The Fifteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com
by 2001:638:700:1004::1:63 on 01/12/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

2068

The gravitational field of a laser beam

Fabienne Schneiter

Eberhard-Karls- Universitat Tibingen, Institut fir Theoretische Physik, 72076 Tiibingen,
Germany

Dennis Ratzel

Institut fur Physik, Humboldt- Universitat zu Berlin, Newtonstrae 15, 12489 Berlin, Germany,
dennis.raetzel@physik.hu-berlin. de

Daniel Braun

Eberhard-Karls- Universitat Tibingen, Institut fir Theoretische Physik, 72076 Tiibingen,
Germany

In this proceedings article, we review the results presented in [Fabienne Schneiter et al.
2018 Class. Quantum Grav. 35 195007] on the gravitational field of light in a laser
beam, modeled as a solution to Maxwell’s equations perturbatively expanded in the
beam divergence. Using this approach, wave properties of light, such as diffraction, are
taken into account that have been neglected in earlier studies. Interesting features of
the gravitational field of laser beams become apparent like frame-dragging due to the
intrinsic angular momentum of light and the deflection of parallel co-propagating test
beams for short distances to the source beam.
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1. Introduction

The gravitational field of a light beam has first been studied in Ref. 15 by Tolman,
Ehrenfest and Podolski in 1931, who described the light beam as a one-dimensional
“pencil of light”. Later in Ref. 3 by Bonnor, a description for the gravitational field
of a cylindrical beam of light of a finite radius was presented. Light was modeled
as a continuous fluid moving at the speed of light. A central feature of the models
of Ref. 15 and Ref. 3 is the lack of diffraction; the beams do not diverge. This
corresponds to the short wavelength limit where all wavelike properties of light are
neglected. Further studies to the gravitational field of light that share this feature
include the investigation of two co-directed parallel cylindrical light beams of finite

2,10 9

radius =", spinning non-divergent light beams®, non-divergent light beams in the

framework of gravito-electrodynamics® and the gravitational field of a point like
particle moving with the speed of light 7.

In contrast, the wavelike properties of light were taken into account in Ref. 16,
where the gravitational field of a plane electromagnetic wave was investigated. An
approach to take finite wavelengths into account for the case of a laser pulse was
given in Refs. 11, 12, where, however, diffraction was neglected. Here, we describe
the laser beam as a solution to Maxwell’s equations. This is done perturbatively by
an expansion in the beam divergence, which is considered to be small. The zeroth
order of the expansion corresponds to the paraxial approximation and coincides
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with the result of Ref. 3. In the first order in the beam divergence, frame-dragging
due to the internal angular momentum of circularly polarized beams occurs. In the
forth order, a parallel co-propagating test beam of light is found to be deflected by
the gravitational field of the laser beam.

2. The model

In the following, we will employ dimensionless coordinates by dividing the Cartesian
coordinates corresponding to the lab reference by the beam waist wg as 7 = ct/wo,
& =x/wgy, x = y/wo and ¢ = z/wp, where c is the speed of light. A laser beam in
its simplest mode is accurately described by a Gaussian beam. The Gaussian beam
is an almost monochromatic electromagnetic plane wave which has the property
that its intensity distribution decays with a Gaussian factor with the distance to
the beamline. It is obtained as a perturbative solution of Maxwell’s equations,
an expansion in the beam divergence 6, the opening angle of the beam, which is
assumed to be small. When the beam divergence is small, the beam may be thought
of as a bunch of almost, but not exactly, parallel propagating rays of light. The
electromagnetic four-vector potential describing the Gaussian beam is obtained by
a plane wave multiplied by an envelope function, which is assumed to be varying
slowly in the direction of propagation, in agreement with the property that the
divergence of the beam is small. Corresponding to these features, we make the
ansatz for the four-vector potential A, = Av, (&, x,0¢) exp(2i(¢ — 7)/0), were A
is the amplitude, v, the envelope function, and the exponential factor describes a
plane wave propagating in (-direction with angular wave number k& = 2/6, where
wq is the beam waist at its focal point, a measure of the radius of the beam (see
Fig. 1).

Fig. 1. Schematic illustration of the Gaussian beam, the beam waist wo and the beam divergence
0. More specifically, the figure illustrates the scalar envelope function vg of the vector potential of
the Gaussian beam in a plane that contains the optical axis (represented by the dashed horizontal
line). Due to the rotational symmetry of the envelope function around the optical axis, the vertical
axis can be any direction transversal to the optical axis. The thick curved lines mark the distance
w(¢) = wo/1 + (6¢)2 from the optical axis at which the absolute value of the envelope function
reaches 1/e times its maximum.

In the following, the beam waist is kept constant. In this case, since the beam
divergence is small, the angular wave number is large. As for any beam of ra-
diation in flat spacetime, the four-vector potential satisfies the wave equations
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(852 +5>2( +a§ - 83) A, = 0, which follow from Maxwell’s equations when the
Lorenz gauge is chosen. The wave equations for the four-vector potential reduce to
a Helmholtz equation for the envelope function, (852 + 8)2( + 92(93( + 42'8%) v = 0.
We assume that the envelope function is slowly varying in the direction of prop-
agation, i.e. v, is a function of ¢. Then, the Helmholtz equation can be solved
iteratively by writing the envelope function as a power series in the divergence angle
0 (see Ref. 4). For each term in the expansion of the envelope function, one obtains
a Helmholtz equation with a source term. These source terms are proportional to
terms of lower order in the expansion of the envelope function, and even and odd
orders do not mix. We start from the zeroth order solution, which we assume to
have a Gaussian profile in the focus plane, and derive the vector potential up to
fourth order in the divergence angle.

To obtain the gravitational field of the laser beam, the energy momentum
tensor T,3 has to be calculated from the field strength F,g = 0,43 — 03Aq.
We only consider vector potentials with field strength tensors that are eigenfunc-
tions with eigenvalue A = 41 of the generator of the duality transformation of
the electromagnetic field, which in our case is given by F,g +— —ieagwsF"f‘s/Z
where €,gys is the completely anti-symmetric tensor with €123 = —1. In that
case the rapidly oscillating contributions of the plane wave factor in the vector
potential drop out and the energy momentum tensor assumes the simple form
Tap = c*eo Re (Fa"Fgcr - %naﬁF‘s"Fg‘p) /2. We interpret the eigenvalues A of the
generator duality transformation as the helicity of the beam since the standard
notion of circular polarization is recovered in the zeroth order in 6.

3. The gravitational field

Since the energy of a laser beam is small, we may expect its gravitational field
to be weak. The spacetime metric describing the gravitational field is thus as-
sumed to consist of the metric for flat spacetime in the rescaled coordinates n =
widiag(—1,1,1,1) plus a small perturbation hag, where small means |hqg| < wi
for all @ and . Terms quadratic in the metric perturbation are neglected; this is
the linearized theory of general relativity. When the Lorenz-gauge 0%hq5 = %85 he,
is chosen, Einstein’s field equations reduce to wave equations for the metric per-
turbation®: (8? —&-8)2( +a§ — 83) hop = —kwiTaps, where k = 167G /c* and G is
Newton’s constant. Solving the linearized Einstein equations for the energy mo-
mentum tensor of the laser beam with emitter and absorber at general positions
can be quite cumbersome. Therefore, we consider two different limiting situations
instead; the distance between emitter and absorber being very large in one case and
very small in the case.

For a large distance between emitter and absorber, we can neglect the rapid
change of the field strength at the emitter and the absorber. Then we can take into
account that T, is changing slowly in ¢. In particular, we have Té‘ﬁ =T O’t\ﬁ(f , X, 00).
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Therefore, the metric perturbation can be expanded in orders of the beam diver-

gence angle as hag = Y ey G"h((:ﬁ). The linearized Einstein equations lead to the

differential equations

@2+ ) )Y = —wikt)) (1)
A A(L
@2+ ) n)Y = —wint)) (2)
(35 + 32) /\(n) = fwgntA(TL) 5‘9 A(" P forn>1, (3)
where the ¢)7" (€, v, 0¢) are given by T24(€, x,00) = 02 o 0725 (€, x,6¢). The
solutions ha%") of Egs. (1), (2) and (3) can be found by direct calculation as we

did in Ref. 13. These solutions have to be constructed such that the components of
the Riemann curvature tensor vanish at infinite distance from the beamline. The
Riemann curvature tensor governs the spread and the contraction of the trajectories
of test particles. This means, if the Riemann tensor vanishes, parallel geodesics stay
parallel and there is no physical effect as the only reference for a test particle in
linearized gravity can be another test particle. As the energy distribution of the
laser beam decays like a Gaussian function with the distance from the beamline, no
gravitational effect should remain at infinite spatial distances from the beamline.
Therefore, we have to ensure that the Riemann curvature tensor R*,;, vanishes
for p — oo. General solutions of Egs. (1), (2) and (3) can be given in terms of the
free space Green’s function for the Poisson equation in two dimensions as
o0
S (€%, 00) = ﬁ / de'dy'log ((€ — €)%+ (x = X)) Q57 (€' .1, 0¢) . (4)
— 00
where Q™) are the right hand sides of Eqs. (1), (2) and (3), respectively.

In the second situation, where we assume a short distance between emitter and
absorber, the rapid change of the field strength at emitter and absorber cannot be
neglected. Then, we solve the linearized Einstein equations by making use of the
corresponding Green’s function.

Iteratively solving the Poisson equations for the terms in the expansion of the
metric perturbation up to a given order in the divergence angle, we obtain an expres-
sion for the spacetime metric which contains all information about the gravitational
field of the laser beam to the given order. Knowing the spacetime metric allows
us to study the motion of test particles in the gravitational field of the laser beam;
their world lines v* satisfy the geodesic equations which depend on the Christoffel
symbols, and the distance between two initially parallel geodesics is governed by
the geodesic deviation equation which is given in terms of the Riemann curvature
tensor. Both Christoffel symbols and curvature tensor are expanded in orders of
the divergence angle 6.

4. Conclusions

In zeroth order in 6, all non-vanishing components of the metric perturbation are

equal up to a sign. Explicitly, we have h(TO) hé%) = hé_g) h(o) : 1O For
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Fig. 2. These plots show the value of the leading order of the metric perturbation (9 and its
first derivatives for the Gaussian beam with infinite distance between emitter and absorber (plain,
blue), the Gaussian beam with short distance between emitter and absorber (dashed, red), and the
infinitely thin beam (dotted, purple). p is defined as 1/£2 + x2. In the second and the third case,
the distance between emitter and absorber is chosen to be 6wg. In the first row, the functions are
plotted for ¢ = 1 and in the second row for p = 1/2. The second row does not contain plots for
large distances between emitter and absorber as there is no dependence of 1(®) on ¢ in that case.
We find that the values for I(°) and its first derivatives are usually larger for the infinitely thin
beam than for the other two cases. This is due to the divergence at the beamline for the case of
the infinitely thin beam. In the other two cases, the gravitational field is spread out as the sources
are. In b), we see that the absolute value of the first p-derivative of I(°) reaches a maximum at
a finite distance from the beamline. Note that BPI(O) is proportional to the acceleration that a
test particle experiences if it is initially at rest at a given distance p to the beamline. We see that
the acceleration is always directed towards the beamline. It is larger in the case of an infinite
distance between emitter and absorber than in the case of a finite distance, which we can attribute
to the larger extension of the source (and thus the larger amount of energy) in the former than in
the latter. In d), which shows plots for finite distance between emitter and absorber, we see that
391(0) still is the largest at the center between emitter and absorber and decays quickly once their
positions at ( = £3 are passed.
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small values of the beam waist and for § = 0, which corresponds to the paraxial
approximation in our case, our solution for the laser beam corresponds to the so-
lution for the infinitely thin beam!®. If we consider the laser beam to be infinitely
long and assume 6 = 0, we recover the solution for an infinitely long cylinder?.
In Fig. 2, the function I(®) and its derivatives are illustrated for the three cases of
the infinitely long Gaussian beam, the Gaussian beam with short distance between
emitter and absorber, and the infinitely thin beam.

In first order in the divergence angle, we find frame dragging due to spin angular
momentum of the circular polarized laser beam. This is similar to the result of
Ref. 14 for beams with intrinsic orbital angular momentum. In contrast to frame
dragging induced by orbital angular moment, the effect that we find decays like a
Gaussian with the distance from the beamline.

The statement of Ref. 15 by Tolman et al. that a non-divergent light beam
does not gravitationally deflect a co-directed parallel light beam has been recovered
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Fig. 3. Schematic illustration of the laser beam and the parallel co-propagating test ray of light:
We look at the deflection of the test ray of light due to the gravitational field of the laser beam.

in different contexts: two co-directed parallel cylindrical light beams of finite
radius 210, spinning non-divergent light beams?, non-divergent light beams in the
framework of gravito-electrodynamics® and parallel co-propagating light-like test
particles in the gravitational field of a one-dimensional light pulse!!. In fourth
order in the divergence angle, we find a deflection of parallel co-propagating test
beams. This shows that the result of Ref. 15 and Ref. 3 only holds up to the third
order in the divergence angle. This could have been expected from the fact that the
group velocity of light in a Gaussian beam along the beamline is not the speed of
light 7. However, the deflection of parallel co-propagating light beams by light in
a focused laser beam decays like a Gaussian with the distance from the beamline.
This means that the effect does not persist outside of the distribution of energy
given by the laser beam.

In Ref. 13, we compare the result to the deflection that one obtains from a rod
of matter boosted to a speed close to the speed of light. We conclude that focused
light does not simply behave like massive matter moving with the reduced velocity
identified in Refs. 11, 14. We argue that this difference is due to the divergence of
the laser beam along the beamline which leads to additional non-zero components
of the metric perturbation which do not appear in the case of the boosted rod.
These additional contributions cancel the effect of the reduced propagation speed
of light in the focused beam for large distances from the beamline.
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