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In this proceedings article, we review the results presented in [Fabienne Schneiter et al.

2018 Class. Quantum Grav. 35 195007] on the gravitational field of light in a laser
beam, modeled as a solution to Maxwell’s equations perturbatively expanded in the

beam divergence. Using this approach, wave properties of light, such as diffraction, are

taken into account that have been neglected in earlier studies. Interesting features of
the gravitational field of laser beams become apparent like frame-dragging due to the

intrinsic angular momentum of light and the deflection of parallel co-propagating test
beams for short distances to the source beam.
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1. Introduction

The gravitational field of a light beam has first been studied in Ref. 15 by Tolman,

Ehrenfest and Podolski in 1931, who described the light beam as a one-dimensional

“pencil of light”. Later in Ref. 3 by Bonnor, a description for the gravitational field

of a cylindrical beam of light of a finite radius was presented. Light was modeled

as a continuous fluid moving at the speed of light. A central feature of the models

of Ref. 15 and Ref. 3 is the lack of diffraction; the beams do not diverge. This

corresponds to the short wavelength limit where all wavelike properties of light are

neglected. Further studies to the gravitational field of light that share this feature

include the investigation of two co-directed parallel cylindrical light beams of finite

radius2,10, spinning non-divergent light beams9, non-divergent light beams in the

framework of gravito-electrodynamics5 and the gravitational field of a point like

particle moving with the speed of light1,17.

In contrast, the wavelike properties of light were taken into account in Ref. 16,

where the gravitational field of a plane electromagnetic wave was investigated. An

approach to take finite wavelengths into account for the case of a laser pulse was

given in Refs. 11, 12, where, however, diffraction was neglected. Here, we describe

the laser beam as a solution to Maxwell’s equations. This is done perturbatively by

an expansion in the beam divergence, which is considered to be small. The zeroth

order of the expansion corresponds to the paraxial approximation and coincides
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with the result of Ref. 3. In the first order in the beam divergence, frame-dragging

due to the internal angular momentum of circularly polarized beams occurs. In the

forth order, a parallel co-propagating test beam of light is found to be deflected by

the gravitational field of the laser beam.

2. The model

In the following, we will employ dimensionless coordinates by dividing the Cartesian

coordinates corresponding to the lab reference by the beam waist w0 as τ = ct/w0,

ξ = x/w0, χ = y/w0 and ζ = z/w0, where c is the speed of light. A laser beam in

its simplest mode is accurately described by a Gaussian beam. The Gaussian beam

is an almost monochromatic electromagnetic plane wave which has the property

that its intensity distribution decays with a Gaussian factor with the distance to

the beamline. It is obtained as a perturbative solution of Maxwell’s equations,

an expansion in the beam divergence θ, the opening angle of the beam, which is

assumed to be small. When the beam divergence is small, the beam may be thought

of as a bunch of almost, but not exactly, parallel propagating rays of light. The

electromagnetic four-vector potential describing the Gaussian beam is obtained by

a plane wave multiplied by an envelope function, which is assumed to be varying

slowly in the direction of propagation, in agreement with the property that the

divergence of the beam is small. Corresponding to these features, we make the

ansatz for the four-vector potential Aα = Avα(ξ, χ, θζ) exp(2i(ζ − τ)/θ), were A
is the amplitude, vα the envelope function, and the exponential factor describes a

plane wave propagating in ζ-direction with angular wave number k = 2/θ, where

w0 is the beam waist at its focal point, a measure of the radius of the beam (see

Fig. 1).

Fig. 1. Schematic illustration of the Gaussian beam, the beam waist w0 and the beam divergence

θ. More specifically, the figure illustrates the scalar envelope function v0 of the vector potential of
the Gaussian beam in a plane that contains the optical axis (represented by the dashed horizontal
line). Due to the rotational symmetry of the envelope function around the optical axis, the vertical

axis can be any direction transversal to the optical axis. The thick curved lines mark the distance

w(ζ) = w0

√
1 + (θζ)2 from the optical axis at which the absolute value of the envelope function

reaches 1/e times its maximum.

In the following, the beam waist is kept constant. In this case, since the beam

divergence is small, the angular wave number is large. As for any beam of ra-

diation in flat spacetime, the four-vector potential satisfies the wave equations
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(
∂2ξ + ∂2χ + ∂2ζ − ∂2τ

)
Aµ = 0, which follow from Maxwell’s equations when the

Lorenz gauge is chosen. The wave equations for the four-vector potential reduce to

a Helmholtz equation for the envelope function,
(
∂2ξ + ∂2χ + θ2∂2θζ + 4i∂θζ

)
vα = 0.

We assume that the envelope function is slowly varying in the direction of prop-

agation, i.e. vα is a function of θζ. Then, the Helmholtz equation can be solved

iteratively by writing the envelope function as a power series in the divergence angle

θ (see Ref. 4). For each term in the expansion of the envelope function, one obtains

a Helmholtz equation with a source term. These source terms are proportional to

terms of lower order in the expansion of the envelope function, and even and odd

orders do not mix. We start from the zeroth order solution, which we assume to

have a Gaussian profile in the focus plane, and derive the vector potential up to

fourth order in the divergence angle.

To obtain the gravitational field of the laser beam, the energy momentum

tensor Tαβ has to be calculated from the field strength Fαβ = ∂αAβ − ∂βAα.

We only consider vector potentials with field strength tensors that are eigenfunc-

tions with eigenvalue λ = ±1 of the generator of the duality transformation of

the electromagnetic field, which in our case is given by Fαβ 7→ −iεαβγδF γδ/2,

where εαβγδ is the completely anti-symmetric tensor with ε0123 = −1. In that

case the rapidly oscillating contributions of the plane wave factor in the vector

potential drop out and the energy momentum tensor assumes the simple form

Tαβ = c2ε0 Re
(
F σ
α F

∗
βσ − 1

4ηαβF
δρF ∗δρ

)
/2. We interpret the eigenvalues λ of the

generator duality transformation as the helicity of the beam since the standard

notion of circular polarization is recovered in the zeroth order in θ.

3. The gravitational field

Since the energy of a laser beam is small, we may expect its gravitational field

to be weak. The spacetime metric describing the gravitational field is thus as-

sumed to consist of the metric for flat spacetime in the rescaled coordinates η =

w2
0diag(−1, 1, 1, 1) plus a small perturbation hαβ , where small means |hαβ | � w2

0

for all α and β. Terms quadratic in the metric perturbation are neglected; this is

the linearized theory of general relativity. When the Lorenz-gauge ∂αhαβ = 1
2∂βh

α
α

is chosen, Einstein’s field equations reduce to wave equations for the metric per-

turbation8:
(
∂2ξ + ∂2χ + ∂2ζ − ∂2τ

)
hαβ = −κw2

0Tαβ , where κ = 16πG/c4 and G is

Newton’s constant. Solving the linearized Einstein equations for the energy mo-

mentum tensor of the laser beam with emitter and absorber at general positions

can be quite cumbersome. Therefore, we consider two different limiting situations

instead; the distance between emitter and absorber being very large in one case and

very small in the case.

For a large distance between emitter and absorber, we can neglect the rapid

change of the field strength at the emitter and the absorber. Then we can take into

account that Tαβ is changing slowly in ζ. In particular, we have Tλαβ = Tλαβ(ξ, χ, θζ).
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Therefore, the metric perturbation can be expanded in orders of the beam diver-

gence angle as hαβ =
∑∞
n=0 θ

nh
(n)
αβ . The linearized Einstein equations lead to the

differential equations(
∂2ξ + ∂2χ

)
h
λ(0)
αβ = −w2

0κ t
λ(0)
αβ , (1)(

∂2ξ + ∂2χ
)
h
λ(1)
αβ = −w2

0κ t
λ(1)
αβ , (2)(

∂2ξ + ∂2χ
)
h
λ(n)
αβ = −w2

0κ t
λ(n)
αβ − ∂

2
θζh

λ(n−2)
αβ , for n > 1 , (3)

where the t
λ(n)
αβ (ξ, χ, θζ) are given by Tλαβ(ξ, χ, θζ) =

∑∞
n=0 θ

nt
λ(n)
αβ (ξ, χ, θζ). The

solutions h
λ(n)
αβ of Eqs. (1), (2) and (3) can be found by direct calculation as we

did in Ref. 13. These solutions have to be constructed such that the components of

the Riemann curvature tensor vanish at infinite distance from the beamline. The

Riemann curvature tensor governs the spread and the contraction of the trajectories

of test particles. This means, if the Riemann tensor vanishes, parallel geodesics stay

parallel and there is no physical effect as the only reference for a test particle in

linearized gravity can be another test particle. As the energy distribution of the

laser beam decays like a Gaussian function with the distance from the beamline, no

gravitational effect should remain at infinite spatial distances from the beamline.

Therefore, we have to ensure that the Riemann curvature tensor Rµρσα vanishes

for ρ→∞. General solutions of Eqs. (1), (2) and (3) can be given in terms of the

free space Green’s function for the Poisson equation in two dimensions as

h
λ(n)
αβ (ξ, χ, θζ) =

1

4π

∫ ∞
−∞

dξ′dχ′ log
(
(ξ − ξ′)2 + (χ− χ′)2

)
Q
λ(n)
αβ (ξ′, χ′, θζ ′) , (4)

where Qλ(n) are the right hand sides of Eqs. (1), (2) and (3), respectively.

In the second situation, where we assume a short distance between emitter and

absorber, the rapid change of the field strength at emitter and absorber cannot be

neglected. Then, we solve the linearized Einstein equations by making use of the

corresponding Green’s function.

Iteratively solving the Poisson equations for the terms in the expansion of the

metric perturbation up to a given order in the divergence angle, we obtain an expres-

sion for the spacetime metric which contains all information about the gravitational

field of the laser beam to the given order. Knowing the spacetime metric allows

us to study the motion of test particles in the gravitational field of the laser beam;

their world lines γµ satisfy the geodesic equations which depend on the Christoffel

symbols, and the distance between two initially parallel geodesics is governed by

the geodesic deviation equation which is given in terms of the Riemann curvature

tensor. Both Christoffel symbols and curvature tensor are expanded in orders of

the divergence angle θ.

4. Conclusions

In zeroth order in θ, all non-vanishing components of the metric perturbation are

equal up to a sign. Explicitly, we have h
(0)
ττ = h

(0)
ζζ = −h(0)ζτ = −h(0)τζ =: I(0). For
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Fig. 2. These plots show the value of the leading order of the metric perturbation I(0) and its

first derivatives for the Gaussian beam with infinite distance between emitter and absorber (plain,

blue), the Gaussian beam with short distance between emitter and absorber (dashed, red), and the
infinitely thin beam (dotted, purple). ρ is defined as

√
ξ2 + χ2. In the second and the third case,

the distance between emitter and absorber is chosen to be 6w0. In the first row, the functions are
plotted for ζ = 1 and in the second row for ρ = 1/2. The second row does not contain plots for

large distances between emitter and absorber as there is no dependence of I(0) on ζ in that case.

We find that the values for I(0) and its first derivatives are usually larger for the infinitely thin
beam than for the other two cases. This is due to the divergence at the beamline for the case of

the infinitely thin beam. In the other two cases, the gravitational field is spread out as the sources

are. In b), we see that the absolute value of the first ρ-derivative of I(0) reaches a maximum at
a finite distance from the beamline. Note that ∂ρI(0) is proportional to the acceleration that a

test particle experiences if it is initially at rest at a given distance ρ to the beamline. We see that

the acceleration is always directed towards the beamline. It is larger in the case of an infinite
distance between emitter and absorber than in the case of a finite distance, which we can attribute

to the larger extension of the source (and thus the larger amount of energy) in the former than in

the latter. In d), which shows plots for finite distance between emitter and absorber, we see that
∂ρI(0) still is the largest at the center between emitter and absorber and decays quickly once their

positions at ζ = ±3 are passed.

small values of the beam waist and for θ = 0, which corresponds to the paraxial

approximation in our case, our solution for the laser beam corresponds to the so-

lution for the infinitely thin beam15. If we consider the laser beam to be infinitely

long and assume θ = 0, we recover the solution for an infinitely long cylinder3.

In Fig. 2, the function I(0) and its derivatives are illustrated for the three cases of

the infinitely long Gaussian beam, the Gaussian beam with short distance between

emitter and absorber, and the infinitely thin beam.

In first order in the divergence angle, we find frame dragging due to spin angular

momentum of the circular polarized laser beam. This is similar to the result of

Ref. 14 for beams with intrinsic orbital angular momentum. In contrast to frame

dragging induced by orbital angular moment, the effect that we find decays like a

Gaussian with the distance from the beamline.

The statement of Ref. 15 by Tolman et al. that a non-divergent light beam

does not gravitationally deflect a co-directed parallel light beam has been recovered
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Fig. 3. Schematic illustration of the laser beam and the parallel co-propagating test ray of light:

We look at the deflection of the test ray of light due to the gravitational field of the laser beam.

in different contexts: two co-directed parallel cylindrical light beams of finite

radius2,3,10, spinning non-divergent light beams9, non-divergent light beams in the

framework of gravito-electrodynamics5 and parallel co-propagating light-like test

particles in the gravitational field of a one-dimensional light pulse11. In fourth

order in the divergence angle, we find a deflection of parallel co-propagating test

beams. This shows that the result of Ref. 15 and Ref. 3 only holds up to the third

order in the divergence angle. This could have been expected from the fact that the

group velocity of light in a Gaussian beam along the beamline is not the speed of

light6,7. However, the deflection of parallel co-propagating light beams by light in

a focused laser beam decays like a Gaussian with the distance from the beamline.

This means that the effect does not persist outside of the distribution of energy

given by the laser beam.

In Ref. 13, we compare the result to the deflection that one obtains from a rod

of matter boosted to a speed close to the speed of light. We conclude that focused

light does not simply behave like massive matter moving with the reduced velocity

identified in Refs. 11, 14. We argue that this difference is due to the divergence of

the laser beam along the beamline which leads to additional non-zero components

of the metric perturbation which do not appear in the case of the boosted rod.

These additional contributions cancel the effect of the reduced propagation speed

of light in the focused beam for large distances from the beamline.
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