Bekenstein-Hawking

formula arises in a saddle-point approximation. Of course, this definition is not

really useful since the gravitational path integral is hard to compute and ambiguous

because of UV divergences. Nonetheless, we will see that for a special type of

quantum correction, of logarithmic type, the Euclidean path integral gives an

unambiguous answer. This will be the subject of Chapter 3.

1.1.2 Microscopic counting

The understanding of black hole entropy that we have, from the Hawking tem-

perature or from the Euclidean path integral, shed no light on the nature of the

black hole microstates. This requires a complete theory of quantum gravity, such

as string theory. One of the major successes of string theory was indeed the

counting of black hole microstates for a 5d supersymmetric black hole, in perfect

agreement with the Bekenstein-Hawking formula [12]. This counting was possible

because the degeneracy is protected by supersymmetry and could be computed

in a weakly coupled regime. This matching gives definitive evidence that black

holes are ordinary quantum systems, although it doesn’t directly shed light on the

nature of the microstates in the black hole regime.

The Strominger-Vafa computation made it look like that the precise agreement was

3



1. General introduction

possible due to details of the configurations. This was rather unsatisfactory given

the expected universality of the Bekenstein-Hawking formula. Strominger later

realized [13] that the matching could be done more generally, by simply applying

the Cardy formula using the Brown-Henneaux central charge, in the context of the

AdS3/CFT2 correspondence.

We should mention that the problem of microscopic counting has lead to interesting

connections with the theory of modular forms in number theory. As an illustration,

we can mention that an exact counting formula for N = 4 black hole microstates

was proposed in [14, 15] using the Igusa cusp form and has lead to interesting

connections with the theory of mock modular forms [16].

More recently, the microstates of BPS black holes in AdSd+1, for d ≥ 3, have been

counted in terms of the dual CFTd. This was first done for supersymmetric black

holes solutions of M-theory on AdS4 × S7 using supersymmetric localization in

ABJM theory [17] and has now been generalized in many directions. In particular,

this has lead to a resolution [18–20] of the long-standing mismatch between the

superconformal index of N = 4 super Yang-Mills and the entropy of BPS black

holes in AdS5 × S5 [21].

1.1.3 Logarithmic corrections

The exact black hole entropy is the logarithm of the number dmicro of microstates.

The Bekenstein-Hawking formula arises as the leading term for large entropy, and

has been successfully checked in the examples where dmicro is known, as was dis-

cussed above. Can this matching be extended beyond leading order?

The logarithmic correction is the coefficient C in an expansion of the form

log dmicro =
AH
4G

+
C

2
log

(
AH
G

)
+ . . . , (1.3)

where AH is the area of the horizon. We consider here a regime where AH is large

and . . . contains subleading terms. The logarithmic correction has a special status

because it can be computed solely from the two-derivative low energy effective

theory, depends only on the massless field content and thus constitutes a powerful

“infrared window into the microstates” [22]. We review the details of this derivation

in section 3.1.

To give a flavor of these corrections, we give the answer for the Schwarzschild black

hole in Einstein gravity with minimally coupled fields:

C =
1

90

(
2nS − 26nV + 7nF −

233

2
nψ + 154

)
, (1.4)
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1.2. The holographic principle

where nS , nV , nF and nψ are respectively the number of massless scalar, vector,

Dirac and Rarita-Schwinger fields [22]. We see that the logarithmic correction is

highly sensitive of the specific theory of which the black hole is a solution. No-

tably, this was used to challenge loop quantum gravity which predicts an incorrect

logarithmic correction for the Schwarzschild black hole.

To compare with microscopic counting, we need to compute the logarithmic cor-

rection in low energy effective theories coming from string theory. For extremal

black holes, using the definition of quantum entropy of [23], the logarithmic cor-

rections for N = 4 and N = 8 black holes were computed in [24] and for rotating

black holes in [25]. They were successfully matched with the predictions of the

corresponding microscopic formulas.

It has been of interest to compute these corrections in more general settings, for

black holes for which we don’t know the microscopic description. One motivation

is that the structure of the logarithmic corrections could provide insight into the

microscopic theory, in an analogous way to how low energy data can constrain the

high energy spectrum, e.g. by modular invariance in a CFT2. The computation of

logarithmic corrections for the (non-extremal) Kerr-Newman black hole in general

N ≥ 2 supergravities was done in [26] and an interesting pattern was found. It

was observed that C is always independent on the black hole charges. This is not

the generic expectation and requires delicate cancellations between bosons and

fermions. The goal of the work presented in Chapter 3 is to challenge this pattern

against a different class of black holes, in an effort to understand what it teaches

us about the black hole microstates.

The above discussion takes place in asymptotically flat space, but logarithmic

corrections have also been considered in AdS. In [27], the logarithmic correction

to the partition function of supergravity in AdS4×S7 was computed and matched

with the prediction from the dual ABJM theory. More recently, the logarithmic

correction to the entropy of AdS4 black holes was obtained from a microscopic

counting using supersymmetric localization in the CFT3 and matched with the

supergravity computation [28,29].

1.2 The holographic principle

The Bekenstein-Hawking entropy formula shows that the number of true degrees

of freedom is proportional to the area instead of the volume. A heuristic way

to interpret this could be that all the information is encoded on the black hole

horizon. Because black holes correspond to the maximum amount of energy that

we can fit in a given region, this suggests the holographic principle: in quantum

gravity, the information content of a region should be, in some sense, encoded in

5



1. General introduction

the area of this region [30,31].

1.2.1 AdS/CFT dictionary

A concrete proposal of a holographic duality was put forward by Maldacena who

suggested that string theory in an AdS spacetime was dual to a CFT living on its

asymptotic boundary [32]. A precise dictionary was given [33,34]: it was proposed

that the full quantum gravity path integral with fixed asymptotic values of the

fields is equal to the CFT partition function with insertion of sources for dual

CFT operators. This can be written as

ZAdS [φ∂M (x)] =

〈
exp

(∫
Sd
φ∂M (x)O(x)

)〉
CFT

(1.5)

where x is a boundary coordinate. This proposal has been thoroughly tested and

can be viewed as the first fully non-perturbative definition of quantum gravity,

although it only works for asymptotically AdS spacetimes.

We have learned a lot about quantum black holes from AdS/CFT. According to

the duality, an AdS black hole is dual to a CFT state that is “close” to a thermal

state (in the sense of the eigenstate thermalization hypothesis). The black hole

microstates are identified with high energy states of the dual CFT. Holography was

used to show that black holes are the most extreme objects in nature, since they

thermalize “as fast as possible” [35, 36] and are “fast scramblers”, i.e. maximally

chaotic quantum systems [37–39]. This gives a picture of a quantum black hole as

a strongly coupled system made of many degrees of freedom. We will see that the

nAdS2/nCFT1 correspondence provides a simple realization of this picture.

1.2.2 The nAdS2/nCFT1 correspondence

The case of the AdS2/CFT1 correspondence, which should naively be the simplest

possible case, has been puzzling for a long time. It is particularly interesting

because AdS2 arises universally in the extremal limit of higher-dimensional black

holes. As a result, it is expected that the AdS2/CFT1 correspondence would be a

theory of the black hole microstates.

It is precisely this simplicity that has prevented the definition of a useful correspon-

dence in the early days of AdS/CFT. It was understood that this correspondence

is actually trivial, in a sense that it is just a theory of ground states and has no

dynamics [40]. More recently, it was realized that the correspondence could be

made non-trivial by slightly breaking the exact conformal symmetry, leading to

the near-AdS2/near-CFT1 correspondence [41–44]. It was shown that near-AdS2

physics is controlled by a universal pattern of spontaneous and explicit symmetry

6



1.2. The holographic principle

breaking.

This was sparked by the SYK model [45,46], an ensemble of quantum mechanical

theories with Hamiltonian

H =
∑
i,j,k,`

Jijk`ψiψjψkψ` , (1.6)

where {ψi} is a collection of N Majorana fermions in one dimension, and Jijk`
are random couplings with a Gaussian distribution. Notably, this model can be

analytically solved and shown to be maximally chaotic [46, 47]. At low energies,

this model has an emergent Diff(S1) symmetry of time reparametrization, which

is broken to SL(2,R) by the Schwarzian effective action

I[f ] =

∫
dt {f(t), t} . (1.7)

This is also the structure appearing in near-AdS2 gravity, such as in Jackiw-

Teitelboim (JT) gravity reviewed in section 2.1. The duality between JT grav-

ity and a subsector of the SYK model is an example of what we mean by the

nAdS2/nCFT1 correspondence [47].

JT gravity is more than a toy model since it precisely captures the leading near-

extremal dynamics of spherically symmetric black holes. For rotating black holes,

JT gravity is not a consistent truncation [48]. In Chapter 2, we will see how to

apply near-AdS2 holography to the Kerr black hole.

The SYK model can be seen as a UV completion of JT gravity. It is not dual to

Einstein gravity because the string scale in the bulk theory is comparable to the

AdS2 radius. It can nonetheless be viewed as a toy model of a quantum black hole,

which has lead to many applications and concrete computations. For example,

SYK was used to study the process of wormhole formation in real time [49].

JT gravity can also be considered as a UV complete theory in its own right. In fact,

one can compute the full Euclidean path integral, and demonstrate that JT gravity

is dual to a random matrix ensemble [50]. This has led to a better understanding of

the discreteness and statistics of black hole microstates from the gravitational point

of view. It has also shown that after including wormholes (connected contributions

to the path integral), we obtain sensible answers to physical quantities (such as

the spectral form factor). Notably, these wormholes generally imply that the

gravitational theory is dual to an ensemble of theories instead of a unique one.

7



1. General introduction

1.2.3 The information paradox

Holography has enabled new insights on the black hole information paradox, which

we briefly review here. This involves many ideas coming from quantum information

theory which are described in more details in the next section.

A direct consequence of AdS/CFT is the fact that information is actually preserved

during black hole evaporation because the evolution with the CFT Hamiltonian

is unitary. However, this doesn’t provide a gravitational picture on how the infor-

mation “gets out”, which has been the motivation for many recent developments.

In 2013, a refinement of the information paradox was put forward by AMPS [51].

This “firewall paradox” suggested that the preservation of information and the

equivalence principle are inconsistent with each other. The proposed solutions

[52–55] involve a radical revision of locality, requiring a strong version of black

hole complementarity: the interior and exterior degrees of freedom of black holes

should, in some sense, be the same. We will come back to this in the next section.

The nAdS2/nCFT1 correspondence has played a central role in recent develop-

ments on the information paradox and the black hole interior. After introducing

a coupling between an evaporating AdS2 black hole and an external bath, the

entropy of the bath was shown to follow the Page curve [56, 57] after using the

holographic prescription to compute entanglement entropy as reviewed in the next

section. This has led to the island prescription [58, 59] which was proven using

replica wormholes [60, 61] appearing as saddle-points in the replicated Euclidean

path integral. It was noticed that these new geometries could only make sense if

some kind of average was taking place. It would be interesting to use the results of

this thesis and explore whether these ideas could be applied in the more realistic

context of the near-extreme Kerr black hole.

1.3 Spacetime and quantum information

We have seen that black holes can be thought of as complicated quantum systems

with many degrees of freedom. The black hole description is powerful because it

gives simple pictures for complicated effects, such as thermalization and chaos,

which are usually out of the reach of analytical methods. However, it doesn’t

provide an understanding of how these degrees of freedom combine to produce

such a simple geometrical description. Quantum information, and especially the

idea of entanglement, has provided insights into this question, some of which will

be discussed in this section.
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1.3. Spacetime and quantum information

1.3.1 Holographic entanglement entropy

Entanglement is a striking property of quantum systems which has no classical

analog. For two systems A and B, respectively described by Hilbert spaces HA
and HB , a state of the combined system HA ⊗ HB is entangled if it cannot be

written as a tensor product of a state in HA and a state in HB . A natural measure

of entanglement is the entanglement entropy, which is the von Neumann entropy

of the density matrix obtained after tracing over the system B

SEE = −Tr ρA log ρA, ρA = TrHB |ψ〉〈ψ| . (1.8)

In 2001, Maldacena proposed [62] that the eternal AdS black hole is dual to an

entangled state of two identical CFTs: the thermofield double state

|TFD〉 =
∑
E

e−βE/2|E〉L ⊗ |E〉R , (1.9)

where the sum is over the CFT energy spectrum. The entanglement entropy,

obtained after tracing over one of the two CFTs, is the thermal entropy on one

side, which is equal here to the the Bekenstein-Hawking entropy. This gives, in

this special setup, an interpretation of black hole entropy as entanglement entropy.

The central role of entanglement in the emergence of spacetime was appreciated

seven years later, when Ryu and Takayanagi made a remarkable proposal [63, 64]

which considerably generalizes the above observation. A covariant formulation was

later given by Hubeny, Rangamani and Takayanagi [65]. The proposal is that the

entanglement entropy associated to a subregion A of a holographic CFT, can be

computed holographically by the formula

S(A) =
Area(ΣA)

4G~
, (1.10)

where ΣA is the bulk surface of extremal area that is homologous toA (i.e. it can be

continuously deformed into A). Although this formula is similar to the Bekenstein-

Hawking entropy, it really computes something different. The Bekenstein-Hawking

entropy is a coarse-grained entropy, which is about the number of all states cor-

responding to the same black hole geometry. In contrast, the Ryu-Takayanagi

formula computes fine-grained entropy, which depends in a precise way on the

exact state. This relation between the quantum state and the spacetime geometry

led to the proposal [66] that spacetime is actually built up from quantum entangle-

ment. We should note that an important generalization including bulk quantum

effects was proposed by Engelhardt and Wall [67].

9



1. General introduction

This formula was proven in [68–70] by generalizing the original Gibbons-Hawking

derivation of gravitational entropy, where the U(1) symmetry along the Euclidean

time circle is generalized to a Zn “replica” symmetry permuting n copies of the

system, allowing to compute much more general gravitational entropies.

The connection between spacetime and entanglement has also dynamical content.

Using the Ryu-Takayanagi formula, it was shown in [71, 72] that the linearized

Einstein equation is equivalent to the first law of entanglement, which is a universal

relation satisfied by entanglement entropy. In the paper [6], which will not be

presented here, we have studied the flat space version of this derivation.

1.3.2 Entanglement and connectivity

Let’s review the firewall paradox [51]. We consider an old evaporating black hole

which started in a pure state. Two quanta A and B are pair produced close the

horizon. A falls into the black hole while B comes out as Hawking radiation.

Smoothness of the horizon requires A and B to be strongly entangled. Assuming

that information is preserved, B should also be strongly entangled with an earlier

Hawking quanta E, because unitarity requires the late radiation to purify the

early radiation. However, this violates the monogamy of entanglement: quantum

mechanics doesn’t allow a particle to be strongly entangled with two different

particles at the same time. Moreover, a single observer can collect the three

qubits along a causal trajectory and observe, in his own hand, such a violation of

quantum mechanics.

As mentioned above, the proposed solutions [52–55] relied on a strong form of

black hole complementarity, where for a sufficiently old black hole, the interior is

somehow completely encoded in the exterior. In the above setup, the resolution is

roughly that A and E are secretly the same particle.

This idea doesn’t contradict our observed locality because the experience of a

semiclassical observer is described in a tiny subspace of the Hilbert space, called

the small Hilbert space or code subspace, in which approximate locality holds.

It’s only for very fine-grained observables, such as the von Neumann entropy, that

the effect of complementarity becomes important. This can be understood in the

interpretation of AdS/CFT as a quantum error correcting code [73,74].

The firewall paradox is particularly well-posed for the eternal AdS black hole,

where it was resolved by Maldacena and Susskind [55]. It was argued that the

extraction of E from the early radiation sends a particle through the wormhole,

which disrupts the entanglement between A and B, so that the contradiction is

avoided. This resolution suggested that a similar idea might work more generally.

That is, entangled particles should always be connected by “quantum wormholes”,

10



1.3. Spacetime and quantum information

which might not be semiclassical geometries, but still allow particles to be sent in.

This is known as the ER=EPR proposal. We will see that the traversable wormhole

protocol, discussed in the next section, gives evidence for this conjecture.

1.3.3 Traversable wormholes

Although traversable wormholes have always fascinated the general public, they

were considered unphysical for a long time, because they require matter which

violates the null energy condition. A related fact is that they are in tension with

causality because they can be used to create time machines [75]. It turns out that

quantum effects can violate the null energy condition and to preserve causality,

it is sufficient to require a weaker energy condition: the achronal averaged null

energy condition [76–79]. This allows traversable wormholes as long as they are

not shortcuts: the path outside the wormhole must always be faster. This is

discussed in more details in section 4.1.

Such traversable wormholes were in fact recently constructed. The first exam-

ple came from a natural holographic setup, the Gao-Jafferis-Wall protocol [80].

Starting with the eternal AdS black hole, it was shown that simply introducing a

coupling between the two CFTs makes the wormhole traversable. Although this

coupling is non-local from the bulk perspective, it is a perfectly consistent proce-

dure from the CFT perspective. This deformation creates negative energy in the

bulk which allows a light ray to defocus and come out of the wormhole. We refer

to Figure 4.1 for an illustration.

This protocol strengthens the ER=EPR proposal. It shows that an important

property of entanglement, as a resource for quantum teleportation, is also present

in the case of wormholes. It also gives a way to test this proposal in principle.

An external experimenter, having two holographic CFTs in his possession, can

put them in the thermofield double state and send an observer inside one of the

dual black hole. He can then use the Gao-Jafferis-Wall protocol to make the

observer come out on the other side. When asked how the trip was, the traveling

observer can explain that he was feeling perfectly fine, being in free fall the entire

time. Without this protocol, we can still test ER=EPR by sending two observers

from each side and see whether they meet, but the result of the experiment can

never be communicated to the outside, and dies with the infalling observers at the

singularity. See [81] for a more detailed discussion along these lines.

In Chapter 4, we will explore the limits of the Gao-Jafferis-Wall protocol by at-

tempting to construct an eternal traversable wormhole.

11



1. General introduction
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2
Quantum dynamics of

near-extremal black holes

What is the quantum mechanics of the Kerr black hole?

Symmetries have played an important role in accounting for the quantum prop-

erties of black holes, and particularly the enhancement of symmetries that takes

place for extremal and near-extremal black holes [13, 82, 83]. The extremal limit

of a black hole achieves zero Hawking temperature, even though the entropy re-

mains finite and large. More prominently, it exhibits conformal invariance in the

near-horizon region and implies the existence of an AdS2 factor [84–90]. Our un-

derstanding of (near-)extremal black holes is therefore tied to AdS2 gravity, and

our progress relies on our understanding of this instance of AdS/CFT.

2.1 Introduction: near-AdS2 holography

In the early days of AdS/CFT, it was realized that AdS2 holography is actually

trivial, in the sense that it has trivial dynamics. It was shown in [40] that the

backreaction is too strong in AdS2: an excitation with non-zero energy destroys

the AdS2 asymptotics. This was argued by considering the Reissner-Nordström

black hole and showing that there is no way to take a decoupling limit which leaves

non-trivial excitations in the near-horizon region. This was also demonstrated

explicitly using a dilaton model of 2d gravity. An alternative way to understand

this is from the point of view of the dual CFT1. There, conformal invariance

implies that the trace of the stress-tensor vanishes, which in 1d implies that the

Hamiltonian vanishes. Equivalently, ρ(E) = eS0δ(E) is the only normalizable

13



2. Quantum dynamics of near-extremal black holes

density of states that is scale invariant. In summary, AdS2 holography is a theory

containing only ground states.

Although it doesn’t have dynamics, the study of these ground states is still in-

teresting. After all, they are the extremal black hole microstates! Indeed, the

AdS2/CFT1 correspondence can be used to give a rigorous definition of the quan-

tum entropy of extremal black holes [91, 92], as we will review in section 3.1.1.a.

This allows a definition of the quantum corrections to black hole entropy from

the ”macroscopic” point of view, which can be matched against the exact counting

formulas, known for black holes with enough supersymmetries. In particular, the

leading logarithmic correction depends only on semiclassical data, thus offering an

infrared window into the microstates. This direction will be explored in Chapter

3. In this Chapter, we will explain how AdS2 holography can be made dynamical,

and in particular, how to apply holography to the near-extreme Kerr black hole.

2.1.1 Near-AdS2 dynamics in JT gravity

In 2016, Almheiri-Polchinski studied 2d dilaton-gravity theories as models of back-

reaction in AdS2 [41]. Later in that year, inspired by the SYK model, the universal

dynamics corresponding to the breaking of the conformal symmetry in AdS2 was

described by Jensen [42], Maldacena-Stanford-Yang [43] and Engelsöy-Mertens-

Verlinde [44] in a model known as Jackiw-Teitelboim (JT) gravity. This was called

near-AdS2 because it captures the leading effect that takes us away from AdS2.

JT gravity is described by the action

IJT =
S0

2π

[
1

2

∫
M

√
−g R+

∫
∂M

√
−hK

]
(2.1)

+

[
1

2

∫
M

√
−gΦ(R+ 2) +

∫
∂M

√
−hΦ(K − 1)

]
.

The first line gives a topological term which in the black hole context, corresponds

to the extremal black hole entropy S0. The second line contains the leading devi-

ation from extremality controlled by the dilaton Φ.

Let’s now analyze this action. The equation of motion for the dilaton sets R = −2

as a constraint. This implies that the solution for the metric is a patch of AdS2.

In Fefferman-Graham gauge, the most general metric with R = −2 takes the form

ds2 = −r2

(
1 +

s(t)

2r2

)2

dt2 +
dr2

r2
. (2.2)

where we have imposed a Dirichlet boundary condition for the asymptotic metric.

We see that the space of solutions for the metric is parametrized by an arbitrary
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2.1. Introduction: near-AdS2 holography

function s(t). The equation of motion for the dilaton is

∇µ∇νΦ− gµν�Φ + gµνΦ = 0 . (2.3)

where we used the AdS2 background (2.2). This equation implies that the solution

takes the form

Φ(t, r) = ν(t)r +
µ(t)

r
, µ(t) = −1

2
(s(t)ν(t) + ν′′(t)) (2.4)

where s(t) and ν(t) are tied by the equation

ν(3)(t) + 2s(t)ν′(t) + s′(t)ν(t) = 0 . (2.5)

This equation contains the dynamics of JT gravity: it ties the AdS2 background,

parametrized by s(t), with the source ν(t) of the dilaton.

For Poincaré-AdS2, which corresponds to s(t) = 0, the solution is

ν(t) = c1 + c2t+ c3t
2 , (2.6)

where c1, c2 and c3 are arbitrary constants. It can be observed that the solu-

tion for a general s(t) can be obtained from this one after acting with a large

diffeomorphism of the form

t −→ f(t) +O(r−2) ,

r −→ r

f ′(t)
+O(r−1) . (2.7)

We give here only the asymptotic form of this diffeomorphism, see (2.37) for its

exact expression. Acting on the Poincaré-AdS2 metric, this diffeomorphism gives

the metric (2.2) with

s(t) = {f(t), t} , (2.8)

which is the Schwarzian derivative of f(t). The solution for the dilaton is then

given by

ν(t) =
1

f ′(t)

(
c1 + c2f(t) + c3f(t)2

)
. (2.9)

As we see, the different solutions of the theory are related by large diffeomorphisms,

which correspond on the boundary to time reparametrizations. For example, the

thermal solution corresponds to the choice f(t) = eεt in the above equations. This

gives s(t) = −ε2/2 yielding the AdS2-Rindler geometry (also known as the AdS2

black hole) with inverse temperature β = 2π/ε.

The pure AdS2 subsector corresponds to solutions with vanishing dilaton. It carries
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2. Quantum dynamics of near-extremal black holes

a full Diff(S1) symmetry given by the diffeomorphism discussed above. Choosing

the Poincaré vacuum, corresponding to s(t) = 0, spontaneously breaks this sym-

metry to its SL(2,R) subgroup. We can think of the reparametrization mode f(t)

as the associated Goldstone mode. The solutions are then labeled by f(t) and are

all degenerate, reflecting the fact that the pure AdS2 subsector is topological.

Turning on the dilaton gives rise to non-trivial dynamics, by taking us to the

so-called near-AdS2 regime. This is achieved by the Schwarzian effective action

Ibdy[f ] =
1

8πG2

∫
dt ν(t){f(t), t} , (2.10)

which comes from the renormalized version of the Gibbons-Hawking-York bound-

ary term, corresponding to the K − 1 appearing in (2.1). This supplements the

spontaneous symmetry breaking Diff(S1) → SL(2,R) by an explicit breaking of

the same symmetry, and lifts the degeneracy by giving a non-trivial action to the

different solutions. Moreover, the variation of Ibdy with respect to f reproduces

the relation (2.9) which implies that the full dynamics of JT gravity is captured

by the Schwarzian theory.

Although compelling, the above discussion (which follows closely [43]) is rather

heuristic, and we refer to [93] for a more rigorous perspective on the Schwarzian

action, from the study of the variational principle and asymptotic symmetries, the

corresponding gravitational charges being analyzed in [5].

2.1.2 The Reissner-Nordström black hole

JT gravity is not just a toy model. It actually describes the leading near-extremal

dynamics of spherically symmetric black holes. In this section, we will show how

JT gravity arises in the near-extreme Reissner-Nordström black hole. It is cus-

tomary to obtain JT gravity after performing a Kaluza-Klein reduction on the

sphere [94–96] but we will take a different approach here: we will remain in four

dimensions and describe the gravitational perturbation that controls the near-AdS2

dynamics. This approach is more suited to generalization to situations where we

cannot perform a Kaluza-Klein reduction, such as the near-extreme Kerr black

hole that we consider next.

The Reissner-Nordström black hole is a solution of Einstein-Maxwell theory

S =

∫
d4x
√
−g
(

1

16π
R− 1

4
FµνF

µν

)
, (2.11)

where we have set the 4d Newton constant G = 1. The geometry and field strength
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2.1. Introduction: near-AdS2 holography

Figure 2.1: Penrose diagrams for a near-extremal black hole and its near-horizon
geometry. In the left, we depict the full black hole geometry while in the right, we
focus on the near-horizon region. The orange patch is the AdS2-Rindler geometry.
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2. Quantum dynamics of near-extremal black holes

are given by

ds2 = − (r − r+)(r − r−)

r2
dt2 +

r2

(r − r+)(r − r−)
dr2 + r2dΩ2 ,

F = − Q√
π

sin θ dθ ∧ dφ . (2.12)

We consider here the magnetically charged black hole. The inner and outer hori-

zons are at r± = M±
√
M2 −M2

0 and M0 = Q is the extremal mass. The entropy,

temperature and magnetic potential are

SBH = πr2
+, β =

1

TH
=

4πr2
+

r+ − r−
, Φ =

Q

r+
, (2.13)

and the first law of thermodynamics reads

dM = THdSBH + Φ dQ . (2.14)

We consider a near-extremal limit where the horizons are separated according to

r± = M0 ± ελ+O(λ2) , (2.15)

where ε is a near-extremal parameter and λ is taken to be small. This corresponds

to a change of mass M at fixed charge Q. The small Hawking temperature that

is generated is

TH =
ελ

2πM2
0

+O(λ2) . (2.16)

The near-extremal mass and entropy are

M = M0 +
T 2
H

Mgap
, S = S0 +

2

Mgap
TH , (2.17)

where Mgap ≡ 1/(2π2M3
0 ) is a constant which can be interpreted as the smallest

temperature at which the semiclassical description is valid, although this interpre-

tation was recently challenged [96]. In fact, the behavior (2.83) is known to be

universal in that any extremal black hole responds in this way when increasing

the mass at fixed charge. As will be shown below, this is actually explained by the

near-AdS2 physics [43].

The near-horizon geometry is obtained by performing the change of coordinates

t→M2
0

t

λ
, r →M0 + λr − 1

M0
λ2r2 , (2.18)
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2.1. Introduction: near-AdS2 holography

and taking the limit λ → 0. Here, the λ2 term is necessary to preserve the

Fefferman-Graham gauge. This leads to AdS2 × S2 with the metric

ds2

M2
0

= −
(

1− ε2

4r2

)2

r2dt2 +
dr2

r2
+ dΩ2 . (2.19)

The Penrose diagrams of the black hole and of its near-horizon geometry are

depicted in Figure 2.1. We can consider instead a general AdS2 background

ds2

M2
0

= −
(

1 +
{f(t), t}

2r2

)2

r2dt2 +
dr2

r2
+ dΩ2 , (2.20)

and the metric (2.33) is recovered for f(t) = eεt. Such a background can be ob-

tained by starting with the Poincaré metric and acting with a large diffeomorphism

(2.7) giving a general AdS2 metric γab in Fefferman-Graham gauge

γabdx
adxb = −

(
1 +
{f(t), t}

2r2

)2

r2dt2 +
dr2

r2
. (2.21)

The previous section has shown that the near-AdS2 physics depends crucially

on the specific choice of background so it’s important to consider a general one.

Now, we would like to deform this geometry by adding a linearized gravitational

perturbation. We use the following ansatz

ds2

M2
0

= −(1− λψ(t, r))

(
1 +
{f(t), t}

2r2

)2

r2dt2 +
dr2

r2
+ (1 + λΦ(t, r))dΩ2 ,

F = − Q√
π

sin θ dθ ∧ dφ , (2.22)

where we work at linear order in λ. The equation of motion for the gauge field

∂µF
µν = 0 is trivially satisfied. This is an advantage of using the magnetic black

hole instead of the electric one: the field strength has no backreaction at this order.

The Einstein equation gives

Rµν −
1

2
Rgµν = 8π

(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ

)
, (2.23)

which leads to the following equation for ψ(t, r) and Φ(t, r)

ψ = −2Φ + 2�2Φ +
4√
−γ

∂t
(√
−γ γtt∂tΦ

)
, (2.24)

Φ = Φ0 + ΦJT , ∇a∇bΦJT − γab�2ΦJT + γabΦJT = 0 .

We recognize ΦJT to be the Schwarzian mode. The field ψ is the backreaction of
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2. Quantum dynamics of near-extremal black holes

the 2d metric and Φ0 is a constant mode associated to an infinitesimal change of

charge. As a result, we see that the mode Φ, which controls the area of the sphere

(and hence the black hole entropy), satisfies the JT equations of motion. This

demonstrates how the JT dynamics is captured in the near-extremal perturbations

of the Reissner-Nordström black hole.

It’s also possible to obtain the on-shell action on the background. Let’s consider

the action of Einstein-Maxwell theory

S =

∫
M

d4x
√
−g

(
1

16π
R− 1

4
FµνF

µν

)
+

1

8π

∫
∂M

d3x
√
−hK , (2.25)

where we have added the Gibbons-Hawking-York. Using holographic renormaliza-

tion, and integrating over the sphere, we obtain the renormalized action

Sren = −λM
2
0

2

∫
dt ν(t){f(t), t} , (2.26)

which is the Schwarzian effective action. The details of the holographic renormal-

ization procedure are explained in section 2.4, where we perform a similar analysis

for the Kerr black hole.

As noted in [43], the Schwarzian action explains universal features of the near-

extremal thermodynamics. The thermal background corresponds to f(t) = eεt

and we have

{f(t), t} = −ε
2

2
, ν(t) =

2

M0
, (2.27)

where ε is the near-extremal parameter and the value of ν(t) can be read from the

gravitational perturbation. The Euclidean time circle has length 2π/ε. This gives

the Euclidean on-shell action

SE = πM2
0λε . (2.28)

The variation of the Bekenstein-Hawking entropy due to the perturbation is then

given by

δSBH = (1 + ε∂ε)(−SE) = 2πM2
0λε , (2.29)

which matches the near-extremal thermodynamics (2.83). The argument presented

in this paragraph only followed from the Schwarzian effective action. Since it

is believed to be the universal description of near-AdS2 physics, the Schwarzian

action actually explains the linear dependence in temperature in the near-extremal

entropy of black holes.
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2.2. Near-extreme Kerr geometry

2.1.3 Introduction to our work

The near-AdS2 physics described by the Schwarzian action is completely controlled

by symmetries. We thus expect it to be valid universally for near-extremal black

holes. However, the JT gravity discussion only demonstrates this for spherically

symmetric black holes from which JT gravity is obtained by Kaluza-Klein on the

sphere. For rotating black holes, the dynamics is not described by JT gravity, as

was first demonstrated in [48] for Kerr-AdS5. This begs the question of how the

near-AdS2 dynamics is realized for the four-dimensional Kerr geometry. This is

what we address in our work.

For Kerr, dimensional reduction on the sphere is not a good approach because

of the complicated angular dependence of the solution. Instead, we will take the

approach given in the previous section for Reissner-Nordström. That is, we will

look for the gravitational perturbation of the near-horizon geometry of extreme

Kerr which captures the Schwarzian mode.

An important motivation for this work is the fact that the Kerr black hole is the

generic black hole solution observed in our universe. When formed from collapsing

stars, it is often the case that the black hole ends up spinning rapidly, because

the collapse reduces the moment of inertia while conserving angular momentum.

The geometry should then be well-approximated by near-extreme Kerr. Recently,

gravitational wave astronomy has opened a new window into the universe and

routinely observes black hole mergers. Also, the direct image of a Kerr black

hole has been captured. This offers the exciting prospect that AdS/CFT, in its

near-AdS2/near-CFT1 incarnation, could be, in some sense, observed in the sky.

2.2 Near-extreme Kerr geometry

In this section we review properties of the near-extreme Kerr geometry, with par-

ticular emphasis on its near-horizon geometry. We start by considering the general

Kerr solution,

ds2 = − Σ ∆

(r̃2 + a2)2 −∆ a2 sin2θ
dt̃2 + Σ

(
dr̃2

∆
+ dθ2

)
(2.30)

+
sin2θ

Σ
((r̃2 + a2)2 −∆ a2 sin2θ)

(
dφ̃− 2aMr̃

(r̃2 + a2)2 −∆ a2 sin2θ
dt̃

)2

,

with

∆ = (r̃ − r−)(r̃ − r+) , r± = M ±
√
M2 − a2 , Σ = r̃2 + a2cos2θ . (2.31)
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2. Quantum dynamics of near-extremal black holes

Here r− and r+ are the inner and outer horizons. We are using conventions where

G4 = 1. M is the mass and J = aM is the angular momentum of the black hole.

The extreme Kerr solution is obtained as the confluence of the inner and outer

horizon: r+ = r−. We are interested in describing the dynamics of Kerr slightly

above extremality. In this context, near-extremality is defined as a deviation from

the extreme limit which keeps J fixed. Implementing it as a limit, we have

r± = M0 ± ελ+
ε2λ2

4M0
+O(λ3) , (2.32)

where λ is a small parameter that controls deviations away from extremality. M0

is the value of the mass at extremality, and ε is a constant that controls the

deviation of the mass above extremality. Under these conditions, we can identify

a near-horizon region. Redefining the coordinates in (2.30) as

r̃ =
r+ + r−

2
+ λ

(
r +

ε2

4r

)
, t̃ = 2M2

0

t

λ
, φ̃ = φ+M0

t

λ
, (2.33)

and taking the limit λ→ 0 –with other parameters fixed– leads to the line element

ds2 = M2
0 (1 + cos2θ)

[
−r2

(
1− ε2

4r2

)2

dt2 +
dr2

r2
+ dθ2

]
(2.34)

+M2
0

4 sin2θ

1 + cos2θ

[
dφ+ r

(
1 +

ε2

4r2

)
dt

]2

.

For ε = 0, this is the near-horizon geometry of Extreme Kerr (NHEK) [97,98]. For

ε 6= 0, we will call this background the near-NHEK geometry.

It is instructive to discuss some properties of (2.34). For ε = 0, we have

ds2 = M2
0 (1 + cos2θ)

(
−r2dt2 +

dr2

r2
+ dθ2

)
+M2

0

4 sin2θ

1 + cos2θ
(dφ+ r dt)

2
.

(2.35)

This geometry has four Killing vectors:

ξ−1 = ∂t , ξ0 = t∂t − r∂r , ξ1 =

(
1

r2
+ t2

)
∂t − 2rt∂r −

2

r
∂φ , k = ∂φ .

(2.36)

These vectors generate an sl(2)×u(1) algebra which corresponds to the enhanced

conformal symmetry of the near-horizon geometry. One can also impose asymp-

totic boundary conditions on (2.35). In particular, the set of diffeomorphisms
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2.3. Gravitational perturbations

preserving the asymptotic metric is [99]

t −→ f(t) +
2f ′′(t)f ′(t)2

4r2f ′(t)2 − f ′′(t)2
,

r −→ 4r2f ′(t)2 − f ′′(t)2

4r f ′(t)3
,

φ −→ φ+ log

(
2rf ′(t)− f ′′(t)
2rf ′(t) + f ′′(t)

)
, (2.37)

where f(t) is an arbitrary function that reflects the freedom of reparametrization

the boundary metric. Acting on (2.34), this diffeomorphism gives

ds2 = M2
0 (1 + cos2θ)

[
−r2

(
1 +
{f(t), t}

2r2

)2

dt2 +
dr2

r2
+ dθ2

]
(2.38)

+
4M2

0 sin2θ

1 + cos2θ

[
dφ+ r

(
1− {f(t), t}

2r2

)
dt

]2

,

where

{f(t), t} =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

, (2.39)

is the Schwarzian derivative. It is important to note that for f(t) = eεt, (2.38)

reduces to the near-NHEK metric (2.34). At this stage, this implies that NHEK

and near-NHEK are just one diffeomorphism away. It is also worth noting that

the shift of φ in (2.37) is the large gauge transformation discussed in [100].

2.3 Gravitational perturbations

In this section we will study the response of NHEK to a small amount of energy:

how the metric responds when we deviate from extremality. Our goal is to find

a consistent truncation of the perturbations that captures the Schwarzian mode

which is believed to be universal in the response to black hole near extremality. Our

strategy is rather simple: we will propose an ansatz for the metric perturbations

of NHEK and solve the linearized Einstein equations.

A deviation from extremality is a correction due to the near-horizon parameter λ

introduced in (2.33). By inspection of the full on-shell Kerr geometry (2.30), which

would correspond to stationary perturbations, it is clear that a suitable ansatz for

metric perturbations needs to account for non-trivial θ-dependence. With the

insight on the behavior of Kerr, we will consider the following deviation of the
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2. Quantum dynamics of near-extremal black holes

NHEK geometry

ds2 = −M2
0

(1 + cos2θ + λχ̃(t, r))

1 + λψ(t, r)
r2dt2 +M2

0

(
1 + cos2θ + λχ(t, r)

)(dr2

r2
+ dθ2

)
+4M2

0

sin2θ (1 + λΦ(t, r))

1 + cos2θ + λχ(t, r)
(dφ+ rdt+ λA)

2
, (2.40)

where the one-form A is supported in the (t, r) subspace

A = At(t, r, θ)dt+Ar(t, r, θ)dr , (2.41)

and captures the angular dependence of the ansatz. We treat the metric at linear

order in λ. The metric perturbation Φ(t, r) parametrizes the change of the volume

of the squashed sphere; χ(t, r) characterizes the squashing parameter that breaks

spherical symmetry; ψ(t, r) and χ̃(t, r) are introduced for consistency of the ansatz.

At this stage it is a guess that χ, χ̃ and ψ have no θ-dependence, and we will show

that this is compatible with the equations of motion. We are not introducing φ-

dependence since it seems consistent, for the purpose of capturing deviations from

extremality, to focus on solutions which respect the isometry due to the Killing

vector k = ∂φ.

We now proceed to solve the linearized Einstein equations

Rµν = 0 , (2.42)

where Rµν is the 4D Ricci tensor, and look at the first correction due to λ in

(2.40). The θ-components of this equation are the simplest to solve first. From

Rtθ and Rθφ we can determine that the one-form can be written as

A = α+ εab∂
aΨ dxb , Ψ =

1

2 sin2θ

[(
1 +

sin4θ

4

)
Φ(t, r)− χ(t, r)

]
, (2.43)

with

α = αt(t, r, θ)dt+ αr(t, r)dr , αt(t, r, θ) = a1(t, r) + a2(r, θ) . (2.44)

The components of α are arbitrary functions at this stage. In (2.43) we introduced

an auxiliary 2D metric, defined as

γabdx
adxb = −r2dt2 +

dr2

r2
, (2.45)

and εab is the Levi-Civita tensor of this space, with εtr =
√
−det γab. This is the
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2.3. Gravitational perturbations

AdS2 space appearing in the NHEK geometry (2.35). Using (2.43) in Rrθ and

Rθθ, we can see that a2 = 0, and that χ̃ = χ. In addition Rθθ = 0 implies

�2χ = 2χ , (2.46)

where �2 is the Laplacian for the AdS2 background (2.45), and therefore χ is an

operator of conformal dimension ∆ = 2. With this input in place, setting Rφφ = 0

leads to

ψ(t, r) = −Φ +�2Φ− 2 εab∂aαb . (2.47)

We have five components left to solve: Rtt, Rtr, Rtφ, Rrr and Rrφ. Using the

previous equations, one of these components is redundant. After some simple

manipulations, we find

Φ(t, r) = Φ0 + ΦJT(t, r) . (2.48)

Here Φ0 is a constant: this is the degree of freedom that changes the value of M0,

since it can be reabsorbed as a rescaling of the angle φ. The field ΦJT satisfies

∇a∇bΦJT − γab�2ΦJT + γabΦJT = 0 , (2.49)

which is the equation of motion of the scalar field in Jackiw-Teitelboim gravity

[101,102]. Finally, we also have

α = −εtr∂tΦ dr + α̃ . (2.50)

There is also a constraint on α̃, but this makes it pure gauge: we can remove α̃

via a trivial diffeomorphism. The details are given in Appendix 2.5.

In summary, the linearized perturbations are captured by two fields: χ and Φ. By

solving the dynamics of these two fields, dictated by (2.46) and (2.49) one can

reconstruct consistently the metric near NHEK. At this stage it is important to

make some technical remarks:

1. Our analysis is also a consistent truncation of the linearized Einstein equa-

tions around the locally NHEK background (2.38) where we take the ansatz

for the perturbations to have the same form as in (2.40). The explicit form

of the perturbed metric can be found in (2.60). The solution is given by

(2.43)-(2.50), with the modification that the auxiliary 2D metric in (2.45) is
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2. Quantum dynamics of near-extremal black holes

changed to a locally AdS2 metric:1

γabdx
adxb = −r2

(
1 +
{f(t), t}

2r2

)2

dt2 +
dr2

r2
. (2.51)

In particular, the solutions to (2.49) on this background are of the form

ΦJT = ν(t)r +
µ(t)

r
, µ(t) = −1

2
(s(t)ν(t) + ν′′(t)) (2.52)

where ν obeys (
1

f ′

(
(f ′ν)′

f ′

)′)′
= 0 . (2.53)

This equation, whose solutions are given in (2.9), relates the explicit breaking

of symmetries in NHEK, due to ν(t), with the diffeomorphism (2.37) on its

boundary, parametrized by f(t). It can also be obtained from the Schwarzian

effective action (2.10), as reviewed in the section 2.1.

2. It is instructive to match the perturbations derived in this section with the

stationary configuration that would match the behavior of the Kerr black

hole. Applying the limit (2.33) to the Kerr geometry (2.30), and comparing

the linear order in λ with the perturbations (2.40) for near-NHEK, we obtain

χKerr = ΦKerr =
2

M0

(
r +

ε2

4r

)
, (2.54)

and the one-form α is zero. Hence both modes are non-trivial for the Kerr

solution.

3. We constructed a consistent truncation of the linearized problem that cap-

tures the deviations away from the AdS2 throat of the extremal Kerr solution.

We do not expect (2.40) to be the most general ansatz for gravitational dy-

namics near the NHEK geometry: additional angular dependence could be

added. We have been exploring this question in current work [103]. Using

the Teukolsky formalism applied in [104,105] for NHEK, we have found the

most general axisymmetric perturbation of NHEK and are studying how it

glues to a perturbation of the full Kerr geometry.

The nAdS2 analysis of the Kerr black hole shares one similarity with the charged

counterparts studied in [106, 107]: there is one gravitational mode Φ which sat-

isfies the JT equations of motion (2.49). For Reissner-Nordström black holes, it

was consistent to only focus on the dynamics of Φ as the leading effect in devia-

1Although the formula (2.50) is not covariant with respect to the 2D metric γab, it still holds
for a linearized perturbation around near-NHEK.
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2.4. On-shell action and thermodynamics

tions away from extremality. But there are some important differences for Kerr.

First, the θ-dependence in (2.43) prevents us from building a 2D effective theory

that describes these modes. This is mostly a technical barrier, since it is more

cumbersome to keep track of the dynamics of the system. Nonetheless, we expect

to be able to quantify, for example, correlation functions of these gravitational

perturbations in future work.

The second, and most important, difference relative to Reissner-Nordström black

holes is the additional degree of freedom χ that we have found. This is similar to the

5D rotating black holes studied in [48]: there is a squashing mode χ that influences

the gravitational perturbations. Remarkably, χ and Φ are both irrelevant operators

of conformal dimension ∆ = 2. While the dynamics of Φ is restricted by the

large diffeomorphism of NHEK, via (2.53), the field χ is a dynamical mode. As

indicated by (2.54), the source for χ is turned on for the Kerr solution: this a strong

indication that although (2.53) captures some important aspects of the deviations

away from extremality, a complete characterization needs to take into account the

interactions of Φ with χ.

Large diffeomorphisms play a prominent role in our analysis, which begs for a

comparison with Kerr/CFT. A crucial difference is that the asymptotic symmetry

group used in [98] had arbitrary functions of φ, while here we are considering

generators that reparametrize the boundary time.2 It would be interesting to

investigate whether there is a deformation of NHEK that ties the explicit breaking

of the conformal symmetry by an irrelevant deformation to the conformal anomaly

in the Virasoro algebra of Kerr/CFT. This will require searching for gravitational

perturbations that have non-trivial φ-dependence, which we have ignored in this

work. We hope to pursue this direction in future work.

2.4 On-shell action and thermodynamics

It is instructive to discuss the thermodynamics near extremality, and its ties to

the gravitational perturbation Φ. This follows closely the corresponding discussion

for Reissner-Nordström in section 2.1.2. The thermodynamic properties of the

near-NHEK geometry are as follows [109]: implementing (2.32) on the standard

thermodynamic variables, the energy above extremality is

E = M −M0 =
ε2λ2

4M0
+O(λ3) . (2.55)

2In the context of Kerr/CFT, our symmetry group follows more closely the analysis in [108].

27



2. Quantum dynamics of near-extremal black holes

The near-extremal entropy at linear order in λ is

SBH =
AH
4

= 2πM2
0 + 2πM0 ελ+O(λ2) , (2.56)

and in this limit the Hawking temperature is given by

T =
r+ − r−
8πMr+

=
ελ

4πM2
0

+O(λ2) . (2.57)

This allows us to write

E = CT 2 +O(T 3) , S = 2πM2
0 + 2CT +O(T 2) , (2.58)

where C = 4π2M3
0 .

We will see that these thermodynamical properties can be understood using the

renormalized on-shell action, along the lines of [43]. Let’s consider

I4D =
1

16π

∫
M

d4x
√
|g|R+

1

8π

∫
∂M

d3x
√
|h|K , (2.59)

which is the standard Einstein-Hilbert action with the addition of the Gibbons-

Hawking-York term. We would like to evaluate I4D on the general perturbation of

the locally NHEK background. The on-shell solution is

ds2 = −M2
0

(1 + cos2θ + λχ̃(t, r))

1 + λψ(t, r)
r2

(
1 +
{f(t), t}

2r2

)2

dt2 (2.60)

+M2
0 (1 + cos2θ + λχ(t, r))

(
dr2

r2
+ dθ2

)
+4M2

0

sin2θ (1 + λΦ(t, r))

1 + cos2θ + λχ(t, r)

(
dφ+ r

(
1− {f(t), t}

2r2

)
dt+ λA

)2

,

which we treat at linear order in λ, and the fields obey (2.43)-(2.50) with back-

ground metric (2.51). Replacing (2.60) in the 4D action (2.59) leads to divergences

that are common for on-shell gravitational actions. To remove them, we will take

a standard route: after specifying a set of boundary conditions, we will build a

renormalized action by requiring that its variation is finite. Our setup follows

closely the rules of holographic renormalization in AdS gravity, with [48] being the

closest example, and any deviation from these rules will be highlighted.

To start, it is convenient to rewrite (2.60) as an asymptotic solution with arbitrary
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2.4. On-shell action and thermodynamics

sources for the fields:

ds2 = M2
0

(1 + cos2θ + λχ̃(t, r))

1 + λψ(t, r)
γtt(t, r)dt

2 (2.61)

+M2
0 (1 + cos2θ + λχ(t, r))

(
dr2

r2
+ dθ2

)
+4M2

0

sin2θ (1 + λΦ(t, r))

1 + cos2θ + λχ(t, r)
(dφ+ at(t, r)dt+ λA)

2
,

For χ̃, ψ, and A we will be using the on-shell values determined by γtt, Φ and χ

as described in section 2.3. For the additional fields, we have

√
−γtt = α(t) r +

β(t)

r
, at = α(t) r − β(t)

r
+ ζ(t) , (2.62)

Φ = ν(t)r +
µ(t)

r
, χ = σ(t)r + · · ·+ κ(t)

r2
+ · · · .

Here we identify α, ν, σ as sources for γtt, Φ and χ, respectively; the functions

β, µ and κ are the corresponding vevs. ζ is the source for at, while its charge is

one in our conventions.3 Note that for χ we are only highlighting its source and

vev: the dots are subleading terms in the large r expansion that are determined

by imposing its equation of motion. In this notation, the solution to equation (??)

reads

β(t) =
α(t)µ′(t)

ν′(t)
, µ(t) =

c0
ν(t)

− ν′(t)2

4α(t)2ν(t)
, (2.63)

where c0 is a constant.

The renormalized action is of the form

Iren = I4D + Ict , (2.64)

where I4D is specified above and Ict is a counterterm action. We want to cast our

variational problem with respect to the 2D variables in (2.62). Leaving the gauge

field fixed, for reasons explained below, we set up the variation of the action as

follows:

δIren =

∫
Σ

d3xπµνδhµν

=

∫
Σ

d3x
(
ΠΦδΦ + Πttδγtt + Πχδχ

)

3For a 2D Maxwell field we are simply identifying the electric charge Q from Frt = Q
√
|γ|.
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2. Quantum dynamics of near-extremal black holes

=

∫
dt (παδα(t) + πνδν(t) + πσδσ(t)) , (2.65)

where Σ is a cutoff surface of constant r with induced metric hµν . From the first

to the second line we are simply casting the variation of the 3D boundary metric

hµν in terms of the 2D fields. In the last line we are specifying the variations of

the 2D fields in terms of their sources, and we have integrated over the angular

variables (θ, φ). Fixing the variation of the gauge field in this notation means that

we do not vary the sources appearing in at and A. The task is now to build Ict

such that the momenta πα, πν , and πσ are finite as we approach the boundary at

r →∞.

In terms of the 3D variables, the momenta πµν receives a contribution from I4D

which is the usual Brown-York stress tensor:

πµν4D =
δI4D

δhµν
= − 1

16π

√
−h (Kµν −Khµν) . (2.66)

This term will lead to divergences in πα, πν , and πσ as we take r →∞; in particular

we get

πα,4D =
M2

0

2

(
ν(t) r2 − µ(t)

)
λ− M2

0

8
ν(t)(4 ν(t)− πσ(t))λ2r3 + · · ·

πν,4D =
M2

0

2

(
α(t) r2 − β(t)

)
λ− M2

0

8
α(t) (2 ν(t)− (π − 2)σ(t))λ2r3 + · · ·

πσ,4D =
M2

0

32
α(t) (4(π − 2) ν(t)− (4 + 3π)σ(t))λ2r3 + · · · , (2.67)

where the dots are higher-order terms in λr, and we have integrated over the angu-

lar variables (θ, φ). It is important to emphasize that our perturbative expansion

is only meaningful at leading order in the deformations we turn on, which implies

that λr � 1 as r →∞.

The leading divergences in the canonical momenta πα, πν and πσ can be cancelled

using the following counterterms

Ict =
M2

0

8

∫
dt
√
−γtt

(
c1λΦ + c2λ

2Φ2 + c3λ
2χ2 + c4λ

2Φχ
)
, (2.68)

where the coefficients are found to be

c1 = −4, c2 = 1, (2.69)

c3 =
1

8
(4 + 3π), c4 = 2− π .
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2.4. On-shell action and thermodynamics

Note that the counterterms used here are very similar to those in [48] which also

displays similar equations of motion. Adding the contribution from these coun-

terterms to (2.67), the renormalized momenta are

πα = πα,4D + πα,ct = −M2
0 µ(t)λ+O(λ2r) ,

πν = πν,4D + πν,ct = −M2
0 β(t)λ+

3M2
0

4
α(t)κ(t)λ2 +O(λ2r) ,

πσ = πσ,4D + πσ,ct =
3M2

0

32
(π + 4)α(t)κ(t)λ2 +O(λ2r) . (2.70)

We have retained some subleading terms in conformal perturbation theory: this

is to illustrate the different behavior of χ compared to Φ. Because the momenta

for Φ is influenced by the large diffeomorphism of the background metric, the

finite contribution appears at O(λ). In contrast, χ behaves as a more traditional

propagating field in AdS, and hence the term κ(t) δσ(t) appears at O(λ2).

Using (2.70) in (2.65), the renormalized variation is

δIren = −M2
0λ

∫
dt (µ(t)δα(t) + β(t)δν(t)) +O(λ2) , (2.71)

which can be integrated using the relations (2.63) and evaluated on-shell to give

the effective action

Iren = −M
2
0λ

2

∫
dt

(
ν(t){f(t), t}+

4c0
ν(t)

)
+O(λ2) . (2.72)

We can compare with the near-extremal entropy by evaluating this action on the

near-extremal black hole. Using (2.34) and (2.54) we have

{f(t), t} = −ε
2

2
, ν(t) =

2

M0
, c0 = 0 . (2.73)

Going to Euclidean signature by taking t→ −itE , we can derive the near-extremal

entropy from the Euclidean renormalized action IE = −iIren on a circle of size 2π/ε

according to

δSBH = (1 + ε∂ε)(−IE) = 2πM0ελ . (2.74)

This matches the linear response of the thermodynamics in (2.56).

Finally, we return to the role of the gauge field in our variational problem. The

treatment of this field is more delicate since the source ζ(t) in (2.62) is subleading

compared to its electric charge and the backreaction in (2.43). This is a known ef-

fect in 2D theories with a Maxwell field, and how to properly treat this is discussed

in detail in [48,110]. Following that discussion, one simple way to circumvent the
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issues related to the gauge field is to freeze it in the variational problem, and focus

on the remaining variables. This would not be the most general variational prob-

lem, but it suffices to capture the Schwarzian effective action as illustrated by our

computations.

2.5 Generalization to Kerr-Newman

We have described above the linearized perturbation of near-extreme Kerr that

captures the near-AdS2 physics and in particular the Schwarzian mode. This

section contains a generalization to the Kerr-Newman black hole.

The Kerr-Newman black hole is a solution of Einstein-Maxwell theory (2.11)

corresponding to a rotating charged black hole. In Boyer-Lindquist coordinates

(t, r, θ, φ), the metric and gauge field are

ds2 = −∆

ρ2

(
dt− a sin2θ dφ

)2
+ ρ2

(
dr2

∆
+ dθ2

)
+

sin2θ

ρ2

(
a dt− (r2 + a2)dφ

)2
,

AEM =
1√
π

1

ρ2

(
−Qr(dt− a sin2θ dφ) + P cos θ (adt− (r2 + a2)dφ

)
, (2.75)

where

a =
J

M
, ρ2 = r2 + a2 cos2θ, ∆ = r2 − 2Mr + a2 +Q2 + P 2 , (2.76)

and M,J,Q and P are respectively the mass, angular momentum, electric and

magnetic charge of the black hole. The gauge field is denoted AEM to distinguish

it from the 2d gauge field A appeaing in the perturbation. The outer and inner

horizons are at

r± = M ±
√
M2 − a2 −Q2 − P 2 . (2.77)

The entropy and inverse temperature are

SBH = π(a2 + r2
+), β = 4π

a2 + r2
+

r+ − r−
, (2.78)

and the angular velocity, electric and magnetic potential at the horizon are

Ω =
a

a2 + r2
+

, ΦE =
Qr+

a2 + r2
+

, ΦM =
Pr+

a2 + r2
+

. (2.79)

The first law gives

dM = THdSBH + Ω dJ +QdΦE + P dΦM . (2.80)
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We focus below on the magnetic case so we set Q = 0.

We consider a near-extremal limit where the horizons are separated according to

r± = M0 ± ελ+O(λ2) , (2.81)

where ε is a near-extremal parameter and λ is taken to be small. This corresponds

to a change of mass M at fixed J and P . The small Hawking temperature that is

generated is given by

TH =
ελ

2π(M2
0 + a2

0)
+O(λ2) . (2.82)

The near-extremal mass and entropy take the form

M = M0 +
T 2
H

Mgap
, S = S0 +

2

Mgap
TH , (2.83)

where Mgap ≡ 1/(2π2M0(a2
0 +M2

0 )).

To analyze the near-AdS2 dynamics, we focus on the exactly extremal geometry

corresponding to ε = 0.4 The near-horizon geometry is obtained with

t→ (M2
0 + a2

0)
t

λ
, r →M0 + λ, φ→ φ+

a0

λ
t , (2.84)

which gives

ds2 = ρ2
0

(
−r2dt2

dr2

r2
+ dθ2

)
+

4 sin2θ

ρ2
0

[
a2

0 +M2
0

2
dφ+ a0M0r dt

]2

,

AEM = − P√
π

2 cos θ

ρ2
0

[
a2

0 +M2
0

2
dφ+ a0M0r dt

]
, (2.85)

where we define ρ2
0 = M2

0 + a2
0 cos2θ, P =

√
M2

0 − a2
0.

To go to the near-AdS2 regime, we consider a linearized perturbation of this ge-

ometry. We will take the following ansatz

ds2 = −ρ
2
0 + λχ(t, r)

1 + λψ(t, r)
r2dt2 + (ρ2

0 + λχ(t, r))

(
dr2

r2
+ dθ2

)
(2.86)

+
4 sin2θ (1 + λΦ(t, r))

ρ2
0 + λχ(t, r)

[
a2

0 +M2
0

2
dφ+ a0M0rdt+ λA(t, r, θ)

]2

,

4As for Kerr, a non-zero ε can be obtained by applying the large diffeomorphism (2.7) with
f(t) = eεt.
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AEM = − P√
π

cos θ (2 + λΦ(t, r))

ρ2
0 + λχ(t, r)

[
a2

0 +M2
0

2
dφ+ a0M0rdt+ λU(t, r)

]
,

where we work at linearized order in λ and with the one-forms

A(t, r, θ) = At(t, r, θ)adt+Ar(t, r, θ)dr , (2.87)

U(t, r) = Ut(t, r)dt+ Ur(t, r)dr .

The perturbation corresponding to the black hole geometry is obtained by keeping

the O(λ) term in the near-horizon limit (2.84) of the extremal black hole. This

gives a perturbation which fits into the ansatz (2.86) with

Φ = ψ =
4M0r

a2
0 +M2

0

, χ = 2M0r , (2.88)

A = − a0r
2

a2
0 +M2

0

(
(M2

0 − a2
0) +

1

2
a2

0 sin2θ

)
dt, U = −a0(3M2

0 − a2
0) r2

2(a2
0 +M2

0 )
dt .

This gives a particular solution for the ansatz, corresponding to going away from

the near-horizon in the Kerr-Newman geometry.

To find the general solution, we need to solve the equations of motion. Drawing

lessons from the Kerr case, we assume the following θ-dependence

A(t, r, θ) = A0(t, r) + sin2θ A1(t, r) +
1

sin2θ
A2(t, r) , (2.89)

where A0, A1, A2 are one-forms supported on the (t, r) subspace. The equation of

motion takes the form

Eµν = Rµν − 8πTEM
µν = 0, TEM

µν = FµρF
ρ
ν −

1

4
gµνFρσF

ρσ , (2.90)

where F = dAEM is the field strength. From Erθ, Eθφ and Etθ, we can solve A in

terms of the other fields. The solution is given by

Aa = Ua + εab∂
bΨ̃(t, r), Ψ̃(t, r) =

ρ2
0

8a0M0 sin2θ
(ρ2

0Φ(t, r)− 2χ(t, r)) , (2.91)

where we have introduced the auxiliary AdS2 metric

γabdx
adxb = −r2dt2 +

dr2

r2
. (2.92)

The component Eθθ implies that

�2χ = 2χ , (2.93)

34



2.5. Generalization to Kerr-Newman

where �2 is taken with respect to (2.92). We also obtain the solution for ψ(t, r)

which can be written

ψ(t, r) = −Φ +
1

M2
0

χ− 2

a0M0
(∂rUt − ∂tUr) . (2.94)

The other components determine that

Φ(t, r) = Φ0 + ΦJT(t, r) , (2.95)

where ΦJT satisfies the JT equation of motion

∇a∇bΦJT − gab�2ΦJT + gabΦJT = 0 . (2.96)

Lastly, the component Ett gives a constraint on U , written as

∂rUu − ∂tUr = −a0M0

(
1

r2
∂2
t Φ +�2Φ

)
+

a0

2M0
χ+

F (t)

2r2
+G(t) (2.97)

The arbitrary pieces F and G are solutions of the homogeneous equations

∂r
(
r3∂r(∂rUt − ∂tUr)

)
= 0 (2.98)

Hence, following the discussion in the Appendix 2.5, it should be possible to re-

move them by trivial diffeomorphisms. We will thus set F = G = 0. The piece

proportional to ∂2
t Φ is familiar and corresponds to the α of Kerr. To extract it,

we define

U = α+ V, α = −εtr∂tΦ dr (2.99)

Then, the equation becomes

∂rVt − ∂tVr = −a0M0

2
�2Φ +

a0

2M0
χ (2.100)

From this, we can rewrite the solution for ψ(t, r) as

ψ(t, r) = −Φ +�2Φ− 2εab∂aαb (2.101)

which is exactly the same expression as in Kerr. We can now solve the constraint

on V and we obtain

Va = εab∂
bΛ. Λ = −a0M0Φ +

a0

4M0
χ . (2.102)

This allows us to rewrite the solution for A. We see that the V corresponds to a

shift of Ψ̃ in A, defining a new field Ψ.
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Collecting everything, the solution of the ansatz (2.86) with (2.89) takes the form

ψ(t, r) = −Φ + 2�2Φ + 2εab∂aαb α = −εtr∂tΦ dr

Aa = αa + εab∂
bΨ, Ψ =

1

2

(
a0M0 +

ρ4
0

4a0M0 sin2θ

)
Φ− a2

0 +M2
0

4a0M0 sin2θ
χ

Ua = αa + εab∂
bΛ, Λ = −a0M0Φ +

a0

4M0
χ , (2.103)

so that everything is expressed in terms of two fields χ(t, r) and Φ(t, r) which

further satisfy

�2χ = 2χ , (2.104)

and

Φ(t, r) = Φ0 + ΦJT(t, r) , ∇a∇bΦJT − gab�2ΦJT + gabΦJT = 0

This is similar to the Kerr case, which is recovered when setting a0 = M0. We

note that the Reissner-Nordström limit a0 → 0 is singular, corresponding to the

fact that the mode χ doesn’t exist for Reissner-Nordström.

The near-AdS2 regime of the Kerr-Newman black hole was studied in [111] where

the authors make a comparison between its thermodynamics and that of an SYK-

like model with marginal deformations. The perturbation described here allows

us to go further because it captures the dynamics. It would be interesting to look

for quantum mechanical models capturing some of its features.

Appendices

2.A Redundancies due to diffeomorphisms

In this appendix we determine which components of the metric fluctuations in

(2.40) correspond to pure diffeomorphisms. First consider an arbitrary infinitesi-

mal diffeomorphism

δxµ = ξµ(t, r, θ, φ) , (2.105)

which leads to a perturbation

δgµν = Lξgµν , (2.106)

where gµν is the NHEK metric (2.35). Demanding that the perturbation δgµν fits

in the ansatz (2.40) gives some constraints on ξµ which can be solved explicitly.

From this analysis, we can show that Φ and χ are physical fields and that the

one-form α̃ is pure gauge.
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To see that α̃ can be removed by a diffeomorphism, we first need to solve the fol-

lowing constraint which comes from the (t, t) component of the linearized Einstein

equation. Using (2.43)-(2.49) on Rtt = 0 gives5

∂r
(
r3∂r(∂tα̃r − ∂rα̃t)

)
= 0 . (2.107)

This constraint can be integrated explicitly and we can write the result as follows

α̃r(t, r) = ∂rF (t, r) , (2.108)

α̃t(t, r) = ∂tF (t, r) +
G(3)(t)

2r
+H ′(t)r ,

where F (t, r), G(t) and H(t) are arbitrary functions. The infinitesimal diffeomor-

phism that we are looking for is then given by

ξ =

(
−H +G(t) +

G′′(t)

2r2

)
∂t − rG′(t) ∂r − (F (t, r) +G′′(t)) ∂φ . (2.109)

Indeed, the corresponding perturbation takes the form

Lξg = 2M2
0 (1 + cos2θ)(∂tα̃r − ∂rα̃t) r2dt2 +

8M2
0 sin2θ

1 + cos2θ
(α̃tdt+ α̃rdr)(dφ+ rdt) ,

(2.110)

and precisely cancels the contribution of α̃ in the solution of our ansatz (2.40).

We have also noticed that the perturbations associated with the gravitational

mode Φ are related to some large diffeomorphisms of the NHEK with non-trivial

φ-dependence. We hope to investigate them in future work.

5Solving Rrr = 0 gives the same constraint as Rtt = 0 after using (2.43)-(2.49).
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3
Quantum corrections to

black hole entropy

What can semiclassical gravity tells us about the black hole microstates?

3.1 Introduction: logarithmic corrections to black holes

A landmark result in string theory is the derivation of the Bekenstein-Hawing

entropy from black hole microstates by Strominger and Vafa [12]. They computed

the number of states dmicro(qα) of a system of strings and branes in type IIB string

theory, labeled by the charges qα. Although the computation was done at weak

coupling, supersymmetry ensures that the answer is independent on the coupling.

At strong coupling, this system becomes a 5d black hole in type IIB supergravity

with the same charges qα. They were able to show that

dmicro(qα) =
A(qα)

4G
+ o(A(qα)) , (3.1)

where A(qα) is the area of the black hole horizon. This was the first microscopic

account of the Bekenstein-Hawking formula.

This matching was done at leading order in a large charge expansion, i.e. up

to terms denoted o(A(qα)). This begs the question: can we push this matching

beyond the leading order term?

This naively requires knowledge about details of the UV completion. For exam-

ple, higher-derivative corrections can be computed and matched with microscopic

counting formulas [83, 112]. Rather surprisingly, it was shown [24, 113, 114] that
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3. Quantum corrections to black hole entropy

a particular class of correction, of logarithmic type, doesn’t require any knowl-

edge about the UV: depending only on the two-derivative part of the low-energy

effective action for massless fields. As such, these corrections can be computed in

semiclassical gravity and put strong constraints on possible microscopic formulas,

constituting a powerful “infrared window into the microstates”.

The claim that logarithmic corrections computed from the IR theory agree with

results for the UV completion has been successfully tested in many cases where

string theory provides a microscopic counting formula for black hole microstates.

We refer to [115, 116] for a broad overview and [27, 117–119] for more recent de-

velopments in AdS4/CFT3. Logarithmic corrections have also been evaluated for

a plethora of other black holes [22,26] where a microscopic account still awaits.1

3.1.1 Euclidean quantum gravity

We review the general framework used to compute logarithmic corrections to black

hole entropy [22, 25, 114]. We consider theories of Einstein gravity in D dimen-

sions coupled to massless matter (abelian gauge fields and neutral scalar, Dirac

and Rarita-Schwinger fields). We restrict to theories with a scaling property so

that purely bosonic terms have two derivatives, terms with two fermions have one

derivative and terms with four fermions have no derivative. This covers a wide

range of theories, such as Einstein gravity with minimally coupled scalars, fermions

and gauge fields, but also a variety of supergravity theories at a generic point in

the moduli space. This excludes theories with a cosmological constant, which can

be considered but require a separate discussion.

We now consider a (charged and rotating) black hole solution in this theory. The

scaling symmetry implies that we have a whole family of solutions under

gµν → λ2gµν , A(α)
µ → λA(α)

µ , ϕs → ϕs , (3.2)

where α labels the gauge fields and s the scalar fields. This black hole appears as

a saddle-point of the Euclidean path integral

Z(β, µα) =

∫
DΨ e−SE(Ψ) , (3.3)

where SE is the Euclidean action and the integration is done while fixing the

temperature β and the chemical potentials µα associated to the charges qα. The

1In certain cases the logarithm can be accounted for very simply by using thermodynamics
[22, 120]: the measure that controls the change from, for example, the microcanonical to the
canonical ensemble correctly reproduces the gravitational result without leading to new insight
in the microscopic theory.
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3.1. Introduction: logarithmic corrections to black holes

black hole entropy is given by the Legendre transform

S = logZ + βM + µαqα , (3.4)

where a sum over α is implied.

At leading order, we have the classical approximation

Z(β, µα) ∼ e−S
class.
E (3.5)

where Sclass.
E is the Euclidean on-shell action. As was shown in [10], this gives the

Bekenstein-Hawking formula

S =
Area(qα)

4G
+ . . . . (3.6)

At one-loop around the saddle-point, we obtain

Z(β, µα) ∼ 1√
det Λ

e−S
class.
E (3.7)

where Λ = δ2SE
δΨ2 is the quadratic operator for the fluctuating fields on the back-

ground. This expression is divergent and needs to be regulated. This gives the

one-loop correction to the black hole entropy

δS = −1

2
log det Λ (3.8)

We are interested in the correction proportional to log(Area(qα)) in the entropy.

To isolate it, the strategy explained in [121] is to consider a reference configuration

with length scale L0 and a rescaled one with length scale L obtained using (3.2).

The scaling symmetry implies that the Euclidean action rescales as

SE =

(
L

L0

)D−2

S(0)
E . (3.9)

The prescription is then to compute the one-loop correction to the difference

logZ − logZ0 and keep only the piece proportional to logL. This has the effect

of removing the thermal gas and the spurious terms appearing after regulating

infrared divergences. This is a way to isolate the contribution from the black hole

microstates and to obtain the quantum correction to the black hole entropy. We

refer to [121] for a detailed discussion.

We have only discussed the one-loop contribution. It can be shown that higher

loops don’t contribute to the logarithmic correction as they are suppressed by
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3. Quantum corrections to black hole entropy

positive powers of L, as discussed in details in [22]. After introducing the heat

kernel below, we will also show that massive fields don’t give a contribution. At

the end, the logarithmic correction to the entropy arises only at one-loop from

the two-derivative Lagrangian of massless fields. Hence, it can be unambiguously

computed in the low-energy effective theory.

3.1.1.a The quantum entropy function

The above prescription doesn’t work for extremal black holes because the thermal

circle is infinite which makes the Euclidean on-shell action divergent. A well-

defined procedure is to do the computation for the non-extremal black hole and

take the extremal limit of the answer.

An alternative, and perhaps more rigorous, procedure exists for extremal black

holes, known as the quantum entropy function [23]. The idea is to focus only

on the near-horizon geometry which is of the form AdS2 ×M where M is some

compact space.

We use the following metric for Euclidean AdS2

ds2 = (r2 − 1)dt2 +
dr2

r2 − 1
. (3.10)

The absence of singularity at r = 1 implies that t must be periodic t ∼ t + 2π.

From the point of view of AdS2, the black hole background often implies that we

have 2d abelian gauge fields of the form

Aα = qα(r − 1)dt , (3.11)

where qα ∼
∫
K
∗(dAα) is the corresponding electric charge. The fact that r − 1

appears here ensures that Ai is well-defined at r = 1.

Let’s now consider the Euclidean path integral ZAdS2
over all string fields con-

figurations on the AdS2 background. To define the path integral, we introduce a

cutoff r0 so that we only consider the part of the geometry r ≤ r0. The asymptotic

metric is

ds2
bdy = r2

0dt
2 ≡ dτ2 , (3.12)

where we have defined a boundary time coordinate τ = r0t so that τ ∼ 2πr0τ . We

also need to fix the asymptotic behavior of Aα, which corresponds here to fixing

the electric charge qα. Then, according to the AdS/CFT dictionary, we have

ZAdS2
(qi) = Tr

(
e−2πr0(H−iqαAbdy

α )
)
, (3.13)
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3.1. Introduction: logarithmic corrections to black holes

where H is the Hamiltonian of the CFT1 (associated to τ), Abdy
α is the operator

dual to Aα in the CFT1 and the trace is over the states with charges qα. To remove

the additional term, we insert a Wilson line

ẐAdS2
(qα) =

〈
exp

(
−iqα

∮
Aα

)〉
AdS2

, (3.14)

which is taken to be along the boundary. This leads to

ẐAdS2
(qα) = Tr e−2πr0H . (3.15)

In the large r0 limit, we project onto the ground states of H and we have

ẐAdS2
(qα) = d(qα) e−2πr0E0 , (3.16)

where d(qα) is the number of ground states with charges qα and E0 is their energy.

The AdS2 path integral also has an infinite factor e2πr0C which comes from the

infinite volume of AdS2. The AdS2/CFT1 correspondence suggests that this di-

vergence is the contribution from the ground state energy. This leads to an un-

ambiguous definition of the degeneracy as

d(qα) =

〈
exp

(
−iqα

∮
Aα

)〉finite

AdS2

, (3.17)

where the superscript “finite” corresponds to the procedure where we remove the

divergent term e2πr0C . This gives a gravitational (or macroscopic) definition of

the exact degeneracy of black hole microstates, known as the quantum entropy

function [23].

This can be used to compute quantum corrections to black hole entropy [113]. In

the path integral, the calculation reduces to the computation of a determinant

as explained above in the non-extremal case. This prescription has been used to

compute the corrections to black hole entropy for N = 4 and N = 8 black holes,

which were successfully matched with the known microscopic formulas [24,25].

3.1.2 Heat kernel expansion

We will now describe the main technical tool which makes possible the exact

computation of the logarithmic correction for a variety of black holes: the heat

kernel expansion [122].

The one-loop correction to the partition function decomposes as a contribution

Znz from the non-zero modes and a contribution Zzm from the zero modes, so that
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3. Quantum corrections to black hole entropy

we have

Z1-loop(β, µα) = ZnzZzm e−S
class.
E , (3.18)

and the one-loop corrected Bekenstein-Hawking entropy is

S1-loop =
A

4G
+ logZnz + logZzm . (3.19)

We would like to focus on the logarithmic correction

S =
A

4G
+ (Clocal + Czm) logL+ . . . , (3.20)

where Clocal and Czm are respectively the contribution from the non-zero and zero

modes. We will now explain how to compute them.

Non-zero mode contribution. Let’s denote by κn the eigenvalues of the quadratic

operator Λ. The contribution of the non-zero modes takes the form

logZnz = −1

2

∑
n

′
log κn , (3.21)

where the primed sum runs only over the non-zero modes κn 6= 0. To compute

this, we introduce the heat kernel

K(x, s) =
∑
n

e−κnsf `n(x)f `
′

n (x)G``′ , (3.22)

where {f `n} are the normalized eigenfunctions of Λ with eigenvalues {κn} and G``′

is the metric on field space. In particular, we have∫
M
dDx
√
g K(x, s) =

∑
n

e−sκn =
∑
n

′
e−sκn +Nzm , (3.23)

where Nzm is the number of zero modes. As explained above, we are considering a

configuration with length scale L obtained by rescaling of a reference configuration

with length scale L0. The eigenvalues of massless fields rescale according to

κn =

(
L

L0

)2

κ(0)
n . (3.24)

We will make use of the relation

log κ− log κ(0) = − lim
ε→0

∫ ∞
ε

ds

s

(
e−sκ − e−sκ

(0)
)
, (3.25)
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3.1. Introduction: logarithmic corrections to black holes

which implies that we have

logZnz − logZ(0)
nz =

1

2

∫ εL2/L2
0

ε

ds

s

(∫
M
dDx
√
g K(x, s)−Nzm

)
. (3.26)

The above expression makes it clear that only the range of very small s contributes.

The heat kernel expansion is the statement that we have a small s expansion of

the form

K(x, s) =
∑
n≥0

sn−D/2a2n(x) (3.27)

where D is the dimension of spacetime. The coefficients a2n(x) are known as

Seeley-DeWitt coefficients. For smooth manifolds, a2n(x) is a sum of 2n-derivative

terms constructed from the fields appearing in the action [122].

We are mainly interested in D = 4 for which we have

K(x, s) = s−2a0(x) + s−1a2(x) + s0a4(x) +O(s) . (3.28)

We only want to compute the logL contribution in logZnz. The integral (3.26)

makes it clear that this comes from the a4 coefficient and we have

logZnz = Clocal logL+ . . . , (3.29)

where we have defined

Clocal ≡
∫
dDx
√
g a4(x) . (3.30)

In spacetime dimension D, a4(x) must be replaced by aD(x). Note that this

vanishes when D is odd so that there is no contribution from the non-zero mode

in odd dimensions.

The power of the heat kernel expansion comes from the fact that there is a general

expression for a4(x) given in [122]. This allows to compute Clocal in a simple way

without ever computing any eigenvalue. To describe this formula, we write the

operator of quadratic fluctuations canonically as

Λnm = (�)idnm + 2(ωµDµ)nm + Pnm , (3.31)

where the index m,n refers to the different fields and Dµ is the covariant derivative.

We define Dµ = Dµ + ωµ to complete the square so that

Λnm = (DµDµ)nm + Enm, E ≡ P − ωµωµ − (Dµωµ) . (3.32)
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3. Quantum corrections to black hole entropy

The Seeley-DeWitt coefficient a4(x) is then given explicitly by the formula

(4π)2a4(x) = Tr

[
1

2
E2 +

1

6
RE +

1

12
ΩµνΩµν (3.33)

+
1

360
(5R2 + 2RµνρσR

µνρσ − 2RµνR
µν)

]
,

where Ωµν = [Dµ +ωµ, Dν +ων ] is the curvature associated to the connection Dµ.

For simple enough examples, it is possible to write a4(x) as

(4π)2a4(x) = −aEuler + cWeyl2 , (3.34)

in terms of the Euler density and the Weyl tensor squared whose expressions are

Euler = RµνρσR
µνρσ − 4RµνR

µν +R2 , (3.35)

Weyl2 = RµνρσR
µνρσ − 2RµνR

µν +
1

3
R2 .

This is always possible for the examples we consider below although additional

four-derivative terms can appear for more complicated black holes.

Massive fields. We have restricted above to massless fields. Let us argue that

massive fields don’t contribute to the logarithmic correction. For a field of mass

m, the scaling relation (3.24) for the eigenvalue becomes

κn −m2 =

(
L

L0

)2

(κ(0)
n −m2) . (3.36)

From this, it can be shown that massive fields don’t contribute to the logarithmic

correction. This is a consequence of the fact that we get an additional factor of

e−m
2s in (3.26) which prevents the appearance of a logL term. We refer to [123] for

a more detailed discussion. This implies that the logarithmic correction depends

only on the massless spectrum of the theory. In particular, it can be computed in

the low-energy theory.

Zero mode contribution. The zero modes need to be treated separately. They

are associated to asymptotic symmetries: gauge transformations with parameters

that do not vanish at infinity. In the path integral, we can treat them by making

a change of variable to the parameters of the asymptotic symmetry group. For a

field Ψ, the Jacobian of this change of variable introduces a factor(
L

L0

)βΨ

, (3.37)
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which contributes a logarithmic correction βΨ logL to the entropy. As a result,

the total contribution from the zero modes is

Czm =
∑
Ψ

(βΨ − 1)n0
Ψ (3.38)

where we are summing over all fields Ψ (including ghosts) and we denote by n0
Ψ

the number of zero modes for Ψ. There is a −1 because we include here the

−Nzm which was in the non-zero mode contribution (3.26) (and not included in

Clocal). The value of βΨ can be computed by normalizing correctly the path

integral measure. We refer to [25] for a more detailed discussion. As an illustration,

we report below the values of βΨ for a gauge field, a Rarita-Schwinger field and

the graviton in D spacetime dimensions

βA =
D

2
− 1, βψ = D − 1, βg =

D

2
. (3.39)

3.1.3 Minimally coupled fields

As a simple example of the above procedure, we will compute the logarithmic

correction to the entropy of a black hole in a theory of Einstein gravity with

minimally coupled fields. For each of the fields, we report the value of ωµ, P and

gives the Seeley-DeWitt coefficient a4(x). These results are well-known (see for

example section 4.2.2 of [122]).

For a massless scalar field, we have the Lagrangian

L =
1

2

√
−g
(
∂µϕ∂

µϕ+ ξRφ2
)
, (3.40)

where we also include a conformal-type coupling to the Ricci curvature. The

quadratic operator is

Λ = �− ξR , (3.41)

so we have ωµ = 0 and P = ξR. This then implies that E = ξR and Ωµν = 0.

Hence, applying the formula gives

(4π)2ascalar
4 = − 1

360
Euler +

1

120
Weyl2 +

1

2

(
ξ − 1

6

)2

R2 . (3.42)

Let’s now consider a Majorana spinor described by the Lagrangian is

L = χ̄γµDµχ (3.43)

The fermionic fluctuation operator is γµDµ. This is a first order operator so we
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apply the heat kernel to its square and divide the final result by two. The identity

(γµDµ)2 = −�+ 1
4R gives ωµ = 0 and P = − 1

4R. This gives

(4π)2aspinor
4 = − 11

720
Euler +

1

40
Weyl2 , (3.44)

where we have included the additional multiplication by −1 due to the Grassmann

statistics. The result for Weyl spinors is the same. The result for Dirac spinors

needs to be multiplied by two.

Let’s now consider a gauge field with Lagrangian

L = −1

4
fµνf

µν , (3.45)

where we use fµν = ∂µaν − ∂νaµ. Integrating by part gives

L =
1

2

(
aν�aν − aνRµνaµ − (Dµaµ)2

)
. (3.46)

The last term is removed by adding a gauge-fixing term Lg.f. = 1
2 (Dµaµ)2 which

introduces a minimally coupled scalar ghost. The contribution of this ghost is just

the one written in (3.42) with ξ = 0 and an overall minus sign due to the opposite

statistics. For the gauge field, we obtain ωµ = 0 and P = −Rµν . As a result, we

obtain

(4π)2avector
4 = − 31

180
Euler +

1

10
Weyl2 . (3.47)

A similar analysis can be done for Rarita-Schwinger fields and gravitons, being

careful of taking into account the ghosts which appear after gauge-fixing.

We can then evaluate a4(x) on the background we are interested in and obtain the

result. For example, the logarithmic correction to the entropy of the Schwarzschild

or Kerr black hole takes the form

δS =

[
1

90

(
2nS − 26nV + 7nF −

233

2
nψ + 424

)
+ Czm

]
logL , (3.48)

where nS , nV , nF and nψ are respectively the number of massless scalar, vector,

Dirac and Rarita-Schwinger fields [22]. The contribution Czm of the zero modes

depends on the symmetries preserved by the black hole. It can be summarized by

the formula [26]

Czm = −(3 +K) + 2NSUSY + 3δnon-ext , (3.49)
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where K = 1 for rotating black hole, K = 3 for spherical symmetry, NSUSY = 4 if

the black hole is supersymmetric, NSUSY = 0 otherwise, δnon-ext = 1 if the black

hole is non-extremal and δnon-ext = 1 otherwise.

For example, the Schwarzschild black hole in pure Einstein gravity has

δS =
77

45
logL . (3.50)

This correction should be reproduced by a theory that claims any microscopic

counting of this entropy. This was used in [22] to challenge loop quantum gravity

which predicts the incorrect answer δS = −2 logL.

3.1.4 BPS branch: Kerr-Newman in N ≥ 2 supergravity

The above computation in minimally coupled environments is not expected to

correspond to any microscopic counting in string theory. This is because the low-

energy theory is supergravity and has non-minimal couplings.

The computation of the logarithmic corrections for the Kerr-Newman black hole

embedded in N ≥ 2 supergravity was done in [26]. The Seeley-DeWitt coefficient

can be written as

(4π)2a4(x) = −aEuler + cWeyl2 , (3.51)

and it was observed that the c coefficient vanishes multiplet by multiplet due to

cancellations between bosons and fermions:

c = 0 . (3.52)

The Weyl2 term contains the dependence on the black hole charges while the

Euler term is topological. Hence, these cancellations imply the following fact: for

a non-extremal Kerr-Newman black hole embedded in N ≥ 2 supergravity, the

logarithmic correction is always independent of the black hole charges.

This is not true in general and relies on delicate cancellations between bosons and

fermions. For example, we have c 6= 0 for the Kerr-Newman black hole in Einstein-

Maxwell theory. This shows that supergravity gives simpler logarithmic corrections

than pure Einstein-Maxwell theory, even for black holes that don’t preserve any

supersymmetry. This was later understood from symmetry considerations and

formulated as a non-renormalization theorem [124].

Integrating over the Euclidean geometry, the result finally takes the form

Clocal =

∫
d4x
√
g a4(x) = −1

6
(−11 + 11(N − 2) + nV − nH) . (3.53)
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The zero mode contribution is given by the formula (3.49). It is interesting to

report some explicit results below.

Theory Result

N = 2 Clocal = 1
6 (11−nV +nH) = 2− χ

24

N = 4 (nV = nH + 1) Clocal = −2

N = 6 (nV = 7, nH = 4) Clocal = −6

N = 8, (nV = 15, nH = 10) Clocal = −10

In the N = 2 case, we have written the result for Clocal in terms of χ = 2(nV −
nH + 1): the Euler characteristic of a corresponding Calabi-Yau. For N ≥ 4, we

note that we have Clocal = 6− 2N . The simplicity of this answer suggests that an

index theorem could be at play here.

3.1.5 Introduction to our work

As explained above, for Kerr-Newman black holes embedded inN ≥ 2 supergravity

[26], the c-anomaly vanishes. This leads to a remarkable simplification since the

logarithmic correction becomes universal in the sense that it does not depend on

details of the black hole background; it is determined entirely by the content of

massless fields.

The class of backgrounds considered in [26] was constructed such that, in the

extremal limit, they continuously connect to BPS solutions. For this reason we

denote this class as the BPS branch. The black holes on the BPS branch are not

generally supersymmetric, but their couplings to matter are arranged such that

supersymmetry is attained in the extremal limit. One of the motivations for the

present article is to study universality of logarithmic corrections outside of the

BPS branch.

Supergravity (with N ≥ 2) also allows for black holes that do not approach BPS

solutions in the extremal limit. We refer to such solutions as the non-BPS branch.

In their minimal incarnation, they correspond to solutions of the D = 4 theory

obtained by a Kaluza-Klein reduction of five dimensional Einstein gravity [125]. In

a string theory setup it is natural to identify the compact Kaluza-Klein dimension

with the M-theory circle, and then these solutions are charged with respect to elec-

tric D0-brane charge and magnetic D6-brane charge. Such configurations break
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supersymmetry even in the extremal limit. Therefore, they offer an interesting

arena for studying logarithmic corrections and their possible universality.

The minimal Kaluza-Klein theory needed to describe the non-BPS branch is a four

dimensional Einstein-Maxwell-dilaton theory where the couplings are dictated by

the reduction from five dimensions. We will refer to the black hole solutions

of this theory as “Kaluza-Klein black holes.” These solutions can be embedded

in supergravity, as we will discuss in detail. In particular, we will consider the

embedding of the Kaluza-Klein theory in N = 4, 6, 8 supergravity and for N = 2

we consider ST (n) models 2, which include the well-known STU -model as a special

case.

Multiplet Block content

KK block 1 graviton, 1 vector, 1 scalar

Vector block 1 vector and 1 (pseudo)scalar

Scalar block 1 real scalar

Gravitino block 2 gravitini and 2 gaugini

Gaugino block 2 gaugini

Table 3.1: Decomposition of quadratic fluctuations.

Our technical goal is to evaluate the Seeley-DeWitt coefficient a4(x) for the Kaluza-

Klein black hole when it is embedded in one of the supergravities. This involves the

study of quadratic fluctuations around the background, potentially a formidable

task since there are many fields and generally they have non-minimal couplings

to the background and to each other. Fortunately we find that, in the cases we

consider, global symmetries of supergravity organize the quadratic fluctuations

into manageable groups of fields that are decoupled from one another. We refer

to such groups of fields as “blocks”. There are only five distinct types of blocks,

summarized in Table 3.1.

The KK block comprises the quadratic fluctuations in the seed theory, i.e. the

Kaluza Klein theory with no additional matter fields. The scalar block is a single

minimally coupled spectator scalar field. The remaining matter blocks have unfa-

miliar field content and their couplings to the background are non-standard. The

great simplification is that the spectrum of quadratic fluctuations of each super-

gravity theory we consider can be characterized by the number of times each type

of block appears. We record those degeneracies in Tables 3.4 and 3.8.

2We work out the bosonic fluctuations forN = 2 with any prepotential. It is only for fermionic
fluctuations that we restrict our attention to the ST (n) models.
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Once the relevant quadratic fluctuations are identified it is a straightforward (albeit

cumbersome) task to evaluate the Seeley-DeWitt coefficient a4(x). We do this for

every block listed above and so determine their contribution to Clocal in (??).

Having already computed the degeneracies of the blocks, it is elementary algebra

to find the values of c and a for each supergravity theory. Our results for individual

blocks are given in Table 3.7 and those for theories are given in Table 3.8.

One of our main motivation is to identify theories where c = 0 since for those the

coefficient of the logarithm is universal. We find that the non-trivial cancellations

on the BPS branch reported in [26] are much rarer on the non-BPS branch. For

example, on the non-BPS branch the c coefficient does not vanish for any N = 2, 4

supergravity we consider, whatever their matter content. Therefore, as we discuss

in section 3.4, this implies that the logarithmic correction to the entropy depends

on black hole parameters in a combination different from the horizon area.

In contrast, for N = 6, 8 we find that c = 0. The vanishing of c on the non-BPS

branch is rather surprising, since it is apparently due to a different balance among

the field content and couplings than the analogous cancellation on the BPS-branch.

It would be very interesting to understand the origin of this cancellation from a

more fundamental principle.

3.2 The Kaluza-Klein Black Hole

Our starting point is a black hole solution to Kaluza-Klein theory. It is suffi-

cient for our purposes to consider the original version of Kaluza-Klein theory: the

compactification to four spacetime dimensions of Einstein gravity in five dimen-

sions. In this section, we briefly present the theory and its black hole solutions.

In the following sections we embed the theory and its solutions into supergravity

and study perturbations around the Kaluza-Klein black holes in the framework of

supergravity.

The Lagrangian of Kaluza-Klein theory is given by3

e−1LKK =
1

16πG

(
R− 2DµΦDµΦ− 1

4
e−2
√

3ΦFµνF
µν

)
. (3.54)

The scalar field Φ parametrizes the size of the compact fifth dimension and the

field strength Fµν is the 4D remnant of the metric with one index along the fifth

3We use e and
√
−g interchangeably, to denote the square root of the determinant of the

metric.
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dimension. The Lagrangian (3.54) gives the equations of motion

D2Φ +

√
3

8
e−2
√

3ΦFµνF
µν = 0 , (3.55)

Dµ

(
e−2
√

3ΦFµν
)

= 0 , (3.56)

Rµν −
1

2
gµνR = (2DµΦDνΦ− gµνDρΦDρΦ) +

1

2
e−2
√

3Φ

(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ

)
.

(3.57)

Some of our considerations will apply to any solution of the Kaluza-Klein theory

(3.54) but our primary interest is in asymptotically flat black holes. We therefore

focus on the general Kaluza-Klein black hole [125–127]. It is characterized by the

black hole mass M and angular momentum J , along with the electric/magnetic

charges (Q,P ) of the Maxwell field. Its 4D metric is given by

ds2
4 = g(KK)

µν dxµdxν = − H3√
H1H2

(dt−B)
2

+
√
H1H2

(
dr2

∆
+ dθ2 +

∆

H3
sin2θ dφ2

)
,

(3.58)

where

H1 = r2 + a2cos2θ + r(p− 2m) +
p

p+ q

(p− 2m)(q − 2m)

2

− p

2m(p+ q)

√
(q2 − 4m2)(p2 − 4m2)acosθ , (3.59)

H2 = r2 + a2cos2θ + r(q − 2m) +
q

p+ q

(p− 2m)(q − 2m)

2

+
q

2m(p+ q)

√
(q2 − 4m2)(p2 − 4m2)acosθ , (3.60)

H3 = r2 − 2mr + a2cos2θ , (3.61)

∆ = r2 − 2mr + a2 , (3.62)

and the 1-form B is given by

B =
√
pq

(pq + 4m2)r −m(p− 2m)(q − 2m)

2m(p+ q)H3
a sin2θ dφ . (3.63)

The matter fields are the gauge field

A(KK) = −

[
2Q

(
r +

p− 2m

2

)
+

√
q3(p2 − 4m2)

4m2(p+ q)
acosθ

]
H−1

2 dt
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−

[
2P
(
H2 + a2sin2θ

)
cosθ +

√
p(q2 − 4m2)

4m2(p+ q)3
(3.64)

×
[
(p+ q)(pr −m(p− 2m)) + q(p2 − 4m2)

]
a sin2θ

]
H−1

2 dφ ,

and the dilaton

e−4Φ(KK)/
√

3 =

√
H2

H1
. (3.65)

The superscript “KK” on g
(KK)
µν , A(KK) , and Φ(KK) refers to the Kaluza-Klein

black hole. These background fields should be distinguished from the exact fields

in (3.54-3.57) which generally include fluctuations around the background.

The four parameters m, a, p, q appearing in the solution determine the four physical

parameters M,J,Q, P as

2GM =
p+ q

2
, (3.66)

GJ =

√
pq(pq + 4m2)

4(p+ q)

a

m
, (3.67)

Q2 =
q(q2 − 4m2)

4(p+ q)
, (3.68)

P 2 =
p(p2 − 4m2)

4(p+ q)
. (3.69)

Note that q, p ≥ 2m, with equality corresponding to the absence of electric or

magnetic charge, respectively.

The spectrum of quadratic fluctuations around the general black hole solution

to Kaluza-Klein theory is complicated. In section 3.3.4 we start with a general

solution to the equations of motion (3.55-3.57) such as the Kaluza-Klein black

hole g
(KK)
µν , A

(KK)
µ , and Φ(KK) presented above. We construct an embedding into

N = 2 SUGRA with arbitrary cubic prepotential and study fluctuations around

the background. Although we make some progress in this general setting it proves

notable that the analysis simplifies greatly when the background dilaton is constant

Φ(KK) = 0.

In the predominant part of the paper we therefore focus on the simpler case from

the outset and assume Φ(KK) = 0. We arrange this by considering the non-rotating

black hole J = 0 with P 2 = Q2. In this special case the metric g
(KK)
µν is (3.58)
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with

H1 = H2 =

(
r +

q − 2m

2

)2

,

H3 = ∆ = r2 − 2mr , (3.70)

and the gauge field (3.64) becomes

A(KK) = −2Q

(
r +

q − 2m

2

)−1

dt− 2P cos θdφ . (3.71)

In the simplified setting it is easy to eliminate the parameters m, q in favor of the

physical mass 2GM = q and charges P 2 = Q2 = 1
8 (q2 − 4m2) but we do not need

to do so.

When Φ(KK) = 0 the geometry of the Kaluza-Klein black hole is in fact the same

as the Reissner-Nordström black hole. Indeed, they both satisfy the standard

Einstein-Maxwell equations

R(KK)
µν =

1

2

(
F (KK)
µρ F (KK)ρ

ν − 1

4
gµνF

(KK)
ρσ F (KK)ρσ

)
, (3.72)

DµF
(KK)µν = 0 . (3.73)

However, whereas the Reissner-Nordström solution can be supported by any com-

bination of electric and magnetic charges (Q,P ) with the appropriate value of

Qeff =
√
P 2 +Q2, for the Kaluza-Klein black hole we must set P 2 = Q2 so

F (KK)
µν F (KK)µν = 0 , (3.74)

or else the dilaton equation of motion (3.55) is inconsistent with a constant dilaton

Φ(KK). This difference between the two cases is closely related to the fact that,

after embedding in supergravity, the Kaluza-Klein black hole does not preserve

supersymmetry in the extremal limit.

3.3 Embedding in N ≥ 2 supergravity

3.3.1 The KK Black Hole in N = 8 supergravity

In this section, we review N = 8 SUGRA and show how to embed a solution of

D = 4 Kaluza-Klein theory with constant dilaton into N = 8 SUGRA.
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3.3.1.a N = 8 Supergravity in Four Dimensions

The matter content of N = 8 SUGRA is a spin-2 graviton gµν , 8 spin-3/2 gravitini

ψAµ (with A = 1, ..., 8), 28 spin-1 vectors BMN
µ (antisymmetric in M,N = 1, ..., 8),

56 spin-1/2 gaugini λABC (antisymmetric in A,B,C = 1, ..., 8), and 70 spin-0

scalars. The Lagrangian can be presented as [128]4

e−1L(N=8) =
1

4
R− 1

2
ψ̄Aµγ

µνρDνψAρ −
i

8
GMN
µν H̃

(F)µν
MN − 1

12
λ̄ABCγ

µDµλABC

− 1

24
PµABCDP̄

µABCD − 1

6
√

2
ψ̄Aµγ

νγµ
(
P̄ABCDν + ˆ̄PABCDν

)
λBCD

+
1

8
√

2

(
ψ̄Aµγ

νF̂ABγµψνB −
1√
2
ψ̄CµF̂ABγµλABC (3.75)

+
1

72
εABCDEFGH λ̄ABCF̂DEλFGH

)
,

in conventions where all fermions are in Majorana form, the metric is “mostly

plus”, and Hodge duality is defined by

H̃
(F)µν
MN = − i

2
εµνρσH

(F)
MNρσ , ε0123 = e . (3.76)

Below we also use (R/L) superscripts on fermions, to denote their right- and left-

handed components.

We include all the glorious details of N = 8 SUGRA to facilitate comparison with

other references. The symmetry structure is the most important aspect for our

applications so we focus on that in the following. The starting point is the 56-bein

V =

(
U MN
AB VABMN

V̄ ABMN ŪABMN

)
, (3.77)

that is acted on from the left by a local SU(8) symmetry (with indices A,B, . . .)

and from the right by a global E7(7) duality symmetry (with indices M,N). The

connection

∂µVV−1 =

(
2Q

[C
µ[A δ

D]
B] PµABCD

P̄ABCDµ 2Q̄
[A
µ [Cδ

B]
D]

)
, (3.78)

defines an SU(8) gauge fieldQ B
µA that renders the SU(8) redundant. We therefore

interpret PµABCD as covariant derivatives of scalar fields that belong to the coset

E7(7)/SU(8) with dimension 133− 63 = 70. The term in (3.75) that is quadratic

4To match with the conventions of many authors, when discussing N = 8 supergravity, we set
Newton constant to κ2 = 8πG = 2. In section 3.3.4, we will restore the explicit κ dependence.
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in PµABCD is therefore a standard kinetic term for the physical scalars. The terms

linear in PµABCD, including

P̂µABCD = PµABCD + 2
√

2

(
ψ̄

(L)
µ[Aλ

(R)
BCD] +

1

24
εABCDEFGH ψ̄

(R)E
µ λ(L)FGH

)
,

(3.79)

do not contribute to quadratic fluctuations around a background with constant

scalars. The covariant derivatives Dµ that act on fermions are SU(8) covariant so

at this point the Lagrangian is manifestly invariant under the local SU(8).

The gauge fields and their duals are

GMN
µν = ∂µB

MN
ν − ∂νBMN

µ , (3.80)

H̃
(F)µν
MN =

4i

e

∂L
∂GMN

µν

. (3.81)

They enter the Lagrangian (3.75) explicitly. Their Pauli couplings are written in

terms of

F̂AB = γµνFABµν , (3.82)

where

FABµν = F (F)
ABµν +

√
2

(
ψ̄

(R)
[A[µψ

(L)
[B[ν −

1√
2
ψ̄

(L)C
[µ γν]λ

(L)
ABC (3.83)

− 1

288
εABCDEFGH λ̄

CDE
(L) γµνλ

FGH
(R)

)
,

with (
F (F)
ABµν

F̄ (F)AB
µν

)
=

1√
2
V

(
GMN
µν + iH

(F)
MNµν

GMN
µν − iH

(F)
MNµν

)
. (3.84)

These relatives of the gauge fields encode couplings and E7(7) duality symmetries.

They satisfy the self-duality constraint

FµνAB = F̃µνAB . (3.85)

This self-duality constraint is a complex equation that relates the real fields GMN
µν ,

H
(F)
MNµν and their duals linearly, with coefficients that depend nonlinearly on scalar

fields. It has a solution of the form

H̃
(F)
MNµν =− i

(
NMNPQG

−PQ
µν + h.c.

)
+ (terms quadratic in fermions) , (3.86)
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where the self-dual (anti-self-dual) parts of the field strengths are defined as

G±MN
µν =

1

2

(
GMN
µν ± G̃MN

µν

)
, (3.87)

and the gauge coupling function is

NMNPQ =
(
U MN
AB − VABMN

)−1 (
U MN
AB + VABPQ

)
. (3.88)

Using (3.86) for H̃
(F)
MNµν and (3.82–3.84) for F̂AB we can eliminate these fields from

the Lagrangian (3.75) in favor of the dynamical gauge field GMN
µν , embellished by

scalar fields and fermion bilinears.

The relatively complicated classical dynamics of N = 8 SUGRA is due to the

interplay between fermion bilinears, duality, and the scalar coset. These disparate

features are all important in our considerations but they largely decouple. For

example, although we need the Pauli couplings of fermions, we need them only for

trivial scalars.

In our explicit computations it is convenient to remove the SU(8) gauge redun-

dancy by writing the 56-bein (3.77) in a symmetric gauge

V = exp

(
0 WABCD

W̄ABCD 0

)
, (3.89)

where the 70 complex scalars WABCD are subject to the constraint

W̄ABCD =
1

24
εABCDEFGHWEFGH . (3.90)

After fixing the local SU(8) symmetry, the theory still enjoys a global SU(8) sym-

metry. Moreover, it is linearly realized when compensated by SU(8) ⊂ E7(7). We

identify this residual global SU(8) as the R-symmetry SU(8)R. This identification

proves useful repeatedly. For example, it is according to this residual symmetry

that WABCD transforms as an antisymmetric four-tensor.

3.3.1.b The Embedding into N = 8 SUGRA

The embedding of the Kaluza-Klein black hole (3.58, 3.70, 3.71) in N = 8 SUGRA

is implemented by

g̊(SUGRA)
µν = g(KK)

µν ,

G̊MN
µν =

1

4
ΩMNF (KK)

µν ,
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W̊ABCD = 0 ,

(All background fermionic fields) = 0 , (3.91)

where

ΩMN = diag(ε, ε, ε, ε) , ε =

(
0 1

−1 0

)
. (3.92)

In this section (and beyond) we shall often declutter formulae by omitting the

superscript “KK” when referring to fields of the seed solution.

To establish the consistency of our embedding, in the following we explicitly check

that the N = 8 SUGRA equations of motion are satisfied by the background

(3.91). Vanishing fermions satisfy trivially their equations of motion, because

they appear at least quadratically in the action. The equations of motion for the

scalars WABCD take the form

(Terms at least linear in W̊ABCD or quadratic in fermions)

= 3 G̊+[AB
µν G̊+CD]µν +

1

8
εABCDEFGHG̊

−EF
µν G̊−GHµν . (3.93)

The scalars W̊ABCD and the fermions vanish so the right-hand side of the equation

must also vanish. Inserting G̊MN
µν from our embedding (3.91), we find the condition

F
(KK)
µν F (KK)µν = 0. This condition is satisfied by the seed solution (3.74) because

the electric and magnetic charges are equal P = Q. Therefore it is consistent to

take all scalars W̊ABCD = 0 in N = 8 SUGRA.

The N = 8 Einstein equation is given by

Rµν −
1

2
gµνR =

1

6
PABCD{µP̄

ABCD
ν} − 1

12
gµνPρABCDP̄

ρABCD (3.94)

+Re(NMNPQ)

(
GMN
µρ G ρPQ

ν − 1

4
gµνG

MN
ρσ GρσPQ

)
.

The vanishing of the scalars W̊ABCD = 0 implies

V̊ =

(
δ

[M
[A δ

N ]
B] 0

0 δ
[A
[Mδ

B]
N ]

)
, N̊MNPQ = 1MNPQ , (3.95)

so the Einstein equation simplifies to

R̊µν −
1

2
g̊µνR̊ = G̊MN

µρ G̊ ρ
νMN −

1

4
g̊µνG̊

MN
ρσ G̊ρσMN . (3.96)
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The embedding (3.91) reduces the right-hand side so that these equations coincide

with the Einstein equation (3.72) satisfied by the seed solution.

Finally, the equations of motion for the vector fields in N = 8 SUGRA are

Dµ

(
NMNPQG

−µνPQ + N̄MNPQG
+µνPQ

)
= 0 . (3.97)

The embedding (3.91) and the simplifications (3.95) reduce these equations to the

Maxwell equation DµF
(KK)µν = 0, consistent with the seed equation of motion

(3.73).

In summary, the equations of motion in N = 8 SUGRA are satisfied by the

embedding (3.91). Therefore, for any seed solution that satisfies (3.72-3.74), the

embedding (3.91) gives a solution to N = 8 SUGRA. Our primary example is the

Kaluza-Klein black hole with dilaton Φ(KK) = 0.

3.3.2 Quadratic Fluctuations in N = 8 SUGRA

In this section we expand the Lagrangian (3.75) for N = 8 SUGRA to quadratic

order around the background (3.91). We reparametrize the fluctuation fields so

that they all transform in representations of the global USp(8) symmetry group

preserved by the background. We then partially decouple the quadratic fluctua-

tions into different blocks corresponding to different representations of USp(8).

3.3.2.a Global Symmetry of Fluctuations

The N = 8 SUGRA theory has a global SU(8) symmetry, as discussed at the end

of section 3.3.1. The graviton, gravitini, vectors, gaugini, and scalars transform in

the representations 1, 8, 28, 56 and 70 of this SU(8) group. The 28, 56, and 70,

are realized as antisymmetric combinations of the fundamental representation 8.

A generic background solution does not respect all the symmetries of the theory,

so the global SU(8) symmetry is not generally helpful for analyzing fluctuations

around the background. Our embedding (3.91) into N = 8 SUGRA indeed breaks

the SU(8) symmetry since G̊MN
µν = 1

4ΩMNF
(KK)
µν is not invariant under the SU(8)

group. However, the matrix ΩMN (3.92) can be interpreted as a canonical sym-

plectic form so our embedding respects most of the global SU(8), it preserves

a USp(8) subgroup. Therefore, different USp(8) representations cannot couple

at quadratic order and it greatly simplifies the analysis to organize fluctuations

around the background as representations of USp(8). In the following we analyze

one USp(8) representation at a time.
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• Graviton

The graviton hµν = δgµν = gµν − g̊µν is a singlet of SU(8) and remains a

singlet of USp(8).

• Vectors

The fluctuations of the gauge fields δGMN
µν = GMN

µν − G̊MN
µν transform in the

28 of SU(8) which has the branching rule to USp(8) 28 → 1 ⊕ 27. We

realize this decomposition directly on the fluctuations by defining

fµν = ΩMNδG
MN
µν , fMN

µν = δGMN
µν −

1

8
ΩMNfµν . (3.98)

The fMN
µν are Ω-traceless fMN

µν ΩMN = 0 by construction so they have only

2 × (28 − 1) degrees of freedom which transform in the 27 of USp(8). The

remaining 2 degrees of freedom are in fµν , which transforms in the 1 of

USp(8). This decomposition under the global symmetry shows that the

graviton can only mix with the “overall” gauge field fµν and not with fMN
µν .

• Scalars

The scalars transform in 70 of SU(8) and the branching rule to USp(8) is

70→ 1⊕ 27⊕ 42. We realize this decomposition by defining

W ′ = WABCDΩABΩCD , W ′AB = WABCDΩCD − 1

8
W ′ΩAB ,

W ′ABCD = WABCD −
3

2
W ′[ABΩCD] −

1

16
W ′Ω[ABΩCD] . (3.99)

W ′ABCD is antisymmetric in all indices and Ω-traceless on any pair or pairs, so

it is in the 42 of USp(8). W ′AB is antisymmetric, Ω-traceless, and hence in the

27 of USp(8). The remainder W ′ has no index and is in the 1 of USp(8). The

obvious construction of an antisymmetric four-tensor representation of SU(8)

has 70 complex degrees of freedom, but the scalars WABCD inN = 8 SUGRA

have 70 real degrees of freedom that realize an irreducible representation, as

implemented by the reality constraint (3.90). The decomposition of this

reality constraint under SU(8) → USp(8) shows that the scalar W ′ that

couples to gravity is real W
′

= W ′, as expected from Kaluza-Klein theory.

It also implies the reality condition on the four-tensor

W
′ABCD

=
1

24
εABCDEFGHW ′EFGH , (3.100)

and an analogous condition on the two-tensor W ′AB . An interesting as-

pect of these reality conditions is that, just like the KK block must couple
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to a scalar (as opposed to a pseudoscalar), the condition on the USp(8)

four-tensor demonstrates that the scalar moduli must comprise exactly 22

scalars and 20 pseudoscalars. The vector multiplet couples vectors and

scalars/pseudoscalars precisely so that it restores the overall balance be-

tween scalars and pseudoscalars required by N = 8 SUGRA, with 12 scalars

and 15 pseudoscalars.

The distinctions between scalars and pseudoscalars are interesting because

these details must be reproduced by viable microscopic models of black holes.

Extrapolations far off extremality of phenomenological models that are mo-

tivated by the BPS limit lead to entropy formulae [129–131] with moduli

dependence that is very similar but not identical to the result found here. It

would be interesting to construct a model for non-extremal black holes that

combines the features of the BPS and the non-BPS branch.

• Gravitini

The gravitini ψAµ transform in the fundamental 8 of SU(8). The gravitini

only carry one SU(8) index which cannot be contracted with the symplectic

form ΩAB . Therefore, the gravitini also transform in the 8 of USp(8).

• Gaugini

The gaugini λABC of N = 8 SUGRA transform in the 56 of the global

SU(8). The branching rule to USp(8) is 56 → 8 ⊕ 48. We can realize this

decomposition by introducing

λ′A =
1√
12
λABCΩBC , (3.101)

and

λ′ABC = λABC −
1

8
(λADEΩDE)ΩBC . (3.102)

The gaugini λ′A transform in the 8 of USp(8). We will find that these

gaugini are coupled to the gravitini. This is allowed because they have the

same quantum numbers under the global USp(8). The normalization 1/
√

12

introduced in (3.101) ensures that the gaugini retain a canonical kinetic term

after the field redefinition.

The gaugini λ′ABC introduced in (3.102) satisfy the constraint λ′ABCΩBC =

0. This ensures that they transform in the 48 of USp(8). No other fields

transform in the same way under the global symmetry so these gaugini de-

couple from other fields. They can of course mix among themselves and
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we will find that they do in fact have nontrivial Pauli couplings. However,

the normalization of the fields is inconsequential and we have retained the

normalization inherited from the full N = 8 SUGRA.

Table 3.2 summarizes the decomposition of quadratic fluctuations according to

their representations under the global USp(8) that is preserved by the background.

Representations Fields

1 hµν , fµν , W
′

8 ψAµ, λ
′
A

27 fµνAB , W
′
AB

42 W ′ABCD

48 λ′ABC

Table 3.2: The USp(8) representation content of the quadratic fluctuations.

3.3.2.b The Decoupled Fluctuations

The quadratic fluctuations around any bosonic background decouple into a bosonic

part δ2Lbosons and a fermionic part δ2Lfermions because fermions always appear

quadratically in the Lagrangian. As we expand the Lagrangian (3.75) around the

background (3.91) to quadratic order, these parts further decouple into represen-

tations of the preserved USp(8) global symmetry.

The bosonic fluctuations therefore decouple into three blocks

δ2L(N=8)
bosons = δ2L(N=8)

KK + δ2L(N=8)
vector + δ2L(N=8)

scalar . (3.103)

• KK block

The first block δ2L(N=8)
KK , which we call the “KK block”, consists of all fields

that are singlets of USp(8): the graviton hµν , 1 vector with field strength

fµν , and 1 scalar W ′. The Lagrangian for this block is given by

e−1δ2L(N=8)
KK = h̄µν�h̄µν −

1

4
h�h+ 2h̄µν h̄ρσRµρνσ − 2h̄µν h̄µρR

ρ
ν − hh̄µνRµν

−FµνFρσh̄µρh̄νσ + aµ (�gµν −Rµν) aν + 2
√

2F ρ
ν fµρh̄

µν

−4∂µφ∂
µφ+ 2

√
3Fµνfµνφ− 4

√
6Rµν h̄

µνφ , (3.104)
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after the fields were redefined as hµν →
√

2hµν , fµν → 4fµν , and φ =
1

16
√

3
W ′. We also decomposed the graviton into its trace h = gρσhρσ and its

traceless part h̄µν = hµν− 1
4gµνg

ρσhρσ, and further included the gauge-fixing

term

e−1Lg.f. = −
(
Dµh̄µρ −

1

2
Dρh

)(
Dν h̄ ρ

ν −
1

2
Dρh

)
− (Dµaµ)

2
. (3.105)

The rather complicated Lagrangian (3.104) represents the theory of fluc-

tuations around any solution of Kaluza-Klein theory (3.54) with constant

dilaton. The fields fµν and φ correspond to the fluctuations of the field

strength and the dilaton. The gauge-fixed theory (3.104) must be completed

with additional ghost terms. We discuss those in Appendix 3.5.

• Vector blocks

The second block δ2L(N=8)
vector consists of all fields that transform in the 27 of

USp(8): fµνAB and W ′AB . We use fµνa and W ′a to denote the 27 independent

vectors and scalars respectively. It includes two slightly different parts. One

part has 12 copies of a vector coupled to a scalar W
′(R)
a with the Lagrangian

e−1δ2L(N=8)(R)
vector = −1

2
∂µW ′(R)

a ∂µW
′(R)
a − fµνa faµν (3.106)

−W ′(R)
a faµνF

µν , a = 1, ..., 12 ,

and the other has 15 copies of a vector coupled to a pseudoscalar W
′(P)
a given

by

e−1δ2L(N=8)(P)
vector = −1

2
∂µW ′(P)

a ∂µW
′(P)
a − fµνa faµν (3.107)

− iW ′(P)
a faµν F̃

µν , a = 13, ..., 27.

Although these two Lagrangians are distinct, they give equations of motion

that are equivalent under a duality transformation. This is consistent with

the fact that SU(8) duality symmetry is the diagonal combination of local

SU(8) and global E7(7) duality symmetry, where the latter is not realized at

the level of the Lagrangian.

• Scalar blocks

The last bosonic block δ2L(N=8)
scalar consists of the remaining 42 scalars, trans-

forming in the 42 of USp(8). There are no other bosonic fields with the

same quantum numbers so, these fields can only couple to themselves. The

explicit expansion around the background (3.72-3.74) shows that all these

64



3.3. Embedding in N ≥ 2 supergravity

scalars are in fact minimally coupled

e−1δ2L(N=8)
scalar = − 1

24
∂µW ′ABCD∂µW

′ABCD
. (3.108)

We now turn to the quadratic fluctuations for the fermions. Since they appear

at least quadratically in the Lagrangian the bosonic fields can be fixed to their

background values. In this case, the N = 8 SUGRA Lagrangian (3.75) simplifies

to

e−1δ2L(N=8)
fermions = −1

2
ψ̄Aµγ

µνρDνψAρ −
1

12
λ̄ABCγ

µDµλABC (3.109)

+
1

4
√

2
ψ̄Aµγ

νF̊ABγµψνB −
1

8
ψ̄CµF̊ABγµλABC

+
1

288
√

2
εABCDEFGH λ̄ABCF̊DEλFGH ,

where all fermions are in Majorana form and

F̊AB =
1√
2

(
G̊ABµν + γ5

˚̃
GABµν

)
γµν =

1

2
√

2
ΩABFµνγ

µν . (3.110)

The field redefinitions introduced in section 3.3.2.a decouple this Lagrangian as

δ2L(N=8)
fermions = δ2L(N=8)

gravitino + δ2L(N=8)
gaugino . (3.111)

• Gravitino blocks

The first block δ2L(N=8)
gravitino consists of the 8 gravitini ψAµ and the 8 gaugini

λ′A singled out by the projection (3.101). The gravitini and the gaugini both

transform in 8 of USp(8) and couple through the Lagrangian

e−1δ2L(N=8)
gravitino = −ψ̄AµγµνρDνψAρ − λ̄′AγµDµλ

′
A +

1

4
ΩABλ̄′AFρσγ

ρσλ′B

+
1

4
ΩABψ̄Aµ

(
Fµν + γ5F̃

µν
)
ψBν

−
√

6

8
ψ̄AµFρσγ

ρσγµλ′A . (3.112)

The indices take values A,B = 1, . . . 8. However, this block actually decou-

ples into 4 identical pairs, with a single pair comprising two gravitini and

two gaugini. The canonical pair is identified by restricting the indices to

A,B = 1, 2 and so ΩAB → εAB . The other pairs correspond to A,B = 3, 4,

A,B = 5, 6, and A,B = 7, 8.
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• Gaugino blocks

The second block δ2L(N=8)
gaugino consists of the 48 gaugini (3.102) that transform

in the 48 of USp(8). These 48 gaugini decompose into 24 identical groups

that decouple from one another. Each group has 2 gaugini and a Lagrangian

given by

e−1δ2L(N=8)
gaugino =− λ̄aγµDµλa −

1

8
εabλ̄aFµνγ

µνλb , (3.113)

where a, b = 1, 2 denote the 2 different gaugini in one group. It is interesting

that no fermions in the theory are minimally coupled. Moreover, the numer-

ical strength of the Pauli couplings to black holes on the non-BPS branch

are different from the corresponding Pauli couplings for fermions on the BPS

branch [26].

3.3.2.c Summary of Quadratic Fluctuations

In the previous sections we defined a seed solution (3.72-3.74) of Kaluza-Klein

theory with vanishing dilaton and embedded it into N = 8 SUGRA through

(3.91). In this section, we have studied fluctuations around the background by

expanding the N = 8 SUGRA Lagrangian (3.75) to quadratic order. In section

3.3.2.a, we decomposed the fluctuations in representations of the USp(8) symmetry

preserved by the background. In section 3.3.2.b, we have decoupled the quadratic

fluctuations into blocks corresponding to distinct representations of USp(8). They

are summarized in Table 3.3.

Degeneracy Multiplet Block content USp(8) Lagrangian

1 KK block 1 graviton, 1 vector, 1 scalar 1 (3.104)

27 Vector block 1 vector and 1 (pseudo)scalar 27 (3.106)

42 Scalar block 1 real scalar 42 (3.108)

4 Gravitino block 2 gravitini and 2 gaugini 8 (3.112)

24 Gaugino block 2 gaugini 48 (3.113)

Table 3.3: Decoupled quadratic fluctuations in N = 8 supergravity around the
KK black hole.
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3.3. Embedding in N ≥ 2 supergravity

3.3.3 Consistent Truncations of N = 8 SUGRA

In this section we present consistent truncations from N = 8 SUGRA to N = 6,

N = 4, N = 2 and N = 0. These truncations are well adapted to the KK black

hole in that all its nontrivial fields are retained. In other words, the truncations

amount to removal of fields that are trivial in the background solution.

It is easy to analyse the spectrum of quadratic fluctuations around the KK black

hole in the truncated theories. In each case some of the fluctuating fields are

removed, but always consistently so that blocks of fields that couple to each other

are either all retained or all removed. Therefore, the fluctuation spectrum in all

these theories can be described in terms of the same simple blocks that appear in

N = 8 supergravity. For these truncations the entire dependence on the theory is

encoded in the degeneracy of each type of block. They are summarized in Table

3.4.

Multiplet \ Theory N = 8 N = 6 N = 4 N = 2 N = 0

KK block 1 1 1 1 1

Gravitino block 4 3 2 1 0

Vector block 27 15 n+ 5 nV 0

Gaugino block 24 10 2n nV − 1 0

Scalar block 42 14 5n− 4 nV − 1 0

Table 3.4: The degeneracy of multiplets in the spectrum of quadratic fluctuations
around the KK black hole embedded in various theories. For N = 4, the integer
n is the number of N = 4 matter multiplets. For N = 2, the integer nV refers to
the ST (nV − 1) model.

All the truncations in this section heavily utilize the SU(8)R global symmetry

of N = 8 supergravity. We therefore recall from the outset that the gravitons,

gravitini, vectors, gaugini, and scalars transform in the irreducible representations

1, 8, 28, 56, 70 of SU(8)R.

3.3.3.a The N = 6 Truncation

The N = 6 truncation restricts N = 8 SUGRA to fields that are even under the

SU(8)R element diag(I6,−I2). This projection preserves N = 6 local supersym-

metry since the 8 gravitini of N = 8 SUGRA are in the fundamental 8 of SU(8)R
and so exactly two gravitini are odd under diag(I6,−I2) and projected out. The

branching rules of the matter multiplets under SU(8)R → SU(6)R × SU(2)matter
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are

70 → (15,1)⊕ (15,1)⊕ (20,2) ,

56 → (20,1)⊕ (15,2)⊕ (6,1) ,

28 → (15,1)⊕ (6,2)⊕ (1,1) . (3.114)

These branching rules follow from decomposition of the SU(8)R four-tensor TABCD
(70), the three-tensor TABC (56), and the two-tensor TAB (28), by splitting the

SU(8)R indices as A,B, ... → (α, a), (β, b), ... where the lower case indices refer

to SU(2)matter (greek) and SU(6)R (latin). The truncation to N = 6 SUGRA

retains only the fields that are invariant under SU(2)matter so fields in the 2 are

removed. Therefore the truncated theory has 30 scalar fields, 26 gaugini, and 16

vector fields. Taking the 6 gravitini and the graviton into account as well, the

total field content comprises 64 bosonic and 64 fermionic degrees of freedom.

The claim that the truncation is consistent means that the equations of motion

of the retained fields are sufficient to guarantee that all equations of motion are

satisfied, as long as the removed fields vanish. In general, the primary obstacle to

truncation is that the equations of motion for the omitted fields may fail. This is

addressed here because the equations of motion for fields in the 2 of SU(2)matter

only involve terms in the 2. Therefore their equations of motion are satisfied when

all fields in the 2 vanish.

Our interest in the consistent truncation ofN = 8 SUGRA toN = 6 SUGRA is the

application to the KK black hole. The embedding (3.91) of the Kaluza-Klein black

hole into N = 8 SUGRA turns on the four field strengths on the skew-diagonal of

the 28 (which is realized by an antisymmetric 8×8 matrix of field strengths FAB).

The entries on the skew diagonal are all contained in the SU(6)R × SU(2)matter

subgroup of SU(8)R, because the antisymmetric representation of SU(2) is trivial.

The embedding of the KK black hole in N = 8 SUGRA therefore defines an

embedding in N = 6 SUGRA as well. In other words, the truncation and the

embedding are compatible.

We can find the spectrum of quadratic fluctuations in N = 6 SUGRA either by

truncating the spectrum determined in the N = 8 SUGRA context, or by directly

analyzing the spectrum of fluctuations around the N = 6 solution. Consistency

demands that these procedures agree.

We begin from the SU(6) content of N = 6 SUGRA: 1 graviton, 6 gravitini,

15 ⊕ 1 vectors, 20 ⊕ 6 gaugini, and 2(15) scalars. The KK black hole in N = 6

SUGRA breaks the global symmetry SU(6) → USp(6). Therefore, the quadratic

fluctuations around the background need not respect the SU(6) symmetry, but

they must respect the USp(6). Their USp(6) content is: 1 graviton, 6 gravitini,
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14⊕2(1) vectors, 14⊕2(6) gaugini, 2(14⊕1) scalars. The black hole background

breaks Lorentz invariance so the equations of motion for fluctuations generally mix

Lorentz representations, as we have seen explicitly in section 3.3.2, but they always

preserve global symmetries. In the present context the mixing combines the fields

into 1 KK block (gravity + 1 vector + 1 scalar), 3 gravitino blocks (1 gravitino +

1 gaugino) (transforming in the 6), 14⊕ 1 vector blocks (1 vector + 1 scalar), 10

gaugino blocks (transforming in the 14⊕ 6), and 14 (minimally coupled) scalars.

To verify these claims and find the specific couplings for each block, we could

analyze the equations of motion for N = 6 SUGRA using the methods of section

3.3.2. However, no new computations are needed because it is clear that the fields

in the truncated theory are a subset of those in N = 8 SUGRA. In that context we

established that the fluctuations decompose into 1 (KK block), 8 (gravitini mixing

with gaugini), 27 (vectors mixing with scalars), 24 (gaugini with Pauli couplings

to the background), and 42 (minimal scalars) of the USp(8) that is preserved by

the background. The consistent truncation to N = 6 SUGRA removes some of

these fluctuations as it projects the global symmetry USp(8)→ USp(6). This rule

not only establishes the mixing claimed in the preceding paragraph but also shows

that all couplings must be the same in the N = 8 and N = 6 theories. It is only

the degeneracy of each type of block that is reduced by the truncation.

3.3.3.b The N = 4 Truncation

The N = 4 truncation restricts N = 8 SUGRA to fields that are even under

the SU(8)R element diag(I4,−I4). This projection breaks the global symmetry

SU(8)R → SU(4)R × SU(4)matter. It preserves N = 4 local supersymmetry since

the 8 gravitini of N = 8 SUGRA are in the 4 of SU(4)R. The branching rules of

the matter multiplets under the symmetry breaking are

70 → 2(1,1)⊕ (6,6)⊕ (4, 4̄)⊕ (4̄,4) ,

56 → (4̄,1)⊕ (6,4)⊕ (4,6)⊕ (1, 4̄) ,

28 → (1,6)⊕ (6,1)⊕ (4,4) . (3.115)

The consistent truncation preserving N = 4 supersymmetry is defined by omission

of all fields in the 4 (or 4̄) of SU(4)matter.

There is a unique supergravity with n N = 4 matter multiplets. It has a global

SU(4)R symmetry that acts on its supercharges and also a global SO(n)matter

that reflects the equivalence of all matter multiplets. The consistent truncation

of N = 8 by the element diag(I4,−I4) retains a SU(4)R × SU(4)matter symmetry

so, recalling that SO(6) and SU(4) are equivalent as Lie algebras, the truncated

theory must be N = 4 SUGRA with n = 6 matter multiplets.
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Several important features of N = 4 SUGRA are succinctly summarized by the

scalar coset
SU(1, 1)

U(1)
× SO(6, n)

SO(6)× SO(n)
. (3.116)

It has dimension 6n+2 with scalars transforming in 2(1,1)⊕(6,n) under SU(4)R×
SO(n)matter. It also encodes the SU(1, 1) ' SL(2) electromagnetic duality of the

6 + n vector fields in the fundamental of SO(6, n). The representation content

obtained by removal of 4 (and 4̄) from the branchings (3.115) is consistent with

these expectations when n = 6.

The N = 4 truncation has a natural interpretation in perturbative Type II string

theory. There is a simple duality frame where the diagonal element diag(I4,−I4)

changes the sign on the RR sector and interchanges the RNS and NSR sectors; so

the consistent truncation projects on to the common sector of Type IIA and Type

IIB supergravity. The complete string theory orbifold includes twisted sectors

as well. It is conveniently implemented by a flip of the GSO projection and is

equivalent to T-duality between Type IIA and Type IIB string theory.

The embedding of the KK black hole into N = 8 SUGRA is compatible with the

truncation to N = 4 SUGRA: the four field strengths on the skew-diagonal of

the 28 are all contained in the SU(4)R × SU(4)matter subgroup of SU(8)R and

therefore retained in the truncation to N = 4 SUGRA. The embedding of the KK

black hole in N = 8 SUGRA therefore defines an embedding in N = 4 SUGRA

as well. The consistent truncation just removes fields that are not excited by the

KK black hole in N = 8 SUGRA.

The quadratic fluctuations around the KK black hole in N = 8 SUGRA similarly

project on to the N = 4 setting. As discussed in section 3.3.2, the KK black

hole in N = 8 SUGRA breaks the global symmetry SU(8)R → USp(8) and this

symmetry breaking pattern greatly constrains the spectrum of fluctuations around

the black hole. Moreover, the symmetry breaking pattern is largely preserved by

the consistent truncation: the analogous breaking pattern in N = 4 SUGRA is

SU(4)R × SU(4)matter → USp(4)R × USp(4)matter. For example, the entire KK

block (with a graviton, a vector, and a scalar), identified as the 1 of USp(8), is

unchanged by the consistent truncation.

The 27 vector blocks (3.106-3.107), each with a vector coupled to a scalar, are

perturbations of the 8×8 matrix of field strengths FAB after its symplectic trace is

removed. The branching (3.115) of the 28 under SU(4)R×SU(4)matter shows that

16 vector blocks are projected out by the truncation. None of these are affected

by the symplectic trace so 27 − 16 = 11 vector blocks remain in N = 4 SUGRA.

Among the 38 scalars from the coset (3.116) with n = 6 there is 1 coupled to
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gravity and 11 that couple to the vectors, so 26 minimally coupled scalars remain.

They parametrize the coset

SU(1, 1)× SO(5, 5)

USp(4)× USp(4)
. (3.117)

The fermionic sector is simpler because the truncation removes exactly one half

of the fermions. The retained fermions are essentially identical to those that are

projected away, they differ at most in their chirality and the KK black holes is

insensitive to this distinction. The quadratic fluctuations for the fermions inN = 8

SUGRA are 4 gravitino pairs (with each pair including two gravitini coupled to

two Weyl fermions, a total of 32 degrees of freedom) and 24 gaugino pairs with

Pauli couplings to the background field strength. In N = 4 SUGRA with 6 matter

multiplets there are 4 gravitino pairs and 12 gaugino pairs.

There is a simple extension of these results to the case of N = 4 SUGRA with

n 6= 6 matter multiplets. For this generalization, we recast the symmetry breaking

by the field strengths that have been designated N = 4 matter as SO(6)matter →
SO(5)matter using the equivalences SU(4) = SO(6) and USp(4) = SO(5) as Lie

algebras. In this form the symmetry breaking just amounts to picking the direction

of a vector on an S5. We can equally consider any number n of matter fields and

break the symmetry SO(n)matter → SO(n− 1)matter by picking a vector on Sn−1.

The only restriction is n ≥ 1 in order to ensure that there is a direction to pick in

the first place. This more general construction gives the scalar manifold

SU(1, 1)× SO(5, n− 1)

SO(5)× SO(n− 1)
. (3.118)

In particular, it has 5n−4 dimensions, each corresponding to a minimally coupled

scalar field. The duality group read off from the numerator correctly indicates

n+ 5 vector fields, not counting the one coupling to gravity. Each of these vector

fields couples to a scalar field, as in (3.106-3.107).

The black hole attractor mechanism offers a perspective on the scalar coset (3.118).

The attractor mechanism is usually formulated in the context of extremal black

holes in N ≥ 2 supergravity where it determines the value of some of the scalars at

the horizon in terms of black hole charges. Importantly, the attractor mechanism

generally leaves other scalars undetermined. Such undetermined scalars can take

any value, so they are moduli. The hyper-scalars in N = 2 BPS black hole

backgrounds are well-known examples of black hole moduli.

In the case of extremal (but non-supersymmetric) black holes in N ≥ 2 supergrav-

ity the moduli space is determined by the centralizer remaining after extremization
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of the black hole potential over the full moduli space of the theory. The result for

non-BPS black holes in N = 4 supergravity was obtained in [132] and agrees

with (3.118). Our considerations generalize this result to a moduli space of non-

extremal KK black holes. The exact masslessness of moduli is protected by the

breaking of global symmetries so supersymmetry is not needed.

3.3.3.c The N = 2 Truncation

Starting fromN = 4 SUGRA with n N = 4 matter multiplets, there is a consistent

truncation to N = 2 SUGRA with n + 1 N = 2 vector multiplets that respects

the KK black hole background. It is defined by keeping only fields that are even

under the SU(4)R element diag(I2,−I2).

All fermions, both gravitini and gaugini are in the fundamental 4 of SU(4)R so

the consistent truncation retains exactly 1/2 of them. In particular, the SUSY is

reduced from N = 4 to N = 2. The bosons are either invariant under SU(4)R or

they transform as an antisymmetric tensor 6. The branching rule 6 → 2(1, 1) ⊕
(2, 2) under SU(4)R → SU(2)2 determines that its truncation retains only the 2

fields on the skew-diagonal of the antisymmetric 4× 4 tensor.

The truncated theory has 2(2n + 4) fermionic degrees of freedom and the same

number of bosonic ones. We can implement the truncation directly on the N = 4

coset (3.116) and find that scalars of the truncated theory parametrize

SU(1, 1)

U(1)
× SO(2, n)

SO(2)× SO(n)
. (3.119)

This theory is known as the ST (n) model. In the special case n = 2 the ST (2)

model is the well-known STU model. This model has enhanced symmetry ensuring

that its 3 complex scalar fields are equivalent and similarly that its 4 field strengths

are equivalent. The STU model often appears as a subsector of more general

N = 2 SUGRA theories, such as those defined by a cubic prepotential. These in

turn arise as the low energy limit of string theory compactified on a Calabi-Yau

manifold, so the STU model may capture some generic features of such theories.

The consistent truncation to the ST (n) model in N = 2 SUGRA is compatible

with the embedding of the KK black hole in N = 8 SUGRA. The embedding

(3.91) in N = 8 excites precisely the field strengths on the skew-diagonal, breaking

SU(8)R → USp(8). As discussed in (3.3.3.b), they were retained by the truncation

to N = 4 SUGRA. The further truncation of the antisymmetric representation to

N = 2 SUGRA projects 6 → 2(1,1) and so it specifically retains field strengths

on the skew diagonal. Moreover, the gauge fields that are projected out are in the

2 of an SU(2) so they are not coupled to other fields at quadratic order.

72



3.3. Embedding in N ≥ 2 supergravity

It can be shown that the N = 4 embedding identifies the “dilaton” of the KK black

hole with the scalar (as opposed to the pseudoscalar) in the coset SU(1, 1)/U(1).

This part of the scalar coset is untouched by the truncation to N = 2 SUGRA.

Therefore, the truncation to N = 2 does not remove any of the fields that are

turned on in the background, nor any of those that couple to them at quadratic

order. This shows that the consistent truncation to N = 2 SUGRA, like other

truncations considered in this section, removes only entire blocks of fluctuations:

the fields that remain have the same couplings as they do in the N = 8 context.

The breaking pattern determines the moduli space of scalars for the black hole

background as

SU(1, 1)× SO(1, n− 1)

SO(n− 1)
. (3.120)

In particular this confirms that, among the 2n + 2 scalars of the ST (n) model,

exactly n are moduli and so are minimally coupled massless scalars.

3.3.3.d More Comments on Consistent Truncations

The natural endpoint of the consistent truncations is N = 0 SUGRA, i.e. the pure

Kaluza-Klein theory (3.54). We constructed our embedding (3.91) into N = 8

SUGRA so that the Kaluza-Klein black hole would remain a solution also to the

full N = 8 SUGRA. Thus we arranged that all the additional fields required by

N = 8 supersymmetry would be“unimportant”, in the sense that they can be taken

to vanish on the Kaluza-Klein black hole. It is therefore consistent to remove them

again, and that is the content of the “truncation to N = 0 SUGRA”.

From this perspective, the truncations considered in this section are intermediate

stages between N = 8 and N = 0 in that only some of the “unimportant” fields

are included. For each value of N = 6, 4, 2, the requirement that the Kaluza-Klein

black hole is a solution largely determines the truncation. The resulting embedding

of the STU model into N = 8 SUGRA is very simple, and possibly simpler than

others that appear in the literature, in that symmetries between fields in the STU

model are manifest even without performing any electromagnetic duality.

Having analyzed the spectrum of fluctuations around Kaluza-Klein black holes in

the context of SUGRA withN = 8, 6, 4, 2 (and evenN = 0), it is natural to inquire

about the situation for SUGRA with odd N . Our embeddings in N = 6, 4, 2 rely

on the skew-diagonal nature of the embedding in N = 8 so they do not have

any generalizations to odd N . This fact is vacuous for N = 7 SUGRA which

automatically implies N = 8. Moreover, it is interesting that N = 3, 5 SUGRA

do not have any non-BPS branch at all: all extremal black holes in these theories

must be BPS (they preserve supersymmetry) [132]. This may indicate that our
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examples exhaust a large class of non-BPS embeddings.

3.3.4 The General KK Black Hole in N = 2 SUGRA

In this section, we start afresh with an arbitrary solution to the D = 4 Kaluza-

Klein theory (3.54), such as the general Kaluza-Klein black hole (3.55-3.57). We

embed this solution into N = 2 SUGRA with a general cubic prepotential and

analyze the quadratic fluctuations around the background in this setting. Along

the way we make additional assumptions that further decouple the fluctuations,

and ultimately specialize to a constant background dilaton and ST (n) prepotential.

In this case the final results of the direct computations will be consistent with those

found in section 3.3.3.c, by truncation from N = 8 SUGRA, and summarized in

section 3.3.2.c.

The setup in this section complements our discussion of the Kaluza-Klein black

hole in N = 8 SUGRA and its truncations to N < 8 SUGRA. Here we do not

assume vanishing background dilaton Φ(KK) = 0 from the outset and we consider

more general theories.

3.3.4.a N = 2 SUGRA with Cubic Prepotential

We first introduce N = 2 SUGRA. We allow for matter in the form of nV N = 2

vector multiplets with couplings encoded in a cubic prepotential

F =
1

κ2

dijkX
iXjXk

X0
, (3.121)

where dijk is totally symmetric. We also include nH N = 2 hypermultiplets. The

theory is described by the N = 2 SUGRA Lagrangian

e−1L(N=2) = κ−2

(
R

2
− ψ̄iµγµνρDνψ

i
ρ

)
− gαβ̄∂µzα∂µzβ̄ −

1

2
huv∂µq

u∂µqv

+

(
−1

4
iNIJF+I

µν F
+µνJ + F−Iµν ImNIJQµν−J −

1

4
gαβ̄χ̄

α
i /Dχ

iβ̄

−ζ̄A /DζA +
1

2
gαβ̄ψ̄iµ /∂z

αγµχiβ̄ + h.c.

)
, (3.122)

where

F±µν =
1

2

(
Fµν ± F̃µν

)
, with F̃µν = − i

2
εµνρσF

ρσ , (3.123)

Qµν−J ≡ ∇ᾱX̄J

(
1

8
gβᾱCβγδχ̄

γ
i γ

µνχδjε
ij + χ̄ᾱiγµψνjεij

)
(3.124)
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+XJ

(
ψ̄µi ψ

ν
j ε
ij +

1

2
κ2ζ̄AγµνζBCAB

)
.

We follow the notations and conventions from [133]. In particular, the χαi =

PLχ
α
i , α = 1, . . . , nV denote the physical gaugini and ζA = PLζ

A, A = 1, . . . , 2nH
denote the hyperfermions. The Kähler covariant derivatives are

∇αXI =

(
∂α +

1

2
κ2∂αK

)
XI , (3.125)

∇ᾱXI =

(
∂ᾱ −

1

2
κ2∂ᾱK

)
XI , (3.126)

where the Kähler potential K

e−κ
2K = −i(XI F̄I − FIX̄I) , (3.127)

with FI = ∂IF = ∂F
∂XI

.

The projective coordinates XI (with I = 0, . . . , nV ) are related to physical coor-

dinates as zi = Xi/X0 (with i = 1, . . . , nV ). We split the complex scalars zi into

real and imaginary parts

zi = xi − iyi . (3.128)

With cubic prepotential (3.121) we have

gij̄ = ∂I∂J̄K = κ−2

(
−3dij

2d
+

9didj
4d2

)
, (3.129)

where we define

dij ≡ dijkyk , di ≡ dijkyjyk , d ≡ dijkyiyjyk . (3.130)

Finally, the scalar-vector coupling are encoded in

NIJ = µIJ + iνIJ , (3.131)

with

µIJ = κ−2

2dijkx
ixjxk −3dijkx

jxk

−3dijkx
jxk 6dijkx

k

 , (3.132)
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and

νIJ = κ−2

−d+ 6d`mx
`xm − 9

d (d`x
`)2 9

d (d`x
`)di − 6di`x

`

9
d (d`x

`)di − 6di`x
` 6dij − 9

d (didj)

 . (3.133)

3.3.4.b The Embedding into N = 2 SUGRA

We want to embed our seed solution into N = 2 SUGRA. The starting point is a

solution to the equations of motion (3.55, 3.56, 3.57) of the Kaluza-Klein theory.

We denote the corresponding fields g
(KK)
µν , F

(KK)
µν and Φ(KK). The fields of N = 2

SUGRA are then defined to be

g(SUGRA)
µν = g(KK)

µν ,

F 0
µν =

1√
2
F (KK)
µν , F iµν = 0, for 1 ≤ i ≤ nV

xi = 0, for 1 ≤ i ≤ nV ,

yi = ciy0, with y0 =
exp

(
−2Φ(KK)/

√
3
)

(dijkcicjck)1/3
,

(All other bosonic fields in N = 2 SUGRA) = 0 ,

(All fermionic fields in N = 2 SUGRA) = 0 . (3.134)

This field configuration solves the equations of motion of N = 2 SUGRA for any

seed solution to the Kaluza-Klein theory. In the following, we will often declutter

formulae by omitting the superscript “KK” when referring to fields in the seed

solution.

The embedding (3.134) is really a family of embeddings parameterized by the nV
constants ci (with i = 1, . . . , nV ). They are projective coordinates on the moduli

space parametrized by the nV scalar fields yi with the constraint

d = dijky
iyjyk = exp

(
−2
√

3Φ(KK)
)
. (3.135)

In the special case of the non-rotating Kaluza-Klein black hole with P = Q, we have

Φ(KK) = 0 and so the constraint is d = 1. More generally, d is the composite field

defined through the constraints (3.130) and related to the Kaluza-Klein dilaton by

(3.135).
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3.3.4.c Decoupled Fluctuations: General Case

The Lagrangian for quadratic fluctuations around a bosonic background always

decouples into a bosonic sector and fermionic sector,

δ2L(N=2) = δ2L(N=2)
bosons + δ2L(N=2)

fermions . (3.136)

With the above embedding into N = 2, each sector further decouples into several

blocks.

The bosonic sector decomposes as the sum of three blocks

δ2L(N=2)
bosons = δ2L(N=2)

gravity + δ2L(N=2)
vectors + δ2L(N=2)

scalars . (3.137)

The “gravity block” δ2L(N=2)
gravity consists of the graviton δgµν , the gauge field δA0

µ,

and the nV real scalars δyi:

e−1δ2L(N=2)
gravity =

1√
−g

δ2

[√
−g
(
R

2κ2
− gij∂µyi∂µyj +

d

4κ2
F 0
µνF

µν0

)]
. (3.138)

Generically, the fields δgµν , δA
0
µ and δyi all mix together. This block can nonethe-

less be further decoupled with simplifying assumptions, as we will discuss later.

The block δ2L(N=2)
vectors consists of the nV vector fields δAiµ and the nV real pseu-

doscalars δxi:

e−1δ2L(N=2)
vectors = gij

(
−∂µδxi∂µδxj −

1

2
dFµνF

µνδxiδxj (3.139)

+
√

2dFµνδx
iδFµνj − dδF iµνδFµνj

)
.

The Kähler metric gij can be diagonalized and we obtain nV identical decoupled

copies, that we call “vector block”, each consisting in one vector field and one real

scalar. Denoting the fluctuating field fµν , one such copy has the Lagrangian

e−1δ2L(N=2)
vector = −1

2
∂µx∂

µx− d

4
FµνF

µνx2 +
d

2
Fµνf

µνx− d

4
fµνf

µν , (3.140)

using conventional normalizations for the scalar fields.

The last bosonic block contains the hyperbosons:

e−1δ2L(N=2)
scalars = −1

2
huv∂µδq

u∂µδqv . (3.141)

The quaternionic Kähler metric huv is trivial on the background. Hence, this block
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decouples at quadratic order into 4nH independent minimally coupled massless

scalars.

We next turn to the fermions. The Lagrangian (3.122) is the sum of the decoupled

Lagrangians

δ2L(N=2)
fermions = δ2L(N=2)

hyperfermions + δ2L(N=2)
gravitino-gaugino . (3.142)

The hyperfermions consist of nH identical copies, that we call “hyperfermion

block”, each containing two hyperfermions. For any two such fermions we can

take CAB = εAB with A,B = 1, 2. The resulting Lagrangian is

e−1δ2L(N=2)
hyperfermion = −2ζ̄A /Dζ

A +

(
κ2

2
F−Iµν νIJX

J ζ̄AγµνζBεAB + h.c.

)
.(3.143)

In our background, we use (3.134, 3.133) to find

e−1δ2L(N=2)
hyperfermion = −2ζ̄A /Dζ

A −

(
d

1
2

8
F−µν ζ̄

AγµνζBεAB + h.c.

)
. (3.144)

We used the T -gauge [133] to fix the projective coordinates XI resulting in X0 =

(8d)−1/2.

The “gravitino-gaugino block” contains two gravitini and nV gaugini and has La-

grangian

e−1δ2L(N=2)
gravitino-gaugino = − 1

κ2
ψ̄iµγ

µνρDνψ
i
ρ (3.145)

+

(
− d

1
2

4κ2
F−µνψ̄

µ
i ψ

ν
j ε
ij +

9

256κ2d
3
2

F−µνdᾱg
βᾱdβγδχ̄

γ
i γ

µνχδjε
ij

− 3i

8κ2d
1
2

F−µνdᾱχ̄
ᾱiγµψνjεij − 1

4
gαβ̄χ̄

α
i /Dχ

iβ̄ +
1

2
gαβ̄ψ̄ia /∂z

αγaχiβ̄ + h.c.

)
.

Generally, all the gravitini and gaugini couple nontrivially but they can be further

decoupled in simpler cases, as we will discuss later.

Summarizing so far: given any Kaluza-Klein solution, the embedding (3.134) pro-

vides solutions of N = 2 SUGRA. We have expanded the N = 2 Lagrangian

around this background to quadratic order and observed that the fluctuations can

be decoupled as shown in Table 3.5.
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Degeneracy Multiplet Block content Lagrangian

1 Gravity block 1 graviton, 1 vector, nV scalars (3.138)

nV Vector block 1 vector and 1 (pseudo)scalar (3.140)

4nH Scalar block 1 real scalar (3.141)

1 Gravitino-gaugino block 2 gravitini and 2nV gaugini (3.145)

nH Hyperfermion block 2 hyperfermions (3.144)

Table 3.5: Decoupled quadratic fluctuations in N = 2 SUGRA around a general
KK black hole.

These results are reminiscent of the analogous structure for N = 8 SUGRA, sum-

marized in (3.91). However, with the more general assumptions made here, there

are more scalars in the N = 2 gravity block than in the analogous N = 8 KK block

and these additional scalars do not generally decouple from gravity. Similarly, the

N = 2 gravitino-gaugino block here includes more gaugini than the analogous

N = 8 gravitino block.

3.3.4.d Decoupled Fluctuations: Constant Dilaton

So far, we have been completely general about the underlying Kaluza-Klein solu-

tion. In this section, we further decouple the quadratic fluctuations by assuming

that the scalar fields of N = 2 SUGRA are constant

yi = constant, i = 1, ..., nV . (3.146)

From the embedding (3.134), this is equivalent to taking the Kaluza-Klein dilaton

to vanish

Φ(KK) = 0 , (3.147)

since we can always rescale the field strengths to arrange for d = dijky
iyjyk = 1.

As noted previously, this is satisfied by the non-rotating Kaluza-Klein black hole

with P = Q. This is the simplified background that we already studied in N = 8

SUGRA, but it is embedded here in N = 2 SUGRA with arbitrary prepotential.

As in the N = 8 case, we will use that the background satisfies

R = 0 , FµνF
µν = 0 (3.148)

to decouple further the quadratic fluctuations.
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• Gravity

The gravity block decouples as

δ2L(N=2)
gravity = δ2L(N=2)

KK + δ2L(N=2)
relative , (3.149)

where δ2L(N=2)
KK is the “KK block”, consisting of the graviton δgµν , the

graviphoton δA0
µ and the center-of-mass scalar δy′1. δ2L(N=2)

relative denotes

nV − 1 free massless scalars δy′i, i = 2, . . . nV . This decoupling is ob-

tained by center-of-mass diagonalization: the δy′i are linear combinations

of δyi such that δy′1 is precisely the combination that couples to the gravi-

ton and graviphoton at quadratic order. Then, the“relative scalars”δy′i, i =

2, . . . , nV are minimally coupled to the background

e−1δ2L(N=2)
relative = − 2

κ2
∂µδy

′i∂µδy′i (for i = 2, . . . , nV ) , (3.150)

The center-of-mass Lagrangian turns out to be exactly the same as theN = 8

KK block (3.104)

δ2L(N=2)
KK = δ2L(N=8)

KK , (3.151)

with the identifications

h̄µν =
1√
2

(
δgµν −

1

4
gµνg

ρσδgρσ

)
, h =

1√
2
gρσδgρσ , (3.152)

aµ =
√

2δA0
µ , fµν = ∂µaν − ∂νaµ , (3.153)

φ = δy′1 = −
√

3di
2d

δyi = δΦ . (3.154)

The equality between δ2L(N=2)
KK and δ2L(N=8)

KK is expected because the KK

block is the same for any N = 2 SUGRA and in particular for the N = 2

truncations of N = 8 SUGRA.

The nV − 1 minimally coupled massless scalars δy′i, i = 2, . . . , nV param-

eterize flat directions in the moduli space, at least at quadratic order. In

important situations with higher symmetry, including homogeneous spaces

constructed as coset manifolds, it can be shown that these nV − 1 directions

are exactly flat at all orders. This implies that, in particular, these models

are stable [134, 135]. In such situations the “relative” coordinates δy′i are

Goldstone bosons parameterizing symmetries of the theories.
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• Vector block

Using the fact that FµνF
µν = 0, the vector block becomes

e−1δ2L(N=2)
vector = −1

2
∂µx∂

µx+
1

2
Fµνf

µνx− 1

4
fµνf

µν . (3.155)

Again, we find that δ2L(N=2)
vector = δ2L(N=8)

vector after proper normalization of the

field strength.

• Scalar block

The Lagrangian for hyperbosons δ2L(N=2)
scalars consists of 4nH minimally coupled

scalars. In addition, the center-of-mass diagonalization has brought nV − 1

minimally coupled “relative” scalars δ2L(N=2)
relative. This gives a total of nV +

4nH − 1 minimally coupled scalars.

We now turn to fermions. The interactions between gravitini and gaugini simplify

greatly when scalars are constant. However, they still depend on the prepoten-

tial through the structure constants dαβγ . The fermionic fluctuations in N = 2

SUGRA are therefore qualitatively different from the bosonic fluctuations which,

as we just saw, reduce to the form found in N = 8 SUGRA.

For fermions we need to further specialize and study the ST (n) model. This model

already appeared in section 3.3.3.c, as a truncation of N = 8 SUGRA to N = 2.

Presently, we introduce it as the model with nV = n + 1 vector multiplets and

prepotential

F =
1

κ2

X1(X2X2 −XαXα)

2X0
(α = 3, . . . , nV ) . (3.156)

We take the background scalars

y1 = 1, y2 =
√

2, yα = 0 (α = 3, . . . , nV ) , (3.157)

such that the normalization is d = 1 and therefore Φ(KK) = 0. As mentioned

already in section 3.3.3.c, this model generalizes the STU model which is equivalent

to ST (2).

• Gravitino-gaugino block

The Lagrangian for the gravitino-gaugino block decouples as

δ2L(N=2)
gravitino-gaugino = δ2L(N=2)

gravitino + δ2L(N=2)
gaugino , (3.158)

after using center-of-mass diagonalization. We call χ′i1 the center-of-mass
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gaugini, i.e. the gaugini that couples to the gravitini. More precisely, we

define

χ′i1 =
1

4

(√
3

3
χi1 +

√
6

3
χi2

)
, χ′i2 =

1

4

(√
6

3
χi1 −

√
3

3
χi2

)
,

χ′iα =
1

4
χiα for α = 3, . . . , nV . (3.159)

We find a center-of-mass multiplet that we call “gravitino block”

e−1δ2L(N=2)
gravitino = − 1

κ2
ψ̄iµγ

µνρDνψ
i
ρ +

1

κ2

(
−χ̄′1i /Dχ′i1 −

1

4
ψ̄µi F

−
µνψ

ν
j ε
ij

+
1

4
χ̄′1i F

−
µνγ

µνχ′1j ε
ij −

√
3i

2
χ̄′i1γµF−µνψ

νjεij + h.c.

)
, (3.160)

This Lagrangian couples the two gravitini to two center-of-mass gaugini. The

“relative” multiplets are nV − 1 identical copies of a “gaugino block”

e−1δ2L(N=2)
gaugino = − 2

κ2
χ̄′αi /Dχ′iα −

(
1

8κ2
χ̄′αi F

−
µνγ

µνχ′jαε
ij + h.c.

)
, (3.161)

where α = 2, . . . , nV .

• Hyperfermion block

The hyperfermion Lagrangian is given in (3.144). We notice that

δ2L(N=2)
hyperfermion = δ2L(N=2)

gaugino , (3.162)

The fluctuations of “relative” gaugini are therefore the same as the fluctua-

tions of hyperfermions. Therefore, we call both of them “gaugino block”.

The Lagrangians (3.160) and (3.161) are written in terms of Weyl fermions. If we

rewrite them with Majorana fermions, we find that

δ2L(N=2)
gravitino = δ2L(N=8)

gravitino , (3.163)

δ2L(N=2)
gaugino = δ2L(N=8)

gaugino , (3.164)

where the right-hand sides were defined in (3.112) and (3.113). The agreement

between our explicit computations of the fermionic blocks for the ST (n) model

in N = 2 SUGRA and the analogous results in N = 8 SUGRA is an important

consistency check on the truncations discussed in section 3.3.3.c. This also explains

the agreement (3.162) between fermionic fluctuations that are in different N = 2

multiplets. N = 2 gaugini and hyperfermions becomes equivalent when embedded
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into some larger structure, ultimately furnished by N = 8 SUGRA.

In summary, taking the dilaton to be constant has further decoupled the fluctua-

tions in N = 2 SUGRA around the KK background, as shown in Table 3.6. For

bosons, we recover the results of N = 8 SUGRA as expected, although we are more

general here since we allow for an arbitrary prepotential. For fermions, we have to

specialize to the ST (n) model to be able to further decouple the fluctuations. The

resulting fermionic fluctuations also reproduce the fluctuations of N = 8 SUGRA.

Degeneracy Multiplet Block content Lagrangian

1 KK block 1 graviton, 1 vector, 1 scalar (3.151)

nV Vector block 1 vector and 1 (pseudo)scalar (3.155)

nV + 4nH − 1 Scalar block 1 real scalar (3.141, 3.150)

1 Gravitino block 2 gravitini and 2 gaugini (3.160)

nV + nH − 1 Gaugino block 2 spin 1/2 fermions (3.144, 3.161)

Table 3.6: Decoupled fluctuations in N = 2 SUGRA around the KK black hole
with constant dilaton. The decoupling in the bosonic sector holds for an arbitrary
prepotential. The fermionic sector has been further decoupled by specializing to
the ST (n) model.

3.4 Logarithmic Corrections to Black Hole Entropy

The logarithmic correction controlled by the size of the horizon in Planck units

is computed by the functional determinant of the quadratic fluctuations of light

fields around the background solution. The arguments establishing this claim for

non-extremal black holes are made carefully in [22]. In this section we give a

brief summary of the steps needed to extract the logarithm using the heat kernel

approach. It follows the discussion in [26] and we refer to [122] for background

literature on technical aspects.

Naturally, we apply the procedure to the Kaluza-Klein black holes on the non-

BPS branch. This gives our final results for the coefficients of the logarithmic

corrections, summarized in Table 3.8.
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3.4.1 General Framework: Heat Kernel Expansion

In Euclidean signature, the effective action W for the quadratic fluctuations takes

the schematic form

e−W =

∫
Dφ exp

(
−
∫
d4x
√
g φnΛnmφ

m

)
= det∓1/2Λ , (3.165)

where Λ is a second order differential operator that characterizes the background

solution, and φn embodies the entire field content of the theory. The sign ∓ is

− for bosons and + for fermions. The formal determinant of Λ diverges and a

canonical way to regulate it is by introducing a heat kernel: if {λi} is the set of

eigenvalues of Λ, then the heat kernel D(s) is defined by

D(s) = Tr e−sΛ =
∑
i

e−sλi , (3.166)

and the effective action becomes

W = ∓1

2

∫ ∞
ε

ds

s
D(s) . (3.167)

Here ε is an ultraviolet cutoff, which is typically controlled by the Planck length,

i.e. ε ∼ `2P ∼ G.

In our setting it is sufficient to focus on the contribution of massless fields in the

two derivative theory. For this part of the spectrum, the scale of the eigenvalues

λi is set by the background size which in our case is identified with the size of the

black hole horizon, denoted by AH . The integral (3.167) is therefore dominated

by the integration range ε� s� AH , and there is a logarithmic contribution∫ ∞
ε

ds

s
D(s) = · · ·+ Clocal log(AH/G) + · · · . (3.168)

with coefficient denoted by Clocal. This term comes from the constant term in the

Laurent expansion of the heat kernel D(s). Introducing the heat kernel density

K(x, x; s) which satisfies

D(s) =

∫
d4x
√
g K(x, x; s) , (3.169)

it is customary to cast the perturbative expansion in s as

K(x, x; s) =

∞∑
n=0

sn−2a2n(x) , (3.170)
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and we identify

Clocal =

∫
d4x
√
g a4(x) . (3.171)

The functions {a2n(x)} are known as the Seeley-DeWitt coefficients. The loga-

rithmic term that we need is controlled by a4(x). The omitted terms denoted

by ellipses in (3.168) are captured by the other Seeley-DeWitt coefficients. For

example, the term a0(x) induces a cosmological constant at one-loop and the term

a2(x) renormalizes Newton constant.

There is a systematic way to evaluate the Seeley-DeWitt coefficients in terms of

the background fields and covariant derivatives appearing in the operator Λ [122].

The procedure assumes that the quadratic fluctuations can be cast in the form

−Λnm = (�)Inm + 2(ωµDµ)nm + Pnm . (3.172)

Here, Inm is the identity matrix in the space of fields, ωµ and P are matrices

constructed from the background fields, and � = DµD
µ. From this data, the

Seeley-DeWitt coefficient a4(x) is given by the expression

(4π)2a4(x) = Tr

[
1

2
E2 +

1

6
RE +

1

12
ΩµνΩµν (3.173)

+
1

360
(5R2 + 2RµνρσR

µνρσ − 2RµνR
µν)

]
,

where

E = P − ωµωµ − (Dµωµ) , Ωµν = [Dµ + ωµ, Dν + ων ] . (3.174)

This is the advantage of the heat kernel approach: after explicitly expanding the

action around the background to second order, we have a straightforward formula

to compute the Seeley-DeWitt coefficients from Λ (3.172).

The preceding discussion is based on the operator Λ (3.172) that is second order in

derivatives. For fermions, the quadratic fluctuations are described by a first order

operator H so the discussion must be modified slightly. We express the quadratic

Lagrangian as

δ2L = Ψ̄HΨ . (3.175)

Following the conventions in [26], we always cast the quadratic fluctuations for

the fermions in terms of Majorana spinors. The one-loop action is obtained by
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applying heat kernel techniques to the operator H†H and using

log detH =
1

2
log detH†H . (3.176)

Fermi-Dirac statistics also gives an additional minus sign. Thus, the fermionic

contribution is obtained by multiplying (3.173) with an additional factor of −1/2.

3.4.2 Local Contributions

It is conceptually straightforward to compute a4(x) via (3.173). However, it can

be cumbersome to decompose the differential operators, write them in the form

(3.172) and compute their traces. The main complication is that our matter con-

tent is not always minimally coupled, as emphasized in sections 3.3.2 and 3.3.4.

To overcome these technical challenges we automated the computations using

Mathematica with the symbolic tensor manipulation package xAct5. In partic-

ular, we used the subpackage xPert [136] to expand the bosonic Lagrangian to

second order. We created our own package for treatment of Euclidean spinors.

The computation proceeds as follows:

1. Expand the Lagrangian to second order.

2. Gauge-fix and identify the appropriate ghosts.

3. Reorganize the fluctuation operator Λnm and extract the operators ωµ and P

from (3.172).

4. Compute the Seeley-DeWitt coefficient a4(x) using formula (3.173).

5. Simplify a4(x) using the background equations of motion, tensor and gamma

matrix identities.

The results of the expansion to second order with xPert match with the bosonic

Lagrangians summarized in Table 3.3. In Appendix 3.5 we elaborate on the inter-

mediate steps and record the traces of E and Ωµν for each of the blocks encountered

in our discussion.

A priori, the Seeley-DeWitt coefficient a4(x) is a functional of both the geometry

and the matter fields. The fact that the dilaton Φ(KK) is constant on our back-

ground simplifies the situation greatly. By using the equations of motion, a4(x)

can be recast as a functional of the geometry alone. We list the equations that we

use to simplify a4(x) explicitly in Appendix 3.5.

As a result, for our background, the Seeley-DeWitt coefficient at four derivative

5http://www.xact.es/www.xact.es
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order can be arranged in the canonical form

a4(x) =
c

16π2
WµνρσW

µνρσ − a

16π2
E4 , (3.177)

where a and c are constants governed by the couplings and field content of the

theory and the curvature invariants are defined in (3.189) and (3.190). The values

of c and a are summarized in Tables 3.7 and 3.8.

Multiplet \ Properties Content d.o.f. c a c− a

Minimal boson 1 real scalar 1 1
120

1
360

1
180

Gaugino block 2 gaugini 4 13
960 − 17

2880
7

360

Vector block 1 vector and 1 (pseudo)scalar 3 1
40

11
120 − 1

15

Gravitino block 2 gravitini and 2 gaugini 8 − 347
480 − 137

1440 − 113
180

KK block 1 graviton, 1 vector, 1 scalar 5 37
24

31
72

10
9

Table 3.7: Contributions to a4(x) decomposed in the multiplets that are natural
to the KK black hole.

Multiplet / Theory N = 8 N = 6 N = 4 N = 2 N = 0

KK block 1 1 1 1 1

Gravitino block 4 3 2 1 0

Vector block 27 15 n+ 5 nV 0

Gaugino block 24 10 2n nV + nH − 1 0

Scalar block 42 14 5n− 4 nV + 4nH − 1 0

a 5
2

3
2

1
32 (22 + 3n) 1

192 (65 + 17nV + nH) 31
72

c 0 0 3
32 (2 + n) 3

64 (17 + nV + nH) 37
24

Table 3.8: The degeneracy of multiplets in the spectrum of quadratic fluctuations
around the KK black hole embedded in to various theories, and their respective
values of the c and a coefficients defined in (3.177). For N = 4, the integer n is
the number of N = 4 matter multiplets. For N = 2, the recorded values of c and
a for the gravitino and the gaugino blocks were only established for ST (nV − 1)
models.
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3. Quantum corrections to black hole entropy

It is worth making a few remarks.

1. The value of c− a in each case is independent of the couplings of the theory.

In other words, c − a can be reproduced by an equal number of minimally

coupled fields on the same black hole background. This property is due to

the fact that none of the non-minimal couplings appearing in our blocks

involve the Riemann tensor Rµνρσ. Therefore, the coefficient of RµνρσR
µνρσ

is insensitive to the non-trivial couplings.

2. The values of c for blocks recorded in Table 3.7 do not have any obvious

regularity, they are not suggestive of any cancellations. The vanishing of

the c-anomaly for the N = 6 and N = 8 theories, exhibited in Table 3.8,

seems therefore rather miraculous. Somehow these embeddings with large

supersymmetry have special properties that are not shared by those with

lower supersymmetry.

3.4.3 Quantum Corrections to Black Hole Entropy

The logarithmic terms in the one-loop effective action of the massless modes correct

the entropy of the black hole as

δSBH =
1

2
(Clocal + Czm) log

AH
G

. (3.178)

In this subsection we gather our results and evaluate the quantum contribution

for the Kaluza-Klein black hole.

The local contribution is given by the integrated form of the Seeley-DeWitt coef-

ficient a4(x):

Clocal =
c

16π2

∫
√
g d4xWµνρσW

µνρσ − a

16π2

∫
√
g d4xE4 . (3.179)

The second term is essentially the Euler characteristic

χ =
1

32π2

∫
d4x
√
g E4 = 2 , (3.180)

for any non-extremal black hole. It is a topological invariant so it does not de-

pend on black hole parameters. In contrast, the first integral in (3.179) depends

sensitively on the details of the black hole background. Using the KK black hole

presented in section 3.2 with J = 0 and P = Q we find

1

16π2

∫
d4x
√
gWµνρσW

µνρσ = 4 +
8

5 ξ(1 + ξ)
, (3.181)
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where ξ ≥ 0 is a dimensionless parameter related to the black hole parameters as

Q

GM
=

P

GM
=

√
2(1 + ξ)

2 + ξ
. (3.182)

In this parametrization the extremal (zero temperature) limit corresponds to ξ → 0

and the Schwarzschild (no charge) limit corresponds to ξ →∞.

We also need to review the computation of Czm, the integer that captures correc-

tions to the effective action due to zero modes. In our schematic notation zero

modes λi = 0 are included in the heat kernel (3.166) and therefore contribute to

the local term Clocal. However, the zero mode contribution to the effective action

is not computed correctly by the Gaussian path integral implied in (3.165) and

should instead be replaced by an overall volume of the symmetry group responsible

for the zero mode. It is the combination of removing the zero-mode from the heat

kernel and adding it back in again as a volume factor that gives the correction

Czm.

Additionally, the effective action defined by the Euclidean path integral with ther-

mal boundary conditions is identified with the free energy in the canonical ensemble

whereas the entropy is computed in the microcanonical ensemble where mass and

charges are fixed. The Legendre transform relating these ensembles gives a loga-

rithmic contribution to the entropy that we have absorbed into Czm, for brevity.

The various contributions to Czm are not new, they were analyzed in [22]. The

result can be consolidated in the formula [26]

Czm = −(3 +K) + 2NSUSY + 3 δnon-ext . (3.183)

Here K is the number of rotational isometries of the black hole, NSUSY is the

number of preserved real supercharges. δnon-ext is 0 if the black hole is extremal

and 1 otherwise. The non-extremal KK black hole with J = 0 is spherically

symmetric and has K = 3, NSUSY = 0 and δnon-ext = 1. Therefore, Czm = −3 for

all the non-extremal black holes we consider in this paper but Czm = −6 in the

extreme limit.

Combining all contributions, our final result for the coefficient of the logarithmic

correction to the non-extreme black hole entropy is

1

2
(Clocal + Czm) = 2(c− a)− 3

2
+

4

5 ξ(1 + ξ)
c , (3.184)

where the values of c and a for the theories discussed in this paper are given

in Table 3.8. The expression manifestly shows that when c 6= 0, which is the
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3. Quantum corrections to black hole entropy

case for N = 0, 2, 4, the quantum correction to the entropy depends on black

hole parameters through ξ or, by the relation (3.182), through the physical ratio

Q/GM . The cases with very high supersymmetry are special since c = 0 when

N ≥ 6 and then the coefficient of the logarithm is purely numerical. For example,

we find the quantum corrections

δS
(N=6)
non-ext = −9

2
log

AH
G

, δS
(N=8)
non-ext = −13

2
log

AH
G

, (3.185)

to the non-extremal black holes on the non-BPS branch.

As we have stressed, the KK black hole on the non-BPS branch is not intrinsically

exceptional. In the non-rotating case with P = Q that is our primary focus, the

geometry is the standard Reissner-Nordström black hole. However, Kaluza-Klein

theory includes a scalar field, the dilaton, and this dilaton couples non-minimally

to gravity and to the gauge field. According to Table 3.8 we find c = 37
24 for the

KK black hole that is, after all, motivated by a higher dimensional origin.

An appropriate benchmark for this result is the minimally coupled Einstein-Maxwell

theory, which has Reissner-Nordström as a solution, with an additional minimally

coupled scalar field. The KK theory and the minimal theory both have c−a = 10
9 ,

because these theories have the same field content, and the zero-mode content of

the black holes in the two theories is also identical, because the geometries are the

same. However, c = 55
24 for the minimally coupled black hole, a departure from

the KK black holes. Thus, as one would expect, the quantum corrections to the

black hole entropy depend not only on the field content but also on the couplings

to low energy matter.

Although the focus in this paper has been on the non-extreme case, and specifi-

cally whether the logarithmic corrections to the black hole entropy depend on the

departure from extremality, it is worth highlighting the extremal limit since in this

special case a detailed microscopic model is the most realistic. In the extremal case

we find the quantum correction on the non-BPS branch

δSext = −N log
AH
G

, (3.186)

for N = 6, 8. The surprising simplicity of this result is inspiring.

3.5 Discussion

In summary, we have shown that the spectrum of quadratic fluctuations around

static Kaluza-Klein black holes in four dimensional supergravity partially diago-

nalizes into blocks of fields. Tables 3.7 and 3.8 give the c and a coefficients that
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control the Seeley-DeWitt coefficient a4(x) for each block and, taking into account

appropriate degeneracies, for each supergravity theory. These coefficients directly

yield the logarithmic correction to the black hole entropy via (3.178-3.179).

The detailed computations are quite delicate since any improper sign or normal-

ization can dramatically change our conclusions. We therefore proceeded with

extreme care, devoting several sections to explain the embedding of the Kaluza-

Klein black hole into a range of supergravities and carefully record the action

for quadratic fluctuations of the fields around the background. Moreover, we al-

lowed for considerable redundancy, with indirect symmetry arguments supporting

explicit computations and also performing many computations both analytically

and using Mathematica. These steps increase our confidence in the results we

report.

The prospect that interesting patterns in these corrections could lead to novel

insights into black hole microstates is our main motivation for computing these

quantum corrections in supergravity theories. Our discovery that c = 0 for N =

6, 8 on the non-BPS branch is therefore gratifying. Recall that when c vanishes,

the quantum correction is universal, it depends on the matter content of the theory

but not on the parameters of the black hole. This property therefore holds out

promise for a detailed microscopic description of these corrections. Such progress

would be welcome since our current understanding of, for example, the D0 −D6

system leaves much to be desired [137–140] for the non-BPS branch.

Conversely, our analysis shows that on the non-BPS branch c 6= 0 for N ≤ 4. On

the BPS-branch not only has it been found that c = 0 for all N ≥ 2 but this fact

has also been shown to be a consequence of N = 2 supersymmetry [124]. It would

be interesting to similarly understand why c = 0 requires N ≥ 6 on the non-BPS

branch.

To date, there is no known microstate counting formula that, when compared to

the black hole entropy, accounts for terms that involve c 6= 0. For example, in all

cases considered in [115, 116, 141], the object of interest is an index, or a closely

related avatar, and the resulting logarithmic terms nicely accommodate quantum

corrections when Clocal is controlled by a alone. The challenge of reproducing the

logarithmic correction when c is non-vanishing comes from the intricate depen-

dence on the black hole parameters that the Weyl tensor gives to Clocal. It would

be interesting to understand which properties a partition function must possess in

order that the logarithmic correction to the thermodynamic limit leads to c 6= 0.

An interesting concrete generalization of the present work would be to increase

the scope of theories considered. In section 3.3.4 our main obstacle to covering

all N = 2 theories is the complicated structure of fermion couplings for a generic
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prepotential, and hence we restrict the discussion in section 3.3.4.d to the ST (n)

models. Nevertheless, we suspect that for a generic prepotential our conclusions

would not be significantly different. In particular, we predict that c 6= 0 on the

non-BPS branch for any N = 2 supergravity. It would of course be desirable to

confirm this explicitly.

A more ambitious generalization would be to consider more general black hole

solutions, specifically those where the dilaton Φ(KK) is not constant. Our assump-

tion that Φ(KK) = 0 simplified our computations greatly by sorting quadratic

fluctuations into blocks that are decoupled from one another. By addressing the

technical complications due to relaxation of this assumption and so computing

a4(x) for black holes with non-trivial dilaton we could, in particular, access so-

lutions with non-zero angular momentum J 6= 0. The rotating black holes on

the non-BPS branch are novel since they never have constant dilaton, even in the

extremal limit [142]. Therefore, they offer an interesting contrast to the Kerr-

Newman black hole, their counterparts on the BPS branch [26]. Rotation is quite

sensitive to microscopic details so any differences or similarities between the quan-

tum corrections to rotating black holes on the BPS and non-BPS branches may

well provide valuable clues towards a comprehensive microscopic model. A non-

constant dilaton is also the linchpin to connections with the new developments in

AdS2 holography for rotating black holes such as in [48,143].

Appendix

In this appendix, we give the details on the computation of the Seeley-DeWitt co-

efficients for Kaluza Klein black holes and their embeddings in N ≥ 2 supergravity.

Most of the computations were done using the Mathematica package xAct. We

present our results according to the organization of quadratic fluctuations into

blocks that was introduced in section 3.3.2.

The basic steps of our implementation are:

1. We expand the Lagrangian to second order.6 This was done in sections 3.3.2

and 3.3.4 for the supergravity theories of interest. The bosonic Lagrangian

can also be expanded using xPert.

2. We gauge-fix and add the corresponding ghosts. The gauge-fixing and the

ghosts were detailed for each block in sections 3.3.2 and 3.3.4. In this ap-

pendix, we highlight and record their contributions to the heat kernel.

6For fermions we always write the quadratic fluctuations with Majorana spinors, following
the conventions of [26].
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3. We rearrange the fluctuation operator Λnm so that it takes the canonical form

(3.172). We then read off the operators ωµ and P and compute the operators

E and Ωµν . These are the most cumbersome steps so they are executed

primarily using Mathematica. Since some expressions are rather lengthy for

the matrix operators due to the non-minimal couplings, we mostly present

the traces of these operators.

4. We compute the Seeley-DeWitt coefficient a4(x) using formula (3.173). This

also includes the ghosts from the second step.

5. We simplify a4(x) using the equations of motion, tensor and gamma matrix

identities. This brings a4(x) to its minimal form (3.177), where we can read

off the coefficients c and a.

3..1 Preliminaries

We use the following formula to compute the Seeley-DeWitt coefficient

(4π)2a4(x) = Tr

[
1

2
E2 +

1

6
RE +

1

12
ΩµνΩµν (3.187)

+
1

360
(5R2 + 2RµνρσR

µνρσ − 2RµνR
µν)

]
,

This object further simplifies due to the equations of motion, Bianchi, and Schouten

identities. These simplifications imply that we can cast (3.187) in the form

a4(x) =
c

16π2
WµνρσW

µνρσ − a

16π2
E4 , (3.188)

where the square of the Weyl tensor is

WµνρσW
µνρσ = RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2 , (3.189)

and the Euler density is

E4 = RµνρσR
µνρσ − 4RµνR

µν +R2 . (3.190)

For each block, as summarized in Table 3.3, we will report both (3.187) and (3.188).

The identities used to simplify (3.187) to its minimal form (3.188) are listed below.

For fermionic fluctuations, we also use many gamma matrix identities which are

well known and not repeated here.
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On-shell conditions: The equations of motion background with constant dilaton

are

FµαF
α
ν = 2Rµν , R = 0 , (3.191)

FµνF
µν = 0 , DµF

µν = 0 .

Bianchi identities: Starting from

∇µF̃µν = 0 , Rµ[ναβ] = 0 , (3.192)

where F̃µν = − i
2εµναβF

αβ we find

RµναβR
µανβ =

1

2
RµναβR

µναβ , (3.193)

(DαFµν)(DνFµα) =
1

2
(DαFµν)(DαFµν) ,

Fαν(DαFµν) =
1

2
F να(DµFνα) ,

RµανβF
µνFαβ =

1

2
RµναβF

µνFαβ ,

εµναβD
αF ρβ =

1

2
εµναβD

ρFαβ .

Schouten identities: The Schouten identity is gµ[νερστλ] = 0. From this, we can

derive

F̃µαF
α
ν =

1

4
gµν F̃αβF

αβ (3.194)

Derivative relations: The following identity is also useful

(DαFµν)(DαFµν) = −2RµνF
µαF να +RµναβF

µνFαβ (3.195)

and holds up to a total derivative.

3..2 KK Block

The quadratic Lagrangian is given in (3.104). To evaluate the Seeley-DeWitt

coefficient, the kinetic term of hµν is analytically continued to

hnew
µν = − i

2
hµν , (3.196)
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for the kinetic term to have the right sign. In addition, in order to project onto

the traceless part of a symmetric tensor, we define

Gµνρσ =
1

2

(
δµρδ

ν
σ + δµσδ

ν
ρ −

1

2
gµνgρσ

)
. (3.197)

Traces of operators must be taken after contraction with this tensor. For example,

for a four index operator O we use

TrO = GµνρσO
ρσ
µν . (3.198)

The relevant traces that appear in (3.187) for the KK block are

TrE = 3FµνF
µν − 7R ,

TrE2 =
33

16
FµρF

νρFµσF
σ
ν +

21

16
FµνF

µνFρσF
ρσ − 5RµνR

µν

−5

2
RµνF

µ
ρF

νρ − 1

2
RFµνF

µν + 5R2 + 2RµνρσR
µνρσ

+2RµρνσR
µνρσ − 2Fµν;µF

ρ
ν ;ρ +

1

2
Fµρ;νF

µν;ρ +
1

2
Fµν;ρF

µν;ρ ,

Tr ΩµνΩµν = −7

8
FµρF

νρFµσF
σ
ν −

23

8
FµνF

µνFρσF
ρσ + 2RµνF

µ
ρF

νρ

+RFµνF
µν + 3RµρνσF

µνF ρσ − 7RµνρσR
µνρσ − Fµν µF ρ

ν ;ρ

+4Fµρ;νF
µν;ρ − 8Fµν;ρF

µν;ρ . (3.199)

The gauge-fixing also introduces ghosts with the Lagrangian

e−1Lghosts = 2bµ (�gµν +Rµν) cν + 2b�c− 4bFµνDµcν , (3.200)

where bµ, cµ are vector ghosts associated to the graviton and b, c are scalar ghosts

associated to the graviphoton. The contribution of the ghosts are

TrE = 2R , (3.201)

TrE2 = 2RµνR
µν ,

Tr ΩµνΩµν = −2RµνρσR
µνρσ .

The total ghost contribution is

(4π)2aghost
4 (x) =

1

9
RµνρσR

µνρσ − 17

18
RµνR

µν − 17

36
R2 . (3.202)
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Combining the contributions (3.199) and (3.202) gives

(4π)2a4(x) =
23

24
FµρF

νρFµσF
σ
ν +

5

12
FµνF

µνFρσF
ρσ − 127

36
RµνR

µν

−13

12
RµνF

µ
ρF

νρ +
1

3
RFµνF

µν +
77

72
R2 +

1

4
RµρνσF

µνF ρσ

+
11

18
RµνρσR

µνρσ +RµρνσR
µνρσ − 13

12
Fµν ;µF

ρ
ν ;ρ +

7

12
Fµρ;νF

µν;ρ

− 5

12
Fµν;ρF

µν;ρ .

We use the identities listed in (3.191-3.194) to obtain

(4π)2a4(x) =
10

9
RµνρσR

µνρσ − 49

36
RµνR

µν , (3.203)

and from here we find

aKK =
31

72
, cKK =

37

24
. (3.204)

3..3 Vector Block

The vector block in its minimal form is described by the quadratic Lagrangian

(3.155) and for the matter content of N = 8 by (3.106). The matrices that appear

in the quadratic fluctuation operator are

E =

 1
4F

ρ
µ Fνρ −Rµν 1

2F
ρ
ν ;ρ

1
2F

ρ
µ ;ρ − 1

4FρσF
ρσ

 , (3.205)

Ωρσ =

Rµνρσ + 1
4FµσFνρ −

1
4FµρFνσ

1
2Fµσ;ρ − 1

2Fµρ;σ

− 1
2Fνσ;ρ + 1

2Fνρ;σ 0

 ,

where the first row/column corresponds to the vector field and the second row/column

to the scalar field. The relevant traces are

TrE = −R ,

TrE2 =
1

16
FµρF

νρFµσF
σ
ν +

1

16
FµνF

µνFρσF
ρσ +RµνR

µν

−1

2
RµνF

µ
ρF

νρ − 1

2
Fµν;µF

ρ
ν ;ρ ,

Tr ΩµνΩµν =
1

8
FµρF

νρFµσF
σ
ν −

1

8
FµνF

µνFρσF
ρσ +RµρνσF

µνF ρσ

−RµνρσRµνρσ + Fµρ;νF
µν;ρ − Fµν;ρF

µν;ρ . (3.206)
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The ghosts for the vector block are two minimally coupled scalars with fermionic

statistics. Their contribution to the Seeley-DeWitt coefficient is

(4π)2aghost
4 (x) = − 1

180
(2RµνρσR

µνρσ − 2RµνR
µν + 5R2) . (3.207)

We combine the contributions of the vector block and its associated ghosts and

get

(4π)2a4(x) =
1

24
FµρF

νρFµσF
σ
ν +

1

48
FµνF

µνFρσF
ρσ +

29

60
RµνR

µν

−1

4
RµνF

µ
ρF

νρ − 1

8
R2 +

1

12
RµρνσF

µνF ρσ − 1

15
RµνρσR

µνρσ

−1

4
Fµν;µF

ρ
ν ;ρ +

1

12
Fµρ;νF

µν;ρ − 1

12
Fµν;ρF

µν;ρ (3.208)

After using the identities (3.191-3.194), we obtain

(4π)2a4(x) = − 1

15
RµνρσR

µνρσ +
19

60
RµνR

µν . (3.209)

This leads to

avector =
11

120
, cvector =

1

40
. (3.210)

When the vector block contains a pseudoscalar instead of a scalar, such as in

(3.107), the result remains the same because of simplifications due to our back-

ground.

3..4 Gravitino Block

The gravitino block is characterized by the quadratic Lagrangian (3.112). After

using gamma matrix identities, the relevant traces are

TrE =
1

2
FµνF

µν +
1

2
F̃µν F̃

µν − 10R ,

TrE2 = −105

128
FµρF

νρFµσF
σ
ν +

81

128
FµνF

µνFρσF
ρσ +

43

64
FµνF ρσF̃µρF̃νσ

−13

32
FµρF

νρF̃ σ
µ F̃νσ +

7

128
F̃µρF̃

νρF̃ σ
µ F̃νσ −

21

64
FµνF

µν F̃ρσF̃
ρσ

+
9

128
F̃µν F̃

µν F̃ρσF̃
ρσ − 1

4
RFµνF

µν − 1

4
RF̃µν F̃

µν +
5

2
R2

−3

2
RµρνσF

µνF ρσ +
3

2
RµρνσF̃

µν F̃ ρσ + 4RµνρσR
µνρσ

−7

2
Fµρ;νF

µν;ρ + 3Fµν;ρF
µν;ρ +

3

2
F̃µρ;ν F̃

µν;ρ − 2F̃µν;ρF̃
µν;ρ ,
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Tr ΩµνΩµν =
185

64
FµρF

νρFµσF
σ
ν −

185

64
FµνF

µνFρσF
ρσ − 27

32
FµνF ρσF̃µρF̃νσ

− 3

16
FµρF

νρF̃ σ
µ F̃νσ +

9

64
F̃µρF̃

νρF̃ σ
µ F̃νσ +

33

32
FµνF

µν F̃ρσF̃
ρσ

− 9

64
F̃µν F̃

µν F̃ρσF̃
ρσ + 7RµρνσF

µνF ρσ − 3RµρνσF̃
µν F̃ ρσ

−13RµνρσR
µνρσ + 7Fµρ;νF

µν;ρ − 7Fµν;ρF
µν;ρ − 3F̃µρ;ν F̃

µν;ρ

+3F̃µν;ρF̃
µν;ρ . (3.211)

The gauge-fixing produces fermionic ghosts bA, cA, eA with Lagrangian

e−1Lghost = b̄Aγ
µDµcA + ēAγ

µDµeA , (3.212)

where A = 1, 2 is the flavor index. This simply corresponds to six minimally

coupled Majorana fermions which contribute with an opposite sign. Their Seeley-

DeWitt contribution is

(4π)2aghost
4 (x) = − 1

120

(
7RµνρσR

µνρσ + 8RµνR
µν − 5R2

)
. (3.213)

Combining (3.211) and (3.213) gives

(4π)2a4(x) =
65

768
FµρF

νρFµσF
σ
ν −

29

768
FµνF

µνFρσF
ρσ − 17

128
FµνF ρσF̃µρF̃νσ

+
7

64
FµρF

νρF̃ σ
µ F̃νσ −

5

256
F̃µρF̃

νρF̃ σ
µ F̃νσ +

5

128
FµνF

µν F̃ρσF̃
ρσ

− 3

256
F̃µν F̃

µν F̃ρσF̃
ρσ +

2

45
RµνR

µν +
1

48
RFµνF

µν +
1

48
RF̃µν F̃

µν

− 1

36
R2 +

1

12
RµρνσF

µνF ρσ − 1

4
RµρνσF̃

µν F̃ ρσ − 113

180
RµνρσR

µνρσ

+
7

12
Fµρ;νF

µν;ρ − 11

24
Fµν;ρF

µν;ρ − 1

4
F̃µρ;ν F̃

µν;ρ +
3

8
F̃µν;ρF̃

µν;ρ .

Using the identities (3.191-3.194) gives

(4π)2a4(x) = −113

180
RµνρσR

µνρσ +
767

720
RµνR

µν , (3.214)

and this leads to

agravitino = − 137

1440
, cgravitino = −347

480
. (3.215)
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3..5 Gaugino Block

The gaugino block is given by the Lagrangian (3.113). In this case, the relevant

traces are

TrE =
1

4
FµνF

µν − 2R ,

TrE2 = − 1

32
FµρF

νρFµσF
σ
ν +

3

128
FµνF

µνFρσF
ρσ − 1

8
RFµνFµν +

1

2
R2

−1

2
Fµρ;νF

µν;ρ +
1

4
Fµν;ρF

µν;ρ ,

Tr ΩµνΩµν =
1

8
FµρF

νρFµσF
σ
ν −

1

8
FµνF

µνFρσF
ρσ +RµρνσF

µνF ρσ

−RµνρσRµνρσ + Fµρ;νF
µν;ρ − Fµν;ρF

µν;ρ . (3.216)

The Seeley-DeWitt coefficient is

(4π)2a4(x) =
1

384
FµρF

νρFµσF
σ
ν −

1

1536
FµνF

µνFρσF
ρσ +

1

45
RµνR

µν

+
1

96
RFµνFµν −

1

72
R2 − 1

24
RµρνσF

µνF ρσ +
7

360
RµνρσR

µνρσ

+
1

12
Fµρ;νF

µν;ρ − 1

48
Fµν;ρF

µν;ρ . (3.217)

and gives after simplification

(4π)2a4(x) =
7

360
RµνρσR

µνρσ − 73

1440
RµνR

µν , (3.218)

which leads to

agaugino = − 17

2880
, cgaugino =

13

960
. (3.219)
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4
Quantum teleportation

via traversable wormholes

How large can quantum effects be in gravity?

The broad question we want to ask is: how large can quantum effects be in gravity?

In this chapter, which is based on [3], we consider this question for traversable

wormholes in the context of AdS/CFT. Recently, it was shown by Gao, Jafferis

and Wall that a small quantum effect can be used to make a wormhole traversable

for a very short time. Can we make this quantum effect larger? We will attempt to

use the same procedure to construct wormholes that are traversable for all time,

i.e. that are eternal. We will learn that, assuming Poincaré symmetry in the

transverse directions, it does not seem possible to do so. This leads to interesting

lessons about what is possible or not in quantum gravity.

4.1 Introduction: traversable wormholes

4.1.1 Wormholes in general relativity

The idea of wormholes dates back to the paper by Einstein and Rosen [144], who

observed that general relativity has solutions corresponding to bridges connecting

two different universes (or two distant regions of the same universe). One of these

solutions is the maximally extended Schwarzschild solution. These wormholes are

not traversable, because a light ray sent from one side does not make it to the

other side, but falls into the black hole singularity. This is related to the fact that
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nothing can escape from a black hole in classical general relativity.

Morris and Thorne described the geometry of a traversable wormhole in [145].

They showed that it could be traversed by human beings. They observed that

it had to be supported by exotic matter which violates all the energy conditions

that ordinary matter is expected to satisfy. At that time, they didn’t think of

it as physical (they actually presented it as a tool to teach general relativity).

They acknowledged however that quantum field theory provides tantalizing hints

that these energy conditions could in fact be violated in nature. More than thirty

years later, this expectation was fulfilled: Maldacena, Milekhin and Popov have

shown that a macroscopic and long-lived traversable wormhole is a solution of the

accepted low energy theory of nature (semi-classical Einstein gravity coupled to

the Standard Model) [146].

We now review why traversable wormholes cannot exist in classical gravity. Phys-

ical matter is required to satisfy suitable energy conditions. This is necessary

to have a well-defined notion of causality. For example, we don’t want to allow

closed timelike curves. This is to avoid causality violation such as the grandfather

paradox: one should not be able to travel to the past and kill his own progenitor.

Traversable wormholes are problematic because one can use them to build time

machines allowing this [75].

Suitable energy conditions are also a fundamental ingredient in the singularity

theorems of Penrose and Hawking. The usual classical requirement is the null

energy condition (NEC) which says that the matter stress tensor Tµν should satisfy

Tµνk
µkν ≥ 0 , (4.1)

for any future-directed null vector kµ. The inclusion of quantum effects, in a

semiclassical context, showed that this energy condition could be violated. For

example, the Hawking evaporation process gives a local violation of the NEC.

Simpler examples are the Casimir energy between two plates [147] or moving mir-

rors [148,149]. It is now believed that the condition on quantum matter should be

the achronal averaged null energy condition (ANEC), which says that∫ +∞

−∞
ds Tµνk

µkν ≥ 0 , (4.2)

over a complete achronal null geodesic, where achronal means that no two points

should be connected by a timelike curve. This statement turns out to be sufficient

to preserve causality and the singularity theorems [76–79].

Let’s comment on the requirement that the geodesic is achronal. Dropping this
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requirement, there are simple counterexamples: a null geodesic on the cylinder

doesn’t satisfy the ANEC because the Casimir energy can be negative everywhere.

At the same time, this geodesic necessarily wraps around the cylinder and is thus

not achronal: there are points on the geodesic that are timelike separated. Im-

portantly, the achronal requirement implies that although traversable wormholes

are possible, they can never be used as shortcuts: the outside path must always

be faster. As put in [80], “traversable wormholes are like getting a bank loan: you

can only get one if you are rich enough not to need it”.

The achronal ANEC seems to be the weakest form of energy condition that ensures

a well-defined notion of causality. It is believed to be true in semiclassical general

relativity, although no proof is known. It has been proven for linearized perturba-

tions of Minkowski spacetime1 using ideas from quantum information theory [150]

and from the conformal bootstrap [151].

4.1.2 The Gao-Jafferis-Wall protocol

In 2017, Gao, Jafferis and Wall proposed a protocol to create a traversable worm-

hole in AdS/CFT [80]. Let’s consider an eternal AdS black hole, such as BTZ in

three dimensions. It is dual to a state living in the tensor product of two CFTs:

the thermofield double state [62]

|TFD〉 =
∑
E

e−βE/2|E〉 ⊗ |E〉 ∈ HL ⊗HR (4.3)

The large amount of entanglement is responsible for the connectivity in space-

time. The entanglement entropy obtained after tracing over one of the side corre-

sponds to the Bekenstein-Hawking entropy on the other side. This geometry has

an Einstein-Rosen wormhole which is not traversable because any signal crossing

the horizon hits the singularity. In some sense, the wormhole is barely traversable,

because a signal sent early enough almost makes it to the side.

The idea of Gao, Jafferis and Wall is to introduce a small coupling between the

two CFTs for a short time. This takes the form of a double-trace coupling with

interaction Lagrangian

Lint = g

∫ tf

ti

dtd~xOL(t, ~x)OR(t, ~x) . (4.4)

The effect of this coupling can be computed in perturbation theory. It generates

a stress tensor in the bulk, which, for the correct sign of g, gives a contribution

1Around Minkowski spacetime, the achronal ANEC is equivalent to the ANEC since any null
geodesic is achronal.
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OR(0)OL(0)

Figure 4.1: The Gao-Jafferis-Wall protocol: a non-local coupling between the two
side of an eternal AdS black hole creates a negative energy shockwave (in blue),
which allows a signal (in red) to travel from one side to the other.

that violates the ANEC for the geodesic shown in red in Figure 4.1. This allows

the geodesic to defocus and escape from the singularity: the wormhole is now

traversable! An equivalent picture is that the coupling creates a negative energy

shockwave in the bulk, whose effect is to give a time advance to the signal [152,153],

allowing it to escape to the other side. This is illustrated in Figure 4.1.

Even though this protocol leads to a non-local coupling in the bulk, which is why

such a spectacular effect is possible, this coupling is perfectly consistent and natural

in AdS/CFT. This is because given two holographic CFTs in the thermofield states,

one can always couple the two CFTs in the laboratory, e.g. by connecting them

through a wire. In the lab, the two systems can be close to each other so that

the coupling appears instantaneous from the point of view of the bulk. Actually,

concrete proposals to realize this protocol using atom arrays and trapped ions have

recently appeared [154].

We must stress that it is not surprising that a signal can be sent from one side to

the other, since we have explicitly introduced a coupling between the two sides.

What is surprising is the way the signal gets through, namely in free fall through

a wormhole. A bulk traveler going through the protocol would feel nothing in

particular and will remain in good health. This cannot be said for a traveler

which explicitly uses a coupling of the form (4.4) to go from one side to another.
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He will be annihilated on one side and recreated on the other side, which doesn’t

appear to be a very safe travel route.

JT gravity provides a nice framework to study traversable wormholes, where ev-

erything is solvable analytically. The dynamics of JT gravity can be formulated

as that of a “boundary particle”. In the thermofield double, we have two bound-

ary particles corresponding to the two sides of the AdS2-Rindler geometry. The

Gao-Jafferis-Wall coupling introduces an attractive force between the two bound-

ary particles which changes the positions of the horizons and makes the wormhole

traversable. We refer to [155] for a detailed discussion.

Quantum teleportation is a process by which the full state of a quantum system

can be transmitted using shared entanglement and classical communication [156].

This protocol makes it possible to send the full quantum state of a system, even

though naively any measurement would destroy it. The idea is to make a joint

measurement also involving a shared entangled system. Using a classical channel to

communicate the result of this measurement allows the other party to reconstruct

the original quantum state. The Gao-Jafferis-Wall protocol implements quantum

teleportation in AdS/CFT. The coupling (4.4) plays the role of the classical com-

munication and the Einstein-Rosen wormhole is the required shared entanglement.

As discussed in section 1.3.3, this protocol strengthens the ER=EPR proposal.

4.1.3 Some traversable wormhole solutions

We now describe two long-lived traversable solutions that have appeared in the

literature following [80]. These solutions are relevant for the question we are asking

because they are example where the quantum effect is relatively large.

In the context of JT gravity, it was shown in [157] that one can obtain an eternal

traversable wormhole in two dimensions, by introducing a static coupling between

the two sides. This is actually the 2d version of the construction that we will study.

As we will see, a higher-dimensional version of this wormhole doesn’t actually exist

because the quantum effect that supports it cannot be made strong enough in

higher dimensions. This is related to the fact that 2d gravity is rather peculiar

and can behave differently compared to more realistic gravity theories.

In [146], a traversable wormhole solution was constructed in the accepted theory

of nature, namely semiclassical gravity coupled to the Standard Model. This relied

on a subtle balance between the large magnetic field of near-extremal Reissner-

Nordström black holes and the small negative Casimir energy of fermions looping

through the wormhole. We must note that although this wormhole was shown to be

a solution, no natural process to produce it (apart from quantum tunneling), was

proposed. Hence, it is unclear whether this solution has actually been realized in
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our universe. As discussed in [158], it is possible that primordial black hole carried

a large magnetic charge (coming from magnetic monopoles). The evaporation

process is greatly enhanced for these black holes and they would have quickly

decayed to extremality. Then, a binary system of these black holes could eventually

have tunneled into the traversable wormhole solution.

4.1.4 Introduction to our work

The basic question behind our work is how much can we push the Gao-Jafferis-

Wall protocol. More precisely, we will ask whether this protocol can be used

to construct eternal traversable wormholes connecting two asymptotically AdS

regions. We attempt to do this by introducing a static coupling between their

dual CFTs. Assuming Poincaré invariance in the boundary directions, we prove

that there are no semiclassical traversable wormholes in higher than two spacetime

dimensions. We critically examine the possibility of evading our result by coupling

a large number of bulk fields. Static, traversable wormholes with less symmetry

may be possible, and could be constructed using the ingredients we develop here.

To understand better what types of traversable wormholes are possible, we attempt

to construct static traversable wormholes in the controlled setting of asymptoti-

cally Anti-de Sitter spacetime, within a regime where the semiclassical approxi-

mation is valid. In the context of the AdS/CFT correspondence, a traversable

wormhole should be dual to two conformal field theories (CFTs) which live on

the two asymptotic boundaries of the spacetime. Traversable wormholes can be

constructed by introducing an appropriate coupling between these two theories,

CFTL and CFTR.

Bulk solutions that correspond to traversable wormholes require a violation of the

NEC. This is possible in standard quantum field theory, e.g. through the Casimir

effect, but a coupling between the two CFTs is unavoidable in our setting. In the

decoupled system, no operator in CFTL can influence CFTR, which implies that

no signal can be transmitted through the bulk. The existence of a traversable

wormhole solution in the decoupled system would violate this “no-transmission

principle” [159] which follows from basic postulates of the holographic dictionary.

Hence, we violate the NEC by introducing a double trace deformation that couples

the two CFTs [160] and has the form hOL(x)OR(x). Our major assumption which

makes the analysis tractable is that the solution preserves Poincaré invariance in

the field theory directions. Assuming this symmetry, we can pick a gauge where

the metric takes the form

ds2 = a(z)2
(
ηµνdx

µdxν + dz2
)
. (4.5)
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We look for solutions with two asymptotic regions, so that the ‘scale factor’ a(z)

diverges at two locations while remaining nonzero in between. Furthermore, we

assume that the bulk field providing the NEC violation preserves Weyl invariance.

This allows us to compute explicitly the NEC violating stress-energy tensor by

using a conformal map to flat spacetime.

This is a crucial simplification: in general we need to solve the Einstein equation us-

ing the expectation value of the stress-energy tensor as a source. The stress-energy

tensor should be computed by doing quantum field theory in the background met-

ric defined by a(z). However, the expectation value of the stress-energy tensor

〈Tµν(z)〉 depends non-locally on the metric function a(z), rendering the problem

apparently intractable. Weyl invariance allows us to package the non-local de-

pendence of the stress-energy tensor on the metric in terms of a single parameter

encoding the ‘width’ of the geometry.

Within these assumptions, we demonstrate a no-go result: the effect of the double

trace deformation is too small to support a semiclassical wormhole. In order to

establish this result, we consider various strategies for enhancing the NEC violation

and show that they cannot work.

First, we argue that increasing the coupling does not help because the “quantum

inequalities” [161] bound the amount of NEC violation. It is an interesting open

problem to demonstrate a more general and more rigorous bound on NEC violation

for a quantum field theory in a geometry with two asymptotically AdS regions

when couplings between the boundaries are allowed.

Second, we try to add conventional matter in the bulk. We present the detailed

analysis of an additional bulk scalar field with a quartic potential, as well as

establishing a general result showing that adding any additional matter satisfying

the NEC does not allow for a semiclassical wormhole with Poincaré invariance in

the field theory directions. Our result is rigorously true when the NEC violating

fields are Weyl invariant, allowing for an explicit calculation, but we suspect that

adjusting the field content will not change the result.

Finally, we try to increase the number of species contributing to the NEC violation.

Although this allows one to make the curvature small in Planck units, this strategy

is problematic because a large number of species is believed to lower the UV cutoff

as

MD−2
UV ≤ 1

N
MD−2
p , (4.6)

where N is the number of species and D is the number of spacetime dimensions

in the bulk [162–165]. We show that although a large number of species can

reduce the curvature of the wormhole, the radius of curvature is always at or
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below the UV cutoff. We discuss the possibility of violating the lore (4.6) by

choosing appropriately the field content, making use of cancellations in the one-

loop renormalization of Newton’s constant. However, we argue that (4.6) can

never be softened because it would imply the existence of traversable wormholes

between two asymptotically AdS boundaries without a coupling between the two

CFTs, in contradiction with the “no-transmission principle”. This also agrees with

non-perturbative arguments regarding the renormalization of Newton’s constant.

The failure to construct a controlled solution within our assumptions can be par-

tially understood heuristically as follows. In the absence of the coupling between

the two boundaries, the ground state is simply two unentangled CFTs in their

ground state, and the corresponding geometry is simply two copies of vacuum

AdS. Turning on the coupling hOL(x)OR(x) will lead to an amount of entangle-

ment of order the coupling h- in other words, the entanglement is of order one if

the coupling is perturbative. On the other hand, a controlled traversable wormhole

should have a smooth geometry, leading to an entanglement of order N2. This

heuristic argument, however, leaves open the possibility that the construction can

succeed by going to strong coupling or increasing the number of fields that are

coupled. Our more detailed arguments rule out these possibilities.

We have shown that there is no semiclassical solution with Poincaré invariance

along the boundary directions and a Weyl invariant field in the non-local cou-

pling. This suggests avenues for future constructions based on a less symmetric

ansatz. One could try to import the recent construction of long-lived traversable

wormholes in flat space [146] to the AdS setting. This construction makes use of

magnetic fields, which break the transverse Poincaré invariance. More generally,

we expect that a static traversable wormhole should look like an AdS-Schwarzschild

black hole or black brane near the two asymptotic boundaries. These metrics do

not preserve Poincaré invariance, which further motivates reducing the amount of

symmetry. We could also consider NEC violating matter that is not conformally

invariant but we do not expect our results to change dramatically.

We must note that many constructions of traversable wormholes in general rela-

tivity exist in the literature but they involve either exotic matter [75,145,166–170]

or higher-derivative theories [171–173] which seem to lack a UV completion [174].

On the other hand, introducing a coupling between two CFTs should be perfectly

physical in the context of AdS/CFT.
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4.2 Poincaré wormholes in AdS

We look for traversable wormholes connecting two asymptotically AdSd+1 space-

times. In order to make the problem analytically tractable, we assume Poincaré

invariance in the boundary directions. Using this symmetry, we can pick a gauge

such that the metric takes the form

ds2 = a2(z)
(
−dt2 + d~x2 + dz2

)
, (4.7)

where ~x = (x1, . . . , xd−1) are boundary coordinates and z is the radial coordinate

in the bulk.2 This metric is foliated by flat R1,d−1 slices and is similar to the

Poincaré patch of AdS. The geometry is completely determined by one function,

the conformal factor a(z). For solutions with two asymptotically AdS boundaries,

this means that a(z) should have two simple poles, say at z = ±L2 , and be positive

in the range −L2 < z < L
2 .

4.2.1 Setup

We consider a theory of gravity with negative cosmological constant coupled to

matter,

S =
1

16πG

∫
dd+1x

√
−g (R− 2Λ) + Smatter , (4.8)

where Λ = −d(d−1)
2`2AdS

. In order to find traversable wormholes in such a theory, we

need to violate the null energy condition (NEC) in the bulk. This is possible in the

framework of semiclassical gravity, where the matter fields are treated quantum

mechanically, but the geometry is kept classical. Following [80], we do this by

introducing a non-local coupling between the two boundaries

δS = h

∫
ddxφL(x)φR(x) . (4.9)

Here φL,R(x) corresponds to a bulk field and the subindex L/R means that it is

evaluated at the left/right boundary. In AdS/CFT, such a deformation is achieved

by coupling together the two CFTs with a double trace operator.

In [80], the deformation (4.9) was activated for a short time on an eternal AdS

black hole, i.e. a non-traversable wormhole. The resulting quantum stress-energy

tensor made the wormhole traversable but only in a very small time window. Our

work differs from [80] in two aspects. First, we start from the vacuum state, which

consists of two unentangled copies of the same CFT. Second, we are interested in

finding eternal traversable wormholes so we turn on the deformation for all times.

2For later convenience we also define coordinates xµ = (t, ~x) and ym = (xµ, z).
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Finally, a word on the methodology is in order. Since our ansatz (4.7) is con-

formally flat, we compute the quantum stress-energy tensor in flat spacetime and

map the result to our wormhole background by means of a Weyl transformation.

For this to be possible, we require Smatter to be Weyl invariant. A simple choice

is a conformally coupled scalar field. The boundary conditions for the scalar field

are chosen as follows. Near the two asymptotic boundaries the behavior is

φ(z) ∼ α±
(
L
2 ± z

)∆+
+ β±

(
L
2 ± z

)∆−
, (4.10)

where

∆± =
d± 1

2
. (4.11)

which follow by performing a Weyl transformation to the flat space solution φ(z) ∼
α±
(
L
2 ± z

)
+ β± near the boundaries.3 We choose the boundary condition

α± = 0 , (4.12)

which, in the alternate quantization, implies that the dimension of the dual oper-

ator is given by ∆−.4 Upon a Weyl transformation, this condition corresponds to

imposing Neumann boundary conditions on the plates in Minkowski space.

4.2.2 Minkowski configuration

We compute the stress-energy tensor by a Weyl transformation from Minkowski

spacetime. In the following, we will specialize to 3 + 1 dimensions. The general-

ization to other dimensions is described in Appendix 4.5.

The configuration in flat space consists of two infinite plates located at z = −L/2
and z = L/2, respectively, and a massless scalar field living in the region between

the plates. The non-local coupling then takes the form

δS = h

∫
d3xφ

(
x,−L2

)
φ
(
x, L2

)
, (4.13)

where x = (t, x1, x2) denote the transverse coordinates. We will denote y = (x, z)

the coordinate of a point between the plates. The stress-energy tensor generated

by the non-local coupling can be computed by point splitting

〈Tµν(y)〉 = lim
y′→y

(
∂

∂yµ
∂

∂y′ν
δG(y, y′)− 1

2
ηµνη

ρσ ∂

∂yρ
∂

∂y′σ
δG(y, y′)

)
, (4.14)

3This can also be derived from the formula ∆(d−∆) = −m2`2AdS since the conformal coupling

ξRφ2 with ξ = d−1
4d

gives an effective mass m2`2AdS = − d
2−1
4

close to the boundaries.
4In the standard quantization the dimension of the double trace term would be 2∆+ = d+1 >

d which would make the coupling irrelevant.
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where δG(y, y) is the correction to the Feynman propagator due to the non-local

coupling. As explained above, we are imposing Neumann boundary conditions on

the plates. Note that imposing instead Dirichlet boundary conditions would make

the deformation (4.13) vanish. The Feynman propagator with Neumann boundary

conditions has a simple form in a mixed representation where we go to momentum

space in the transverse directions

G(x, z;x′, z′) =

∫
d3k

(2π)3
eik(x−x′)Gmixed(z, z′; k) , (4.15)

where k = (ω, k1, k2) is the momentum associated to the transverse directions

(t, x1, x2). The propagator with Neumann boundary conditions takes the form

Gmixed(z, z′; k) =
1

κ sin(κL)
cos
(
κ
(
z− + L

2

))
cos
(
κ
(
z+ − L

2

))
, (4.16)

with z− = min(z, z′), z+ = max(z, z′) and κ =
√
ω2 − k2

1 − k2
2. We will perform

the computation in Euclidean signature where the propagator takes the form

Gmixed(z, z′; k) =
1

|k| sinh(|k|L)
cosh

(
|k|
(
z− + L

2

))
cosh

(
|k|
(
z+ − L

2

))
,

(4.17)

where |k| =
√
ω2 + k2

1 + k2
2.

The correction to the two-point function due to the non-local coupling (4.13) is

given by

δG(y, y′) = h

∫
d3x̃ G

(
x̃,−L2 ; y

)
G
(
y′; x̃, L2

)
+ (y ↔ y′) . (4.18)

Using the mixed representation, we can rewrite this as

δG(y, y′) = h

∫
d3k

(2π)3

1

|k|2 sinh2(|k|L)
cosh

(
|k|
(
z + L

2

))
cosh

(
|k|
(
z′ − L

2

))
eik(x−x′)+(y ↔ y′) .

(4.19)

From the above expression it can be seen that

lim
y′→y

ηρσ∂ρ∂
′
σδG(y, y′) = 0 . (4.20)

Weyl invariance and transverse Lorentz symmetry imply that the stress-energy
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tensor has the form

〈T flat
µν 〉 = −ρ


−1

1

1

−3

 . (4.21)

The parameter ρ can in principle depend on z, but the conservation of the stress-

energy tensor requires ρ to be a constant. In order to determine this constant it

suffices to compute only one of the components. For instance, we can compute

〈T flat
zz 〉 = lim

y′→y
∂z∂
′
zδG(y, y′) . (4.22)

The calculation further simplifies by going to the midpoint z = 0, which gives

〈T flat
zz 〉 = −h

∫
d3k

(2π)3

1

2 cosh2
(
|k|L

2

) = − h

6L3
. (4.23)

Hence, the full stress-energy tensor is given by

〈T flat
µν 〉 =

h

18L3


−1

1

1

−3

 . (4.24)

4.2.3 Wormhole solution

The conformal mapping allows us to compute the expectation value of the stress-

energy tensor in the conformally flat geometry (4.7). This is given by

〈TNL
µν 〉 =

1

a(z)2
〈T flat
µν 〉 . (4.25)

The superscript ‘NL’ is a reminder that this component of the stress-energy tensor

is generated by the non-local coupling, but generically there can be other contri-

butions.

An important issue here is that the above Weyl transformation is anomalous in

even dimensions. The anomaly generates a higher-derivative term in 〈TNL
µν 〉 which

prevents us from solving Einstein’s equation. For the time being we will assume

that the anomaly term is negligible, but we will come back to this issue in section

4.3.2. We can also go to odd spacetime dimensions where there is no anomaly.

We define λ to be the dimensionless parameter measuring the amount of negative
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4.2. Poincaré wormholes in AdS

energy generated by the non-local coupling. It is defined by

8π〈T flat
00 〉 = − λ

L4
, (4.26)

so that λ ∼ hL up to a numerical factor of order one. The stress-energy tensor in

the geometry (4.7) is then given by

8π〈TNL
µν 〉 =

λ

a2L4


−1

1

1

−3

 . (4.27)

We will solve the semiclassical Einstein equations

Gµν −
3

`2AdS

gµν = 8πG〈TNL
µν 〉 . (4.28)

The zz component can be written as

1

2
a′(z)2 + V (a) = 0 , (4.29)

which can be thought as a particle in the potential

V (a) =
Gλ

2L4
− a4

2`2AdS

. (4.30)

The other components can be obtained from the z-derivative of (4.29).

There is a diffeomorphism

yµ → ζ yµ , L→ ζ L , h→ ζ−1h , a(z)→ ζ−1a(z) , (4.31)

which allows us to set a(0) = 1. Furthermore, we focus on solutions with reflection

symmetry so we have a′(0) = 0 and can restrict the domain of integration to z ≥ 0.

Evaluating (4.29) at z = 0 gives us the relation

1

`2AdS

=
Gλ

L4
, (4.32)

This allows us to eliminate λ in (4.29) and to determine the value for the range L

L

2
=

∫ L/2

0

dz =

∫ ∞
1

da

a′
= `AdS

∫ ∞
1

da√
a4 − 1

. (4.33)
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Performing the integral gives

L = c `AdS, c =
2
√
πΓ( 5

4 )

Γ( 3
4 )

∼ 2.62 . (4.34)

This defines a one-parameter family of wormhole solutions. The potential (4.30)

and a typical wormhole solution are shown in Figure 4.2.
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Figure 4.2: Typical shape of the potential V (a) and the conformal factor for a
wormhole solution a(z). For the plots we have set `AdS = 1 and we have set
a(0) = 1.

4.3 Some challenges

4.3.1 Planckian curvature

The most important issue of our solutions is that they generically have large cur-

vatures. Combining the equations (4.32) and (4.34) implies that(
`AdS

`p

)2

∼ λ , (4.35)

where `p is the Planck length and ∼ means proportionality up to an order one

numerical factor. Since the computation of the stress-energy tensor is valid only

in the perturbative regime, λ� 1, this leads to a wormhole with super-Planckian

curvature. Hence, the wormhole solutions described in the previous section are

outside the regime where semiclassical gravity can be trusted. In the following

sections we will explore various potential ideas to try to resolve this issue, but we

first discuss two more challenges.
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4.3.2 Weyl anomaly

We have used a Weyl transformation from flat space to compute the stress-energy

tensor in the geometry (4.7). For this to be possible, we used a Weyl invariant

field in the non-local coupling. However, Weyl invariance can be anomalous at

the quantum level. The anomaly is problematic in our setup because, as we will

see below, it can be of the same order as the effect that we use to support the

wormholes.

In four dimensions, there is always an anomaly. The stress-energy tensor on the

conformally flat metric (4.7) is related to the stress-energy tensor in flat space

by [175]

〈Tµν〉 =
1

a2
〈T flat
µν 〉+

1

16π2

(
2αFµν −

β

9
Hµν

)
. (4.36)

The anomalous piece is the second term and it is expressed in terms of four-

derivative terms

Fµν = R ρ
µ Rρν −

2

3
RRµν −

1

2
RρσR

ρσgµν +
1

4
R2gµν , (4.37)

Hµν = 2R;µν − 2gµν�R−
1

2
gµνR

2 + 2RRµν . (4.38)

The rational numbers α and β can be extracted from the tables of [175]. For

massless free fields, they are given by

α =
1

360
(nS + 11nF + 62nV ) , (4.39)

β =
1

20
(nS(1− 5ξ) + nF + 2nV ) , (4.40)

with nS conformally coupled scalars, nF Dirac fermions and nV vectors. The

parameter ξ is the coupling to R which should be taken to be ξ = 1
6 because we

want a Weyl invariant theory. From the above expression, we can see that α is

strictly positive. In fact, the trace of (4.36) shows that α is the a-anomaly of the

4d theory which does not vanish for a unitary theory [176–178]. This implies that

there is no way to make the anomaly vanish in four dimensions.

The main problem with the anomalous piece is that it contains four-derivative

terms which prevent us from solving Einstein’s equation. For a given field, the size

of the anomaly is of the order of

|T anomaly
µν | ∼ 1

`4AdS

. (4.41)

In the configuration with a single non-locally coupled field, the anomaly can be

115



4. Quantum teleportation via traversable wormholes

ignored in the regime L < `AdS because we have λ� 1. This condition is already

necessary as will be derived later in (4.61). In the configuration where we have

a large number of fields, discussed in section 4.4.3, the anomaly dominates over

the cosmological constant term which prevents us from obtaining a semiclassical

solution.

In odd dimensions, there is no Weyl anomaly: the Weyl transformation of the

stress-energy tensor does not contain an anomalous piece. Thus, the stress-energy

tensor in the wormhole spacetime (4.7) can be obtained from the stress-energy

tensor in flat space by the classical formula

〈Tµν〉 =
1

a2
〈T flat
µν 〉 . (4.42)

Hence, when using a large number of fields, we will focus only on odd dimensions.

4.3.3 Casimir energy

There is another problem for building eternal traversable wormholes between

asymptotically AdS regions. Negative energy can already be present in the worm-

hole geometry without the need to turn on a non-local coupling. Indeed, in the flat

space configuration described in section 4.2.2, the Casimir effect [179] generates a

stress-energy tensor of the form [175]

TCasimir
µν ∼ 1

L4


−1

1

1

−3

 . (4.43)

This negative energy is more important than the one generated by the non-local

coupling, which is multiplied by λ� 1. Hence, it seems that the non-local coupling

is unnecessary! However, it should not be possible to build a semiclassical worm-

hole between two asymptotically AdS geometries without coupling the two dual

CFTs. This would violate the “no-transmission principle” [159] because signals

could be sent from one asymptotic boundary to the other without any coupling

between the two CFTs. We note that the sign of the Casimir energy can be

modified by changing the boundary conditions of the fields. However, having a

positive Casimir energy is also a problem because it would overwhelm the non-local

coupling.

The issue of Casimir energy should be present in any attempt to build eter-

nal traversable wormholes. In the asymptotically AdS2 version [157] (see also

[180,181]), this is avoided because the Weyl anomaly precisely cancels the Casimir
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energy. As explained there, this is enforced by SL(2,R) invariance. In higher di-

mensions, the wormhole is less symmetric which makes such a cancellation unlikely.

From the analysis of section 4.3.2, we see that this cancellation happens neither in

four dimensions nor in odd dimensions where the Weyl anomaly vanishes. Thus, if

our conformally flat wormholes are to be consistent, some mechanism has to ensure

that the Casimir energy is negligible. For example, a supersymmetric spectrum

with supersymmetric boundary conditions leads to a vanishing Casimir energy.

This holds despite the fact that the wormhole geometry breaks supersymmetry5

as can be seen by making a Weyl transformation from the flat space configuration.

4.4 Attempts and lessons

4.4.1 Increasing the non-local coupling

We might hope that a solution with `AdS large in Planck units can be obtained

in the strong coupling regime λ � 1. In fact, we will show that increasing the

coupling cannot lead to a very large negative energy. This can be done by adapting

the “quantum inequalities” [161]. The authors proved that for any state |ψ〉 of a

free massless scalar in Minkowski spacetime, there is a bound

ρ̂ ≥ − c

t40
, (4.44)

where ρ̂ is the energy density averaged over a time interval of characteristic length

t0,

ρ̂ ≡
∫ +∞

−∞
dt f(t)〈ψ|T00|ψ〉 , (4.45)

and f is a smearing function which determines the number c. This shows that the

smeared energy cannot get “too negative”. In their proof, the smearing function is

a Lorentzian but the same argument can be repeated for a more general smearing

function as long as its Fourier transform decays sufficiently fast. This is because

the bound is proportional to the integral∫ ∞
0

dω ω3f̂(ω) , (4.46)

where f̂(ω) is the Fourier transform of f . In particular, it is possible to obtain

a bound when f being compactly supported. This follows from a Theorem by

Ingham [182] which determines how fast the Fourier transform of a compactly

supported function can decay. This theorem guarantees that there are compactly

5This can be checked explicitly by showing that the geometry (4.7) does not have a covariantly
constant spinor, except when it is flat space or Poincaré-AdS.
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supported functions whose Fourier transform decays exponentially, e.g. as e−|ω|
1/2

,

which is fast enough to make (4.46) converge.

In our Minkowski configuration, we can consider a causal diamond centered at

z = 0 which is as large as possible without touching the plates. Because the

diamond is not in contact with the plates, the quantum state inside this causal

diamond is that of a free massless scalar field. Hence, we expect that the quantum

inequalities should be applicable if the smearing function is supported in this

diamond. This is possible by taking a compactly supported function on a time

interval of length L. The resulting bound is

〈T00〉 & −
1

L4
, (4.47)

up to an order one numerical factor. Thus, the best we can achieve by increasing

the coupling would lead to a wormhole with Planckian curvature(
`AdS

`p

)2

∼ 1 . (4.48)

This shows that increasing the non-local coupling does not help in making the

wormhole semiclassical.

4.4.2 Adding conventional matter

In the previous sections, we have shown that the negative energy generated by the

non-local coupling is too small to support the wormhole. From (4.32), we can see

that to have λ � 1 we need a hierarchy of scales `p � L � `AdS. However, with

only the non-local coupling and the cosmological constant we have L ∼ `AdS as

shown in (4.34). We can attempt to solve this problem by adding a new classical

source in the Einstein equation. This will introduce a new scale which in principle

could be used to separate L from `AdS or remove the necessity of this hierarchy

altogether. In this section, we prove a no-go theorem showing that this is not

possible: adding matter that satisfies the null energy condition cannot make the

wormhole semiclassical.

4.4.2.a Scalar field

Before going to the general situation, we consider a bulk scalar field minimally

coupled to gravity, described by the action

Sm = −
∫ √

−g d4x

(
1

2
gµν∂µφ∂νφ+ V (φ)

)
. (4.49)
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We assume that the matter preserves Poincaré invariance in the transverse direc-

tions so that φ depends only on z. In our geometry (4.7), the matter stress-energy

tensor is

Tm
zz = a2

(
φ′2

2a2
− V

)
,

Tm
xx = Tm

yy = −Tm
tt = −a2

(
φ′2

2a2
+ V

)
.

(4.50)

The scalar field does not violate the NEC at classical level because Tm
zz + Tm

tt =

φ′2 ≥ 0. Its equation of motion is

2a′φ′ + aφ′′ = a3 ∂φV . (4.51)

Einstein equation gives

a′2 = −Gλ
L4

+
8πG

3
a4

(
φ′2

2a2
− V

)
,

a′′

a3
= −8πG

3

(
φ′2

2a2
+ 2V

)
.

(4.52)

The term generated by the non-local coupling is the negative term proportional

to λ in the first equation. We can explicitly see that this term is necessary by

considering the expression (
a′

a2

)′
=

2Gλ

L4a3
− 4πG

φ′2

a
. (4.53)

In a wormhole solution, a′/a2 goes from 0 at the throat, to 1/`AdS at the boundary.

Therefore, its derivative needs to be positive somewhere, implying that λ cannot

be zero. More explicitly, integrating the equation between z = 0 and z = L/2

gives

1

`AdS
=

∫ L/2

0

dz

(
a′

a2

)′
=

∫ L/2

0

dz

(
2Gλ

a3L4
− 4πG

φ′2

a

)
≤ Gλ

L3
. (4.54)

This leads to the following lower bound

λ ≥
(
`AdS

`p

)2(
L

`AdS

)3

. (4.55)

We are in a regime where λ� 1 which implies that we must have L� `AdS. We

see that the scalar field does not modify the required hierarchy we pointed out at

the beginning of the section. This is a special case of a more general statement
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Figure 4.3: Left: Shape of the potential V (φ). Right: The corresponding solution.
We are using Planck units for the two plots.

(4.61) which will be described later. Note that this requirement guarantees that

the Weyl anomaly is negligible, as discussed in section 4.3.2.

We solve numerically the coupled ODEs for a(z) and φ(z) using Mathematica.

The solution is obtained by integrating the second order Einstein equation which

leads to more stable numerics.6 We consider a Higgs-like potential

V = −m
2
0

2
φ2 +

c2

4
φ4 + V0 . (4.56)

which is illustrated in Figure 4.3.

We look for solutions of φ that interpolate between the two minima of V at the

two asymptotically AdS regions. These solutions are odd so we can restrict the

range of integration to 0 ≤ z ≤ L
2 . We consider the following boundary conditions

a(0) = 1 , a′(0) = 0 ;

φ(0) = 0 , φ(L2 ) = φL ,
(4.57)

where φL is the value corresponding to the minimum of the potential.7

6The two Einstein equations in (4.52) are not independent. We can obtain the second order
differential equation by taking the derivative of first one and using the φ equation of motion to
remove the φ′′ terms.

7The value of L is determined dynamically because it corresponds to location at which a(z)
diverges. For this reason, imposing the condition at the boundary is a bit tricky. In practice
we impose a second boundary condition at the throat φ′(0) = φ′0. The correct value of φ′0 is
determined through algorithmically to ensure that φ approaches the right value at z = L/2.
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Figure 4.4: We plot λ as a function of `AdS while varying V0 in the interval
−1 ≤ V0 ≤ −10−4 and we use Planck units. The different curves correspond to
different choices for the other parameters in the potential. Left: m0 = c = 10−1

(blue), m0 = c = 10−2 (red). Right: c = 10−i with i = 2, 3 and m0 = 10−1c
(blue) and m0 = 10−2c (red). The series corresponding to different values of i are
indistinguishable. It’s impossible to have λ � 1 if we want `AdS to be large in
Planck units.

From the numerical solutions, we can find the value of λ and `AdS using

λ =
8πL4

3

(
φ′(0)2

2
− V (φ(0))

)
, `AdS =

√
− 3

8πGV (φL)
. (4.58)

An example of solution is given in Figure 4.3. In general we notice that λ can be

made small only at the cost of making `AdS small in Planck units. In Figure 4.4,

we plot λ as a function of `AdS for a large sample of parameters. We only keep

solutions which leads to `AdS > 1. In all cases, even for `AdS close to `p we do not

find solutions consistent with λ � 1. This means that the addition of the bulk

scalar field does not help in making the wormhole semiclassical.

4.4.2.b No-go theorem

We will now show that any kind of conventional matter in the bulk does not help

in making the wormhole semiclassical, assuming that the matter respects Poincaré

invariance in the transverse directions. We can model the addition of bulk matter

by the addition of a term f(a) in Einstein equation

a′2 =
a4

`2AdS

− Gλ

L4
+
f(a)

`2m
, (4.59)

where `m is a characteristic length scale of the additional matter. We show below

that f(1) needs to be positive so `m can be chosen so that f(1) = 1. We are also
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using conventions in which a(0) = 1. Evaluating the equation at z = 0 gives

λ =
L4

G

(
1

`2AdS

+
1

`2m

)
. (4.60)

From the above formula, we see that λ� 1 implies that

L

`AdS
� `p

L
and

L

`m
� `p

L
. (4.61)

The Einstein equation can be rewritten

a′2 =
f(a)− f(1)

`2m
+
a4 − 1

`2AdS

. (4.62)

We require the asymptotically AdS boundary condition

a(z)
∣∣
z→L/2 ∼

`AdS

L
2 − z

. (4.63)

In other words, the cosmological constant should dominate close to the boundary

z = L
2 . For the additional matter to be helpful, we would like to dominate close

to the wormhole throat z = 0. We can define the transition point z∗ and the

corresponding conformal factor a∗ ≡ a(z∗) by

f(a∗)− f(1)

`2m
=
a4
∗ − 1

`2AdS

. (4.64)

We assume that the additional matter dominates below z∗ while the cosmological

constant dominates above z∗. Hence, we have

a4 − 1

`2AdS

≤ f(a)− f(1)

`2m
, 0 ≤ z ≤ z∗ , (4.65)

a4 − 1

`2AdS

≥ f(a)− f(1)

`2m
, z∗ ≤ z ≤

L

2
. (4.66)

We also assume that a(z) is monotonically increasing close to z = 0.8 In Figure

4.5 we show a schematic representation of the two regimes described above.

8Relaxing these two assumptions cannot help in making the wormhole more semiclassical.
Indeed, the above discussion shows that in order to be useful, the conventional matter needs to
make L as small as possible. It can be seen that relaxing these assumptions will only make things
worse.
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Figure 4.5: We assume that the new term in the Einstein equation dominates up
to some z = z∗, for which we have a(z∗) = a∗. After this value the cosmological
constant dominates.

Null energy condition. We impose the null energy condition on the additional

matter. The zz-component can be directly read off from (4.59)

8πGTm
zz =

3

a2

f(a)

`2m
. (4.67)

We consider matter that respects the transverse Lorentz symmetry. This implies

that the stress-energy tensor is diagonal and satisfies Tm
xx = Tm

yy = −Tm
tt . Its

conservation then implies that

d

dz
Tm
zz +

a′

a
Tm
zz +

3a′

a
Tm
tt = 0 . (4.68)

The resulting stress-energy tensor is

8πGTm
µν =

1

a2`2m



f(a)− af ′(a) 0 0 0

0 af ′(a)− f(a) 0 0

0 0 af ′(a)− f(a) 0

0 0 0 3f(a)


.

The null energy condition applied to the vector ∂t + ∂z implies

f ′(a) ≤ 4f(a)

a
. (4.69)

In particular, this implies that f(1) > 0. Indeed, dividing (4.65) by a − 1 and

taking the limit a→ 1 implies that f ′(1) > 4`2m/`
2
AdS.
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Contradiction. First, integrating the NEC gives

f(a) ≤ a4 . (4.70)

Intuitively, this means that the fastest function of a which satisfies the NEC is

a cosmological constant. Since our original problem was that the cosmological

constant does not grow fast enough, no other conventional matter should help us

in making the wormhole more semiclassical.

More precisely, from (4.62) and (4.65), we see that

a′2 ≤ 2(f(a)− 1)

`2m
, 0 ≤ z ≤ z∗ , (4.71)

a′2 ≤ 2(a4 − 1)

`2AdS

, z∗ ≤ z ≤
L

2
. (4.72)

Integrating the first equation implies that

z∗ =

∫ a∗

1

da

a′
≥ `m√

2

∫ a∗

1

da√
f(a)− 1

≥ `m√
2

∫ a∗

1

da√
a4 − 1

. (4.73)

Next, we can obtain a bound on a∗ by integrating the second equation,

L

2
− z∗ =

∫ ∞
a∗

da

a′
≥ `AdS√

2

∫ ∞
a∗

da√
a4 − 1

≥ `AdS√
2

∫ ∞
a∗

da

a2
=
`AdS√

2

1

a∗
. (4.74)

This gives

a∗ ≥
√

2`AdS

L
� 1 , (4.75)

where the second inequality follows from (4.61). Then, equation (4.73) gives z∗ >

O(1)`m where O(1) is an order one number (which is bigger than ∼ 0.5 already

for a∗ = 2). Using again (4.61), this implies

z∗ � L/2 , (4.76)

which is a contradiction. This shows that adding conventional matter does not

help in making the wormhole semiclassical.

4.4.3 Coupling a large number of fields

In the previous section we have shown quite generally that we cannot build a

traversable wormhole with just a perturbative amount of negative energy, assuming

Poincaré invariance in the boundary directions. Increasing the coupling or adding

conventional matter do not help. Another strategy is to use a large number N of
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fields in the non-local coupling to enhance its effect. This approach was exploited in

previous constructions of traversable wormholes [146,155,157]. For our wormholes,

the estimate (4.35) gets replaced by(
`AdS

`p

)D−2

∼ Nλ , (4.77)

where N is the number of fields and D = d + 1 is the number of spacetime

dimensions in the bulk. Thus, it seems that by taking N large enough, we can

obtain a large AdS radius while keeping λ� 1. However, a large number of fields

implies a lowering of the UV cutoff of the theory, which can be interpreted as the

renormalization of Newton’s constant. On general grounds [162–165], we expect

that

MD−2
UV ≤ 1

N
MD−2
p . (4.78)

This implies that the solution cannot be made semiclassical(
`AdS

`UV

)D−2

∼ λ� 1 . (4.79)

4.4.3.a Renormalization of Newton’s constant

The perturbative renormalization of Newton’s constant can be computed from the

one-loop effective action. We will use the heat kernel expansion which provides

a canonical way to regulate the divergences [183]. In D dimensions, the effective

Lagrangian at one-loop is

Leff = − 1

D

a0(x)

`DUV

− 1

D − 2

a2(x)

`D−2
UV

+ . . . , (4.80)

where `UV is a UV cutoff and an(x) are the so-called Seeley-DeWitt coefficients

which are obtained from the heat kernel expansion. The term a0(x) gives a renor-

malization of the cosmological constant and the term a2(x) gives the renormaliza-

tion of Newton’s constant.

Because of the Weyl anomaly discussed in section 4.3.2, we will focus on odd-

dimensional theories. We want a Weyl invariant theory so we consider nS massless

scalars with the conformal coupling ξ = D−2
4(D−1) and nF Dirac fermions. The

computation is detailed in the Appendix 4.A.2 and gives

(4π)D/2a2(x) =

(
4−D

12(D − 1)
nS +

1

12
2bD/2cnF

)
R . (4.81)
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In special cases of interest, this is

(4π)D/2a2(x) =


1
24 (nS + 4nF )R , D = 3 ,
1
48 (−nS + 16nF )R , D = 5 ,
1
24 (−nS + 16nF )R , D = 7 .

(4.82)

We see that in 5d and 7d, we can make a2(x) vanish by choosing appropriately

the field content. Note that this is possible because of the negative contribution

from the conformally coupled scalars. In such cases, the perturbative lowering of

the UV cutoff will be given by two-loop diagrams. This leads to a softer lowering

of the UV cutoff, (4.78) becomes

MD−2
UV ≤ 1√

N
MD−2
p . (4.83)

Assuming that no other effects lower the UV cutoff, we obtain(
`AdS

`UV

)D−2

∼
√
Nλ . (4.84)

From this analysis, it seems that taking large enough N allows for semiclassical

wormholes. However, we argue in the next section that non-perturbatively, the UV

cutoff is always lowered according to (4.78), preventing the possibility of having a

semiclassical wormhole in this way. For related discussions on the renormalization

of Newton’s constant and the meaning of the negative contribution, we refer to

[184–189].

4.4.3.b Non-perturbative considerations

Non-perturbative arguments based on black hole physics suggest that the UV cutoff

of a gravity theory with N species is always lowered according to (4.78). These

arguments are based on the rate of black hole evaporation, or entropy bounds

[162, 163, 165]. These arguments suggest that the one-loop cancellations in (4.82)

are not sufficient to lower the cutoff at the non-perturbative level.

Another consideration is the “no-transmission principle” which implies that a

traversable wormhole between asymptotically AdS regions supported only by Casimir

energy is inconsistent. Indeed, we should not be able to send signals from one

asymptotic boundary to another if the two dual CFTs are decoupled [159].

For example, let us consider a theory in 5d with a large number of scalar and spinor

fields such that nS = 16nF . This is chosen so that a2(x) = 0 so that according

to the above computation, Newton’s constant is not renormalized at one-loop.
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Assuming that the UV cutoff is not lowered by other effects, (4.84) would imply

that we can have a semiclassical wormhole by taking the number of fields large

enough.

If the above scenario is really possible, we could also construct a traversable worm-

hole without the non-local coupling, using only Casimir energy. For this to be true,

we need to make sure that the Casimir energy is non-zero and negative. Let us

consider the above setup with nS = 16nF but without a non-local coupling. We

are free to change the boundary conditions of the fields because the computation

of a2(x) is insensitive to them (up to boundary terms which are irrelevant here).

In particular, we can choose the boundary conditions so that the nF spinors and

the 4nF scalar fields are in a supersymmetric configuration in the flat space setup.

As discussed in section 4.3.3, this implies that the Casimir energy of these fields

will compensate. The remaining 12nF scalar fields can be chosen to have Dirich-

let boundary conditions in flat space. The Casimir energy of 5d massless scalars

between two plates with Dirichlet boundary conditions is computed in [179] and

is indeed negative. Following the discussion in 4.3.3, this would give a traversable

wormhole supported only by Casimir energy. More generally, we expect that it

should always be possible to make the Casimir energy negative by choosing ade-

quate boundary conditions.

Thus, we obtain a configuration where a traversable wormhole connects two de-

coupled CFTs which is inconsistent because of the “no-transmission principle” of

AdS/CFT. This strongly suggests, in agreement with the black hole arguments,

that the non-perturbative UV cutoff is still lowered according to (4.78) despite the

perturbative cancellations at one loop. The wormhole cannot be made semiclassi-

cal by using a large number of fields.

4.5 Discussion

In this paper we have investigated the possibility of constructing eternal traversable

wormholes connecting two asymptotically AdS regions by coupling the two dual

CFTs. We focused on gravity solutions preserving Poincaré invariance along the

field theory directions and used a Weyl invariant field in the non-local coupling.

Under these assumptions, the stress-energy tensor can be computed analytically.

Although it violates the null energy condition, it does not provide enough nega-

tive energy to support a semiclassical wormhole. As argued from the “quantum

inequalities” [161], increasing the coupling does not help. We also proved a no-

go theorem saying that adding conventional matter in the bulk cannot make the

wormhole semiclassical. Another strategy is to use a large number of fields in the

non-local coupling. This increases the negative energy but lowers the UV cutoff

127



4. Quantum teleportation via traversable wormholes

by a compensating amount, disallowing any semiclassical traversable wormholes.

A one-loop computation suggests that this lowering of the UV cutoff, interpreted

as a renormalization of Newton’s constant, can be soften by adequately choosing

the field content. However, non-perturbative arguments suggest that this cannot

work [162,163,165]. In particular, this would lead to a traversable wormhole solely

supported by Casimir energy, without a non-local coupling. This contradicts the

“no-transmission principle” which follows from basic postulates of the AdS/CFT

duality [159].

This argument suggests that any mechanism that enhances the effect of the non-

local coupling should always make the Casimir energy negligible, as to prevent the

possibility of a semiclassical wormhole without a non-local coupling. We expect

this requirement to provide some guidance in the construction of eternal traversable

wormholes in AdS/CFT.

There are many avenues for future research. We can consider changing the confor-

mal dimensions of the field, going away from the conformally coupled case. The

effect becomes more difficult to compute but the numerics in [80] suggests that

the negative energy can be increased in this way. We could also investigate situ-

ations with less symmetry. This would provide more room to produce the large

hierarchy between the small quantum effect induced by the non-local coupling

and the large semiclassical geometry. Adding rotation has been shown to enhance

the effect of the non-local coupling [190]. Also, it should be possible to import in

AdS/CFT the recent construction of long-lived traversable wormhole in Minkowski

spacetime [146].

Appendices

4.A General dimensions

4.A.1 Setup

The computation done in section 4.2.2 can be generalized to any dimension. In D

spacetime dimensions, the zz component of the stress-energy tensor is

〈T flat
zz 〉 = −h

∫
dD−1k

(2π)D−1

1

2 cosh2
(
|k|L

2

) , (4.85)

= − h

LD−1

vol(SD−2)

(2π)D−1

∫ +∞

0

xD−2dx

2 cosh2
(
x
2

) .
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The full stress-energy tensor has the general form

〈T flat
µν 〉 ∼

λ

LD


−1

1
. . .

1

1−D

 , (4.86)

where λ ∼ hL is the perturbative parameter and ∼ means up to an order one

numerical factor.

After the conformal transformation to the metric (4.7), the Einstein equation has

the same form (4.29) as in 4d but with the potential

V (a) =
Gλ

2LD
− a4

2`2AdS

. (4.87)

We can redo the computation done in section 4.2.3 and we obtain(
`AdS

`p

)D−2

∼ λ . (4.88)

We are in the perturbative regime λ� 1 so the wormhole cannot be semiclassical.

4.A.2 No-go theorem

The no-go theorem presented in the main text can be generalized to any dimension.

In D dimensions, the Einstein equation takes the form

a′2 = −Gλ
LD

+
a4

`2AdS

. (4.89)

We consider a modified Einstein equation

a′2 = −Gλ
LD

+
f(a)

`2m
+

a4

`2AdS

, (4.90)

=
a4 − 1

`2AdS

+
f(a)− 1

`2m
,

where f(a) is subject to the same assumptions as in the main text. We will show

that f(1) is positive which allows us to fix `m by requiring that f(1) = 1. We also
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use conventions where a(0) = 1. Evaluating Einstein equation at z = 0 leads to

λ ∼ Ld

G

(
1

`2AdS

+
1

`2m

)
. (4.91)

The null energy condition is obtained as in the four dimensional case. We first

compute the stress-energy tensor corresponding to the new term we added in the

Einstein equation. The zz component can be read off the Einstein equation

Tm
zz =

(D − 1)(D − 2)

16πG

f(a)

a2`2m
. (4.92)

We can determine Tm
tt by solving at the conservation equation ∇µTµν = 0. This

gives

∂zT
m
zz + (D − 3)

a′

a
Tm
zz + (D − 1)

a′

a
Tm
tt = 0 . (4.93)

From this equation, we can determine

Tm
tt =

(D − 2)

16πG

(5−D)f(a)− af ′(a)

a2`2m
. (4.94)

Evaluating the NEC, we obtain as in four dimensions

Tm
zz + Tm

tt ≥ 0 =⇒ 4f (a)− f ′ (a) a ≥ 0 . (4.95)

This bound implies that f(1) is positive and leads to

f(a) ≤ a4 . (4.96)

The remainder of the proof is unchanged.

4.B Heat kernel expansion

We consider fluctuations of quantum fields around a given classical background.

The effective action can be written

Seff = S0 + S1-loop , (4.97)

where S0 is the action of the classical background. The effective action is computed

by a Euclidean path integral

e−Seff = e−S0

∫
Dφe−φΛφ , (4.98)
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where Λ is the operator of quadratic fluctuations. The heat kernel expansion [183]

provides a way to regularize and compute the effective action. The term that

renormalizes GN is

(4π)2a2(x) =
1

6
Tr(6E +R) , (4.99)

where the trace is over the components of the fields and E is defined by

−Λ = gµνDµDν + E , (4.100)

and Dµ = ∇µ + ωµ is a suitable covariant derivative. We compute below a2(x)

for fields of interest in d spacetime dimensions. These results can also be found

in [191] except that the conformal coupling is not considered there.

Scalar. We consider a massless scalar field. The Lagrangian is L = (∂ϕ)2 +ξRφ2.

This gives E = −ξR. Hence,

(4π)d/2ascalar
2 (x) =

(
1

6
− ξ
)
R . (4.101)

Fermion. We consider a Dirac spinor. The Lagrangian is L = ψ̄γµDµψ. The

fermionic fluctuation operator is thus γµDµ. This is a first order operator so we

apply the heat kernel to its square. The identity (γµDµ)2 = gµν∇µ∇ν− 1
4R implies

that E = − 1
4R. This gives

(4π)d/2aspinor
2 (x) =

1

12
2bd/2c . (4.102)

Maxwell vector. The Lagrangian is L = − 1
2FµνF

µν = −DµaνDµaν+DνaµDµaν .

We integrate the two terms by parts and swap the two derivatives in the second

term to obtain

L = aν�aν − aνRµνaµ − (Dµaµ)2 . (4.103)

As usual, the last term is removed by adding a gauge-fixing term Lg.f. = (Dµaµ)2.

This introduces two scalar ghosts which are minimally coupled. The contribution

of these ghosts is two times the one written in (4.101) with ξ = 0 and an overall

minus sign due to the opposite statistics. For the gauge field, we obtain E = −Rµν .

This gives

(4π)d/2avector
2 (x) =

d− 8

6
R . (4.104)
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5 Future directions

This final chapter is a brief outlook on the work presented in this thesis and

sketches some possible, sometimes speculative, future research directions.

Near-extreme Kerr holography

In Chapter 2, we reviewed the universal near-AdS2 dynamics governed by the

Schwarzian mode and its realization in near-extremal black holes. The main new

result, based on [1], is the description of the gravitational perturbation that cap-

tures the deviation from extremality for the Kerr black hole. This perturbation

can be described in a rather simple fashion, using AdS2 holography as an orga-

nizing principle. This might have many possible applications, some of them being

listed below.

Our work was restricted to the near-horizon region. It will be important to under-

stand the corresponding perturbation in the full Kerr geometry, and this is work

in progress [103]. This can be done by using the method of asymptotic matching.

Understanding better the gluing offers the prospect of using the near-AdS2 physics

as a solvable subsector of the Kerr perturbations.

Perturbations of Kerr can be studied systematically in the Teukolsky formal-

ism [192]. Interestingly, this formalism applied to the near-horizon region misses

the Schwarzian mode. This is because the Schwarzian mode can be generated by a

large diffeomorphism of the NHEK while the Teukolsky formalism is diffeomorphism-
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invariant by design. This shows that it’s important to understand the near-AdS2

picture as it might shed light on puzzling aspects of the near-horizon dynam-

ics [104,105] related to the Kerr/CFT correspondence [98].

It would be exciting to use near-AdS2 holography in astrophysical applications.

For example, we might try to study, from this perspective, the ringdown phase

after the merger of two black holes into a rapidly spinning one. Also, analyzing

the results from the Event Horizon Telescope requires the study of the dynamics

close to the horizon. The present analysis would need to be generalized to involve

matter fields but it seems probable that the near-AdS2 perspective will be useful

here, for a black hole that spins sufficiently fast.

Another direction would be to look for a quantum mechanical dual of the Kerr

black hole. As the SYK model contains JT gravity, we could try to find a 1d model

which contains the near-AdS2 physics of the Kerr black hole. This would require

a better understanding of the additional mode, that we denoted χ, and which we

are currently investigating [103].

We would also like to study interactions in the near-extreme Kerr black hole.

This would be obtained by studying gravitational perturbations at second order.

This is intractable in general but the simplicity of AdS2 dynamics allows one

to obtain analytical solutions, which compute holographic three-point functions

in the NHEK. In JT gravity, the Schwarzian mode is responsible for the maximal

chaos [43]. It would be interesting to see in a similar way whether the near-extreme

Kerr dynamics is maximally chaotic.

In the paper [5], which was not presented in this thesis, we have explored new

boundary conditions for AdS2. This enhances the asymptotic symmetry group

to the warped Virasoro group Diff(S1) n C∞(S1) which gets broken down to

SL(2,R) × U(1) by a generalization of the Schwarzian theory. As a result, this

theory captures the full SL(2,R) × U(1) symmetry of the near-horizon geometry

of black holes (the Schwarzian theory capturing only the SL(2,R) part). This

suggests that our boundary conditions will be useful in the study of near-extremal

black holes. We demonstrated how this dynamics was embedded in near-extreme

Kerr, following the same steps as described in Chapter 2, using our new boundary

conditions. This gives a phase space of linearized perturbations of the NHEK

geometry, on which the warped Virasoro group acts. It would be interesting to

explore this further, for example by computing the gravitational charges.
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Logarithmic corrections

In Chapter 3, we have explained that a special class of quantum corrections, grow-

ing as the logarithm of the black hole entropy, is computable in the low energy

theory while being sensitive to details of the microscopic counting, constituting an

“infrared window into the black hole microstates”. It seems important to under-

stand how much semiclassical gravity knows about the UV theory. In the context

of black hole entropy, this requires a detailed understanding of the logarithmic

corrections. This also echoes some recent progress on the information paradox

suggesting that semiclassical gravity has more to offer than previously thought.

As discussed in this thesis, an interesting pattern was observed in [26]: the loga-

rithmic corrections in effective theories coming from string theory have a simpler

structure than in the generic case: it doesn’t depend on the details of the black

hole. In Chapter 3, we have tested this pattern against a different class of black

holes, the so-called non-BPS branch of N = 2 supergravity. There, we showed that

the universality property continues to hold for enough supersymmetries (N = 6, 8)

but fails for a smaller amount (N = 2, 4). These statements were made for non-

extremal black holes, whose microscopic counting is presently unknown and is

expected to be complicated. In the extremal limit, the universality property is

restored for all these cases.

In known examples of microscopic counting, which all involve extremal black holes,

the logarithmic correction is indeed universal: it is a pure number. This begs the

question: do we expect that the logarithmic correction for extremal black holes is

universal in a consistent semiclassical theory?

Such a statement echoes the swampland program, where low energy criteria for

UV consistency are proposed, drawing inspiration from string theory examples. An

affirmative answer to the above question has powerful implications. For example, it

would imply that pure Einstein-Maxwell theory doesn’t exist as a consistent theory,

because the extreme Kerr-Newman black hole has charge-dependent logarithmic

corrections. Although answering this question seems out of reach, we might hope

to make partial progress in restricted cases. For example, it might be possible to

show that if the microscopic counting is realized by a Jacobi form, the logarithmic

corrections are always charge-independent.

Actually, by considering more general black holes in the non-BPS branch, with a

non-trivial profile for the dilaton, we have found that logarithmic corrections can

be charge-dependent even in the extremal case and with maximal supersymmetry.

This suggests that the answer to the above question might sometimes be negative,

and it would be interesting to understand when it fails. This could also be related
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to the near-AdS2 physics of these black holes, and it would be interesting to make

a connection with the ideas discussed in the previous section.

Using similar techniques, we could also investigate logarithmic corrections to the

entanglement entropy of holographic CFTs. From [70], we expect that the logarith-

mic correction will come from the bulk entanglement entropy piece. This suggests

two different ways of doing the computation, either from a Euclidean perspective

involving the heat kernel, as explained in section 3.1, or from a Lorentzian perspec-

tive where we quantize the bulk fields with appropriate boundary conditions, as

was done in [193], and extract the logarithmic piece from the bulk entanglement

entropy. It would be interesting to see whether such a match can be achieved.

This might give insights on how to properly define bulk entanglement entropy,

involving issues such as the correct choice of boundary conditions and the way to

treat gauge fields and gravitons.

Traversable wormholes

In Chapter 4, we reviewed the Gao-Jafferis-Wall protocol [80] for traversable worm-

holes in AdS/CFT and described some wormhole solutions [146,157]. To see how

much this idea can be pushed, we tried to construct an eternal traversable worm-

hole in higher than two dimensions. Assuming Poincaré symmetry in the boundary

directions, we argued that no traversable wormhole can be constructed.

The mechanisms that naively would support such a wormhole, all ended up break-

ing semiclassical gravity in some way. This “conspiracy” can be understood as

follows. Let’s assume that we have managed, using some ingredients, to build an

eternal traversable wormhole with Poincaré symmetry. In our construction, we

showed that the stress tensor generated by the Gao-Jafferis-Wall protocol takes

the same form, and with a smaller magnitude, as the stress tensor due solely to

Casimir energy in the wormhole. Thus, if a Poincaré traversable wormhole can

be constructed using the Gao-Jafferis-wall protocol, such a wormhole can also be

constructed without it, using instead Casimir energy of the bulk. However this

cannot be, because it would be in direct contradiction with the AdS/CFT corre-

spondence. Indeed, in a setup involving two decoupled CFTs, it should not be

possible to send a signal from one CFT to the other through the bulk, a fact that

has been called the “no-transmission principle” [159].

An interesting future direction is to take the above argument in reverse, as a

way to constrain what is possible or not in quantum gravity. Any mechanism

which enhances significantly quantum effects, sufficiently to allow the existence of

a traversable wormhole between two decoupled CFTs, has to be prohibited. For

example, our Poincaré wormholes gives a new argument for the renormalization
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of the UV cutoff (the effective Planck scale) when many species are present. This

says that if we have N different fields in a D-dimensional bulk, the effective UV

cutoff MUV of semiclassical gravity gets lowered according to the formula

MD−2
UV ≤ 1

N
MD−2
p , (5.1)

where Mp is the Planck scale. It was explained in section 4.4.3 that if this was not

true, we could indeed build a traversable wormhole. This construction would also

work if the traversable wormhole is supported by Casimir energy only, without

using the Gao-Jafferis-Wall coupling. This would then violate the no-transmission

principle and should be ruled out, showing that the bound (5.1) has to hold. Other

heuristic arguments for this bound are known [162–165] involving perturbative

analysis of loop diagrams or black hole entropy bounds. For many reasons, these

arguments can be seen as not completely satisfactory. The traversable wormhole

argument, in the particular cases where it applies, seems to be more solid, the

only assumption being the validity of AdS/CFT. An important restriction is that

our argument relies on the Poincaré wormhole solution presented in Chapter 4,

which assumes conformal matter in the bulk and has issues related to conformal

anomalies. It is nonetheless likely that this argument could be made general by

showing that with a large negative Casimir energy, a traversable wormhole solution

always exists, even if it cannot be described analytically.

JT gravity allows a simple description of traversable wormholes [155, 157]. A flat

space analog of JT gravity was introduced in [194] and shown to be dual to a

scaling limit of the complex SYK model. We have further studied this model in [5]

and showed that, as in JT gravity, this model can be formulated as a “bound-

ary particle” moving in 2d Minkowski spacetime. It should be possible to create

traversable wormholes in this setup, mirroring the AdS2 construction. The Gao-

Jafferis-Wall coupling would give an attractive force between the two boundary

particles of Rindler space, rendering the wormhole traversable. One could also

build the analog of the eternal traversable wormhole of [157], which corresponds

here to 2d Minkowski spacetime. It would be interesting to study these configu-

rations as they may offer some insights into flat space holography [195].

We have also showed in [5] that this 2d model of flat holography is dual to an

ensemble average, of a similar but much simpler nature than the matrix ensemble

dual to JT gravity [50]. The cylinder geometry, which is responsible for this

ensemble interpretation, is the Euclidean version of global Minkowski, which is

the eternal traversable wormhole of this theory. It will be interesting, using this

model, to study the relation between ensemble averages and traversable wormholes.
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Samenvatting

Quantum zwarte gaten

Er wordt vaak gezegd dat kwantummechanica en zwaartekracht onverenigbaar

zijn. Recente ontwikkelingen in de snaartheorie hebben dit perspectief veranderd:

eigenlijk zijn kwantummechanica en zwaartekracht op een diepe en verrassende

manier met elkaar verweven, en blijken ze onafscheidelijk te zijn! Deze vooruitgang

kwam voort uit het besef dat zwarte gaten kwantumobjecten zijn, wat uiteindelijk

leidde tot het holografische principe en de opvatting dat zwaartekracht voortkomt

uit de kwantummechanica. In dit proefschrift onderzoeken we enkele aspecten van

deze ideeën door kwantumzwarte gaten te onderzoeken.

We bestuderen eerst het holografische principe, in de vorm van de AdS/CFT-

correspondentie, wat een precieze gelijkwaardigheid is tussen kwantumzwaartekracht

in AdS-ruimtetijden en conforme veldentheorieën. De kracht van deze dualiteit

komt voort uit het feit dat het een precieze definitie geeft van kwantumzwaartekracht,

terwijl het ook een venster biedt op de sterke koppelingsdynamiek van veldtheo-

rieën. Hoofdstuk 2, gebaseerd op de paper [1], bespreekt de nAdS2/nCFT1 corre-

spondentie, en legt uit hoe deze toe te passen op het Kerr zwarte gat.

Vervolgens onderzoeken we de thermodynamica van zwarte gaten. Dit vakgebied

werd in de jaren zeventig ontwikkeld en was een van de belangrijkste inspiratiebron-

nen achter de meer recente inzichten en ontwikkelingen. Hoofdstuk 3, gebaseerd

op de paper [2], onderzoekt de eigenschappen van kwantumcorrecties op zwart

gat-entropie in de context van snaartheorie, met de nadruk op een speciale klasse

van logaritmische correcties, die volledig zijn gevangen in de lage-energietheorie.

Ten slotte onderzoeken we het verband tussen kwantuminformatie en ruimtetijd.

Een krachtig idee is dat ruimtetijdconnectiviteit en verstrengeling in wezen het-

zelfde zijn, waarnaar vaak wordt verwezen als “ER=EPR”. Deze relatie werd on-

langs versterkt door aan te tonen dat wormgaten doorkruisbaar kunnen worden

gemaakt met een bepaald kwantumteleportatieprotocol. Hoofdstuk 4, gebaseerd

op het artikel [3], onderzoekt de grenzen van deze constructie door te proberen een

eeuwig doorkruisbaar wormgat te construeren.
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