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Abstract. We study the ground-state entanglement Hamiltonian of free non-
relativistic fermions for semi-infinite domains in one dimension. This is encoded
in the two-point correlations projected onto the subsystem, an operator that
commutes with the linear deformation of the physical Hamiltonian. The cor-
responding eigenfunctions are shown to possess the exact same structure both
in the continuum as well as on the lattice. Namely, they are superpositions of
the occupied single-particle modes of the total Hamiltonian, weighted by the
inverse of their energy as measured from the Fermi level, and multiplied by an
extra phase proportional to the integrated weight. Using this ansatz, we prove
that the Bisognano—Wichmann form of the entanglement Hamiltonian becomes
exact, up to a nonuniversal prefactor that depends on the dispersion for gapped
chains.
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1. Introduction

The study of entanglement properties plays a pivotal role in quantum many-body
physics [1-4]. The central object of these investigations is the reduced density mat-
rix (RDM), which encodes all the information on the entanglement between a subsys-
tem and its remainder. The analogy with the standard setup of statistical mechanics
suggests to write the RDM in an exponential form, and the associated entanglement
Hamiltonian (EH) has been the topic of intensive research [5]. One of the key ques-
tions to address is the characterization of the EH for many-body ground states, with a
particular focus on its locality properties and its relation to the physical Hamiltonian.
Beside the pure theoretical interest, these properties also play a decisive role in novel
tomographic protocols developed in quantum simulator experiments [6, 7.

Although extracting the EH for generic many-body systems is an immensely com-
plicated task, one might hope to gain insight from the study of a related quantum field
theory (QFT), that is expected to capture universal features of the model. In fact, the
analog of the EH in algebraic QFT is known as the modular Hamiltonian, and it is
associated with an observable algebra defined on a restricted spacetime region [8, 9].
In particular, considering a wedge region associated to a semi-infinite subsystem, the
seminal result of Bisognano and Wichmann (BW) states, that for a relativistic QFT
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the modular Hamiltonian is given by the generator of Lorentz boosts [10, 11]. In one
spatial dimension, the EH can thus be constructed as
2 [

Hpw = — xTho () dz, (1)
v Jo

where Ty (z) is the energy-density component of the stress tensor, and v is the velocity
of excitations, which is required to make the expression dimensionless. In other words,
the EH can be written as a deformation of the physical Hamiltonian by a linear weight
function, which can alternatively be interpreted as a local inverse temperature. While
the BW theorem holds for an arbitrary relativistic QFT, its generalizations to other
subsystem geometries require conformal symmetry [12-15].

The structure of the EH described by the BW theorem, however, does not only
emerge in QFT. Indeed, the discretized version of (1) was found to describe integrable
quantum chains in their gapped phase [16]. This follows from the intimate connec-
tion between the RDM and the corner transfer matrix (CTM) of a corresponding two-
dimensional statistical model, which was first introduced and studied by Baxter [17-19].
In fact, it was understood later on, that the generator of the CTM can be identified as
a Lorentz boost operator on the lattice [20-23], which further clarifies the immediate
analogy with the BW result.

The CTM method thus yields the EH of integrable chains in a form similar to the
original Hamiltonian, but with couplings that increase linearly from the boundary. In
particular, for models that can be mapped into free fermions, the eigenvalues and eigen-
vectors of the deformed Hamiltonian were studied in detail [24-28]. For gapped chains
one obtains an equidistant spectrum, with a level spacing that goes towards zero at crit-
icality. In CTM studies, one then usually regularizes the problem by considering a finite
chain. However, for such a geometry, the actual EH is rather given by a sine-deformation
of the couplings [29], as predicted by conformal field theory (CFT) [15]. Thus, in order
to study the EH at criticality, one needs to work directly in the thermodynamic limit.

The goal of this paper is to show that the EH for semi-infinite domains can nev-
ertheless be treated on a common footing for both critical and gapped nonrelativistic
free-fermion systems, both in the continuum as well as on the lattice. We start by consid-
ering a one-dimensional Fermi gas in the continuum, and show that the eigenfunctions
of the EH are given by weighted superpositions of the occupied plane wave modes of
the physical Hamiltonian. The weight is given by the inverse of the energy measured
from the Fermi surface, and each mode picks up an extra phase proportional to the
integrated weight. The prefactor of this phase is related to the corresponding eigen-
value of the EH, and one recovers an exact BW form (1) with the parameter v given by
the Fermi velocity. The EH can thus be obtained directly in the thermodynamic limit,
despite the entanglement entropy being ill-defined due to the continuous spectrum.

In a next step, we extend our discussion to the lattice, considering homogeneous
or dimerized hopping chains, and show that the very same construction holds for the
eigenvectors of the EH. While at criticality one obtains a continuous spectrum, the
presence of a gap in the dimerized case induces a quantization as in the CTM studies
[16]. In turn, one finds a BW form with a nonuniversal (mass-dependent) prefactor,
which can be related to the properties of the integrated weight. Finally, we show that the
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construction can also be applied for a hopping chain with a staggered chemical potential,
yielding an equidistant spectrum which, however, differs from the CTM quantization.

The structure of the paper is as follows. In section 2 we consider the EH of the
free Fermi gas on the line, which has a critical Fermi sea ground state. This is followed
in section 3 by the study of the analogous lattice problem, the homogeneous hopping
chain. The EH for the gapped case is studied for chains with dimerized hopping and
staggered chemical potential in sections 4 and 5, respectively. The paper concludes with
a discussion in section 6, followed by two appendices presenting some technical details
of the calculations.

2. One-dimensional Fermi gas

We first consider the free Fermi gas on the infinite line, defined by the single-particle
Hamiltonian

7 2)

The ground state is a Fermi sea, with the plane-wave eigenstates filled up to the Fermi
momentum ¢p. The two-point correlations are then given by the sine kernel

Ky = [ Shees - SILLEZL), (3)

2T 7 (x—x')

which completely characterizes the ground state. We are interested in the entanglement
properties of a semi-infinite bipartition A = [0,00), with the RDM written in the form

1
pa= 3¢ Ha (4)
where # is the entanglement Hamiltonian and Z ensures normalization. Due to Wick’s

theorem, the EH is entirely determined by the reduced correlation kernel, which acts
as the integral operator

Ko (@)= [ oK @) o), 5
0
and is related to the EH as [30, 31]
- 1
K=— . 6
et 41 (6)

Hence, in order to find 7:[, one needs to solve the eigenvalue problem of the integral
operator K. Similarly to the case of a finite interval [32], this task is made easier by
observing that the differential operator

P14 _pur” (7)
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commutes exactly with the integral operator in (5). The calculation of the commutator
[K’ ,ﬁ] =0 is given in appendix A. Note that the operator (7) has precisely the BW
form, i.e. it is a simple linear deformation of the physical Hamiltonian in (2). In order
to solve its eigenvalue problem Di(z) = M) (x), we first rescale variables as y = qpa: and
X = A/qp, such that we arrive at

d d
Sy -9 . 8
(dyydery)w(y) X (y) (8)
With a further change of variables z = —2iy, we look for a solution of the form 1 (y) =
e */2®(2) such that the differential equation (8) becomes

2(12—(1)+(1—z)d—(1)—(1—ix><l>: | ()

This is nothing but the confluent hypergeometric equation with parameters a =1/2 — iy
and b=1, and the solution that is regular at z=0 is given by Kummer’s function
®(z) = M(a,b,z). It can be defined as a generalized hypergeometric series, however, for
our purposes it is more useful to consider its integral representation [33]

1
M (a,b,z) = %(bb)—a)/o due”u* (1 —u)" ", (10)

Substituting for the parameters a,b and changing back to the y variable, the solution
for the eigenfunction reads

1 1d eiypeix ln(%)
~ =71 - N9 P——F——)
PG+ P 0T V1-p?

where we have symmetrized the integral by changing to the variable p =1 — 2u.

Before continuing with our analysis, it is instructive to check that expression (11)
satisfies the differential equation (8). Dropping the prefactor and applying the derivat-
ives to the integrand one finds

x(y) (11)

/ld [ 0 2>+_ }eiypeixln(ﬁ’;) )
— ip| ——.
LTI T TS

One can then integrate by parts in the first term using

y d . d —I
yelyp — _j—lvp i—a/1 _p2 — i (13)

dp dp V1i—p?

such that the second term in the brackets in (12) is canceled. The remaining term is
given by the derivative of the logarithmic phase factor, which yields

d 1+p 2
1 = 14
dpn<1—p) 1-p? (14)
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Figure 1. Eigenfunctions ¢, (y) of the differential equation (8) for various eigen-
values x > 0 (left) and x <0 (right). The normalization N, is fixed by (26).

such that the 1 — p* factor is canceled and one indeed recovers —2x 1, (y).

One can now find a simple interpretation of the result (11). In fact, the eigenfunction
can be thought of as a wave packet constructed from the momenta within the Fermi
sea, with a corresponding amplitude 1/1/1 — p2. This can be interpreted as a probability
inversely proportional to the energy of the given mode, as measured from the Fermi level.
Additionally, each mode acquires an extra phase which, according to (14), is given by
the integral of the weight up to momentum p, and has a logarithmic divergence around
the Fermi points. The eigenvalue x appears as a factor multiplying this phase, and can
assume arbitrary values, i.e. the operator D has a continuous spectrum.

The eigenfunctions are shown in figure 1 for various eigenvalues x. Note that, due to
the continuous spectrum, the 1, (y) are not normalizable, and the factor in front of the
integral in (11) sets 1, (0) = 1. However, in figure 1 we adopt a different normalization,
which comes from the requirement of orthonormality and will be derived later. One
observes that, for x >0, the oscillations increase and 1, (y) becomes more and more
peaked around y =0, whereas for x <0 the eigenfunction is pushed away from the
boundary.

To find the asymptotics for y > 1, it is useful to first introduce new variables p =
tanh(z), in order to remove the divergent phase factor in (11). One then has

dz —————, (15)

cosh (2)

cosh(my) [~ elytanh(z)oi2x 2
by (y) = 20 /

Q0 oo

where we used the properties of the I' function for imaginary arguments. One can now
apply a stationary phase approximation, which yields the condition

2
Y oy =0, tamh(zm)=q/1— 2 (16)

cosh? 20 Y
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Note that the stationary points +z; exist only for y <0, and one finds, up to
normalization, the approximation

2 2
———exp |iy 1—M+12X atanh 1—M—i7r/4
yy/1— 2 Y Yy

Y

+c.c. (17)

In particular, for y > 2|x| the second phase factor can be expanded and one finds
X In(2y/|x|), such that the frequency of the oscillations increases logarithmically.

The commutation property [K,D] =0 ensures, that 1, (y) are also the eigenfunc-
tions of the sine kernel on the half-line, it thus remains to evaluate the corresponding
eigenvalue. For this purpose, we apply the substitution used in (15) also in the sine
kernel to find

0 s el(y—y")tanh(z)
K N = e 1
(v,y") /OO 27 cost? (2) (18)

Applying the integral operator to v, (y’), the 3’ integral has to be carried out on the half
line, one thus simply obtains the Fourier transform of the step function ©(y’), which is
given by

Ty’ (y) ¢ = Tim ——. 1
| wreu) e = tm o (19)

Ignoring the normalization factor, the function K ¥, (y) thus has the integral represent-
ation

0 iytanh(z / 2y 2’

/ dze—Q() lim §£d_z ! _ © , (20)
—oo  cosh”(z) =07 [ 27 tanh(z’) —tanh(z) +ie cosh (2’)
where we have extended the 2’ integration to a contour 7 on the complex plane. For
X >0, the contour is chosen as an infinitely large semi-circle on the upper half-plane,
whereas for x <0 the contour must be closed on the lower half-plane. With this choice,
the contribution of the integral on the arc vanishes, and one only needs to evaluate the
residues at the poles, which lie at

1€

1 —tanh?(2)’ (1)

' =z4+inm —

where n is an integer.

Let us first consider y > 0, such that the poles that lie within the contour correspond
to n=1,2,..., and their residue is given by coshQ(z). At the same time, the factor in
the denominator becomes cosh(z’) = (—1)" cosh(z), such that we have for the contour
integral

https://doi.org/10.1088/1742-5468 /ad9c4f 7
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dz’ 1 el2x?’ ' -
Ly __ ai2x2 h 1 n —n27rx. 29
J_{%ézﬂ_i tanh(z’) —tanh(z)—i—ie COSh(Z’) (S CcOS (Z)nz_:l( ) € ( )

Plugging the result back into (20), it is easy to see that the z dependent terms reproduce
the eigenfunction v, (y), while the corresponding eigenvalue is given by the sum. Using
the formula for the geometric series, one arrives at

_ 1
e 41

Kby (y) Uy (y) - (23)
The case x <0 is very similar, but now the poles on the lower half plane with n =
0,—1,... contribute in the sum in (22), while the sign factor is absorbed by changing
the direction of the contour integration, such that the sum delivers the very same
result (23). One thus finds, that the eigenvalue of the sine kernel is simply given by the
Fermi function with an argument 27 y. Comparing with (6) and restoring the length
scales y = xqp and x = \/qp, one finds
H=2"p, (24)
qr

and thus the BW theorem (1) holds exactly. In fact, despite the infrared divergence of
the entanglement entropy due to the continuum spectrum, the EH remains perfectly
well defined.

To conclude this section, we check the orthonormality of the eigenfunctions. To this
end we need to evaluate

00 . h2 oo ' ,
/0 dy i (g () = 2T J (25)

P
T o X4 1

where we have carried out the same contour integration as before. In turn, one
arrives at

14e 27X

| v =Noa-x). N = (26)

and to ensure the correct delta function normalization between the eigenfunctions, ¥, (y)
must be multiplied by a factor N, 1/ 2, which was adopted in figure 1.

3. Homogeneous hopping chain

We now move on to consider free fermions on an infinite chain, given by a hopping
model of the form

o0

.1 S
H= 2 Z <lecn+1 +CL+1C”> +cosgr Z Chen- (27)

n=-—oo n=-—oo

https://doi.org/10.1088/1742-5468 /ad9c4f 8
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The chemical potential © = — cos g is chosen such that the Fermi momentum is given by
gr. The reduced correlation matrix C, ,, = (cjncn) with m,n > 1 is given by the discrete
version of the sine kernel

_ singr (m —n)

Om,n - (28)

7w (m—n)

and encodes all the information on entanglement. In particular, the EH is given by the
relation [30, 31]

1

H= ZHmmcfncn, C:eH+1'

m,n=1

(29)

We thus have to treat the eigenvalue problem of the discrete sine kernel (28) on the
half-infinite chain. Similarly to the continuum case, this can be simplified by finding a
commuting operator with a much simpler structure. Indeed, analogously to the case of
an interval [34, 35|, one can show (see appendix A) that the tridiagonal matrix

Tm,n - tm 5m+1,n + tm—l 5m—1,n + dmém,n (30)

with entries defined by

1
tm:—im, dy, = cosqp (m—1/2), (31)
commutes exactly with the correlation matrix, [C',T] = 0. Just as in the continuum case,
the commuting operator has precisely the BW form, with the linear deformation being
slightly shifted for the on-site d,, and hopping terms t,,, respectively.
In analogy with the continuum case, we try the following ansatz for the eigenvector

qr dq eiq(m—l/?)ei/\gaq
wnm) = [ ST £
_gp 2T 4/COSq — COSQF

where the denominator contains again the square root of the energies measured from the
Fermi level. The variable m — 1/2 in the first phase factor is suggested by the reflection
symmetry m — 1 —m of the problem, which should translate to the eigenvalue —A\,
whereas the phase ¢, is yet to be determined. Multiplying with the tridiagonal matrix,
the integrand of the vector —2T", reads

oia(m—1/2) ik,

2m —1 — isi . 33
(2 — 1) (cong — cosgr) +ising] Tt (33)
One can then integrate by parts in the first term using
. d | d —is
(2m _ 1) elq(mfl/2) — _Zi_elq(mfl/Q), N— /COSq — COSQp = 1ong (34)

dq dq \/COsq — cosqr’

https://doi.org/10.1088/1742-5468 /ad9c4f 9
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such that the derivative of the square root cancels the second term in (33), while the
boundary term vanishes automatically. One has thus the requirement

dpg, 1
dg  cosq—cosqp’

(35)

which yields —2T"1), = —2A). Hence, in complete analogy to the continuum case (14),
the extra phase is given by the integral of the inverse energy difference, which gives

1 t t
py— 111( an® +tani ) (36)
2

SIN gf tan & 5 —tan 4

Note that the lower limit of the integral was set to ¢ =0, which ensures that the phase
is odd, ¢_, = ¢, and thus the eigenvector in (32) is real.

The next step is to substitute variables tanh(z) = tan(q/2)/tan(qr/2), to cure the
divergence of the phase factor. Indeed, this gives ¢, = 2z/singp, and the inverse trans-
formation and its Jacobian read

dg 2singp

= 2atan [t 2)tanh — = 37
o(z) = 2atanftan gr/2)tanh (2)], G = 2R (37)
while the energy difference can be expressed as
2 - 2 2 -2
COSq — COSqp = sin” (gr /2) = S g (38)

cosh? (z) [1+tan? (gr/2)tanh® ()]  cosqr + cosh(2z)

Putting everything together, the eigenvector can be written as

© qy eiq(z)(m—l/?)eiZ/\z/sian
¥y (m) = / — . (39)
—o0 T y/cosqr + cosh (2z)

With the integral representation at hand, one could proceed to evaluate the cor-
responding eigenvalue of C. We first rewrite its matrix elements using the transforma-
tion (37) as

dz dg ;
Cmm:/ €2 L gateimn), (40)

To evaluate the matrix multiplication C'y), we use the identity

Sy )
=07 9gin (% + ie)

which leads us to the contour integral

/ dz dq 1q( 2)(m—1/2) lim d_Z,% 1 ei2)\z’/sian |
ordz” 07 J5 21 d2’ 9 i <—q(zl);q(z) + ie) Vcosq(z") —cosgr

(42)
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Figure 2. Eigenvectors ¥, (m) of the tridiagonal matrix (30) for various eigenvalues
A >0 (left) and A <0 (right). The normalization N is fixed by (45).

The poles of the integrand are the same (21) as in the previous section, and for A >0
(A<0) we can close the contour on the upper (lower) half-plane. The residues are
simply given by (%)_1 which cancels with the Jacobian. Due to the presence of the
square root in the denominator, some care is needed when extending the weight factor
to the complex plane, in order to avoid branch cuts. Indeed, here one should use the
first expression in (38), which implies

V/cosq(z') —cosqr = (—1)"/cosq(z) — cosqr . (43)
The structure is thus exactly the same as in (20), and yields immediately the relations.

1 2
CYn=—5—"x, H=-
@sinap _|_ 1 sSingr

T. (44)

In other words, the BW form (1) is exact even on the lattice and at arbitrary fillings,
setting v = singp.

The normalization of the eigenvectors can be obtained analogously to the previous
section

S ) 1
E Uy (m) Yy (m) = Nyd (A=), Ny=———. (45)
m—1 esian + 1

Note that the difference with respect to (45) comes from the prefactor in (11), which
is missing from the ansatz (32). The properly normalized eigenvectors are shown in
figure 2, and follow the same pattern as observed in figure 1 for the continuous case.
Namely, for A >0 the eigenvectors are attracted, while for A <0 they are repelled from
the boundary. Note that for larger A > 0 the structure becomes quickly rather irregular,
which is due to the discrete sampling from an increasingly oscillatory function.
Finally, we point out a remarkable connection of our ansatz (32) to orthogonal
polynomials. Indeed, it was already observed in earlier studies of CTM spectra [25,

https://doi.org/10.1088/1742-5468 /ad9c4f 11
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27], that the eigenvectors of T are given by the Meixner—Pollaczek polynomials. It is
rooted in the fact, that 1,(m) satisfy a three-term recurrence relation. In particular,
the Meixner—Pollaczek polynomials are defined by the recurrence relation [36]

(n+1) P\, (;6) + (n+ 20— 1) P\ (2;6) = 2 (zsing + (n+ a) cos§) P\ (x;¢) . (46)

It is easy to see that setting a =1/2, ¢ = qp and = = —\/singp, one obtains precisely
the eigenvalue equation of the tridiagonal matrix with elements (31) under the iden-
tification P,glm(a;;qp) ~y(n+1) for n=0,1,.... In fact, it turns out that there is a
proportionality factor between them, which has to be fixed by comparing the orthogon-
ality relations satisfied by the Meixner—Pollaczek polynomials, which is carried out in
appendix B.

4. Dimerized chain

The dimerized (or SSH) chain is described by a hopping model with alternating
amplitudes

H=— Z (1 "; 0 4 C2n 1Con + 1—25 c;nc%ﬂ + h.c.) (47)
n

Since the chain has only two-site shift invariance, a Fourier transformation in terms

of the sublattice momentum must be followed by a rotation within the cell degrees

of freedom in order to diagonalize the model. This is most easily expressed in terms

of the halved sublattice momentum, which varies within the reduced Brillouin zone
€ [-7/2,7/2]. In particular, we introduce new fermion operators a, and /3, via the

transformation

FZ N (0 £ B,), ea FZ S (0 — 3,) . (48)

It is then easy to see, that the phase factor must be chosen as

, cosq —idsin
el = %, Wy = \/0082 q+ 02sin’q, (49)
q

in order to bring the Hamiltonian into the diagonal from

H=— qu (aflaq - ﬁgﬂq) . (50)
q

Note that, for simplicity, we have formulated the transformations above on a periodic
chain of 2N sites. However, we are interested in the limit N — co where the momentum
variable ¢ becomes continuous.

The Hamiltonian (50) is characterized by a band structure with a gap of size 2|4|, and
the ground state is given by filling only the lower band, i.e. <a$aq> =1 and (B;f Bq) = 0.

https://doi.org/10.1088/1742-5468 /ad9c4f 12
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The correlation matrix still has a checkerboard structure, with the nonvanishing entries
given by

/2 da . . /2 dg . .
Com—1,2n =/ %emewq, Com,on+1 =/ %elqre_leqy (51)
/2 /2

where r = 2n —2m+ 1, and Copn—1.2n-1 = Com2n = Omn/2. It is a simple exercise to show
(see appendix A), that one can again define a commuting tridiagonal matrix with the
hopping amplitudes given by

1+6 1-6
tgm,1 = —% (2m — 1), tgm = —TQm, (52)

while the diagonal terms are zero, d,, = 0.
Inspired by the results of the previous sections and the structure of the transform-
ation (48), we propose the ansatz

b (m) = /7r/2 @ eld(m=1/2) oiAp oi(—1)"0,/2 _ /77/2 % ela(m—=1/2) gidg,
/2 27 V& —r/2 2T \/czosq—l—(—1)mi(53inq7

where we incorporated the additional phase factors into the wavefunction. Multiplying
by —2T using (52) and assuming m odd, one obtains for the integrand

(53)

eiq(mfl/2) el
Vcosq+idsing

Rewriting the factor 2m — 1 as a g-derivative and integrating by parts, one has for the
derivative of the square root

d —ising — dcosq
21— [\/COS +idsin ] = , 55
ldq qrriosmd Vcosq+idsing (55)

which again exactly cancels the second term in (54). To obtain the eigenvalue —2\, the
extra phase has to satisfy

dpg, 1
dg Vcos? g + 62 sian’

[(2m — 1) (cosq+1idsing) + (ising + d cosq)] (54)

(56)

which can be integrated as

v, =F(q,0"), 5 =+/1-62, 57
g

in terms of the incomplete elliptic integral of the first kind, and we introduced the
complementary modulus ¢’.
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In sharp contrast to the critical case, however, the boundary contribution to the
partial integral does not vanish automatically, due to the presence of the gap. It is easy
to see that the vanishing of this term requires

ei%(m—l/Z)\/ﬁei)«p,r/Q _ e—ig(m—l/Z) /_ide—i)\gpﬂ/z7 (58)

and setting m = 2¢+ 1 this further implies

(=0,%1,+2,... (59)

- {2£+1 if6>0
A

2K (87) | 2¢ if§<0’

where K(0’) denotes the complete elliptic integral. Hence, it is precisely this extra
requirement that imposes the quantization of the eigenvalues in the gapped case. The
levels are equidistant and their spacing decreases approaching the critical point § — 0,
where K(d') — oo, signaling the transition to a continuum spectrum. Note also that
the spectrum is particle-hole symmetric, and one can easily verify that the eigenvectors
satisfy the property ¥_y(m) = (—1)"(m). Furthermore, one can check that the deriv-
ation for m even yields the very same results.

We now move to the calculation of the corresponding eigenvalues of C. As in the
previous cases, we introduce the phase u = ¢, as a new variable, which allows us to
extend the integral to the complex plane with vanishing contributions at infinity. The
inverse transformation and its Jacobian read

dg _

T dn(u,d"), (60)

q(u) =am(u,d’),
where am and dn denote the Jacobi and delta amplitude, respectively, and one obtains
the contour integral

elam(u,0")(m—1/2) iAu

du /
Py (m) = &é%dn(uﬁ ) Ven (u,6) +i(—1)"sn (u,6")

(61)

where sn and cn are the elliptic sine and cosine, respectively. The contour v has a
rectangular shape as depicted in figure 3 for A > 0. Indeed, the main difference w.r.t.
the critical case is that the domain on the real axis is a finite interval [—K ('), K (d')]. At
its endpoints the integrand has the same value due to the quantization condition (58).
One can show that this remains true along the vertical lines in figure 3, such that their
contributions cancel, and one can close the contour at infinity. For A <0, the contour
must be drawn on the lower half plane.

From this point, the calculation is completely analogous to the critical case. The
poles will be given by the condition am(u’,0’) =am(u,d’) which, using the period-
icity properties of the Jacobi amplitude along the imaginary direction, yields u' =

n

u+in4K(6). The square root in the denominator of (61) yields again a factor (—1)",
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Ra$
-K(&) K(&)

Figure 3. Rectangular integration contour (blue) for the eigenvector (61), with the
upper side taken to infinity. The red crosses indicate the poles u’ = u + indK () — ie
that appear when multiplying with the matrix C.

and the infinite sum over the poles reproduces the Fermi function. One thus obtains for
the EH and its spectrum

H=4K ()T, e =2r (62)

K@) J2¢+1 if6>0

K (6') | 2¢ if§ <0
One should note that the result seemingly differs from the one obtained via the duality
with two interlaced transverse Ising chains [37], which gives # K (k') /K (k) for the halved

spacing of the spectrum with k£ = };—E:.
can show that the two results are actually identical.
Finally, the normalization of the eigenvectors can also be obtained using the contour

integral representation as

However, using elliptic integral identities, one

B 1 K (§")
Z% )ar (M) = Ny rr, N)\—e4K(5)>\+1 —. (63)

The factor multiplying the Fermi function is simply the size of the integration domain
on the real axis divided by 27, and diverges as § — 0. The eigenvectors for two different
dimerizations are shown in figure 4. One can clearly see that their amplitude decays
much faster as in the critical case, especially for larger values of the gap. Note that we
have shown only eigenvalues with A <0, as those with —\ are simply multiplied by a
factor (—1)™.

5. Hopping chain with staggered potential

As a final example, let us consider the hopping chain in a staggered chemical potential

N 1 n
H:—§Z( cn+1+cn+1cn>—i—,uz Tcn (64)

n
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0.8 ‘ 0.8 ‘
l=1 = (=1 =
N (=2 — (=2 ——
0.6 i =3 —a— 0.6 =3 ——
N
0.4 IVZAAN 0.4
é 02 | / A é 02
E * A \ ) /)
= oop = B R
“- o/ N
02 f 02 |
N /
0.4 | 502 0.4 | &=0.5
5 10 15 20 10 15 20
m m

Figure 4. Eigenvectors ¥, (m) of the tridiagonal matrix of the dimerized chain with
elements (52), for various eigenvalues (59) and two different dimerizations 6 =0.2
(left) and 6 =0.5 (right). The normalization N, is fixed by (63).

The unit cell contains again two sites and one can proceed as in the previous section.
Using the reduced sublattice momentum ¢ and introducing new operators via

1 - / / :
— E ig(2m—1) 1 ﬁ 1— ﬁ iq
Com—1 \/W - € ( + Qqaq + Qqe 6@ )
1 - Im [T
cm=—§ P 1 — oy — 14 el ),
VRN 7 ( Q, Q2 &

one arrives at the diagonal form of the Hamiltonian and corresponding dispersion
relation

(65)

(66)

H=-> 0 (ala,—BIB), Q= +/cos?q+p2.
q

The ground state is again given by the filled band of «, fermions, and in appendix A we

show that the corresponding correlation matrix commutes with the tridiagonal matrix
defined by

1
ty = —am,

S dn= (1) p(m—1/2).

(67)

Compared with (48), we see that the transformation (65) now includes, instead of a
phase, a different weight factor for even and odd sites. Incorporating this extra weight,
we shall use the ansatz for the eigenvectors

/2 dao . . O —(—1\™
r¢)\ (m):/ —qelq(m_l/Q)el)‘@q q ( ) ,LL (68)

—7{'/2 27T Ql]
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30
20 . 4
10 [ ”,I/
w 0
10 + . s
=20 p=0.1 .
u=0.3 .
=0.5
_30 L L L L H I
-3 -2 -1 0 1 2 3 4

Figure 5. Single-particle spectra (symbols) of the EH of a hopping chain with a
staggered field, for a finite half-chain of size N =50 and various p. The lines show
the N — oo result in (72).

Multiplying with —27" and using the expression of the dispersion (66), one obtains the
integrand

N Esy i .
k%n—lh/ﬁq—(—nmﬂ+dﬁnq qtg ) p 1(m=1/2) gidey (69)
q

Integrating by parts in the first term, one finds again a cancellation with the second

term, and the phase must satisfy i—“;“ = Qq_l, which can be integrated as

1
pg=rF(qK), K=—F— (70)

NSEST

Furthermore, the boundary contribution can be assessed by noting that Q. = |ul,
and thus for g >0 (u <0) one needs to consider only the case m =2¢+1 (m = 2(). The
requirement is that the phase factor €'2("=1/2)¢iM=2 e real, which yields

m {%—é it >0

N——
‘ 2+1 ifpu<0’

=0,x1,%£2,... 1
SEars 0=0,%1,42, ()

Note that the difference in the quantization w.r.t. (59) is due to the missing phase factor
in the transformation (65). In particular, (71) breaks the particle-hole symmetry of the
spectrum, which transforms as A\y — —A_y under y — —pu.
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Finally, we discuss the spectrum of €, which is obtained completely analogously to
the previous section. The only difference is the extra factor « in the phase ¢,, such that
the EH and its spectrum read

H=4xkK (s")T, g =

K(K’){Qé—% if >0 )

"K(k) |20+1 ifp<o

We have checked this result against numerical calculations for a finite open chain of total
size 2N. The ¢y are computed from the eigenvalues of the reduced correlation matrix of
the half-chain with size N =50, and shown in figure 5 for various . The comparison
with the N — oo result (lines) in (72) shows an excellent agreement, which is expected
for a gapped system with N > &, i.e. when the size far exceeds the correlation length.
The corresponding eigenvectors are very similar to the dimerized case in figure 4, and
their normalization is analogous to (63), with the exchange 6’ — k and an extra factor
x coming from the size of the integration domain on the real axis.

6. Discussion

We have studied the EH in nonrelativistic free-fermion systems for a semi-infinite
domain, which is described by the deformed physical Hamiltonian with linearly increas-
ing couplings. Its single-particle eigenstates have a remarkably simple and universal
structure, which holds both for models defined in the continuum as well as on the lat-
tice, and both for critical and gapped ground states. Indeed, in all the cases considered,
these are obtained as a superposition of the modes of the total system, weighted with
the inverse of their single-particle energy measured from the Fermi level. Additionally,
each mode receives an extra phase that is proportional to the integrated weight, and
the prefactor is related to the corresponding eigenvalue. The spectrum is continuous for
critical systems, and becomes discrete with an equidistant spacing for the gapped chains
under study. While for the dimerized chain this can also be obtained by duality with
the transverse Ising chain and the corresponding CTM [37], the result for the staggered
chain is different and features a slightly shifted level structure. In fact, it is unclear
whether there exists a classical 2D integrable model whose CTM would reproduce the
same spectrum.

A further important observation is that, despite the nonrelativistic form of the mod-
els considered, the BW form becomes exact, i.e. the EH is equal to the linearly deformed
Hamiltonian up to a prefactor. While in the critical case one finds the expected form (1)
of the BW theorem with v given by the Fermi velocity, for gapped systems the prefactor
is nonuniversal. It is related to the behaviour of the inverse of the extra phase appearing
in the eigenfunctions, in particular its periodicity along the imaginary direction on the
complex plane. In contrast to the relativistic case, it carries a nontrivial dependence on
the mass gap.
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There are various possible extensions of this work. First, one could ask if the ansatz
found for a semi-infinite subsystem could be generalized to other geometries, such as the
interval, where the entanglement entropy has been studied thoroughly [38-40]. The com-
muting operator/matrix corresponds to the parabolic deformation of the Hamiltonian
both in the continuum as well as on the lattice [41], and their spectra and eigenfunc-
tions were studied in detail [34, 42]. In turn, one finds that the EH is nontrivially
related to the commuting operator. While in the continuum the corrections vanish in
the limit of a large interval [43], on the lattice the structure of the EH is modified
and involves longer range hopping [44], such that the CFT prediction can be recovered
only after an appropriate continuum limit [45, 46]. It would be interesting to see, if
the eigenvectors of the EH could be cast in a form analogous to the one obtained here.
Finding such a representation could provide physical insight on the corrections observed
in the EH beyond the CFT result. It could also help to attack the massive case [37],
where no analytical QFT result is available so far and one has to rely on numerical
approaches [47].

One could also address more general lattice models, e.g. when the dimerized hop-
ping and staggered fields are simultaneously present. A non-Hermitian version of such
an SSH model has recently been studied in the context of the EH, finding some non-
trivial behaviour at the critical point [48]. Another interesting scenario where commut-
ing operators play a crucial role is the one of inhomogeneous hopping chains related
to orthogonal polynomials [49-51]. In the continuum limit, such inhomogeneous models
can be described by a CFT in a curved background metric [52], and the EH can be
derived by appropriate conformal mappings [53, 54], with a BW form shown to emerge
in particular cases [55]. Generalizing our ansatz to the eigenvectors of the EH in these
models could shed light on novel features.

Finally, it remains to understand how the ansatz could be adapted to inter-
acting integrable systems, such as the XXZ chain, where the EH in the gapped
phase can be obtained via the CTM method and is known to have the BW form
[16]. The integrable generalization of the ansatz is further motivated by the fact,
that the substitution applied in (37) is reminiscent of the rapidity parametrization.
Finding the proper formulation could give a direct access to the EH also in the crit-
ical phase, which could so far only be probed indirectly via numerical simulations
[56-58].
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Appendix A. Calculation of commutators

A.l. Fermi gas

We shall prove here that the differential operator (7) indeed commutes with the integral
operator K involving the sine kernel (3) on the semi-infinite domain. One has
2

bk — (xd_+i+q§x)/ dyK (x—y) f (y)

dz? = dx 0
- [Cavrw &4 ) K@y (A1)
= | Wi egs - g tae ) K-y

as well as
2

o 00 2 d
—2KD :/ dy K (x — (—+—+q2)
f o (z—y) |y a7 Ty Ty f(y)

z/ooodyf(y) (dd—;y—d%ﬂﬁy)K(x—y), (A2)

where in the last step we have integrated by parts. Note that there is a boundary
contribution —K (z)f(0) from the first order derivative. This, however, is cancelled by
the boundary term of the second order derivative at the second partial integration, which

gives —f(y)%[yK(:r —y)] ‘ZO = K (x)f(0). Note that one also needs to require that the

function f(y) — 0 and its derivative f’(y) — 0 as y — co. One has further
d2
!/ 12
d—yQyK(x—y)=—2K (z—y)+yK"(x-y), (A3)

such that the commutator reads
2[D&]f = [ i)l -9 K" o)+ 2K - y)
0
+ai (z —y) K (z—y)] . (Ad)
It is then easy to see that

cosqr (x —y) _ singp (x—v)

™ (z—y) m(x—y)®

) = 5 singp (z —y) B cosqr (x —y) singp (z —y)
K"(z—y)=—qr (2 —7) 2qr oy 2 v — (A5)

K/(x—y)ZQF

and thus substituting into (A4) the commutator vanishes.

A.2. Hopping chain

Next we show, that the tridiagonal matrix (30) with elements given by (31) commutes
with the discrete sine kernel in (28). One has

—2 (TC) — mCerl,'n, + (m - 1) C’m—l,n —2cos qr (m - 1/2) C’m,n

m,n
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—2(CT),,,,=nChnps1+(n—1) Cpp—2cosqr (n—1/2)Crpy (AG)
One can then introduce r = m —n and rewrite
—21[T, C]m,n =7 (Cpsin+Cno1n) + Covin — Cpm1p — 2rcosqeChpn - (A7)
Furthermore one has

singp (r+1) singr(r—1)  2rsingprcosqr — 2singr cosgrr

Cm—&-Ln + Cm—Ln -

7 (r+1) T(r—1) w(r2—1) ’
o _c _ singp(r+1) _ singp (r—1)  2rsingpcosqpr — 2singprcosqrp
m+1,n m—1n — T (’l“ + 1) T (7,, . 1) - T (7,2 _ 1) )

(A8)

and substituting into (A7) one can easily recover [T',C] = 0.

A.3. Dimerized chain

For the dimerized chain 7" and C have an alternating structure. However, they both
couple only sites over odd distances, such that their product is nonvanishing only for
even index distances. Assuming even indices one has

= (1 - (5) 2m Cgm+1,2n + (1 + (S) (2m — 1) CQm,LQn
(1 — (5) 2?7,02m72n+1 —+ (1 —+ 5) (27’L — 1) 02m,2n—1 (Ag)

2m,2n

2m,2n =
Furthermore, the correlation matrix elements have the structure
Cmel,Zn - cr + 587“7 CQm,Qn-i—l - Cr - 587"; (AIO)

where 7 = 2n+ 1 — 2m and we defined the integrals

c_ /W/Q % COSqT CcOS(q ’ 5 — /n/z % singrsing . (A11)
—n/2 2T \/cos? g+ 02sin’ ¢ /2 2T \/cos? g+ 62sin’ ¢

Inserting these expressions, one obtains for the commutator matrix element

—2 [C, T]Qm,Qn = (r - 1) [CT + CTfQ + 52 (87' - Srﬁ)} + (Cr - C7'72) + 52 (87' + 51'72)
—(2m+2n—1)6(C, —Cr_y + S, +S,_2) (A12)

The first of these terms can be evaluated using trigonometric identities as

/2 d
(r—1)[Cr+Cra+6°(S, — S29)] :/ —q(r—l)cosq(r— 1) \/cos2q+52sin2q
—m/2 27
71'/2 . . .
:/ dg 1§ sing (r 1)811r12q7 (A13)
—nj22m V/cos? g+ 82sin’q
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where in the second line we have integrated by parts. For the rest of the terms we need
the expressions

/2 dq sing (r — 1)sin2q

(A14)

S+ 8 0= —(Cr—Cr ):/ .
’ ? —x/2 2T /cos? g + 62sin ¢

One can then immediately verify, that the first term in (A12) cancels with the second
and third one in the first line, while the second line also gives zero. The proof for the
case of odd indices follows similarly.

A.4. Staggered potential

For the staggered potential the elements of the correlation matrix with r =m — n read

/2 d sqr
1 _(_1)mﬂf,ﬂ/2ﬁ\/§7% m—n even

Cm,n - 5 m,n = fTr/Q dg cosgrcosg

—— m —n odd
—7T/2 27 [cos? g2

The matrix products with the 7" have a similar form as for the homogeneous chain
in (A6), except for the alternation of the potential. However, when calculating the
commutator, one has now the property Cy,_1, = £C), ,+1, where the plus/minus sign
corresponds to m — n being even or odd. This yields

(A15)

—2 [T7 C]m,n
o (m — TI,) (Cm—i-l,n + C1m—1,n - (_1)777 2,UJCm,n) + Cm—i—l,n — C1m—1,n m—mn even
(m +n— 1) (Cm—&-l,n + Cm—l,n - (_1)m 2/~LGm,,n) m —n odd
(A16)
Considering the case m — n even first, one finds from (A15)
/2 dq
r (Cerl,n + Cm—l,n - (_1)m 2“Cm,n) - / 2—2’/“ COSgTy cos? q+ ,lLZ, (A17)
—r/2 4T
71'/2 d . . 2
q singrsin2q
Cm .n_Cm— n:_/ re——————- A18
o " —n/2 2T \/cos? q + p? (AL8)

Integrating by parts in (A17), one finds exactly the negative of (A18), and thus the
commutator (A16) vanishes. It is easy to check using (A15) that the same holds true
for m —n odd as well.
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Appendix B. Relation to orthogonal polynomials

Here we show that the eigenvectors (32) are related to the so-called Meixner—Pollaczek
polynomials [36], and derive the proportionality factor between them. These hypergeo-
metric orthogonal polynomials can be expressed as

(@) ( 5o _ (2a)n ing —-n, A+ix 1 a—2i
1) (95#25)——”! "oy 92\ i1—e (B1)

where (2ar),, is the Pochhammer symbol, and the first few polynomials are given by
P (239) =1
Pl(a) (z;¢0) =2 (acosp + xsing)
P (2;¢) = 2%+ a® + (a® + a — %) cos (20) + (1 + 2)) zsin (2¢) (B2)

The Meixner—Pollaczek polynomials satisfy the orthogonality relation with respect to a
weight function

> 2n 2
| druwiad) PO o) P (ws) = 2225
—o0 (2sing)™ n!

w(z;0,0) = T (a+ix) |27, (B3)

As pointed out in the main text, our eigenvectors correspond to o = 1/2, ¢ = g, and
x = —\/singr, there is, however, a proportionality factor to be fixed. A direct numerical
comparison of the first few components of ¥,(m) and (B2) for various values of A and
gr suggests the relation

aph A
qul/Q) (z;qr) = \/ﬁesi“qu‘ cosh ( 7T ) Da(n+1). (B4)
sin g

We will now prove that the orthogonality relation (B3) is indeed satisfied with this
choice. Plugging in one has

o0 % qz el1(z)(m+1/2)
T dz (14e727* / —
/oo ( ) —s0 T y/cosqp + cosh (2z)

oo / —ig(z")(n+1/2) ] ,
> / d_Z © elZ:E(z —z)‘ (B5)
—oo T y/cosqr + cosh(2z)

The integral over x can be carried out and reads
/ dz (1+e7™) 2772 — (5 (2 — 2) + 6 (2 — z+im)] . (B6)

The first delta function simply reproduces ﬁ(}m,n. The second one requires an im shift

between the two variables. In order to understand its effect, let us shift the variables
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z—z+in/2 and 2z’ — z’ —in/2 to the upper and lower half-planes, respectively. The
corresponding changes are

cosh (2z) — —cosh(2z), tanh (2) — coth (2), (B7)

and similarly for 2z’. In turn, the function ¢(z) and its Jacobian transforms into

dg 2singp

d(z) = 2atan [tan (gr/2) coth (z)], (B8)

dz  cosqp —cosh (22)’

such that (z) now maps the infinite line to the complement F' of the Fermi sea. The
second delta function in (B6) thus yields the following contribution

0 2 .

. 2 cosqp — cosh (22)

where the extra sign appears because of the branch cut of the square root. The weight
factor is thus proportional to the Jacobian of the transformation, and changing back to
the g variable, one obtains the complementary sine kernel

™ ™

C’mn:

)

(6m,n - Cm,n) (BlO)

singp sin g

Adding the two pieces, we obtain the relation (B3).
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