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General introduction

It is often said that quantum mechanics and gravity are incompatible. Recent
progress in string theory has changed this perspective, showing that they are ac-
tually intertwined in a deep and surprising way, making them instead inseparable!
This progress originated from the realization that black holes are quantum objects.
This eventually led to the holographic principle which showed that gravity is not
fundamental but emerges from quantum mechanics. A rich connection between
spacetime and quantum information was then uncovered, in which fundamental
aspects of quantum mechanics, such as entanglement, are equivalent to simple
properties of spacetime, such as geometric connections. This thesis will develop
some aspects of these ideas around three key topics.

The first topic is the holographic principle, in the form of the AdS/CFT correspon-
dence, which is a precise equivalence between quantum gravity in AdS spacetimes
and conformal field theories. The power of this duality comes from the fact that
it gives a precise definition of quantum gravity while also providing a window into
the strong coupling dynamics of field theories. Chapter 2, based on the paper [1],
reviews the nAdSs/nCFT; correspondence, and explains how to apply it to the
Kerr black hole. One goal is to obtain simplified models of quantum gravity for re-

alistic black holes. A motivating question can be: What is the quantum mechanics
of the Kerr black hole?



1. General introduction

The second topic is black hole thermodynamics. Developed in the seventies, it
has been one of the main inspiration behind the more recent insights and develop-
ments. Chapter 3, based on the paper [2], investigates the properties of quantum
corrections to black hole entropy in the context of string theory, focusing on a
special class of corrections of logarithmic type, which are fully captured in the
low energy theory. The driving question is: What can semiclassical gravity tell us
about the black hole microstates?

The third topic is the connection between quantum information and spacetime.
A powerful idea is that spacetime connectivity and entanglement are essentially
the same thing, which is often referred to as “ER=EPR”. This relationship was
recently strengthened by showing that wormholes can be made traversable with
a particular quantum teleportation protocol. Chapter 4, based on the paper [3],
investigates the limits of this construction. The broad motivation is the question:
How large can quantum effects be in gravity?

At the beginning of each chapter, we give an introduction to the relevant back-
ground. In this general introduction, we paint a broad overview of these topics,
trying to highlight recent developments.

1.1 Black holes thermodynamics

In 1973, Bekenstein conjectured that black holes carry an entropy proportional to
their horizon area in Planck units [8]. This proposal was put on firmer footing a
year later, when Hawking demonstrated that quantum effects implied that black
holes had a temperature [9]. This led to the Bekenstein-Hawking formula for black

hole entropy

A
S =1 (1.1)

and the recognition that quantum black holes behave as standard thermodynamical
systems. This formula shows that quantum gravity has very unexpected features
such as the scaling of the number of degrees of freedom like the area instead of
the volume. This counterintuitive fact has been at the root of the holographic
principle, which is discussed in the next section.

1.1.1 Euclidean path integral

Hawking’s derivation of black hole radiation was a difficult computation of quan-
tum field theory in curved spacetime. A simpler and more conceptual approach
was described later by Gibbons and Hawking [10]. They showed that the thermo-
dynamical properties of general relativity can be derived using a Euclidean path
integral, as for ordinary quantum systems.



1.1. Black holes thermodynamics

The idea is that the partition function of quantum general relativity should be
given by the Euclidean path integral

7 = /Dge_s[g] , (1.2)

with prescribed boundary conditions. For example, to obtain the thermal parti-
tion function at inverse temperature 3, we should take Euclidean time to be a
circle of length . This path integral can then be evaluated in a saddle-point ap-
proximation. The leading saddle-point is the Euclidean black hole geometry and
reproduces correctly the Bekenstein-Hawking formula.

This also provides a simple derivation of the Hawking temperature. The period-
icity in Euclidean time of the saddle-point is fixed by demanding regularity at
the horizon. The fact that black hole thermodynamics can be derived from the
usual path integral approach suggests that black holes should be considered as
ordinary quantum systems. However, black hole radiation and evaporation lead
to an apparent conflict with quantum mechanics. This is Hawking’s information
paradox [11] which we will discuss in more details below.

The advantage of the Euclidean gravity approach is that it provides a tentative
definition for the exact quantum entropy of the black hole. It suggests that the
exact partition function is the full path integral, while the Bekenstein-Hawking
formula arises in a saddle-point approximation. Of course, this definition is not
really useful since the gravitational path integral is hard to compute and ambiguous
because of UV divergences. Nonetheless, we will see that for a special type of
quantum correction, of logarithmic type, the Euclidean path integral gives an
unambiguous answer. This will be the subject of Chapter 3.

1.1.2 Microscopic counting

The understanding of black hole entropy that we have, from the Hawking tem-
perature or from the Euclidean path integral, shed no light on the nature of the
black hole microstates. This requires a complete theory of quantum gravity, such
as string theory. One of the major successes of string theory was indeed the
counting of black hole microstates for a 5d supersymmetric black hole, in perfect
agreement with the Bekenstein-Hawking formula [12]. This counting was possible
because the degeneracy is protected by supersymmetry and could be computed
in a weakly coupled regime. This matching gives definitive evidence that black
holes are ordinary quantum systems, although it doesn’t directly shed light on the
nature of the microstates in the black hole regime.

The Strominger-Vafa computation made it look like that the precise agreement was
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possible due to details of the configurations. This was rather unsatisfactory given
the expected universality of the Bekenstein-Hawking formula. Strominger later
realized [13] that the matching could be done more generally, by simply applying
the Cardy formula using the Brown-Henneaux central charge, in the context of the
AdS3/CFTy correspondence.

We should mention that the problem of microscopic counting has lead to interesting
connections with the theory of modular forms in number theory. As an illustration,
we can mention that an exact counting formula for A” = 4 black hole microstates
was proposed in [14, 15] using the Igusa cusp form and has lead to interesting
connections with the theory of mock modular forms [16].

More recently, the microstates of BPS black holes in AdS441, for d > 3, have been
counted in terms of the dual CFT,. This was first done for supersymmetric black
holes solutions of M-theory on AdS, x S” using supersymmetric localization in
ABJM theory [17] and has now been generalized in many directions. In particular,
this has lead to a resolution [18-20] of the long-standing mismatch between the
superconformal index of N/ = 4 super Yang-Mills and the entropy of BPS black
holes in AdS5 x S® [21].

1.1.3 Logarithmic corrections

The exact black hole entropy is the logarithm of the number dyicro Of microstates.
The Bekenstein-Hawking formula arises as the leading term for large entropy, and
has been successfully checked in the examples where dpicro is known, as was dis-
cussed above. Can this matching be extended beyond leading order?

The logarithmic correction is the coefficient C' in an expansion of the form

Ay C Ay
] o = —H 4 Z o [ ZH2) 4 1.
08 dmicro 1c 3 Og( e ) +..., (1.3)

where Ay is the area of the horizon. We consider here a regime where Ay is large
and ... contains subleading terms. The logarithmic correction has a special status
because it can be computed solely from the two-derivative low energy effective
theory, depends only on the massless field content and thus constitutes a powerful
“infrared window into the microstates” [22]. We review the details of this derivation
in section 3.1.

To give a flavor of these corrections, we give the answer for the Schwarzschild black
hole in Einstein gravity with minimally coupled fields:

1 233
C = %2 (2%5 — 26ny + Tnp — an + 154) , (1.4)
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where ng,ny,nr and ny are respectively the number of massless scalar, vector,
Dirac and Rarita-Schwinger fields [22]. We see that the logarithmic correction is
highly sensitive of the specific theory of which the black hole is a solution. No-
tably, this was used to challenge loop quantum gravity which predicts an incorrect
logarithmic correction for the Schwarzschild black hole.

To compare with microscopic counting, we need to compute the logarithmic cor-
rection in low energy effective theories coming from string theory. For extremal
black holes, using the definition of quantum entropy of [23], the logarithmic cor-
rections for A/ = 4 and N/ = 8 black holes were computed in [24] and for rotating
black holes in [25]. They were successfully matched with the predictions of the
corresponding microscopic formulas.

It has been of interest to compute these corrections in more general settings, for
black holes for which we don’t know the microscopic description. One motivation
is that the structure of the logarithmic corrections could provide insight into the
microscopic theory, in an analogous way to how low energy data can constrain the
high energy spectrum, e.g. by modular invariance in a CF'Ts. The computation of
logarithmic corrections for the (non-extremal) Kerr-Newman black hole in general
N > 2 supergravities was done in [26] and an interesting pattern was found. It
was observed that C is always independent on the black hole charges. This is not
the generic expectation and requires delicate cancellations between bosons and
fermions. The goal of the work presented in Chapter 3 is to challenge this pattern
against a different class of black holes, in an effort to understand what it teaches
us about the black hole microstates.

The above discussion takes place in asymptotically flat space, but logarithmic
corrections have also been considered in AdS. In [27], the logarithmic correction
to the partition function of supergravity in AdS, x S7 was computed and matched
with the prediction from the dual ABJM theory. More recently, the logarithmic
correction to the entropy of AdS,; black holes was obtained from a microscopic
counting using supersymmetric localization in the CFT3 and matched with the
supergravity computation [28,29].

1.2 The holographic principle

The Bekenstein-Hawking entropy formula shows that the number of true degrees
of freedom is proportional to the area instead of the volume. A heuristic way
to interpret this could be that all the information is encoded on the black hole
horizon. Because black holes correspond to the maximum amount of energy that
we can fit in a given region, this suggests the holographic principle: in quantum
gravity, the information content of a region should be, in some sense, encoded in
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the area of this region [30, 31].

1.2.1 AdS/CFT dictionary

A concrete proposal of a holographic duality was put forward by Maldacena who
suggested that string theory in an AdS spacetime was dual to a CFT living on its
asymptotic boundary [32]. A precise dictionary was given [33,34]: it was proposed
that the full quantum gravity path integral with fixed asymptotic values of the
fields is equal to the CFT partition function with insertion of sources for dual
CFT operators. This can be written as

Zuas o) = (exo [ oon@0@))) (1)

where x is a boundary coordinate. This proposal has been thoroughly tested and
can be viewed as the first fully non-perturbative definition of quantum gravity,
although it only works for asymptotically AdS spacetimes.

We have learned a lot about quantum black holes from AdS/CFT. According to
the duality, an AdS black hole is dual to a CFT state that is “close” to a thermal
state (in the sense of the eigenstate thermalization hypothesis). The black hole
microstates are identified with high energy states of the dual CFT. Holography was
used to show that black holes are the most extreme objects in nature, since they
thermalize “as fast as possible” [35,36] and are “fast scramblers”, i.e. maximally
chaotic quantum systems [37-39]. This gives a picture of a quantum black hole as
a strongly coupled system made of many degrees of freedom. We will see that the
nAdS; /nCFT; correspondence provides a simple realization of this picture.

1.2.2 The nAdS,/nCFT; correspondence

The case of the AdSs/CFT; correspondence, which should naively be the simplest
possible case, has been puzzling for a long time. It is particularly interesting
because AdS, arises universally in the extremal limit of higher-dimensional black
holes. As a result, it is expected that the AdSy/CFT; correspondence would be a
theory of the black hole microstates.

It is precisely this simplicity that has prevented the definition of a useful correspon-
dence in the early days of AdS/CFT. It was understood that this correspondence
is actually trivial, in a sense that it is just a theory of ground states and has no
dynamics [40]. More recently, it was realized that the correspondence could be
made non-trivial by slightly breaking the exact conformal symmetry, leading to
the near-AdS; /near-CFT; correspondence [41-44]. It was shown that near-AdS,
physics is controlled by a universal pattern of spontaneous and explicit symmetry
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breaking.

This was sparked by the SYK model [45,46], an ensemble of quantum mechanical
theories with Hamiltonian

H= Z Jijretivj e (1.6)

i,5,k,¢

where {1;} is a collection of N Majorana fermions in one dimension, and J;j;xe
are random couplings with a Gaussian distribution. Notably, this model can be
analytically solved and shown to be maximally chaotic [46,47]. At low energies,
this model has an emergent Diff(S!) symmetry of time reparametrization, which
is broken to SL(2,R) by the Schwarzian effective action

1] = / de{f ().} (L.7)

This is also the structure appearing in near-AdS, gravity, such as in Jackiw-
Teitelboim (JT) gravity reviewed in section 2.1. The duality between JT grav-
ity and a subsector of the SYK model is an example of what we mean by the
nAdS,/nCFT; correspondence [47].

JT gravity is more than a toy model since it precisely captures the leading near-
extremal dynamics of spherically symmetric black holes. For rotating black holes,
JT gravity is not a consistent truncation [48]. In Chapter 2, we will see how to
apply near-AdSs holography to the Kerr black hole.

The SYK model can be seen as a UV completion of JT gravity. It is not dual to
Einstein gravity because the string scale in the bulk theory is comparable to the
AdS; radius. It can nonetheless be viewed as a toy model of a quantum black hole,
which has lead to many applications and concrete computations. For example,
SYK was used to study the process of wormhole formation in real time [49].

JT gravity can also be considered as a UV complete theory in its own right. In fact,
one can compute the full Euclidean path integral, and demonstrate that JT gravity
is dual to a random matrix ensemble [50]. This has led to a better understanding of
the discreteness and statistics of black hole microstates from the gravitational point
of view. It has also shown that after including wormholes (connected contributions
to the path integral), we obtain sensible answers to physical quantities (such as
the spectral form factor). Notably, these wormholes generally imply that the
gravitational theory is dual to an ensemble of theories instead of a unique one.
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1.2.3 The information paradox

Holography has enabled new insights on the black hole information paradox, which
we briefly review here. This involves many ideas coming from quantum information
theory which are described in more details in the next section.

A direct consequence of AdS/CFT is the fact that information is actually preserved
during black hole evaporation because the evolution with the CFT Hamiltonian
is unitary. However, this doesn’t provide a gravitational picture on how the infor-
mation “gets out”, which has been the motivation for many recent developments.

In 2013, a refinement of the information paradox was put forward by AMPS [51].
This “firewall paradox” suggested that the preservation of information and the
equivalence principle are inconsistent with each other. The proposed solutions
[52-55] involve a radical revision of locality, requiring a strong version of black
hole complementarity: the interior and exterior degrees of freedom of black holes
should, in some sense, be the same. We will come back to this in the next section.

The nAdS;/nCFT; correspondence has played a central role in recent develop-
ments on the information paradox and the black hole interior. After introducing
a coupling between an evaporating AdSs black hole and an external bath, the
entropy of the bath was shown to follow the Page curve [56,57] after using the
holographic prescription to compute entanglement entropy as reviewed in the next
section. This has led to the island prescription [58,59] which was proven using
replica wormholes [60,61] appearing as saddle-points in the replicated Euclidean
path integral. It was noticed that these new geometries could only make sense if
some kind of average was taking place. It would be interesting to use the results of
this thesis and explore whether these ideas could be applied in the more realistic
context of the near-extreme Kerr black hole.

1.3 Spacetime and quantum information

We have seen that black holes can be thought of as complicated quantum systems
with many degrees of freedom. The black hole description is powerful because it
gives simple pictures for complicated effects, such as thermalization and chaos,
which are usually out of the reach of analytical methods. However, it doesn’t
provide an understanding of how these degrees of freedom combine to produce
such a simple geometrical description. Quantum information, and especially the
idea of entanglement, has provided insights into this question, some of which will
be discussed in this section.
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1.3.1 Holographic entanglement entropy

Entanglement is a striking property of quantum systems which has no classical
analog. For two systems A and B, respectively described by Hilbert spaces H 4
and Hp, a state of the combined system Ha ® Hp is entangled if it cannot be
written as a tensor product of a state in H 4 and a state in Hg. A natural measure
of entanglement is the entanglement entropy, which is the von Neumann entropy
of the density matrix obtained after tracing over the system B

Sge = —Trpalogpa, pa = Try g [0) (Y| . (1.8)

In 2001, Maldacena proposed [62] that the eternal AdS black hole is dual to an
entangled state of two identical CFTs: the thermofield double state

ITFD) =Y e ?#/?|E), ® |E)g (1.9)
E

where the sum is over the CFT energy spectrum. The entanglement entropy,
obtained after tracing over one of the two CFTs, is the thermal entropy on one
side, which is equal here to the the Bekenstein-Hawking entropy. This gives, in
this special setup, an interpretation of black hole entropy as entanglement entropy.

The central role of entanglement in the emergence of spacetime was appreciated
seven years later, when Ryu and Takayanagi made a remarkable proposal [63, 64]
which considerably generalizes the above observation. A covariant formulation was
later given by Hubeny, Rangamani and Takayanagi [65]. The proposal is that the
entanglement entropy associated to a subregion A of a holographic CFT, can be
computed holographically by the formula

~ Area(X,)

S5(4) e

(1.10)
where ¥ 4 is the bulk surface of extremal area that is homologous to A (i.e. it can be
continuously deformed into A). Although this formula is similar to the Bekenstein-
Hawking entropy, it really computes something different. The Bekenstein-Hawking
entropy is a coarse-grained entropy, which is about the number of all states cor-
responding to the same black hole geometry. In contrast, the Ryu-Takayanagi
formula computes fine-grained entropy, which depends in a precise way on the
exact state. This relation between the quantum state and the spacetime geometry
led to the proposal [66] that spacetime is actually built up from quantum entangle-
ment. We should note that an important generalization including bulk quantum
effects was proposed by Engelhardt and Wall [67].
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This formula was proven in [68-70] by generalizing the original Gibbons-Hawking
derivation of gravitational entropy, where the U(1) symmetry along the Euclidean
time circle is generalized to a Z, “replica” symmetry permuting n copies of the
system, allowing to compute much more general gravitational entropies.

The connection between spacetime and entanglement has also dynamical content.
Using the Ryu-Takayanagi formula, it was shown in [71,72] that the linearized
Einstein equation is equivalent to the first law of entanglement, which is a universal
relation satisfied by entanglement entropy. In the paper [6], which will not be
presented here, we have studied the flat space version of this derivation.

1.3.2 Entanglement and connectivity

Let’s review the firewall paradox [51]. We consider an old evaporating black hole
which started in a pure state. Two quanta A and B are pair produced close the
horizon. A falls into the black hole while B comes out as Hawking radiation.
Smoothness of the horizon requires A and B to be strongly entangled. Assuming
that information is preserved, B should also be strongly entangled with an earlier
Hawking quanta E, because unitarity requires the late radiation to purify the
early radiation. However, this violates the monogamy of entanglement: quantum
mechanics doesn’t allow a particle to be strongly entangled with two different
particles at the same time. Moreover, a single observer can collect the three
qubits along a causal trajectory and observe, in his own hand, such a violation of
quantum mechanics.

As mentioned above, the proposed solutions [52-55] relied on a strong form of
black hole complementarity, where for a sufficiently old black hole, the interior is
somehow completely encoded in the exterior. In the above setup, the resolution is
roughly that A and E are secretly the same particle.

This idea doesn’t contradict our observed locality because the experience of a
semiclassical observer is described in a tiny subspace of the Hilbert space, called
the small Hilbert space or code subspace, in which approximate locality holds.
It’s only for very fine-grained observables, such as the von Neumann entropy, that
the effect of complementarity becomes important. This can be understood in the
interpretation of AdS/CFT as a quantum error correcting code [73,74].

The firewall paradox is particularly well-posed for the eternal AdS black hole,
where it was resolved by Maldacena and Susskind [55]. It was argued that the
extraction of F from the early radiation sends a particle through the wormhole,
which disrupts the entanglement between A and B, so that the contradiction is
avoided. This resolution suggested that a similar idea might work more generally.
That is, entangled particles should always be connected by “quantum wormholes”,

10



1.3. Spacetime and quantum information

which might not be semiclassical geometries, but still allow particles to be sent in.
This is known as the ER=EPR proposal. We will see that the traversable wormhole
protocol, discussed in the next section, gives evidence for this conjecture.

1.3.3 Traversable wormholes

Although traversable wormholes have always fascinated the general public, they
were considered unphysical for a long time, because they require matter which
violates the null energy condition. A related fact is that they are in tension with
causality because they can be used to create time machines [75]. It turns out that
quantum effects can violate the null energy condition and to preserve causality,
it is sufficient to require a weaker energy condition: the achronal averaged null
energy condition [76-79]. This allows traversable wormholes as long as they are
not shortcuts: the path outside the wormhole must always be faster. This is
discussed in more details in section 4.1.

Such traversable wormholes were in fact recently constructed. The first exam-
ple came from a natural holographic setup, the Gao-Jafferis-Wall protocol [80].
Starting with the eternal AdS black hole, it was shown that simply introducing a
coupling between the two CFTs makes the wormhole traversable. Although this
coupling is non-local from the bulk perspective, it is a perfectly consistent proce-
dure from the CFT perspective. This deformation creates negative energy in the
bulk which allows a light ray to defocus and come out of the wormhole. We refer
to Figure 4.1 for an illustration.

This protocol strengthens the ER=EPR proposal. It shows that an important
property of entanglement, as a resource for quantum teleportation, is also present
in the case of wormholes. It also gives a way to test this proposal in principle.
An external experimenter, having two holographic CFTs in his possession, can
put them in the thermofield double state and send an observer inside one of the
dual black hole. He can then use the Gao-Jafferis-Wall protocol to make the
observer come out on the other side. When asked how the trip was, the traveling
observer can explain that he was feeling perfectly fine, being in free fall the entire
time. Without this protocol, we can still test ER=EPR by sending two observers
from each side and see whether they meet, but the result of the experiment can
never be communicated to the outside, and dies with the infalling observers at the
singularity. See [81] for a more detailed discussion along these lines.

In Chapter 4, we will explore the limits of the Gao-Jafferis-Wall protocol by at-
tempting to construct an eternal traversable wormhole.

11
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Quantum dynamics of
near-extremal black holes

What is the quantum mechanics of the Kerr black hole?

Symmetries have played an important role in accounting for the quantum prop-
erties of black holes, and particularly the enhancement of symmetries that takes
place for extremal and near-extremal black holes [13,82,83]. The extremal limit
of a black hole achieves zero Hawking temperature, even though the entropy re-
mains finite and large. More prominently, it exhibits conformal invariance in the
near-horizon region and implies the existence of an AdSs factor [84-90]. Our un-
derstanding of (near-)extremal black holes is therefore tied to AdSs gravity, and
our progress relies on our understanding of this instance of AdS/CFT.

2.1 Introduction: near-AdSy holography

In the early days of AdS/CFT, it was realized that AdSs holography is actually
trivial, in the sense that it has trivial dynamics. It was shown in [40] that the
backreaction is too strong in AdS,: an excitation with non-zero energy destroys
the AdS, asymptotics. This was argued by considering the Reissner-Nordstrom
black hole and showing that there is no way to take a decoupling limit which leaves
non-trivial excitations in the near-horizon region. This was also demonstrated
explicitly using a dilaton model of 2d gravity. An alternative way to understand
this is from the point of view of the dual CFT;. There, conformal invariance
implies that the trace of the stress-tensor vanishes, which in 1d implies that the
Hamiltonian vanishes. Equivalently, p(E) = % §(E) is the only normalizable

13



2. Quantum dynamics of near-extremal black holes

density of states that is scale invariant. In summary, AdSs holography is a theory
containing only ground states.

Although it doesn’t have dynamics, the study of these ground states is still in-
teresting. After all, they are the extremal black hole microstates! Indeed, the
AdS,/CFT; correspondence can be used to give a rigorous definition of the quan-
tum entropy of extremal black holes [91,92], as we will review in section 3.1.1.a.
This allows a definition of the quantum corrections to black hole entropy from
the "macroscopic” point of view, which can be matched against the exact counting
formulas, known for black holes with enough supersymmetries. In particular, the
leading logarithmic correction depends only on semiclassical data, thus offering an
infrared window into the microstates. This direction will be explored in Chapter
3. In this Chapter, we will explain how AdS, holography can be made dynamical,
and in particular, how to apply holography to the near-extreme Kerr black hole.

2.1.1 Near-AdS, dynamics in JT gravity

In 2016, Almheiri-Polchinski studied 2d dilaton-gravity theories as models of back-
reaction in AdSy [41]. Later in that year, inspired by the SYK model, the universal
dynamics corresponding to the breaking of the conformal symmetry in AdS; was
described by Jensen [42], Maldacena-Stanford-Yang [43] and Engelsdy-Mertens-
Verlinde [44] in a model known as Jackiw-Teitelboim (JT) gravity. This was called
near-AdS, because it captures the leading effect that takes us away from AdS,.

JT gravity is described by the action

Iy = SOF/M\/TgRJr aM\/ThK] (2.1)

o7 |2
+[;/MH®(R+2)+ ﬁ¢(K—1)] :

oM
The first line gives a topological term which in the black hole context, corresponds
to the extremal black hole entropy Sy. The second line contains the leading devi-
ation from extremality controlled by the dilaton ®.

Let’s now analyze this action. The equation of motion for the dilaton sets R = —2
as a constraint. This implies that the solution for the metric is a patch of AdSs.
In Fefferman-Graham gauge, the most general metric with R = —2 takes the form

2
s(t) dr?
ds? = —r? (1+ =2 | dt* + —- . 2.2

( * 2r2 ) + r2 (2:2)
where we have imposed a Dirichlet boundary condition for the asymptotic metric.
We see that the space of solutions for the metric is parametrized by an arbitrary
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2.1. Introduction: near-AdSs holography

function s(¢). The equation of motion for the dilaton is
V.V, ® — g, 00+g,2=0. (2.3)

where we used the AdSs background (2.2). This equation implies that the solution
takes the form

o) =vr+ 20w = Lo ) @)
where s(t) and v(t) are tied by the equation
v () + 2s(t)/ (t) + 8 (L)v(t) =0 . (2.5)

This equation contains the dynamics of JT gravity: it ties the AdS, background,
parametrized by s(t), with the source v(t) of the dilaton.

For Poincaré-AdSs, which corresponds to s(t) = 0, the solution is
v(t) = c1 + cat + cst? | (2.6)

where c1,co and c3 are arbitrary constants. It can be observed that the solu-
tion for a general s(¢) can be obtained from this one after acting with a large
diffeomorphism of the form

t— f(t)+0(r?),

r
r— ——+0(""). (2.7)
f'(@)
We give here only the asymptotic form of this diffeomorphism, see (2.37) for its
exact expression. Acting on the Poincaré-AdSs metric, this diffeomorphism gives
the metric (2.2) with

s(t) = {£(t).1} . 2.8)

which is the Schwarzian derivative of f(¢). The solution for the dilaton is then
given by
1

v(t) = o) (c1 +caf (t) +esf(t)?) . (2.9)
As we see, the different solutions of the theory are related by large diffeomorphisms,
which correspond on the boundary to time reparametrizations. For example, the
thermal solution corresponds to the choice f(t) = ! in the above equations. This
gives s(t) = —e2/2 yielding the AdSs-Rindler geometry (also known as the AdSs

black hole) with inverse temperature 8 = 27 /e.

The pure AdS5 subsector corresponds to solutions with vanishing dilaton. It carries
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2. Quantum dynamics of near-extremal black holes

a full Diff(S1) symmetry given by the diffeomorphism discussed above. Choosing
the Poincaré vacuum, corresponding to s(t) = 0, spontaneously breaks this sym-
metry to its SL(2,R) subgroup. We can think of the reparametrization mode f(t)
as the associated Goldstone mode. The solutions are then labeled by f(¢) and are
all degenerate, reflecting the fact that the pure AdSs subsector is topological.

Turning on the dilaton gives rise to non-trivial dynamics, by taking us to the
so-called near-AdS, regime. This is achieved by the Schwarzian effective action

hoaslf) = o [ Atv1r0.1) (2.10)

which comes from the renormalized version of the Gibbons-Hawking-York bound-
ary term, corresponding to the K — 1 appearing in (2.1). This supplements the
spontaneous symmetry breaking Diff(S') — SL(2,R) by an explicit breaking of
the same symmetry, and lifts the degeneracy by giving a non-trivial action to the
different solutions. Moreover, the variation of I,q, with respect to f reproduces
the relation (2.9) which implies that the full dynamics of JT gravity is captured
by the Schwarzian theory.

Although compelling, the above discussion (which follows closely [43]) is rather
heuristic, and we refer to [93] for a more rigorous perspective on the Schwarzian
action, from the study of the variational principle and asymptotic symmetries, the
corresponding gravitational charges being analyzed in [5].

2.1.2 The Reissner-Nordstrom black hole

JT gravity is not just a toy model. It actually describes the leading near-extremal
dynamics of spherically symmetric black holes. In this section, we will show how
JT gravity arises in the near-extreme Reissner-Nordstrém black hole. It is cus-
tomary to obtain JT gravity after performing a Kaluza-Klein reduction on the
sphere [94-96] but we will take a different approach here: we will remain in four
dimensions and describe the gravitational perturbation that controls the near-AdS,
dynamics. This approach is more suited to generalization to situations where we
cannot perform a Kaluza-Klein reduction, such as the near-extreme Kerr black
hole that we consider next.

The Reissner-Nordstrom black hole is a solution of Einstein-Maxwell theory
S = /d4x\/—g L Lp e (2.11)
167 4= ’

where we have set the 4d Newton constant G = 1. The geometry and field strength
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2.1. Introduction: near-AdSs holography

AdS,

Figure 2.1: Penrose diagrams for a near-extremal black hole and its near-horizon
geometry. In the left, we depict the full black hole geometry while in the right, we
focus on the near-horizon region. The orange patch is the AdSs-Rindler geometry.
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2. Quantum dynamics of near-extremal black holes

are given by

2

ds? — _(7”_7‘+)(7"—T—)dt2+ r dr? +r2d0? |
= (r—r)(r—r)
F = —gsinﬁdﬁ/\dqﬁ . (2.12)

VT

We consider here the magnetically charged black hole. The inner and outer hori-
zons are at ry = M =£/M? — Mg and My = Q is the extremal mass. The entropy,
temperature and magnetic potential are

1 4r? Q

-+ p=" (2.13)

2
SBH:FTJH ﬂzf
Ty Ty —T_ T4

and the first law of thermodynamics reads
dM = TydSgu + ¢ dQ . (2.14)
We consider a near-extremal limit where the horizons are separated according to
re =My +ed+ O(N\) (2.15)

where ¢ is a near-extremal parameter and \ is taken to be small. This corresponds
to a change of mass M at fixed charge ). The small Hawking temperature that

is generated is
eA

Ty = ——
= 27TM02

+0(\?) . (2.16)
The near-extremal mass and entropy are

T? 2
H S =8+ -—Ty, (2.17)

M - MO + )
Mgap Mgap

where M., = 1/(272M§) is a constant which can be interpreted as the smallest
temperature at which the semiclassical description is valid, although this interpre-
tation was recently challenged [96]. In fact, the behavior (2.83) is known to be
universal in that any extremal black hole responds in this way when increasing
the mass at fixed charge. As will be shown below, this is actually explained by the
near-AdSs physics [43].

The near-horizon geometry is obtained by performing the change of coordinates

t 1
t—>M§X, r—>M0+)\r—ﬁ)\2r2, (2.18)
0
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2.1. Introduction: near-AdSs holography

and taking the limit A — 0. Here, the A\? term is necessary to preserve the
Fefferman-Graham gauge. This leads to AdSy x S? with the metric

ds? ez \? dr?
—=—(1-— ) rdt® + — +dQ*. 2.19
ME ( 47‘2) " + 72 * ( )
The Penrose diagrams of the black hole and of its near-horizon geometry are
depicted in Figure 2.1. We can consider instead a general AdS,; background

ds® {F®),83\* 2,0 dr? 2
=—11 . dt Q2 2.2
: < +13 ) P2t + o 4 d (2.20)

and the metric (2.33) is recovered for f(t) = e*. Such a background can be ob-
tained by starting with the Poincaré metric and acting with a large diffeomorphism
(2.7) giving a general AdSs metric 7, in Fefferman-Graham gauge

2 2
b {f(®),t} 2 0 dr
’yabdl'ad.’ﬂ = — (1 + T T dt + ? . (221)
The previous section has shown that the near-AdSs physics depends crucially
on the specific choice of background so it’s important to consider a general one.
Now, we would like to deform this geometry by adding a linearized gravitational
perturbation. We use the following ansatz

ds® [IONIA dr?
Mig = —(1-XAy(tr)) (1 + {;7“)2}> r2dt? + TLQ + (1 +AD(t,r))dQ? ,
F = —Qsinede/\c@, (2.22)

NG

where we work at linear order in A\. The equation of motion for the gauge field
0, F" = 0 is trivially satisfied. This is an advantage of using the magnetic black
hole instead of the electric one: the field strength has no backreaction at this order.
The Einstein equation gives

1 1 o
R/w - iRg/w =8 (EL[)FDP - Zg/wFpon ) ’ (223)

which leads to the following equation for ¢ (¢,r) and ®(¢,r)

4
'(l} = -2¢ + 2|:|2® + ﬁ&g (\/ - ’yttatq)) , (224)
O = Pg+ Py7, VoV @1 — Y2 ®@y1 + Y0 P37 = 0 .

We recognize ®j1 to be the Schwarzian mode. The field i is the backreaction of
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2. Quantum dynamics of near-extremal black holes

the 2d metric and ®( is a constant mode associated to an infinitesimal change of
charge. As a result, we see that the mode ®, which controls the area of the sphere
(and hence the black hole entropy), satisfies the JT equations of motion. This
demonstrates how the JT dynamics is captured in the near-extremal perturbations
of the Reissner-Nordstrém black hole.

It’s also possible to obtain the on-shell action on the background. Let’s consider
the action of Einstein-Maxwell theory

S:/ d*z/—g LR—EFWFW +i/ dBav-hK , (2.25)
M 167 4 8 M

™

where we have added the Gibbons-Hawking-York. Using holographic renormaliza-
tion, and integrating over the sphere, we obtain the renormalized action

o A

/ v F(),1) | (2.26)

which is the Schwarzian effective action. The details of the holographic renormal-
ization procedure are explained in section 2.4, where we perform a similar analysis
for the Kerr black hole.

As noted in [43], the Schwarzian action explains universal features of the near-
extremal thermodynamics. The thermal background corresponds to f(t) = e
and we have

FOn=-5. = (227

e — 1 = —_— .
) 2 ) MO )

where ¢ is the near-extremal parameter and the value of v(t) can be read from the
gravitational perturbation. The Euclidean time circle has length 27 /. This gives
the Euclidean on-shell action

Sp=nMZ\e . (2.28)

The variation of the Bekenstein-Hawking entropy due to the perturbation is then
given by
8Spr = (1 +€0.)(—Sg) = 2rMZ e, (2.29)

which matches the near-extremal thermodynamics (2.83). The argument presented
in this paragraph only followed from the Schwarzian effective action. Since it
is believed to be the universal description of near-AdS, physics, the Schwarzian
action actually explains the linear dependence in temperature in the near-extremal
entropy of black holes.
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2.2. Near-extreme Kerr geometry

2.1.3 Introduction to our work

The near-AdS, physics described by the Schwarzian action is completely controlled
by symmetries. We thus expect it to be valid universally for near-extremal black
holes. However, the JT gravity discussion only demonstrates this for spherically
symmetric black holes from which JT gravity is obtained by Kaluza-Klein on the
sphere. For rotating black holes, the dynamics is not described by JT gravity, as
was first demonstrated in [48] for Kerr-AdSs. This begs the question of how the
near-AdSs dynamics is realized for the four-dimensional Kerr geometry. This is
what we address in our work.

For Kerr, dimensional reduction on the sphere is not a good approach because
of the complicated angular dependence of the solution. Instead, we will take the
approach given in the previous section for Reissner-Nordstrém. That is, we will
look for the gravitational perturbation of the near-horizon geometry of extreme
Kerr which captures the Schwarzian mode.

An important motivation for this work is the fact that the Kerr black hole is the
generic black hole solution observed in our universe. When formed from collapsing
stars, it is often the case that the black hole ends up spinning rapidly, because
the collapse reduces the moment of inertia while conserving angular momentum.
The geometry should then be well-approximated by near-extreme Kerr. Recently,
gravitational wave astronomy has opened a new window into the universe and
routinely observes black hole mergers. Also, the direct image of a Kerr black
hole has been captured. This offers the exciting prospect that AdS/CFT, in its
near-AdSs /near-CFT; incarnation, could be, in some sense, observed in the sky.

2.2 Near-extreme Kerr geometry

In this section we review properties of the near-extreme Kerr geometry, with par-
ticular emphasis on its near-horizon geometry. We start by considering the general
Kerr solution,

£ A dr?
ds? = — A + % { -+ d6? .
§ (72 +a2)?2 — Aa? sin’6 M ( A i ) o
sin?6 2 212 5 27 )
i CAaZsin?o) (d - dt
+ 2 ((7* + a*) @ sm )( ¢ (f2+a2)2—Aa2s,in29 ) ’
with

A=F—r_)(Ff-ry), re=M=Ez\VM2—-a?, Y= +d’cos’d. (2.31)
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2. Quantum dynamics of near-extremal black holes

Here r_ and ry are the inner and outer horizons. We are using conventions where
G4 =1. M is the mass and J = aM is the angular momentum of the black hole.

The extreme Kerr solution is obtained as the confluence of the inner and outer
horizon: r1 = r_. We are interested in describing the dynamics of Kerr slightly
above extremality. In this context, near-extremality is defined as a deviation from
the extreme limit which keeps J fixed. Implementing it as a limit, we have

62 )\2 3
ry =MyEted+ —+0(X°), 2.32
+ 0 T My +O(X?) (2.32)
where A is a small parameter that controls deviations away from extremality. My
is the value of the mass at extremality, and ¢ is a constant that controls the
deviation of the mass above extremality. Under these conditions, we can identify
a near-horizon region. Redefining the coordinates in (2.30) as

s T+t 12 5 ¢
F= L. 0=0+My, (233

+ A 7“—1—i t=2M?
4r )’ o 0

and taking the limit A — 0 —with other parameters fixed— leads to the line element

i = M2(1+cod) |2 (1- thQ L g2 2.34
s° = My(14cos®f) |—r e tozt (2.34)
4in%6 g? 2
MZ—"" " |d 1+ — ) dt| .
01+C0829|:¢+T< Jr47‘2) ]

For € = 0, this is the near-horizon geometry of Extreme Kerr (NHEK) [97,98]. For
€ # 0, we will call this background the near-NHEK geometry.

It is instructive to discuss some properties of (2.34). For ¢ = 0, we have

(dg +rdt)* .

dr2 4sin%0
s 9 9 21,2 2 2
ds®> = MO(l-i—cosQ)(—r dt +,a+d9)+M01Jr(ms?t9

(2.35)

This geometry has four Killing vectors:

Ea=0,, &=10—10,, 51:<:2+t2>at—2rta,«—fa¢, k=0,

(2.36)
These vectors generate an sl(2) x u(1) algebra which corresponds to the enhanced
conformal symmetry of the near-horizon geometry. One can also impose asymp-
totic boundary conditions on (2.35). In particular, the set of diffeomorphisms
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2.8. Gravitational perturbations

preserving the asymptotic metric is [99]

21" () f'(1)°
MO LN
4T2f’(t)2 _ f”(t)2

t— f(t)+

ar i
2rf'(t) — f"(t)
oo <2f(t)+f(t)) ! (2:37)

where f(¢) is an arbitrary function that reflects the freedom of reparametrization
the boundary metric. Acting on (2.34), this diffeomorphism gives

ds*> = MZ(1+ cos®0) [—r ( {f;r) t}> dt® + —|—d92 (2.38)
4 M sin*0 {f(®),t} 2
7 +Ocos29 [dd) T (1 22 ) dt} ’

where

{f(t),t} = (‘?l,l)/ -5 (‘?,/) , (2.39)

is the Schwarzian derivative. It is important to note that for f(t) = e°f, (2.38)
reduces to the near-NHEK metric (2.34). At this stage, this implies that NHEK
and near-NHEK are just one diffeomorphism away. It is also worth noting that
the shift of ¢ in (2.37) is the large gauge transformation discussed in [100].

2.3 Gravitational perturbations

In this section we will study the response of NHEK to a small amount of energy:
how the metric responds when we deviate from extremality. Our goal is to find
a consistent truncation of the perturbations that captures the Schwarzian mode
which is believed to be universal in the response to black hole near extremality. Our
strategy is rather simple: we will propose an ansatz for the metric perturbations
of NHEK and solve the linearized Einstein equations.

A deviation from extremality is a correction due to the near-horizon parameter A
introduced in (2.33). By inspection of the full on-shell Kerr geometry (2.30), which
would correspond to stationary perturbations, it is clear that a suitable ansatz for
metric perturbations needs to account for non-trivial #-dependence. With the
insight on the behavior of Kerr, we will consider the following deviation of the
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2. Quantum dynamics of near-extremal black holes

NHEK geometry

1+ cos?0 + Ax(t, 7)) dr?
2 _ _M2 ( ) 2 142 M2 1 2 2
ds B Tt dt® + Mg (14 cos®0 + Ax(t, 7)) | —5 +df
in?0 (1 + \®(t,7))
AM2 sin ,
A g Ax(t,7)

(dg + rdt + AA)? | (2.40)

where the one-form A is supported in the (¢,r) subspace
A= Ay(t,r,0)dt + A,.(t,r,0)dr (2.41)

and captures the angular dependence of the ansatz. We treat the metric at linear
order in X\. The metric perturbation ®(¢,r) parametrizes the change of the volume
of the squashed sphere; x(¢,7) characterizes the squashing parameter that breaks
spherical symmetry; (¢, r) and X (¢, 7) are introduced for consistency of the ansatz.
At this stage it is a guess that y, x and ¥ have no #-dependence, and we will show
that this is compatible with the equations of motion. We are not introducing ¢-
dependence since it seems consistent, for the purpose of capturing deviations from
extremality, to focus on solutions which respect the isometry due to the Killing
vector k = 04.

We now proceed to solve the linearized Einstein equations
R,uu =0 ) (242)

where R, is the 4D Ricci tensor, and look at the first correction due to A in
(2.40). The #-components of this equation are the simplest to solve first. From
Ry and Rgy we can determine that the one-form can be written as

s 4
A=oa+eup0*Vda, U= % [(1 + 2 9) (t,r) — X(t,r)} . (2.43)
2sin”6 4

with
a = a(t,r,0)dt + a.(t,r)dr , at(t,r,0) = a1 (t,r) + az(r,0) . (2.44)

The components of « are arbitrary functions at this stage. In (2.43) we introduced
an auxiliary 2D metric, defined as

dr?

Yapdztda® = —r2dt? + — (2.45)
r
and g4 is the Levi-Civita tensor of this space, with ;. = y/—det v4p. This is the
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2.8. Gravitational perturbations

AdS, space appearing in the NHEK geometry (2.35). Using (2.43) in R,p and
Ryg, we can see that as = 0, and that y = x. In addition Rgg = 0 implies

Oax = 2x (2.46)

where [y is the Laplacian for the AdS, background (2.45), and therefore x is an
operator of conformal dimension A = 2. With this input in place, setting R4y = 0
leads to

Y(t,r) = =@ 4+ 0h® — 269, a, (2.47)

We have five components left to solve: R, Rir, Rig, Rrr and R,4. Using the
previous equations, one of these components is redundant. After some simple
manipulations, we find

@(t,?‘) = (I)o + @JT(t,T) . (248)

Here ®¢ is a constant: this is the degree of freedom that changes the value of M,
since it can be reabsorbed as a rescaling of the angle ¢. The field ® 1 satisfies

VaoV®i1 — Va2 Py + Y0p Py =0, (2.49)

which is the equation of motion of the scalar field in Jackiw-Teitelboim gravity
[101,102]. Finally, we also have

a=—£,0®dr +a. (2.50)

There is also a constraint on &, but this makes it pure gauge: we can remove &
via a trivial diffeomorphism. The details are given in Appendix 2.5.

In summary, the linearized perturbations are captured by two fields: x and . By
solving the dynamics of these two fields, dictated by (2.46) and (2.49) one can
reconstruct consistently the metric near NHEK. At this stage it is important to
make some technical remarks:

1. Our analysis is also a consistent truncation of the linearized Einstein equa-
tions around the locally NHEK background (2.38) where we take the ansatz
for the perturbations to have the same form as in (2.40). The explicit form
of the perturbed metric can be found in (2.60). The solution is given by
(2.43)-(2.50), with the modification that the auxiliary 2D metric in (2.45) is
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2. Quantum dynamics of near-extremal black holes

changed to a locally AdS, metric:!

Yapdaz®da? = —r? <1 + { ;T) t}> de? + re . (2.51)

r2
In particular, the solutions to (2.49) on this background are of the form

Sy = v(t)r + @ ) w(t) = —%(s(t)y(t) + (1)) (2.52)

(F(F)) -

This equation, whose solutions are given in (2.9), relates the explicit breaking
of symmetries in NHEK, due to v(t), with the diffeomorphism (2.37) on its
boundary, parametrized by f(t). It can also be obtained from the Schwarzian
effective action (2.10), as reviewed in the section 2.1.

where v obeys

. It is instructive to match the perturbations derived in this section with the
stationary configuration that would match the behavior of the Kerr black
hole. Applying the limit (2.33) to the Kerr geometry (2.30), and comparing
the linear order in A with the perturbations (2.40) for near-NHEK, we obtain

® 2 (.2 (2.54)
err — err — r - ; .
XK Kerr = 710 Ar

and the one-form « is zero. Hence both modes are non-trivial for the Kerr
solution.

. We constructed a consistent truncation of the linearized problem that cap-
tures the deviations away from the AdSs, throat of the extremal Kerr solution.
We do not expect (2.40) to be the most general ansatz for gravitational dy-
namics near the NHEK geometry: additional angular dependence could be
added. We have been exploring this question in current work [103]. Using
the Teukolsky formalism applied in [104,105] for NHEK, we have found the
most general axisymmetric perturbation of NHEK and are studying how it
glues to a perturbation of the full Kerr geometry.

The nAdS, analysis of the Kerr black hole shares one similarity with the charged
counterparts studied in [106, 107]: there is one gravitational mode ® which sat-
isfies the JT equations of motion (2.49). For Reissner-Nordstrom black holes, it
was consistent to only focus on the dynamics of ® as the leading effect in devia-

1 Although the formula (2.50) is not covariant with respect to the 2D metric 4y, it still holds
for a linearized perturbation around near-NHEK.

26



2.4. On-shell action and thermodynamics

tions away from extremality. But there are some important differences for Kerr.
First, the 6-dependence in (2.43) prevents us from building a 2D effective theory
that describes these modes. This is mostly a technical barrier, since it is more
cumbersome to keep track of the dynamics of the system. Nonetheless, we expect
to be able to quantify, for example, correlation functions of these gravitational
perturbations in future work.

The second, and most important, difference relative to Reissner-Nordstréom black
holes is the additional degree of freedom x that we have found. This is similar to the
5D rotating black holes studied in [48]: there is a squashing mode  that influences
the gravitational perturbations. Remarkably, xy and ® are both irrelevant operators
of conformal dimension A = 2. While the dynamics of ® is restricted by the
large diffeomorphism of NHEK, via (2.53), the field x is a dynamical mode. As
indicated by (2.54), the source for x is turned on for the Kerr solution: this a strong
indication that although (2.53) captures some important aspects of the deviations
away from extremality, a complete characterization needs to take into account the
interactions of ® with .

Large diffeomorphisms play a prominent role in our analysis, which begs for a
comparison with Kerr/CFT. A crucial difference is that the asymptotic symmetry
group used in [98] had arbitrary functions of ¢, while here we are considering
generators that reparametrize the boundary time.? It would be interesting to
investigate whether there is a deformation of NHEK that ties the explicit breaking
of the conformal symmetry by an irrelevant deformation to the conformal anomaly
in the Virasoro algebra of Kerr/CFT. This will require searching for gravitational
perturbations that have non-trivial ¢-dependence, which we have ignored in this
work. We hope to pursue this direction in future work.

2.4 On-shell action and thermodynamics

It is instructive to discuss the thermodynamics near extremality, and its ties to
the gravitational perturbation ®. This follows closely the corresponding discussion
for Reissner-Nordstrom in section 2.1.2. The thermodynamic properties of the
near-NHEK geometry are as follows [109]: implementing (2.32) on the standard
thermodynamic variables, the energy above extremality is

e2\2

E=M-—M, =
07 4M,

+0(\®) . (2.55)

2In the context of Kerr/CFT, our symmetry group follows more closely the analysis in [108].
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2. Quantum dynamics of near-extremal black holes

The near-extremal entropy at linear order in A is

A
SBH = TH = 27TM§ + 2rMyeX + O()\z) s (2'56)

and in this limit the Hawking temperature is given by

T —T_ €A 9
T = = o) . 2.57
8rMry  AwME +OMY) (2:57)

This allows us to write
E=CT*+0(T%, S=2rM;+2C0T+0(T?, (2.58)

where C' = 4m?M§.

We will see that these thermodynamical properties can be understood using the
renormalized on-shell action, along the lines of [43]. Let’s consider

1 1
Lo = —— [ deyGIR+ 7/ BT K (2.59)
167 M 8w OM

which is the standard Einstein-Hilbert action with the addition of the Gibbons-
Hawking-York term. We would like to evaluate I4p on the general perturbation of
the locally NHEK background. The on-shell solution is

B (14 cos20 + Ax(t, 7)) {f(0), 11\
ds® = —M? ) 2 (1+2T2) dt? (2.60)

d 2
+MZ(1 4 cos?0 + Ax(t,r)) <:2 + d92)

. 92 2
5 sin“d (1 + A®(t,7)) {f(#),t}
M T i) (d¢+r (1 = 27«2) dt+>\A> ,

which we treat at linear order in A, and the fields obey (2.43)-(2.50) with back-
ground metric (2.51). Replacing (2.60) in the 4D action (2.59) leads to divergences
that are common for on-shell gravitational actions. To remove them, we will take
a standard route: after specifying a set of boundary conditions, we will build a
renormalized action by requiring that its variation is finite. Our setup follows
closely the rules of holographic renormalization in AdS gravity, with [48] being the
closest example, and any deviation from these rules will be highlighted.

To start, it is convenient to rewrite (2.60) as an asymptotic solution with arbitrary

28



2.4. On-shell action and thermodynamics

sources for the fields:

1+ cos?0 + Ax(t,r))
2 — MQ( ) 2 2 1
ds fy T Vet (t, r)dt (2.61)

2
+MZ(1 4 cos? + Ax(t, 7)) (d’; + d92)
T

in%0 (1 + A®(t,7))
a2 Sin ,
Mo + cos20 + Ax(t, r)

(Ao + ag(t,r)dt + AA)*

For x, ¥, and A we will be using the on-shell values determined by 7, ® and x
as described in section 2.3. For the additional fields, we have

Vae=ar+ 20 acame -, e
<I>:u(t)r+@, xzo(t)r—l—----i—%-i-n-.

Here we identify «, v, o as sources for vy, ® and x, respectively; the functions
B, 1 and k are the corresponding vevs. ( is the source for a;, while its charge is
one in our conventions.® Note that for y we are only highlighting its source and
vev: the dots are subleading terms in the large r expansion that are determined
by imposing its equation of motion. In this notation, the solution to equation (??)
reads

gy = LD ity = <0 - U (2.63)
where ¢ is a constant.
The renormalized action is of the form

Iren = I4D + Ict 3 (264)

where I,p is specified above and I is a counterterm action. We want to cast our
variational problem with respect to the 2D variables in (2.62). Leaving the gauge
field fixed, for reasons explained below, we set up the variation of the action as
follows:

6Lren = / d3x 7 5hy,,
=

= / d?’x (H@(S@ + Htt(s’}/tt + HX(SX)
2

3For a 2D Maxwell field we are simply identifying the electric charge @ from Fry = Q+/]7].
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2. Quantum dynamics of near-extremal black holes

= /dt (roda(t) + m,ov(t) + m,00(t)) (2.65)

where ¥ is a cutoff surface of constant r with induced metric h,,. From the first
to the second line we are simply casting the variation of the 3D boundary metric
hu in terms of the 2D fields. In the last line we are specifying the variations of
the 2D fields in terms of their sources, and we have integrated over the angular
variables (6, ¢). Fixing the variation of the gauge field in this notation means that
we do not vary the sources appearing in a; and A. The task is now to build I
such that the momenta 7, m,, and 7, are finite as we approach the boundary at
r — 00.

In terms of the 3D variables, the momenta 7" receives a contribution from I4p
which is the usual Brown-York stress tensor:

6]4]:) 1
ry — _ .\ Ky 1224
"= 5 o VR (BN K (2.66)

This term will lead to divergences in 7, 7, and 7, as we take r — oco; in particular

we get
2 2
T, dD = % (v(t) r? — p(t) X — %y(t)(zl V(t) — mo(t))A2r3 + -
Tv,4D = MTS (a(t)r? = B(t) A~ %ga(t) (2u(t) — (m — 2)o(t)) A2r® + - -
Tg,aD = ]\3/[7230[(15) (4(r —2)v(t) — (4 +3n)o(t) N2r3 - | (2.67)

where the dots are higher-order terms in A\r, and we have integrated over the angu-
lar variables (0, ¢). It is important to emphasize that our perturbative expansion
is only meaningful at leading order in the deformations we turn on, which implies
that A\r < 1 as r — oo.

The leading divergences in the canonical momenta 7,7, and 7, can be cancelled
using the following counterterms

M2
I = ?0 /dt\/—%t (cl)\q) + e N2D% 4 e\ + 04)\2@)() , (2.68)

where the coefficients are found to be

Cc1 = 74, Co — 1, (269)
1

03:§(4+37r), 4 =2—-7.
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2.4. On-shell action and thermodynamics

Note that the counterterms used here are very similar to those in [48] which also
displays similar equations of motion. Adding the contribution from these coun-
terterms to (2.67), the renormalized momenta are

Ta = Taab + T = —Mg p(t) A+ O(N?r) |

3M2
Ty = Toan + Ty = — Mg B(H) A+ —La(t)r(t) A + O(N*r)
3M§ 2 2
To = Mg 4D T Toct = 372(71- + 4) Oé(t):‘ﬁ(t) A+ O()\ T) . (270)

We have retained some subleading terms in conformal perturbation theory: this
is to illustrate the different behavior of y compared to ®. Because the momenta
for @ is influenced by the large diffeomorphism of the background metric, the
finite contribution appears at O(A). In contrast, x behaves as a more traditional
propagating field in AdS, and hence the term r(t) §o(t) appears at O(A\?).

Using (2.70) in (2.65), the renormalized variation is
STyen = — M2 / dt (u(t)5a(t) + BEOV(E) +0(N2) | (2.71)

which can be integrated using the relations (2.63) and evaluated on-shell to give
the effective action

M2\ 4c
_ M /dt VO, + -2 ) 4 o). (2.72)
2 v(t)
We can compare with the near-extremal entropy by evaluating this action on the
near-extremal black hole. Using (2.34) and (2.54) we have

Iren =

{f)th=—= v(t) = — c0=0. (2.73)

Going to Euclidean signature by taking ¢ — —itg, we can derive the near-extremal
entropy from the Euclidean renormalized action Ip = —il.e, on a circle of size 27 /e
according to

0SB = (1 + E@E)(—IE) =2 MoyeX . (2.74)

This matches the linear response of the thermodynamics in (2.56).

Finally, we return to the role of the gauge field in our variational problem. The
treatment of this field is more delicate since the source ¢(t) in (2.62) is subleading
compared to its electric charge and the backreaction in (2.43). This is a known ef-
fect in 2D theories with a Maxwell field, and how to properly treat this is discussed
in detail in [48,110]. Following that discussion, one simple way to circumvent the
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2. Quantum dynamics of near-extremal black holes

issues related to the gauge field is to freeze it in the variational problem, and focus
on the remaining variables. This would not be the most general variational prob-
lem, but it suffices to capture the Schwarzian effective action as illustrated by our
computations.

2.5 Generalization to Kerr-Newman

We have described above the linearized perturbation of near-extreme Kerr that
captures the near-AdSs physics and in particular the Schwarzian mode. This
section contains a generalization to the Kerr-Newman black hole.

The Kerr-Newman black hole is a solution of Einstein-Maxwell theory (2.11)
corresponding to a rotating charged black hole. In Boyer-Lindquist coordinates
(t,r,0,0), the metric and gauge field are

A ) 2 dr? sin%6 2
ds® = 2 (dt — asin?6 do) + p? (A + d92) + = (adt — (r? + a2)dq§)
1 1
AEM = NG (—=Qr(dt — asin®0dg) + Pcos6 (adt — (r* + a®)de) , (2.75)
T
where
a:%, p? =12+ a%cos?0, A=r*—2Mr+a®+Q*+ P>, (2.76)

and M, J, @ and P are respectively the mass, angular momentum, electric and
magnetic charge of the black hole. The gauge field is denoted AFM to distinguish
it from the 2d gauge field A appeaing in the perturbation. The outer and inner
horizons are at

ry=M++\/M2—a2—-Q2—P2. (2.77)

The entropy and inverse temperature are

Spu =m(a® +12), B= 47rit:i (2.78)
and the angular velocity, electric and magnetic potential at the horizon are
Q:ﬁ, Oy = aﬁf*ﬁ, (DMa?PEﬁ : (2.79)
The first law gives
dM = TydSpg + QdJ + QdPr + Pd®), . (2.80)
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2.5. Generalization to Kerr-Newman

We focus below on the magnetic case so we set @@ = 0.

We consider a near-extremal limit where the horizons are separated according to
re = My+el+0(\?), (2.81)

where ¢ is a near-extremal parameter and A is taken to be small. This corresponds
to a change of mass M at fixed J and P. The small Hawking temperature that is
generated is given by

eA

Ty = ———n
B o (MZ ¥ a2)

+0(N\?) . (2.82)

The near-extremal mass and entropy take the form

2

T 2
M = My + S=8y+-—-Ty, (2.83)
Mgap Mgap

where Mg,, = 1/(202Mo(a + M3)).

To analyze the near-AdS, dynamics, we focus on the exactly extremal geometry
corresponding to € = 0.* The near-horizon geometry is obtained with

t—>(M§+a3)§, r— Mo+ M, ¢—>¢+a—;t, (2.84)
which gives
ds®> = p (r2dt2d7;2 + d92) + 481229 {“3 M8 4+ apMyrdt -
r 0 2
ABM ;2%59 {agzMgd¢+aoMordt] , (2.85)

where we define p2 = M@ + a3 cos®0, P = \/M? — a2.

To go to the near-AdSs regime, we consider a linearized perturbation of this ge-
ometry. We will take the following ansatz

2 2

2 _ _Po"‘)\X(t»r) 21,2 2 dr 2
ds® = L () redt® + (pg + Ax(t, 7)) . +dé (2.86)
4sin0 (1 + \®(t, 7)) {Q%Jng

pg + Ax(t,r) 2

2
dé + agMordt + MA(t, r, 9)] ,

4As for Kerr, a non-zero € can be obtained by applying the large diffeomorphism (2.7) with
f(t) = ect.
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2. Quantum dynamics of near-extremal black holes

P cosf (2 + \D(t 5+ Mg
ey P cos@(24+AD(,1)) [ag + O deg + agMordt + \U(t,7)|

VT pg+Ax(t ) 2

where we work at linearized order in A and with the one-forms

A(t,r,0) = At r,0)adt + A.(t,r,0)dr , (2.87)
Ut,r) = Ut,r)dt+U.(t,r)dr .
The perturbation corresponding to the black hole geometry is obtained by keeping

the O(X) term in the near-horizon limit (2.84) of the extremal black hole. This
gives a perturbation which fits into the ansatz (2.86) with

4M07‘

B — — oM 2.88
¥ CL(2)+M37 X or, ( )
2 2 2 2
aor 9 9 145 . 5 ao(3My — ag)r
A= 2" (a2 - - o)dt, U =200 %" 4
a2+ M2 (( 0~ @)+ 5apsin ) ’ 2(a2 + M2)

This gives a particular solution for the ansatz, corresponding to going away from
the near-horizon in the Kerr-Newman geometry.

To find the general solution, we need to solve the equations of motion. Drawing
lessons from the Kerr case, we assume the following 6-dependence

1

sin?6

A(t,r,0) = Ag(t,r) + sin?6 Ai(t,r) +

As(t,r) (2.89)

where Ay, A1, As are one-forms supported on the (¢,r) subspace. The equation of
motion takes the form

1
Eu = Ry, — 87T =0, Tt = FuF,f — 1 G Fpo F*7 (2.90)

where F' = dAPM is the field strength. From F,q, Eyy and Ejg, we can solve A in
terms of the other fields. The solution is given by

. - 2
Aa = Ua + €ab6b\D(t7T)7 \If(t,T) = Lg(pg(p(t? T’) - 2X(ta T)) ’ (291)
8ag My sin“f

where we have introduced the auxiliary AdS, metric

d 2
Yapdaz®dz® = —r2dt? + &

3 (2.92)

The component Eyg implies that

Lax = 2x, (2.93)
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where [y is taken with respect to (2.92). We also obtain the solution for (¢, r)
which can be written

Y(t,r)=—o+ ]\;QX - W(a U — 0uU,) (2.94)
The other components determine that
®(t,r) = P + Pyr(t,7) , (2.95)
where ® ;1 satisfies the JT equation of motion
VaV®@iT = gap2 @it + gap Py =0 . (2.96)

Lastly, the component Fy; gives a constraint on U, written as

1
0,.Uy — U, = —agMy <r2<9t2<13 + DQ@) +

The arbitrary pieces F' and G are solutions of the homogeneous equations
Oy (r*0.(0,U, — 9,U,)) =0 (2.98)

Hence, following the discussion in the Appendix 2.5, it should be possible to re-
move them by trivial diffecomorphisms. We will thus set /' = G = 0. The piece
proportional to 9?® is familiar and corresponds to the a of Kerr. To extract it,
we define

U=a+V, a=—¢g,0'®dr (2.99)

Then, the equation becomes

aoMo
T - T O 2.1
(9 ‘/t (9tV 2 2M0 ( 00)
From this, we can rewrite the solution for (¢, r) as
P(t,r) = =@ + Oa® — 269y (2.101)

which is exactly the same expression as in Kerr. We can now solve the constraint
on V and we obtain

Vo =eap®®A. A= —agMy® + mx (2.102)

This allows us to rewrite the solution for A. We see that the V' corresponds to a
shift of ¥ in A, defining a new field W.
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2. Quantum dynamics of near-extremal black holes

Collecting everything, the solution of the ansatz (2.86) with (2.89) takes the form

Pt,r) = —®4 20,8 + 2%0,qy a=—&,0'®dr
1 oo a? + Mg
Ay = ag+eadV, U= — (apMy+ o ><1> o 0
b 2 ( 0770 dag My sin?6 4agM, sin29X
Us = «qg-+eapd®A, A= —agMy® + ﬂx , (2.103)
4M,

so that everything is expressed in terms of two fields x(¢,7) and ®(¢,r) which
further satisfy
Cox = 2x (2.104)

and
O(t,r) = ®o+ ®yr(t,r) VoVp®@i1 — gap2 @i + gap®yT = 0

This is similar to the Kerr case, which is recovered when setting ag = My. We
note that the Reissner-Nordstrom limit ag — 0 is singular, corresponding to the
fact that the mode x doesn’t exist for Reissner-Nordstrom.

The near-AdS; regime of the Kerr-Newman black hole was studied in [111] where
the authors make a comparison between its thermodynamics and that of an SYK-
like model with marginal deformations. The perturbation described here allows
us to go further because it captures the dynamics. It would be interesting to look
for quantum mechanical models capturing some of its features.

Appendices

2.A Redundancies due to diffeomorphisms

In this appendix we determine which components of the metric fluctuations in
(2.40) correspond to pure diffeomorphisms. First consider an arbitrary infinitesi-

mal diffeomorphism
ozt =¢M(t,r,0,9), (2.105)

which leads to a perturbation
(ng, = Efg;uz ) (2.106)

where g,,,, is the NHEK metric (2.35). Demanding that the perturbation dg,,, fits
in the ansatz (2.40) gives some constraints on £* which can be solved explicitly.
From this analysis, we can show that ® and x are physical fields and that the
one-form & is pure gauge.
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To see that & can be removed by a diffeomorphism, we first need to solve the fol-
lowing constraint which comes from the (¢,¢) component of the linearized Einstein
equation. Using (2.43)-(2.49) on Ry = 0 gives®

Oy (r*0r (046, — 0ra)) = 0. (2.107)
This constraint can be integrated explicitly and we can write the result as follows

ar(t,r) = 0O.F(t,r), (2.108)
GO(t
a(t,r) = O F(t,r)+ T() + H'(t)r,
where F(t,7), G(t) and H(t) are arbitrary functions. The infinitesimal diffeomor-
phism that we are looking for is then given by

G// (t)
2r2

€= <—H +G() + ) 0 —rG' ()0, — (F(t,r) + G"(t) 9.  (2.109)

Indeed, the corresponding perturbation takes the form

8MZ sin®0

,ng = QMg(l + 00829)(at0~zr — 8Tdt) r2dt? + m

(apdt + a,.dr)(de + rdt) ,

(2.110)
and precisely cancels the contribution of & in the solution of our ansatz (2.40).
We have also noticed that the perturbations associated with the gravitational
mode @ are related to some large diffeomorphisms of the NHEK with non-trivial

¢-dependence. We hope to investigate them in future work.

5Solving R, = 0 gives the same constraint as Ry = 0 after using (2.43)-(2.49).
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Quantum corrections to
black hole entropy

What can semiclassical gravity tells us about the black hole microstates?

3.1 Introduction: logarithmic corrections to black holes

A landmark result in string theory is the derivation of the Bekenstein-Hawing
entropy from black hole microstates by Strominger and Vafa [12]. They computed
the number of states dmicro(gn) of a system of strings and branes in type IIB string
theory, labeled by the charges ¢,. Although the computation was done at weak
coupling, supersymmetry ensures that the answer is independent on the coupling.
At strong coupling, this system becomes a 5d black hole in type IIB supergravity
with the same charges g,. They were able to show that

o) = 12 1 o(A(qa) 3.1)

where A(q,) is the area of the black hole horizon. This was the first microscopic
account of the Bekenstein-Hawking formula.

This matching was done at leading order in a large charge expansion, i.e. up
to terms denoted o(A(gy)). This begs the question: can we push this matching
beyond the leading order term?

This naively requires knowledge about details of the UV completion. For exam-
ple, higher-derivative corrections can be computed and matched with microscopic
counting formulas [83,112]. Rather surprisingly, it was shown [24,113,114] that
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a particular class of correction, of logarithmic type, doesn’t require any knowl-
edge about the UV: depending only on the two-derivative part of the low-energy
effective action for massless fields. As such, these corrections can be computed in
semiclassical gravity and put strong constraints on possible microscopic formulas,
constituting a powerful “infrared window into the microstates”.

The claim that logarithmic corrections computed from the IR theory agree with
results for the UV completion has been successfully tested in many cases where
string theory provides a microscopic counting formula for black hole microstates.
We refer to [115,116] for a broad overview and [27,117-119] for more recent de-
velopments in AdS,/CFTj3. Logarithmic corrections have also been evaluated for
a plethora of other black holes [22,26] where a microscopic account still awaits.!

3.1.1 Euclidean quantum gravity

We review the general framework used to compute logarithmic corrections to black
hole entropy [22,25,114]. We consider theories of Einstein gravity in D dimen-
sions coupled to massless matter (abelian gauge fields and neutral scalar, Dirac
and Rarita-Schwinger fields). We restrict to theories with a scaling property so
that purely bosonic terms have two derivatives, terms with two fermions have one
derivative and terms with four fermions have no derivative. This covers a wide
range of theories, such as Einstein gravity with minimally coupled scalars, fermions
and gauge fields, but also a variety of supergravity theories at a generic point in
the moduli space. This excludes theories with a cosmological constant, which can
be considered but require a separate discussion.

We now cousider a (charged and rotating) black hole solution in this theory. The
scaling symmetry implies that we have a whole family of solutions under

Guv — )\291“/7 A/(ta) - )\AL&), Ps = Ps (32)

where « labels the gauge fields and s the scalar fields. This black hole appears as
a saddle-point of the Euclidean path integral

2(8, a) = / D eS5(®) | (3.3)

where Sg is the Euclidean action and the integration is done while fixing the
temperature $ and the chemical potentials u® associated to the charges q,. The

n certain cases the logarithm can be accounted for very simply by using thermodynamics
[22,120]: the measure that controls the change from, for example, the microcanonical to the
canonical ensemble correctly reproduces the gravitational result without leading to new insight
in the microscopic theory.
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black hole entropy is given by the Legendre transform
S=logZ+ M+ n%qa , (3.4)

where a sum over « is implied.

At leading order, we have the classical approximation
Z(B, ) ~ =S5 (3.5)

where S§#- is the Euclidean on-shell action. As was shown in [10], this gives the
Bekenstein-Hawking formula

_ Area(qa)

At one-loop around the saddle-point, we obtain

1 _S%lass.

Z(Bs o) ~ —m==e

Vdet A (87)

where A = 5;\‘1,95 is the quadratic operator for the fluctuating fields on the back-

ground. This expression is divergent and needs to be regulated. This gives the
one-loop correction to the black hole entropy

1
08 = —3 log det A (3.8)
We are interested in the correction proportional to log(Area(q,)) in the entropy.
To isolate it, the strategy explained in [121] is to consider a reference configuration
with length scale Ly and a rescaled one with length scale L obtained using (3.2).
The scaling symmetry implies that the Euclidean action rescales as

L D—-2
Sp = (> SO (3.9)
Ly

The prescription is then to compute the one-loop correction to the difference
log Z — log Zy and keep only the piece proportional to log L. This has the effect
of removing the thermal gas and the spurious terms appearing after regulating
infrared divergences. This is a way to isolate the contribution from the black hole
microstates and to obtain the quantum correction to the black hole entropy. We
refer to [121] for a detailed discussion.

We have only discussed the one-loop contribution. It can be shown that higher
loops don’t contribute to the logarithmic correction as they are suppressed by

41



3. Quantum corrections to black hole entropy

positive powers of L, as discussed in details in [22]. After introducing the heat
kernel below, we will also show that massive fields don’t give a contribution. At
the end, the logarithmic correction to the entropy arises only at one-loop from
the two-derivative Lagrangian of massless fields. Hence, it can be unambiguously
computed in the low-energy effective theory.

3.1.1.a The quantum entropy function

The above prescription doesn’t work for extremal black holes because the thermal
circle is infinite which makes the Euclidean on-shell action divergent. A well-
defined procedure is to do the computation for the non-extremal black hole and
take the extremal limit of the answer.

An alternative, and perhaps more rigorous, procedure exists for extremal black
holes, known as the quantum entropy function [23]. The idea is to focus only
on the near-horizon geometry which is of the form AdS; x M where M is some
compact space.

We use the following metric for Euclidean AdSs

dr?
rZ —

ds®> = (r? — 1)dt* + (3.10)
The absence of singularity at » = 1 implies that ¢ must be periodic ¢t ~ ¢ + 2.
From the point of view of AdS,, the black hole background often implies that we
have 2d abelian gauge fields of the form

Ag = qo(r — 1)dt (3.11)

where ¢, ~ fK *(dA,) is the corresponding electric charge. The fact that r — 1
appears here ensures that A; is well-defined at r = 1.

Let’s now consider the Euclidean path integral Zaqgg, over all string fields con-
figurations on the AdSs background. To define the path integral, we introduce a
cutoff 7y so that we only consider the part of the geometry r < ry. The asymptotic
metric is

ds%dy = r2dt? = dr? | (3.12)

where we have defined a boundary time coordinate 7 = rgt so that 7 ~ 27wrgr. We
also need to fix the asymptotic behavior of A,, which corresponds here to fixing
the electric charge ¢,. Then, according to the AdS/CFT dictionary, we have

ZAng (Qz) W (6—27rro(H—iqu2dy)) ’ (313)
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where H is the Hamiltonian of the CFT; (associated to 7), AP% is the operator
dual to A, in the CFT; and the trace is over the states with charges q,. To remove
the additional term, we insert a Wilson line

Z\AdSQ (¢a) = <eXP (—’iqa?{Aa> >Ad82 ) (3.14)

which is taken to be along the boundary. This leads to
Zadas, (qa) = Tre 2wl (3.15)
In the large g limit, we project onto the ground states of H and we have

Zndsy (0a) = d(ga) e 20 (3.16)

where d(q,,) is the number of ground states with charges g, and Ej is their energy.

The AdS, path integral also has an infinite factor e?™™°¢ which comes from the

infinite volume of AdSs. The AdSs/CFT; correspondence suggests that this di-
vergence is the contribution from the ground state energy. This leads to an un-
ambiguous definition of the degeneracy as

d(ga) = <exp <iqaj{z4a> >Zl;: , (3.17)

where the superscript “finite” corresponds to the procedure where we remove the
divergent term e?770¢. This gives a gravitational (or macroscopic) definition of
the exact degeneracy of black hole microstates, known as the quantum entropy
function [23].

This can be used to compute quantum corrections to black hole entropy [113]. In
the path integral, the calculation reduces to the computation of a determinant
as explained above in the non-extremal case. This prescription has been used to
compute the corrections to black hole entropy for N'= 4 and A = 8 black holes,
which were successfully matched with the known microscopic formulas [24, 25].

3.1.2 Heat kernel expansion

We will now describe the main technical tool which makes possible the exact
computation of the logarithmic correction for a variety of black holes: the heat
kernel expansion [122].

The one-loop correction to the partition function decomposes as a contribution
Zny, from the non-zero modes and a contribution Z,,,, from the zero modes, so that
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3. Quantum corrections to black hole entropy

we have
class.
Zl—loop(ﬁa N/a) = ZnyZym e_SE , (318)

and the one-loop corrected Bekenstein-Hawking entropy is

A
Si-loop = c +log Zy, +log Z, - (3.19)

We would like to focus on the logarithmic correction

A
S = e + (Crocal + Cym) log L+ ... | (3.20)

where Cloca and C,p, are respectively the contribution from the non-zero and zero
modes. We will now explain how to compute them.

Non-zero mode contribution. Let’s denote by k,, the eigenvalues of the quadratic
operator A. The contribution of the non-zero modes takes the form

1 /
log Z,,, = _izn: log ko, (3.21)

where the primed sum runs only over the non-zero modes k,, # 0. To compute
this, we introduce the heat kernel

K(z,5) =Y e ™ fi(x)f} ()Gu , (3.22)

n

where {f£} are the normalized eigenfunctions of A with eigenvalues {r,,} and G
is the metric on field space. In particular, we have

/ APz g K (x,s) =) e " = Z/e*“n + Nom (3.23)
M n n

where NV, is the number of zero modes. As explained above, we are considering a
configuration with length scale L obtained by rescaling of a reference configuration
with length scale Ly. The eigenvalues of massless fields rescale according to

L\’
_ [ = (0)
Kp = ( 0) Ky - (3.24)

We will make use of the relation

*d
log k — log k©) = — lim & (e‘s" — e_s'“(m) ; (3.25)

e—=0 /. S
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3.1. Introduction: logarithmic corrections to black holes

which implies that we have

1 eL?/L3 d
log Zy, — log 29 = 5/ 4 (/ dPx\/g K(z,s) — sz) . (3.26)
€ s M

The above expression makes it clear that only the range of very small s contributes.

The heat kernel expansion is the statement that we have a small s expansion of
the form

K(z,s) = Z s P2q,, (2) (3.27)

n>0

where D is the dimension of spacetime. The coefficients as, () are known as
Seeley-DeWitt coefficients. For smooth manifolds, as, () is a sum of 2n-derivative
terms constructed from the fields appearing in the action [122].

We are mainly interested in D = 4 for which we have
K(z,8) = s 2ag(x) + s tag(x) + s%as(z) + O(s) . (3.28)

We only want to compute the log L contribution in log Z,,. The integral (3.26)
makes it clear that this comes from the a4 coefficient and we have

log Z,,, = Ciocarlog L + . .. (3.29)

where we have defined
Clocal = /dD$\/§a4(l') . (330)

In spacetime dimension D, a4(x) must be replaced by ap(xz). Note that this
vanishes when D is odd so that there is no contribution from the non-zero mode
in odd dimensions.

The power of the heat kernel expansion comes from the fact that there is a general
expression for as(x) given in [122]. This allows to compute Cloea) in a simple way
without ever computing any eigenvalue. To describe this formula, we write the
operator of quadratic fluctuations canonically as

An

m

= (O)idy, + 2(w" D)y, + P, (3.31)

where the index m, n refers to the different fields and D, is the covariant derivative.
We define D, = D,, + w,, to complete the square so that

Ay = (D"Dy), + By E=P—w'w, — (Dhwy) . (3.32)
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3. Quantum corrections to black hole entropy

The Seeley-DeWitt coefficient a4 () is then given explicitly by the formula
2 1o 1 1 v
(4m)*aq(x) = Tr §E + ERE + EQWQH (3.33)

1
+%(5R2 + 2R, po R*P° — 2R, R*)| |

where €, = [Du +wu, D, +w, ] is the curvature associated to the connection D,.

For simple enough examples, it is possible to write a4(x) as
(47)%ay(x) = —aBuler + ¢ Weyl? (3.34)
in terms of the Euler density and the Weyl tensor squared whose expressions are

Euler = R,,,cR"" —4R,, R" + R* | (3.35)
1
Wey12 = Rp,upaijpa — 2RMVRHV —+ gRQ .

This is always possible for the examples we consider below although additional
four-derivative terms can appear for more complicated black holes.

Massive fields. We have restricted above to massless fields. Let us argue that
massive fields don’t contribute to the logarithmic correction. For a field of mass
m, the scaling relation (3.24) for the eigenvalue becomes

Fin —m? = <L)2 (k9 —m?) . (3.36)

From this, it can be shown that massive fields don’t contribute to the logarithmic
correction. This is a consequence of the fact that we get an additional factor of
=™ in (3.26) which prevents the appearance of a log L term. We refer to [123] for
a more detailed discussion. This implies that the logarithmic correction depends
only on the massless spectrum of the theory. In particular, it can be computed in
the low-energy theory.

Zero mode contribution. The zero modes need to be treated separately. They
are associated to asymptotic symmetries: gauge transformations with parameters
that do not vanish at infinity. In the path integral, we can treat them by making
a change of variable to the parameters of the asymptotic symmetry group. For a
field ¥, the Jacobian of this change of variable introduces a factor

(LLO)M : (3.37)
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3.1. Introduction: logarithmic corrections to black holes

which contributes a logarithmic correction Sy log L to the entropy. As a result,
the total contribution from the zero modes is

Com =Y _(Bu — 1)n, (3.38)

N4

where we are summing over all fields ¥ (including ghosts) and we denote by n,
the number of zero modes for W. There is a —1 because we include here the
— N,y which was in the non-zero mode contribution (3.26) (and not included in
Clocal)- The value of By can be computed by normalizing correctly the path
integral measure. We refer to [25] for a more detailed discussion. As an illustration,
we report below the values of Sy for a gauge field, a Rarita-Schwinger field and
the graviton in D spacetime dimensions
D D
5 -

BA:7_17 ﬁd):D_la ﬁg:

5 (3.39)

3.1.3 Minimally coupled fields

As a simple example of the above procedure, we will compute the logarithmic
correction to the entropy of a black hole in a theory of Einstein gravity with
minimally coupled fields. For each of the fields, we report the value of w#, P and
gives the Seeley-DeWitt coefficient aq(x). These results are well-known (see for
example section 4.2.2 of [122]).

For a massless scalar field, we have the Lagrangian

L= V75 (Oupds + ER) . (3.40)

where we also include a conformal-type coupling to the Ricci curvature. The
quadratic operator is
A=0-¢R, (3.41)

so we have w# = 0 and P = £R. This then implies that £ = (R and Q,, = 0.
Hence, applying the formula gives

2
1 1 1 1
Ar)2gscalar — Ful Wevl2 + = _ = R2 . 42
S 360 120 2 (5 6) (3.42)

Let’s now consider a Majorana spinor described by the Lagrangian is
L=xv"D,x (3.43)

The fermionic fluctuation operator is v*D,,. This is a first order operator so we
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3. Quantum corrections to black hole entropy

apply the heat kernel to its square and divide the final result by two. The identity
(v*D,)? = —0+ 1R gives w* = 0 and P = —}R. This gives

“oi 11 1
(4m)2aPr = —%Euler—&— 4—0\7\78y12 , (3.44)

where we have included the additional multiplication by —1 due to the Grassmann
statistics. The result for Weyl spinors is the same. The result for Dirac spinors
needs to be multiplied by two.

Let’s now consider a gauge field with Lagrangian
L= 3hwl™ (3.45)
where we use f,,, = d,a, — 0,a,. Integrating by part gives
L= % (a’Oay — a” Ry at — (D“a#)z) . (3.46)
The last term is removed by adding a gauge-fixing term Ly s = % (D*a,)? which

introduces a minimally coupled scalar ghost. The contribution of this ghost is just
the one written in (3.42) with £ = 0 and an overall minus sign due to the opposite

statistics. For the gauge field, we obtain w,, = 0 and P = —R,,,,. As a result, we
obtain
31 1
Am)?ay®r = ———FEuler + —Weyl® . 4
(4m)%ay 180 uler + 1o ey (3.47)

A similar analysis can be done for Rarita-Schwinger fields and gravitons, being
careful of taking into account the ghosts which appear after gauge-fixing.

We can then evaluate a4(x) on the background we are interested in and obtain the
result. For example, the logarithmic correction to the entropy of the Schwarzschild
or Kerr black hole takes the form

1 233
0S8 = |:90 (2715 —26ny + Tnp — 5 + 424) + CZ‘“] log L, (3.48)

where ng,ny,np and ny are respectively the number of massless scalar, vector,
Dirac and Rarita-Schwinger fields [22]. The contribution C,y, of the zero modes
depends on the symmetries preserved by the black hole. It can be summarized by
the formula [26]

sz = _(3 + K) + 2]\']SUSY + 35non—ext ) (349)
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3.1. Introduction: logarithmic corrections to black holes

where K = 1 for rotating black hole, K = 3 for spherical symmetry, Ngysy = 4 if
the black hole is supersymmetric, Ngysy = 0 otherwise, dpon-ext = 1 if the black
hole is non-extremal and d,on-ext = 1 otherwise.

For example, the Schwarzschild black hole in pure Einstein gravity has

7

55—5

log L . (3.50)
This correction should be reproduced by a theory that claims any microscopic
counting of this entropy. This was used in [22] to challenge loop quantum gravity
which predicts the incorrect answer 65 = —2log L.

3.1.4 BPS branch: Kerr-Newman in N > 2 supergravity

The above computation in minimally coupled environments is not expected to
correspond to any microscopic counting in string theory. This is because the low-
energy theory is supergravity and has non-minimal couplings.

The computation of the logarithmic corrections for the Kerr-Newman black hole
embedded in N > 2 supergravity was done in [26]. The Seeley-DeWitt coefficient
can be written as

(47)%ay(z) = —a Euler + ¢ Weyl? | (3.51)

and it was observed that the c coefficient vanishes multiplet by multiplet due to
cancellations between bosons and fermions:

c=0. (3.52)

The Weyl? term contains the dependence on the black hole charges while the
Euler term is topological. Hence, these cancellations imply the following fact: for
a non-extremal Kerr-Newman black hole embedded in A/ > 2 supergravity, the
logarithmic correction is always independent of the black hole charges.

This is not true in general and relies on delicate cancellations between bosons and
fermions. For example, we have ¢ # 0 for the Kerr-Newman black hole in Einstein-
Maxwell theory. This shows that supergravity gives simpler logarithmic corrections
than pure Einstein-Maxwell theory, even for black holes that don’t preserve any
supersymmetry. This was later understood from symmetry considerations and
formulated as a non-renormalization theorem [124].

Integrating over the Euclidean geometry, the result finally takes the form
1
Clocal = /d4x\/§a4(x) = _6(_11 + 11N = 2) +ny —ng) . (3.53)
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3. Quantum corrections to black hole entropy

The zero mode contribution is given by the formula (3.49). It is interesting to
report some explicit results below.

Theory Result

N =2 Clocal = §(11=ny+ng) =2—%
N=4 (ny =ng+1) Clocal = —2

N=6 (ny=7ng=4) Clocal = —6

N =8 (ny =15ng = 10) Clocal = —10

In the N' = 2 case, we have written the result for Cloea in terms of x = 2(ny —
nyg + 1): the Euler characteristic of a corresponding Calabi-Yau. For N > 4, we
note that we have Cloca = 6 — 2. The simplicity of this answer suggests that an
index theorem could be at play here.

3.1.5 Introduction to our work

As explained above, for Kerr-Newman black holes embedded in N/ > 2 supergravity
[26], the c-anomaly vanishes. This leads to a remarkable simplification since the
logarithmic correction becomes universal in the sense that it does not depend on
details of the black hole background; it is determined entirely by the content of
massless fields.

The class of backgrounds considered in [26] was constructed such that, in the
extremal limit, they continuously connect to BPS solutions. For this reason we
denote this class as the BPS branch. The black holes on the BPS branch are not
generally supersymmetric, but their couplings to matter are arranged such that
supersymmetry is attained in the extremal limit. One of the motivations for the
present article is to study universality of logarithmic corrections outside of the
BPS branch.

Supergravity (with A/ > 2) also allows for black holes that do not approach BPS
solutions in the extremal limit. We refer to such solutions as the non-BPS branch.
In their minimal incarnation, they correspond to solutions of the D = 4 theory
obtained by a Kaluza-Klein reduction of five dimensional Einstein gravity [125]. In
a string theory setup it is natural to identify the compact Kaluza-Klein dimension
with the M-theory circle, and then these solutions are charged with respect to elec-
tric DO-brane charge and magnetic D6-brane charge. Such configurations break
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3.1. Introduction: logarithmic corrections to black holes

supersymmetry even in the extremal limit. Therefore, they offer an interesting
arena for studying logarithmic corrections and their possible universality.

The minimal Kaluza-Klein theory needed to describe the non-BPS branch is a four
dimensional Einstein-Maxwell-dilaton theory where the couplings are dictated by
the reduction from five dimensions. We will refer to the black hole solutions
of this theory as “Kaluza-Klein black holes.” These solutions can be embedded
in supergravity, as we will discuss in detail. In particular, we will consider the
embedding of the Kaluza-Klein theory in N = 4, 6,8 supergravity and for ' = 2
we consider ST'(n) models 2, which include the well-known STU-model as a special

case.
’ Multiplet Block content ‘
KK block 1 graviton, 1 vector, 1 scalar
Vector block | 1 vector and 1 (pseudo)scalar
Scalar block 1 real scalar
Gravitino block 2 gravitini and 2 gaugini
Gaugino block 2 gaugini

Table 3.1: Decomposition of quadratic fluctuations.

Our technical goal is to evaluate the Seeley-DeWitt coefficient a4(x) for the Kaluza-
Klein black hole when it is embedded in one of the supergravities. This involves the
study of quadratic fluctuations around the background, potentially a formidable
task since there are many fields and generally they have non-minimal couplings
to the background and to each other. Fortunately we find that, in the cases we
consider, global symmetries of supergravity organize the quadratic fluctuations
into manageable groups of fields that are decoupled from one another. We refer
to such groups of fields as “blocks”. There are only five distinct types of blocks,
summarized in Table 3.1.

The KK block comprises the quadratic fluctuations in the seed theory, i.e. the
Kaluza Klein theory with no additional matter fields. The scalar block is a single
minimally coupled spectator scalar field. The remaining matter blocks have unfa-
miliar field content and their couplings to the background are non-standard. The
great simplification is that the spectrum of quadratic fluctuations of each super-
gravity theory we consider can be characterized by the number of times each type
of block appears. We record those degeneracies in Tables 3.4 and 3.8.

2We work out the bosonic fluctuations for ' = 2 with any prepotential. It is only for fermionic
fluctuations that we restrict our attention to the ST'(n) models.
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3. Quantum corrections to black hole entropy

Once the relevant quadratic fluctuations are identified it is a straightforward (albeit
cumbersome) task to evaluate the Seeley-DeWitt coefficient a4(z). We do this for
every block listed above and so determine their contribution to Cloea in (?7).
Having already computed the degeneracies of the blocks, it is elementary algebra
to find the values of ¢ and a for each supergravity theory. Our results for individual
blocks are given in Table 3.7 and those for theories are given in Table 3.8.

One of our main motivation is to identify theories where ¢ = 0 since for those the
coefficient of the logarithm is universal. We find that the non-trivial cancellations
on the BPS branch reported in [26] are much rarer on the non-BPS branch. For
example, on the non-BPS branch the ¢ coefficient does not vanish for any N' = 2,4
supergravity we consider, whatever their matter content. Therefore, as we discuss
in section 3.4, this implies that the logarithmic correction to the entropy depends
on black hole parameters in a combination different from the horizon area.

In contrast, for N' = 6,8 we find that ¢ = 0. The vanishing of ¢ on the non-BPS
branch is rather surprising, since it is apparently due to a different balance among
the field content and couplings than the analogous cancellation on the BPS-branch.
It would be very interesting to understand the origin of this cancellation from a
more fundamental principle.

3.2 The Kaluza-Klein Black Hole

Our starting point is a black hole solution to Kaluza-Klein theory. It is suffi-
cient for our purposes to consider the original version of Kaluza-Klein theory: the
compactification to four spacetime dimensions of Einstein gravity in five dimen-
sions. In this section, we briefly present the theory and its black hole solutions.
In the following sections we embed the theory and its solutions into supergravity
and study perturbations around the Kaluza-Klein black holes in the framework of
supergravity.

The Lagrangian of Kaluza-Klein theory is given by?

1
e ki = (R —2D,®DHP — 4e—W5<DFWFW) . (3.54)

167G

The scalar field ¢ parametrizes the size of the compact fifth dimension and the
field strength F),, is the 4D remnant of the metric with one index along the fifth

3We use e and y/—g interchangeably, to denote the square root of the determinant of the
metric.
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3.2. The Kaluza-Klein Black Hole

dimension. The Lagrangian (3.54) gives the equations of motion

3
D20+ %6—2@?@”1:”” _p, (3.55)
D, (6_2‘/§¢F‘“’) —0, (3.56)

1 1 1
Ru — 59w R = (2D,8D,® — g, D'®D,P) + 5@*2“5‘? <FM)FVP - 4gWFpUFp") :
(3.57)

Some of our considerations will apply to any solution of the Kaluza-Klein theory
(3.54) but our primary interest is in asymptotically flat black holes. We therefore
focus on the general Kaluza-Klein black hole [125-127]. Tt is characterized by the
black hole mass M and angular momentum J, along with the electric/magnetic
charges (@, P) of the Maxwell field. Its 4D metric is given by

ds? = gBK) qaide” = — Hs (dt — B)* + \/H, H. dr? +de? + Dosin?0 d¢?
R H, H, 2la Hs ’
(3.58)
where
-2 -2
H, = 7r%+d%cos®0+r(p—2m)+ p_(p—2m)(q—2m)
pPtq 2
p 2 2Y (12 2
————— /(g% — 4m?)(p? — 4m?)acosb 3.59
2m(p + q) v ) ) (3.59)
-2 -2
Hy = 1%+a%cos®0+1r(q—2m) + q (p—2m)(q—2m)
p+q 2
q 2 2Y(1)2 2
+— —4m — 4m?)acost 3.60
ol T ) V(g )(p ) (3.60)
H; = 12 —2mr+ a’cos?d , (3.61)
A = 7 —2mr+ad*, (3.62)
and the 1-form B is given by
4m?)r — -2 -2
B = g AT AT —mlp = 2m)(g = 2m) | 2 4 (3.63)

2m(p + q)Hs

The matter fields are the gauge field

—2m 3 (p? — 4m?) _
AKK) g b 0| Hyldt
Qlr+ ) + 2 (p+ q) acos 5
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3. Quantum corrections to black hole entropy

p(q? — 4m?)

— |2P (Hy + asin?0) cosd +
(t ) 4m?(p + q)°

(3.64)

x [(p+ q)(pr — m(p — 2m)) + q(p* — 4m?)] asin291 Hy'dg ,

and the dilaton

| H.
€,4<I>(KK)/\/§ — F? . (365)

The superscript “KK” on gf}éK), AKK) and KK refers to the Kaluza-Klein

black hole. These background fields should be distinguished from the exact fields
in (3.54-3.57) which generally include fluctuations around the background.

The four parameters m, a, p, ¢ appearing in the solution determine the four physical
parameters M, J, Q, P as

2GM = ’% : (3.66)
GJ = ‘/pz(gfi;‘)mz)g : (3.67)
Q= w : (3.68)
p2 4?p+4$2) (3.69)

Note that ¢,p > 2m, with equality corresponding to the absence of electric or
magnetic charge, respectively.

The spectrum of quadratic fluctuations around the general black hole solution
to Kaluza-Klein theory is complicated. In section 3.3.4 we start with a general
solution to the equations of motion (3.55-3.57) such as the Kaluza-Klein black
hole g,(},f
N = 2 SUGRA with arbitrary cubic prepotential and study fluctuations around

the background. Although we make some progress in this general setting it proves

K), A,&KK), and ®XK) presented above. We construct an embedding into

notable that the analysis simplifies greatly when the background dilaton is constant
KK =0,

In the predominant part of the paper we therefore focus on the simpler case from
the outset and assume ®KK) = 0. We arrange this by considering the non-rotating

black hole J = 0 with P2 = . In this special case the metric g,(}lfK) is (3.58)
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3.3. Embedding in N > 2 supergravity

with

2
Hy=A=7%>—2mr, (3.70)

—2m\>
H1H2<T+q ) ;

and the gauge field (3.64) becomes

-1
AKK) = 90 <r +2 _22””) dt — 2Pcos 0d¢ . (3.71)

In the simplified setting it is easy to eliminate the parameters m, ¢ in favor of the
physical mass 2GM = ¢ and charges P2 = Q? = %(q2 — 4m?) but we do not need

to do so.

When ®XK) = 0 the geometry of the Kaluza-Klein black hole is in fact the same
as the Reissner-Nordstrom black hole. Indeed, they both satisfy the standard
Einstein-Maxwell equations

1 1
RS;EK) — 3 (FS;K)FZSKK);» _ 49WF/§£<K)F(KK)W> 7 (3.72)
D, FEOm — (3.73)

However, whereas the Reissner-Nordstrém solution can be supported by any com-
bination of electric and magnetic charges (@, P) with the appropriate value of
Qo = /P2 + Q2, for the Kaluza-Klein black hole we must set P2 = Q? so

FKK) pRm — (3.74)

or else the dilaton equation of motion (3.55) is inconsistent with a constant dilaton
®KK) - This difference between the two cases is closely related to the fact that,
after embedding in supergravity, the Kaluza-Klein black hole does not preserve
supersymmetry in the extremal limit.

3.3 Embedding in N > 2 supergravity

3.3.1 The KK Black Hole in N = 8 supergravity

In this section, we review N' = 8 SUGRA and show how to embed a solution of
D = 4 Kaluza-Klein theory with constant dilaton into A = 8 SUGRA.
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3. Quantum corrections to black hole entropy

3.3.1.a N = 8 Supergravity in Four Dimensions

The matter content of N' = 8 SUGRA is a spin-2 graviton g,,,,, 8 spin-3/2 gravitini
hau (with A=1,...,8), 28 spin-1 vectors B,ﬂwN (antisymmetric in M, N = 1,...,8),
56 spin-1/2 gaugini Aapc (antisymmetric in A, B,C = 1,...,8), and 70 spin-0
scalars. The Lagrangian can be presented as [128]*

_ = 1 1 v Ly
LN = SR = S Do, — §G%NH N = A amcY Didase
1 2o
~5i HABCDPMABCD 6\f¢Aﬂ A (PABCD P:!BCD) ABOD

A F ” benFapy N 3.75
8f (T/JA;“Y ABY v — \/51/)01 ABY' AaBc (3.75)

1 _ N
+ = EABCDEFGH/\ABCJ:DE)\FGH> ;

in conventions where all fermions are in Majorana form, the metric is “mostly
plus”, and Hodge duality is defined by

r7 v i vpo
HJ(\EJ)\;IL = QGH P H](W])Vpg- , €0123 = € . (3.76)

Below we also use (R/L) superscripts on fermions, to denote their right- and left-
handed components.

We include all the glorious details of N' = 8 SUGRA to facilitate comparison with
other references. The symmetry structure is the most important aspect for our
applications so we focus on that in the following. The starting point is the 56-bein

ABMN
V= (LAB ‘ , (3.77)
‘IABMN U’A N

that is acted on from the left by a local SU(8) symmetry (with indices A, B, ...)
and from the right by a global E7(7y duality symmetry (with indices M, N). The
connection

[Cs D]

2Q 14 0 PuaBcp

auvv*:( Shpen op A Bl | (3.78)
P; 20 1455,

defines an SU (8) gauge field @, 4B that renders the SU(8) redundant. We therefore
interpret P,apcp as covariant derivatives of scalar fields that belong to the coset
Er(7/SU(8) with dimension 133 — 63 = 70. The term in (3.75) that is quadratic

4To match with the conventions of many authors, when discussing N = 8 supergravity, we set
Newton constant to k2 = 87G = 2. In section 3.3.4, we will restore the explicit x dependence.
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3.3. Embedding in N > 2 supergravity

in P,apcp is therefore a standard kinetic term for the physical scalars. The terms
linear in P, 4pcp, including

R _ 1 _
Puapep = Puapcp +2V2 (1?;@1/\531%0)17] + MeABCDEFGH'(/),(LR)E/\(L)FGH> )
(3.79)

do not contribute to quadratic fluctuations around a background with constant
scalars. The covariant derivatives D,, that act on fermions are SU(8) covariant so
at this point the Lagrangian is manifestly invariant under the local SU(8).

The gauge fields and their duals are

GiN =0,B)'N —9,BYN (3.80)
o 4 OL
B = Zsrm (3.81)

nv

They enter the Lagrangian (3.75) explicitly. Their Pauli couplings are written in

terms of
Fap =" Fabuw (3.82)
where
Faow = Pl + V2 (Wi - 5o il 68
_2818€ABCDEFGH)\(C;;?E'YNV)\FRC§H> ;
with

F . (F)
‘Z:ISFBQ,Z]VB _ LV GIZZ,N + leéNuV ) (384)
J:I(LV) \/E G/]Y{/N - ZH](VIJ)V;LV
These relatives of the gauge fields encode couplings and E7(7) duality symmetries.
They satisfy the self-duality constraint

]:/_WAB = f,u,uAB . (385)

GMN

pv o

This self-duality constraint is a complex equation that relates the real fields
H ](VI;])V " and their duals linearly, with coefficients that depend nonlinearly on scalar
fields. It has a solution of the form

ﬁl(\/lj])\my =—3 (NMNPQG;VPQ + h.c.) + (terms quadratic in fermions) , (3.86)
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where the self-dual (anti-self-dual) parts of the field strengths are defined as
1 ~
+MN _ MN MN
GEMN = S (GUN =GN (3.87)
and the gauge coupling function is
—1
Nunprg = (Uag"™ = Vasun)  (Uag"™ + Vasrq) - (3.88)

Using (3.86) for ﬁj(vi)vw and (3.82-3.84) for Fap we can eliminate these fields from
the Lagrangian (3.75) in favor of the dynamical gauge field G%N , embellished by
scalar fields and fermion bilinears.

The relatively complicated classical dynamics of A/ = 8 SUGRA is due to the
interplay between fermion bilinears, duality, and the scalar coset. These disparate
features are all important in our considerations but they largely decouple. For
example, although we need the Pauli couplings of fermions, we need them only for
trivial scalars.

In our explicit computations it is convenient to remove the SU(8) gauge redun-
dancy by writing the 56-bein (3.77) in a symmetric gauge

0 Wascp
V = exp (WABCD 0 ) , (3.89)
where the 70 complex scalars Wapcop are subject to the constraint

- 1
WABCD _ ﬂeAB(JDEFGHI/VEFC”LI ) (3.90)

After fixing the local SU(8) symmetry, the theory still enjoys a global SU(8) sym-
metry. Moreover, it is linearly realized when compensated by SU(8) C Er(7). We
identify this residual global SU(8) as the R-symmetry SU(8)r. This identification
proves useful repeatedly. For example, it is according to this residual symmetry
that Wapcp transforms as an antisymmetric four-tensor.

3.3.1.b The Embedding into /' = 8 SUGRA

The embedding of the Kaluza-Klein black hole (3.58, 3.70, 3.71) in N' = 8 SUGRA
is implemented by

o (SUGRA KK
g;(tu ) = g;(U/ ) ’

° 1
MN _ L MN (KK)
G, = 4Q Foo
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3.3. Embedding in N > 2 supergravity

Wapcep =0,
(All background fermionic fields) =0 , (3.91)
where
1
QMY — diag(e, e, e,¢) , €= (_01 0) ) (3.92)

In this section (and beyond) we shall often declutter formulae by omitting the
superscript “KK” when referring to fields of the seed solution.

To establish the consistency of our embedding, in the following we explicitly check
that the N/ = 8 SUGRA equations of motion are satisfied by the background
(3.91). Vanishing fermions satisfy trivially their equations of motion, because
they appear at least quadratically in the action. The equations of motion for the
scalars Wapcp take the form

(Terms at least linear in Wapcp or quadratic in fermions)

o 0 1 ° o
= 3G:£ABG+CD]W + gGABCDEFGHG;fFGiGHHV . (3.93)
The scalars WA pcp and the fermions vanish so the right-hand side of the equation
must also vanish. Inserting G%N from our embedding (3.91), we find the condition
F,SIU(K)F(KK)’“’ = 0. This condition is satisfied by the seed solution (3.74) because

the electric and magnetic charges are equal P = (). Therefore it is consistent to
take all scalars Wapcp =0 in N =8 SUGRA.

The A = 8 Einstein equation is given by

1 1 = 1 >
Ry — igm/R - BPABCD{HPZ:A}BCD N EgHVPPABCDPpABCD (3.94)

1
TRe(Navre) (G%NGJ’PQ - 49WG%NGWPQ) |

The vanishing of the scalars WA Bcp = 0 implies

. (5Ms N 0 .
y=| [ "5 a .5 | Nunro =1unpg , (3.95)
0 0 [Mé N
so the Einstein equation simplifies to
o 1, o N L. N e
R,u.l/ - §glu‘l/R = Gup GVMN — Zg'uprg GMN . (396)

99



3. Quantum corrections to black hole entropy

The embedding (3.91) reduces the right-hand side so that these equations coincide
with the Einstein equation (3.72) satisfied by the seed solution.

Finally, the equations of motion for the vector fields in N’ = 8 SUGRA are
D, (./\/MNPQGﬂWPQ +./\7MNPQG+WPQ) =0. (3.97)

The embedding (3.91) and the simplifications (3.95) reduce these equations to the
Maxwell equation D, F (KK)uv — (), consistent with the seed equation of motion
(3.73).

In summary, the equations of motion in A/ = 8 SUGRA are satisfied by the
embedding (3.91). Therefore, for any seed solution that satisfies (3.72-3.74), the
embedding (3.91) gives a solution to N/ = 8 SUGRA. Our primary example is the
Kaluza-Klein black hole with dilaton ®KK) = 0.

3.3.2 Quadratic Fluctuations in A" = 8 SUGRA

In this section we expand the Lagrangian (3.75) for ' =8 SUGRA to quadratic
order around the background (3.91). We reparametrize the fluctuation fields so
that they all transform in representations of the global USp(8) symmetry group
preserved by the background. We then partially decouple the quadratic fluctua-
tions into different blocks corresponding to different representations of USp(8).

3.3.2.a Global Symmetry of Fluctuations

The AN/ = 8 SUGRA theory has a global SU(8) symmetry, as discussed at the end
of section 3.3.1. The graviton, gravitini, vectors, gaugini, and scalars transform in
the representations 1, 8, 28, 56 and 70 of this SU(8) group. The 28, 56, and 70,
are realized as antisymmetric combinations of the fundamental representation 8.

A generic background solution does not respect all the symmetries of the theory,
so the global SU(8) symmetry is not generally helpful for analyzing fluctuations
around the background. Our embedding (3.91) into A" = 8 SUGRA indeed breaks
the SU(8) symmetry since G,%N = iQMNFSfK) is not invariant under the SU(8)
group. However, the matrix QMY (3.92) can be interpreted as a canonical sym-
plectic form so our embedding respects most of the global SU(8), it preserves
a USp(8) subgroup. Therefore, different USp(8) representations cannot couple
at quadratic order and it greatly simplifies the analysis to organize fluctuations
around the background as representations of USp(8). In the following we analyze
one USp(8) representation at a time.
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3.3. Embedding in N > 2 supergravity

o Graviton

The graviton h,, = dguy = guv — Juv is a singlet of SU(8) and remains a
singlet of USp(8).

o Vectors

The fluctuations of the gauge fields 6G%N = G%N — Gﬁ{,N transform in the
28 of SU(8) which has the branching rule to USp(8) 28 — 1 @ 27. We
realize this decomposition directly on the fluctuations by defining

1
fow = QunoGLN N =GN — §QMN fuw - (3.98)

The %N are ()-traceless f%N Qun = 0 by construction so they have only
2 x (28 — 1) degrees of freedom which transform in the 27 of USp(8). The
remaining 2 degrees of freedom are in f,,, which transforms in the 1 of

USp(8). This decomposition under the global symmetry shows that the

MN

graviton can only mix with the “overall” gauge field f,, and not with f,;,

e Scalars

The scalars transform in 70 of SU(8) and the branching rule to USp(8) is
70 — 1@ 27 @ 42. We realize this decomposition by defining

1
W' = WapcpQAPQYP | Wip = WapepQ©P — gW/QAB )
3 1

W e p is antisymmetric in all indices and Q-traceless on any pair or pairs, so
it is in the 42 of USp(8). W/, 5 is antisymmetric, Q-traceless, and hence in the
27 of USp(8). The remainder W’ has no index and is in the 1 of USp(8). The
obvious construction of an antisymmetric four-tensor representation of SU (8)
has 70 complex degrees of freedom, but the scalars Wapcp in N = 8 SUGRA
have 70 real degrees of freedom that realize an irreducible representation, as
implemented by the reality constraint (3.90). The decomposition of this
reality constraint under SU(8) — USp(8) shows that the scalar W’ that
couples to gravity is real W =w , as expected from Kaluza-Klein theory.
It also implies the reality condition on the four-tensor

—/ABCD 1
w = ﬂef“BCDEFGHW,’EFGH : (3.100)

and an analogous condition on the two-tensor W45, An interesting as-
pect of these reality conditions is that, just like the KK block must couple
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3. Quantum corrections to black hole entropy

to a scalar (as opposed to a pseudoscalar), the condition on the USp(8)
four-tensor demonstrates that the scalar moduli must comprise exactly 22
scalars and 20 pseudoscalars. The vector multiplet couples vectors and
scalars/pseudoscalars precisely so that it restores the overall balance be-
tween scalars and pseudoscalars required by N/ = 8 SUGRA, with 12 scalars
and 15 pseudoscalars.

The distinctions between scalars and pseudoscalars are interesting because
these details must be reproduced by viable microscopic models of black holes.
Extrapolations far off extremality of phenomenological models that are mo-
tivated by the BPS limit lead to entropy formulae [129-131] with moduli
dependence that is very similar but not identical to the result found here. It
would be interesting to construct a model for non-extremal black holes that
combines the features of the BPS and the non-BPS branch.

Graviting

The gravitini ¢4, transform in the fundamental 8 of SU(8). The gravitini
only carry one SU(8) index which cannot be contracted with the symplectic
form QAB. Therefore, the gravitini also transform in the 8 of USp(8).

Gaugini

The gaugini Aapc of NN = 8 SUGRA transform in the 56 of the global
SU(8). The branching rule to USp(8) is 56 — 8 @ 48. We can realize this
decomposition by introducing

1
Ny = —=AapcBC | 3.101
AT o ABe ( )
and
1
Napo = Aapc — g()\ADEQDE)QBc : (3.102)

The gaugini A\, transform in the 8 of USp(8). We will find that these
gaugini are coupled to the gravitini. This is allowed because they have the
same quantum numbers under the global USp(8). The normalization 1//12
introduced in (3.101) ensures that the gaugini retain a canonical kinetic term
after the field redefinition.

The gaugini N g introduced in (3.102) satisfy the constraint N, 5 QP =
0. This ensures that they transform in the 48 of USp(8). No other fields
transform in the same way under the global symmetry so these gaugini de-
couple from other fields. They can of course mix among themselves and
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3.3. Embedding in N > 2 supergravity

we will find that they do in fact have nontrivial Pauli couplings. However,
the normalization of the fields is inconsequential and we have retained the
normalization inherited from the full N'= 8 SUGRA.

Table 3.2 summarizes the decomposition of quadratic fluctuations according to
their representations under the global U Sp(8) that is preserved by the background.

Representations | Fields
1 huvy fuws W/
8 Yau, Ny
27 aps Whg
42 Wiscp
48 ABC

Table 3.2: The USp(8) representation content of the quadratic fluctuations.

3.3.2.b The Decoupled Fluctuations

The quadratic fluctuations around any bosonic background decouple into a bosonic
part 62Lposons and a fermionic part §2Lsermions because fermions always appear
quadratically in the Lagrangian. As we expand the Lagrangian (3.75) around the
background (3.91) to quadratic order, these parts further decouple into represen-
tations of the preserved USp(8) global symmetry.

The bosonic fluctuations therefore decouple into three blocks

2L = 2L 4 LTS g2 LN (3.103)

bosons vector scalar
e KK block

The first block 625%[{:8), which we call the “KK block”; consists of all fields
that are singlets of USp(8): the graviton h,,, 1 vector with field strength
fuv, and 1 scalar W’. The Lagrangian for this block is given by

_ _ _ 1 o o _
e 12 LN = DRy, — 1P+ 2R Ry g — 20 By R, — BB Ry
—F, F, h"* 1" + a" (Og,, — Ry) a” + 2V2F,” f,,h"

uv= po

—40,00" ) + 2VBFM f,,6 — AV6R,, D" ¢ (3.104)
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after the fields were redefined as h,, — \/§h,w, fuw = 4fu, and ¢ =
1

16V/3 .

traceless part by, = hy, — i 9w 9”° hpo, and further included the gauge-fixing

term

W'. We also decomposed the graviton into its trace h = g”?h,, and its

e M Lyp =~ (D“BM, - ;Dph) (D”EVP - ;Dﬂh> — (D*a,)* . (3.105)

The rather complicated Lagrangian (3.104) represents the theory of fluc-
tuations around any solution of Kaluza-Klein theory (3.54) with constant
dilaton. The fields f,, and ¢ correspond to the fluctuations of the field
strength and the dilaton. The gauge-fixed theory (3.104) must be completed
with additional ghost terms. We discuss those in Appendix 3.5.

Vector blocks

The second block 5255{5}2?0? consists of all fields that transform in the 27 of
USp(8): iy and W/ 5. We use f#” and W/ to denote the 27 independent
vectors and scalars respectively. It includes two slightly different parts. One
part has 12 copies of a vector coupled to a scalar WQ(R) with the Lagrangian

vector

_ 1
67152£(N—8)(R) _ 7§ath§(R)a#Wé(R) o f(l;l’fapy (3106)
—WIR f, L FR a=1,..,12,

and the other has 15 copies of a vector coupled to a pseudoscalar WQ(P) given

by

vector

— 1
67152£(N—8)(P) _ 7§auwé(P)a‘uWé(P) B ff;ufauu (3107)

— W) f PP =13, ..., 27.

Although these two Lagrangians are distinct, they give equations of motion
that are equivalent under a duality transformation. This is consistent with
the fact that SU(8) duality symmetry is the diagonal combination of local
SU(8) and global E7(7) duality symmetry, where the latter is not realized at
the level of the Lagrangian.

Scalar blocks

The last bosonic block 52££?£;§) consists of the remaining 42 scalars, trans-
forming in the 42 of USp(8). There are no other bosonic fields with the
same quantum numbers so, these fields can only couple to themselves. The

explicit expansion around the background (3.72-3.74) shows that all these
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3.3. Embedding in N > 2 supergravity

scalars are in fact minimally coupled

_ 1 —
6_152£(N*8) _ _ﬂauWI,ABCDaMW/ABCD .

scalar

(3.108)

We now turn to the quadratic fluctuations for the fermions. Since they appear
at least quadratically in the Lagrangian the bosonic fields can be fixed to their
background values. In this case, the N'= 8 SUGRA Lagrangian (3.75) simplifies
to

_ 1 1.
e 162 L8 ~5Pa" "Dy, = T5Aapcy' Dudape (3.109)

1 - o 1- .

- Y FapyMbog — = Fanvk
+4ﬁ¢Au’Y AV B 81/)cﬂ A" AaBc
L1

——e¢

288v/2

where all fermions are in Majorana form and

ABCDEFGHN \ po FppdraH

. 1 o e 1
F = — (G L+ G l,) W= ——QapF, A" . 3.110
AB ﬁ ABpu VsGABuv | Y 2\/5 ABL yu7y ( )

The field redefinitions introduced in section 3.3.2.a decouple this Lagrangian as

§2LW=8) _ 52 p(N=8) +52£(N:8) ) (3.111)

fermions gravitino gaugino
o Gravitino blocks

The first block (52/3;1{;?3110 consists of the 8 gravitini 14, and the 8 gaugini
'y singled out by the projection (3.101). The gravitini and the gaugini both
transform in 8 of USp(8) and couple through the Lagrangian
_ _ _ 1 _
67152‘60\[_8) = 7wAu7MVpDuwAp - )‘iAquD;L)‘iA + ZQAB)\QF;)U’YPUA%}

gravitino
1 _ ~
+ 4P, (F“V + 'y5F’“’) .

V6

—?iAquaWpa’Y”)\/A . (3112)

The indices take values A, B = 1,...8. However, this block actually decou-
ples into 4 identical pairs, with a single pair comprising two gravitini and
two gaugini. The canonical pair is identified by restricting the indices to
A,B=1,2 and so Q45 — €4p. The other pairs correspond to A, B = 3,4,
A,B=5,6,and A,B=717,8.
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e Gaugino blocks

The second block 5212;2{;?11)0 consists of the 48 gaugini (3.102) that transform
in the 48 of USp(8). These 48 gaugini decompose into 24 identical groups
that decouple from one another. Each group has 2 gaugini and a Lagrangian

given by
— - 1 _

e 12 LN =~ Xyt Dya — 2 AaFiun™ N (3.113)
where a,b = 1,2 denote the 2 different gaugini in one group. It is interesting
that no fermions in the theory are minimally coupled. Moreover, the numer-
ical strength of the Pauli couplings to black holes on the non-BPS branch

are different from the corresponding Pauli couplings for fermions on the BPS
branch [26].

3.3.2.c Summary of Quadratic Fluctuations

In the previous sections we defined a seed solution (3.72-3.74) of Kaluza-Klein
theory with vanishing dilaton and embedded it into N' = 8 SUGRA through
(3.91). In this section, we have studied fluctuations around the background by
expanding the N/ = 8 SUGRA Lagrangian (3.75) to quadratic order. In section
3.3.2.a, we decomposed the fluctuations in representations of the U Sp(8) symmetry
preserved by the background. In section 3.3.2.b, we have decoupled the quadratic
fluctuations into blocks corresponding to distinct representations of USp(8). They
are summarized in Table 3.3.

Degeneracy Multiplet Block content USp(8) | Lagrangian
1 KK block 1 graviton, 1 vector, 1 scalar 1 (3.104)
27 Vector block | 1 vector and 1 (pseudo)scalar 27 (3.106)
42 Scalar block 1 real scalar 42 (3.108)
4 Gravitino block 2 gravitini and 2 gaugini 8 (3.112)
24 Gaugino block 2 gaugini 48 (3.113)

Table 3.3: Decoupled quadratic fluctuations in N’ = 8 supergravity around the
KK black hole.
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3.3.3 Consistent Truncations of N' =8 SUGRA

In this section we present consistent truncations from N = 8 SUGRA to N = 6,
N =4, N =2 and N = 0. These truncations are well adapted to the KK black
hole in that all its nontrivial fields are retained. In other words, the truncations
amount to removal of fields that are trivial in the background solution.

It is easy to analyse the spectrum of quadratic fluctuations around the KK black
hole in the truncated theories. In each case some of the fluctuating fields are
removed, but always consistently so that blocks of fields that couple to each other
are either all retained or all removed. Therefore, the fluctuation spectrum in all
these theories can be described in terms of the same simple blocks that appear in
N = 8 supergravity. For these truncations the entire dependence on the theory is
encoded in the degeneracy of each type of block. They are summarized in Table
3.4.

Multiplet \ Theory || N =8 | N =6 | N =4 | N =2 | N =0
KK block 1 1 1 1 1
Gravitino block 4 3 2 1 0
Vector block 27 15 n+5 ny 0
Gaugino block 24 10 2n ny —1 0
Scalar block 42 14 5n—4 | ny —1 0

Table 3.4: The degeneracy of multiplets in the spectrum of quadratic fluctuations
around the KK black hole embedded in various theories. For N' = 4, the integer
n is the number of N = 4 matter multiplets. For A" = 2, the integer ny refers to
the ST(ny — 1) model.

All the truncations in this section heavily utilize the SU(8)r global symmetry
of N' = 8 supergravity. We therefore recall from the outset that the gravitons,
gravitini, vectors, gaugini, and scalars transform in the irreducible representations
1, 8, 28, 56, 70 of SU(8)g.

3.3.3.a The N = 6 Truncation

The N = 6 truncation restricts N’ = 8 SUGRA to fields that are even under the
SU(8)R element diag(Is, —I5). This projection preserves N = 6 local supersym-
metry since the 8 gravitini of N'= 8 SUGRA are in the fundamental 8 of SU(8)r
and so exactly two gravitini are odd under diag(ls, —I2) and projected out. The
branching rules of the matter multiplets under SU(8)r — SU(6)r X SU(2)matter

67



3. Quantum corrections to black hole entropy

70 — (15,1)& (15,1) @ (20,2) ,
56 — (20,1)&(15,2)® (6,1),
28 — (15,1)®(6,2) @ (1,1) . (3.114)

These branching rules follow from decomposition of the SU(8) g four-tensor Tapcp
(70), the three-tensor Tapc (56), and the two-tensor T4 (28), by splitting the
SU(8)r indices as A, B, ... = (a,a),(B,b),... where the lower case indices refer
t0 SU(2)matter (greek) and SU(6)r (latin). The truncation to N' = 6 SUGRA
retains only the fields that are invariant under SU(2)matter SO fields in the 2 are
removed. Therefore the truncated theory has 30 scalar fields, 26 gaugini, and 16
vector fields. Taking the 6 gravitini and the graviton into account as well, the
total field content comprises 64 bosonic and 64 fermionic degrees of freedom.

The claim that the truncation is consistent means that the equations of motion
of the retained fields are sufficient to guarantee that all equations of motion are
satisfied, as long as the removed fields vanish. In general, the primary obstacle to
truncation is that the equations of motion for the omitted fields may fail. This is
addressed here because the equations of motion for fields in the 2 of SU(2)matter
only involve terms in the 2. Therefore their equations of motion are satisfied when
all fields in the 2 vanish.

Our interest in the consistent truncation of N'= 8 SUGRA to N = 6 SUGRA is the
application to the KK black hole. The embedding (3.91) of the Kaluza-Klein black
hole into N' = 8 SUGRA turns on the four field strengths on the skew-diagonal of
the 28 (which is realized by an antisymmetric 8 x 8 matrix of field strengths Fap).
The entries on the skew diagonal are all contained in the SU(6)r x SU(2)matter
subgroup of SU(8) g, because the antisymmetric representation of SU(2) is trivial.
The embedding of the KK black hole in A/ = 8 SUGRA therefore defines an
embedding in N/ = 6 SUGRA as well. In other words, the truncation and the
embedding are compatible.

We can find the spectrum of quadratic fluctuations in N/ = 6 SUGRA either by
truncating the spectrum determined in the N’ = 8 SUGRA context, or by directly
analyzing the spectrum of fluctuations around the N' = 6 solution. Consistency
demands that these procedures agree.

We begin from the SU(6) content of N' = 6 SUGRA: 1 graviton, 6 gravitini,
15 @ 1 vectors, 20 & 6 gaugini, and 2(15) scalars. The KK black hole in N' = 6
SUGRA breaks the global symmetry SU(6) — USp(6). Therefore, the quadratic
fluctuations around the background need not respect the SU(6) symmetry, but
they must respect the USp(6). Their USp(6) content is: 1 graviton, 6 gravitini,
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143 2(1) vectors, 14®2(6) gaugini, 2(144 1) scalars. The black hole background
breaks Lorentz invariance so the equations of motion for fluctuations generally mix
Lorentz representations, as we have seen explicitly in section 3.3.2, but they always
preserve global symmetries. In the present context the mixing combines the fields
into 1 KK block (gravity + 1 vector + 1 scalar), 3 gravitino blocks (1 gravitino +
1 gaugino) (transforming in the 6), 14 & 1 vector blocks (1 vector + 1 scalar), 10
gaugino blocks (transforming in the 14 @ 6), and 14 (minimally coupled) scalars.

To verify these claims and find the specific couplings for each block, we could
analyze the equations of motion for N'= 6 SUGRA using the methods of section
3.3.2. However, no new computations are needed because it is clear that the fields
in the truncated theory are a subset of those in N' = 8 SUGRA. In that context we
established that the fluctuations decompose into 1 (KK block), 8 (gravitini mixing
with gaugini), 27 (vectors mixing with scalars), 24 (gaugini with Pauli couplings
to the background), and 42 (minimal scalars) of the USp(8) that is preserved by
the background. The consistent truncation to N' = 6 SUGRA removes some of
these fluctuations as it projects the global symmetry USp(8) — USp(6). This rule
not only establishes the mixing claimed in the preceding paragraph but also shows
that all couplings must be the same in the N' = 8 and N/ = 6 theories. It is only
the degeneracy of each type of block that is reduced by the truncation.

3.3.3.b The N = 4 Truncation

The N = 4 truncation restricts N' = 8 SUGRA to fields that are even under
the SU(8)r element diag(ly, —I4). This projection breaks the global symmetry
SUB)r — SU(4)r X SU(4)matter- It preserves N' = 4 local supersymmetry since
the 8 gravitini of N = 8 SUGRA are in the 4 of SU(4)g. The branching rules of
the matter multiplets under the symmetry breaking are

70 — 2(1,1)®(6,6)® (4,4) @ (4,4) ,
56 — (4,1)® (6,4)® (4,6) ® (1,4) ,
28 — (1,6)@(6,1)® (4,4) . (3.115)

The consistent truncation preserving AN/ = 4 supersymmetry is defined by omission
of all fields in the 4 (or 4) of SU(4)matter-

There is a unique supergravity with n A" = 4 matter multiplets. It has a global
SU(4)r symmetry that acts on its supercharges and also a global SO(n)matter
that reflects the equivalence of all matter multiplets. The consistent truncation
of N/ = 8 by the element diag(ly, —1I4) retains a SU(4)g X SU(4)matter Symmetry
so, recalling that SO(6) and SU(4) are equivalent as Lie algebras, the truncated
theory must be A/ = 4 SUGRA with n = 6 matter multiplets.
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Several important features of ' = 4 SUGRA are succinctly summarized by the
scalar coset

SU(1,1) S0(6,n)
U1) 50(6) x SO(n)

It has dimension 6n+2 with scalars transforming in 2(1, 1)@ (6, n) under SU(4) g X
SO(N)matter- 1t also encodes the SU(1,1) ~ SL(2) electromagnetic duality of the
6 + n vector fields in the fundamental of SO(6,n). The representation content
obtained by removal of 4 (and 4) from the branchings (3.115) is consistent with
these expectations when n = 6.

(3.116)

The A = 4 truncation has a natural interpretation in perturbative Type II string
theory. There is a simple duality frame where the diagonal element diag(ly, —1I4)
changes the sign on the RR sector and interchanges the RNS and NSR sectors; so
the consistent truncation projects on to the common sector of Type ITA and Type
IIB supergravity. The complete string theory orbifold includes twisted sectors
as well. It is conveniently implemented by a flip of the GSO projection and is
equivalent to T-duality between Type IIA and Type IIB string theory.

The embedding of the KK black hole into N' = 8 SUGRA is compatible with the
truncation to A/ = 4 SUGRA: the four field strengths on the skew-diagonal of
the 28 are all contained in the SU(4)r X SU(4)matter Subgroup of SU(8)g and
therefore retained in the truncation to N' = 4 SUGRA. The embedding of the KK
black hole in A/ = 8 SUGRA therefore defines an embedding in N' = 4 SUGRA
as well. The consistent truncation just removes fields that are not excited by the
KK black hole in N' =8 SUGRA.

The quadratic fluctuations around the KK black hole in A" = 8 SUGRA similarly
project on to the NV = 4 setting. As discussed in section 3.3.2, the KK black
hole in N' = 8 SUGRA breaks the global symmetry SU(8)r — USp(8) and this
symmetry breaking pattern greatly constrains the spectrum of fluctuations around
the black hole. Moreover, the symmetry breaking pattern is largely preserved by
the consistent truncation: the analogous breaking pattern in NV = 4 SUGRA is
SU(4)r X SU(4)matter — USp(4)r X USP(4)matter- For example, the entire KK
block (with a graviton, a vector, and a scalar), identified as the 1 of USp(8), is
unchanged by the consistent truncation.

The 27 vector blocks (3.106-3.107), each with a vector coupled to a scalar, are
perturbations of the 8 x 8 matrix of field strengths F4 g after its symplectic trace is
removed. The branching (3.115) of the 28 under SU(4) g X SU (4) matter sShows that
16 vector blocks are projected out by the truncation. None of these are affected
by the symplectic trace so 27 — 16 = 11 vector blocks remain in N' = 4 SUGRA.
Among the 38 scalars from the coset (3.116) with n = 6 there is 1 coupled to
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3.3. Embedding in N > 2 supergravity

gravity and 11 that couple to the vectors, so 26 minimally coupled scalars remain.
They parametrize the coset

SO(5,5)
USp(4) x USp(4)

SU(1,1) x (3.117)
The fermionic sector is simpler because the truncation removes exactly one half
of the fermions. The retained fermions are essentially identical to those that are
projected away, they differ at most in their chirality and the KK black holes is
insensitive to this distinction. The quadratic fluctuations for the fermions in A/ = 8
SUGRA are 4 gravitino pairs (with each pair including two gravitini coupled to
two Weyl fermions, a total of 32 degrees of freedom) and 24 gaugino pairs with
Pauli couplings to the background field strength. In N' = 4 SUGRA with 6 matter
multiplets there are 4 gravitino pairs and 12 gaugino pairs.

There is a simple extension of these results to the case of ' = 4 SUGRA with
n # 6 matter multiplets. For this generalization, we recast the symmetry breaking
by the field strengths that have been designated N = 4 matter as SO(6)matter —
SO(5)matter using the equivalences SU(4) = SO(6) and USp(4) = SO(5) as Lie
algebras. In this form the symmetry breaking just amounts to picking the direction
of a vector on an S°. We can equally consider any number n of matter fields and
break the symmetry SO(n)matter — SO(n — 1) matter by picking a vector on S™~1.
The only restriction is n > 1 in order to ensure that there is a direction to pick in
the first place. This more general construction gives the scalar manifold

SO(5,n—1)

SULD X 556y % S0 —1) -

(3.118)

In particular, it has 5n —4 dimensions, each corresponding to a minimally coupled
scalar field. The duality group read off from the numerator correctly indicates
n + 5 vector fields, not counting the one coupling to gravity. Each of these vector
fields couples to a scalar field, as in (3.106-3.107).

The black hole attractor mechanism offers a perspective on the scalar coset (3.118).
The attractor mechanism is usually formulated in the context of extremal black
holes in A/ > 2 supergravity where it determines the value of some of the scalars at
the horizon in terms of black hole charges. Importantly, the attractor mechanism
generally leaves other scalars undetermined. Such undetermined scalars can take
any value, so they are moduli. The hyper-scalars in A/ = 2 BPS black hole
backgrounds are well-known examples of black hole moduli.

In the case of extremal (but non-supersymmetric) black holes in ' > 2 supergrav-
ity the moduli space is determined by the centralizer remaining after extremization
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of the black hole potential over the full moduli space of the theory. The result for
non-BPS black holes in N/ = 4 supergravity was obtained in [132] and agrees
with (3.118). Our considerations generalize this result to a moduli space of non-
extremal KK black holes. The exact masslessness of moduli is protected by the
breaking of global symmetries so supersymmetry is not needed.

3.3.3.c The N = 2 Truncation

Starting from N' = 4 SUGRA with n N = 4 matter multiplets, there is a consistent
truncation to N' = 2 SUGRA with n + 1 A = 2 vector multiplets that respects
the KK black hole background. It is defined by keeping only fields that are even
under the SU(4) g element diag(ls, —Is).

All fermions, both gravitini and gaugini are in the fundamental 4 of SU(4)g so
the consistent truncation retains exactly 1/2 of them. In particular, the SUSY is
reduced from N' = 4 to N' = 2. The bosons are either invariant under SU(4)g or
they transform as an antisymmetric tensor 6. The branching rule 6 — 2(1,1) &
(2,2) under SU(4)r — SU(2)? determines that its truncation retains only the 2
fields on the skew-diagonal of the antisymmetric 4 x 4 tensor.

The truncated theory has 2(2n + 4) fermionic degrees of freedom and the same
number of bosonic ones. We can implement the truncation directly on the N' = 4
coset (3.116) and find that scalars of the truncated theory parametrize

SU(1,1) S0(2,n)
Ul1) ~ SO@2)xS0(m)

(3.119)

This theory is known as the ST(n) model. In the special case n = 2 the ST(2)
model is the well-known STU model. This model has enhanced symmetry ensuring
that its 3 complex scalar fields are equivalent and similarly that its 4 field strengths
are equivalent. The STU model often appears as a subsector of more general
N = 2 SUGRA theories, such as those defined by a cubic prepotential. These in
turn arise as the low energy limit of string theory compactified on a Calabi-Yau
manifold, so the STU model may capture some generic features of such theories.

The consistent truncation to the ST'(n) model in N' = 2 SUGRA is compatible
with the embedding of the KK black hole in A/ = 8 SUGRA. The embedding
(3.91) in NV = 8 excites precisely the field strengths on the skew-diagonal, breaking
SU(8)r — USp(8). As discussed in (3.3.3.b), they were retained by the truncation
to N =4 SUGRA. The further truncation of the antisymmetric representation to
N = 2 SUGRA projects 6 — 2(1,1) and so it specifically retains field strengths
on the skew diagonal. Moreover, the gauge fields that are projected out are in the
2 of an SU(2) so they are not coupled to other fields at quadratic order.
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It can be shown that the " = 4 embedding identifies the “dilaton” of the KK black
hole with the scalar (as opposed to the pseudoscalar) in the coset SU(1,1)/U(1).
This part of the scalar coset is untouched by the truncation to A = 2 SUGRA.
Therefore, the truncation to N' = 2 does not remove any of the fields that are
turned on in the background, nor any of those that couple to them at quadratic
order. This shows that the consistent truncation to N' = 2 SUGRA, like other
truncations considered in this section, removes only entire blocks of fluctuations:
the fields that remain have the same couplings as they do in the NV = 8 context.

The breaking pattern determines the moduli space of scalars for the black hole

background as
SO(1,n—1)
SO(n—1)

In particular this confirms that, among the 2n + 2 scalars of the ST(n) model,

SU(1,1) x (3.120)

exactly n are moduli and so are minimally coupled massless scalars.

3.3.3.d More Comments on Consistent Truncations

The natural endpoint of the consistent truncations is N' = 0 SUGRA, i.e. the pure
Kaluza-Klein theory (3.54). We constructed our embedding (3.91) into N/ = 8
SUGRA so that the Kaluza-Klein black hole would remain a solution also to the
full ' = 8 SUGRA. Thus we arranged that all the additional fields required by
N = 8 supersymmetry would be “unimportant”, in the sense that they can be taken
to vanish on the Kaluza-Klein black hole. It is therefore consistent to remove them
again, and that is the content of the “truncation to N'= 0 SUGRA”.

From this perspective, the truncations considered in this section are intermediate
stages between N’ = 8 and N' = 0 in that only some of the “unimportant” fields
are included. For each value of NV = 6,4, 2, the requirement that the Kaluza-Klein
black hole is a solution largely determines the truncation. The resulting embedding
of the STU model into N'= 8 SUGRA is very simple, and possibly simpler than
others that appear in the literature, in that symmetries between fields in the STU
model are manifest even without performing any electromagnetic duality.

Having analyzed the spectrum of fluctuations around Kaluza-Klein black holes in
the context of SUGRA with N' = 8,6, 4,2 (and even A/ = 0), it is natural to inquire
about the situation for SUGRA with odd A. Our embeddings in N' = 6,4, 2 rely
on the skew-diagonal nature of the embedding in N' = 8 so they do not have
any generalizations to odd A. This fact is vacuous for ' = 7 SUGRA which
automatically implies N' = 8. Moreover, it is interesting that A" = 3,5 SUGRA
do not have any non-BPS branch at all: all extremal black holes in these theories
must be BPS (they preserve supersymmetry) [132]. This may indicate that our
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examples exhaust a large class of non-BPS embeddings.

3.3.4 The General KK Black Hole in ' = 2 SUGRA

In this section, we start afresh with an arbitrary solution to the D = 4 Kaluza-
Klein theory (3.54), such as the general Kaluza-Klein black hole (3.55-3.57). We
embed this solution into N/ = 2 SUGRA with a general cubic prepotential and
analyze the quadratic fluctuations around the background in this setting. Along
the way we make additional assumptions that further decouple the fluctuations,
and ultimately specialize to a constant background dilaton and ST (n) prepotential.
In this case the final results of the direct computations will be consistent with those
found in section 3.3.3.c, by truncation from N = 8 SUGRA, and summarized in
section 3.3.2.c.

The setup in this section complements our discussion of the Kaluza-Klein black
hole in /' = 8 SUGRA and its truncations to N' < 8 SUGRA. Here we do not
assume vanishing background dilaton ®¥X) = 0 from the outset and we consider
more general theories.

3.3.4.a N =2 SUGRA with Cubic Prepotential

We first introduce N/ = 2 SUGRA. We allow for matter in the form of ny A = 2
vector multiplets with couplings encoded in a cubic prepotential

1 dip X XIXF

F:Faz X0 ’

(3.121)

where d;ji is totally symmetric. We also include ng N = 2 hypermultiplets. The
theory is described by the N' =2 SUGRA Lagrangian

- R - ) -1
e L= = g2 (2 — wi#'y“””Dyw;> —gaga“z"a#zﬁ — ihwa“q“a“q”
1. v - v— 1 ] iB
(- JNEE Y 4 iA@Y = L D
~ A 1 n o . if
—Cal¢ +§ga5wm(3z X" + hee. | (3.122)
where
n 1 ~ T 1 oo
FE o= 3 (FW + F,w>  with Flu, = =2 €upe P77 (3.123)
(1 . , . o
@ = Vak? (G Caatin e i) )
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NSRS 1 - v
+x7 (w; e + 552&7# chAB> .

We follow the notations and conventions from [133]. In particular, the x¢ =
Prx$,a=1,...,ny denote the physical gaugini and ¢4 = PL(4, A=1,...,2ny
denote the hyperfermions. The Kéahler covariant derivatives are

VX! = (aa + ;/&aa/c> X1, (3.125)
VaX! = (aa — ;K;?aalC) X!, (3.126)

where the Kéhler potential IC

e K = _i(XTF, — FiX7), (3.127)
with Fy = 0;F = 25
The projective coordinates X’ (with I =0,...,ny) are related to physical coor-
dinates as 2* = X/ X? (with i = 1,...,ny). We split the complex scalars 2 into
real and imaginary parts
2=t iy (3.128)

With cubic prepotential (3.121) we have

g5 = 010;K = w2 (— 3;; + %) : (3.129)
where we define
dij = dijry"® di = dijry’y"* d = diey'y’y* . (3.130)
Finally, the scalar-vector coupling are encoded in
Nij=pry+iviy, (3.131)
with
pry=r"° Higr'a? et B! 7 (3.132)

—3dijkxjxk Gdijkxk

(0]
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and

—d + 6dpxta™ — 2(dx®)?  2(dpzt)d; — 6d;p2t
Vi = K2 ‘ alde’)” g (de’) L (3133
%(d@[ﬁg)dl — 6digx£ Gdij - %(d,dj)

3.3.4.b The Embedding into V' = 2 SUGRA

We want to embed our seed solution into N’ = 2 SUGRA. The starting point is a
solution to the equations of motion (3.55, 3.56, 3.57) of the Kaluza-Klein theory.
We denote the corresponding fields gih™), F\n™) and ®XK). The fields of A" = 2
SUGRA are then defined to be

SUGRA KK
g Y =gl

1 .
F), =—FX9 Fl =0, forl<i<ny

v2

xi:O, for1 <i<ny,
exp (—2<I>(KK)/\/§)

y' = c'yp, with yo =

(dijkcicjc"”‘)l/?’ ’
(All other bosonic fields in N'=2 SUGRA) =0,
(All fermionic fields in N'=2 SUGRA) =0 . (3.134)

This field configuration solves the equations of motion of A" = 2 SUGRA for any
seed solution to the Kaluza-Klein theory. In the following, we will often declutter
formulae by omitting the superscript “KK” when referring to fields in the seed
solution.

The embedding (3.134) is really a family of embeddings parameterized by the ny
constants ¢* (with i = 1,...,ny). They are projective coordinates on the moduli
space parametrized by the ny scalar fields y; with the constraint

d = dijiy'y’y" = exp (72\/§<1><KK>) : (3.135)

In the special case of the non-rotating Kaluza-Klein black hole with P = @, we have
PKK) = 0 and so the constraint is d = 1. More generally, d is the composite field
defined through the constraints (3.130) and related to the Kaluza-Klein dilaton by
(3.135).
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3.3.4.c Decoupled Fluctuations: General Case

The Lagrangian for quadratic fluctuations around a bosonic background always
decouples into a bosonic sector and fermionic sector,

2p(N=2) _ 52,pN=2) 2 p(N=2)

g ‘C( ) = g ‘Cbosons +0 ‘Cfermions : (3136)

With the above embedding into N' = 2, each sector further decouples into several
blocks.

The bosonic sector decomposes as the sum of three blocks

2L 2

bosons

= 2LW=D 52 pWN=D) g2 pN=2) (3.137)

gravity vectors scalars

The “gravity block” (52£g\§§3, consists of the graviton dg,,, the gauge field (5A2,

and the ny real scalars dy':

—152 p(N=2) _ 1 o R
e 0 Lgravity = ﬁé {\/ —9 (M

Generically, the fields g, (5A2 and &y’ all mix together. This block can nonethe-

o A ,
— 90y 0"y’ + @FSVF“ 0)] . (3.138)
less be further decoupled with simplifying assumptions, as we will discuss later.

The block 62£W=2) consists of the ny vector fields 5Aft and the ny real pseu-

) vectors
doscalars dz*:

vectors

e 162 LN~ g (—8H5xi8”5xj - %dFWF“”éxiéxj (3.139)
+ V2dF,, 62" F" — d§F. 6 " ) .

The Kéhler metric g;; can be diagonalized and we obtain ny identical decoupled
copies, that we call “vector block”, each consisting in one vector field and one real
scalar. Denoting the fluctuating field f,,, one such copy has the Lagrangian

_ 1 d d d
e 162 LW =D = w0ty — T Ew PP+ SFuw e = T hu L (3.140)

vector 9

using conventional normalizations for the scalar fields.

The last bosonic block contains the hyperbosons:
_ 1
e 12 LN=D o 5 hun0,80"9q" . (3.141)

The quaternionic Kéhler metric h,, is trivial on the background. Hence, this block
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3. Quantum corrections to black hole entropy

decouples at quadratic order into 4ng independent minimally coupled massless
scalars.

We next turn to the fermions. The Lagrangian (3.122) is the sum of the decoupled
Lagrangians
2 p(N=2) _ 2 ,5(N=2) 2 p(N'=2)
0 ‘Cfermions =9 ’Chyperfermions + g Egravitino-gaugino . (3142)
The hyperfermions consist of ny identical copies, that we call “hyperfermion
block”, each containing two hyperfermions. For any two such fermions we can
take Cap = eap with A, B = 1,2. The resulting Lagrangian is

2
e~ 152 LW=2) = =204 0CA + (I;FJVIVUXJCAVWCBGAB + h.c.) .(3.143)

hyperfermion
In our background, we use (3.134, 3.133) to find

_ _ ds
e 1OPLN R ion = —20alCH — <8F;ngw“”g36 AB + h.c.> . (3.144)

We used the T-gauge [133] to fix the projective coordinates X! resulting in X° =
(8a)~1/2.

The “gravitino-gaugino block” contains two gravitini and ny gaugini and has La-
grangian

_ N= 1 - i
e~152LW=2) = P Dol (3.145)

gravitino-gaugino

dz . 9 . g
' ahHahY e - g, Ba =Y v 0 i
’ <_4“2F“”¢i Uit g P e daya X7 e

31 I o1 ~ =1 _ .
oot FindaX ™y e = 200X DX + 50050iad2" X7 + h'c') '
Generally, all the gravitini and gaugini couple nontrivially but they can be further
decoupled in simpler cases, as we will discuss later.

Summarizing so far: given any Kaluza-Klein solution, the embedding (3.134) pro-
vides solutions of N' = 2 SUGRA. We have expanded the N' = 2 Lagrangian
around this background to quadratic order and observed that the fluctuations can
be decoupled as shown in Table 3.5.
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Degeneracy Multiplet Block content Lagrangian
1 Gravity block 1 graviton, 1 vector, ny scalars (3.138)
ny Vector block 1 vector and 1 (pseudo)scalar (3.140)
dng Scalar block 1 real scalar (3.141)
1 Gravitino-gaugino block 2 gravitini and 2ny gaugini (3.145)
ny Hyperfermion block 2 hyperfermions (3.144)

Table 3.5: Decoupled quadratic fluctuations in N' = 2 SUGRA around a general
KK black hole.

These results are reminiscent of the analogous structure for N/ = 8 SUGRA, sum-
marized in (3.91). However, with the more general assumptions made here, there
are more scalars in the N' = 2 gravity block than in the analogous N' = 8 KK block
and these additional scalars do not generally decouple from gravity. Similarly, the
N = 2 gravitino-gaugino block here includes more gaugini than the analogous
N = 8 gravitino block.

3.3.4.d Decoupled Fluctuations: Constant Dilaton

So far, we have been completely general about the underlying Kaluza-Klein solu-
tion. In this section, we further decouple the quadratic fluctuations by assuming
that the scalar fields of N'= 2 SUGRA are constant

y' = constant, i =1,....,ny . (3.146)

From the embedding (3.134), this is equivalent to taking the Kaluza-Klein dilaton
to vanish
KK — ¢ (3.147)

)

since we can always rescale the field strengths to arrange for d = d;jxy‘y’ Yk = 1.
As noted previously, this is satisfied by the non-rotating Kaluza-Klein black hole
with P = Q. This is the simplified background that we already studied in /' = 8
SUGRA, but it is embedded here in N/ = 2 SUGRA with arbitrary prepotential.
As in the /' = 8 case, we will use that the background satisfies

R=0, F,F" =0 (3.148)

to decouple further the quadratic fluctuations.
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o Gravity

The gravity block decouples as

N=2 N=2 N=2

62£é§ravit))f = 52‘C§(K ) + 62‘C1Eelativ)e ’ (3149)
where 5%&{:2) is the “KK block”, consisting of the graviton dg,,, the
52£(N:2)

relative denotes

graviphoton §A2 and the center-of-mass scalar dy’’.
ny — 1 free massless scalars dy?, i = 2,...ny. This decoupling is ob-
tained by center-of-mass diagonalization: the dy"* are linear combinations
of 6y’ such that éy’! is precisely the combination that couples to the gravi-

ton and graviphoton at quadratic order. Then, the “relative scalars” dy'%, i =

2,...,ny are minimally coupled to the background
_ 2 ) .
e 152 L= —50u0y"0"5y" (fori=2,....ny), (3.150)

The center-of-mass Lagrangian turns out to be exactly the same as the N' = 8
KK block (3.104)

2L N = 2L NS (3.151)
with the identifications
_ 1 1, 1,
huy = ﬁ 69#1} - Zguug 6gpa s h = ﬁg 69/)0 ) (3152)
ay = V20A% . fu = 0ua, — Ovay (3.153)
¢p=6y"=— \/jddi oy’ = 6d . (3.154)

The equality between 625%:2) and (52[3%/{:8) is expected because the KK
block is the same for any N' = 2 SUGRA and in particular for the N’ = 2
truncations of N'= 8 SUGRA.

The ny — 1 minimally coupled massless scalars §y'*,i = 2,...,ny param-
eterize flat directions in the moduli space, at least at quadratic order. In
important situations with higher symmetry, including homogeneous spaces
constructed as coset manifolds, it can be shown that these ny — 1 directions
are exactly flat at all orders. This implies that, in particular, these models
are stable [134,135]. In such situations the “relative” coordinates dy’* are
Goldstone bosons parameterizing symmetries of the theories.
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o Vector block

Using the fact that F},, F*¥ = 0, the vector block becomes

— 1 1 1
¢ Ly = —50ud e+ SFu [ — L fu " (3.155)
Again, we find that 62202 = 5205 after proper normalization of the
field strength.

e Scalar block
E(NZQ)

scalars

The Lagrangian for hyperbosons 62 consists of 4n gy minimally coupled
scalars. In addition, the center-of-mass diagonalization has brought ny — 1

W=2) " This gives a total of ny +

.. 43 3 77 2
minimally coupled “relative” scalars L .. .

4dngy — 1 minimally coupled scalars.

We now turn to fermions. The interactions between gravitini and gaugini simplify
greatly when scalars are constant. However, they still depend on the prepoten-
tial through the structure constants dag. The fermionic fluctuations in N' = 2
SUGRA are therefore qualitatively different from the bosonic fluctuations which,
as we just saw, reduce to the form found in A" = 8 SUGRA.

For fermions we need to further specialize and study the ST'(n) model. This model
already appeared in section 3.3.3.c, as a truncation of AV = 8 SUGRA to N = 2.
Presently, we introduce it as the model with ny = n + 1 vector multiplets and
prepotential

1 X1(X2X?2 - XoXx9)
F = s 5%0 (a=3,...,ny) . (3.156)
We take the background scalars
yl=1, *=v2, =0 (a=3,...,ny), (3.157)

such that the normalization is d = 1 and therefore ®(K) = (0. As mentioned
already in section 3.3.3.c, this model generalizes the STU model which is equivalent
to ST(2).

e Gravitino-gaugino block

The Lagrangian for the gravitino-gaugino block decouples as

S22 N=2) — §2LN=2) g2 p(N=D) (3.158)

gravitino-gaugino gravitino gaugino ?

after using center-of-mass diagonalization. We call x’*! the center-of-mass
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gaugini, i.e. the gaugini that couples to the gravitini. More precisely, we

define
= 1 @Xn I @XiQ 2= 1 @Xil _ @Xﬂ
4 3 3 ’ 4 3 3 ’
I 1 o
X=X fora=3,...,nv . (3.159)

We find a center-of-mass multiplet that we call “gravitino block”

_ N=2 Lo ;1 - 1 _ L rnp v
€10 Lypnitmo = — 3 Vi Doty + — (—x?lﬁx’“ — Vi Eaie?

1 o V/3i
+7>—<21 /:nylwxglelji 9

; X’il’qu‘/:l//l/}Vjeij + hc) s (3160)

This Lagrangian couples the two gravitini to two center-of-mass gaugini. The
“relative” multiplets are ny — 1 identical copies of a “gaugino block”

_ N=2 2 ) 1 o -
e 162£éaugirfo - —;Xé"lﬁxg — (SKQXQQFWV’ “Xia + h.c.) , (3.161)

where . = 2,...,ny.
e Hyperfermion block

The hyperfermion Lagrangian is given in (3.144). We notice that

52LN=2) =62 N=2 (3.162)

hyperfermion gaugino

The fluctuations of “relative” gaugini are therefore the same as the fluctua-
tions of hyperfermions. Therefore, we call both of them “gaugino block”.

The Lagrangians (3.160) and (3.161) are written in terms of Weyl fermions. If we
rewrite them with Majorana fermions, we find that

L itho = 0 Liresiimo » (3.163)
2 p(N=2) _ (2 p(N=8)
0 ‘Cgaugino =0 Egaugino ) (3164)

where the right-hand sides were defined in (3.112) and (3.113). The agreement
between our explicit computations of the fermionic blocks for the ST (n) model
in ' = 2 SUGRA and the analogous results in /' = 8 SUGRA is an important
consistency check on the truncations discussed in section 3.3.3.c. This also explains
the agreement (3.162) between fermionic fluctuations that are in different N = 2
multiplets. N' = 2 gaugini and hyperfermions becomes equivalent when embedded
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into some larger structure, ultimately furnished by N'= 8 SUGRA.

In summary, taking the dilaton to be constant has further decoupled the fluctua-
tions in ' = 2 SUGRA around the KK background, as shown in Table 3.6. For
bosons, we recover the results of ' = 8 SUGRA as expected, although we are more
general here since we allow for an arbitrary prepotential. For fermions, we have to
specialize to the ST(n) model to be able to further decouple the fluctuations. The
resulting fermionic fluctuations also reproduce the fluctuations of A/ = 8 SUGRA.

Degeneracy Multiplet Block content Lagrangian
1 KK block 1 graviton, 1 vector, 1 scalar (3.151)
ny Vector block | 1 vector and 1 (pseudo)scalar (3.155)

ny +4ng — 1

Scalar block

1 real scalar

(3.141, 3.150)

1 Gravitino block 2 gravitini and 2 gaugini (3.160)

ny +ng —1 | Gaugino block 2 spin 1/2 fermions (3.144, 3.161)

Table 3.6: Decoupled fluctuations in N' = 2 SUGRA around the KK black hole
with constant dilaton. The decoupling in the bosonic sector holds for an arbitrary
prepotential. The fermionic sector has been further decoupled by specializing to
the ST'(n) model.

3.4 Logarithmic Corrections to Black Hole Entropy

The logarithmic correction controlled by the size of the horizon in Planck units
is computed by the functional determinant of the quadratic fluctuations of light
fields around the background solution. The arguments establishing this claim for
non-extremal black holes are made carefully in [22]. In this section we give a
brief summary of the steps needed to extract the logarithm using the heat kernel
approach. It follows the discussion in [26] and we refer to [122] for background
literature on technical aspects.

Naturally, we apply the procedure to the Kaluza-Klein black holes on the non-
BPS branch. This gives our final results for the coefficients of the logarithmic
corrections, summarized in Table 3.8.
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3.4.1 General Framework: Heat Kernel Expansion

In Euclidean signature, the effective action W for the quadratic fluctuations takes
the schematic form

W = [Doep (= [ deyio.nen) = aaia. (3.165)

where A is a second order differential operator that characterizes the background
solution, and ¢,, embodies the entire field content of the theory. The sign F is
— for bosons and + for fermions. The formal determinant of A diverges and a
canonical way to regulate it is by introducing a heat kernel: if {\;} is the set of
eigenvalues of A, then the heat kernel D(s) is defined by

D(s)=Tre " =3 e, (3.166)

and the effective action becomes

W = ¢%/ %D(s) . (3.167)

Here € is an ultraviolet cutoff, which is typically controlled by the Planck length,
i.e. € ~ % ~G.

In our setting it is sufficient to focus on the contribution of massless fields in the
two derivative theory. For this part of the spectrum, the scale of the eigenvalues
\; is set by the background size which in our case is identified with the size of the
black hole horizon, denoted by Ap. The integral (3.167) is therefore dominated
by the integration range € < s < Apy, and there is a logarithmic contribution

> d
/‘§M@=m+%mMMM®+m- (3.168)

with coefficient denoted by Clocar. This term comes from the constant term in the
Laurent expansion of the heat kernel D(s). Introducing the heat kernel density
K(x,x;s) which satisfies

D(s) = /d4x\/§K(x,x;s) , (3.169)

it is customary to cast the perturbative expansion in s as

o0

K(z,z;s) = Z s" 2ag, () , (3.170)

n=0
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and we identify
Clocal = /d4x ga4($) . (3171)

The functions {as,(z)} are known as the Seeley-DeWitt coefficients. The loga-
rithmic term that we need is controlled by a4(z). The omitted terms denoted
by ellipses in (3.168) are captured by the other Seeley-DeWitt coefficients. For
example, the term ag(x) induces a cosmological constant at one-loop and the term
as(x) renormalizes Newton constant.

There is a systematic way to evaluate the Seeley-DeWitt coefficients in terms of
the background fields and covariant derivatives appearing in the operator A [122].
The procedure assumes that the quadratic fluctuations can be cast in the form
—Ay, = (O)), +2(w"D,)y, + P (3.172)
Here, I} is the identity matrix in the space of fields, w# and P are matrices

constructed from the background fields, and OO0 = D, D*. From this data, the
Seeley-DeWitt coefficient a4(z) is given by the expression

1 1 1
(4m)%ay4(z) = ﬁ-#ﬂ+6RE+EQWWW (3.173)
1
+§5®W+QRWMRWW—QRWRW),
where
E =P —w'w, — (D"w,) , Qu =Dy +wu, Dy +w,)] . (3.174)

This is the advantage of the heat kernel approach: after explicitly expanding the
action around the background to second order, we have a straightforward formula
to compute the Seeley-DeWitt coefficients from A (3.172).

The preceding discussion is based on the operator A (3.172) that is second order in
derivatives. For fermions, the quadratic fluctuations are described by a first order
operator H so the discussion must be modified slightly. We express the quadratic
Lagrangian as

2L =VUHV . (3.175)

Following the conventions in [26], we always cast the quadratic fluctuations for
the fermions in terms of Majorana spinors. The one-loop action is obtained by
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3. Quantum corrections to black hole entropy

applying heat kernel techniques to the operator H'H and using
1
logdet H = ilogdetHTH . (3.176)

Fermi-Dirac statistics also gives an additional minus sign. Thus, the fermionic
contribution is obtained by multiplying (3.173) with an additional factor of —1/2.

3.4.2 Local Contributions

It is conceptually straightforward to compute a4(x) via (3.173). However, it can
be cumbersome to decompose the differential operators, write them in the form
(3.172) and compute their traces. The main complication is that our matter con-
tent is not always minimally coupled, as emphasized in sections 3.3.2 and 3.3.4.

To overcome these technical challenges we automated the computations using
Mathematica with the symbolic tensor manipulation package xAct®. In partic-
ular, we used the subpackage xPert [136] to expand the bosonic Lagrangian to
second order. We created our own package for treatment of Euclidean spinors.
The computation proceeds as follows:

1. Expand the Lagrangian to second order.
2. Gauge-fix and identify the appropriate ghosts.

3. Reorganize the fluctuation operator A7}, and extract the operators w,, and P
from (3.172).

4. Compute the Seeley-DeWitt coefficient a4(z) using formula (3.173).

5. Simplify a4(x) using the background equations of motion, tensor and gamma
matrix identities.

The results of the expansion to second order with xPert match with the bosonic
Lagrangians summarized in Table 3.3. In Appendix 3.5 we elaborate on the inter-
mediate steps and record the traces of E and €2, for each of the blocks encountered
in our discussion.

A priori, the Seeley-DeWitt coefficient a4(x) is a functional of both the geometry
and the matter fields. The fact that the dilaton ®XX) is constant on our back-
ground simplifies the situation greatly. By using the equations of motion, a4(x)
can be recast as a functional of the geometry alone. We list the equations that we
use to simplify a4(z) explicitly in Appendix 3.5.

As a result, for our background, the Seeley-DeWitt coefficient at four derivative

Shttp://www.xact.es/www.xact.es
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order can be arranged in the canonical form

as(x) =

Cc

G2 Wi W1007

1672

E47

(3.177)

where a and ¢ are constants governed by the couplings and field content of the
theory and the curvature invariants are defined in (3.189) and (3.190). The values
of ¢ and a are summarized in Tables 3.7 and 3.8.

Multiplet \ Properties Content d.o.f. c a c—a
Minimal boson 1 real scalar 1 55 360 15
Gaugino block 2 gaugini 4 % —% %

Vector block 1 vector and 1 (pseudo)scalar 3 5 % —%
Gravitino block 2 gravitini and 2 gaugini 8 —%(7) —%470 —%
KK block 1 graviton, 1 vector, 1 scalar 5 % % 1*90

Table 3.7: Contributions to a4(x) decomposed in the multiplets that are natural
to the KK black hole.

Multiplet / Theory

KK block 1 1 1 1 1
Gravitino block 4 3 2 1 0
Vector block 27 15 n+5 ny 0
Gaugino block 24 10 2n ny +ng —1 0
Scalar block 42 14 5n — 4 ny +4ng — 1 0
a 5 3 35(22+3n) | 155(65+ 17ny +ng) a1

c 0 0 2(2+n) 27+ ny +ny) o

Table 3.8: The degeneracy of multiplets in the spectrum of quadratic fluctuations
around the KK black hole embedded in to various theories, and their respective
values of the ¢ and a coefficients defined in (3.177). For A/ = 4, the integer n is
the number of N’ = 4 matter multiplets. For A" = 2, the recorded values of ¢ and

a for the gravitino and the gaugino blocks were only established for ST(ny — 1)
models.
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3. Quantum corrections to black hole entropy

It is worth making a few remarks.

1. The value of ¢ — a in each case is independent of the couplings of the theory.
In other words, ¢ — a can be reproduced by an equal number of minimally
coupled fields on the same black hole background. This property is due to
the fact that none of the non-minimal couplings appearing in our blocks
involve the Riemann tensor R, ,,. Therefore, the coefficient of R, ,o R'"F°
is insensitive to the non-trivial couplings.

2. The values of ¢ for blocks recorded in Table 3.7 do not have any obvious
regularity, they are not suggestive of any cancellations. The vanishing of
the c-anomaly for the A = 6 and N’ = 8 theories, exhibited in Table 3.8,
seems therefore rather miraculous. Somehow these embeddings with large
supersymmetry have special properties that are not shared by those with
lower supersymmetry.

3.4.3 Quantum Corrections to Black Hole Entropy

The logarithmic terms in the one-loop effective action of the massless modes correct
the entropy of the black hole as

1 A
08pn = 5 (Clocar + Cym) log ?H . (3.178)

In this subsection we gather our results and evaluate the quantum contribution
for the Kaluza-Klein black hole.

The local contribution is given by the integrated form of the Seeley-DeWitt coef-
ficient a4(z):

C a
C(locaul = ].6? / \/§d4$ Wul/panLupa - 1672 /\/§d4l‘ Ey . (3179)

The second term is essentially the Euler characteristic

1
3272

Y= / d'z\/GE =2, (3.180)
for any non-extremal black hole. It is a topological invariant so it does not de-
pend on black hole parameters. In contrast, the first integral in (3.179) depends
sensitively on the details of the black hole background. Using the KK black hole
presented in section 3.2 with J =0 and P = @ we find

1
1672

/ A e\ /GW i pe WHP? = 4 + 5 i (3.181)

(1487
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where ¢ > 0 is a dimensionless parameter related to the black hole parameters as

Q P \2(1+¢)
GM GM  24+¢ (3.182)

In this parametrization the extremal (zero temperature) limit corresponds to & — 0
and the Schwarzschild (no charge) limit corresponds to £ — oo.

We also need to review the computation of C,,,, the integer that captures correc-
tions to the effective action due to zero modes. In our schematic notation zero
modes A; = 0 are included in the heat kernel (3.166) and therefore contribute to
the local term Clocai. However, the zero mode contribution to the effective action
is not computed correctly by the Gaussian path integral implied in (3.165) and
should instead be replaced by an overall volume of the symmetry group responsible
for the zero mode. It is the combination of removing the zero-mode from the heat
kernel and adding it back in again as a volume factor that gives the correction

Com.

Additionally, the effective action defined by the Fuclidean path integral with ther-
mal boundary conditions is identified with the free energy in the canonical ensemble
whereas the entropy is computed in the microcanonical ensemble where mass and
charges are fixed. The Legendre transform relating these ensembles gives a loga-
rithmic contribution to the entropy that we have absorbed into Cy,, for brevity.

The various contributions to C,,, are not new, they were analyzed in [22]. The
result can be consolidated in the formula [26]

sz = _(3 + K) + 2]\]'SUSY + 3 5non-ext . (3183)

Here K is the number of rotational isometries of the black hole, Ngysy is the
number of preserved real supercharges. dpon-ext 1S 0 if the black hole is extremal
and 1 otherwise. The non-extremal KK black hole with J = 0 is spherically
symmetric and has K = 3, Ngysy = 0 and dpon-ext = 1. Therefore, C,,, = —3 for
all the non-extremal black holes we consider in this paper but C,,, = —6 in the
extreme limit.

Combining all contributions, our final result for the coefficient of the logarithmic
correction to the non-extreme black hole entropy is

4
[T

where the values of ¢ and a for the theories discussed in this paper are given

(Olocal + Ozm) - 2(C - a) (3184)

in Table 3.8. The expression manifestly shows that when ¢ # 0, which is the
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3. Quantum corrections to black hole entropy

case for N' = 0,2,4, the quantum correction to the entropy depends on black
hole parameters through £ or, by the relation (3.182), through the physical ratio
Q/GM. The cases with very high supersymmetry are special since ¢ = 0 when
N > 6 and then the coefficient of the logarithm is purely numerical. For example,
we find the quantum corrections

_ A - 1 A
sev=0 _ 9y A sew=s _ 13, An (3.185)

non-ext — 92 g G’ non—ext_iglog G’

to the non-extremal black holes on the non-BPS branch.

As we have stressed, the KK black hole on the non-BPS branch is not intrinsically
exceptional. In the non-rotating case with P = @ that is our primary focus, the
geometry is the standard Reissner-Nordstrém black hole. However, Kaluza-Klein
theory includes a scalar field, the dilaton, and this dilaton couples non-minimally
to gravity and to the gauge field. According to Table 3.8 we find ¢ = % for the
KK black hole that is, after all, motivated by a higher dimensional origin.

An appropriate benchmark for this result is the minimally coupled Einstein-Maxwell
theory, which has Reissner-Nordstréom as a solution, with an additional minimally
coupled scalar field. The KK theory and the minimal theory both have c—a = 19—0,
because these theories have the same field content, and the zero-mode content of
the black holes in the two theories is also identical, because the geometries are the
same. However, ¢ = % for the minimally coupled black hole, a departure from
the KK black holes. Thus, as one would expect, the quantum corrections to the
black hole entropy depend not only on the field content but also on the couplings

to low energy matter.

Although the focus in this paper has been on the non-extreme case, and specifi-
cally whether the logarithmic corrections to the black hole entropy depend on the
departure from extremality, it is worth highlighting the extremal limit since in this
special case a detailed microscopic model is the most realistic. In the extremal case
we find the quantum correction on the non-BPS branch

A
6Sexs = —Nlog ?H , (3.186)

for N' = 6, 8. The surprising simplicity of this result is inspiring.

3.5 Discussion

In summary, we have shown that the spectrum of quadratic fluctuations around
static Kaluza-Klein black holes in four dimensional supergravity partially diago-
nalizes into blocks of fields. Tables 3.7 and 3.8 give the ¢ and a coefficients that
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control the Seeley-DeWitt coefficient ay(z) for each block and, taking into account
appropriate degeneracies, for each supergravity theory. These coefficients directly
yield the logarithmic correction to the black hole entropy via (3.178-3.179).

The detailed computations are quite delicate since any improper sign or normal-
ization can dramatically change our conclusions. We therefore proceeded with
extreme care, devoting several sections to explain the embedding of the Kaluza-
Klein black hole into a range of supergravities and carefully record the action
for quadratic fluctuations of the fields around the background. Moreover, we al-
lowed for considerable redundancy, with indirect symmetry arguments supporting
explicit computations and also performing many computations both analytically
and using Mathematica. These steps increase our confidence in the results we
report.

The prospect that interesting patterns in these corrections could lead to novel
insights into black hole microstates is our main motivation for computing these
quantum corrections in supergravity theories. Our discovery that ¢ = 0 for N' =
6,8 on the non-BPS branch is therefore gratifying. Recall that when ¢ vanishes,
the quantum correction is universal, it depends on the matter content of the theory
but not on the parameters of the black hole. This property therefore holds out
promise for a detailed microscopic description of these corrections. Such progress
would be welcome since our current understanding of, for example, the D0 — D6
system leaves much to be desired [137-140] for the non-BPS branch.

Conversely, our analysis shows that on the non-BPS branch ¢ # 0 for N < 4. On
the BPS-branch not only has it been found that ¢ = 0 for all N' > 2 but this fact
has also been shown to be a consequence of V' = 2 supersymmetry [124]. It would
be interesting to similarly understand why ¢ = 0 requires ' > 6 on the non-BPS
branch.

To date, there is no known microstate counting formula that, when compared to
the black hole entropy, accounts for terms that involve ¢ # 0. For example, in all
cases considered in [115,116,141], the object of interest is an index, or a closely
related avatar, and the resulting logarithmic terms nicely accommodate quantum
corrections when Cigca is controlled by a alone. The challenge of reproducing the
logarithmic correction when ¢ is non-vanishing comes from the intricate depen-
dence on the black hole parameters that the Weyl tensor gives to Ciocay. It would
be interesting to understand which properties a partition function must possess in
order that the logarithmic correction to the thermodynamic limit leads to ¢ # 0.

An interesting concrete generalization of the present work would be to increase
the scope of theories considered. In section 3.3.4 our main obstacle to covering
all N' = 2 theories is the complicated structure of fermion couplings for a generic
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prepotential, and hence we restrict the discussion in section 3.3.4.d to the ST(n)
models. Nevertheless, we suspect that for a generic prepotential our conclusions
would not be significantly different. In particular, we predict that ¢ # 0 on the
non-BPS branch for any N = 2 supergravity. It would of course be desirable to
confirm this explicitly.

A more ambitious generalization would be to consider more general black hole
solutions, specifically those where the dilaton ®¥) is not constant. Our assump-
tion that ®XK) = 0 simplified our computations greatly by sorting quadratic
fluctuations into blocks that are decoupled from one another. By addressing the
technical complications due to relaxation of this assumption and so computing
ay(z) for black holes with non-trivial dilaton we could, in particular, access so-
lutions with non-zero angular momentum J # 0. The rotating black holes on
the non-BPS branch are novel since they never have constant dilaton, even in the
extremal limit [142]. Therefore, they offer an interesting contrast to the Kerr-
Newman black hole, their counterparts on the BPS branch [26]. Rotation is quite
sensitive to microscopic details so any differences or similarities between the quan-
tum corrections to rotating black holes on the BPS and non-BPS branches may
well provide valuable clues towards a comprehensive microscopic model. A non-
constant dilaton is also the linchpin to connections with the new developments in
AdSs holography for rotating black holes such as in [48,143].

Appendix

In this appendix, we give the details on the computation of the Seeley-DeWitt co-
efficients for Kaluza Klein black holes and their embeddings in N > 2 supergravity.
Most of the computations were done using the Mathematica package xAct. We
present our results according to the organization of quadratic fluctuations into
blocks that was introduced in section 3.3.2.

The basic steps of our implementation are:

1. We expand the Lagrangian to second order.® This was done in sections 3.3.2
and 3.3.4 for the supergravity theories of interest. The bosonic Lagrangian
can also be expanded using xPert.

2. We gauge-fix and add the corresponding ghosts. The gauge-fixing and the
ghosts were detailed for each block in sections 3.3.2 and 3.3.4. In this ap-
pendix, we highlight and record their contributions to the heat kernel.

SFor fermions we always write the quadratic fluctuations with Majorana spinors, following
the conventions of [26].
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3. We rearrange the fluctuation operator A} so that it takes the canonical form
(3.172). We then read off the operators w, and P and compute the operators
E and €,,. These are the most cumbersome steps so they are executed
primarily using Mathematica. Since some expressions are rather lengthy for
the matrix operators due to the non-minimal couplings, we mostly present
the traces of these operators.

4. We compute the Seeley-DeWitt coefficient a4(x) using formula (3.173). This
also includes the ghosts from the second step.

5. We simplify a4(z) using the equations of motion, tensor and gamma matrix
identities. This brings a4(z) to its minimal form (3.177), where we can read
off the coefficients ¢ and a.
3..1 Preliminaries

We use the following formula to compute the Seeley-DeWitt coefficient
2 Lo 1 1 v
(4m)%aq(z) = Tr §E + ERE + EQWQ“ (3.187)

1
+%(5R2 + 2R, po R*P° — 2R, R*)|

This object further simplifies due to the equations of motion, Bianchi, and Schouten
identities. These simplifications imply that we can cast (3.187) in the form

ag () = 16%VVWGW’“’P" - 166;2 Ey, (3.188)
where the square of the Weyl tensor is
Wiwpe WHP? = Ryppe RP7 — 2R, R + %RQ , (3.189)
and the Euler density is
Ey = R,,,0R""° — AR, R" + R . (3.190)

For each block, as summarized in Table 3.3, we will report both (3.187) and (3.188).
The identities used to simplify (3.187) to its minimal form (3.188) are listed below.
For fermionic fluctuations, we also use many gamma matrix identities which are
well known and not repeated here.
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On-shell conditions: The equations of motion background with constant dilaton
are

FuoF,*=2R,,, R=0, (3.191)
Fo,F" =0,  D,F* =0 .

Bianchi identities: Starting from

V"™ =0,  Ruuas =0, (3.192)
where F;w = —%ewaﬁF“B we find
1
RuuaﬁRMaVﬁ = §Rp,yaﬁleaﬁ s (3193)

1
(DeF) (D FH) = 2 (Do) (DU F™)
v 1 [ 4e%
F (DQF,W) = iF (DMFVQ) ,
1
RuauﬁFW/Faﬁ = iRuva,BF#VFaB >

1
€uvapDOFPP = iemﬁDPFaﬁ .

Schouten identities: The Schouten identity is g""e??™ = 0. From this, we can
derive

~ 1

FuoF, = ZgHVFaBFO‘B (3.194)

Derivative relations: The following identity is also useful
(Do Fl)(D*F*) = —2R,,,, F**F" + R,,asF" FOP (3.195)

and holds up to a total derivative.

3..2 KK Block

The quadratic Lagrangian is given in (3.104). To evaluate the Seeley-DeWitt
coefficient, the kinetic term of h,, is analytically continued to
i

new __
Wi = —_h

2 1222 (3196)
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for the kinetic term to have the right sign. In addition, in order to project onto
the traceless part of a symmetric tensor, we define

1 1
G*p*g = 3 ((Wp(gua + 5“05”p _ quygpo) ) (3.197)

Traces of operators must be taken after contraction with this tensor. For example,
for a four index operator O we use

TO =GO . (3.198)

The relevant traces that appear in (3.187) for the KK block are

TTE = 3F,F" TR,
TE = Bpepwr,,Ro 1 2LE, PR, F o
= E P Moty +E uv po _5RNVR

5 L v 1 LV LV po
— S R P F = SRE, ™ + 5R? + 2R, p0 R*P

1 . 1 .
+2Rppo RIPT —2FM F P+ §FW;VFW*p + §Fw;pFW’p ,
7 23
TrQ, Q" = —gF‘;F””F,wFU" — gFWF‘“’F,,gF”" + 2R, FHFYP
+RFF" + 3R ppo F* FP7 — TRy pe RYP7 — FH  FP
+4F, . F'P —8F,,.,F'5P . (3.199)
The gauge-fixing also introduces ghosts with the Lagrangian
e Lanosts = 2b, (Jg"” + R*) ¢, + 2b0c — 4bF* D ¢, (3.200)

where b,,, ¢, are vector ghosts associated to the graviton and b, ¢ are scalar ghosts
associated to the graviphoton. The contribution of the ghosts are

TTE = 2R, (3.201)
TrE? = 2R, R",
Tr Q0" = —2R,,,. R .

The total ghost contribution is

1 17 17
4 2gghost — qtluvpo Hrpo na m—
(4m)%af ™% (x) R0 R 18 R.R 36

5 R? . (3.202)
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Combining the contributions (3.199) and (3.202) gives

23 y s . D y . 127 5
(4m)2ay(z) = ﬂW;,F PF.F, + EF,WF“ o FP7 — gR,“,R”
13 1 77 1
—— R FMF"P + —RE,, F" + —R® + ~ R, F'" FP?
127 + 3k + 72 + 4=
11 vpo vpo 13 v 7 v,
+1—8RM,,MR“ P7 + Ryppo RIMPT — EF“ Y EFMWF” P
5 ”
_EFMWPF# i
We use the identities listed in (3.191-3.194) to obtain
10 49
(47T)2a4(I) = 7RMVpO'Rl“/pU - 7RMVR/LV P} (3203)
9 36
and from here we find
31 37
= — =—. .204
AKK = =5 s CKK = oy (3.204)

3..3 Vector Block

The vector block in its minimal form is described by the quadratic Lagrangian
(3.155) and for the matter content of A" = 8 by (3.106). The matrices that appear
in the quadratic fluctuation operator are

1 1
iprr, - R,  LFp
E = [*r v , (3.205)
1 1 o
iFup;p _ZFPUFP
0 - RWPG + %F#UFVP - %Fuvao %FMFHP - %FMP;U
po - ’
*%Fvo;p + %Fvl);o 0

where the first row/column corresponds to the vector field and the second row/column
to the scalar field. The relevant traces are

TTE = —-R,
TrE? = 1—16F“pF””FWF,/" + %GF,WFWFPC,FP” + R, R
7%R””F%FW] N %FW;/LFVP;;) )
TrQ,, 0" = éF*;F"”FWFV" - éF#,,F*”’FPUFp” + Rypuo FHFPO
Ry po R 4 Fpypy FPP — E, JFIVP (3.206)
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The ghosts for the vector block are two minimally coupled scalars with fermionic
statistics. Their contribution to the Seeley-DeWitt coefficient is

1

hos
(477)2%%; t(x) ~ 7180

(2R,0po R*?7 — 2R, R™ + 5R?) . (3.207)

We combine the contributions of the vector block and its associated ghosts and

get
(Un)2as(s) = = FRFPF,GF, + —F F" Fpy P 1 2OR,, R0
) ag(x = o4 e pody 48 Qv po +60 nz
1 v 1 1 v log 1 vpo
—ZRWF*;F p— gR2 + 1—211@,),01?“ Fro — ERM,,WR“ ’
1 1 L1 N
—ZF" W, EFM,WF“ i — EFMV?PFH P (3.208)
After using the identities (3.191-3.194), we obtain
2 1 vpo 19 v
(47)%ag(z) = == Ruvpo RMP7 + =R, RM . (3.209)
15 60
This leads to
11 1
Qvector = m , Cvector — E . (3210)

When the vector block contains a pseudoscalar instead of a scalar, such as in
(3.107), the result remains the same because of simplifications due to our back-
ground.

3..4 Gravitino Block

The gravitino block is characterized by the quadratic Lagrangian (3.112). After
using gamma matrix identities, the relevant traces are

1 "y L~ = v
TE = JFuF" 4+ Fu ™ —10R,
105 81 43 .
TrE®> = ———F{F"PF,oF,7 + ——F, F*"F,o F*" + —F"FPF,,Fyo
: D R A AR DTl po T 5 ne
13 - T 21 .
——FHKFYF°F, +-—FtFPEF°F, — —F, FFFE, FF°
327 ° p HETrN " 64 * p
+ 2, FwE, b~ Lrp, P LRE, Py P2
128" L 4 4 2
3 3 -
7§RHPWFWFPU + iRquFWFM + 4R, pe RP7
7

. I = =
_ipﬂp;yFw,p + 3F,,., FHr 4 iFﬂp;vFW’p —2F,, ,Frie
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y 185 » - 185 v o 2T e S
TI'QHVQIL = aF‘;F pELUF” — a #VFM FpUFp — @Fﬂ FP ELPFVU

*%F%FW)FHUFW 4 %F%FVPF#UFW + %FMUFWFMFW

9
64
—13R1pe R*PT + TF), e FHVP — TF,,, R0 — 3F, . VP

+3F,, F1P (3.211)

By FW E % 4 TR,y FPY FP7 — 3R, F9 90

The gauge-fixing produces fermionic ghosts b4, ca, e with Lagrangian

e_lﬁghost = BA’)/#DMCA +éav'Deaq (3.212)
where A = 1,2 is the flavor index. This simply corresponds to six minimally
coupled Majorana fermions which contribute with an opposite sign. Their Seeley-
DeWitt contribution is

1

hos
(47T)2‘1§ t(ﬂﬂ) =~ 120

(TRyupo R*P7 4 8R,,, R* — 5R?) . (3.213)

Combining (3.211) and (3.213) gives

65 29 17

2 _ v, o v o v ean n
(4m)%aq(z) = 768FHPF PFu.F,° — @FMVF“ F o FP? — @F“ FPPF,Fy
7 L~ 5 ~ = .~ 5 S
—F*FY"PF°F,, — —FFFYPF °F,, . + —F,,, F*"F,,FP°
+64 p ® 256 ° ® + 128 * P
3 ~ A~ = 2 1 1~ =
-—F, / F"F, ,F’° + —R,,R*"Y + —RF,, F*" + —RF,, F""
256~ P + 45" + 48 H + 48
1 1 1 S 113
——R?>+ —R, e F*"FP° — ZR, o FW FP7 — —— R, 00 RMF7
36 Tz 4-mP 180" 7
7 o 11 » 1 - —— 3 =~ =
+EFMP;VF# i ﬂFw;pFﬂ i ZFMPWF” P+ gFHV%PFH #.
Using the identities (3.191-3.194) gives
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3..5 Gaugino Block

The gaugino block is given by the Lagrangian (3.113). In this case, the relevant

traces are
1 174
TTE = 1F,WF — 2R,
TTE? = —iFﬂF"PF F ff+i FHFE FPo — 1RFWF +132
327 ° potvo 1087 MY i 8 )
1 | L
_§Fup;vFu Py EFMVWF# P
1 1
TrQ,, Q" = gF‘;F"pFWFV" -3 W P F o FP7 + Ry o FMY FPO
—Ryupo RFPT + Fp FHP — )RV (3.216)
The Seeley-DeWitt coefficient is
(4m)ay(z) = L peprop po- L p VM, FP7 + 1r LR
384" potvo 15367 M 4 45"
1 1 1 7
—RF*"™F,, — —R?>— —R,poeF"Ff* + —R,,,, ,c R*F°
+96 ! 72 24" 1P + 360"
1 L 1 »
+EFM,WF“ - @F#,;pF# P (3.217)
and gives after simplification
7 73
47)? = —Rupo R’ — ——R,, RM | 3.218
( ﬂ—) 04(1') 360 v p 1440 12 ( )
which leads to 17 13
augino — T agogn augino — A~an~ - 3.219
“gang 2880 Coang 960 (3.219)
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Quantum teleportation
via traversable wormbholes

How large can quantum effects be in gravity?

The broad question we want to ask is: how large can quantum effects be in gravity?
In this chapter, which is based on [3], we consider this question for traversable
wormholes in the context of AdS/CFT. Recently, it was shown by Gao, Jafferis
and Wall that a small quantum effect can be used to make a wormhole traversable
for a very short time. Can we make this quantum effect larger? We will attempt to
use the same procedure to construct wormholes that are traversable for all time,
i.e. that are eternal. We will learn that, assuming Poincaré symmetry in the
transverse directions, it does not seem possible to do so. This leads to interesting
lessons about what is possible or not in quantum gravity.

4.1 Introduction: traversable wormholes

4.1.1 Wormbholes in general relativity

The idea of wormholes dates back to the paper by Einstein and Rosen [144], who
observed that general relativity has solutions corresponding to bridges connecting
two different universes (or two distant regions of the same universe). One of these
solutions is the maximally extended Schwarzschild solution. These wormholes are
not traversable, because a light ray sent from one side does not make it to the
other side, but falls into the black hole singularity. This is related to the fact that
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4. Quantum teleportation via traversable wormholes

nothing can escape from a black hole in classical general relativity.

Morris and Thorne described the geometry of a traversable wormhole in [145].
They showed that it could be traversed by human beings. They observed that
it had to be supported by exotic matter which violates all the energy conditions
that ordinary matter is expected to satisfy. At that time, they didn’t think of
it as physical (they actually presented it as a tool to teach general relativity).
They acknowledged however that quantum field theory provides tantalizing hints
that these energy conditions could in fact be violated in nature. More than thirty
years later, this expectation was fulfilled: Maldacena, Milekhin and Popov have
shown that a macroscopic and long-lived traversable wormhole is a solution of the
accepted low energy theory of nature (semi-classical Einstein gravity coupled to
the Standard Model) [146].

We now review why traversable wormholes cannot exist in classical gravity. Phys-
ical matter is required to satisfy suitable energy conditions. This is necessary
to have a well-defined notion of causality. For example, we don’t want to allow
closed timelike curves. This is to avoid causality violation such as the grandfather
paradox: one should not be able to travel to the past and kill his own progenitor.
Traversable wormholes are problematic because one can use them to build time
machines allowing this [75].

Suitable energy conditions are also a fundamental ingredient in the singularity
theorems of Penrose and Hawking. The usual classical requirement is the null
energy condition (NEC) which says that the matter stress tensor 7),,, should satisfy

T k'K >0, (4.1)

for any future-directed null vector k*. The inclusion of quantum effects, in a
semiclassical context, showed that this energy condition could be violated. For
example, the Hawking evaporation process gives a local violation of the NEC.
Simpler examples are the Casimir energy between two plates [147] or moving mir-
rors [148,149]. It is now believed that the condition on quantum matter should be
the achronal averaged null energy condition (ANEC), which says that

+oo
/ ds T, k'K >0, (4.2)

over a complete achronal null geodesic, where achronal means that no two points
should be connected by a timelike curve. This statement turns out to be sufficient
to preserve causality and the singularity theorems [76-79].

Let’s comment on the requirement that the geodesic is achronal. Dropping this
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4.1.  Introduction: traversable wormholes

requirement, there are simple counterexamples: a null geodesic on the cylinder
doesn’t satisfy the ANEC because the Casimir energy can be negative everywhere.
At the same time, this geodesic necessarily wraps around the cylinder and is thus
not achronal: there are points on the geodesic that are timelike separated. Im-
portantly, the achronal requirement implies that although traversable wormholes
are possible, they can never be used as shortcuts: the outside path must always
be faster. As put in [80], “traversable wormholes are like getting a bank loan: you
can only get one if you are rich enough not to need it”.

The achronal ANEC seems to be the weakest form of energy condition that ensures
a well-defined notion of causality. It is believed to be true in semiclassical general
relativity, although no proof is known. It has been proven for linearized perturba-
tions of Minkowski spacetime® using ideas from quantum information theory [150]
and from the conformal bootstrap [151].

4.1.2 The Gao-Jafferis-Wall protocol

In 2017, Gao, Jafferis and Wall proposed a protocol to create a traversable worm-
hole in AdS/CFT [80]. Let’s consider an eternal AdS black hole, such as BTZ in
three dimensions. It is dual to a state living in the tensor product of two CFTs:
the thermofield double state [62]

ITFD) =Y e PP/2|E) @ |E) € Hp @ Hr (4.3)
E

The large amount of entanglement is responsible for the connectivity in space-
time. The entanglement entropy obtained after tracing over one of the side corre-
sponds to the Bekenstein-Hawking entropy on the other side. This geometry has
an Einstein-Rosen wormhole which is not traversable because any signal crossing
the horizon hits the singularity. In some sense, the wormhole is barely traversable,
because a signal sent early enough almost makes it to the side.

The idea of Gao, Jafferis and Wall is to introduce a small coupling between the
two CFTs for a short time. This takes the form of a double-trace coupling with
interaction Lagrangian

ty
Eint = g/ dtdf OL (ta f)OR(t7 f) . (44)
t;

The effect of this coupling can be computed in perturbation theory. It generates
a stress tensor in the bulk, which, for the correct sign of g, gives a contribution

L Around Minkowski spacetime, the achronal ANEC is equivalent to the ANEC since any null
geodesic is achronal.
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4. Quantum teleportation via traversable wormholes

Figure 4.1: The Gao-Jafferis-Wall protocol: a non-local coupling between the two
side of an eternal AdS black hole creates a negative energy shockwave (in blue),
which allows a signal (in red) to travel from one side to the other.

that violates the ANEC for the geodesic shown in red in Figure 4.1. This allows
the geodesic to defocus and escape from the singularity: the wormbhole is now
traversable! An equivalent picture is that the coupling creates a negative energy
shockwave in the bulk, whose effect is to give a time advance to the signal [152,153],
allowing it to escape to the other side. This is illustrated in Figure 4.1.

Even though this protocol leads to a non-local coupling in the bulk, which is why
such a spectacular effect is possible, this coupling is perfectly consistent and natural
in AdS/CFT. This is because given two holographic CFTs in the thermofield states,
one can always couple the two CFTs in the laboratory, e.g. by connecting them
through a wire. In the lab, the two systems can be close to each other so that
the coupling appears instantaneous from the point of view of the bulk. Actually,
concrete proposals to realize this protocol using atom arrays and trapped ions have
recently appeared [154].

We must stress that it is not surprising that a signal can be sent from one side to
the other, since we have explicitly introduced a coupling between the two sides.
What is surprising is the way the signal gets through, namely in free fall through
a wormhole. A bulk traveler going through the protocol would feel nothing in
particular and will remain in good health. This cannot be said for a traveler
which explicitly uses a coupling of the form (4.4) to go from one side to another.
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4.1.  Introduction: traversable wormholes

He will be annihilated on one side and recreated on the other side, which doesn’t
appear to be a very safe travel route.

JT gravity provides a nice framework to study traversable wormholes, where ev-
erything is solvable analytically. The dynamics of JT gravity can be formulated
as that of a “boundary particle”. In the thermofield double, we have two bound-
ary particles corresponding to the two sides of the AdSe-Rindler geometry. The
Gao-Jafferis-Wall coupling introduces an attractive force between the two bound-
ary particles which changes the positions of the horizons and makes the wormhole
traversable. We refer to [155] for a detailed discussion.

Quantum teleportation is a process by which the full state of a quantum system
can be transmitted using shared entanglement and classical communication [156].
This protocol makes it possible to send the full quantum state of a system, even
though naively any measurement would destroy it. The idea is to make a joint
measurement also involving a shared entangled system. Using a classical channel to
communicate the result of this measurement allows the other party to reconstruct
the original quantum state. The Gao-Jafferis-Wall protocol implements quantum
teleportation in AdS/CFT. The coupling (4.4) plays the role of the classical com-
munication and the Einstein-Rosen wormhole is the required shared entanglement.
As discussed in section 1.3.3, this protocol strengthens the ER=EPR proposal.

4.1.3 Some traversable wormbhole solutions

We now describe two long-lived traversable solutions that have appeared in the
literature following [80]. These solutions are relevant for the question we are asking
because they are example where the quantum effect is relatively large.

In the context of JT gravity, it was shown in [157] that one can obtain an eternal
traversable wormhole in two dimensions, by introducing a static coupling between
the two sides. This is actually the 2d version of the construction that we will study.
As we will see, a higher-dimensional version of this wormhole doesn’t actually exist
because the quantum effect that supports it cannot be made strong enough in
higher dimensions. This is related to the fact that 2d gravity is rather peculiar
and can behave differently compared to more realistic gravity theories.

In [146], a traversable wormhole solution was constructed in the accepted theory
of nature, namely semiclassical gravity coupled to the Standard Model. This relied
on a subtle balance between the large magnetic field of near-extremal Reissner-
Nordstrom black holes and the small negative Casimir energy of fermions looping
through the wormhole. We must note that although this wormhole was shown to be
a solution, no natural process to produce it (apart from quantum tunneling), was
proposed. Hence, it is unclear whether this solution has actually been realized in
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4. Quantum teleportation via traversable wormholes

our universe. As discussed in [158], it is possible that primordial black hole carried
a large magnetic charge (coming from magnetic monopoles). The evaporation
process is greatly enhanced for these black holes and they would have quickly
decayed to extremality. Then, a binary system of these black holes could eventually
have tunneled into the traversable wormhole solution.

4.1.4 Introduction to our work

The basic question behind our work is how much can we push the Gao-Jafferis-
Wall protocol. More precisely, we will ask whether this protocol can be used
to construct eternal traversable wormholes connecting two asymptotically AdS
regions. We attempt to do this by introducing a static coupling between their
dual CFTs. Assuming Poincaré invariance in the boundary directions, we prove
that there are no semiclassical traversable wormholes in higher than two spacetime
dimensions. We critically examine the possibility of evading our result by coupling
a large number of bulk fields. Static, traversable wormholes with less symmetry
may be possible, and could be constructed using the ingredients we develop here.

To understand better what types of traversable wormholes are possible, we attempt
to construct static traversable wormholes in the controlled setting of asymptoti-
cally Anti-de Sitter spacetime, within a regime where the semiclassical approxi-
mation is valid. In the context of the AdS/CFT correspondence, a traversable
wormhole should be dual to two conformal field theories (CFTs) which live on
the two asymptotic boundaries of the spacetime. Traversable wormholes can be
constructed by introducing an appropriate coupling between these two theories,
CFTL and CFTR

Bulk solutions that correspond to traversable wormholes require a violation of the
NEC. This is possible in standard quantum field theory, e.g. through the Casimir
effect, but a coupling between the two CFTs is unavoidable in our setting. In the
decoupled system, no operator in CFT can influence CFTg, which implies that
no signal can be transmitted through the bulk. The existence of a traversable
wormhole solution in the decoupled system would violate this “no-transmission
principle” [159] which follows from basic postulates of the holographic dictionary.

Hence, we violate the NEC by introducing a double trace deformation that couples
the two CFTs [160] and has the form h Or (z)Og(z). Our major assumption which
makes the analysis tractable is that the solution preserves Poincaré invariance in
the field theory directions. Assuming this symmetry, we can pick a gauge where
the metric takes the form

ds® = a(2)? (nudatdz” + dz*) . (4.5)
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We look for solutions with two asymptotic regions, so that the ‘scale factor’ a(z)
diverges at two locations while remaining nonzero in between. Furthermore, we
assume that the bulk field providing the NEC violation preserves Weyl invariance.
This allows us to compute explicitly the NEC violating stress-energy tensor by
using a conformal map to flat spacetime.

This is a crucial simplification: in general we need to solve the Einstein equation us-
ing the expectation value of the stress-energy tensor as a source. The stress-energy
tensor should be computed by doing quantum field theory in the background met-
ric defined by a(z). However, the expectation value of the stress-energy tensor
(T, (%)) depends non-locally on the metric function a(z), rendering the problem
apparently intractable. Weyl invariance allows us to package the non-local de-
pendence of the stress-energy tensor on the metric in terms of a single parameter
encoding the ‘width’ of the geometry.

Within these assumptions, we demonstrate a no-go result: the effect of the double
trace deformation is too small to support a semiclassical wormhole. In order to
establish this result, we consider various strategies for enhancing the NEC violation
and show that they cannot work.

First, we argue that increasing the coupling does not help because the “quantum
inequalities” [161] bound the amount of NEC violation. It is an interesting open
problem to demonstrate a more general and more rigorous bound on NEC violation
for a quantum field theory in a geometry with two asymptotically AdS regions
when couplings between the boundaries are allowed.

Second, we try to add conventional matter in the bulk. We present the detailed
analysis of an additional bulk scalar field with a quartic potential, as well as
establishing a general result showing that adding any additional matter satisfying
the NEC does not allow for a semiclassical wormhole with Poincaré invariance in
the field theory directions. Our result is rigorously true when the NEC violating
fields are Weyl invariant, allowing for an explicit calculation, but we suspect that
adjusting the field content will not change the result.

Finally, we try to increase the number of species contributing to the NEC violation.
Although this allows one to make the curvature small in Planck units, this strategy
is problematic because a large number of species is believed to lower the UV cutoff
as 1
D-2 D—2
Mgy © < N M, ==, (4.6)

where N is the number of species and D is the number of spacetime dimensions
in the bulk [162-165]. We show that although a large number of species can
reduce the curvature of the wormhole, the radius of curvature is always at or
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below the UV cutoff. We discuss the possibility of violating the lore (4.6) by
choosing appropriately the field content, making use of cancellations in the one-
loop renormalization of Newton’s constant. However, we argue that (4.6) can
never be softened because it would imply the existence of traversable wormholes
between two asymptotically AdS boundaries without a coupling between the two
CF'Ts, in contradiction with the “no-transmission principle”. This also agrees with
non-perturbative arguments regarding the renormalization of Newton’s constant.

The failure to construct a controlled solution within our assumptions can be par-
tially understood heuristically as follows. In the absence of the coupling between
the two boundaries, the ground state is simply two unentangled CFTs in their
ground state, and the corresponding geometry is simply two copies of vacuum
AdS. Turning on the coupling h O (x)Og(x) will lead to an amount of entangle-
ment of order the coupling hA- in other words, the entanglement is of order one if
the coupling is perturbative. On the other hand, a controlled traversable wormhole
should have a smooth geometry, leading to an entanglement of order N2. This
heuristic argument, however, leaves open the possibility that the construction can
succeed by going to strong coupling or increasing the number of fields that are
coupled. Our more detailed arguments rule out these possibilities.

We have shown that there is no semiclassical solution with Poincaré invariance
along the boundary directions and a Weyl invariant field in the non-local cou-
pling. This suggests avenues for future constructions based on a less symmetric
ansatz. One could try to import the recent construction of long-lived traversable
wormbholes in flat space [146] to the AdS setting. This construction makes use of
magnetic fields, which break the transverse Poincaré invariance. More generally,
we expect that a static traversable wormhole should look like an AdS-Schwarzschild
black hole or black brane near the two asymptotic boundaries. These metrics do
not preserve Poincaré invariance, which further motivates reducing the amount of
symmetry. We could also consider NEC violating matter that is not conformally
invariant but we do not expect our results to change dramatically.

We must note that many constructions of traversable wormholes in general rela-
tivity exist in the literature but they involve either exotic matter [75,145,166—170)
or higher-derivative theories [171-173] which seem to lack a UV completion [174].
On the other hand, introducing a coupling between two CFTs should be perfectly
physical in the context of AdS/CFT.
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4.2 Poincaré wormholes in AdS

We look for traversable wormholes connecting two asymptotically AdS,41 space-
times. In order to make the problem analytically tractable, we assume Poincaré
invariance in the boundary directions. Using this symmetry, we can pick a gauge
such that the metric takes the form

ds* = a®(z) (—dt* + di® + d=°) , (4.7)

where ¥ = (x1,...,24-1) are boundary coordinates and z is the radial coordinate
in the bulk.? This metric is foliated by flat R1¥~1 slices and is similar to the
Poincaré patch of AdS. The geometry is completely determined by one function,
the conformal factor a(z). For solutions with two asymptotically AdS boundaries,
this means that a(z) should have two simple poles, say at z = :&:%, and be positive
in the range 7% <z< %

4.2.1 Setup

We consider a theory of gravity with negative cosmological constant coupled to

matter,
= L dd+1x\/jg (R - ZA) + Smattcr (48)
167G ’
where A = — Cg(lffl). In order to find traversable wormholes in such a theory, we
AdS

need to violate the null energy condition (NEC) in the bulk. This is possible in the
framework of semiclassical gravity, where the matter fields are treated quantum
mechanically, but the geometry is kept classical. Following [80], we do this by
introducing a non-local coupling between the two boundaries

5S =h / dz or(x)or(x). (4.9)

Here ¢1, r(x) corresponds to a bulk field and the subindex L/R means that it is
evaluated at the left /right boundary. In AdS/CFT, such a deformation is achieved
by coupling together the two CFTs with a double trace operator.

In [80], the deformation (4.9) was activated for a short time on an eternal AdS
black hole, i.e. a non-traversable wormhole. The resulting quantum stress-energy
tensor made the wormhole traversable but only in a very small time window. Our
work differs from [80] in two aspects. First, we start from the vacuum state, which
consists of two unentangled copies of the same CFT. Second, we are interested in
finding eternal traversable wormholes so we turn on the deformation for all times.

2For later convenience we also define coordinates z* = (t,Z) and y™ = (zH, 2).
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Finally, a word on the methodology is in order. Since our ansatz (4.7) is con-
formally flat, we compute the quantum stress-energy tensor in flat spacetime and
map the result to our wormhole background by means of a Weyl transformation.
For this to be possible, we require Spyatter to be Weyl invariant. A simple choice
is a conformally coupled scalar field. The boundary conditions for the scalar field
are chosen as follows. Near the two asymptotic boundaries the behavior is

3(2) ~ax (2 +2)% 485 (E+2)" (4.10)
where
Ay = %. (4.11)

which follow by performing a Weyl transformation to the flat space solution ¢(z) ~
a4 (% + z) + B4+ near the boundaries.? We choose the boundary condition

ay =0, (4.12)

which, in the alternate quantization, implies that the dimension of the dual oper-
ator is given by A_.* Upon a Weyl transformation, this condition corresponds to
imposing Neumann boundary conditions on the plates in Minkowski space.

4.2.2 Minkowski configuration

We compute the stress-energy tensor by a Weyl transformation from Minkowski
spacetime. In the following, we will specialize to 3 + 1 dimensions. The general-
ization to other dimensions is described in Appendix 4.5.

The configuration in flat space consists of two infinite plates located at z = —L/2
and z = L/2, respectively, and a massless scalar field living in the region between
the plates. The non-local coupling then takes the form

aszh/dsm(x,_g)(p(x,g) , (4.13)

where x = (¢, 1, z2) denote the transverse coordinates. We will denote y = (z, 2)
the coordinate of a point between the plates. The stress-energy tensor generated
by the non-local coupling can be computed by point splitting

o 0 1 o 0
T, = lim | =—=—=60G N == 7 — —0G ! 4.14
< IJ«V(y)> Yy (ay# 62.,/”’ (y, Yy ) 277111’77 3yﬁ aylg (y7 Yy ) 9 ( )
3This can also be derived from the formula A(d—A) = 7m2€?4ds since the conformal coupling
ERP? with € = dT_dl gives an effective mass m%ids =— d24_1 close to the boundaries.

4In the standard quantization the dimension of the double trace term would be 2A1 = d+1 >
d which would make the coupling irrelevant.
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where dG(y,y) is the correction to the Feynman propagator due to the non-local
coupling. As explained above, we are imposing Neumann boundary conditions on
the plates. Note that imposing instead Dirichlet boundary conditions would make
the deformation (4.13) vanish. The Feynman propagator with Neumann boundary
conditions has a simple form in a mixed representation where we go to momentum
space in the transverse directions

3 . ’
G(JT, Z? l'/, Zl) = / (;lﬂ_];; eZk(IC—CL‘ )Gmixed(z7 Z/; kj) ) (415)

where k£ = (w, k1, k2) is the momentum associated to the transverse directions
(t,z1,22). The propagator with Neumann boundary conditions takes the form

Gmixed (2,23 k) = %L)cos(n (2= + %)) cos(r (24 — %)), (4.16)

K sin

with z_ = min(z, 2), z; = max(z,2’) and k = \/w? — k? — k3. We will perform
the computation in Euclidean signature where the propagator takes the form

1
Gmixed (2,21 k) = mcosh(w (z, + %)) cosh(|k| (z+ — %)) ,

(4.17)

where |k| = Jw? + k3 + k3.

The correction to the two-point function due to the non-local coupling (4.13) is
given by

5G(y,y') = h/d3iG (Z,-%:9)G (23, 5)+(yey). (4.18)

Using the mixed representation, we can rewrite this as

d3k 1 ‘ /
e u/:h/ h(|k +L h(lkl (2 — L ik(e=z") (4 5 o).
wy) (2m)? [k sinb2([K[L) (I (z+ %)) cosh(kl (' — §)) e (v y)
(4.19)
From the above expression it can be seen that
lim nf’”apaj,éa(y,y') =0. (4.20)
y' =y

Weyl invariance and transverse Lorentz symmetry imply that the stress-energy
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tensor has the form
-1
(T2 = —p (4.21)
-3

The parameter p can in principle depend on z, but the conservation of the stress-
energy tensor requires p to be a constant. In order to determine this constant it
suffices to compute only one of the components. For instance, we can compute

(Thaty = yl/igy 0,0.6G(y,y') . (4.22)

The calculation further simplifies by going to the midpoint z = 0, which gives

Bk 1 h
(Thaty — _ = 4.2
h/ 2005h2 ( k\L) 6L3 (4.23)
2

Hence, the full stress-energy tensor is given by

-1
h 1
18L3 1

<Tﬂat>

nv

(4.24)

4.2.3 Wormbhole solution

The conformal mapping allows us to compute the expectation value of the stress-
energy tensor in the conformally flat geometry (4.7). This is given by

1
NL\ _ flat
<T/ﬂ/ > - a(z)2 <Tu3 > . (425)
The superscript ‘NL’ is a reminder that this component of the stress-energy tensor
is generated by the non-local coupling, but generically there can be other contri-
butions.

An important issue here is that the above Weyl transformation is anomalous in
even dimensions. The anomaly generates a higher-derivative term in (T}:LL> which
prevents us from solving Einstein’s equation. For the time being we will assume
that the anomaly term is negligible, but we will come back to this issue in section
4.3.2. We can also go to odd spacetime dimensions where there is no anomaly.

We define A to be the dimensionless parameter measuring the amount of negative
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energy generated by the non-local coupling. It is defined by

N A
8 (Thaty — ~Ti (4.26)
so that A ~ hL up to a numerical factor of order one. The stress-energy tensor in
the geometry (4.7) is then given by

-1
A 1
NLy _
8m(T,,") = 274 1 (4.27)
-3
We will solve the semiclassical Einstein equations
3 NL
Guv — 59w = 87G(T,,,") . (4.28)
Caas
The zz component can be written as
1
5a’(z)2 +V(a) =0, (4.29)
which can be thought as a particle in the potential
G\ at
V)= =5 — ——. (4.30)
2L 203 45
The other components can be obtained from the z-derivative of (4.29).
There is a diffeomorphism
Y = Cy*,  L—CL, h—=(th, o oalz) = (Claz), (4.31)

which allows us to set a(0) = 1. Furthermore, we focus on solutions with reflection
symmetry so we have a/(0) = 0 and can restrict the domain of integration to z > 0.
Evaluating (4.29) at z = 0 gives us the relation

1 GA
=z (4.32)
lhas L

This allows us to eliminate A in (4.29) and to determine the value for the range L

L L/2 ® da *  da
= / / s / A (4.33)
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Performing the integral gives

2/l (2
L=clpgs, c= M ~2.62. (4.34)
I'(3)
This defines a one-parameter family of wormhole solutions. The potential (4.30)
and a typical wormhole solution are shown in Figure 4.2.

V(a) a(2)
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Figure 4.2: Typical shape of the potential V(a) and the conformal factor for a
wormhole solution a(z). For the plots we have set faqs = 1 and we have set
a(0) = 1.

4.3 Some challenges

4.3.1 Planckian curvature

The most important issue of our solutions is that they generically have large cur-
vatures. Combining the equations (4.32) and (4.34) implies that

2
(EAdS> ~ A, (4.35)
EP

where ¢, is the Planck length and ~ means proportionality up to an order one

numerical factor. Since the computation of the stress-energy tensor is valid only
in the perturbative regime, A\ < 1, this leads to a wormhole with super-Planckian
curvature. Hence, the wormhole solutions described in the previous section are
outside the regime where semiclassical gravity can be trusted. In the following
sections we will explore various potential ideas to try to resolve this issue, but we
first discuss two more challenges.
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4.3.2 Weyl anomaly

We have used a Weyl transformation from flat space to compute the stress-energy
tensor in the geometry (4.7). For this to be possible, we used a Weyl invariant
field in the non-local coupling. However, Weyl invariance can be anomalous at
the quantum level. The anomaly is problematic in our setup because, as we will
see below, it can be of the same order as the effect that we use to support the
wormbholes.

In four dimensions, there is always an anomaly. The stress-energy tensor on the
conformally flat metric (4.7) is related to the stress-energy tensor in flat space
by [175]

1, 4 1 3
<THV> = ¥<T33t> + 1671'2 <2aF/,Ll/ - ngu/) . (436)

The anomalous piece is the second term and it is expressed in terms of four-
derivative terms

2 1 i 1

Fuy = RfRp = SRRu = SRpo R g + ZRQQW, (4.37)
1

Hu = 2Ry =29 0R - 5 guwR? +2RR,, . (4.38)

The rational numbers « and 8 can be extracted from the tables of [175]. For
massless free fields, they are given by

1

= — 11 2 4.
o 360(ng—|— ng + 62ny), (4.39)
1
B = %(n5(1_5§)+nF+2nV)> (4.40)

with ng conformally coupled scalars, ng Dirac fermions and ny vectors. The
parameter ¢ is the coupling to R which should be taken to be £ = é because we
want a Weyl invariant theory. From the above expression, we can see that « is
strictly positive. In fact, the trace of (4.36) shows that « is the a-anomaly of the
4d theory which does not vanish for a unitary theory [176-178]. This implies that
there is no way to make the anomaly vanish in four dimensions.

The main problem with the anomalous piece is that it contains four-derivative
terms which prevent us from solving Einstein’s equation. For a given field, the size
of the anomaly is of the order of

1
anomal

In the configuration with a single non-locally coupled field, the anomaly can be
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4. Quantum teleportation via traversable wormholes

ignored in the regime L < £xqs because we have A < 1. This condition is already
necessary as will be derived later in (4.61). In the configuration where we have
a large number of fields, discussed in section 4.4.3, the anomaly dominates over
the cosmological constant term which prevents us from obtaining a semiclassical
solution.

In odd dimensions, there is no Weyl anomaly: the Weyl transformation of the
stress-energy tensor does not contain an anomalous piece. Thus, the stress-energy
tensor in the wormhole spacetime (4.7) can be obtained from the stress-energy
tensor in flat space by the classical formula

(T) = %<T/§3ﬁ> . (4.42)

Hence, when using a large number of fields, we will focus only on odd dimensions.

4.3.3 Casimir energy

There is another problem for building eternal traversable wormholes between
asymptotically AdS regions. Negative energy can already be present in the worm-
hole geometry without the need to turn on a non-local coupling. Indeed, in the flat
space configuration described in section 4.2.2, the Casimir effect [179] generates a
stress-energy tensor of the form [175]

TCaSimir ~ 1 1

g ﬁ 1 (443)

-3

This negative energy is more important than the one generated by the non-local
coupling, which is multiplied by A < 1. Hence, it seems that the non-local coupling
is unnecessary! However, it should not be possible to build a semiclassical worm-
hole between two asymptotically AdS geometries without coupling the two dual
CFTs. This would violate the “no-transmission principle” [159] because signals
could be sent from one asymptotic boundary to the other without any coupling
between the two CFTs. We note that the sign of the Casimir energy can be
modified by changing the boundary conditions of the fields. However, having a
positive Casimir energy is also a problem because it would overwhelm the non-local
coupling.

The issue of Casimir energy should be present in any attempt to build eter-
nal traversable wormholes. In the asymptotically AdSy version [157] (see also
[180,181]), this is avoided because the Weyl anomaly precisely cancels the Casimir
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energy. As explained there, this is enforced by SL(2,R) invariance. In higher di-
mensions, the wormhole is less symmetric which makes such a cancellation unlikely.
From the analysis of section 4.3.2, we see that this cancellation happens neither in
four dimensions nor in odd dimensions where the Weyl anomaly vanishes. Thus, if
our conformally flat wormholes are to be consistent, some mechanism has to ensure
that the Casimir energy is negligible. For example, a supersymmetric spectrum
with supersymmetric boundary conditions leads to a vanishing Casimir energy.
This holds despite the fact that the wormhole geometry breaks supersymmetry®
as can be seen by making a Weyl transformation from the flat space configuration.

4.4 Attempts and lessons

4.4.1 Increasing the non-local coupling

We might hope that a solution with £aqs large in Planck units can be obtained
in the strong coupling regime A > 1. In fact, we will show that increasing the
coupling cannot lead to a very large negative energy. This can be done by adapting
the “quantum inequalities” [161]. The authors proved that for any state |1) of a
free massless scalar in Minkowski spacetime, there is a bound

C

A>_7
p= ta

(4.44)
where p is the energy density averaged over a time interval of characteristic length
to,
+oo
p= [ s i), (4.45)
— 00

and f is a smearing function which determines the number c. This shows that the
smeared energy cannot get “too negative”. In their proof, the smearing function is
a Lorentzian but the same argument can be repeated for a more general smearing
function as long as its Fourier transform decays sufficiently fast. This is because
the bound is proportional to the integral

/0 " dwe? flw), (4.46)

where f (w) is the Fourier transform of f. In particular, it is possible to obtain
a bound when f being compactly supported. This follows from a Theorem by
Ingham [182] which determines how fast the Fourier transform of a compactly
supported function can decay. This theorem guarantees that there are compactly

5This can be checked explicitly by showing that the geometry (4.7) does not have a covariantly
constant spinor, except when it is flat space or Poincaré-AdS.
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. . . Cl,11/2
supported functions whose Fourier transform decays exponentially, e.g. as e “l""",

which is fast enough to make (4.46) converge.

In our Minkowski configuration, we can consider a causal diamond centered at
z = 0 which is as large as possible without touching the plates. Because the
diamond is not in contact with the plates, the quantum state inside this causal
diamond is that of a free massless scalar field. Hence, we expect that the quantum
inequalities should be applicable if the smearing function is supported in this
diamond. This is possible by taking a compactly supported function on a time
interval of length L. The resulting bound is

1

(Too) 2 —7i (4.47)

up to an order one numerical factor. Thus, the best we can achieve by increasing
the coupling would lead to a wormhole with Planckian curvature

2
(éAdS> ~1. (4.48)
fp

This shows that increasing the non-local coupling does not help in making the

wormbhole semiclassical.

4.4.2 Adding conventional matter

In the previous sections, we have shown that the negative energy generated by the
non-local coupling is too small to support the wormhole. From (4.32), we can see
that to have A < 1 we need a hierarchy of scales ¢, < L < faqs. However, with
only the non-local coupling and the cosmological constant we have L ~ faqs as
shown in (4.34). We can attempt to solve this problem by adding a new classical
source in the Einstein equation. This will introduce a new scale which in principle
could be used to separate L from fpqg or remove the necessity of this hierarchy
altogether. In this section, we prove a no-go theorem showing that this is not
possible: adding matter that satisfies the null energy condition cannot make the
wormbhole semiclassical.

4.4.2.a Scalar field

Before going to the general situation, we consider a bulk scalar field minimally
coupled to gravity, described by the action

Su=- [VEadie (500,00,64V(9)). (4.49)
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We assume that the matter preserves Poincaré invariance in the transverse direc-
tions so that ¢ depends only on 2. In our geometry (4.7), the matter stress-energy

/2
m _ 2 ¢
Tzzf(l <W_V)’

) ¢/2
T =T = T = —a <2a2 +V> .

tensor is
(4.50)

The scalar field does not violate the NEC at classical level because T2 + T} =
@2 > 0. Its equation of motion is

2a'¢ +ad” = a0,V . (4.51)
Einstein equation gives

/2
S GA+87rGa4<¢_V>7

S Lr 3 2a2
a” 87G [ ¢ (452)
O (2 oy .
a3 3 2a?

The term generated by the non-local coupling is the negative term proportional
to A in the first equation. We can explicitly see that this term is necessary by
considering the expression

'\ 2GA 2

In a wormhole solution, a’/a? goes from 0 at the throat, to 1/faqg at the boundary.

Therefore, its derivative needs to be positive somewhere, implying that A cannot
be zero. More explicitly, integrating the equation between z = 0 and z = L/2

gives
1 L/2 a / L/2 2G\ ¢/2 G\
I dz [ =) = dz| — —4nG— | < —. 4.54
lags /0 : (a2> /0 Z<a3L4 i > - L3 (4:54)
This leads to the following lower bound

2 3
)\>(£Ads> (L> : (4.55)
Ly Lads

We are in a regime where \ < 1 which implies that we must have L < fa45. We
see that the scalar field does not modify the required hierarchy we pointed out at

the beginning of the section. This is a special case of a more general statement
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Figure 4.3: Left: Shape of the potential V' (¢). Right: The corresponding solution.
We are using Planck units for the two plots.

(4.61) which will be described later. Note that this requirement guarantees that
the Weyl anomaly is negligible, as discussed in section 4.3.2.

We solve numerically the coupled ODEs for a(z) and ¢(z) using Mathematica.
The solution is obtained by integrating the second order Einstein equation which
leads to more stable numerics.® We consider a Higgs-like potential

2 2
V=082 + gt 4 Vo (4.56)

which is illustrated in Figure 4.3.

We look for solutions of ¢ that interpolate between the two minima of V' at the
two asymptotically AdS regions. These solutions are odd so we can restrict the
range of integration to 0 < z < % We consider the following boundary conditions

a(0)

L (4.57)
?(0) =0, ¢

where ¢, is the value corresponding to the minimum of the potential.”

6The two Einstein equations in (4.52) are not independent. We can obtain the second order
differential equation by taking the derivative of first one and using the ¢ equation of motion to
remove the ¢'’ terms.

"The value of L is determined dynamically because it corresponds to location at which a(z)
diverges. For this reason, imposing the condition at the boundary is a bit tricky. In practice
we impose a second boundary condition at the throat ¢'(0) = ¢{. The correct value of ¢ is
determined through algorithmically to ensure that ¢ approaches the right value at z = L/2.
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Figure 4.4: We plot A as a function of f5qs while varying Vp in the interval
—1 < Vy < —10~* and we use Planck units. The different curves correspond to
different choices for the other parameters in the potential. Left: mg = ¢ = 107!
(blue), mg = ¢ = 1072 (red). Right: ¢ = 107" with i = 2,3 and mo = 107 !¢
(blue) and mg = 10~2¢ (red). The series corresponding to different values of i are
indistinguishable. It’s impossible to have A < 1 if we want faqs to be large in
Planck units.

From the numerical solutions, we can find the value of A\ and £5qg using

T 4 / 2
=T (B v s s\ 459)

An example of solution is given in Figure 4.3. In general we notice that A can be
made small only at the cost of making £aqs small in Planck units. In Figure 4.4,
we plot A as a function of £aqs for a large sample of parameters. We only keep

solutions which leads to £445 > 1. In all cases, even for £aqs close to £, we do not
find solutions consistent with A < 1. This means that the addition of the bulk
scalar field does not help in making the wormhole semiclassical.

4.4.2.b No-go theorem

We will now show that any kind of conventional matter in the bulk does not help
in making the wormhole semiclassical, assuming that the matter respects Poincaré
invariance in the transverse directions. We can model the addition of bulk matter
by the addition of a term f(a) in Einstein equation

4
a/27 a 7@+f(a)

“EL T (4.59)

where /,,, is a characteristic length scale of the additional matter. We show below
that f(1) needs to be positive so £, can be chosen so that f(1) = 1. We are also
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using conventions in which a(0) = 1. Evaluating the equation at z = 0 gives

L 1 1
A= — | —+— . 4.60
G (ﬁids *%) (4.60)

From the above formula, we see that A < 1 implies that

L l

L Y4
2 d — 2 4.61
lads <1 an by, <7 (4.61)

The Einstein equation can be rewritten

_ 4.62
‘ 2 R o
We require the asymptotically AdS boundary condition
Cads 4
)y~ (4.63)
5 z
In other words, the cosmological constant should dominate close to the boundary
z= % For the additional matter to be helpful, we would like to dominate close

to the wormhole throat z = 0. We can define the transition point z, and the
corresponding conformal factor a. = a(z.) by
f(a*)_f<1) ai_l

- . (4.64)
E?n €2AdS

We assume that the additional matter dominates below z, while the cosmological
constant dominates above z,. Hence, we have

< , 0<2z<z,, (4.65)
€2AdS EIQII
41 — f(1 L
. zf(a)Qf(), <2< 2. (4.66)
éAdS gm 2

We also assume that a(z) is monotonically increasing close to z = 0.% In Figure
4.5 we show a schematic representation of the two regimes described above.

8Relaxing these two assumptions cannot help in making the wormhole more semiclassical.
Indeed, the above discussion shows that in order to be useful, the conventional matter needs to
make L as small as possible. It can be seen that relaxing these assumptions will only make things
worse.

122



4.4. Attempts and lessons
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Figure 4.5: We assume that the new term in the Einstein equation dominates up
to some z = z,, for which we have a(z.) = a.. After this value the cosmological
constant dominates.

Null energy condition. We impose the null energy condition on the additional
matter. The zz-component can be directly read off from (4.59)

3@

T =
8rG T, 7

5 (4.67)
m
We consider matter that respects the transverse Lorentz symmetry. This implies
that the stress-energy tensor is diagonal and satisfies T, = Ty = -1 Its
conservation then implies that

d a 3a’
—To+ -T2+ —T7=0. 4.68
dZ zZz + a zz + a tt ( )
The resulting stress-energy tensor is
fla) —af'(a) 0 0 0
1 0 af'(a) — fla 0 0
erti1 = L 'a) = fla)
a*l3, 0 0 af'(a) - fl@) 0
0 0 0 3f(a)

The null energy condition applied to the vector 9; + 0, implies

f(a) < M@ (4.69)

a

In particular, this implies that f(1) > 0. Indeed, dividing (4.65) by a — 1 and
taking the limit @ — 1 implies that f/(1) > 462 /(3 -
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Contradiction. First, integrating the NEC gives
f(a) <a®. (4.70)

Intuitively, this means that the fastest function of a which satisfies the NEC is
a cosmological constant. Since our original problem was that the cosmological
constant does not grow fast enough, no other conventional matter should help us
in making the wormhole more semiclassical.

More precisely, from (4.62) and (4.65), we see that

2 2(f(a) — 1)

a? < 20— 0<2<z,, (4.71)
20t — 1 L

a? < # <2< = (4.72)
eAdS 2

Integrating the first equation implies that

z*:/l*da \[/ \/7 f/ (4.73)
Next, we can obtain a bound on a, by integrating the second equation,
R N -t
This gives
> \/ﬁif*dg >1, (4.75)

where the second inequality follows from (4.61). Then, equation (4.73) gives z, >
O(1)4y, where O(1) is an order one number (which is bigger than ~ 0.5 already
for a, = 2). Using again (4.61), this implies

ze > L/2, (4.76)

which is a contradiction. This shows that adding conventional matter does not
help in making the wormhole semiclassical.

4.4.3 Coupling a large number of fields

In the previous section we have shown quite generally that we cannot build a
traversable wormhole with just a perturbative amount of negative energy, assuming
Poincaré invariance in the boundary directions. Increasing the coupling or adding
conventional matter do not help. Another strategy is to use a large number N of
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fields in the non-local coupling to enhance its effect. This approach was exploited in
previous constructions of traversable wormholes [146,155,157]. For our wormholes,
the estimate (4.35) gets replaced by

D—-2
<€Ads) ~ N, (4.77)
gl’

where N is the number of fields and D = d + 1 is the number of spacetime
dimensions in the bulk. Thus, it seems that by taking N large enough, we can
obtain a large AdS radius while keeping A < 1. However, a large number of fields
implies a lowering of the UV cutoff of the theory, which can be interpreted as the
renormalization of Newton’s constant. On general grounds [162-165], we expect
that

1
D— _
ME? < NMZ? 2. (4.78)

This implies that the solution cannot be made semiclassical

/ D—-2
(Ads) ~A 1. (4.79)
lyy

4.4.3.a Renormalization of Newton’s constant

The perturbative renormalization of Newton’s constant can be computed from the
one-loop effective action. We will use the heat kernel expansion which provides
a canonical way to regulate the divergences [183]. In D dimensions, the effective
Lagrangian at one-loop is

Clag(z) 1 as(z)
D EIEJ)V D_2€€\72

Leg = +..., (4.80)

where fyy is a UV cutoff and a,(x) are the so-called Seeley-DeWitt coefficients
which are obtained from the heat kernel expansion. The term ag(z) gives a renor-
malization of the cosmological constant and the term as(z) gives the renormaliza-
tion of Newton’s constant.

Because of the Weyl anomaly discussed in section 4.3.2, we will focus on odd-
dimensional theories. We want a Weyl invariant theory so we consider ng massless
scalars with the conformal coupling £ = 4(%__21) and ng Dirac fermions. The
computation is detailed in the Appendix 4.A.2 and gives

4—D 1
D/2 _ LD/2]
(4m)~ “ag(x) <12(D—1)n5+ 122 nF> R. (4.81)
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In special cases of interest, this is

ﬁ(ns +4np)R,
(—ng + 16npr)R,
i(f’ns + IGHF)R,

(4m)P 2ay(x) =

&l
T O
[

3,
5, (4.82)
7.

We see that in 5d and 7d, we can make as(z) vanish by choosing appropriately
the field content. Note that this is possible because of the negative contribution
from the conformally coupled scalars. In such cases, the perturbative lowering of
the UV cutoff will be given by two-loop diagrams. This leads to a softer lowering
of the UV cutoff, (4.78) becomes

e
VN

Assuming that no other effects lower the UV cutoff, we obtain

ME?? < —MP2. (4.83)

(&*“)Dz ~VNX. (4.84)

lyv

From this analysis, it seems that taking large enough N allows for semiclassical
wormholes. However, we argue in the next section that non-perturbatively, the UV
cutoff is always lowered according to (4.78), preventing the possibility of having a
semiclassical wormhole in this way. For related discussions on the renormalization
of Newton’s constant and the meaning of the negative contribution, we refer to
[184-189].

4.4.3.b Non-perturbative considerations

Non-perturbative arguments based on black hole physics suggest that the UV cutoff
of a gravity theory with N species is always lowered according to (4.78). These
arguments are based on the rate of black hole evaporation, or entropy bounds
[162,163,165]. These arguments suggest that the one-loop cancellations in (4.82)
are not sufficient to lower the cutoff at the non-perturbative level.

Another consideration is the “no-transmission principle” which implies that a
traversable wormhole between asymptotically AdS regions supported only by Casimir
energy is inconsistent. Indeed, we should not be able to send signals from one
asymptotic boundary to another if the two dual CFTs are decoupled [159].

For example, let us consider a theory in 5d with a large number of scalar and spinor
fields such that ng = 16np. This is chosen so that as(z) = 0 so that according
to the above computation, Newton’s constant is not renormalized at one-loop.
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Assuming that the UV cutoff is not lowered by other effects, (4.84) would imply
that we can have a semiclassical wormhole by taking the number of fields large
enough.

If the above scenario is really possible, we could also construct a traversable worm-
hole without the non-local coupling, using only Casimir energy. For this to be true,
we need to make sure that the Casimir energy is non-zero and negative. Let us
consider the above setup with ng = 16nr but without a non-local coupling. We
are free to change the boundary conditions of the fields because the computation
of as(x) is insensitive to them (up to boundary terms which are irrelevant here).
In particular, we can choose the boundary conditions so that the np spinors and
the 4np scalar fields are in a supersymmetric configuration in the flat space setup.
As discussed in section 4.3.3, this implies that the Casimir energy of these fields
will compensate. The remaining 12np scalar fields can be chosen to have Dirich-
let boundary conditions in flat space. The Casimir energy of 5d massless scalars
between two plates with Dirichlet boundary conditions is computed in [179] and
is indeed negative. Following the discussion in 4.3.3, this would give a traversable
wormhole supported only by Casimir energy. More generally, we expect that it
should always be possible to make the Casimir energy negative by choosing ade-
quate boundary conditions.

Thus, we obtain a configuration where a traversable wormhole connects two de-
coupled CFTs which is inconsistent because of the “no-transmission principle” of
AdS/CFT. This strongly suggests, in agreement with the black hole arguments,
that the non-perturbative UV cutof! is still lowered according to (4.78) despite the
perturbative cancellations at one loop. The wormhole cannot be made semiclassi-
cal by using a large number of fields.

4.5 Discussion

In this paper we have investigated the possibility of constructing eternal traversable
wormholes connecting two asymptotically AdS regions by coupling the two dual
CFTs. We focused on gravity solutions preserving Poincaré invariance along the
field theory directions and used a Weyl invariant field in the non-local coupling.

Under these assumptions, the stress-energy tensor can be computed analytically.
Although it violates the null energy condition, it does not provide enough nega-
tive energy to support a semiclassical wormhole. As argued from the “quantum
inequalities” [161], increasing the coupling does not help. We also proved a no-
go theorem saying that adding conventional matter in the bulk cannot make the
wormhole semiclassical. Another strategy is to use a large number of fields in the
non-local coupling. This increases the negative energy but lowers the UV cutoff
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by a compensating amount, disallowing any semiclassical traversable wormholes.
A one-loop computation suggests that this lowering of the UV cutoff, interpreted
as a renormalization of Newton’s constant, can be soften by adequately choosing
the field content. However, non-perturbative arguments suggest that this cannot
work [162,163,165]. In particular, this would lead to a traversable wormhole solely
supported by Casimir energy, without a non-local coupling. This contradicts the
“no-transmission principle” which follows from basic postulates of the AdS/CFT
duality [159].

This argument suggests that any mechanism that enhances the effect of the non-
local coupling should always make the Casimir energy negligible, as to prevent the
possibility of a semiclassical wormhole without a non-local coupling. We expect
this requirement to provide some guidance in the construction of eternal traversable
wormholes in AdS/CFT.

There are many avenues for future research. We can consider changing the confor-
mal dimensions of the field, going away from the conformally coupled case. The
effect becomes more difficult to compute but the numerics in [80] suggests that
the negative energy can be increased in this way. We could also investigate situ-
ations with less symmetry. This would provide more room to produce the large
hierarchy between the small quantum effect induced by the non-local coupling
and the large semiclassical geometry. Adding rotation has been shown to enhance
the effect of the non-local coupling [190]. Also, it should be possible to import in
AdS/CFT the recent construction of long-lived traversable wormhole in Minkowski
spacetime [146].

Appendices

4.A General dimensions

4.A.1 Setup

The computation done in section 4.2.2 can be generalized to any dimension. In D
spacetime dimensions, the zz component of the stress-energy tensor is

dPk 1
Thaty  — fh/ : 4.85
< ) (2m)P~1 9 cogh? (%) ( )

___h vol(SP=2) /+°° xP=2dx
LP=T 2m)P=1 J,  2cosh® (Z)
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The full stress-energy tensor has the general form

-1

(T ~ 2 , (4.86)

n%
1-D

where A ~ hL is the perturbative parameter and ~ means up to an order one
numerical factor.

After the conformal transformation to the metric (4.7), the Einstein equation has
the same form (4.29) as in 4d but with the potential

G a*

Vo) =55~

(4.87)

We can redo the computation done in section 4.2.3 and we obtain

D—-2
(zAdS> ~ A (4.88)
EP

We are in the perturbative regime A < 1 so the wormhole cannot be semiclassical.

4.A.2 No-go theorem

The no-go theorem presented in the main text can be generalized to any dimension.
In D dimensions, the Einstein equation takes the form
GA a*
a/2

=t (4.89)
LP " fRgs

We consider a modified Einstein equation

GX  f(a) at

12 _ ="

¢ B LD * 61211 E?Ads

a*—1 a)—1
1, -1
Cras ¢

, (4.90)

m

where f(a) is subject to the same assumptions as in the main text. We will show
that f(1) is positive which allows us to fix ¢, by requiring that f(1) = 1. We also
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use conventions where a(0) = 1. Evaluating Einstein equation at z = 0 leads to

L 1 1
A — | —+ =] . 4.91
¢ (anta) o
The null energy condition is obtained as in the four dimensional case. We first

compute the stress-energy tensor corresponding to the new term we added in the
Einstein equation. The zz component can be read off the Einstein equation

(D -1)(D=2) fla)
167G alz’

™ = (4.92)

We can determine T} by solving at the conservation equation V,T"" = 0. This

gives
! !

a a
0. T + (D —3) ET;; + (D - 1)ET{§ =0. (4.93)
From this equation, we can determine

(D—-2)(5—-D)f(a) —af'(a)

T =6 20 : (4.94)

Evaluating the NEC, we obtain as in four dimensions
TR+ T >0 = 4f(a) — f' (a)a > 0. (4.95)

This bound implies that f(1) is positive and leads to
f(a) <a®. (4.96)

The remainder of the proof is unchanged.

4.B Heat kernel expansion

We consider fluctuations of quantum fields around a given classical background.
The effective action can be written

Seff = SO + Sl—loop 5 (497)

where Sy is the action of the classical background. The effective action is computed
by a Euclidean path integral

o= Sett — =50 / Dee9Mo (4.98)
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where A is the operator of quadratic fluctuations. The heat kernel expansion [183]
provides a way to regularize and compute the effective action. The term that
renormalizes Gy is

1
(4m)2as(z) = gTr(GE + R), (4.99)
where the trace is over the components of the fields and E is defined by
-A=¢""D,D, + F, (4.100)

and D, = V, + w, is a suitable covariant derivative. We compute below aa(x)
for fields of interest in d spacetime dimensions. These results can also be found
in [191] except that the conformal coupling is not considered there.

Scalar. We consider a massless scalar field. The Lagrangian is £ = (9¢)? +£R¢?.
This gives E = —¢R. Hence,

(Am) 4 2g5lar () = <é - 5) R. (4.101)

Fermion. We consider a Dirac spinor. The Lagrangian is £ = @'y“D#w. The
fermionic fluctuation operator is thus v*D,,. This is a first order operator so we
apply the heat kernel to its square. The identity (v*D,)? = "V ,V, — %R implies
that £ = —%R. This gives

i 1
(4m) 42PN (1) = 132[‘1/ 2], (4.102)
Maxwell vector. The Lagrangianis £ = —%FWF*“’ = —-D"a"D,a,+D"a" D,ay.
We integrate the two terms by parts and swap the two derivatives in the second

term to obtain
L = a"Oa, — a”R,,a" — (D"a,)?. (4.103)

As usual, the last term is removed by adding a gauge-fixing term L, ¢ = (D" a,,)?.
This introduces two scalar ghosts which are minimally coupled. The contribution
of these ghosts is two times the one written in (4.101) with £ = 0 and an overall
minus sign due to the opposite statistics. For the gauge field, we obtain £ = —R,,,,.
This gives

(47T)d/2a\21ector (x) = _"R. (4104)
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Future directions

This final chapter is a brief outlook on the work presented in this thesis and
sketches some possible, sometimes speculative, future research directions.

Near-extreme Kerr holography

In Chapter 2, we reviewed the universal near-AdSs; dynamics governed by the
Schwarzian mode and its realization in near-extremal black holes. The main new
result, based on [1], is the description of the gravitational perturbation that cap-
tures the deviation from extremality for the Kerr black hole. This perturbation
can be described in a rather simple fashion, using AdSs holography as an orga-
nizing principle. This might have many possible applications, some of them being
listed below.

Our work was restricted to the near-horizon region. It will be important to under-
stand the corresponding perturbation in the full Kerr geometry, and this is work
in progress [103]. This can be done by using the method of asymptotic matching.
Understanding better the gluing offers the prospect of using the near-AdS, physics
as a solvable subsector of the Kerr perturbations.

Perturbations of Kerr can be studied systematically in the Teukolsky formal-
ism [192]. Interestingly, this formalism applied to the near-horizon region misses
the Schwarzian mode. This is because the Schwarzian mode can be generated by a
large diffeomorphism of the NHEK while the Teukolsky formalism is diffeomorphism-
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invariant by design. This shows that it’s important to understand the near-AdS,
picture as it might shed light on puzzling aspects of the near-horizon dynam-
ics [104,105] related to the Kerr/CFT correspondence [98].

It would be exciting to use near-AdS,; holography in astrophysical applications.
For example, we might try to study, from this perspective, the ringdown phase
after the merger of two black holes into a rapidly spinning one. Also, analyzing
the results from the Event Horizon Telescope requires the study of the dynamics
close to the horizon. The present analysis would need to be generalized to involve
matter fields but it seems probable that the near-AdSs perspective will be useful
here, for a black hole that spins sufficiently fast.

Another direction would be to look for a quantum mechanical dual of the Kerr
black hole. As the SYK model contains JT gravity, we could try to find a 1d model
which contains the near-AdSs physics of the Kerr black hole. This would require
a better understanding of the additional mode, that we denoted y, and which we
are currently investigating [103].

We would also like to study interactions in the near-extreme Kerr black hole.
This would be obtained by studying gravitational perturbations at second order.
This is intractable in general but the simplicity of AdSs dynamics allows one
to obtain analytical solutions, which compute holographic three-point functions
in the NHEK. In JT gravity, the Schwarzian mode is responsible for the maximal
chaos [43]. It would be interesting to see in a similar way whether the near-extreme
Kerr dynamics is maximally chaotic.

In the paper [5], which was not presented in this thesis, we have explored new
boundary conditions for AdS,. This enhances the asymptotic symmetry group
to the warped Virasoro group Diff(S') x C°°(S!) which gets broken down to
SL(2,R) x U(1) by a generalization of the Schwarzian theory. As a result, this
theory captures the full SL(2,R) x U(1) symmetry of the near-horizon geometry
of black holes (the Schwarzian theory capturing only the SL(2,R) part). This
suggests that our boundary conditions will be useful in the study of near-extremal
black holes. We demonstrated how this dynamics was embedded in near-extreme
Kerr, following the same steps as described in Chapter 2, using our new boundary
conditions. This gives a phase space of linearized perturbations of the NHEK
geometry, on which the warped Virasoro group acts. It would be interesting to
explore this further, for example by computing the gravitational charges.
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Logarithmic corrections

In Chapter 3, we have explained that a special class of quantum corrections, grow-
ing as the logarithm of the black hole entropy, is computable in the low energy
theory while being sensitive to details of the microscopic counting, constituting an
“infrared window into the black hole microstates”. It seems important to under-
stand how much semiclassical gravity knows about the UV theory. In the context
of black hole entropy, this requires a detailed understanding of the logarithmic
corrections. This also echoes some recent progress on the information paradox
suggesting that semiclassical gravity has more to offer than previously thought.

As discussed in this thesis, an interesting pattern was observed in [26]: the loga-
rithmic corrections in effective theories coming from string theory have a simpler
structure than in the generic case: it doesn’t depend on the details of the black
hole. In Chapter 3, we have tested this pattern against a different class of black
holes, the so-called non-BPS branch of N = 2 supergravity. There, we showed that
the universality property continues to hold for enough supersymmetries (A = 6,8)
but fails for a smaller amount (M = 2,4). These statements were made for non-
extremal black holes, whose microscopic counting is presently unknown and is
expected to be complicated. In the extremal limit, the universality property is
restored for all these cases.

In known examples of microscopic counting, which all involve extremal black holes,
the logarithmic correction is indeed universal: it is a pure number. This begs the
question: do we expect that the logarithmic correction for extremal black holes is
universal in a consistent semiclassical theory?

Such a statement echoes the swampland program, where low energy criteria for
UV consistency are proposed, drawing inspiration from string theory examples. An
affirmative answer to the above question has powerful implications. For example, it
would imply that pure Einstein-Maxwell theory doesn’t exist as a consistent theory,
because the extreme Kerr-Newman black hole has charge-dependent logarithmic
corrections. Although answering this question seems out of reach, we might hope
to make partial progress in restricted cases. For example, it might be possible to
show that if the microscopic counting is realized by a Jacobi form, the logarithmic
corrections are always charge-independent.

Actually, by considering more general black holes in the non-BPS branch, with a
non-trivial profile for the dilaton, we have found that logarithmic corrections can
be charge-dependent even in the extremal case and with maximal supersymmetry.
This suggests that the answer to the above question might sometimes be negative,
and it would be interesting to understand when it fails. This could also be related
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to the near-AdSs physics of these black holes, and it would be interesting to make
a connection with the ideas discussed in the previous section.

Using similar techniques, we could also investigate logarithmic corrections to the
entanglement entropy of holographic CFTs. From [70], we expect that the logarith-
mic correction will come from the bulk entanglement entropy piece. This suggests
two different ways of doing the computation, either from a Euclidean perspective
involving the heat kernel, as explained in section 3.1, or from a Lorentzian perspec-
tive where we quantize the bulk fields with appropriate boundary conditions, as
was done in [193], and extract the logarithmic piece from the bulk entanglement
entropy. It would be interesting to see whether such a match can be achieved.
This might give insights on how to properly define bulk entanglement entropy,
involving issues such as the correct choice of boundary conditions and the way to
treat gauge fields and gravitons.

Traversable wormholes

In Chapter 4, we reviewed the Gao-Jafferis-Wall protocol [80] for traversable worm-
holes in AdS/CFT and described some wormhole solutions [146,157]. To see how
much this idea can be pushed, we tried to construct an eternal traversable worm-
hole in higher than two dimensions. Assuming Poincaré symmetry in the boundary
directions, we argued that no traversable wormhole can be constructed.

The mechanisms that naively would support such a wormhole, all ended up break-
ing semiclassical gravity in some way. This “conspiracy” can be understood as
follows. Let’s assume that we have managed, using some ingredients, to build an
eternal traversable wormhole with Poincaré symmetry. In our construction, we
showed that the stress tensor generated by the Gao-Jafferis-Wall protocol takes
the same form, and with a smaller magnitude, as the stress tensor due solely to
Casimir energy in the wormhole. Thus, if a Poincaré traversable wormhole can
be constructed using the Gao-Jafferis-wall protocol, such a wormhole can also be
constructed without it, using instead Casimir energy of the bulk. However this
cannot be, because it would be in direct contradiction with the AdS/CFT corre-
spondence. Indeed, in a setup involving two decoupled CFTs, it should not be
possible to send a signal from one CFT to the other through the bulk, a fact that
has been called the “no-transmission principle” [159].

An interesting future direction is to take the above argument in reverse, as a
way to constrain what is possible or not in quantum gravity. Any mechanism
which enhances significantly quantum effects, sufficiently to allow the existence of
a traversable wormhole between two decoupled CFTs, has to be prohibited. For
example, our Poincaré wormholes gives a new argument for the renormalization
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of the UV cutoff (the effective Planck scale) when many species are present. This
says that if we have N different fields in a D-dimensional bulk, the effective UV
cutoff Myvy of semiclassical gravity gets lowered according to the formula

1
MEG? < - MP™, (5.1)

where M, is the Planck scale. It was explained in section 4.4.3 that if this was not
true, we could indeed build a traversable wormhole. This construction would also
work if the traversable wormhole is supported by Casimir energy only, without
using the Gao-Jafferis-Wall coupling. This would then violate the no-transmission
principle and should be ruled out, showing that the bound (5.1) has to hold. Other
heuristic arguments for this bound are known [162-165] involving perturbative
analysis of loop diagrams or black hole entropy bounds. For many reasons, these
arguments can be seen as not completely satisfactory. The traversable wormhole
argument, in the particular cases where it applies, seems to be more solid, the
only assumption being the validity of AdS/CFT. An important restriction is that
our argument relies on the Poincaré wormhole solution presented in Chapter 4,
which assumes conformal matter in the bulk and has issues related to conformal
anomalies. It is nonetheless likely that this argument could be made general by
showing that with a large negative Casimir energy, a traversable wormhole solution
always exists, even if it cannot be described analytically.

JT gravity allows a simple description of traversable wormholes [155,157]. A flat
space analog of JT gravity was introduced in [194] and shown to be dual to a
scaling limit of the complex SYK model. We have further studied this model in [5]
and showed that, as in JT gravity, this model can be formulated as a “bound-
ary particle” moving in 2d Minkowski spacetime. It should be possible to create
traversable wormholes in this setup, mirroring the AdSs construction. The Gao-
Jafferis-Wall coupling would give an attractive force between the two boundary
particles of Rindler space, rendering the wormhole traversable. One could also
build the analog of the eternal traversable wormhole of [157], which corresponds
here to 2d Minkowski spacetime. It would be interesting to study these configu-
rations as they may offer some insights into flat space holography [195].

We have also showed in [5] that this 2d model of flat holography is dual to an
ensemble average, of a similar but much simpler nature than the matrix ensemble
dual to JT gravity [50]. The cylinder geometry, which is responsible for this
ensemble interpretation, is the Euclidean version of global Minkowski, which is
the eternal traversable wormhole of this theory. It will be interesting, using this
model, to study the relation between ensemble averages and traversable wormholes.
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Samenvatting

Quantum zwarte gaten

Er wordt vaak gezegd dat kwantummechanica en zwaartekracht onverenigbaar
zijn. Recente ontwikkelingen in de snaartheorie hebben dit perspectief veranderd:
eigenlijk zijn kwantummechanica en zwaartekracht op een diepe en verrassende
manier met elkaar verweven, en blijken ze onafscheidelijk te zijn! Deze vooruitgang
kwam voort uit het besef dat zwarte gaten kwantumobjecten zijn, wat uiteindelijk
leidde tot het holografische principe en de opvatting dat zwaartekracht voortkomt
uit de kwantummechanica. In dit proefschrift onderzoeken we enkele aspecten van
deze ideeén door kwantumzwarte gaten te onderzoeken.

We bestuderen eerst het holografische principe, in de vorm van de AdS/CFT-
correspondentie, wat een precieze gelijkwaardigheid is tussen kwantumzwaartekracht
in AdS-ruimtetijden en conforme veldentheorieén. De kracht van deze dualiteit
komt voort uit het feit dat het een precieze definitie geeft van kwantumzwaartekracht,
terwijl het ook een venster biedt op de sterke koppelingsdynamiek van veldtheo-
rieén. Hoofdstuk 2, gebaseerd op de paper [1], bespreekt de nAdS,/nCFT; corre-
spondentie, en legt uit hoe deze toe te passen op het Kerr zwarte gat.

Vervolgens onderzoeken we de thermodynamica van zwarte gaten. Dit vakgebied
werd in de jaren zeventig ontwikkeld en was een van de belangrijkste inspiratiebron-
nen achter de meer recente inzichten en ontwikkelingen. Hoofdstuk 3, gebaseerd
op de paper [2], onderzoekt de eigenschappen van kwantumcorrecties op zwart
gat-entropie in de context van snaartheorie, met de nadruk op een speciale klasse
van logaritmische correcties, die volledig zijn gevangen in de lage-energietheorie.

Ten slotte onderzoeken we het verband tussen kwantuminformatie en ruimtetijd.
Een krachtig idee is dat ruimtetijdconnectiviteit en verstrengeling in wezen het-
zelfde zijn, waarnaar vaak wordt verwezen als “ER=EPR”. Deze relatie werd on-
langs versterkt door aan te tonen dat wormgaten doorkruisbaar kunnen worden
gemaakt met een bepaald kwantumteleportatieprotocol. Hoofdstuk 4, gebaseerd
op het artikel [3], onderzoekt de grenzen van deze constructie door te proberen een
eeuwig doorkruisbaar wormgat te construeren.
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