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Chapter 1

Introduction

1.1 Beyond the Standard Model physics

The Standard Model (SM) [1–6] of particle physics summarizes our current un-
derstanding of the fundamental nature of our Universe. It describes the weak,
electromagnetic, and strong interactions between elementary particles, apart from
gravity. The SM puzzle was filled by decades of complementary efforts of both
theorists and experimentalists. The final piece, the Higgs boson, was found by
ATLAS [7] and CMS [8] collaboration in 2012.

Even with the most successful agreement between predictions and experiments
in the history of physics, the SM is still lacking in answering some key features
of the Universe, such as the matter-antimatter asymmetry, neutrino masses and
mixing angles, the existence and nature of dark matter (DM) [9]. All these obser-
vations provide clear indications of the existence of beyond-the-Standard Model
(BSM) physics.

Particle physicists are constantly on the lookout for more pieces of the puz-
zle. The experimental searches happen on three fronts. The first front is associ-
ated with the High-Energy collider experiments [10,11], such as the CERN Large
Hadron Collider (LHC). The second one is the cosmological and astrophysical
frontier, which studies the Cosmic Microwave Background (CMB), neutrino pro-
duction at the sun and supernovae, exploring the role of neutrinos in cosmological
processes, and so on [12]. The third is relatively low-energy high-precision mea-
surements [13], which includes atomic and nuclear physics experiments, rare and
forbidden processes like electric dipole moment experiments, neutrinoless double
β-decays, etc. The Fermilab Muon g-2 collaboration, one of the high-precision
experiments, reported a muon magnetic momentum value different from the SM
prediction [14]. However, the recent lattice QCD results reduced the discrepancy
to 1.5 σ [15, 16]. The Fermilab Muon g-2 result was from their Run 1 data, and
they have already finished collecting data up to Run 5. They are currently analyz-
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ing this data, and it is expected that the Run 2 data will reduce the uncertainty
by a factor of two. Currently, the community is waiting for this improved result.

On the other side, particle theorists work on two fronts. The first one is the
“model-dependent” approach in which the SM is extended with some specific new
particles motivated by theoretical arguments. Some famous examples of these
BSM models are the left-right symmetric models (LRSMs) [17–21], leptoquark
models [22,23], composite Higgs model [24,25], and so on. The second one is the
“model-independent” approach in which effective field theories (EFTs) are used
to study BSM physics. The EFTs are tailor-made to study physics at a specific
range of energies. Some popular EFTs are Standard Model effective field the-
ory (SMEFT) [26–28], Low-Energy EFT (LEFT) [29], chiral perturbation theory
(χPT) [30, 31], pionless-EFT [32, 33], and so on. Since a general EFT contains
all possible BSM interactions, we can always translate the result of EFT to any
particular BSM model. Chapter 4 demonstrates this feature of some BSM models
discussed above. This feedback helps to improve the designs of these BSM models.

The next big goal of particle physicists is to establish a new Standard Model
which overcomes the failures of SM; this model may be one of the BSM mod-
els discussed before, a combination of those, or something yet to be considered.
Unfortunately, the lack of direct experimental evidence of BSM physics makes
it impossible to make any significant progress in identifying this new Standard
Model. However, we were able to narrow down the parameter space of many
BSM models based on the negative results. In this thesis, I have taken the EFT
approach to study BSM physics.

1.2 Effective field theories

The EFTs are effective because of the fascinating feature of nature called de-
coupling, which states that most (but not all) of the details of small-distance
phenomena tend to be largely irrelevant for the description of much larger sys-
tems. This is why natural phenomena can be explained using simple laws without
knowing the underlying physics. EFTs are based on the idea that physics at one
energy scale does not depend on the physics at another energy scale, and each
EFT comes with its degrees of freedom [34] (see Ref. [35] for review on EFTs).

There are two approaches to constructing an EFT. They are the top-down and
the bottom-up approach. In the top-down approach, we know the fundamental
(UV complete) theory at an energy scale Λ. We construct the EFT at a lower
energy scale by integrating out the heavy degrees of freedom. Thus, we end up
with a more straightforward theory with degrees of freedom and interactions rel-
evant to the problem we are trying to solve. The parameters of EFTs, the Wilson
coefficients, are fixed by the parameters of the UV complete theory. For example,
if one considers the electroweak theory as the full theory, then by integrating out
W and Z bosons, we arrive at the EFT: Fermi’s theory of weak interaction in
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terms of local four-fermion operators. The Fermi constant

GF =

√
2g2

8m2
W

, (1.1)

is given by the parameters of electroweak theory: the weak coupling constant g
and W boson mass mW .

In the bottom-up approach, we construct the Lagrangian with a set of sym-
metries, which are motivated by some partial understanding of the UV complete
theory at the energy scale Λ. In this case, the Wilson coefficients are independent
parameters of the EFT, and a power counting rule gives the relative relevance of
the operators. An example of this approach is the SMEFT, where we assumed
Lorentz and gauge invariance

LSMEFT = LSM +
∑

∀i,n≥5

CiO(n)
i

Λn−4
, (1.2)

where O(n)
i are all possible operators in SM fields of mass dimension n which are

invariant under SU(3)c × SU(2)L × U(1)Y and Ci are called Wilson coefficients.
A part of this thesis is focused on providing a theoretical understanding of

various nuclear physics experiments. This requires understanding the interaction
of nucleons with external probes (such as DM, axion, etc.); it would have been
ideal if we could use quantum chromodynamics (QCD) to achieve this, but the
non-perturbative nature of QCD at the nuclear scale makes it impractical.

An alternative approach is to apply QCD numerically; this is achieved by the
lattice QCD (LQCD) [36–38]. LQCD is a set of advanced numerical techniques
to compute the QCD interactions between quarks and gluons. In LQCD, we im-
plement the quantum field theory (QFT) in a grid or lattice of space-time points.
In the continuum limit, i.e., when the lattice space is reduced to zero and the
lattice size is increased to infinity, we recover QCD. LQCD has made significant
progress in recent years but has yet to reach the desired accuracy. Since we are
interested in a specific energy scale, the nuclear scale, this is an ideal scenario to
use an EFT. It is best to construct an EFT using a top-down approach since we
know the UV complete theory, i.e., QCD. The EFT developed this way is called
chiral EFT (χPT). Moreover, to accommodate BSM physics, we can expand on
this by using this top-down approach on the SMEFT operators. Because we use
χPT throughout this thesis, we will discuss it in detail in Chapter 2.

1.3 CP violation

Symmetries and conservation laws are very important in physics. Noether’s the-
orem states that every continuous symmetry of the Lagrangian leads to a conser-
vation law [39]. For example, rotational and time translation invariance leads to
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angular momentum and energy conservation, respectively. Apart from these con-
tinuous symmetries, discrete symmetries are very interesting in particle physics.
There are three space-time discrete symmetries. The parity (P ) transformation

flips the space coordinates with respect to origin r
P−→ −r. This transformation

changes the sign of momentum and position, but the spin angular momentum
remains unaffected. The charge conjugation (C) transformation flips matter to
antimatter and vice versa. This transformation changes the charge of particles,
but the momentum and spin angular momentum remains unchanged. Finally, the

time reversal (T ) transformation flips the time coordinate t
T−→ −t. This transfor-

mation changes the sign of momentum and spin, but position and energy remain
unaffected. Some fundamental interactions respect some of these symmetries, and
others do not. For example, weak interaction violates parity, whereas strong and
electromagnetic interactions respect parity.

The CP symmetry is the product of parity and charge conjugation symme-
tries. Under CP transformation, an electron travel with momentum p becomes
a positron with opposite momentum −p and opposite spin. In short, CP trans-
formation changes matter to mirrored antimatter. The CPT theorem state that
natures always respect the CPT symmetry. This implies CP symmetry is equiv-
alent to time-reversal symmetry, which was believed to be a proper symmetry of
nature until the experimental discovery of CP -violation from β-decay of Cobalt
60 [40]. Why should we bother about CP -violation? Because it is one of the
Sakharov conditions [41]. Sakharov conditions are the three necessary conditions
required in a baryon-generating interaction to produce matter and antimatter at
different rates. The three conditions are i) baryon number violation, ii) C and
CP violation, and iii) interactions out of thermal equilibrium.

The Standard Model has two sources of CP -violation. The first one arises
in the weak sector, specifically from the Cabibbo-Kobayashi-Maskawa (CKM)
matrix [42,43], which describes the mixing of quark generations. The second one
arises from the strong sector in the form of flavor-conserving strong interaction.
This thesis focuses on the CP violation from the strong sector of the SM and on
potential new sources of CP violation from BSM physics.

1.4 Strong CP problem and the axion solution

Quantum chromodynamics is the theory of strong interactions. The QCD La-
grangian contains CP -conserving and CP -violating interactions. However, various
experiments concluded that the CP -violating interactions in QCD are minimal.
This is called the strong CP problem. This is not a problem in the strict sense,
but it seems improbable that nature just chose the CP -violating QCD parameter
θ̄ to be extremely small. However, if we treat it as a problem, one solution is
the BSM particle called the axion, which occurs naturally in many BSM models.
This section explores the strong CP problem and the axion solution. The strong
CP problem is related to the U(1)A problem of quantum chromodynamics, which
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is briefly discussed below.

1.4.1 U(1)A problem of QCD

Let us consider the QCD Lagrangian with two massless flavors u and d

LQCD = −1

4
GAµνG

A,µν + q̄iγµ∂µq + gsq̄γ
µGAµT

Aq , (1.3)

where q = (u, d)T , GAµν is gluon tensor, TA are the Gell-Mann matrices, γµ are
the Dirac matrices, and gs is the coupling constant of strong interaction. In this
limit the Lagrangian has the global symmetry SU(2)R×SU(2)L×U(1)R×U(1)L.
This can be rewritten as the vector (R + L) and axial-vector (R − L) form, and
their corresponding transformations are given by

SU(2)V :

(
u
d

)
→ exp

(
iαaV

τa

2

)(
u
d

)
, (1.4)

SU(2)A :

(
u
d

)
→ exp

(
iγ5α

a
A

τa

2

)(
u
d

)
, (1.5)

U(1)V :

(
u
d

)
→ exp (iβV )

(
u
d

)
, (1.6)

U(1)A :

(
u
d

)
→ exp (iγ5βA)

(
u
d

)
, (1.7)

where τa are Pauli matrices. The SU(2)V and U(1)V symmetries are readily
recognized in the QCD spectrum; the former leads to isospin conservation, and
the latter manifests as the baryon number conservation.

The SU(2)A symmetry is spontaneously broken due to the non-zero quark
condensates

⟨0|ūu|0⟩ ≈ ⟨0|d̄d|0⟩ ≠ 0 . (1.8)

This leads to three Goldstone bosons, which appear as the pion triplet (π0,±). The
pions are massive because of the non-zero quark masses, which we have neglected.

The U(1)A transformation connects states of opposite parity but the same
flavor and spin. This means that if U(1)A is a symmetry observed by nature,
we should observe degenerate hadrons of opposite parity. However, this is not
observed. The quark condensate also breaks U(1)A symmetry, and the Goldstone
boson associated with this is called the η′ boson. Weinberg has shown that such
a boson should have mass mL comparable to the pion [44]

mL ≤
√
3mπ . (1.9)

However, no such particle is observed. The particle with the right quantum num-
bers (zero-isospin pseudoscalar) is the η′ boson, but it is much more massive than



6 Chapter 1. Introduction

the pions

mη′

mπ
≃ 4 . (1.10)

This is called the missing meson or U(1)A problem of QCD. If we consider the
QCD Lagrangian with the light quarks (u, d, and s), we will get a spontaneously
broken SU(3)A symmetry; this will lead to eight Goldstone bosons: three pions
(π0,±), four kaons (K̄0,K0,±), and the η meson. If U(1)A symmetry was spon-
taneously broken, we should see a ninth Goldstone boson with masses similar
to these eight Goldstone bosons, which is not observed, leading to the U(1)A
problem.

One interesting feature of U(1)A transformation is, it has an anomaly

∂µj
µ
A =

Nαs
8π

G̃AµνG
A,µν , (1.11)

where αs =
g2s
4π , N = 2 is the number of quarks, and G̃Aµν = 1

2ϵµνρσG
A,µν . The

anomaly originated from the Jacobian in the integration measure (DqDq̄ U(1)A−−−−→
J−2DqDq̄) [45,46]. It is easy to show that the right side of the above equation is
a total derivative

G̃AµνG
A,µν = ∂µK

µ , Kµ = ϵµνρσGAν

(
GAρσ − gs

3
fABCGBρ G

C
σ

)
, (1.12)

where GAν are the gluons and fABC are the SU(3) structure constants. We would
think that during the space-time integration, this will become a surface term and
would vanish, provided the gauge fields go to zero at infinity. ’t Hooft realized
that if we could describe QCD by the semi-classical approximation of the path
integral, then the U(1)A problem can be solved by a kind of configuration called
an instanton [47,48].

In the semi-classical approximation, the gauge fields at the boundary can be of
different configurations, categorized by a parameter called winding number n, and
the weight of the functional integral can be represented by adding the following
term to the Lagrangian

Lθ =
∞∑

n=−∞
einθ

′ αs
8π
G̃AµνG

A,µν ≡ θ
αs
8π
G̃AµνG

A,µν . (1.13)

where θ′ is a free phase parameter. In the semi-classical approximation, instantons
provide a non-zero contribution in the path integral, and therefore we need to add
this term to the QCD Lagrangian. Since this term explicitly breaks the U(1)A
symmetry, this explains the higher mass of η′ meson, thereby solving the U(1)A
problem.
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1.4.2 Strong CP problem

The QCD Lagrangian with the quark mass term and the θ-term is

LQCD = −1

4
GAµνG

A,µν + q̄iγµ∂µq + gsq̄γ
µGAµT

Aq − q̄Mq − θ
αs
8π
G̃AµνG

A,µν ,

(1.14)

where q = (u, d, s)T and M = Diag(mfe
θf ). It is convenient to make the quark

mass matrix real; this can be done by U(1)A transformations on the quark flavor
basis

qf → eiγ5βAf qf , (1.15)

⇒ q̄fmfe
θf qf → q̄fmfe

i(θf+2βAf
)qf . (1.16)

We can make the quark mass real by assigning βAf
= −θf/2, but since U(1)A is

an anomalous symmetry

Lθ → Lθ + 2θf
αs
8π
G̃AµνG

A,µν , (1.17)

⇒ LQCD → −1

4
GAµνG

A,µν + q̄iγµ∂µq + gsq̄γ
µGAµT

Aq − q̄M0q − θ̄
αs
8π
G̃AµνG

A,µν ,

(1.18)

whereM0 = Diag(mu,md,ms) and θ̄ = θ+Arg(Det(M)). Thus, the only physical
parameter in QCD that violates CP is θ̄. Now that we have established that CP -
violation is a theoretical feature of SM (CKM matrix and θ̄ term), we pass the
baton to experimentalists to measure the CP -violating observables to fix these
parameters.

The most sought-out CP -violating observables induced by the θ̄ term are the
permanent electric dipole moments (EDMs) of nucleons, atoms, and molecules.
The EDM (d) is defined through

H = −µ σ

|σ| ·B − d
σ

|σ| ·E
CP−−→ −µ σ

|σ| ·B + d
σ

|σ| ·E , (1.19)

where µ is the magnetic dipole moment, E and B are electric and magnetic field
respectively.

As we have discussed, the SM contribution to neutron-EDM (dn) can be at-
tributed to only two sources: the θ̄ term and CKM contribution. The most
precise calculation of θ̄ term contribution to dn comes from the lattice QCD cal-
culation [49], and the CKM contribution is calculated in Ref. [50, 51]; and by
comparing both with the most precise experimental result [52]

|dn|exp = (0.0± 1.1stat ± 0.2sys) · 10−26 e cm , (1.20)

|dn|θ̄ = (−1.52± 0.71) · 10−16 θ̄ e cm , (1.21)

|dn|CKM ∼ 10−31 e cm . (1.22)
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Since the most accurate EDM searches are orders of magnitude away from the
CKM contribution to the EDMs, the SM contribution to any non-zero EDM
measurement comes purely from the QCD θ̄ term. This leads to the limit

θ̄ ≲ 10−10 , (1.23)

which is commonly known as the strong CP problem.
One could argue that this is not a problem; nature chose a very small value of

θ̄ to mess with particle physicists. However, this could also hint at something we
have failed to consider. Therefore, the best approach is to treat it like a problem
we need to solve. There are three main solutions.

Massless quark solution: If one of the quarks is massless, for example, the up
quark u, QCD will acquire a global U(1)u symmetry. This can be used to do an
axial transformation and rotate the θ̄ to zero. For a given quark masses, we can
calculate the hadron masses using LQCD. Similarly, we can reverse calculate the
quark masses from the experimental data on hadron masses. This method gives

a non-zero up-quark mass mMS
u (2GeV) = 2.16+0.49

−0.26 MeV [53]. An independent
method was proposed in Refs. [54, 55] to analyze the massless quark solution by
avoiding any quark mass fitting procedures, and was implemented on the lattice,
which ended up further confirming the non-zero quark masses [56].

Soft P (CP ) Breaking : If P or CP are good symmetries of the high-energy
theory (UV regime) and SM is an effective field theory of this theory at a lower
(energy) scale, then we can fix θ̄ = 0 in the UV. This will result in a small value
of θ̄ at a lower scale. This is because if θ̄ is small on some high-energy scale, it is
still small on a lower-energy scale. After all, the renormalization group running
of θ̄ occurs at 7-loops [57]. The first class of such models had CP as a good
symmetry, which gets broken at the electroweak scale [58, 59], and the second
class was proposed based on grand-unified models [60, 61]. In these models, CP
gets broken at a lower scale to account for the SM chiral structure and CKM
phase. In this approach, the θ̄ term becomes calculable. The downside is that
some tuning is required to keep θ̄ ≲ 10−10 while maintaining a relatively large
CKM phase.

Peccei-Quinn solution: The most popular solution to the strong CP problem
was proposed by Peccei and Quinn (PQ) in 1977 [62, 63]. They proposed that if
there is a global chiral symmetry U(1)PQ in which quarks and Higgs transform
non-trivially, the θ̄ becomes a dynamic variable and can be set to zero. It was later
pointed out by Weinberg [64] and Wilczek [65] that the U(1)PQ symmetry gets
spontaneously broken by the vacuum at low energies and leads to the existence of
a Goldstone boson, commonly called the axion. Though we have yet to observe
any particle that fits the axion, this is the most promising solution to the strong
CP problem.
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1.5 CP -violating axion interactions

For part of this thesis, we choose the axion solution to the strong CP problem.
The axion modifies the CP -violating gluonic interaction as Lθ̄ → (θ̄ + a

fa
)GG̃,

where fa is the axion decay constant. Once we expand around the minimum of
the axion field: a = ⟨a⟩ + aph, the pure gauge θ̄ term θ̄GG̃ disappears, and we

are left with only the aphGG̃ interactions. We can use the U(1)PQ symmetry to
translate the axion field to its minimum, and we relabel aph → a for notational
convenience

a
U(1)PQ−−−−−→ a+ ⟨a⟩

(
θ̄ +

a

fa

)
GG̃

U(1)PQ−−−−−→
(
θ̄ind +

a

fa

)
GG̃

SM−−→ a

fa
GG̃ ,

(1.24)

thereby solving the strong CP problem.
However, we have already established that SM does not account for the ob-

served matter-antimatter asymmetry. Therefore, there should be CP -violating
sources from new physics. These sources will lead to a contribution to θ̄ind, and
the PQ mechanism can not offset all these contributions; therefore, in general,
θ̄ind ̸= 0. Thus the axion-hadron interaction contributes to the new physics via
θ̄ind. Thus it will be worthwhile to study the CP -odd axion-nucleon interaction
to glimpse into the nature of new physics.

Chapter 4 is part of my thesis that details my research on the CP -odd axion-
nucleon interaction from the SM and the BSM physics. We have used dimension-
six SMEFT operators for the BSM interactions and finally used χPT to extract
the meson and hadron interactions with the axion. We also explored the lim-
its imposed on the CP -odd couplings by the various experiments. Finally, we
connected our EFT results to the leptoquark and LRSM BSM models.

1.6 CP -violating nuclear forces

QCD describes the strong interactions. It is mediated by vector bosons called glu-
ons, which come in eight flavors. An interesting feature of QCD is the asymptotic
freedom, discovered by Gross, Wilczek, and Politzer [4, 5] in 1973. Asymptotic
freedom is the property that the strong interaction becomes weaker for higher en-
ergies and becomes stronger for lower energies; see Fig. 1.1. This strong coupling
at the lower energy scale is the reason for the existence of hadrons, the quark-
bound states. Only a few percent of nucleon mass is attributed to its constituent
quarks; the rest comes from the non-perturbative QCD effects. Because of this
non-perturbative nature of QCD at low energies, we can not use it directly to
predict nuclear observables such as nucleon binding energy or nucleon scattering
cross-section. However, with the use of EFTs, we can circumvent this problem to
a great extent.



10 Chapter 1. Introduction

Figure 1.1: The summary of αs from various experiments and LQCD as a function
of energy. This figure is taken from Ref. [66].

It is convenient to have an EFT with hadrons as the degrees of freedom to de-
scribe nuclear interactions. Since we do not want phenomenological models, the
EFT should be based on QCD and respects its symmetries. χPT is constructed
to satisfy all these requirements. It is based on the SU(3)L×SU(3)R chiral sym-
metry of QCD, which is spontaneously broken in the ground state of the nucleons.
χPT follows the Weinberg power counting scheme, which allows us to calculate
hadronic observables as a perturbative expansion in powers of Q/Λχ, where Q is
momentum associated with the system under consideration and Λχ ∼ 1GeV is
the chiral symmetry breaking scale. Therefore, by including all contributions up
to (Q/Λχ)

ν , we can predict observables with accuracy of O
(
(Q/Λχ)

ν+1
)
. χPT is

described in detail in Section 2.3.
In recent years, considerable progress has been made in applying χPT to de-

scribe nuclear forces. We have seen in the previous sections that QCD conserves
CP to extremely high accuracy, apart from the small θ̄ term. Since the nuclear
force originates from QCD interactions, the nuclear forces are approximately CP
conserving. The CP conserving NN nuclear force has been calculated up to N4LO
using χPT [67–69] and has very successfully described various observed nuclear
phenomena. The top panel of Fig. 1.2 shows the full LO and N2LO short-distance
diagrams for calculating the CP conserving NN nuclear force.

As we have seen in the previous section, molecular, atomic, and nuclear EDMs
are excellent probes for BSM physics. However, it is a non-trivial task to connect
the CP -violating sources of SM and from BSM to complex objects like nuclear
EDMs. In recent years, there has been theoretical advancement in calculating
the EDMs in a model-independent approach using first-principle calculations by
combing the results of lattice QCD [49, 70, 71], χPT [72–74], and nuclear cal-
culations [75–79]. The strategy is to start with dimension-four (θ̄ term) and
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Figure 1.2: The top (bottom) panel shows LO and N2LO chiral contributions of
the CP -even (odd) nuclear force in χPT. The black (red) vertices represent the
CP -even (odd) interactions. The solid and dashed lines represent nucleons and
pions, respectively.

dimension-six (BSM physics) CP -violating operators in the SMEFT framework
and evolve the theory to hadronic scale and match to the CP -violating operators
in χPT. A key component in the EDM calculations is the CP -odd nuclear force.
Therefore, understanding the CP -odd nuclear force is essential.

The χPT follows the Weinberg power counting to determine the relative rele-
vance of diagrams contributing to observables. The Weinberg power counting is
based on naive dimensional analysis (NDA). The LO diagrams and N2LO con-
tact diagrams for CP -even and CP -odd NN nuclear force are shown in Fig. 1.2.
All physical quantum field theories should be renormalized. Renormalization is
the procedure of removing nonphysical infinities that arises while calculating any
observables. We achieve this by redefining the contact interactions to absorb
these infinities. Since EFT calculations are done order by order, there should be
enough contact interactions for any given order to cancel all infinities. If there are
not enough contact interactions to achieve this, then the theory is not properly
renormalized, and the power counting fails. The NDA is known to fail in some
CP -even NN scattering channels, and we had to promote some higher-order terms
to lower order to renormalize the theory. However, no one has investigated the
renormalization of the CP -odd nuclear force. A part of this thesis is focused on
this investigation.
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1.7 Dark matter direct detection

Evidence is abundant for the existence of dark matter (DM) from various as-
trophysical and cosmological observations, spanning scales from galaxies to the
observable Universe. The current understanding of DM is that it is massive
(interacts gravitationally), dark (almost no electromagnetic interactions in com-
parison with ordinary matter), non-baryonic in nature, cold (leading to observed
large-scale DM structures), and stable on cosmological time scales (leading to the
observed DM density) (see Ref. [9] for a review). The current understanding of
the standard cosmological model predicts, based on the various cosmic microwave
background radiation experiments [80–83], about 23% of the Universe is made
up of DM and 72% of the Universe consists of Dark Energy (anti-gravity); the
baryonic matter (ordinary matter) only accounts to 5% of the Universe.

Since SM fails to account for the existence of DM, it should be made up of one
or more BSM particles that are massive, uncolored, electrically chargeless, weakly
interacting, and stable.

 direct detection
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Figure 1.3: Illustration of direct, indirect, and collider dark matter searches. The
hashed circle represents the SM-DM interaction.

One possible class of candidates that fit these descriptions are the weakly in-
teracting massive particles (WIMPs), which have masses from 1GeV − 100TeV;
WIMPs are also motivated by predictions of some BSM models. The current DM
searches can be divided into three categories: direct detection, indirect detection,
and production at colliders, see Fig. 1.3.

• Direct detection: This class of experiments looks for DM by identifying the
nuclear recoils produced by the DM and target nuclei: DM+N → DM+N .
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These experiments target WIMPs with masses (10−1000)GeV, which would
results in nuclear recoils in the range (1 − 100) keV [84]. The signature of
dark matter in a direct detection experiment consists of a recoil spectrum
of single scattering events. Given the low interaction strength expected
for the dark matter particle, the probability of multiple collisions within
a detector is negligible. In the case of a WIMP, a nuclear recoil is ex-
pected [85]. Some of the experiments that use direct detection methods are
DAMIC [86], CRESST [87], EDELWEISS [88], SuperCDMS [89], LUX [90],
and XENON100 [91].

• Indirect detection: This class of experiments looks for DM by observing the
radiation produced by DM when they annihilate or decay: DM + DM →
e+e−, p̄p, . . .. This experiment focuses on the regions with high DM con-
centrations. This method takes advantage of long-running experiments run
by the Universe and can probe higher energies, longer decay lengths, and
weaker couplings. All the best limits of DM come from these astrophysi-
cal and cosmological observations. These experiments are looking for DM
signatures from the high-energy neutrinos from the Sun’s core and Galactic
Centre, gamma-rays from the Galactic Centre and dwarf spheroidal galaxies,
and positrons, antiprotons, and antideuterons from the galactic halo. The
drawback is that a thorough understanding of these processes is required to
interpret the observations, and thus the results often come with large error
bars. Some of the experiments that use this method are PAMELA [92],
AMS [93], Fermi-LAT [94], HESS [95], and MAGIC [96].

• Production at colliders: In this search, they look for DM production at the
LHC: p̄p → DM + DM. The DM production can affect the energy mo-
menta of the SM particles detected in the LHC. One signature is the recoil
on the SM particles colliding with invisible particles within the detector or
the sudden appearance of SM particles with appropriate energy-momentum
from the decay of DM. The processes like pp→ χ̄χ+X, where the so-called
mono-object X is a photon, a jet, or Z boson, etc., produces a signature of
missing transverse energy accompanied by a so-called mono-object. So far,
no results have been produced using mono-jets or mono-photons accompa-
nied by missing transverse energy [97–99].

In this thesis, we focus on DM direct detection searches using light nuclei. We
choose light nuclei because they are sensitive to low-massive DM and provide
cleaner theoretical calculations. Our goal is to provide a theoretical interpreta-
tion of the DM direct detection results (or lack of results) by starting from the
fundamental DM-SM interactions. First, we focus on the scalar interaction of
the DM with the quarks and gluons, then we evolve it to the hadronic scale and
match it up with χPT to get the DM-hadron interactions.

To understand the DM-nucleus scattering, we will study the leading order one-
nucleon current and the subleading two-nucleon current in the framework of χPT.
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It has been known that the two-nucleon currents introduce distinct dependence
of the DM-nucleus cross-section on A (the atomic mass number) and Z (the
number of protons). Moreover, DM-quark/gluon interactions will lead to similar
χPT operators in the one-nucleon current but produce different interactions for
two-nucleon currents. Thus, if the experimental data from various nuclei are
available, it is potentially possible to understand the difference in the interaction
between DM and quark/gluons [100]. We can calculate the nuclear wave function
by solving the Schrödinger equation for the nuclear potential. To be consistent,
we will calculate the nuclear potential using the χPT framework. This allows
for a first-principle calculation, i.e., starting from an assumed (set of) DM-SM
interaction(s) of the DM-nucleus cross sections.

We will implement a new way of calculating the matrix elements of one, and
two-nucleon currents. This method, called density formalism, reduces the com-
putation time by a factor of ten [101]. In the “traditional method”, to calculate
the matrix element we have to do the following integration

⟨Ψ′|O|Ψ⟩traditional =
∫
{dpi}Ψ

′†({pi})Ψ({pi})O({pi}) , (1.25)

where {pi} are the internal momentum, and quantum numbers of the scattering
particles are suppressed for simplicity. Every time we need to calculate a matrix
element, we have to use this nuclear wave function, a large data file and multiply
it by the operator at each moment. This requires the aid of a supercomputer.

In the density matrix formalism, the above matrix element can be separated
into two parts

⟨Ψ′|O|Ψ⟩density formalism =
∑

{ni}
ρ({ni})⊗O({ni}) , (1.26)

where {ni} are the quantum number of the internal nucleons, and the energy-
momenta and quantum numbers of the scattering particles are suppressed for
simplicity. The density function (ρ) contains all the nuclear wave function infor-
mation. Therefore, we only need to compute the density function once, which
can be stored for future computation. This drastically reduces matrix elements’
computation time because we bypass the redundant wave function calculation.
By ‘reading’ the stored ρ file, we can calculate the matrix element using a per-
sonal computer instead of a supercomputer. Finally, the DM-nuclei cross section
is calculated using the matrix element of the one, two-nucleon currents for 2H,
3He, and 4He nuclei. Our calculation of 4He is further motivated by the upcoming
DM search using a liquid 4He detector [102].

1.8 Outline

The basic structure of this thesis is that the first chapter covers the introductory
material, and the second chapter focuses on EFTs, which is the primary theoretical
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tool used for this thesis. The original research is described in the remaining
chapters, and the conclusion and the thesis summary are given at the end of the
thesis.

Chapter 1 gives the introduction for this thesis and the motivation behind
my research. The initial sections demonstrate the existence of BSM physics, the
relevance of EFTs, and motivate the relevance of CP -violating phenomena as a
window to new physics. The later sections introduce BSM particle axions as a
possible solution to the strong CP problem and the importance of studying CP
violating axion interactions and nuclear forces to understand BSM physics. The
last section discusses the direct detection of DM using light nuclei.

Chapter 2 describes the EFTs and introduces various EFTs generally used in
particle physics. In the initial sections, we describe the key feature of the EFTs
and the advantages they provide and briefly describes a few popular EFTs. Then
we provide a recipe for building a general EFT. Finally, in the last section, we use
this recipe to construct the EFT known as χPT, which is the critical tool used in
this thesis.

In Chapter 3, we present our research results in the renormalization of CP -
violating nuclear forces. The initial sections are spent on describing the relevance
of studying the renormalization of CP -violating nuclear forces and the approach
we took to achieve this objective. The third section describes the basic structure
of the Python algorithm used to calculate our results. We presented our results in
the fourth section and demonstrated that CP -odd nuclear forces are not properly
renormalized in the LO. In the following sections, we fix this renormalization
by introducing a counter term. We proposed a novel strategy to overcome the
problem of lack of data to calculate this counter term and presented our conclusion
and outlook in the last section.

In Chapter 4, we studied the complete set of dimension six CP -odd LEFT oper-
ators and connected them to various axion and other BSM experimental searches.
The initial sections lay out the structure of CP -odd axion-SM interactions; then,
we connect it to the axion-hadron interactions using χPT. We list the experiments
looking for CP -violating interactions in detail in the fifth and sixth sections. In
the next section, we presented the results of our calculations on the constraints
on the BSM interactions from the experiments discussed in the previous section.
Then, we used these EFT results and applied them to a few BSM models. Finally,
the chapter concludes by providing an outlook into the future and ongoing work.

In Chapter 5, we explored the scalar DM interactions relevant to DM direct
searches involving light nuclei. The first few sections are used to lay out the theo-
retical foundation for calculating the cross-section relevant to the direct searches.
We started with the DM-SM scalar interactions and used χPT to bridge this
to the DM-nuclei scalar interactions. Next, we discussed how we calculated the
cross-section and density matrix formalism in the following section. In the follow-
ing section, we presented our results and argued the existence of a renormalization
problem for two-body scalar DM current. In the last section, we concluded our
results and discussed the future prospects.
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In Chapter 6, we concluded and summarized this thesis and outlined the plan
for future works.



Chapter 2

Effective field theories

2.1 Introduction

We have been trying to understand the natural phenomena around us for a long
time. We have made phenomenal advancements in this goal over the past century.
For example, we can explain how leptons and quarks, particles around the length
scale of 10−28 m, interact. We can also understand the expansion of the Universe,
which is around the scale of 1026 m. All of these were possible because of the
remarkable feature of nature called decoupling, which states that physics at a
higher energy scale is largely irrelevant to describing physics at a lower energy
scale. This property is why we can design and build bridges and dams without
knowing anything about atoms or quantum gravity.

The decoupling feature of nature helps to explain the physics at a given energy
scale with an effective theory containing some relevant parameters. For example,
in the case of building bridges, the effective theory is classical mechanics, and
one of the relevant parameters is the bulk modulus of the steel. We design and
implement experiments based on the current understanding of physics. The ex-
perimental results provide feedback to theoretical advancement, leading to better
experimental design and precise measurement. These feedback loops result in go-
ing from one energy scale to another. This is how we started from understanding
how an apple falls and planets moves to how quarks and leptons interact to make
atoms.

The basic strategy to develop a theory for an energy scale E is to create a
first-order approximation and set all scales to infinity (zero) which are larger
(smaller) than energy E for the interested physical processes. Then, we can add
the neglected energy scales as a perturbation to the first-order approximation if
needed. For example, we can describe a hydrogen atom as a system of electrons
and an infinitely massive nucleus. The relevant parameters are electron mass, me,
and the fine structure constant, αem. We can implement the finite mass of the
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nucleus by using reduced mass (mreduced), which is a perturbative correction to

electron mass me in terms of proton mass mp: mreduced ≃ me

(
1− mp

me

)
.

Effective field theories (EFTs) are theoretical tools used to implement the strat-
egy described above in a precise and quantitative framework. Different energy
scales separate the EFTs associated with particle physics. Nevertheless, these
scales can generally be any dimensionful quantities like lengths, times, velocities,
momenta, angular momenta, etc., in which physics gets separated. We can make
a general claim that when adequately formulated,

all physical theories are effective theories.

The chapter is structured as follows. Section 2.2 provide the recipe for a general
EFT, how to formulate them, and their advantages, and briefly discuss some of the
popular EFTS used by particle physicists, like Standard Model EFT (SMEFT),
low-energy EFT (LEFT), and chiral perturbation EFT (χPT). Section 2.3 focuses
on chiral perturbation theory and elaborates on the various steps involving the
formulation of χPT, like associated symmetry, the chiral Lagrangian, and the
power counting rule, and also demonstrates how to apply the power counting rule
on some of the operators relevant to this thesis.

2.2 Effective field theories

EFTs are theoretical tools appropriate for describing low-energy physics at a
relevant energy scale (E) using just the relevant parameters and interactions;
here, low-energy is with respect to some higher energy scale Λ. EFTs are complete
quantum field theories in their own right, described in terms of relevant degrees
of freedom.

A general feature of an EFT Lagrangian is that it consists of an infinite number

of terms with couplings proportional power of energy/momenta
Λ . This feature results

from our lack of knowledge regarding the “true” theory at the relevant energy
scale. The solution for this problem is another feature of EFT, namely the power
counting rule. The power counting rule will determine each term’s relevance
and the relevance of operators calculated from the Lagrangian in terms of an
expansion parameter δ. In general, there can be multiple expansion parameters
depending on the EFT. Even though there are infinite terms in the Lagrangian,
renormalization is achieved order-by-order since there are only a finite number of
terms for a given order of δ.

The theoretical basis of effective field theory can be formulated from the the-
orem [103, 104]: For a given set of asymptotic states, perturbation theory with
the most general Lagrangian containing all terms allowed by the assumed sym-
metries will yield the most general S-matrix elements consistent with analyticity,
perturbative unitarity, cluster decomposition and the assumed symmetries.

There are two ways to construct an EFT: the top-down and the bottom-up
approaches. In the top-down approach, we know the ultraviolet (UV) complete
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theory, but it contains fields heavier than the interested energy scale. In this
case, the EFT calculations become more straightforward for the observables in
the low-energy regime. The EFT Lagrangian will have the same symmetries as
the UV theory, but the degrees of freedom do not always follow the UV theory.
For example, Fermi theory and its UV complete theory (weak interaction) share
the same degrees of freedom, the quarks. However, in the case of χPT, the degrees
of freedom are hadrons, compared to quarks and gluons in the UV theory (QCD).

The EFT Lagrangian follows the symmetries of the UV theory and is obtained
from the UV theory by ‘integrating out’ the heavy degrees of freedom (Φheavy).
The effects of these heavy fields hide in the coefficients of operators allowed by
the symmetries. Wilson and others first pioneered this approach in the 1960s (see
Ref. [105] for a review)

eiSEFT(ϕlight) ≡
∫

DΦheavye
iS(ϕlight,Φheavy) , (2.1)

LEFT =
∑

d

nd∑

i=1

c
(d)
i

Λd−4
O(d)
i , (2.2)

where the dimensionless couplings cis are Wilson’s coefficient corresponding to

the operator O(d)
i of mass dimension d. These coefficients are obtained from the

UV theory by a matching procedure.
In the bottom-up approach, we do not know the UV complete theory or the

matching to the EFT is too difficult. The EFT is constructed by accommodating
all the interested symmetries of the UV limit. The EFT Lagrangian will consist
of operators that respect these symmetries, and each operator is accompanied by
a coupling constant. One example of this approach is SMEFT

LSMEFT = LSM +

∞∑

d=5

nd∑

i=1

c
(d)
i

Λd−4
O(d)
i , (2.3)

where the dimensionless couplings c
(d)
i are called Wilson coefficients and O(d)

i are
the operators of mass dimension d. These coupling constants are unknown but are
fitted from the experimental data with the help of the power counting rule. These
types of EFTs are mainly used when trying to understand new physics. Once
enough Wilson’s coefficients are known, we can make predictions for experiments
and can extract some features of the new physics. One famous example is the
Fermi theory, which was constructed before SM was known.

2.2.1 Main ingredients of EFTs

Once we identify a problem we want to solve and the relevant energy scale, we
can start constructing the EFT. There are three main ingredients for any EFT,
which are listed below.
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1. Degrees of freedom. The first step in building an EFT is identifying the
degrees of freedom relevant to describing the interested system. Sometimes
the degrees of freedom will come naturally from the symmetries or based on
the problem we try to solve. For example, to extend the SM to an EFT (i.e.,
SMEFT), it is straightforward to use SM fields as the degrees of freedom.
On the other hand, if one wants to design an EFT to explain nuclear physics,
it is better to use protons and neutrons as degrees of freedom. There is no
unique way to select the degrees of freedom; as long as it is simple enough
to describe the problem we are trying to solve and implement the theory’s
symmetries, they are ‘good’ degrees of freedom.

2. Symmetries. The next step in the EFT building process is to identify the
relevant symmetries of the system that we are trying to describe. All the
terms of the Lagrangian should respect these symmetries, and thereby sym-
metries dictate the dynamics of our theory. If one knows the underlying
high energy theory (top-down approach), those symmetries manifest in our
EFT. Symmetries can come in multiple forms: global, gauged, accidental,
spontaneously broken, anomalous, approximated, etc. For example, χPT is
the low-energy EFT of QCD, which respects the P , CP , and C symmetries
because QCD respects these symmetries.

3. Expansion parameters. Any operator that respects the symmetry should be
added to the Lagrangian, this will lead to an infinite number of terms, and
any meaningful calculation would be impossible. The expansion parameters
and power counting rule handle this problem. They are the effects of the
high-energy degrees of freedom we integrated-out from the action (top-down
approach). For particle physics, these are usually the ratios of energy or
momenta associated with the physical processes, p

Λ ,
m
Λ . All the physical

observables calculated will be in a series of these expansion parameters.
The power counting rule will determine the relevance of these terms. For a
given order, only a finite number of terms, defined by the power counting
rule, will contribute to the calculation. For example, in an EFT with one
expansion parameter δ, an order n calculation of an observable will have
contributions from Feynman diagrams proportional to δi≤n, and the error
will be in the order of δn+1. The power counting rule will determine the
power of δ associated with Feynman diagrams.

Even though it is relatively easy to state these concepts, implementing this to
an EFT can be challenging, depending on the problem we are trying to solve.
Therefore, in Section 2.3, we will implement these concepts and use the following
recipe to construct χPT.

Step 1. Identify the energy scale of the low-energy system (E) and the
scale of the underlying physics Λ where the EFT breaks down. Choose
appropriate degrees of freedom to describe the system.
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Step 2. Identify the symmetries of the system. Then, investigate if they
are broken; if yes, then how they are broken.

Step 3. Construct the most general Lagrangian, which respects these sym-
metries and symmetry breakings.

Step 4. Design a power counting scheme that can distinguish the relative
relevance of the terms which are in the series of expansion parameters.

Step 5. Using this power counting scheme, calculate the relevant Feynman
diagrams to obtain the Wilson coefficients. A top-down approach uses the
matching procedure to get the Wilson coefficients. In the case of a bottom-
up approach, the coefficients are fitted to experimental data.

Matching procedure: In the top-down approach, we integrate out heavy
fields (see Eq. (2.1)), and this will lead to higher dimensional operators
suppressed by inverse powers of heavy field masses (mΦ). At heavy
field mass scale, E ∼ mΦ, the observable calculated from the EFT
and the UV complete theory should be identical. Using this ‘matching
condition’, we can obtain the values of the Wilson coefficients.

Step 6. Calculate the relevant Feynman diagrams for the interested prob-
lem up to the desired accuracy.

2.2.2 Advantages of EFTs

Even if we know the underlying theory, often time EFTs become more convenient
to use. This situation can arise because the UV theory becomes strongly coupled
and non-perturbative in the interested energy scale to perform any meaningful
calculation. QCD demonstrates this scenario in the nuclear energy scale. This
problem led to the chiral perturbation theory, which is a low-energy EFT of QCD.
In this section, we will list other advantages provided by the EFTs.

• EFTs allow us to focus on the degrees of freedom and operators relevant to
the problem we are trying to solve and simplify the calculations. We can
ignore all other fields that are unimportant to the energy scale and all other
complications arising from them.

• New symmetries can manifest when we zoom in on the relevant energy
scale. Moreover, these symmetries will lead to conservation laws (Noether’s
theorem) which will further simplify our calculations.

• The EFT calculations can be factorized into two parts. The one related to
the light degrees of freedom (the actual EFT calculations) and the other
associated with the heavy-scale physics that we have neglected. Since the
heavy-scale physics remains the same relative to the EFT calculations, we
can do it once and avoid repeated calculations.
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• The EFTs have a built-in mechanism to systematically account for the ne-
glected UV theory using expansion parameters and power counting rule.
This feature allows for a model-independent calculation when the underly-
ing theory is unknown or poorly understood. Furthermore, the constraints
on the Wilson coefficients arising from the experimental data can signal
the symmetries of the UV theory and guide the model building of the UV
theory.

• The EFTs allows the calculation of any observable in as a series expansion
of expansion parameters guided by the power counting rule. This struc-
ture provides a means to associate a theoretical error with any calculations.
By including higher-order terms of the series, one can make more precise
predictions.

• The EFT calculations are only meaningful when done on the EFT energy
scale. Whenever someone crosses this relevant energy scale, the EFT always
notifies us by making the expansion parameters of O(1), and the perturba-
tion expansion is no longer meaningful. If we still want to do the calculation,
we must construct a new EFT following the recipe outlined in the previous
section.

• EFT solves the problem of summing logs of the ratios of scales. For example,
consider a one-loop diagram with two scalar fields ϕ and Φ, and loop four-
momentum k. The field ϕ (Φ) of mass m (M) is a low-energy (high-energy)
field, i.e., m≪ Λ (M ≫ Λ). In UV theory, the loop diagrams contribute as

IUV = g2µ2ϵ

∫
ddk

(2π)d
1

k2 −m2

1

k2 −M2
,

=
ig2

16π2

[
1

ϵ
− log

M2

µ̄2
− m2

M2 −m2
log

M2

m2
+ 1

]
, (2.4)

where d = 4 − 2ϵ, µ = µ̄2eγ/4π is the renormalization scale, ϵ and γ are
constants associated with the MS renormalization scheme. The renormal-
ization is the procedure of removing infinities from the S-matrix and mak-
ing it finite, see Ref. [106]. In general, the ratio of M/m is such that
O(g2 logM2/m2) > 1, and the perturbative theory can break down. How-
ever, in the EFT framework, Φ is integrated out, and the loop integral



2.2. Effective field theories 23

becomes

IEFT = g2µ2ϵ

∫
ddk

(2π)d
1

k2 −m2

(
− 1

M2
− k2

M4
− k4

M6
+ . . .

)
,

=
ig2

16π2M2

[
−m

2

ϵ
+m2 log

m2

µ̄2
−m2

]

+
ig2

16π2M4

[
−m

4

ϵ
+m4 log

m2

µ̄2
−m4

]

+
ig2

16π2M6

[
−m

6

ϵ
+m6 log

m2

µ̄2
−m6

]
+ . . . , (2.5)

and all the problematic g2 logM2/m2 are traded for g2 logm2/µ̄2, which
can be summed using perturbation theory.

• Using EFT, we can convert infrared (IR) logs in the full theory to UV logs
in EFT. The renormalization group equations can sum up these UV logs.
We are not demonstrating this feature of the EFT in this thesis; instead,
we refer to Ref. [107].

2.2.3 Examples of EFTs

We will discuss some examples of EFTs used by particle physicists, see Table 2.1.

Effective
Field
Theory

Relevant energy scale Degrees of Freedom

SMEFT ΛLEFT ≲ E ≲ ΛSMEFT ≳ 1 TeV Standard Model fields

LEFT E ≲ ΛLEFT = v = 256 GeV

quarks u, d, s, c, b

bosons γ

leptons e, µ, τ

neutrinos νe, νµ, ντ

χPT E ≲ Λχ = 1 GeV
mesons π0,±,K0,±, K̄0, η

baryons p, n,Σ0,±,Ξ±,Λ

Table 2.1: The most common effective field theories used in particle physics, their
relevant energy scales, and their degrees of freedom.

Fermi theory of weak interactions

The Fermi theory of weak interactions [108] is an EFT of weak interactions for
the energy scale below the mass of W and Z bosons (Λ ∼ MW ∼ 80GeV). SM
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was invented after the proposal of the Fermi theory. However, like any other
EFT, calculations and predictions do not require the knowledge of UV complete
theory (SM). The ‘new physics’ at that time was the W , Z bosons, t quark, and
the Higgs boson. The weak interactions were studied using Fermi theory, and
the expansion parameters were δ = p/Λ, where p is momentum associated with
the weak interactions. Fermi was motivated by electromagnetic interaction. The
Fermi Lagrangian consists of two weak currents, the p̄n and ēνe, which interact
vector-like, mimicking the vector form of the electromagnetic interaction. The
relevant Fermi Lagrangian for the beta decay is

LF =
GF√
2
(p̄nēν + n̄pν̄e) , (2.6)

where GF is the associated low-energy constant (Fermi constant), and p, n, e, ν
represents standard particles.

The Fermi theory was very successful for a time in which EFTs were not ad-
equately studied. Since the original Fermi Lagrangian only had one particular
(vector) form, it could not completely explain all the experimental results. To
solve this problem, the Fermi Lagrangian was expanded to include a general com-
bination of scalar (s), pseudo scalar (p), vector (v), axial vector (a), and tensor(t)
interactions. The experimental evidence of the parity violation nature of weak
interaction discovered by T.D. Lee, C. N. Yang, and C. S. Wu [40, 109] was the
final clue to the true form of the weak interaction v − a, which Fermi almost got
it right in his first guess. The modern form of Fermi Lagrangian in terms of SM
fields is

LFermi = −GF√
2
JµJ µ† +O

(
1

M4
W

)
, (2.7)

where

Jµ =
∑

i=1,2
j=1,2,3

ūiγµ(1− γ5)Vijdj +
∑

l=e,µ,τ

ν̄lγµ(1− γ5)l , (2.8)

with Vij as the Cabibbo–Kobayashi–Maskawa mixing matrix and the i, j indices
represents the generation of quarks. The Fermi constant expressed in terms of
SM parameters as

GF√
2
≡ g2

8M2
W

=
1

2v2
, (2.9)

where v ∼ 246GeV is the electroweak symmetry breaking scale.

Low-energy effective field theory

The low-energy effective field theory (LEFT) [29] can be considered a systematic
extension of Fermi’s theory to describe flavor conserving and violating contact
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interactions. LEFT describes physics below the electroweak scale (Λ = v =
256GeV), and SMEFT is used to study physics above the electroweak scale. The
degrees of freedom of LEFT are the photons and SM fermions except for the top
quark. Therefore, the LEFT can be considered the top-down EFT approach of
SMEFT by integrating the heavy fields: t,W±, Z, and h.

The symmetries of the LEFT are the Lorentz symmetry and the gauge symme-
try (SU(3)c×U(1)em), which allows accommodating various BSM contributions.
The LEFT Lagrangian contains 70 Hermitian operators of dimension five and
3631 Hermitian operators of dimension six that do not violate baryon (∆B = 0)
or lepton number (∆L = 0), as well as baryon- and lepton-number-violating oper-
ators. In addition, LEFT contains ∆L = ±2 Majorana-neutrino mass operators in
dimension three, and in dimension five, it includes ∆L = ±2 Majorana-neutrino
dipole operators. In dimension six, numerous additional LEFT operators have
∆L = ±4,∆L = ±2,∆B = ∆L = ±1, and ∆B = −∆L = ±1. In Chapter 4, we
discuss CP -violating dimension six operators in detail.

Standard Model EFT

The first run of the Large Hadron Collider (LHC) started over a decade ago. It
has further reinforced the success of the Standard Model and detected the Higgs
boson. Since LHC explored energies that have never been reached before, the
expectations were high that it would reveal new physics and be able to narrow
down the landscape of the BSM models. However, the new physics seems beyond
the reach of LHC. Thus the model-independent EFT approach became popular.

Standard Model effective field theory is a bottom-up EFT extension of the
Standard Model. It assumes the SM symmetries and the new physics scale is well
beyond the LHC limit, Λ ≫ ELHC. SMEFT has the same degrees of freedom and
the exact local SU(3) × SU(2) × U(1) symmetry as the SM, with the vacuum
expectation value (vev) of the Higgs field breaking the gauge symmetry down to
SU(3)×U(1). The SMEFT Lagrangian is constructed from gauge-invariant oper-
ators involving the SM fermion, gauge, and Higgs fields. The SMEFT Lagrangian
is given by

LSMEFT = LSM +

∞∑

d=5

nd∑

i=1

c
(d)
i

Λd−4
O(d)
i , (2.10)

where LSM is the SM Lagrangian, c
(d)
i are called the Wilson coefficients, and O(d)

i

are all possible operators in mass dimension d.
The only possible dimension five (d = 5) operator is the famous Weinberg op-

erator [110], which violates the lepton number. Nevertheless, the number of oper-
ators for higher dimensions (nd>5) increases quickly, and it becomes a challenging
task to calculate them while avoiding redundancy. Buchmüller and Wyler [26]
calculated the first list of dimension six operators, but it contained redundant
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operators. To avoid these redundancies, theorists use equations of motion, inte-
gration by parts, and Fierz identities. A complete set of dimension six, seven, and
eight operators was calculated in Refs. [111–113], Refs. [114, 115], and Ref. [116]
respectively.

The EFT used for most of this thesis is the χPT, which will be discussed in
the following section.

2.3 Chiral perturbation theory

QCD has successfully predicted all strong interactions observed in the LHC and
other collider experiments. It has already been established as the theory of strong
interactions. Unfortunately, due to the asymptotic freedom of QCD, calculations
become impractical at lower energies. It would have been more convenient to have
a QFT based on QCD but with hadrons as degrees of freedom to analyze various
nuclear and sub-nuclear phenomena. This inconvenience motivated the invention
of chiral perturbation effective field theory (χPT). This section briefly covers the
critical aspects of χPT; see Ref. [30] for a detailed review.

2.3.1 Degrees of freedom

We have discovered more than hundreds of hadrons in the past century, especially
with the help of LHC. It would have been adequate to have an EFT to describe
all the hadrons, but given its richness, it is impossible. However, if we narrow it
down to the lighter hadrons, a significant simplification occurs.

The eight lightest pseudoscalar mesons (π0,±,K0,±, K̄0, and η) have smaller
masses compared to the typical hadrons like ρ-meson (Mρ = 770MeV) or pro-
ton (mp = 938MeV). Especially the mass gap between isospin pion triplets
(mπ = 139MeV) and the ρ meson is 630MeV, where the mass gap between the
isospin multiplets of the meson octet containing the s-quark being significant but
comparatively smaller. All these observations indicate that these pseudoscalar
mesons are the manifest of some underlying global symmetry. This underlying
symmetry is the chiral symmetry of the QCD, which will be discussed in detail
in the next section. It would be more convenient to incorporate the baryon octet
(p, n,Σ0,±,Ξ0,−, and Λ) along with meson octet to describe nuclear physics phe-
nomena. The chiral perturbation theory is the low-energy EFT of QCD which
describes the meson octet and baryon octet below the chiral symmetry breaking
scale (Λχ =Mρ ≈ 1GeV) [103].

The one-loop contributions to any physical observable calculated using chiral
perturbation theory will be proportional to (mmeson or momentum)/Λχ. This
calculation is another way to obtain the chiral symmetry-breaking scale once we
know the χPT Lagrangian. The pion mass and pion decay constant calculated
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up to one-loop order is [117]

mπ(1−loop) = mπ

[
1 +

1

2

(
mπ

4πFπ

)2

lnm2
π + . . .

]
, (2.11)

Fπ(1−loop) = Fπ

[
1−

(
mπ

4πFπ

)2

lnm2
π + . . .

]
, (2.12)

where Fπ is the pion decay constant. From this we can conclude Λχ = 4πFπ ∼
Mρ ∼ 1GeV.

Step 1. The χPT describes the physics below the chiral symmetry breaking
scale (1MeV ≲ E < Λχ = 4πFπ ∼ Mρ ∼ 1GeV). It is constructed with
degrees of freedom as the meson octet (π±,0,K±,0, K̄0, η) and the baryon
octet (p, n,Σ±,0,Ξ−,0,Λ).

2.3.2 Chiral symmetry of QCD

The QCD Lagrangian is given by

LQCD = −1

4
GAµνG

A,µν +
∑

f=
u,d,s,
c,b,t

q̄f (iγ
µDµ −mf )qf . (2.13)

Each quark flavor q is composed to three colors (c) namely r (red), g (green), and
b (blue): qf ≡ qf,c, and mf is the quark mass. The covariant derivative and gluon
field strength are given by

Dµ = ∂µ − igsG
A
µT

A, A = 1, 2, . . . , 8 , (2.14)

GAµν = ∂µG
A
ν − ∂µG

A
µ + gsf

ABCGBµG
C
ν , (2.15)

where gs is the strong coupling constant, GAν are the gluon fields, TA are the
Gell-Mann matrices, and fABC are the SU(3) structure constants. The quark
fields transform according to the fundamental representation of SU(3)c as

qf → q′f = exp

(
−i
∑

A

ΘA(x)T
A

)
qf . (2.16)

Note that the QCD interaction ’sees’ only the color of quarks, not their flavors.
Along with local SU(3) gauge symmetry, QCD also has U(1) global symmetry
since the Lagrangian is invariant under: qf (x) → eiθqf (x). The latter leads to the
Baryon number conservation. The QCD also has anomalous U(1)A symmetry, as
discussed in Chapter 1. The anomalous U(1)A symmetry will not be considered for
the remainder of this chapter. Now we will focus on some accidental symmetries
of QCD, which help construct the low-energy QCD EFT.
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Chiral symmetry

Six quark flavors can be categorized into light quarks (u, d, s) and heavy quarks(c, b, t).
Among them, the heavy quark’s masses lie above the Λχ, and the light quark’s
masses lie deep below Λχ (mu = 2.2MeV,md = 4.7MeV,ms = 96MeV ≪ Λχ ∼
1GeV). Since we are interested in the physics below the Λχ, a good first step is
to start with the QCD with only light quarks in the chiral limit: mu,md,ms → 0.
This low-energy QCD Lagrangian is given by

L0
QCD = −1

4
GAµνG

A,µν +
∑

l=u,d,s

q̄li /Dql , (2.17)

where /D = γµDµ. In this limit, QCD acquires a new global symmetry. It is more
evident once we introduce the left and right quark fields

qL =
1

2
(1 + γ5)q , qR =

1

2
(1− γ5)q . (2.18)

The QCD Lagrangian rewritten in these field definitions is

L0
QCD = −1

4
GAµνG

A,µν +
∑

l=u,d,s

q̄L,li /DqL,l + q̄R,li /DqR,l . (2.19)

Since the covariant derivative (Dµ) is flavor insensitive, the Lagrangian is invariant
under the following global transformations




uL
dL
sL


→ exp

(
−i
∑

A

ΘLAT
A

)


uL
dL
sL


 , (2.20)




uR
dR
sR


→ exp

(
−i
∑

A

ΘRAT
A

)


uR
dR
sR


 . (2.21)

Thus, the L0
QCD has a global SU(3)R × SU(3)L symmetry, also known as the

chiral symmetry ; and also the U(1)V , which leads to the conservation of baryon
number. The Lagrangian is invariant under global SU(3)R × SU(3)L × U(1)V
symmetry.

Noether’s theorem states that every continuous global symmetry of the action
will give rise to a conserved current, which in turn provides a conserved charge [39].
The global SU(3)R × SU(3)L × U(1)V symmetry gives the following conserved
currents

Lµ,A = q̄Lγ
µTAqL , with ∂µL

µ,A = 0 , (2.22)

Rµ,A = q̄Rγ
µTAqR , with ∂µR

µ,A = 0 , (2.23)

V µ = q̄Lγ
µqL + q̄Rγ

µqR , with ∂µV
µ = 0 . (2.24)
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And the associated charges are

QAL(t) =

∫
d3x q†L(x, t)T

AqL(x, t) , (2.25)

QAR(t) =

∫
d3x q†R(x, t)T

AqR(x, t) , (2.26)

QV (t) =

∫
d3x (q†L(x, t)qL(x, t) + q†R(x, t)qR(x, t)) . (2.27)

It is straightforward to show that these charge operators satisfy the Lie algebra
of SU(3)R × SU(3)L × U(1)V

[QAL , Q
B
L ] = ifABCQ

C
L , (2.28)

[QAR, Q
B
R ] = ifABCQ

C
r , (2.29)

[QAL , Q
B
R ] = 0 , (2.30)

[QAL , QV ] = [QAR, QV ] = 0 . (2.31)

If the symmetry associated with these charges is conserved, then by the Noether
theorem, these charges will become time-independent and commute with the
Hamiltonian. This will lead to degeneracies in the particle spectrum. In the next
section, we will see how the non-zero mass of quarks affects these degeneracies.

Explicit symmetry breaking

We have explored the chiral limit of the QCD Lagrangian. However, it has been
observed that the light quarks have small masses. To reflect this, we need to
reintroduce the quark mass term to L0

QCD. It is more convenient to write left

and right currents in terms of vector (V µ,A = Rµ,A + Lµ,A) and axial-vector
(Aµ,A = Rµ,A−Lµ,A) currents. The quark masses modifies the conserved current
as follows.

∂µV
µ,A = iq̄[MTA − TAM ]q , (2.32)

∂µA
µ,A = iq̄(MTA + TAM)q , (2.33)

∂µV
µ = 0 , (2.34)

Since M = Diag(mu,md,ms) ̸= 0, this clearly shows that the quark masses break
the chiral symmetry explicitly. If the quarks had equal masses, we would get a con-
served vector current, but the axial current would not the conserved. Considering
only the u− and d−quarks and assuming mu = md leads to a SU(2)V symmetry
and conserved vector current. This is the isospin symmetry. Since mu ≃ md, we
have an approximate isospin symmetry. We can extend this to s-quark, and we
will get the famous flavor SU(3) symmetry [118], but it is significantly broken
due to the large s-quark mass.
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The QCD Lagrangian extended with external currents is [117]

L = LQCD + q̄γµ

(
vµ +

1

3
vµ(s) + γ5a

µ

)
q − q̄(s− iγ5p)q . (2.35)

The regular QCD is recovered when vµ = vµ(s) = aµ = p = 0 and s = M . This

Lagrangian is invariant under local SU(3)R × SU(3)L × U(1)V transformations,
provided the external fields transform appropriately. The χPT is constructed
from this underlying Lagrangian, which will be discussed later in this section.

Spontaneous symmetry breaking and Goldstone bosons

A continuous symmetry of a Lagrangian is defined as spontaneously broken or
hidden when the ground state of the Lagrangian is no longer invariant under the
said symmetry. In the case of explicit symmetry breaking, both the Lagrangian
and the ground state are no longer invariant under the symmetry. The sponta-
neous symmetry breaking and the associated Goldstone bosons are discussed in
detail in Appendix A. In the following, we will use the results from Appendix A.

We have seen that the QCD Lagrangian in the chiral limit is invariant under
SU(3)L×SU(3)R×U(1)V . The hadron spectrum should exhibit specific properties
if this symmetry is “good” in the low-energy limit. For example, the U(1)V
symmetry manifest as the conservation of baryon number (B). All the low-energy
experiments verified the baryon number conservation; the hadrons categorize into
two types: baryons (B = 1) and mesons (B = 0).

It is convenient to rewrite the left and right charges corresponding to the chiral
symmetry as vector (QAV = QAR +QAL) and axial vector (QAV = QAR −QAL)

QAV (t) =

∫
d3x q†(x, t)TAq(x, t) , (2.36)

QAA(t) =

∫
d3x q†(x, t)γ5T

Aq(x, t) . (2.37)

One can easily see that these charges have opposite parity. Since these are
conserved charges (i.e., time-independent), they commute with the Hamiltonian
(H0

QCD). Suppose there exists a positive parity eigenstate |i,+⟩ of the Hamilto-
nian with energy Ei

H0
QCD |i,+⟩ = Ei |i,+⟩ , (2.38)

P |i,+⟩ = + |i,+⟩ . (2.39)

This state could be a member of the baryon octet in the chiral limit. Because
the axial charge commute with the Hamiltonian, there should exist a degenerate
eigenstate |ϕ⟩ = QAA |i,+⟩ with opposite parity

H0
QCD |ϕ⟩ = H0

QCDQ
A
A |i,+⟩ = QAAH

0
QCD |i,+⟩ = Ei |ϕ⟩ , (2.40)

P |ϕ⟩ = PQAA |i,+⟩ = (PQAAP
†)(P |i,+⟩) = (−QAA)(+ |i,+⟩) = − |ϕ⟩ .

(2.41)
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However, there are no degenerate baryons in the baryon octet with opposite parity.
This means that the ground state is not invariant under the SU(3)A [30]

QAA |0⟩ ≠ 0 . (2.42)

This result indicates that the axial symmetry spontaneously breaks in the low-
energy limit. Ref. [30] shows that a non-zero value for a scalar quark condensate
(⟨q̄q⟩ ≠ 0) in the chiral limit is a sufficient condition for spontaneous symmetry
breaking in QCD. We will not show this here and recommend Ref. [30] for the
details.

The Goldstone theorem predicts the existence of eight light pseudoscalar bosons
because of the spontaneous symmetry breaking of axial transformations and the
explicit symmetry breaking caused by small quark masses. These are nothing but
the pseudoscalar meson octet. The relative heavier mass of the s-quark explains
why the meson octet members (mK ∼ 500MeV,mη ∼ 550MeV) with s-quarks
are heavier than the members without s-quark (mπ ∼ 140MeV).

The hadron spectrum exhibit an approximate flavor SU(3)V symmetry. This
observation means that SU(3)L × SU(3)R × U(1)V is spontaneously broken to
SU(3)V ×U(1)V . If this was exact, the decay constant of pions and kaons should
have been the same (FK

Fπ
= 1.2). However, because s-quark is relatively more

massive than the u and d quark (ms

mu
= 44, ms

md
= 20), flavor SU(3)V is heavily

broken. However, a considerable simplification happens if we consider only the u
and d quark, which are almost the same mass (md

mu
= 2). In this case, we observe

a nearly exact SU(2)V isospin symmetry.

Step 2. The Lagrangian has a SU(3)L×SU(3)R×U(1)V symmetry, which is
spontaneously broken to SU(3)V ×U(1)V . The Lagrangian is also invariant
under the Lorentz, parity, charge conjugation, and time-reversal symmetries.
In Chapter 4, we incorporate the axial anomaly of QCD as an additional
operator to the χPT Lagrangian.

2.3.3 Chiral effective Lagrangians

We have seen all the symmetries of the low-energy QCD. Now we have to cre-
ate an effective field theory that respects these symmetries. Callan, Coleman,
Wess, and Zumino (CCWZ) [119] developed a formal way to achieve this using
non-linear realization of chiral symmetry using group theory. They have shown
that a spacetime derivative always accompanies all the Goldstone fields (pions)
in the Lagrangian. Now we will use the CCWZ formalism to derive the chiral
Lagrangian.

The most general Lagrangian can be written as

Lχ = Lππ + LπN + LNN + . . . , (2.43)

where Lππ,LπN , and LNN govern meson-meson dynamics, meson-baryon inter-
actions, and baryon-baryon dynamics (including nuclear force), respectively. The
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ellipsis stands for the Lagrangian which describes the interactions with mesons
and more than two baryons. The Lagrangian above can be further arranged as

Lππ = L(2)
ππ + L(4)

ππ + . . . , (2.44)

LπN = L(1)
πN + L(2)

πN + L(3)
πN + . . . , (2.45)

LNN = L(1)
NN + L(2)

NN + L(3)
NN + . . . , (2.46)

where the superscripts indicate the number of meson mass or derivative insertions
(chiral dimension).

We start by collecting the meson (baryon) octet in the SU(3) matrix U(x)[Ψ(x)]

U(x) = exp

(
i
ϕ(x)

Fπ

)
≡ u(x)2 , (2.47)

ϕ(x) =

8∑

A=1

2TAϕA(x) ≡




π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K− √

2K̄0 − 2√
3
η


 , (2.48)

Ψ(x) =
8∑

A=1

2TAΨA(x) ≡




1√
2
Σ0 Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
3
Λ


 . (2.49)

It is convenient to define the following fields for the construction of the Lagrangian

uµ = i
{
u†(∂µ − irµ)u− u(∂µ − ilµ)u

† } ,
χ± = u†χu† ± uχ†u ,

F±
µν = u†FRµνu± uFLµνu

† ,

M =




mu 0 0
0 md 0
0 0 ms


 ,

(2.50)

where

χ = 2B(M+ s+ ip) ,

F±
µν = u†FRµνu± uFLµνu

† ,

FµνR = ∂µrν − ∂νrµ − i[rµ, rν ] , rµ = vµ + v(s),µ + aµ ,

FµνL = ∂µlν − ∂ν lµ − i[lµ, lν ] , lµ = vµ + v(s),µ − aµ .

(2.51)

The external fields vµ, vµ(s), a
µ, s and p are the same external fields as in Eq. (2.35).

These fields are convenient because they all have the same transformation under
the chiral group SU(3)L × SU(3)R

X
g−→ h(g,Φ)Xh−1(g, ϕ) (2.52)
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uµ χ+ χ− F+
µν F−

µν Dµ

chiral dimension 1 2 2 2 2 1

parity −(−1)µ + − (−1)µ(−1)ν −(−1)µ(−1)ν (−1)µ

time reversal (−1)µ + − −(−1)µ(−1)ν (−1)µ(−1)ν −(−1)µ

charge conjugation + + + − + +

hermitian conjugation + + − + + +

Table 2.2: The chiral dimension and discrete transformation properties of var-
ious chiral fields and the covariant derivative acting on mesons/external fields.
Here charge conjugation means ±transposed, and hermitian conjugation indicates
±itself. The notation used is (−1)µ = 1 for µ = 0 and (−1)µ = −1 for µ = 1, 2, 3.

where g ∈ SU(2)L × SU(2)R and the compensator h(g, ϕ) defines a non-linear
realization of the chiral symmetry. Since the baryon fields transform as

Ψ
g−→ h(g,Φ)Ψ , Ψ̄

g−→ Ψ̄h−1(g,Φ) , (2.53)

we can construct the Lagrangian using the invariants in the form

Ψ̄XΨ
g−→ Ψ̄XΨ . (2.54)

Now we can define covariant derivative as

Dµ = ∂µ + Γµ , Γµ =
1

2

{
u†(∂µ − irµ)u+ u(∂µ − ilµ)u

† } . (2.55)

Using this we can show that [Dµ, X], [Dµ, [Dν , X]], . . . transforms as Eq. (2.52)
and DµΨ, DµDνΨ, . . . transforms as Eq. (2.53). Sometimes separating the isos-
inglet and isotriplet terms of the external currents is useful. To achieve this, the
following fields are used in the χPT Lagrangian

X̃ = X − 1

2
⟨X⟩ , (2.56)

where ⟨·⟩ is trace over flavor space.
Since χPT is also invariant under discrete symmetries, we want the individ-

ual terms of the Lagrangian to be invariant under chiral symmetry, these discrete
symmetries, and be Lorentz scalar. Table 2.2 shows how some fields and covariant
derivatives acting on mesons/external fields transform under the discrete transfor-
mations, and Table 2.3 has the transformation properties of the Clifford algebra,
metric, Levi-Civita tenser, and the covariant derivative acting on baryons. The
discussion on the negative sign for the charge and hermitian conjugation of DµΨ
and the chiral dimension of γ5 is not included in this thesis, and we refer to
Ref. [120] for the explanation.

We have assembled all the ingredients to make the χPT Lagrangian. The χPT
Lagrangian is constructed by writing down all possible operators that satisfy the



34 Chapter 2. Effective field theories

γ5 γµ γµγ5 σµν gµν ϵµναβ DµΨ
chiral

0 0 0 0 0 0 1
dimension

parity −1 (−1)µ −(−1)µ (−1)µ(−1)ν (−1)µ(−1)ν
(−1)µ(−1)ν

(−1)µ
(−1)α(−1)β

time −1 (−1)µ (−1)µ −(−1)µ(−1)ν (−1)µ(−1)ν
(−1)µ(−1)ν

(−1)µ
reversal (−1)α(−1)β

charge
+ − + − + + −

conjugation
hermitian − + + + + + −
conjugation

Table 2.3: The chiral dimension and discrete transformation properties of ele-
ments of Clifford algebra, metric, Levi-Civita tensor, and the covariant derivative
on baryon. The notation used is (−1)µ = 1forµ = 0 and (−1)µ = −1 for µ = 1, 2, 3.
Here hermitian conjugate equals ±γ0(itself)γ0 and charge conjugation corresponds
to ±transposed.

chiral symmetry, Lorentz invariance, the charge conjugation symmetry, hermitian
conjugation, and parity symmetry. This process will lead to redundant operators,
which should be eliminated. This objective is achieved using equations of motions
(or equivalently field re-definitions), integration by parts, Fierz identities, the
Bianchi identity, cyclic property of trace, specific operator identities such as com-
mutator relations of covariant derivatives, Schouten’s identity, Cayley-Hamilton
theorem, and so on. We refer to Refs. [30, 121] for the detailed construction of
Chiral Lagrangian. The chiral Lagrangians with the smallest chiral dimension are

L(2)
ππ =

F 2
π

4
Tr
(
DµU(DµU)†

)
+
F 2
π

4
Tr
(
χU† + Uχ†) ,

L(1)
πN = Ψ̄

(
i /D −mN +

gA
2
γµγ5uµ

)
Ψ ,

L(0)
NN = −1

2
CsΨ̄γ

µΨΨ̄γµΨ− 1

2
Ct(Ψ̄γ

µγ5Ψ)(Ψ̄γµγ5Ψ) .

(2.57)

The chiral dimension is the number of derivatives or meson/baryon mass inser-
tions, which is indicated as a superscript in the above Lagrangians.

Heavy baryon formalism

The large mass of baryons causes problems in χPT. For example, the baryon
derivative terms are expected to give a small contribution at the low-energy limit.
Even though the space derivative (∇Ψ ∼ pΨ) is well below the Λχ, the time
derivative (∂tΨ = ENΨ ∼ mNΨ) is comparable or greater than Λχ (mN/Λχ ∼ 1).
Jenkins and Manohar [122] solve this problem using the effective field theory
techniques developed by Georgi [123]. The idea is to consider baryons as heavy
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static fields so that the transfer momentum is small compared to baryon mass.
Then expand the theory around this small transfer momentum; this is called
heavy baryon chiral perturbation theory (HBχPT).

We write the momentum in terms of small residual momentum as pµ = mNv
µ+

lµ, where v2 = 1 and v · l ≪ mN . Now we define projection operators P±
v =

1±/v
2

and rewrite Dirac spinor fields of baryons as

Ψ = eimNv.x(Nv + hv) , (2.58)

where we defined N = eimNv.xP+
v Ψ, and h = eimNv.xP−

v Ψ.
If we identify Ψ with positive energy plane wave solution of the Dirac equation

with three-momentum p

ψ
(+)
p (x) = e−ip·xu(α)(p) ,

u(α)(p) =
√
E(p) +mN

(
χ(α)

σ·p
E(p)+mN

χ(α)

)
, (2.59)

where E(p) =
√
m2
N + p2

χ(1) =

(
1
0

)
, χ(2) =

(
0
1

)
, (2.60)

are the two-component Pauli spinors, and by assuming vµ = (1, 0, 0, 0) we get

N (α)
v =

√
E(p) +mN

(
χ(α)

0

)
exp−i(E(p)−mN )t+ip·x , (2.61)

h(α)v =
√
E(p) +mN

(
0

σ·p
E(p)+mN

χ(α)

)
exp−i(E(p)−mN )t+ip·x . (2.62)

This achieves our goal to make the time-derivative of the baryon field below the

Λχ, i∂tN
(α)
v = (E(p) − mN )N

(α)
v ≃ p2

2mN
N

(α)
v . The hv fields can be expressed

in terms of Nv fields using equations of motion; this comes as 1/mN corrections.
The last step is to write LπN and LNN in Nv fields using the above re-definitions
to get the HBχPT

L(1)
πN = N̄v

(
iD0 + gA

σ · u
2

)
Nv ,

L(0)
NN = −1

2
CsN̄vNvN̄vNv −

1

2
Ct(N̄vσ

iNv)(N̄vσ
iNv) ,

(2.63)
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where the Clifford algebras are written as

N̄vINv = N̄vINv ,
N̄vγ5Nv = 0 ,

N̄vγ
µNv = vµN̄vNv ,

N̄vγ
µγ5Nv = 2N̄vS

µNv ,

N̄vσ
µνNv = 2ϵµναβvαN̄vSβNv ,

N̄vσ
µνγ5Nv = 2i(vµN̄vS

νNv − vνN̄vS
µNv) ,

(2.64)

with the definition Sµ ≡ i
2γ5σ

µνvν = (0,σ/2).

Step 3. We have constructed the most general χPT Lagrangian which
respects the symmetries listed in Step 2.

2.3.4 Chiral power counting

In the previous section, we demonstrated how to construct the chiral Lagrangian.
In principle, the chiral Lagrangian consists of infinite terms, a general feature for
any EFT. The next step is to determine the relative relevance of these terms for
the process under consideration. Since each term is proportional to some power
of the expansion parameter, we can ‘order’ the terms based on this exponent. In
χPT, the expansion parameter is Q/Λχ, where Q is the momentum (or transfer
momentum) associated with the particle, nuclear binding momentum, or meson
mass. Then, each term in χPT is proportional to (Q/Λχ)

ν for some chiral order
ν. The chiral power counting is the process that determines the chiral order ν.
Since most of this thesis focuses on nucleons and pions, we are considering the
two flavors SU(2) χPT instead of the general SU(3) χPT. It is straightforward
to extend the power counting rule to the general SU(3)L×SU(3)R×U(1)V χPT.

(a) (b)

Figure 2.1: Some of the diagrams contributing to NN → NN scattering, the
solid lines are nucleons, and the dashed lines are pions. The left and right panels
represent irreducible and reducible diagrams, respectively. The red dotted lines
split the reducible diagram by cutting through the intermediate state containing
only nucleon propagators.
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We can divide any Feynman diagrams into two parts: reducible parts and
irreducible subdiagrams. The reducible parts contain intermediate states purely
made up of nucleon propagators, and the irreducible subdiagrams do not contain
such states, diagram 2.1a is an example of an irreducible diagram. In other words,
if we can split a diagram into two by cutting across only the intermediate nucleon
propagators, it is reducible. This cut is shown as a red dotted line for the reducible
diagram 2.1b.

We will first focus on irreducible diagrams. By following the Feynman rules
of covariant perturbation theory, the pion propagator is of the order Q−2, any
derivative is of the order Q, the nucleon propagator in heavy-baryon formalism
is of the order Q−1 (from heavy baryon formalism), and each loop is of the order
Q4/(2π)2. The chiral order ν for a general diagram involving A nucleons, C
disconnected diagrams, L loops, and containing vertices vi is [124–126]

νW = 4−A− 2C + 2L+
∑

i

∆i , (2.65)

with

∆i = di +
ni
2

− 2 , (2.66)

where di is the number of pion mass or derivatives for vertex i and ni is number
of nucleon legs coming from vertex i.

(a) (b)

Figure 2.2: One pion exchange diagrams of NN → NN scattering in the absence
(left panel) and presence (right panel) of a background nucleon, the solid lines are
nucleons, and the dashed lines are pions.

The Weinberg chiral order formula in Eq. (2.65) fails for A > 2. Consider the
case of one pion exchange diagram for NN → NN scattering in Fig. 2.2a. The
Weinberg formula for this diagram (A = 2, C = 0, L = 0, and ∆i = 1 + 2/2 =
2 = 0 gives νW = 0, see Eq. (2.65). However, for the same interaction in a
A = 3 environment, see Fig. 2.2b, the Weinberg formula gives νW = −3. This
discrepancy is the result of the particle normalization convention

⟨p′|p⟩ = δ(3)(p− p′) , (2.67)
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p− k

k

(a) nucleon self energy

k

−k

(b) NN→NN

Figure 2.3: One loop Feynman diagrams for nucleon self-energy and NN scatter-
ing.

which is of the order Q−3. The disconnected nucleon line in diagram 2.2b con-
tributes as a momentum-conserving delta function, which results in the discrep-
ancy in νW .

By modifying Eq. (2.65) for A > 2, we can solve this problem. First, we negate
the -3 contribution from the nucleon lines by adding a factor of 3A, and to make
the νW = 0 for diagram 2.2b, we have to subtract a factor of 6. The modified
Weinberg formula for chiral order is ν = νW + 3A− 6

ν = −2 + 2A− 2C + 2L+
∑

i

∆i , A > 2 . (2.68)

We will now implement the power counting rules for irreducible and reducible
diagrams. Let us first consider the power counting rules for loops and nucleon
propagators. The Fig. 2.3 represented a typical one loop irreducible (diagram 2.3a)
and reducible (diagram 2.3b) diagrams. Neglecting the vertex factors, the irre-
ducible diagram 2.3a scales as

∫
d4k

(2π)4
i

v · (p− k) + iϵ

i

k2 −m2
π + iϵ

+O
(

p

mN

)
, (2.69)

where p is the on-shell four-momentum of the nucleon and k is loop momentum.
Since v · p = O(p2/mN ) and v · k = k0, we have

∫
d4k

(2π)4
i

−k0 + iϵ

i

k20 − (k2 +m2
π) + iϵ

+O
(

p

mN

)
. (2.70)

Since there is at most one nucleon propagator for irreducible loops, the contour
integral of the time component of the momentum can be done by avoiding the
nucleon pole. Therefore, for irreducible diagrams, the nucleon propagator is of

the order k0 =
√

k2 +m2
π = O(Q). Including the characteristic loop factor of

1/(2π)2, an irreducible loop is proportional to O(Q4/(2π)2).
Let us now consider a typical one-loop reducible diagram of NN scattering in

the center of mass frame, shown in Fig. 2.3b. The incoming nucleons have the
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nucleon propagator
O(Q−1) : irreducible

O
(
mN

Q2

)
: reducible

loop integral
O
(

Q4

(2π)2

)
: irreducible

O
(

Q5

4πmN

)
: reducible

pion propagator O(Q−2)

LEC NDA estimate

Table 2.4: Weinberg power counting for χPT.

one-shell four-momenta p1 = (v · p, p) and p2 = (v · p,−p), and the loop with
momentum k scales as

∫
d4k

(2π)4
i

v · k + iϵ

i

v · (−k) + iϵ
+O

(
p

mN

)
. (2.71)

In this case, we can avoid only one of the nucleon poles while doing the contour
integral of the time component of the loop momentum, which results in an infrared
divergence [124]. However, this nonphysical divergence disappears after we add
the kinetic energy of the nucleon
∫

d4k

(2π)4
i

v · (p+ k)− (p+k)2

2mN
+ iϵ

i

v · (p− k)− (p−k)2

2mN
+ iϵ

∼
∫

d3k

(2π)3
i

k2/2mN

.

Therefore, for reducible diagrams, the nucleon propagator scales as O(mN/Q
2),

and by including the additional loop factor of 4π, the reducible loops scales as
O(Q5/4πmN ). For all diagrams, the pion propagator is O(Q−2), and the LECs
scaling is determined by naive dimensional analysis (NDA). The Weinberg power
counting is summarized in Table 2.4.

Naive dimensional analysis

Georgi and Manohar first proposed the naive dimensional analysis technique for
the chiral quark model [127]. Here, we will adapt NDA for χPT. To demonstrate
the idea behind this technique, consider the one loop π − π scattering amplitude
diagram 2.4 in the center of mass frame, with loop four-momentum k. To simplify,
let us assume that the quarks are massless. Then the relevant Lagrangian for this
diagram is

L =
1

2
(Dµπ⃗)

2 =
1

2
(∂µπ⃗)

2 − 4

F 2
π

π⃗2(∂µπ⃗)
2 +O(π⃗6) . (2.72)
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k

−k

Figure 2.4: One loop diagram of π − π scattering. The dashed lines denote the
pions.

We focus on the loop diagram where all the derivatives act on the external pions
with four-momentum p. The scattering amplitude is proportional to

p4

F 4
π

∫
d4k

(2π)4

(
1

k2

)2

≃ p4

F 4
π

1

(4π)2
log

Λ

µ
, (2.73)

where Λ is the cut-off 1 and µ is the renormalization scale. A counter term should
absorb this log divergence. Since the amplitude is proportional to four power of
pion momentum, we need a contact term with derivative acting on all four pions

Lc.t. =
c

F 2
π

(Dµπ⃗)
2(Dν π⃗)

2 , (2.74)

with some LEC c. The total scattering amplitude with the counterterm is

p4

F 2
π

(
1

(4πFπ)2
log

Λ

µ
+ c

)
. (2.75)

The total amplitude should be renormalization scale µ independent, i.e., any shift
in µ is compensated by a corresponding shift in c. For a shift in µ such that there
is an O(1) shift in log should produce an change in c with δc ∼ (4πFπ)

−2 ≃ Λ−2
χ .

In general, c should be at least as big as δc, which gives

|c| ≳ |δc| = O
(

1

Λ2
χ

)
. (2.76)

The above-discussed NDA estimate is summarized by “reduced” coupling con-
stants [128]. A coupling constant c of an interaction of dimension D involving N
fields has a reduced coupling

cR = c ΛD−4
χ (4π)2−N . (2.77)

Using this formula, we will list NDA rules for some low-energy constants (LECs)
relevant to this thesis and compare them with the experimental LQCD results.

1see Section 3.2.1 for a discussion on cut-off
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• gA
The chiral Lagrangian with coupling gA is given by

Lχ = − gA
Fπ

N̄S ·∇π⃗aτaN , (2.78)

which have D = 5, N = 3 and Eq. (2.77) gives

(
gA
Fπ

)R
=
gA
Fπ

Λχ
4π

∼ gA
2
,

⇒ gA = O(1) , (2.79)

This result agrees with the experiment gA ≃ 1.27.

• mπ

The chiral Lagrangian with pion mass is given by

Lχ = −1

2
m2
ππ · π , (2.80)

which have D = 2, N = 2 and Eq. (2.77) gives

(m2
π)
R =

m2
π

Λ2
χ

. (2.81)

The masses of Goldstone bosons pions result from the explicit symmetry
breaking by the quark masses. Then the reduced pion mass should be in
the same order as the reduced quark mass. The reduced quark mass (m̄)R

is

L = −m̄q̄q , D = 3, N = 2 , (2.82)

(m̄)R =
m̄

Λχ
. (2.83)

Then (m2
π)
R = (m̄)R recovers the well-known result m2

π = O(m̄Λχ).

• ḡ0

The chiral Lagrangian with coupling ḡ0, relevant for Chapter 3 and Chap-
ter 4, is given by

Lχ = ḡ0N̄ π⃗ · τ⃗N (2.84)

which have D = 4, N = 3 and Eq. (2.77) gives

ḡR0 =
ḡ0
4π

= ḡ0
Fπ
Λχ

,

⇒ ḡ0 = O
(
Λχ
Fπ

)
, (2.85)
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where we have used 4πFπ = Λχ.

After removing CP -violating θ̄ term by chiral rotations as discussed in Sec-
tion 4.2.2, the CP -violating SM term is

Lθ̄ = m∗θ̄q̄iγ5q , (2.86)

where m∗ = ( 1
mu

+ 1
md

+ 1
ms

)−1. From Eq. (2.77) we have

(m∗θ̄)
R =

m∗θ̄

Λχ

⇒ m∗θ̄ = O(Λχ) , (2.87)

⇒ ḡ0 = O
(
m∗θ̄

Fπ

)
. (2.88)

This is expected since the θ̄ can induce the ḡ0 by itself. The ḡ0 should be
in the same order as the CP -violating SM coupling m∗θ̄.

• c1

The chiral Lagrangian with coupling c1, relevant for Chapter 5, is

Lχ = −2c1
m2
π

F 2
π

N̄π · πN , (2.89)

which have D = 5, N = 4 and Eq. (2.77) gives

(
c1
m2
π

F 2
π

)R
=
c1m

2
πΛχ

(4πFπ)2
,

⇒ c1 = O(Λ−1
χ ) , (2.90)

which agrees with the experimental result c1 = (0.9± 0.1)GeV−1 [129].

• C0

The chiral Lagrangian with coupling C0, relevant for Chapter 3, is given by

Lχ = C0N̄NN̄N , (2.91)

which have D = 6, N = 4 and Eq. (2.77) gives

CR0 = C0F
2
π ,

⇒ C0 = O
(
Q−2

)
.

(2.92)

As demonstrated in Chapter 4, C0 can take wide range of values and our
NDA estimate C0 = O

(
Q−2

)
does not hold, see Fig. 3.10. NDA is a simple

and powerful tool to build EFTs, and it works well in most cases as we have
seen, but it could fail in some cases because of the complex nature of the
UV complete theory.
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Step 4. The χPT follows the power counting rule based on naive dimen-
sional analysis.

Now we have everything to perform the Step 5, i.e., to calculate relevant Feynman
diagrams. This is demonstrated in the following chapters.





Chapter 3

Renormalization of
CP -violating nuclear force

J. de Vries, A. Gnech, and S. Shain,
“Renormalization of CP -violating nuclear forces,”

Phys. Rev. C 103 no. 1, (2021) L012501 , [arXiv:2007.04927].

3.1 Introduction

As we discussed in Chapter 1, electric dipole moments (EDMs) are ideal exper-
imental probes to measure CP -violation [130, 131]. The SM has two primary
sources of CP -violation, the fermion mixing CKM matrix and QCD θ̄ term. Since
EDMs do not involve flavor-changing interactions, the EDM contribution from
the CKM comes through multiple electroweak loops, which lead to immeasurably
small values [51, 132]. Therefore, if we detect any EDM signals, they originated
from new CP -violating BSM sources or the not-yet-discovered QCD θ̄ term. In
addition to this minimal SM background, EDMs have the benefits of having high
sensitivity and low experimental costs. Furthermore, EDM measurements in mul-
tiple systems such as neutron, proton, electron, atoms, molecules, and muon
provide independent limits on different BSM sources.

Two leading sources induce the nuclear EDMs: the intrinsic EDM of the con-
stituent nucleons and the P -odd, CP -odd NN interactions (nuclear force) that
polarize the nucleus. In this chapter, we will be focusing on the CP -odd nuclear
force. The Fig. 3.1 shows the progress made in the neutron EDM (nEDM) lim-
its over time, along with the most recent results [52], the expected limit from
the n2EDM experiment [133], and the SM electroweak contribution. The nEDM
limits impose severe constraints on the BSM model with additional CP -violation
such as supersymmetry, left-right symmetric model, multi-Higgs, leptoquarks,
and scenarios of electroweak baryogenesis [134]. In model-independent SMEFT,

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.103.L012501
https://arxiv.org/abs/2007.04927
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Figure 3.1: The neutron EDM limits published over past decades by various
experiments. The data points in blue and red colors represent the most recent
EDM limit [52] and expected n2EDM limit [133] (in the absence of any signals),
respectively. The different symbols indicate different experimental groups. The
shaded region represents the CKM contribution to the EDM. The figure is taken
from Ref. [136]

the EDM limits constraints a large set of CP -odd dimension-six operators at the
multi-TeV scale, well above the limits from the collider experiments [135].

Translating the EDM limits from complex systems like nuclei to the under-
lying CP -violating source at the quark level is a non-trivial task. However,
in recent years significant theoretical improvements have been made towards
model-independent first-principle calculations of EDMs from a combination of
LQCD [49, 70, 71], χPT [72–74], and nuclear calculations [75–79]. We can split
this procedure into three parts. We use the SMEFT framework in the first part
and derive a general set of dimension-four (the θ̄ term) and -six CP -violating oper-
ators involving light quarks, gluons, and photons. The second part is translating
these interactions in SM fields to hadronic fields using the χPT framework. In
Chapter 2, we have seen a subset of this part, where we connected dimension-four
SM operators to hadronic interactions. Then the corresponding LECs are ideally
calculated using LQCD. However, sometimes the vast uncertainty associated with
LQCD results does not make this feasible. The last part is to calculate the EDMs
using the chiral Lagrangian.

The EDM form factors are calculated up to next-to-next-to-leading order (N2LO)
in χPT [137–140]. The CP -violating nuclear forces and currents are necessary
ingredients to compute EDMs and EDM form factors. The CP -violating nucleon-
nucleon (NN) potential is calculated up to N2LO [79, 141] and used to calculate
nuclear and atomic EDMs [75–79].
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(a) LO (b) N2LO

Figure 3.2: The diagrams contributing to nuclear EDMs at LO and N2LO. The
red circle and square represent the CP -odd OPE and short-distance vertices. The
striped circle represents the nucleon wave function. The solid, dashed, and wavy
lines correspond to nucleons, pions, and photons.

The CP -violating NN potential of Refs. [79, 141] is derived using Weinberg’s
power-counting scheme outlined in Section 2.3.4 [124]. In this scheme, the CP -
violating potential arises from the one-pion-exchange (OPE) diagrams, and the
corresponding LECs are fixed using processes involving nucleons and pions. How-
ever, this is only in principle, as πN scattering experiments are not sufficiently
accurate to extract CP -violating couplings. In the case of CP -conserving poten-
tial, the leading order (LO) consists of OPE diagrams and two non-derivative
contact interactions in 1S0 and 3S1 waves. In the CP -violating case, NN interac-
tions require at least one space-time derivative, and Weinberg’s power-counting
scheme predicts that the short-distance operators enter only at N2LO, see Fig. 3.2.
This works in our favor because it implies that we only need a few LECS to cal-
culate nuclear EDMs, and we can pinpoint the underlying CP -violating source
using the ratios of EDMs [142].

Weinberg’s power counting scheme is based on naive dimensional analysis
(NDA) (see Section 2.3.4) of the NN LECs [127], which is not always reliable
in nuclear physics. Sometimes, it fails to provide order-by-order renormalized
nuclear amplitudes [143, 144]. This feature is particularly evident in the case of
partial waves, where OPE potential is attractive and non-perturbative. Ref. [145]
studied this case in detail. They demonstrated the failure of NDA for the 3P0

channel where phase shift shows oscillatory limit-cycle-like cut-off dependence for
the LO nuclear potential. The same problem affects external currents inserted
in NN scattering states [146, 147]. In this part of the thesis, we investigate CP -
violating OPE potentials and use cut-off dependence of observables as a diagnostic
tool to demonstrate that a LO shot-distance operator for 1S0-

1P0 transition is re-
quired. This result directly affects the interpretation of EDM experiments and
other time-reversal-odd observables, such as magnetic quadrupole moments or
neutron-nucleus scattering.

An axion dark matter (DM) field can induce oscillating EDMs. Many axion
DM experiments utilize these oscillating EDMs as probes for their searches [148].
Such DM axions act as a coherently oscillating classical scalar field, a = a0 cosmat,
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where ma and a0 are the mass and the constant amplitude of the axion, respec-
tively [149, 150]. This is one of the future projects we plan to explore; see Sec-
tion 4.9 for the current progress. The hadronic and nuclear matrix elements that
connect static EDMs to the θ̄ term are identical to those that relate oscillating
EDMs to the axion field. Here we focus on the former, but all expressions below
apply to DM searches for axions by replacing θ̄ by (a0/fa) cosmat, where fa is
the axion decay constant.

We organize the chapter as follows. We introduce the relevant chiral Lagrangian
and how to obtain the CP -even and CP -odd physical observables like phase shift
and mixing angles for nucleon-nucleon scattering in Section 3.2. In Section 3.3,
we demonstrate how to implement this procedure numerically. We study the
regulator dependence of our results in Section 3.4, and we reproduce the known
failure of Weinberg’s power counting to renormalize CP -even nuclear force in LO.
We observed that Weinberg’s power counting fails to renormalize the CP -odd
nuclear force in the LO. We demonstrated that promoting N2LO short-distance
term to LO restores the renormalization of the CP -odd nuclear forces in the LO.
In Section 3.6, we propose two methods to obtain the LEC for the promoted
N2LO term. We briefly explore other CP -odd operators and P -odd operators in
Section 3.7 and we conclude in Section 3.8. Finally, in Section 3.9 we discuss the
future and ongoing projects.

3.2 Chiral Lagrangian and the phase shifts

In this part of the thesis, we focus on the CP -violation from the QCD θ̄ term.
Since we are only interested in nucleon-nucleon scattering, we will limit to u and
d quarks. This will lead to SU(2)L×SU(2)R chiral symmetry, and the Goldstone
bosons resulting from its spontaneous breaking is the pion triplets (π0,±) [117].
The relevant QCD Lagrangian is [151,152]

L = q̄i /Dq − q̄
(
M0 − iγ5m⋆θ̄

)
q , (3.1)

where q = (u d)T denotes the quark field, Dµ the color and electromagnetic
covariant derivative, M0 = Diag(mu,md) the quark mass matrix, and m⋆ =
mumd/(mu+md). The chiral Lagrangian is constructed by following well-known
methods [153], and the leading CP -even and CP -odd nucleon-pion interactions
are

LπN = − gA
Fπ

∇π⃗ · N̄ τ⃗σN + ḡ0N̄ π⃗ · τ⃗N + . . . , (3.2)

where N = (p n)T , gA ≃ 1.27, π⃗, σ, and τ⃗ denotes the non-relativistic nu-
cleon doublet, the nucleon axial coupling, pion triplet, and the nuclear spin,
and nuclear isospin operators respectively. The CP -odd LEC is represented by
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(a) LO OPE diagram (b) LO short-distance diagram

(c) LO OPE diagram (d) N2LO short-distance diagram

Figure 3.3: The OPE and short-distance diagrams for NN nuclear force. The
diagrams in the top (bottom) row contribute to the CP -even (CP -odd) nuclear
force. The black (red) circle and the black (red) square represents the CP -even
(CP -odd) OPE and short-distance vertices, respectively. The solid lines represent
nucleons, and the dashed lines represent pions.

ḡ0 = O
(
m∗θ̄/Fπ

)
, see Eq. (2.88). The ellipsis denotes the higher-order terms

involving multiple pions.
A chiral rotation relates the QCD θ̄ term and an isospin-breaking component

of quark masses [137]. Using this, we can get the exact expression of ḡ0 in terms
of θ̄ as [154]

ḡ0 =
δmstr

N (1− ε2)

4Fπε
θ̄ = −(14.7± 2.3) · 10−3 θ̄ , (3.3)

where δmstr
N is the quark-mass induced part of the proton-neutron mass splitting

that has been calculated with LQCD [155] and ε = (mu −md)/(mu +md). The
value of ḡ0 agrees with the LQCD results [49].

The OPE NN potentials calculated using the chiral Lagrangian in Eq. (3.2)
and the power counting rule are

Vstr,π = − 1

(2π)3

(
gA
2Fπ

)2

τ⃗1 · τ⃗2
(σ1 · q)(σ2 · q)

q2 +m2
π

, (3.4)

Vḡ0 = − 1

(2π)3
gAḡ0
2Fπ

τ⃗1 · τ⃗2
i(σ1 − σ2) · q

q2 +m2
π

, (3.5)

where q = p − p′ is the momentum transfer between in- and outgoing nucleon
pairs with relative momenta p and p′ respectively (|p| = p and |p′| = p′), and mπ
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denotes the pion mass. The subscript ‘str’ stand for strong (CP -even) interaction.
These OPE diagrams are shown in the left panel of Fig. 3.3. We include the strong
contact/short-distant (sd) NN interactions

Vstr,sd =
1

(2π)3

(
CsPs + CtPt +

1

4
pp′ CpPp

)
, (3.6)

where Ps,t,p project respectively on the 1S0,
3S1, and

3P0 waves. In Weinberg’s
power counting, the S-wave contact terms appear at LO while the P -wave con-
tact term enters at N2LO. The CP -odd short-distance interactions (Eq. (3.26))
contributes at N2LO according to Weinberg’s power counting rule. The short-
distance diagrams are shown in the right panel of Fig. 3.3.

3.2.1 Phase shift calculation

We consider the NN scattering in the center-of-mass (CM) frame. We denote the
reduced mass of the system by µ, which is twice the nucleon mass (mN ), and the
energy by E. By following the standard normalization for the plane wave, the
Lippmann-Schwinger (LS) equation1

T (p′,p, E) = V (p′,p) +

∫
d3p′′V (p′,p′′)

1

E − p′′2

2µ + iε
T (p′′,p, E) , (3.7)

where V is potential. To solve the LS equation numerically, we need to intro-
duce a regulator function fΛ(p

′, p) to the potential V (p′, p) → V (p′, p)fΛ(p′, p);
this is a convenient way to introduce a momentum space cut-off Λ. The regu-
larization procedure modifies the observable with singularities by introducing the
parameter regulator (or cut-off), which makes them finite. The cut-off reflects
our lack of knowledge of physics outside the relevant energy scale of our EFT.
After renormalization, the low-energy results should be independent of the choice
of the regulator (renormalization-group invariance), provided Λ > Λχ. In partial
wave decomposition, it is convenient to implement regularization using momen-
tum cut-off functions that depend on p and p′ rather than on q. We chose

fΛ(p, p
′) = e−(p/Λ)4e−(p

′/Λ)
4

. (3.8)

To obtain the CP -even/strong NN scattering wave functions we solve the LS
equation in Eq. (3.7) using the strong potential Vstr = (Vstr,π + Vstr,sd)fΛ(p, p

′).
For convenience, we adopt the following notation to represent Eq. (3.7) from now
on

T = V + V G0T , G0 = (E − p2/mN + iε)−1 . (3.9)

1The Feynman’s iε prescription used here should not be confused with the ε in Eq. (3.3), the
former always appears as iε.
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Once we solve the LS equation and obtain the T -matrix, the S-matrix for nucleon-
nucleon scattering for the α′ − α scattering is

Sα
′,α(ECM) = δα

′,α − iπm
3/2
N E

1/2
CMT

α′,α(p = p′ =
√
ECMmN ) . (3.10)

where α ≡ {(ls)j; tmt} represent the partial waves. The partial wave analysis of
nucleon-nucleon scattering is described in Appendix B. Using the parameteriza-
tion from Eq. (B.28), for uncoupled channel {α}

Sα,α = e2iδα , (3.11)

and using Eq. (B.29) for coupled channels {α1, α2}

S{α1,α2} =

(
cos 2ϵ e2iδα1 i sin 2ϵ ei(δα1+δα2 )

i sin 2ϵ ei(δα1
+δα2

) cos 2ϵ e2iδα2

)
. (3.12)

where δα and ϵ are phase shifts and mixing angles, respectively.
The nucleon-nucleon scattering experiments were done using beam and fixed

target experiments. The beam and target can be polarized or unpolarized. For
different energies, the experimentalists measured various observables like angu-
lar distribution, scattered particle polarization, recoil particle polarization, spin
correlation of the final state, etc. We can express these observables using phase
shifts, mixing angles, and four-momenta. The phase shifts and mixing angles
are extracted from the nucleon-nucleon scattering data by fitting it to various
energies2.

We now consider the CP -odd potential Vḡ0 which causes 1S0-
3P0 and 3S1-

1P1

transitions. We treat Vḡ0 to excellent accuracy in perturbation theory and write

Tḡ0 = Vḡ0 + Vḡ0G0Tstr + TstrG0Vḡ0 + TstrG0Vḡ0G0Tstr . (3.13)

The S-matrix is obtained from the on-shell T -matrix T = Tstr + Tḡ0 using
Eq. (3.10). For j = 0, we parametrize the S matrix by

Sj=0 =

(
e2iδ1S0 ϵ0SPe

i[δ1S0
+δ3P0 ]

−ϵ0SPei[δ1S0
+δ3P0 ] e2iδ3P0

)
, (3.14)

where ϵ0SP ∼ θ̄ denotes the small 1S0-
3P0 mixing angle. The j = 1 channel is more

complicated because of strong 3S1-
3D1 mixing, and for simplicity, we expand in

the small S-D mixing angle ϵ. Up to O(ϵ3)

Sj=1 =




e2iδ3S1 cos 2ϵ iei[δ3S1
+δ3D1 ] sin 2ϵ xSP

iei[δ3S1
+δ3D1 ] sin 2ϵ e2iδ3D1 cos 2ϵ xDP
−xSP −xDP e2iδ1P1


 ,

xSP =
[
ϵ1SP + iϵ ϵDP

]
ei[δ3S1

+δ1P1 ] ,

xDP =
[
ϵDP + iϵ ϵ1SP

]
ei[δ3D1

+δ1P1 ] , (3.15)

2the scattering data is available through https://nn-online.org.

https://nn-online.org./
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in terms of two CP -odd mixing angles ϵ1SP and ϵDP. S is antisymmetric in the
S-P and P -D elements due to time-reversal violation. The CP -odd mixing angles
ϵ0,1SP and ϵDP are observable in, for example, spin rotation of polarized ultracold
neutrons on a polarized hydrogen target [156]. Still, it is unlikely that these
experiments can reach a competitive sensitivity with EDM experiments, although
neutron transmission experiments using heavy target nuclei might be up to the
task [157, 158]. We can express the nuclear EDMs as linear combinations of the
mixing angles and contributions from CP-odd electromagnetic currents such as
constituent nucleon EDMs.

3.3 Numerical computation

3.3.1 Numerical solution of LS equation

We consider the general case of coupled partial waves {α1, α2, . . . , αM} nucleon-
nucleon scattering. First, we calculate the T -matrix for α′ − α transition. The
LS equation for T -matrix in the partial wave basis is given by

Tα
′,α(p′, p, E) = V α

′,α(p′, p) +
∑

α′′

∫
dp′′V α

′,α′′

(p′, p′′)
1

q20−p
′′2

2µ + iε
Tα

′′,α(p′′, p, E) ,

(3.16)

here we defined q0 =
√
2ECMµ and α′′ is summed over {αi}. The pole in the

integrand is isolated using the contour integral method

2µ

(q0 − p′′ + iϵ)(q0 + p′′ + iε)
=

2µ

q20 − p′′2
P − iπ

2µ

q0 + p′′
δ(p′′ − q0) ,

where P is the principle value. Using this result in Eq. (3.16) gives

Tα
′α(p′, p, E) = V α

′α(p′, p, E) + 2µ
∑

α′′

−
∫
dp′′V α

′α′′

(p′, p′′, E)
p′′2

q20 − p′′2
Tα

′′α(p′′, p, E)

− iπµq0
∑

α′′

V α
′α′′

(p′, q0, E)Tα
′′α(q0, p, E) , (3.17)

where −
∫
denote the principal valued integral (p′′ ̸= q0), which is further expanded

−
∫
dp′′V α

′α′′

(p′, p′′, E)
p′′2

q20 − p′′2
Tα

′′α(p′′, p, E)

=

∫
dp′′

(
V α

′α′′

(p′, p′′, E)p′′2Tα
′′α(p′′, p, E)− V α

′α′′

(p′, p′′, E)q20T
α′′α(p′′, p, E)

q20 − p′′2

V α
′α′′

q20 − p′′2
× Tα

′′α(p′′, p, E)

)

+ V α
′α′′

(p′, q0, E)q20T
α′′α(q0, p, E)I0 , (3.18)
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where we defined I0 = −
∫
dp′′ 1

q20−p′′2
. Since our EFT is only valid below the Λχ, we

can perform the momentum integral by introducing a momentum cut-off Λ̃ well
above Λχ. The I0 integral evaluated using momentum cut-off gives

IΛ̃ ≡ I0(Λ̃) = −
∫ Λ̃

0

dp′′
1

q20 − p′′2
=

1

2q0
log

q0 + Λ̃

Λ̃− q0
. (3.19)

At this point, we will introduce numerical techniques. The momentum integra-
tion is expressed as summing over the momentum mesh: {(p1, ω1), (p2, ω2), . . . ,
(pNp

, ωNp
)}, with ∑i ωi = Λ̃. We designed the grid to include more grid points

near mπ, which is the most interesting scale for nuclear physics. For notational
convenience we are defining pNp+1 ≡ q0 and Vij ≡ V (pi, pj , E). The LS equation
in (3.17) becomes

Tα
′α

ji = V α
′α

ji + 2µ
∑

α′′

Np∑

k=1

V α
′α′′

jk p2kT
α′′α
ki ωk

q20 − p2k
− 2µ

∑

α′′

Np∑

k=1

q20
V α

′α′′

j,Np+1T
α′′α
,Np+1iωk

q20 − p2k

− iπµq0
∑

α′′

V α
′α′′

j,Np+1T
α′′α
Np+1,i + iπµq20IΛ̃

∑

α′′

V α
′α′′

j,Np+1T
α′′α
Np+1,i (3.20)

We can arrange the above equation as a matrix equation

∑

α′′

Np∑

k=1

Aα
′α′′

jk Tα
′′α

ki = V α
′α

ji . (3.21)

where we identify matrix A as

• j, k ∈ [1, Np] : A
α′α′′

jk = δjkδα
′α′′ − 2µV α′α′′

jk p2kωk

q20−p2k
.

• j ∈ [1, Np] : A
α′α′′

j,Np+1 = 2µq20
∑Np

k′=1

(
ωk′

q20−p2k′

)
V α

′α′′

j,Np+1+(iπµq0−2µq20IΛ̃)V
α′α′′

j,Np+1 .

• k ∈ [1, Np] : A
α′α′′

Np+1,k = −2µ
ωkp

2
k

q20−p2k
V α

′α′′

Np+1,k .

• Aα
′α′′

Np+1,Np+1 = δα
′α′′

+ 2µq20
∑Np

k′=1

(
ωk′

q20−p2k′

)
V α

′α′′

Np+1,Np+1

+(iπµq0 − 2µq20IΛ̃)V
α′α′′

Np+1,Np+1 .

For uncoupled channel, Eq. (3.21) becomes a simple matrix equation AT = V
(where matrix dimensions areNp+1×Np+1) and can be solved easily. For coupled
channel ({α1, α2, . . . , αM}), we can still write it as a simple matrix equation if we
replace the matrices A, T, V by bigger matrices given by

A→




Aα1α1 Aα1α2 . . . Aα1αM

Aα2α1 Aα2α2 . . . Aα2αM

...
...

. . .
...

AαMα1 AαMα2 . . . AαMαM




M ·(Np+1)×M ·(Np+1)

, (3.22)
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and the S-matrix is given by

Sij = δαiαj − 2iπµq0T
αiαj

Np+1,Np+1. (3.23)

The phase shifts and mixing angles are extracted from the S-matrix using Eqs.
(3.11), (3.12), (3.14), and (3.15) for CP -even uncoupled channels, CP -even cou-
pled channels, CP -odd j = 0 channels, and CP -odd j = 1 channels, respectively.

3.3.2 Python program to extract phase shift and mixing
angles

A Python program was used to implement the above prescription to solve the LS
equation and extract the phase shift and mixing angles as a function of cut-off
Λ. The program generates Cs,t,p as function of cut-off Λ, by fitting to Nijmegen
PWA data for δ1S0,3S1,3P0 at ECM = 5MeV. For CP -odd potential, the program
generates C̄0 as function of cut-off Λ, by fitting ϵ0SP = ϵ0SP,fit, ϵ

0
SP,fit+0.1 ḡ0, ϵ

0
SP,fit−

0.1 ḡ0 at ECM = 5MeV, with ϵ0SP,fit = 0.01 ḡ0 (these fit choices are explained in
Section 3.5). The program’s basic structure is briefly demonstrated in this section.
The program is divided mainly into two parts: CP -even and CP -odd. The python
code is available at https://github.com/sachin-shain/CP-odd nn-scattering.

CP -even sub-program

The CP -even part calculate the phase shift and mixing angles for Λ = (2−52) fm−1

and ECM = (1−100)MeV, using CP -even potential. After fitting to experimental
data, it also generates the CP -even LECs Cs,t,p. The main routines and sub-
routines of this part of the program are CP-even phase shift calculator and Ceven0

calculator.

• CP-even phase shift calculator: This routine calculates the phase shift
and mixing angles for a given channel, ECM, Λ, and C0. The C0 is the
coupling of the contact terms that contribute to the channel. The short
distance contributions are ‘turned off’ by calling the routine with C0 = 0.

For renormalizing the potential, C0(Λ) must be fitted for the appropriate
channels. The Ceven0 calculator sub-routine achieve this objective. Once
the C0(Λ) data file is created, the CP-even phase shift calculator will read
the C0(Λ) for appropriate channels automatically, and C0 input is no longer
necessary. The routine treats the absence of C0(Λ) file as the absence of
short-distance interactions. The flowchart diagram for this routine after
creating C0(Λ) data files is given in Fig. 3.4. The data generated by this
routine are used to generate plots in Section 3.4.1.

• Ceven

0
calculator: For a given channel α (in which short distance interac-

tion contributes), interval (a, b), and experimental phase shift value at δαexp
(ECM = 5MeV), this sub-routine calculates C0(Λ) for Λ ∈ (2, 52) fm−1 such

https://github.com/sachin-shain/CP-odd_nn-scattering
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Figure 3.4: The flow chart of the CP-even phase shift calculator routine after
implementing Ceven

0 calculator.

that δαC0
− δαexp (a < δαC0

< b) lies below a certain tolerance value, the fit is
done for ECM = 5MeV.

For each Λ, the function

Fc(C0) = δαC0
− δαexp , (3.24)

is evaluated for C0 ∈ (a, b), and δαC0
is calculated using CP-even phase shift

calculator. In general, Fc need not be continuous in the given interval (a, b).
We observed that the nature of Fc falls into six types, as shown in Fig. 3.5.
The main part of the sub-routine is to identify the interval (ã, b̃) in which
Fc is continuous and satisfies Fc(ã)Fc(b̃) < 0, once the sub-routine identifies
this interval, it uses Brent’s method root-finding algorithm to calculate the
root of Fc C0(Λ).

Type Maximum Minimum Sign(Fc(a)) Sign(Fc(b)) (ã, b̃)

Type 3 c− c+ + + (c+, b)

Type 4 c+ c− + + (a, c−)

Type 5 c+ c− − − (c+, b)

Type 6 c− c+ − − (a, c−)

Table 3.1: The conditions to identify the type of the graph.

For the initial plot, five values of C0 ∈ {a, a + ∆c, . . . , b} ( ∆c =
b−a
5 ) are

used. For type-1 and type-2, we can easily identify ã = a, b̃ = b. For other
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Figure 3.5: The six types of Fc vs C0 graphs. The black, green, and blue lines
indicate the x-axis, the root C0(Λ), and the discontinuity c = Cdiscont

0 , respectively.

types, first, we need to locate the interval containing the discontinuity point
c. This interval is identified when Fc obtains maximum (minimum) at c+
and minimum (maximum) at c−, with c+ = c− + ∆c. However, we can
have Fc(c−)Fc(c+) > 0, as shown in the left panel of Fig. 3.6. In this case,
we repeat the process with the new intervals until Fc(c−)Fc(c+) < 0. For
type-3 graph, this interval is (c−, c+) as demonstrated in Fig. 3.6. Now we
can identify the type of the graph and interval ã, b̃ using Table 3.1. The
program store the calculated C0(Λ) in a .csv file for future access. The
flowchart for this routine is given in Fig. 3.7.
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(c) (a, b) = (1.56, 1.68), c− =
1.56, c+ = 1.584

Figure 3.6: Three stages of ‘zooming-in’ around the discontinuity of a type-3
graph. The discontinuity c and root C0(Λ) of Fc are shown by blue and green lines,
respectively.
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Figure 3.7: The flow chart of the Ceven
0 calculator sub-routine.

CP -odd sub-program

The CP -odd part of the program is similar to the CP -even part. It uses the
Cs,t,p(Λ) generated by the CP -even part to calculate the full LO CP -even po-
tentials along with CP -odd potentials. It calculate the phase shifts and CP -odd
mixing angles for Λ = (2 − 52) fm−1 and ECM = (5, 25, 50, 95)MeV. For a given
value of ϵ0SP,fit at ECM = 5MeV, the program calculate C̄0(Λ) by fitting ϵ0SP to
this fit value.

This program evaluate ϵ0,1SP , and ϵDP as a function of cut-off and calculates
C̄0 and ϵ0SP(Λ) after fitting ϵ

0
SP,fit = (0.01, 1.10,−0.09)ḡ0. The program achieves

this by using method 1 and method 2, which take advantage of CP -odd being
perturbative to CP -even potential. The method 1 uses Eq. (3.13) to calculate
the T matrix. Method 2 utilizes the fact that we can express the total CP -odd
mixing angle as a sum of the CP -odd mixing angle from the CP -odd OPE and
short-distance potentials because CP -odd potential can be treat as a perturbative
correction to CP -even potential

ϵLOSP = ϵOPE
SP + C̄0ϵ

sd
SP , (3.25)

where we calculated ϵsdSP without the LEC C̄0. The C̄0 is calculated by fitting ϵLOSP
with ϵLOSP to ϵ0SP,fit. We implement the perturbation nature of CP -odd potential

numerically by introducing a small factor ∆ = 10−4 to all CP -odd potentials;
this will make sure that CP -odd contributions are always smaller by a factor of
∆ compared to CP -even contributions (see Table 3.2). The CP -odd observables
are divided by ∆ in the end to make them ∆ independent. We have checked that
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both method 1 and method 2 produce the same results. However, we observed
that the method 2 is significantly faster and we used this method for fitting. The
data generated by this routine are used to generate plots in Section 3.4.2. The
following are the main routines and sub-routines of this part of the program.

• CP-odd phase shift calculator: It has almost the same structure as the
CP-even phase shift calculator, except for the regulated potential and CP-
odd phase shift sub-routines. The regulated potential is modified to calculate
different types of potentials based on the index (internal parameter of the
CP -odd program) values. The potential corresponding to different index
values and their purpose is given in Table 3.2.

• Ceven

0
calculator: This sub-routine calculate C̄0(Λ) by fitting ϵ0SP with

ϵ0SP,fit = 0.01ḡ0 at ECM = 5MeV for Λ = (2 − 52) fm−1. We do the fitting

using method 2. To study the effect of different values of ϵ0SP (including
ϵ0SP < 0), we also fitted for ϵ0SP = ϵ0SP,fit +0.1ḡ0 = 0.11ḡ0 and ϵ0SP = ϵ0SP,fit −
0.1ḡ0 = −0.09ḡ0. The calculated C̄0(Λ) are stored in a .csv file for future
access.

Index V (p′, p) Purpose

0 V strong Evaluate T strong

1 ∆V CP−odd
OPE Evaluate Vḡ0

2 V strong +∆V CP−odd
OPE Evaluate ϵOPE

SP

3 V strong +∆V CP−odd
sd Evaluate ϵsdSP

4 V strong +∆(V CP−odd
OPE + V CP−odd

sd ) Evaluate ϵ0SP, after fitting C0.

Table 3.2: The potentials that are ‘called’ by the regulated potential for the dif-
ferent index values.

3.4 Nucleon-nucleon phase shifts

In this section, we studied the dependence of CP -even and CP -odd observables on
the cut-off Λ. We did a partial-wave decomposition for the interactions discussed
in Section 3.2 and numerically solved the LS equation, as described in the above
section, and extracted the phase shifts and mixing angles. One advantage of
using partial waves is the total spin quantum number j, z-component of the
spin mj are conserved during the scattering process, see Appendix B. Another
advantage is that the nuclear potentials are short-distance, and the wave function
of higher partial waves has a lesser probability near the scattering point and
becomes less relevant. We also checked whether these observables agreed with
the experimental results. We analyzed the dependence of the LO contribution
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of the observables, which are determined by the Weinberg’s power counting rule
based on NDA, on the cut-off Λ. If NDA holds, the observables are expected to
show cut-off independence within NLO corrections. We have considered a wide
range of cut-off Λ = (2 − 52) fm−1 and four different center of mass energies
ECM = (5, 25, 50, 95)MeV. We present the results for waves with total angular
momentum j = 0, 1 below.

3.4.1 CP -even

Considering only the strong OPE potential leads to phase shifts and mixing an-
gles that are cut-off dependent for the 1S0 and 3S1-

3D1 channels. These cut-off
dependence of the phase shift δ1S0 for 1S0 and the phase shift δ3S1 for 3S1-

3D1 are
shown in the top-left panel of Fig. 3.8 and Fig. 3.10, respectively. However, this
is resolved in Weinberg’s power counting by including the short-distance counter
terms Cs and Ct acting in 1S0 and 3S1 waves. We fitted the Cs,t with Nijmegen
energy-dependent partial-wave analysis (PWA) of NN scattering data 3 [159] at
ECM = 5MeV. The phase shifts and mixing angles from the full LO strong
potential exhibit the expected regulator independence.

We present cut-off dependence of the full LO phase shift of 1S0 for various
energies in the top-right panel of Fig. 3.8. The bottom-left panel of Fig. 3.8
shows the cut-off dependence of LEC Cs after fitting to data at ECM = 5MeV.
In the bottom-right panel of Fig. 3.8, we compared the LO phase shift for Λ =
52 fm−1 with the Nijmegen PWA data and observed the known discrepancy. This
deviation is an effect of the relatively-large effective range parameter in the 1S0
wave; without the two-derivative contact term, we can not capture this sufficiently.
Once we include the subleading term to the potential, the discrepancy disappears.

We present the cut-off independence of 3S1-
3D1 channel phase shift δ3S1, ϵ1,

and δ3D1 in the top-right panel of Fig. 3.10, left and right panel of Fig. 3.9,
respectively. The contact term LEC Ct of this channel, is shown in the bottom-
left panel of Fig. 3.10 as a function of cut-off Λ. The Ct(Λ) shows a limit-cycle
behavior and appears to be discontinuous at some cut-offs. This behavior is not
a cause for concern because Ct is not observable. In the bottom-right panel of
Fig. 3.10, we compare the LO results of δ3S1 with the experimental data. We are
in good agreement at lower energies, which is remarkable because we only use the
LO contribution.

In the 1P1 and 3P1 waves, the strong OPE potential leads to cut-off indepen-
dent phase shifts. The cut-off independence of 1P1 channel phase shift is shown
in the left panel of Fig. 3.11. We also observe a good agreement with the experi-
mental data at lower energies; see the right panel of Fig. 3.11.

In the 3P0 channel, however, the phase shifts arising from OPE are strongly
cut-off dependent. They undergo a dramatic limit-cycle-like behavior; see the
top-left panel of Fig. 3.12. Following Weinberg’s power counting, there is no

3the scattering data is available through https://nn-online.org.

https://nn-online.org./
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Figure 3.8: The 1S0 channel phase shift from the LO OPE (LO OPE and short
distance) CP -even diagram, for multiple center of mass energies, as a function of
cut-off Λ, is presented in the top-left (top-right) panel. The bottom-left panel shows
the dependence of the LEC Cs, fitted for ECM = 5MeV, as a function of cut-off
Λ, and the bottom-right panel shows the comparison of the LO phase shift δ1S0

at cut-off Λ = 52 fm−1 (solid line) to the Nijmegen PWA (dashed line) for a wide
range of center of mass energies.
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Figure 3.9: The 3S1-
3D1 channel mixing angle ϵ1 and phase shift δ3D1 from the

full LO CP -even diagram, for multiple center of mass energies, as a function of
cut-off Λ is presented in the left and right panels, respectively.
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Figure 3.10: The 3S1-
3D1 channel phase shift δ3S1 from the LO OPE (LO OPE

and LO short distance) CP -even diagram, for multiple center of mass energies, as a
function of cut-off Λ is presented in the top-left (top-right) panel. The bottom-left
panel shows the dependence of the LEC Ct, fitted for ECM = 5MeV, as a function
of cut-off Λ and the bottom-right panel shows the comparison of the LO phase shift
δ3S1 at cut-off Λ = 52 fm−1 (solid line) to the Nijmegen PWA (dashed line) for a
wide range of center of mass energies.
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Figure 3.11: The 1P1 channel phase shift from the LO OPE CP -even diagram, for
multiple center of mass energies, as a function of cut-off Λ is presented in the left
panel. In the right panel, we compare the LO 1P1 phase shift at cut-off Λ = 52 fm−1

(solid line) to the Nijmegen PWA (dashed line) for a wide range of center of mass
energies.
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Figure 3.12: The 3P0 channel phase shift δ3P0 from the LO OPE (LO OPE and
LO short distance) CP -even diagram, for multiple center of mass energies, as a
function of cut-off Λ is presented in the top-left (top-right) panel. The bottom-left
panel shows the dependence of the Cp LEC, fitted for ECM = 5MeV, as a function
of cut-off Λ and the bottom-right panel shows the comparison of the LO phase shift
δ3P0 at cut-off Λ = 52 fm−1 (solid line) to the Nijmegen PWA (dashed line) for a
wide range of center of mass energies.

counter-term that can absorb this regulator dependence. Following Ref. [145], we
promote the 3P0 counter term with LEC Cp in Eq. (3.6) to LO and fit Cp to
the 3P0 phase shift at ECM = 5MeV. With this modified power counting, the
phase shifts become cut-off independent; see the top-right panel of Fig. 3.12. The
regulator dependence of Cp is given in the bottom-left panel of Fig. 3.12. The
LECs Cp show significant Λ dependence, which is of no concern as they are not
observable. In the bottom-right panel of Fig. 3.12, we compare the phase shift
from the modified LO with the experimental data and agree at lower energies.
All results agree with Refs. [145,160].

3.4.2 CP -odd

The CP -odd mixing angles are observable and should be cut off independent of
NLO corrections. We observed this in the case of ϵ1SP and ϵDP, as shown in
Fig. 3.13. We have checked that no regulator dependence appears for any j = 2
transition after renormalizing the strong j = 2 scattering states.
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Figure 3.13: The ϵ1SP (ϵ1DP) mixing angle from 3S,D1-
1P1 channel for CP -odd LO

OPE diagrams for various ECM energies as a function of cut-off Λ are shown in the
left (right) panel.
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Figure 3.14: The ϵ0SP mixing angle, in units of ḡ0, for
1S0-

3P0 channel from the
LO OPE CP -odd potential, for multiple center of mass energies, as a function of
cut-off Λ is presented in the top panel. In the bottom-left panel, we show the
ϵ0SP mixing angle from LO OPE and contact diagrams after fitting the LEC C̄0 to
ϵ0SP,fit = 0.01ḡ0 at ECM = 5MeV for various ECM energies as a function of cut-off
Λ. The bottom-right panel shows the cut-off Λ dependence of CP -odd LEC C̄0,
after fitting ϵ0SP to ϵ0SP,fit = 0.01ḡ0 at ECM = 5MeV.
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(a) (b)

Figure 3.15: Left: Diagram contributing to the regulator dependence of ϵ0SP. Solid
(dashed) lines denote nucleons (pions). The red circle denotes ḡ0 while the blue
circles denote the gA or Cs vertices. The blue square denotes Cp. Right: short-
distance contribution proportional to C̄0. The red square denote the C̄0 vertex.

In the case of j = 0, the CP -odd mixing angle ϵ0SP shows an oscillatory behavior
and even changes sign as a function of Λ. We observed it varies from -0.5 to 1.8
in units of ḡ0 for the range of Λ = (2 − 52) fm−1, as shown in the top panel of
Fig. 3.14. We concluded that the regulator dependence arises from divergences in
diagrams contributing to Tḡ0 with the topology of the diagram 3.15a, where Vḡ0
is dressed on both sides by a strong short-distance interaction (an infinite number
of LO diagrams are generated by adding additional strong interactions on either
side). The absence of LO short-distance 1P1 term prohibits diagrams of the form
3.15a and lead to cut-off independence for CP -odd mixing angles in the 3S,D1-

1P1

channels. However, because of the LO short-distance 3P0 term, such diagrams
are no longer restricted and cause strong regulator dependence.

In χPT calculations using Weinberg’s power counting, P -wave counter terms
appear at N2LO but are iterated to all orders in the solution of the LS equa-
tion [161]. As a result, divergent diagrams with the topology of Fig. 3.15 reappear,
and the CP -odd transitions become regulator dependent. However, this depen-
dence might be hard to see in numerical calculations as regulators are varied in a
small window around Λ = 500MeV [77,79].

3.5 Counter term and renormalizaiton of CP -odd
nuclear forces

Our result established that the ϵ0SP is cut-off dependent, which implies that the
CP -odd observables that depend on 1S0-

3P0 can not be directly calculated from
ḡ0, and thus θ̄ via Eq. (3.3). From an EFT point of view, this indicates that
the CP -odd nuclear forces are not properly renormalized. A counter term is
required to encapsulate missing short-distance physics and absorb the divergence.
In χPT, such counter terms are provided by short-range CP -odd NN interactions,
see diagram 3.15b, of the form [73,74]

LNN = C̄0

[
N̄σN ·∇(N̄ N) +

1

3
N̄ τ⃗σN ·∇(N̄ τ⃗N)

]
, (3.26)
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Figure 3.16: The ϵ0SP mixing angle from LO OPE and contact diagrams after
fitting the LEC C̄0 to ϵ0SP,fit = 0.11ḡ0 and ϵ0SP,fit = −0.09ḡ0 at ECM = 5MeV for
various ECM energies as a function of cut-off Λ is shown in the left and right panel,
respectively. The ϵ0SP mixing angle for ϵ0SP,fit = 0.01ḡ0 is shown in the lighter shade,
and the arrows indicate how the ϵ0SP shifted in comparison with the ϵ0SP,fit = 0.01ḡ0
fit.

which projects on 1S0-
3P0. The C̄0 is a LEC that depends on Λ, which needs to be

fitted similarly to the CP -even case to make ϵ0SP cut-off independent. NDA sug-
gests that C̄0 = O(m⋆θ̄/(F

2
πΛ

2
χ)) and a N2LO contribution, but renormalization

enhances C̄0 to LO.
We repeated our calculation for ϵ0SP after promoting C̄0 to LO, and indeed this

renormalized the 1S0-
3P0 transition. We fit C̄0 at a specific kinematical point to

a fictitious measurement of ϵ0SP, picking ϵ
0
SP,fit = 0.01 ḡ0 at ECM = 5 MeV for

concreteness. The regulator dependence of C̄0 is shown in the bottom-right panel
of Fig. 3.14 and shows a limit-cycle-like behavior driven by Cp. The resulting ϵ

0
SP

is regulator independent for a wide range of energies as depicted in the bottom-left
panel of Fig. 3.14.

While this method accounts for the regulator-dependent part of short-distance
contributions and renormalizes the CP -odd amplitude, it cannot account for pos-
sible finite contributions from C̄0. We also investigated the effect of choosing a
different value for ϵ0SP,fit. We recalculate the ϵ0SP dependence on Λ at different

energies for fit values ϵ0SP = ϵ0SP,fit +0.10 ḡ0, ϵ
0
SP,fit − 0.10 ḡ0 = 0.11 ḡ0,−0.09 ḡ0, at

ECM = 5MeV. We concluded that the results in the bottom-left panel of Fig. 3.14
will remain flat but can shift up (down) if we were to pick a higher (lower) values
for ϵ0SP,fit, see Fig. 3.16. The best way to obtain the total short-distance contribu-

tion is by fitting it to a measurement of ϵ0SP. This is currently not possible, and
even if there were data, it would not be satisfactory. We want to use such data
to extract a value of θ̄.
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3.6 Fixing the value of the short-distance LEC

We discuss two possible methods to obtain a value for C̄0 in the absence of data.
The first one is to perform the LQCD calculation of NN → NN scattering in
the presence of nonzero θ̄ background. There have been significant developments
in calculations of nucleon EDMs arising from the θ̄ term by applications of the
gradient flow [49, 162]. We can adopt the same techniques to study four-point
functions in a θ̄ vacuum. A significant challenge for this method will be to control
the signal-to-noise ratio. Already for CP -conserving NN → NN processes, signal-
to-noise considerations demand pion masses well above the physical point [163].
Going to smaller pion masses is even more daunting for the θ̄ term, as the signal
scales as ∼ θ̄m2

π. If such LQCD calculations are possible, we can obtain C̄0

from a matching calculation of χEFT to lattice data after taking the appropriate
continuum and infinite-volume limits.

Our second method is more achievable on a shorter time scale. This approach
is motivated by the striking similarity between the θ̄ term and the quark masses,
and ḡ0 and δmstr

N in Eq. (3.3). Using SU(2)L×SU(2)R χPT the operators in Eq.
(3.26) arise from

LNN = − iC0

8
Tr[χ−]

[
N̄σN ·∇(N̄N) +

1

3
N̄ τ⃗σN ·∇(N̄ τ⃗N)

]
, (3.27)

where χ− = u†χu† − uχ†u, u = exp(iτ⃗ · π⃗/(2Fπ)), χ = 2B(M + im⋆θ̄), and
B = −⟨q̄q⟩/F 2

π . Expanding the trace gives C̄0 = (Bm⋆θ̄)C0 and a relation to the
CP -conserving, isospin-breaking NNπ operators [141]

LNN,π =
C0B(md −mu)

2

π0
Fπ

[
N̄σN ·∇(N̄ N) +

1

3
N̄ τ⃗σN ·∇(N̄ τ⃗N)

]
. (3.28)

These operators contribute to charge-symmetry-breaking (CSB) in NN → NNπ
processes [164–167]. A LO contribution to this CSB process arises from the Nππ
vertex related to δmstr

N by chiral symmetry

LCSB = −δm
str
N

4F 2
π

N̄ τ⃗ · π⃗ π0N . (3.29)

According to Weinberg’s power counting, the contact operator in Eq. (3.28)
contributes at N2LO. At the pion threshold, the transition operator for the pro-
cess 1S0-

3P0+π due to Eq. (3.29) is of the same form as Vḡ0 . This one-to-one
correspondence will lead to the exact regulator dependence seen in the top panel
of Fig. 3.14. Following the same arguments in the previous section, we must pro-
mote the C0 to LO for renormalization. Unfortunately, the simplest process where
CSB data is available, pn→ dπ0, is not sensitive to C0 due to the isosinglet nature
of the deuteron. This motivates an investigation of dd→ απ0 using renormalized
χEFT to fit C0 to CSB data [168], to directly obtain C̄0 = (Bm⋆θ̄)C0.
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3.7 Other sources of CP or P violation

At the dimension-six level, other CP -odd sources appear. For the present dis-
cussion, the most relevant operators are quark chromo-EDMs and chiral-breaking
four-quark operators, which are induced in a wide range of BSM models [142,169].
In addition to the isoscalar ḡ0 term in Eq. (3.2), the LO CP -odd chiral Lagrangian
contains an isovector term

LπN = ḡ1N̄π0N , (3.30)

along with a potential subleading isotensor term [73]. In combination with the
strong gA vertex, an OPE diagrams involving ḡ1 causes 1S0-

3P0 and 3S1-
3P1

transitions. The Strong 3P1 interactions arise solely from OPE diagrams, and
the divergent diagrams in Fig. 3.15a do not appear. Thereby, we do not expect
no regulator dependence for 3S1-

3P1 transitions, which we confirmed by explicit
calculations.

In j = 0 transition, we observe the same regulator dependence as the ḡ0 case,
up to an isospin factor, and thus, LO isospin-breaking counter term is needed.
The associated operator takes the form

LNN = C̄1

[
N̄τ3σN ·∇(N̄ N) + N̄σN ·∇(N̄τ3N)

]
, (3.31)

which projects unto 1S0-
3P0 channels, but only for the neutron-neutron and

proton-proton case. The simplest EDM that depends on ḡ1 is the deuteron
EDM [170], which is targeted in storage-ring experiments [171]. Due to the isos-
inglet nature of the deuteron, its EDM only depends on 3S1-

3P1 transitions which
do not require a counter term. However, there is no such selection rule for more
complex EDMs such as 3He, 199Hg, or 225Ra [76–79, 172, 173], and C̄1 must be
included at LO.

The finiteness of 3S1-
3P1 transitions is relevant for the field of hadronic parity

(P ) violation [174]. The LO P -odd, but CP -even, chiral Lagrangian induced by P -
odd four-quark operators contains a single πN term [175], usually parametrized as
(hπ/

√
2)N̄(π⃗×τ⃗)3N that in combination with gA leads to 3S1-

3P1 transitions [176,
177]. We have checked explicitly that no regulator dependence appears, and no
counter terms are needed. The value of hπ recently determined from P -violating
asymmetries in n⃗p → dγ [178], can thus be directly applied in calculations of
other P -odd observables.

3.8 Conclusion

We investigated the regulator dependence of various CP -even and CP -odd nucleon-
nucleon scattering phase shifts and mixing angles and demonstrated the need for
renormalization of the CP -odd nuclear forces in the 1S0-

3P0 channel. We ar-
gued the need for a leading-order short-range CP -violating counter term in 1S0-
3P0 transitions to recover the regulator independence of observables and thereby
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renormalizing the CP -odd nuclear forces. This LO counter term affects calcu-
lations of EDMs and CP violation in nucleon-nucleon and neutron-nucleus scat-
tering at the O(1) level. This directly affects the interpretation of experimental
limits. Hopefully, future signals, in terms of the QCD θ̄ term and other CP -odd
sources, and the interpretation of axion DM searches via oscillating EDMs. For
CP violation from the θ̄ term, we have proposed strategies to obtain the value of
the associated low-energy constant, C̄0, from existing data on charge-symmetry-
breaking in few-body systems. We hope our results stimulate determinations of
C̄0 using lattice QCD and analyses of CSB data, and calculations of the impact
of the short-range operator on observables of experimental interest such as (oscil-
lating) EDMs, magnetic quadrupole moments, and time-reversal-odd scattering
observables.

3.9 Outlook

Much work remains to be done. It would be of great relevance for the experimental
program to compute the effects of our new findings in EDMs of light nuclei and
Schiff moments of heavier systems. This is not straightforward, as it requires a
systemic treatment of the CP -even and CP -odd forces. Such computations are
possible with ab initio quantum Monte Carlo methods, see for instance the related
computations for neutrinoless double beta decay [179] where similar regulator
dependence was observed. We have started such a computation for the 3He EDM
but were not able to satisfactorily test the regulator independence due to technical
problems with varying the regulator Λ in a broad range. Therefore, the results
are not in a state ready to be included in this thesis. Another important open
problem is to determine the value of the short-distance counter term. It would
be very interesting, but highly non-trivial, to perform an ab initio computation
of CSB effects in dd→ απ0 reactions to determine the unknown LEC from data.
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4.1 Introduction

In the previous chapters, we discuss that the main CP -violating sources of SM are
the QCD θ̄-term Lθ̄ ∼ θ̄GG̃ and CKM matrix. The most recent EDM results from
neutron [52] and 199Hg [180] atom impose severe constrain on the CP -violating
vacuum angle θ̄ ≲ 10−10 [49]. This strict tuning of θ̄ is the strong CP problem that
we investigated in Chapter 1; where we introduced the QCD axion, associated with
the Peccei-Quinn (PQ) mechanism, as a possible solution [62–65]. The additional
advantage of the axion solution is that the axion could be dark matter in our
Universe under certain scenarios [181–183]. For these reasons, the axion searches
have grown into a massive endeavor on both the experimental and theoretical
fronts; see Refs. [184, 185] for recent reviews. Since its initial proposal, the last
45 years of axion searches have not yielded any success.

If the only source of CP -violation is the QCD θ̄ term, then the PQ mechanism
removes all CP -violation from the theory after the axion field takes its vev ⟨a⟩ =
(θ̄ind− θ̄)fa (see Eq. (1.24)). As shown in Fig. 4.1, in this case the axion potential
V ( afa + θ̄) has minima at a

fa
+ θ̄ = θ̄ind = 0. However, in the presence of additional

CP -odd interactions, the minimum of the axion potential is shifted as shown in
Fig. 4.1, which leaves a remnant of CP -violation behind in the form of an induced

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.103.L012501
https://arxiv.org/abs/2203.11230
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Figure 4.1: The axion potential as a function of a
fa

+ θ̄, in SM and the presence
of dimension-six CP -violating SMEFT operators is shown in blue and red, respec-
tively. The green line indicates the minimum of the latter potential. For illustrative
purposes, the only nonzero dimension-six LEC is LuG

uu
= −2i and we choose B̄ = B.

θ̄ term (θ̄ind ̸= 0) and higher-dimensional operators. The additional sources of
CP -violation may arise from beyond-the-SM (BSM) physics at a scale Λ well above
the electroweak scale. Generic extensions of the SM have additional CP phases
that cannot be rotated away, something which is reflected by the large number
of CP invariants in the SM effective field theory (SMEFT) [186]. The number of
CP invariants is sizable even if one only considers the operators resulting from a
minimal seesaw scenario [187,188]. In addition, generating the matter-antimatter
asymmetry of the Universe requires additional sources of CP -violation.

An interesting property of the SM is that once we choose a small θ̄ at some
scale, it remains small in all scales. This happens because the radiative correc-
tions to θ̄ start only at high loop order [57] and lie well below the experimental
limit. However, this is only true in the absence of CP -violating BSM physics.
For example, in certain supersymmetric scenarios, the phases of the soft parame-
ters induce large threshold corrections to θ̄ [189]. In left-right symmetric models
(LRSMs) [17, 18, 20, 21, 190] parity can be conserved in the UV so that θ̄ = 0
by symmetry. However, after electroweak symmetry breaking, a new θ̄ is in-
duced by phases in the scalar sector of the model [191]. Even models specifically
constructed to solve the strong CP problem in the UV [192] have severe trou-
ble keeping θ̄ small enough after electroweak symmetry breaking [193]. From an
EFT point of view, we can argue that in the presence of higher dimensional CP -
violating BSM sources, the observed small value of θ̄ is hard to understand [194]
without the PQ mechanism.

A natural question is then what the presence of additional sources of CP -
violation implies for the interactions of the axion. The main consequence is that
the pseudoscalar axion field will obtain CP -violating scalar couplings to leptons
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and quarks (and thus nucleons and atoms) as was already proposed in Ref. [195].
Moreover, the scalar axion-fermion couplings lead to an axion-mediated scalar-
scalar (monopole-monopole) potential between atoms. At the same time, they
induce a scalar-pseudoscalar (monopole-dipole) potential when combined with
the conventional CP -conserving pseudoscalar axion-fermion interactions. Exper-
imentalists look for these resulting forces in dedicated experiments; see Refs.
[196,197] for an overview.

As the PQ mechanism acts in the infrared, we can parameterize BSM sources
of CP -violation in terms of effective higher-dimensional operators. Various studies
have computed the scalar axion-nucleon interactions for specific CP -odd dimension-
six operators such as the quark electric and chromo-electric dipole moments [198,
199] and, more recently, certain four-quark operators [200–202]. The main goal
for this part of the thesis is to generalize, extend, and systemize these results.
Our starting point is the general set of CP -violating effective operators among
light SM fields (light quarks, electrons and muons, and photons and gluons). We
then compute the axion vev by minimizing the axion potential, align the vac-
uum to eliminate mesonic tadpoles, and use chiral perturbation theory (χPT),
described in Section 2.3, to compute the resulting CP -odd axion couplings to
mesons, baryons, and leptons.

The second goal for this part of the thesis is to determine the prospects of
measuring the resulting CP -odd axion interactions. We, therefore, compare the
experimental limits on the original CP -odd EFT interactions (mainly coming from
EDM experiments) to limits on CP -odd axion interactions. The latter arise, for
instance, from fifth-force searches, violations of the weak equivalence principle,
monopole-dipole searches, rare decays, and various astrophysical processes. We
find that EDM experiments set very stringent constraints and the prospects of de-
tecting CP -violating axion interactions are slim, especially when a single SMEFT
operator sources the CP -violation. A nonzero signal of CP -odd axion couplings
would then imply significant cancellations between the contributions to EDMs
of multiple operators or a scenario not captured by the EFT involving new light
degrees of freedom. We also consider several projected experiments and show that
the proposed ARIADNE experiment could detect signs of CP -odd axion couplings
in parts of parameter space without conflicting with current EDM limits.

Here we do not assume that axions make up dark matter, but note that this
assumption would lead to additional interesting signatures, including oscillating
EDMs [149, 150, 203–206], which can be searched for in a wide range of experi-
ments [207–210].

This Chapter is organized as follows. First, we introduce the relevant axion
interactions and higher-dimensional operators, derive the chiral rotations needed
to align the vacuum, and minimize the axion potential in Section 4.2. The re-
sulting Lagrangian is subsequently matched onto chiral perturbation theory in
Section 4.3, where the induced CP -odd lepton-nucleon and pion-nucleon interac-
tions, as well as the axion-nucleon and axion-lepton couplings, are derived. The
contributions of the former to EDM experiments are discussed in Section 4.4,
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while Sections 4.5 and 4.6 are dedicated to the effects of the latter in fifth-force,
monopole-dipole, and astrophysical searches. We subsequently apply the derived
framework to several specific BSM scenarios involving CP -violating interactions
and a PQ mechanism in Section 4.7. Finally, we conclude in Section 4.8, while
several technical details are relegated to several appendices.

4.2 The effective Lagrangian

In this section, we introduce the interactions that can arise from BSM scenarios
in which additional sources of CP -violation originate at a scale Λ while a PQ
mechanism is active at the same time. Assuming that the BSM scale lies well
above the electroweak scale, Λ ≫ v ≃ 246 GeV, any new heavy fields can be
integrated out, leading to higher-dimensional operators made up of SM fields and
the axion. Just below the scale Λ, the resulting interactions between SM fields
can be described by the SMEFT [26,27], while the possible axion interactions are
given by its coupling to the SM fermions and the SU(3)c, SU(2)L, and U(1)Y
theta terms.

We need to evolve these interactions to the QCD scale, µ ≃ 2 GeV, to de-
scribe their effects on EDM experiments and searches for axion-mediated forces.
After which, we match them to the chiral perturbation theory (χPT) in terms of
leptons, nucleons, and pions instead of leptons, quarks, and gluons. This would
require the evolution of the SU(3)c × SU(2)L × U(1)Y -invariant SMEFT to the
electroweak scale and its subsequent matching onto an SU(3)c×U(1)em-invariant
EFT, sometimes called LEFT [29], see Section 2.2.3. We evolve the resulting
LEFT interactions to the QCD scale, where they can finally match onto χPT. In
principle, many of the ingredients needed to perform the steps above the QCD
scale are available at the one-loop level. For example, the running and match-
ing of the SMEFT and LEFT operators was computed in [111–113, 211, 212],
while the renormalization of the axion couplings [213, 214] and the running due
to axion loops [215] were discussed more recently. However, we will mainly be
concerned with low-energy measurements. In this section, we start directly with
the SU(3)c × U(1)em-invariant effective theory involving three flavors of quarks
(u, d, and s), at a scale of µ ∼ 2 GeV. We will briefly comment on the connection
to SU(3)c × SU(2)L × U(1)Y -invariant operators. Nevertheless, the assumption
that the EFT below the electroweak scale originates from an SU(2)L-invariant
theory will prove useful as it provides additional information about the scaling of
certain operators with respect to Λ, as we discuss below.

4.2.1 The interactions

We split the quark-level interactions of the axion-like particle (ALP), a, and the
higher-dimensional CP -odd sources that we consider into three parts: the SM,
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the ALP, and the EFT operators

L = LSM + Laxion + LLEFT . (4.1)

The Standard Model terms

The SM terms that will be relevant for our discussion are

LSM = q̄i /Dq − q̄LM0qR − q̄RM
†
0qL − θ̄

αs
8π
G̃AµνG

Aµν + . . . , (4.2)

where the dots stand for the lepton sector and the kinetic terms of the gauge fields,
while q = (u, d, s)T , Dµ = ∂µ + igsT

AGAµ + ieQAµ, and we work in the quark
mass basis M0 = Diag(mu,md,ms). Furthermore, Q = Diag(2/3,−1/3,−1/3) is
the matrix of electromagnetic quark charges, e = |e| is the charge of the proton,
and G̃Aµν = 1

2εµναβG
Aαβ with ε0123 = +1, the Gell-Mann matrices TA, and color

index A.

The axion Lagrangian

The second term in Eq. (4.1) consists of all possible ALP interactions up to
dimension-five that are invariant under a shift symmetry, a → a + c, up to total
derivatives. These can be written as

Laxion =
1

2
∂µa∂

µa− αs
8π

a

fa
G̃AµνG

Aµν − 1

4
g(0)aγ

a

fa
F̃µνF

µν

+
∑

f=ν,e,q

∂µa

2fa

[
f̄Lc

f
Lγ

µfL + f̄Rc
f
Rγ

µfR

]
, (4.3)

where cfL,R are hermitian matrices in flavor space and fa is the ALP decay con-
stant, indicating the scale related to the PQ mechanism, Λa ∼ 4πfa, which we will
assume to be above the scale at which the EFT operators are generated, Λa ≫ Λ.
We do not consider the possibility of light right-handed neutrinos 1, so that the
term ∼ cνR vanishes.

The interactions in Eq. (4.3) respect a PQ symmetry, a→ a+c, at the classical
level. The terms involving derivatives are manifestly invariant, while the shifts
of the aF̃F and aG̃G terms lead to total derivatives, which, in the case of the
G̃G coupling, gives rise to non-perturbative effects that break the PQ symmetry
at the quantum level. The Lagrangian of Eq. (4.3) describes all the interactions
that are generally induced when the axion arises as the phase of a complex scalar
field. However, note that the form of axion-fermion interactions is not unique.
Through a redefinition of the fermion fields, one can trade the cfL,R couplings

1The effective theory that systematically includes light right-handed neutrinos is called the
νSMEFT [216,217].
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for non-derivative interactions of the form af̄LfR along with a shift of the aF̃F
and/or aG̃G terms 2.

Finally, as alluded to above, these interactions arise from an SU(2)L-invariant
Lagrangian, such as the one discussed in [213]. At the tree level, the matching of
the above axion couplings to FF̃ and GG̃ and the fermions are given by

1

fa
= −2

cGG
f

,
g
(0)
aγ

fa
= − α

πf
(cWW + cBB) ,

c
(e)
L

fa
= 2

cL

f
,

c
(e)
R

fa
= 2

ce

f
, c

(ν)
L = U†

PMNSc
(e)
L UPMNS ,

c
(q)
L

fa
=

2

f

(
[cQ]1×1 01×2

02×1

[
V †
CKMcQVCKM

]

2×2

)
,

c
(q)
R

fa
=

2

f

(
[cu]1×1 01×2

02×1 [cd]2×2

)
,

(4.4)

where the right-hand sides correspond to the SU(2)L-invariant couplings in the
notation of [213], while UPMNS and VCKM are the PMNS and CKM matrices.

The higher-dimensional operators

Finally, the third term in Eq. (4.1) involves operators of up to dimension-six
consisting of SM fields. At energies above the electroweak scale, such operators
are described by the SMEFT [26,27]. In contrast, for processes at energies below
µ ∼ mW , where the SU(2)L gauge group of the SM has been broken, these
interactions make up the so-called LEFT. The operators in this EFT are invariant
under SU(3)c×U(1)em and a complete basis up to dimension-six has been derived
in Ref. [29], its Lagrangian can be written as

LLEFT =
∑

i

LiOi , (4.5)

where the sum extends over all operators in Table 4.1, their flavor indices and
hermitian conjugates, when applicable.

Here we do not consider the complete set of operators derived in Ref. [29],
as we are only interested in the CP -violating ones. Instead, we focus on purely
hadronic operators that give unsuppressed contributions to the chiral Lagrangian,
i.e., their chiral representations come without derivatives. We also consider LEFT
operators that couple the photon or lepton fields to quark currents, which can
straightforwardly be included as source terms in the chiral Lagrangian. The
hadronic operators give rise to CP -odd interactions between nucleons and pions,
while the semi-leptonic operators induce couplings of nucleons to leptons. EDM
measurements probe both types of interactions. Moreover, as we will see in the

2Such terms do not lead to additional independent operators as long as we assume (classical)
invariance under the PQ shift symmetry.
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upcoming sections, in the presence of a PQ mechanism, the same operators also
induce CP -odd couplings of the axion to hadrons and leptons, which searches
for axion-mediated forces can constrain. The operators that satisfy the above
conditions are collected in Table 4.1, while the derivation of this list is discussed
in more detail in Appendix C.1.

One possible complication arises due to the fact that Table 4.1 involves both
dimension-five and -six operators. For our purposes, the relevant dimension-five
operators are the dipole interactions in the (L̄R)X class, which, within the LEFT,
scale as Λ−1. As we include operators up to dimension-six, scaling as Λ−2, we
need to consider terms such as L2

qγ , L
2
qG, or LqγLqG as well since they enter at the

same order. However, whenever the LEFT operators originate from an SU(2)L-
invariant EFT, the dipole operators are generated by dimension-six operators and
scale as Lqγ,qG ∼ mq

Λ2 . This is what we will assume in what follows, such that all
the operators in Table 4.1 scale as Λ−2. The complete tree-level matching of the
LEFT interactions to the SMEFT is given in [212].

Chiral representations

In order to build the chiral Lagrangian in the upcoming section, it is convenient to
group the above-described interactions by their transformation properties under
the chiral symmetry group SU(3)L × SU(3)R. The kinetic terms for the quarks
and the axion remain unchanged,

L = q̄(i/∂ − gsγ
µGAµT

A)q − θ̄
αs
8π
G̃AµνG

Aµν

+
1

2
∂µa∂

µa− αs
8π

a

fa
G̃AµνG

Aµν − 1

4
g(0)aγ

a

fa
F̃µνF

µν

+Lsources + L6 + . . . , (4.6)

while we collect the couplings of quark bilinears to leptons, axions, or photons to
quark in Lsources,

Lsources = q̄

[
γµlµPL + γµrµPR −MPR −M†PL + tµνR σµνPR + tµνL σµνPL

]
q .

(4.7)

The electromagnetic gauge couplings, the cqL,R derivative axion couplings, and
semi-leptonic vector operators are now contained in the lµ and rµ currents. The
quark masses, as well as the scalar and pseudoscalar sources s and p, which contain
semi-leptonic scalar interactions, are collected inM =M0+s−ip, while the tensor
sources are denoted by tµνL,R and capture semi-leptonic tensor interactions as well
as the quark EDMs. All of these sources form 3× 3 matrices in flavor space and
depend on the axion, photon, and lepton fields. Their explicit expressions are
given in Appendix C.2.
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(LR)X +H.c.

Ouγ ūLpσ
µνuRr Fµν

Odγ d̄Lpσ
µνdRr Fµν

OuG ūLpσ
µνTAuRr G

A
µν

OdG d̄Lpσ
µνTAdRr G

A
µν

X3

OG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

(LL)(LL)

OV,LL
νu (ν̄Lpγ

µνLr)(ūLsγµuLt)

OV,LL
νd (ν̄Lpγ

µνLr)(d̄LsγµdLt)

OV,LL
eu (ēLpγ

µeLr)(ūLsγµuLt)

OV,LL
ed (ēLpγ

µeLr)(d̄LsγµdLt)

OV,LL
νedu (ν̄Lpγ

µeLr)(d̄LsγµuLt) + H.c.

(RR)(RR)

OV,RR
eu (ēRpγ

µeRr)(ūRsγµuRt)

OV,RR
ed (ēRpγ

µeRr)(d̄RsγµdRt)

(LL)(RR)

OV,LR
νu (ν̄Lpγ

µνLr)(ūRsγµuRt)

OV,LR
νd (ν̄Lpγ

µνLr)(d̄RsγµdRt)

OV,LR
eu (ēLpγ

µeLr)(ūRsγµuRt)

OV,LR
ed (ēLpγ

µeLr)(d̄RsγµdRt)

OV,LR
ue (ūLpγ

µuLr)(ēRsγµeRt)

OV,LR
de (d̄Lpγ

µdLr)(ēRsγµeRt)

OV,LR
νedu (ν̄Lpγ

µeLr)(d̄RsγµuRt) + H.c.

OV 1,LR
uu (ūLpγ

µuLr)(ūRsγµuRt)

OV 8,LR
uu (ūLpγ

µTAuLr)(ūRsγµT
AuRt)

OV 1,LR
ud (ūLpγ

µuLr)(d̄RsγµdRt)

OV 8,LR
ud (ūLpγ

µTAuLr)(d̄RsγµT
AdRt)

OV 1,LR
du (d̄Lpγ

µdLr)(ūRsγµuRt)

OV 8,LR
du (d̄Lpγ

µTAdLr)(ūRsγµT
AuRt)

OV 1,LR
dd (d̄Lpγ

µdLr)(d̄RsγµdRt)

OV 8,LR
dd (d̄Lpγ

µTAdLr)(d̄RsγµT
AdRt)

OV 1,LR
uddu (ūLpγ

µdLr)(d̄RsγµuRt) + H.c.

OV 8,LR
uddu (ūLpγ

µTAdLr)(d̄RsγµT
AuRt) + H.c.

(LR)(LR) +H.c.

OS,RR
eu (ēLpeRr)(ūLsuRt)

OT,RR
eu (ēLpσ

µνeRr)(ūLsσµνuRt)

OS,RR
ed (ēLpeRr)(d̄LsdRt)

OT,RR
ed (ēLpσ

µνeRr)(d̄LsσµνdRt)

OS,RR
νedu (ν̄LpeRr)(d̄LsuRt)

OT,RR
νedu (ν̄Lpσ

µνeRr)(d̄LsσµνuRt)

OS1,RR
uu (ūLpuRr)(ūLsuRt)

OS8,RR
uu (ūLpT

AuRr)(ūLsT
AuRt)

OS1,RR
ud (ūLpuRr)(d̄LsdRt)

OS8,RR
ud (ūLpT

AuRr)(d̄LsT
AdRt)

OS1,RR
dd (d̄LpdRr)(d̄LsdRt)

OS8,RR
dd (d̄LpT

AdRr)(d̄LsT
AdRt)

OS1,RR
uddu (ūLpdRr)(d̄LsuRt)

OS8,RR
uddu (ūLpT

AdRr)(d̄LsT
AuRt)

(LR)(RL) +H.c.

OS,RL
eu (ēLpeRr)(ūRsuLt)

OS,RL
ed (ēLpeRr)(d̄RsdLt)

OS,RL
νedu (ν̄LpeRr)(d̄RsuLt)

Table 4.1: The B- and L-conserving operators of the LEFT of dimension-five and -
six that contribute to CP -violating effects in the meson sector at leading order. Only
the hadronic operators that contribute to the non-derivative meson interactions and
the semi-leptonic operators that can be written as external sources (shown in blue)
are listed.

Finally, the remaining LEFT operators, which cannot be written as the cou-
plings of quark bilinears, transform under SU(3)L × SU(3)R in several ways. In
particular, the quark color-EDM operators transform as 3̄L × 3R, while the four-
quark operators transform as the irreps 8L × 8R, 3L × 3̄R, and 6̄L × 6R. This
allows us to write

L6 =

[
q̄LL5T

AGA
µνσ

µνqR + h.c.

]

+ Lijkl
8×8

(q̄iLγ
µqjL) (q̄

k
Rγµq

l
R) + L̄ijkl

8×8
(q̄iLγ

µTAqjL) (q̄
k
RγµT

AqlR)

+

[
Lijkl

3×3
(q̄iLq

j
R) (q̄

k
Lq

l
R) + Lijkl

6×6
(q̄iLq

j
R) (q̄

k
Lq

l
R)

+ L̄ijkl
3×3

(q̄iLT
AqjR) (q̄

k
LT

AqlR) + L̄ijkl
6×6

(q̄iLT
AqjR) (q̄

k
LT

AqlR) + h.c.

]
, (4.8)
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where i, j, k, l ∈ {1, 2, 3} are flavor indices which are summed over when repeated.

Here Lijkl
6×6

(Lijkl
3×3

) are (a)symmetric in i↔ k and j ↔ l, while the Lijkl
8×8

couplings

are traceless in (i, j) and (k, l) and satisfy Lijkl
8×8

= Ljilk ∗
8×8

, so that they project out
their particular representations. The explicit expressions for the Lα couplings in
terms of the Wilson coefficients of the LEFT are given in Appendix C.3. After
collecting the operators either in the external sources or by their chiral represen-
tations, we can use Eq. (4.6) as a starting point to derive the chiral Lagrangian.

4.2.2 Vacuum alignment

As the higher-dimensional operators violate CP and chiral symmetry, they gen-
erally lead to a misalignment of the vacuum. In this case, the SU(3) subgroup
of SU(3)L × SU(3)R that is left unbroken by chiral symmetry breaking does
not necessarily correspond to the diagonal subgroup, SU(3)V , under which qL,R
transform as qL,R → UqL,R. Diagrammatically this corresponds to the appear-
ance of so-called tadpole vertices that allow for meson-vacuum transitions. It is
convenient to remove such tadpole diagrams by a non-anomalous chiral rotation,
which, at the same time, aligns the unbroken subgroup with SU(3)V . In addition,
we will find it helpful to perform an anomalous U(1) chiral rotation that removes
the G̃G and aG̃G couplings from the quark-level Lagrangian and trade them for
q̄q and aq̄q terms. Here we briefly describe these field redefinitions, as well as how
the needed angles of rotation can be determined, before constructing the chiral
Lagrangian in the next section.

Chiral rotation

All in all we perform the following unitary basis transformation

qL = A†q′L , qR = Aq′R , A = exp(i [α0/3 + α · t]) , (4.9)

where t are the Gell-Mann matrices in flavor space, we will allow the αi to depend
on the axion field a(x). Here α0 is the anomalous chiral rotation that removes
the G̃G and aG̃G terms, while the αi are chosen to eliminate the tadpoles. This
rotation leads to a transformed Lagrangian

L′ = q̄(i/∂ − gsγ
µGAµT

A)q +
1

2
∂µa∂

µa− 1

4
gaγ

a

fa
F̃µνF

µν + L′
sources + L′

6 + . . . ,

(4.10)

where the aG̃G terms have been removed by choosing 2α0 = θa ≡ θ̄ + a
fa

while

the aF̃F coupling is given by

gaγ = g(0)aγ − 2Nc
α0

π
Tr
[
HaQ

2
]
, (4.11)
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and Ha is determined by the axion-dependent part of A = exp(iH), with H =
H0 +

a
fa
Ha where H0,a are a-independent matrices in flavor space. L′

sources and

L′
6 can be obtained from the original Lagrangians by the following replacements

lµ → l′µ = A [lµ + i∂µ]A
−1 , rµ → r′µ = A−1 [rµ + i∂µ]A ,

S → S′ = ASA , S ∈ {M , tµνR , L5} ,
Lijkl → L′

ijkl = AiaA
∗
jbLabcdA

∗
ckAdl , L ∈ {L8×8 , L̄8×8} ,

Lijkl → L′
ijkl = AiaAbjLabcdAkcAdl , L ∈ {L3×3 , L̄3×3 , L6×6 , L̄6×6} . (4.12)

This rotation leads to an effective quark mass term that now depends on the CP -
violating Wilson coefficients, while the higher-dimensional operators generally
obtain a dependence on θa.

The angles of rotation in A can be determined by requiring that the unbroken
subgroup corresponds to SU(3)V . This can be achieved by demanding that the
potential is at a minimum

∂V

∂αi
= 0 , V = −⟨0|L′

int|0⟩ , (4.13)

and solving for the αi. One can show that the above condition on the αi also
ensures that the chiral Lagrangian will not induce any tadpole terms. In our
particular case, we have α1,2 = α4,5 = 0, as these angles would allow one to remove
tadpole terms for the charged mesons, π± and K±, which are never induced
thanks to U(1)em invariance. The remaining αi are generally nonzero and become
functions of the Wilson coefficients, Lα and the matrix elements of the higher-
dimensional operators, while ⟨θa⟩ = ⟨a⟩/fa enters through the axion dependence
of the Lagrangian. In the next section, we will introduce the hadronic matrix
elements related to the low-energy constants (LECs); we give the explicit relations
in Appendix C.1. The vev of the axion field, ⟨a⟩, is similarly obtained through
minimization of the axion potential. Explicit expressions for the αi and ⟨a⟩ are
discussed in Appendix C.5.

Although the solutions obtained from Eq. (4.13) lead to a chiral Lagrangian
without tadpole interactions, it will generally mix the pion and axion fields. We
can remove such mass-mixing terms by allowing the αi to depend on the axion
field. We can then obtain the needed modification of these angles by including
the physical axion field, aph(x), whenever the axion vacuum expectation value
(vevs) would otherwise appear in the solutions of Eq. (4.13). i.e., we replace
⟨a⟩ → a ≡ ⟨a⟩ + aph(x). Finally, the chiral Lagrangian, in principle, allows the
kinetic terms of the axions and pions fields to become mixed. We can remove such
mixings by a redefinition of the axion and pion fields [185], which only modifies
the axion-pion interactions beyond the precision of this part of the thesis.
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4.3 Chiral Lagrangian

4.3.1 Mesonic Lagrangian

After performing the basis transformations discussed in the previous section, the
mesonic part of the chiral Lagrangian becomes

Lπ =
F 2
π

4
Tr
(
DµUD

µU †)+ F 2
π

4
Tr
(
χ†U + χU†)− F 2

π B̄Tr
(
L′ †
5 U + L′

5U
†
)

−F
4
π

4

[
A8×8L

′ ijkl
8×8

+ Ā8×8L̄
′ ijkl
8×8

]
UjkU

∗
il

−F
4
π

8

{[
A3×3L

′ ijkl
3×3

+ Ā3×3L̄
′ ijkl
3×3

] (
U∗
ijU

∗
kl − U∗

ilU
∗
kj

)

+
[
A6×6L

′ ijkl
6×6

+ Ā6×6L̄
′ ijkl
6×6

] (
U∗
ijU

∗
kl + U∗

ilU
∗
kj

)
+ h.c.

}

−1

4
gaγ

a

fa
F̃µνF

µν , (4.14)

where we followed the definitions from Section 2.3.3. Furthermore, B, B̄, Ai, and
Āi are LECs, which are defined in terms of matrix elements of the corresponding
operators in Appendix C.1.

The axion field and θ̄ enter through the couplings M ′ and L′
α and their depen-

dence on the rotation angles, αi, which are obtained by solving Eq. (4.13). These
solutions ensure that the chiral Lagrangian is free of tadpole terms and that the
mass matrices do not mix the pion and axion fields. We checked explicitly that
the above Lagrangian, together with our solutions of the αi, satisfies these condi-
tions. By expanding the first two terms of the above Lagrangian one can obtain
the axion and meson interactions induced by dimension-four operators. Apart
from the usual χPT Lagrangian, this gives rise to the expression for the axion
mass

ma =

√
m∗BFπ
fa

=

√
m∗

mu +md

Fπ
fa
mπ ≃ 5.9 · 106

(
eV

fa

)
GeV , (4.15)

where m∗ = ( 1
mu

+ 1
md

+ 1
ms

)−1. By taking into account the solutions for the
αi and the remaining terms in the above Lagrangian, we can determine the non-
standard axion-meson interactions induced by higher-dimensional operators.

4.3.2 Nucleon-pion sector

We can build the πN Lagrangian from the baryon fields (Nv) defined in Sec-
tion 2.3.3 and several combinations of the Wilson coefficients and meson fields,
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χ+ = 2B(u†M ′u† + uM ′†u), χ̄+ = 2B̄(u†L′
5u

† + uL′†
5 u), and

lijkl
8×8

= u∗aiubjL
′abcd
8×8

ukcu
∗
ld ,

lijkl
3×3,6×6

= u∗aiu
∗
jbL

′abcd
3×3,6×6

u∗cku
∗
ld , (4.16)

with analogous definitions for the color-octet operators with Wilson coefficients,
L̄α. The different parts of the Lagrangian then take the form (see Section 2.3.3
for notations and ⟨·⟩ denote trace over flavor space)

LπNM =⟨N̄viv ·DNv⟩+ F ⟨N̄vSµ [ûµ, Nv]⟩+D⟨N̄vSµ
{
ûµ, Nv

}
⟩+ gA⟨uµ⟩⟨N̄vSµNv⟩

+ b0⟨N̄vNv⟩⟨χ+⟩+ bD⟨N̄v{Nv, χ+}⟩+ bF ⟨N̄v[χ+, Nv]⟩ , (4.17)

LπNL5
=b̄0⟨N̄vNv⟩⟨χ̄+⟩+ b̄D⟨N̄v{Nv, χ̄+}⟩+ b̄F ⟨N̄v[χ̄+, Nv]⟩ ,

LπN
8×8

=a
(1)
8×8

⟨N̄vNv⟩lijji8×8
+ (N̄v)ji(Nv)lkb

(27)
8×8

[
lijkl
8×8

]27

+ a
(8)
8×8

[(
N̄vNv

)
ij
− δij

3
⟨NvN̄v⟩

] [
ljkki
8×8

+ lkijk
8×8

]

+ b
(8)
8×8

[(
NvN̄v

)
ij
− δij

3
⟨NvN̄v⟩

] [
ljkki
8×8

+ lkijk
8×8

]
,

LπN
3×3

=b
(1)
3×3

⟨N̄vNv⟩liijj3×3
+ a

(8)
3×3

[
(N̄vNv)ij −

δij
3
⟨N̄vNv⟩

]
lkkji
3×3

+ b
(8)
3×3

[
(NvN̄v)ij −

δij
3
⟨N̄vNv⟩

]
lkkji
3×3

+ h.c. ,

LπN
6×6

=b
(1)
6×6

⟨N̄vNv⟩liijj6×6
+ a

(8)
6×6

[
(N̄vNv)ij −

δij
3
⟨N̄vNv⟩

]
lkkji
6×6

+ b
(8)
6×6

[
(NvN̄v)ij −

δij
3
⟨N̄vNv⟩

]
lkkji
6×6

+ b
(27)
6×6

(N̄v)ji(Nv)lk

[
lijkl
6×6

]27
+ h.c. ,

(4.18)

where ûµ = uµ−⟨uµ⟩/3, and
[
lijkl
r

]27
stands for the combination of couplings that

is symmetric in both (i↔ k) and (j ↔ l) as well as traceless in (i, j), (k, l). The
LECs D, F , gA, and b0,D,F determine the axial and mass terms of the baryons,
while the terms generated by the quark color-EDM terms are proportional to

b̄0,D,F . Finally, a
(r′)
r , b

(r′)
r are LECs whose subscripts denote the chiral represen-

tation of the corresponding quark-level operator, while the superscripts indicate

the representation the baryon fields appear in. For example, b
(1)
8×8

indicates a

singlet and therefore appears with the trace of baryon fields, while b
(27)
8×8,6×6

in-
dicates the (symmetric) 27 representation and thus appears with a symmetric
combination of baryon fields.

The total πN Lagrangian is then given by

LπN = LπNM + LπNL5
+


LπN

8×8
+ LπN

3×3
+ LπN

6×6
+



lr l̄r
ar → ār
br b̄r




 , (4.19)
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with r = {8× 8,3× 3,6× 6}.

4.3.3 Interactions from semi-leptonic operators

The semi-leptonic operators of Table 4.1 enter the meson and nucleon Lagrangians
through the source terms. The most important CP -violating axion couplings arise
from the scalar operators, which contribute to the sources s and p and enter the
chiral Lagrangian through χ. In the nucleon sector, these terms induce N̄Nēiγ5e
interactions (N = (p n)T ), while aēe and πēe couplings appear in the mesonic
Lagrangian. The latter gives rise to CP -odd spin-dependent nucleon-lepton cou-
plings through pion exchange at low energies. The axion-lepton couplings can be
probed by searches for axion-mediated forces, while EDMs are sensitive to the
CP -odd hadron-lepton interactions.

Axion-lepton couplings

The relevant interactions are

Lal̄l = g
(e)
S aēe ,

g
(e)
S =

m∗BF 2
π

2fa
Im

[
1

mu
LS,RR

eu
eeuu

+
1

md
LS,RR

ed
eedd

+
1

ms
LS,RR
ed
eess

− (RR→ RL)

]
. (4.20)

Here we have focused on couplings to electrons, but by replacing e→ {µ, τ} in the
above expressions, we also obtain scalar couplings to muons and taus. While the
experimental limits on these couplings are less stringent than for electron-axion
couplings, it should be kept in mind that the indirect limits, arising from the µ
and τ EDMs [218, 219], are also weaker. By allowing for lepton flavor-violating

dimension-six couplings, e.g. LS,RR
eu
eµuu

, we also induce couplings of the form a ēµ that

can be probed in µ→ e+a searches. However, the LS,RR
eu
eµuu

dimension-six operators

are stringently constrained by muon-to-electron conversion (µ + N → e + N)
experiments [220,221], and we leave a detailed study of these couplings to future
work.

In principle, the CP -violating phase in the CKM matrix, δCKM, in the SM

can also induce g
(e)
S although we are not aware of estimates in the literature

(the estimates for the coupling to nucleons is discussed in Section 4.3.4). It is

clear these couplings must be proportional to me due to the scalar nature of g
(e)
S .

Furthermore, at least two insertions of the weak interactions, ∼ G2
F , are needed

to obtain the CP -violating combination of CKM elements, given by the Jarlskog
invariant JCP ≃ 3 · 10−5 [222]. While there are many ways to combine these
interactions, using naive dimensional analysis [127, 223] to estimate one of the
possibilities leads to,

g
(e)
S (δCKM)fa ∼ me

( α
4π

)2 (
GFF

2
π

)2
JCP ∼ 10−25 MeV , (4.21)
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These contributions can be seen to be induced by a ∆S = 1 Fermi interaction,
which, together with electromagnetism, can induce couplings ∼ K0FµνF

µν in the
chiral Lagrangian. Such terms can subsequently generate a ∼ meK

0ēe coupling
through a one-loop diagram. Finally, an additional insertion of a ∆S = 1 Fermi
interaction can generate mixing between the kaon and the axion, thereby giving
rise to the axion-electron coupling. While it is certainly possible that other con-
tributions are enhanced with respect to the above estimate, Eq. (4.21) should give

a rough lower limit on g
(e)
S (δCKM).

Semi-leptonic couplings

The induced nucleon-lepton interactions that contribute to EDMs can be written
as,

L = −GF√
2

{
ēiγ5e N̄

(
C

(0)
S + τ3C

(1)
S

)
N + ēe

∂µ
mN

[
N̄
(
C

(0)
P + τ3C

(1)
P

)
SµN

]}
+ . . . ,

(4.22)

where GF is the Fermi constant and N = (p n)T is the non-relativistic nucleon
doublet with mass mN . The matching coefficients are given by

C
(0)
S = −v2H

σπN
mu +md

Im

[
LS,RR

eu
eeuu

+ LS,RR
ed
eedd

]
− v2H

σs
ms

Im

[
LS,RR
ed
eess

]
+ (RR→ RL) ,

C
(1)
S = −v2H

1

2

δmN

md −mu
Im

[
LS,RR

eu
eeuu

− LS,RR
ed
eedd

+ (RR→ RL)

]
,

C
(0)
P = −v2H

mNB(D − 3F )

3m2
η

Im

[
LS,RL

eu
eeuu

+ LS,RL
ed
eedd

− 2LS,RL
ed
eess

− (RL→ RR)

]
,

C
(1)
P = v2H

mNBgA
m2
π

Im

[
LS,RL

eu
eeuu

− LS,RL
ed
eedd

− (RL→ RR)

]
, (4.23)

where vH is the vev of the Higgs field, at tree level v2H =
(√

2GF
)−1 ≃ (246GeV)2,

while C
(0)
P and C

(1)
P arise from the exchange of an η and π0, respectively. Here

C
(0,1)
S induce CP -odd effects in ThO and the mercury EDM, while C

(0,1)
P only

contribute to the latter. Furthermore, gA = D + F is the axial charge of the
nucleon, δmN = (mn −mp)QCD is the strong nucleon mass splitting, while the

nucleon sigma terms are given by σq = mq
∂∆mN

∂mq
, where ∆mN =

mn+mp

2 , and

σπN = σu+σd. The input for these hadronic matrix elements can be summarized
as [155,224–227]

σπN = (59.1± 3.5)MeV , σs = (41.1+11.3
−10.0)MeV ,

δmN = (2.32± 0.17)MeV , gA = 1.27± 0.002 . (4.24)
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4.3.4 Interactions from hadronic operators

Axion-meson-meson couplings

Although we will mainly focus on the couplings of the axion to nucleons in
what follows, here we briefly discuss the CP -odd interactions between axions and
mesons that arise from Eq. (4.14). These interactions contribute to the axion-
mediated potential between nuclei through the second and third diagrams in Fig.
4.2. However, they are typically subleading with respect to direct axion-nucleon
interactions discussed in the following subsection.

Apart from contributing to axion-mediated forces between nucleons, the meson-
axion interactions can also give rise to rare decays of kaons and the η. In partic-
ular, the strangeness-violating operators induce the decay K → πa. For example,
the strangeness-changing elements of the L3×3 Wilson coefficients induce the ver-
tex

LaKπ = gaKπ aK
+π− + h.c.

= im∗F
2
πA3×3

4mdms(md +ms) + (3md +ms)(md + 3ms)mu

16mdmums(md +ms)

×
[(
L2311
3×3

)∗ − L3211
3×3

] a
fa
K+π− + h.c. . (4.25)

The general form of the meson-meson-axion interactions is discussed in Appendix
C.6.

For axion masses ma < 2me, the only available decay channel is a→ γγ, which
is induced by the model-dependent CP -even gaγ coupling of Eq. (4.10) 3. In this
case, the axion lifetime is given by [185]

τ =
64π

g2aγ

f2a
m3
a

≃ 5 · 1018
g2aγ

(
eV

ma

)5

s . (4.26)

Since we focus on the range ma < 2me and gaγ = O(α/π) we can treat the axion
as stable in meson decays, implying K+ → π+a and K+ → π+νν̄ will have the
same experimental signature, i.e., K+ → π+ with missing energy and momentum.
We use the upper limit on BR(K+ → π+a) set by the NA62 experiment [228–230]
to constrain gaKπ

BR(K+ → π+a) ≃ τK
16πmK

m2
K −m2

π

m2
K

|gaKπ|2 < 5 · 10−11 , (4.27)

for ma ≪ mπ. For the couplings of Eq. (4.25), this implies

(ma

eV

)2 ∣∣∣∣
(
L2311
3×3

)∗ − L3211
3×3

∣∣∣∣
2

TeV4 ≤ 6.4 · 105 , (4.28)

3The derivative axion couplings to fermions, c
(f)
R −c

(f)
L , also contribute to a → γγ. However,

these contributions can be captured by an effective geffaγ ∼ gaγ + α
π
(c

(f)
R − c

(f)
L ), after a chiral

rotation.
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implying TeV-level constraints on Λ for axion masses in the keV range.
At the same time, the ∆S = 1 CP -odd operators induce CP -violation in kaon

decays, thereby contributing to ε′. Using the expressions and estimates for the
LECs in [231], we obtain

(
ε′

ε

)

3×3

≃ 62TeV2 Im
((
L2311
3×3

)∗ − L3211
3×3

)
, (4.29)

implying that ε′ is sensitive to very high scales. The ε′ and ε are related to
the CP -violation induced asymmetries in the kaon to two pion decays [232]. If
we conservatively demand that this contribution is smaller than the measured

value 4,
(
ε′

ε

)

expt.
= (16.6± 2.3) · 10−4 [236], we obtain Λ ≳ 193 TeV significantly

more stringent than the K+ → π+ + a limits, for ma ≲ keV.

Axion-nucleon couplings

We can split the axion couplings to the nucleons into an isoscalar and isovector
component,

LaN̄N = aN̄
[
g
(0)
S + g

(1)
S τ3

]
N , g

(p,n)
S = g

(0)
S ± g

(1)
S . (4.30)

These axion-nucleon couplings receive an ‘indirect’ contribution from Eq. (4.17),
which appears after vacuum alignment, as well as a ‘direct’ contribution that
arises from Eq. (4.18), which we write as gα = gα|dir + gα|ind. The ‘direct’ and
‘indirect’ pieces can be written as

g
(0,1)
S |dir =

m∗
fa

∑

i

∂α
(0,1)
i

∂ReLi
ImLi , (4.31)

g
(0,1)
S |ind =

m∗
fa

∑

i

β
(0,1)
i ImLi . (4.32)

where the coefficients α(0,1) and β(0,1) are given in Table 4.2. Here the symmetry
properties of the Lijklα , described below Eq. (4.8), were used to rewrite all couplings
in terms of those appearing in the table. The expressions in Table 4.2 employ the
following combinations of quark masses

m̄ =
mu +md

2
, m̄ϵ =

md −mu

2
, (4.33)

and combination of nucleon masses

∆mN =
mn +mp

2
, δmN = mn −mp . (4.34)

4See e.g. [233–235] for discussions on recent evaluations of the SM contribution based on
lattice QCD, χPT, and dual QCD.
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F2
πA6×6

4B
1

mu

∂δmN

∂(m̄ϵ)

L3322
6×6

md+ms

mdms
∆mN

F2
πA6×6

B

[
1

md

∂∆mN

∂md
+ 1

ms

∂∆mN

∂ms

]
−md+ms

2mdms
δmN −F2

πA6×6

4B
1

md

∂δmN

∂(m̄ϵ)

L1111
6×6 2∆mN

mu

F2
πA6×6

B
1

mu

∂∆mN

∂mu
− δmN

mu

F2
πA6×6

4B
1

mu

∂δmN

∂(m̄ϵ)

L2222
6×6 2∆mN

md

F2
πA6×6

B
1

md

∂∆mN

∂md
− δmN

md
−F2

πA6×6

4B
1

md

∂δmN

∂(m̄ϵ)

L3333
6×6 2∆mN

ms

F2
πA6×6

B
1

ms

∂∆mN

∂ms
0 0

Table 4.2: Coefficients determining the contributions to the axion-nucleon cou-

plings. g
(0,1)
S = m∗

fa

∑
i

[
∂

∂ReLi
α
(0,1)
i + β

(0,1)
i

]
ImLi, where i runs over all the Wil-

son coefficients in the table. Wilson coefficients that do not appear above have
either been rewritten using the symmetry properties described below Eq. (4.8) or
do not contribute. Note that, we have the following relations at LO 2 ∂∆mN

∂mu,d
=

∆mN (mq)

m̄
= σπN

m̄
.

Couplings to baryons containing valence strange quarks involve mass combinations
of the full baryon octet. The expressions in Eqs. (4.31) and (4.32) involve the
derivatives of these baryon-mass combinations with respect to the quark masses,
written in terms of m̄, m̄ϵ, and ms, as well as the real parts of Wilson coefficients,
Re Lα. The dependence on these quantities arises from contributions to the
baryon masses of Eq. (4.17) and Eq. (4.18), respectively.

For comparison, we briefly discuss the expected size of the scalar axion-nucleon
coupling in the pure Standard Model. In this case, the CP -odd couplings arise
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from the CKM phase δCKM. Ref. [237] estimated

g
(0)
S (δCKM) ≃ m∗JCPG

2
FF

4
π/fa ≃ 10−18 MeV/fa , (4.35)

with JCP ≃ 3 · 10−5 [222]. Similar-sized contributions arise from CKM-induced
contributions to the light-quark chromo-EDMs. In that case, the estimate can be
enhanced by a powerm2

c/F
2
π but additional loop suppression lead to a very similar

estimate of g
(0)
S (δCKM) [199]. Long-distance contributions involving hyperons also

appear to be of similar size [199]. We, therefore, take Eq. (4.35) as a rough
indication of the size of CP -odd axion-nucleon couplings within the Standard
Model.

Pion-nucleon couplings

The CP -odd pion-nucleon couplings can be written as

LπN̄N = N̄

[
ḡ0τ · π + ḡ1π0 + ḡ2

(
τ3π0 −

1

3
π · τ

)]
N , (4.36)

where ḡ0,1,2 denote the isoscalar, isovector, and isotensor terms, respectively. The
direct pieces of these couplings are related to the axion-nucleon couplings as fol-
lows

ḡ0|dir = g̃
(1)
S |dir −

2

3
ḡ2|dir , ḡ1|dir = g̃

(0)
S |dir ,

ḡ2|dir =
1

Fπ

[
ImL2211

6×6

d

dReL2211
6×6

(∆mΣ0 +∆mΣ− − 2∆mΞ−)

+
∑

a

ta3ImLaaaa
6×6

d

dReLaaaa
6×6

δmN

]
, (4.37)

where ta3 ≡ (t3)aa and g̃
(0,1)
S |dir can be obtained from g

(0,1)
S |dir in Eq. (4.31) by

using the following replacement rules on the imaginary parts of the appearing
Wilson coefficients 5

Lab5 → − 2fa
m∗Fπ

(
ta3 + tb3

)( 1

ma
+

1

mb

)−1

Lab5 ,

Labcd
r

→ − 2fa
m∗Fπ

(
ta3 + tb3 + tc3 + td3

)( 1

ma
+

1

mb
+

1

mc
+

1

md

)−1

Labcd
r

,

r ∈ {3× 3 ,6× 6} ,

Labcd
r

→ − 2fa
m∗Fπ

(
ta3 − tb3 − tc3 + td3

)( 1

ma
− 1

mb
− 1

mc
+

1

md

)−1

Labcd
r

,

r = 8× 8 , (4.38)

5The partial derivatives with respect to the real parts of the Wilson coefficients should be
left unchanged.
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where the repeated indices were not summed over. We can write the indirect
contributions as

ḡ0|ind = −Fπ
4B

∑

a,b

Im

[
(
|ta3 |+ |tb3|

)(
A3×3L

aabb
3×3

+A6×6L
aabb
6×6

+ 2δab
B̄

F 2
π

Laa5

)

+
1

2

(
|ta3 | − |tb3|

)
A8×8L

abba
8×8

]
∂δmN

∂(m̄ϵ)
,

ḡ1|ind = −Fπ
2B

∑

a,b

Im

[
(
ta3 + tb3

)(
A3×3L

aabb
3×3

+A6×6L
aabb
6×6

+ 2δab
B̄

F 2
π

Laa5

)

+
1

2

(
ta3 − tb3

)
A8×8L

abba
8×8

]
∂∆mN

∂m̄
,

ḡ2|ind = 0 . (4.39)

Values for the mesonic LECs are discussed in Appendix C.1.

4.4 Constraints from electric dipole moment ex-
periments

The CP -odd electron-nucleon and pion-nucleon interactions in Eqs. (4.22) and
(4.36) induce EDMs of various systems. We take the expressions from Ref. [238].

The semi-leptonic Wilson coefficients C
(0,1)
S mainly contribute to CP -odd effects

in polar molecules [239–241]

ωYbF = −(17.6± 2.0)(mrad/s)

(
CS
10−7

)
, (4.40)

ωHfF = +(32.0± 1.3)(mrad/s)

(
CS
10−7

)
, (4.41)

ωThO = +(181.6± 7.3)(mrad/s)

(
CS
10−7

)
, (4.42)

in terms of CS = C
(0)
S + Z−N

Z+NC
(1)
S where Z and N correspond to the number

of protons and neutrons, respectively, of the heaviest atom of the molecule. In

addition, the combination of CP -odd and CP -even axion couplings, ∼ gNS g
(e)
P or

∼ g
(e)
S g

(e)
P , can give rise to CP -odd effects in nuclei, atoms, and molecules. Such

contributions were considered in Ref. [242], which showed that the most stringent
limits arise from the ThO measurement, giving

ωThO(gS,P ) =
[
0.54 g

(e)
S g

(e)
P + 1.4 gNS g

(e)
P

]
· 1019 , (4.43)
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neutron and atoms (e cm) Molecules (mrad/s)

dn dHg dRa ωYbF ωHfF ωThO

1.8 · 10−26 6.3 · 10−30 1.2 · 10−23 23.5 4.6 1.3

Table 4.3: Current experimental limits (at 90% C.L.) from measurements on the
neutron [52], 199Hg [180], 225Ra [243], YbF [244], HfF [245], and ThO [246].

where g
(f)
P is connected to the CP -even couplings in Eq. (4.3) by gfP = CfPmf/fa

and gNP = A−Z
A gnP + Z

Ag
p
P .

The operators C
(0,1)
P and ḡ0,1,2 induce EDMs of nucleons, nuclei, and diamag-

netic atoms. For the nucleon EDMs we use the results [140]

dn = − egA
8π2Fπ

[(
ḡ0 −

ḡ2
3

)(
log

m2
π

m2
N

− πmπ

2mN

)
+
ḡ1
4
(κ1 − κ0)

m2
π

m2
N

log
m2
π

m2
N

]
,

(4.44)

dp =
egA

8π2Fπ

[(
ḡ0 −

ḡ2
3

)(
log

m2
π

m2
N

− 2πmπ

mN

)
− ḡ1

4

(
2πmπ

mN

+(5/2 + κ1 + κ0)
m2
π

m2
N

log
m2
π

m2
N

)]
, (4.45)

where gA ≃ 1.27 is the nucleon axial charge, and κ1 = 3.7 and κ0 = −0.12
are related to the nucleon magnetic moments. For ḡ1 we kept the next-to-next-
to-leading-order corrections as this is the first order where a neutron EDM is
induced. We have set the renormalization scale to the nucleon mass mN in order
to estimate the EDMs as function of pion-nucleon couplings.

We should point out that the CP -odd LEFT operators induce additional CP -
violating hadronic interactions that also contribute to the nucleon EDMs. For
example, a quark chromo-EDM operator ∼ q̄σµνγ5TAq GAµν leads to direct con-
tributions to the neutron EDM in addition to the pion-nucleon terms. Such direct
terms depend on hadronic matrix elements that do not appear in the CP -odd ax-
ion interactions given above (they would be connected to CP -odd axion-photon-
nucleon terms instead). We, therefore, do not include these effects here, which
leads to conservative limits6, assuming there are no significant cancellations. In-
stead, we estimate the EDMs of neutrons (and protons) from their pion-loop
contributions proportional to ḡ0,1,2 in Eqs. (4.44) and (4.45).

6For certain LEFT operators such as the Weinberg operator, there are no contributions to
ḡ0,1,2 at the chiral order we work. However, terms appear after a quark mass insertion leading
to an additional suppression of m2

π/Λ
2
χ [73]. In those cases, the direct contributions to the

nucleon EDMs, which come with additional LECs, are a better estimate. To keep the discussion
compact, we do not further pursue this here.
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The expression for the Hg EDM becomes [130,172,247–250]

dHg = −(2.1± 0.5) · 10−4

[
(1.9± 0.1)dn + (0.20± 0.06)dp

+

(
0.13+0.5

−0.07 ḡ0 + 0.25+0.89
−0.63 ḡ1 + 0.09+0.17

−0.04 ḡ2

)
e fm

]

−
[
(0.028± 0.006)CS − 1

3
(3.6± 0.4)

(
Zα

5mNR
CP

)]
· 10−20 e cm , (4.46)

in terms of the nuclear radius R ≃ 1.2A1/3 fm, and CP,T = (C
(n)
P,T ⟨σn⟩ +

C
(p)
P,T ⟨σp⟩)/(⟨σn⟩ + ⟨σp⟩). Here we defined C

(n,p)
P,T = C

(0)
P,T ∓ C

(1)
P,T . For 199Hg

we use the values [251]

⟨σn⟩ = −0.3249± 0.0515 , ⟨σp⟩ = 0.0031± 0.0118 . (4.47)

The expression for the octopole-deformed Ra is simpler as nuclear CP -violation
dominates the atomic EDM [78,247]

dRa = (7.7 · 10−4) · [(2.5± 7.5) ḡ0 − (65± 40) ḡ1 + (14± 6.5)ḡ2] e fm . (4.48)

Note that the radium and mercury EDMs are dominated by the contributions to
the pion-nucleon couplings as long as ḡ0,1,2 receive contributions at LO (which
is the case for the LEFT operators under consideration here). The connection
between the contributions to dRa and dHg and the axion-nucleon couplings are,
therefore, more straightforward than was the case for the nucleon EDMs, where
additional direct contributions appear at the same order. The current best limits
are collected in Table 4.3.

4.5 Fifth-force experiments

The CPV scalar axion-nucleon and axion-lepton couplings of Eqs. (4.30) and
(4.20) lead to monopole-monopole forces, which would act like a ‘fifth force’,
thereby modifying Newton’s inverse-square law (ISL) and violating the weak
equivalence principle (WEP). The combination of the gravitational and axion
potentials between two different bodies I and J then becomes

VIJ(r) = −GmImJ

rIJ

(
1 + αIαJe

−marIJ
)
, (4.49)

where ma(= 1/λ) is the axion mass, rIJ is the distance between I and J , while
mI,J and αI,J are the masses and total ‘axion charges’ of I and J (the latter

are normalized to mI,J

√
4πG). At leading order in χPT, this total charge is

determined by the axion couplings to the electron, proton, and neutron, as well as
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Figure 4.2: Diagrams contributing to the axion-nucleon interactions. The solid
lines correspond to nucleons, the dotted lines to axions, and the dashed lines to
mesons.

the number of these particles present in the body under consideration. Explicitly,
we have

αI =
1√
4πG

[
g
(n)
S

A− Z

mA
+ g

(p)
S

Z

mA
+ g

(e)
S

Z

mA

]
, (4.50)

where mA is the mass of the atom, which in most cases can be approximated by
mA = Amu, with mu the atomic mass unit, while Z and A − Z are the number
of protons and neutrons of the element that constitute the body I. The leading-
order contributions arise from the simple axion-nucleon diagram (left diagram of
Fig. 4.2).

Axion-meson-meson couplings modify the axion-nucleon coupling at the one-
loop level (middle diagram of Fig. 4.2), in practice part of the one-loop contri-
butions are automatically resummed by using the physical values for σπN and
δmN in Eq. (4.24). Graphs such as the one depicted in the right panel of Fig. 4.2
lead to two-nucleon contributions that cannot be captured by Eq. (4.50). In the
analogous case of a dilaton (ϕ) coupling to quarks, ∼ ϕq̄q, such contributions to
the potential are related to the binding energy of the nuclei and were considered
in Ref. [252]. Within χPT, however, these two-body interactions appear at a
higher-order in the power counting. In particular, for scalar axion-quark interac-
tions (e.g. aq̄q) axion-nucleon-nucleon currents appear at next-to-leading-order in
the power counting and could in principle be relevant [253]. These currents were
discussed in detail in light of WIMP scattering off atomic nuclei and were found to
be somewhat smaller than power-counting predictions indicate and appear only
at the few-percent level [100]. However, this could increase for larger nuclei [254].
We neglect the subleading two-nucleon corrections in this part of the thesis.

Numerous experiments search for the fifth force induced by αIαJ term in
Eq. (4.49). These experiments either look for violations of the WEP, which ap-
pear when VIJ is no longer proportional to mImJ , or departures from the inverse-
square law due to deviations from the 1/rIJ dependence of the usual gravitational
potential. In this section, we summarize several of these experiments and discuss
how they limit the axion couplings to nucleons and leptons.
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4.5.1 MICROSCOPE mission

The MICROSCOPE mission [255] focuses on constraining the Eötvös parameter,
a measure of WEP violations. The Eötvös parameteris the normalized difference
between the accelerations of two masses, I and J . In the case of Ref. [255],
these masses are made of platinum and titanium and are in free fall aboard the
MICROSCOPE satellite

η =

(
∆a

a

)

IJ

= 2
|aI − aJ |
|aI + aJ |

. (4.51)

From Eq. (4.49) one finds that the Eötvös parameterfor two test masses in the
external field of Earth (E) can be expressed as

η =
αE |αI − αJ | (1 + x) e−x

1 + 1
2 (αJ + αJ)αE (1 + x) e−x

≃ αE |αI − αJ |(1 + x)e−x , (4.52)

where x = Rma, R ≈ 7000 km is the distance from the center of the Earth to the
satellite, and αE is the effective ‘axion charge’ of the Earth. Following [255], we
model the Earth as consisting of a core (which is taken to consist of iron) and the
mantle (consisting of SiO2), so that its charge takes the form 7

αE =
mC

mE
αFeΦ (RCma) +

mM

mE
αSiO2

R3
EΦ(REma)−R3

CΦ(RCma)

R3
E −R3

C

, (4.53)

where RE ≃ 6371 km and RC ≃ 3500 km are the radii of the Earth and its core.
mE , mC , and mM are, respectively, the masses of the Earth, its core, and its
mantle, with mC/mE ≃ 0.33, while the function Φ(x) ≡ 3(x coshx − sinhx)/x3

describes the deviation from a simple Yukawa potential due to the finite size of
the earth.

Combining these expressions with the experimental limit [255],

η = (−1± 27)× 10−15 , (4.54)

allows us to set constraints on g
(e,n,p)
S as a function of ma.

4.5.2 Eöt-Wash (WEP)

The Eöt-Wash experiment [256] constrained deviations from the WEP at distance
scales ≳ 0.1 m. In this case, two test bodies, made of Pb and Cu, were connected
to a torsion balance around which a 238U attractor mass rotates. A difference
in the accelerations of the two bodies would then show up as a torque, τ⃗ =
1
2 d⃗× (F⃗Cu− F⃗Pb), where d⃗ is the distance between the two test bodies and F⃗Cu,Pb

are the forces that work on them, due to the Earth and the attractor. The

7This result differs from the expression obtained in Ref. [255].
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experiment looks for signals that vary as a function of the angle, ϕ, between d⃗ and
the vector from the test bodies to the attractor. The fact that only accelerations
orthogonal to d⃗ contribute to the torque implies τ is a measure of deviations from
the WEP, τ ∼ αCu − αPb, while looking for ϕ-dependent signals means signals
are due to the force (whether gravitational or axionic) exerted by the attractor.
In total, the ϕ-dependent part of the z-component of the torque can be written
as 8

τz|varying
g′dmCu/2

=
|aPb − aCu|

g′
sinϕ

≃ |αPb − αCu|
[
αAIA(ma)− αE(1 +REma)e

−REma
]
sinϕ , (4.55)

where g′ = 9.2 ·10−7 m/s2 and αA are the gravitational acceleration and the axion
charge of the element of the attractor, while IA is a function that captures the
geometry of the attractor. The experimental limit

|aPb − aCu| ≤ 5.7 · 10−15 m/s
2
, 95% C.L. , (4.56)

together with IA, which we obtain from interpolating the numerical values in

Table 4.4, again allows us to set constraints on g
(n,p,e)
S .

λ (m) 0.01 0.014 0.020 0.028 0.05 0.07 0.1 0.2 0.5 1 2 5

IA(ma) 1.3·10−5 1.8 · 10−4 0.0016 0.0079 0.057 0.13 0.26 0.59 0.89 0.97 0.99 1.0

Table 4.4: Numerical values for the function IA(ma) that describes the geometry
of the attractor in the Eöt-Wash experiment [256] as a function of λ = 1/ma.

Later work suspended the torsion pendulum from a rotating turntable instead
of using a rotating attractor and used test bodies made of Be and Ti [257]. The
role of source mass was dominated by features in the surrounding environment,
local topography, and finally, the Earth, depending on the value of λ. Lacking
knowledge of the size, density, and composition of the environmental features, we
approximate the effective axion coupling of the source masses by αsource = αSiO2

.
The experimental results are shown in Table 4.5.

λ (m) 1 10 1 · 102 1 · 103 1 · 104 1 · 105 1 · 106 > 1 · 107

|αsource(αBe − αTi)| 8 · 10−6 1 · 10−6 2 · 10−7 7 · 10−8 4 · 10−8 4 · 10−8 5 · 10−9 2 · 10−10

Table 4.5: Constraints set by Eöt-Wash experiment [257] as a function of λ =
1/ma.

8Here we neglect a small correction to the contributions ∼ αA due to the centrifugal force
induced by the Earth’s rotation.
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4.5.3 Irvine

This experiment [258] consists of two sets of measurements, searching for fifth
forces at distances between 105-5 cm and 5-2 cm. Both measurements used a
torsion balance to constrain the torque that a Yukawa potential would induce.
The test and attractor masses used in these set-ups were designed so as to give
rise to a net-zero torque if the force between them has a pure 1/r2 dependence.
The measurements on smaller distance scales searched for fifth forces between a
copper test mass and a stainless steel cylinder. In contrast, the test and attractor
masses used in the measurements at larger distances were both made from copper.
As the elements in these materials all have a similar Z/A ≃ 0.45, which determines
α in Eq. (4.50), we will approximate the effective axion charges αI,J by αCu. We
summarize the constraints on the combination αIαJ as a function of λ in Table 4.6.

λ (mm) 5 10 50 100 500 1.0 · 103 5.0 · 103 1.0 · 104

|αCuαCu| 1.1 · 10−3 2.1 · 10−4 1.9 · 10−4 4.2 · 10−4 1.3 · 10−3 3.8 · 10−3 0.088 0.46

Table 4.6: 95% C.L. constraints on the combinations |αCuαCu| as a function of
λ = 1/ma set by the Irvine measurements [258].

4.5.4 Eöt-Wash (inverse-square law)

Apart from searches for WEP violations, some experiments look for deviations
from the inverse-square law. The Eöt-Wash experiments accurately measured the
force between an attractor, made of Mo and Ta, and a Pt or Mo test body as
a function of the distance between them [259, 260]. The geometry of the exper-
imental set-up cancels the attraction due to the gravitational potential, ∼ 1/r2,
allowing one to constrain Yukawa forces. Although the attractor was made of
several materials, we approximate the probed combinations by |αMoαMo| and
|αPtαMo|, the resulting constraints on which are listed in Table 4.7.

λ (mm) 0.01 0.025 0.05 0.1 0.25 0.5 1 2.5 5

|αMoαMo| 4.1 · 104 43 1.4 0.1 6.7 · 10−3 2.4 · 10−3 2.7 · 10−3 7.2 · 10−3 7.1 · 10−3

|αMoαPt| 3.1 · 103 6.4 0.42 0.077 0.029 0.025 0.019 0.013 0.012

Table 4.7: 95% C.L. constraints on the combinations |αMoαMo| [259] and
|αPtαMo| [260] as a function of λ = 1/ma set by the Eöt-Wash experiment.

4.5.5 HUST

The HUST experiment [261–264] searches for inverse-square law violations caused
by a fifth force between two plane masses made of tungsten (W) using a torsion
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pendulum. The pendulum is suspended horizontally with a rectangular-shaped
test mass of tungsten at each end. The test masses face a rotating attractor
made of rectangular tungsten source masses and compensating masses designed to
cancel out the torque due to Newtonian forces. This experiment is most sensitive
in the range λ = (40− 350) µm. The resulting constraints on αIαJ are collected
in Table 4.8.

λ (mm) 0.025 0.05 0.1 0.25 0.5 1 2.5 5

|αWαW| 420 0.70 0.026 3.8 · 10−3 3.6 · 10−3 1.4 · 10−3 1.0 · 10−3 2.2 · 10−3

Table 4.8: 95% C.L. constraints on the combinations |αWαW| as a function of
λ = 1/ma set by the HUST experiment [261–264].

4.5.6 Stanford

The Stanford experiment [265] focused on axions in the range λ ∼ 5 - 15 µm. A
rectangular gold (Au) prism, located at the end of a cantilever, was used as a test
mass. The force on the test mass was determined through its displacement. A
source mass consisting of alternating gold and silicon (Si) bars was then moved
horizontally below the test mass. In the presence of a fifth force, the test mass
experiences different forces depending on whether an Au or Si bar is located
directly below it, resulting in a different displacement of the cantilever. This
would induce an oscillating force when the source mass is displaced horizontally.
Note that the background due to Newtonian forces is negligible at this level of
precision. The amplitude of the induced force is proportional to ρIαI , with ρ
the mass density and I = Au, Si. As ρAu ≫ ρSi, we approximate the probed
combination of axion charges by α2

Au, the constraints on which are shown in
Table 4.9.

λ (µm) 4 6 10 18 34 66

|αAuαAu| 3.1 · 107 4.6 · 105 1.4 · 104 1.1 · 103 2.5 · 102 1.5 · 102

Table 4.9: 95% C.L. constraints on the combinations |αIαJ | as a function of
λ = 1/ma set by the Stanford experiment [265].

4.5.7 IUPUI

This experiment searches for fifth forces by measuring the differential force on
masses separated by distances in the nm range [266], allowing it to probe axions
in the range λ ∼ (40 − 8000) nm. The set-up involves a spherical test mass,
made in large part of sapphire (S), located above a rotating disk which serves as a
source mass. The latter involves several rings, each with a number of alternating
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segments made of Au and Si. The source mass is rotated at a constant frequency
so that a difference in force felt by the test mass due to Au and Si would show
up as an oscillating signal. Such a difference would signify a fifth force, while the
Newtonian force for this design is below the experimental sensitivity. As both
the attractor and the sources masses involve several materials, we approximate
the effectively probed combination of couplings by αS(αAu−αSi), where αS is the
effective axion charge of sapphire. The resulting constraints on αIαJ are collected
in Table 4.10.

λ (mm) 5 · 10−5 1 · 10−4 2.5 · 10−4 5 · 10−4 1 · 10−3 2.5 · 10−3 5 · 10−3

|αS(αAu − αSi)| 2.4 · 1013 1.0 · 1011 6.5 · 108 4.3 · 107 5.8 · 106 6.3 · 105 1.3 · 105

Table 4.10: 95% C.L. constraints on the combinations |αWαW| as a function of
λ = 1/ma set by the IUPUI experiment [266].

4.5.8 Asteroids and planets

It is possible to constrain a fifth force by measurements of the orbital trajectories
of astronomical objects. In particular, Ref. [267] proposes to use the fifth-force-
induced orbital precession of nine near-Earth asteroids, whose orbital trajectories
are precisely tracked, to constrain a potential fifth force induced by the exchange
of particles in the mass range ma ≃ 10−21 − 10−15eV. The analysis of Ref. [267]
assumed that the new scalar particles coupled to the baryon charge, in which
case the elemental composition of the Sun and the asteroids is not relevant. To
constrain the axion couplings, we assume that the asteroids consist mainly of iron
(αasteroid = αFe). Since the orbits can only be affected by axions with λ ≫ R⊙,
we model the Sun as a point particle, with

α⊙ = (0.75 αH + 0.24 αHe) . (4.57)

With these assumptions, we convert the estimated sensitivity of Ref. [267] to
limits on axion-nucleon and axion-electron scalar couplings.

In a similar spirit, it is possible to constrain axion-induced fifth forces by mea-
suring the perihelion procession of planetary orbits [268]. The most stringent
limits arise from the perihelion procession of Mars and Mercury. The analysis
of Ref. [268] assumed a model where hypothetical ultralight Z ′ bosons couple
to electrons, which gives rise to a Yukawa potential similar to axions (but with
opposite sign). We convert their limits by assuming Mars and Mercury have a
similar composition to Earth with similar relative sizes of the mantle and core,
which, for λ≫ RE , gives αplanet ≃ 0.33αFe+0.67αSiO2 . The constraints on αIαJ
from the asteroids and planets as a function of λ are collected in Table 4.11.

Black and gray lines in Figs 4.3 and 4.6 depict the resulting limits from the
asteroid and planetary orbits, respectively.
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λ (km) 1 · 106 5 · 106 1 · 107 5 · 107 1 · 108 5 · 108 1 · 109

|αFeα⊙| 2.5 · 10−6 9.8 · 10−11 3.5 · 10−11 7.5 · 10−12 1.1 · 10−11 1.1 · 10−10 4.2 · 10−10

|αplanetα⊙| − 3.4 · 10−9 1.8 · 10−10 7.4 · 10−12 4.3 · 10−12 1.8 · 10−11 4.9 · 10−11

Table 4.11: 95% C.L. projected constraints on the combination |αFeα⊙| [267] and
current limits on |αplanetα⊙| [268] as a function of λ = 1/ma. The constraints due
to the planetary orbits are dominated by Mars for λ > 2.6 · 107 km and Mercury
for smaller values of λ.

4.5.9 Stellar Cooling

The stars can produce axions in the cores. If they escape, this provides a new
source of stellar cooling, and we can search for the resulting distinct astronomical
signatures. Here we briefly discuss the most stringent limits arising from these
searches. A recent, more detailed discussion of these constraints can be found in
Ref. [196].

The pseudoscalar axion-electron interaction can generate axions through Comp-
ton scattering γ+e− → e−+a and bremsstrahlung e+Ze→ Ze+e+a [269,270].
These cooling processes allow heavier red giants as their cores now require more
mass to reach the same temperature, thereby delaying helium ignition. The in-
crease in mass then leads to a higher luminosity so that measurements of the
brightness of red giants allow one to constrain the cooling processes induced by
axions. The resulting limit is given by [271]

geP ≲ 1.6 · 10−13 . (4.58)

These cooling processes are suppressed for heavier axions, as they cannot be
produced once the mass becomes significantly heavier than the temperature in
the core. The limits in this section are valid for ma < 10 keV.

The scalar axion-electron interaction can be constrained by using the fact that
it causes the mixing of the axion with plasmons in stars [272]. This axion pro-
duction is enhanced if the axion mass is below the plasmon frequency. The most
stringent constraint comes from the resonant production in red giants [273]

geS ≲ 7.1 · 10−16 . (4.59)

The analogous resonant axion production in red giants, induced by scalar axion-
nucleon interactions, gives the limit [273]

g
(0)
S ≲ 1 · 10−12 . (4.60)

Finally, for the pseudoscalar coupling to neutrons, the most stringent limits
arise from neutron stars. Young neutron stars that are formed from the col-
lapsed star core after a supernova explosion can cool by emitting axions through
bremsstrahlung, n + n → n + n + a. Observation of a high surface tempera-
ture of neutron stars can then limit the amount of axion emission. The resulting
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constraint is given by [274]
gnP ≲ 2.8 · 10−10 . (4.61)

4.6 Searches for monopole-dipole interactions

In the previous section, we discussed constraints on the product of two scalar
axion couplings. In the presence of both CP -even and CP -odd interactions, axion
exchange also leads to a monopole-dipole potential of the form V ∼ (σ·r̂)e−mar/r,
where σ is the spin of the particle with a CP -even axion coupling. Potentials of
this form are searched for by various experiments, which we discuss in more detail
below. Before doing so, we first introduce the CP -even axion interactions that
make up the monopole-dipole potential. These CP -even couplings arise from
the derivative terms ∼ cfL,R

∂µa
fa
f̄γµγ5f in Eq. (4.3). In addition, quark-axion

interactions are generated by the axion-dependent part of the chiral rotation, A,
which shifts the ∼ (cqR − cqL)∂µa terms contained in rµ − lµ in Eq. (4.12). As
a result, the quark interactions receive a model-independent contribution from
the chiral rotation. At the same time, the lepton couplings only involve model-
dependent terms since cfL,R depend on the UV construction.

We write the final CP -conserving interactions as

LaN =
∂µa

2fa

(
CpP p̄ γ

µγ5 p+ CnP n̄ γ
µγ5 n+ CeP ē γ

µγ5 e
)
, (4.62)

for couplings to protons, neutrons, and electrons, respectively. Within chiral EFT,
these nucleon interactions result from the ∼ Sµ terms in the first line of Eq. (4.17)
as the above Lorentz structure reduces to γµγ5 → 2Sµ in the non-relativistic limit,
see Eq. (2.64). For the axion-nucleon CP -even couplings, we apply recent results
from next-to-next-to-leading-order chiral perturbation theory [275]

CpP = −0.430(50) + 0.862(75)Xu − 0.417(66)Xd − 0.035(54)Xs ,

CnP = 0.007(46)− 0.417(66)Xu + 0.862(75)Xd − 0.035(54)Xs ,

CeP = Xe =

(
ceR − ceL

2

)

11

, (4.63)

with Xq = Diag(Xu, Xd, Xs) = 1
2Diag (cqR − cqL). These couplings are some-

times written in pseudoscalar form using the equations of motion for on-shell
fermions −gfP a f̄iγ5f where gfP = CfPmf/fa for f = {p, n, e}. Using Eq. (4.15)
we write [196]

gfP = 1.7 · 10−13 CfP

( mf

1GeV

)( ma

1µeV

)
. (4.64)

Two of the most popular UV constructions (see Refs. [276,277] for more general

constructions), which determine the c
(f)
L,R couplings, are the KSVZ [278,279] and
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DFSZ [280,281] models, see Ref. [185] for a recent review. In these scenarios, the
couplings take the following values

DFSZ : Xu =
1

3
sin2 β ,

Xd = Xs = Xe =
1

3
(1− sin2 β) ,

KSVZ : Xq = Xe = 0 , (4.65)

where tanβ = vd/vu is the ratio of vacuum expectation values of scalar fields in
the DFSZ model. Assuming perturbativity of the Yukawa couplings appearing in
the model, β lies in the range tanβ ∈ [0.25, 170] [185, 282]. In our analysis, the
exact values of the CP -even couplings are not our main concern (although they
play a role in setting limits). For simplicity, we will consider the DFSZ model
and set tanβ ≃ 1 and pick the central values of the matrix elements. That is, we
take CpP = −0.36, CnP = 0.08, and CeP = 0.17. Using other values of tanβ or the
KSVZ couplings will not dramatically change our findings.

4.6.1 ARIADNE

The Axion Resonant InterAction Detection Experiment (ARIADNE) aims to
probe axion masses up to 10−3 eV by using methods based on nuclear magnetic
resonance (NMR) [283–285]. The experiment is sensitive to the axion-mediated
monopole-dipole potential between two nuclei,

VSP =
gNP g

N
S

8πmN

(
1

rλ
+

1

r2

)
e−

r
λ (σ · r̂) ≡ µ ·Beff , (4.66)

where µ = 1
2gNµBσ, with µB = e

2mp
and gN the nuclear magneton and g factor,

respectively. As implied by the second equality, we can interpret the effects of
this potential as an effective magnetic field Beff .

The setup consists of a source mass made of unpolarized tungsten in the form
of a rotating cylinder with teeth-like structures pointing radially outwards. These
teeth pass by an NMR sample of 3He gas, thereby inducing an oscillating Beff

field. As the NMR sample resides in a conventional external magnetic field, the
Beff field will drive spin precession in the 3He sample if it is chosen to oscillate
at the nuclear Larmor frequency, determined by the external field. The resulting
magnetization, proportional to gNS g

N
P , is precisely measured. These couplings

can be written as gNS = A−Z
A gnS + Z

A (g
p
S + g

(e)
S ) for the tungsten source mass

and gNP = 0.88gnP − 0.047gpP [76] for the 3He sample. Ref. [283] considered
the projected limits that would result from several setups. Table 4.12 shows the
projected limits from their initial setup (with T2 = 1 s) and those from a scaled-up
version of the apparatus.
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λ (cm) 0.003 0.01 0.03 0.1 0.3 1 3 10

|gNS gNP (projected)| · 1033 6 · 104 500 60 10 6 4 4 4

|gNS gNP (upgrade)| · 1039 7 · 106 4 · 105 2 · 104 1 · 103 200 40 6 1

Table 4.12: The projected limits on the strength of the axion-mediated monopole-
dipole interaction from the ARIADNE experiment using the initial and upgraded
setups of Ref. [283].

4.6.2 QUAX

The QUest for AXions (QUAX-gP gS) experiment [286,287] is similar in setup to
the ARIADNE experiment, as it also makes use of the fictitious magnetic field
induced by the combination of CP -even and CP -odd axion couplings. In this case,
the source masses consist of lead, while the detector measures the magnetization
of a sample of paramagnetic crystals that the axionic potential would induce.
A key difference with the ARIADNE experiment is that the coupling induces
the magnetization of electrons rather than nucleons. The probed couplings are

therefore given by, gP = g
(e)
P and gNS = A−Z

A gnS+
Z
A (g

p
S+g

(e)
S ) for the case of lead.

We show the current constraint [287] and projected limits [286] in Table 4.13.

λ (m) 0.003 0.01 0.03 0.1 0.3 1

|gNS g(e)P (current)| · 1030 − 530 17 5 4 4

|gNS g(e)P (projected)| · 1034 14 · 104 120 15 8 6 6

Table 4.13: The current [287] and projected limits [286] on the strength of the
axion-mediated monopole-dipole interaction from the QUAX.

4.7 Applications

4.7.1 Chromo-electric dipole moments

To illustrate the use of the EFT framework, we revisit a well-studied scenario
where BSM CP -violation is dominated by the chromo-electric dipole moments
(CEDMs) of first-generation quarks. We turn on the LEFT operators

LCEDM = Lu5 ūL T
AGAµνσ

µνuR + Ld5 ūL T
AGAµνσ

µνdR + h.c.

= Re (Lu5 ) ū G · σ u+ Im (Lu5 ) ū G · σiγ5u+ (u↔ d) , (4.67)

where we introduced G·σ = TAGAµνσ
µν in the second line. The terms proportional

to the imaginary part of Lq5 are the CP -violating quark CEDMs. We read from
Table 4.2 the induced isoscalar scalar axion-nucleon couplings

g
(0)
S =

m∗
fa

1

mu
Im (Lu5 )

(
∂

∂Re (Lu5 )
+

2B̄

B

∂

∂mu

)
∆mN + (u↔ d) . (4.68)
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We introduce the isoscalar and isovector combinations

L0
5 =

1

2
(Lu5 + Ld5) , L3

5 =
1

2
(Lu5 − Ld5) , (4.69)

to rewrite

g
(0)
S =

m∗
fa

(
ImLu5
mu

+
ImLd5
md

)[
1

2

∂

∂ReL0
5

+
B̄

B

∂

∂m̄

]
∆mN (4.70)

in agreement with Ref. [198].
Similarly, we can compute the CP -violating pion-nucleon couplings. We focus

on the isovector coupling (the discussion for the isoscalar coupling goes along
similar lines) and obtain

ḡ1 = −2
ImL3

5

Fπ

[
1

2

∂

∂ReL0
5

+
2B̄

B

∂

∂m̄

]
∆mN , (4.71)

in agreement with Refs. [288, 289]. While the matrix elements appearing in
Eqs. (4.70) and (4.71) are poorly known, we see that the matrix element drops
out in the ratio

ḡ1

g
(0)
S

= −
(
fa
Fπ

)
1

m∗

mumd (ImLu5 − ImLd5)

md ImLu5 +mu ImLd5
. (4.72)

This way, experiments looking for EDMs and CP -odd axion couplings can be
directly compared for a given value of the axion mass ma ∼ 1/fa.

To determine the absolute scale that various experiments are sensitive to, we
do need to determine the matrix element

∆̃mN ≡
[
1

2

∂

∂ReL0
5

+
B̄

B

∂

∂m̄

]
∆mN . (4.73)

The two terms in square brackets correspond to direct and indirect contributions.
The latter only depend on vacuum matrix elements and are relatively well known.
The direct term depends on the nucleon matrix element of the chromomagnetic
operator and is poorly understood. Recently, Seng [290] argued that while the
direct term is not well known, it is subleading with respect to the indirect term.
The argument is based on a connection between chromomagnetic nucleon matrix
elements and higher-twist distributions that can be measured in deep inelastic
scattering, finding only 10-20% corrections from the direct piece. This result is at
odds with the QCD sum rule results of Ref. [288], where both terms are of similar
size. Lattice-QCD might provide a resolution to this discrepancy [289]. For now
we follow Ref. [290] and set B̄/B ≃ 0.4GeV2/gs(2GeV) [290, 291], gs(2GeV) ≃
1.85, and m̄ = 3.4 MeV [292] to obtain

∆̃mN ≃ 3.7GeV2 , (4.74)
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Figure 4.3: Constraints on the isoscalar scalar axion-nucleon coupling in case of
a down-quark chromo-EDM. The CP -even axial axion-nucleon coupling is chosen
as in the DFSZ model with tanβ = 1. The WEP experiment limits are shown in
purple, from top to bottom on the low end of axion mass, the lines denote Eöt-Wash
(2000) [256], Eöt-Wash (2008) [257], and the MICROSCOPE mission [255]. The
inverse-square law (ISL) experiments limits are shown in red, from left to right the
lines denote Irvine [258], HUST [261–264], Eöt-Wash [259,260], Stanford [265], and
IUPUI [266]. The astronomical bounds from planets [268] are shown in gray, and
the projected limits from asteroids [267] are shown in black. The stellar cooling
bounds are shown in green for Red Giants [271,273] and neutron stars [274]. Note
that the vertical line from Red Giants is a bound on geP , which would be much
weaker had we used the KSVZ model. The EDM limits are shown as dotted lines,
where orange corresponds to the neutron [52], red to Hg [180], brown to Ra [243],
and blue to ThO [246]. Red-dashed lines depict the current and projected limits
from QUAX [287]. The ARIADNE limits are shown in blue-dashed for the initially
envisioned setup (labeled ‘proj.’) and a upgraded version (labeled ‘upg.’) [283–285].

The estimated size of g
(0)
S arising from the SM CKM phase is shown in gray at the

bottom-right corner.

which is what we use in our analysis.
We can now compare the sensitivity of various experiments to the presence of

the quark chromo-EDMs. For concreteness we turn on the down-quark chromo-
EDM and assume ImLd5 = md

Λ2 . After the PQ mechanism is implemented, the
presence of the CP -odd chromo-EDM leads to scalar axion-nucleon interactions,
which fifth-force experiments can constrain. The isoscalar axion coupling is the
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Figure 4.4: Constraints on Λ from various experiments discussed in Section 4.7.
The labeling of the lines is explained in the caption of Fig. 4.3.

most relevant for the present discussion and scales as g
(0)
S ∼ 1/(faΛ

2). Fig. 4.3
shows the various constraints as a function of the axion mass (lower x-axis) or,
equivalently, the axion decay constant (upper x-axis). For each observable, we
compute the limit on the CP -odd Wilson coefficient, which we translate into a

limit on faΛ
2 (shown on the right y-axis) and the corresponding value of g

(0)
S

(depicted on the left y-axis). Showing g
(0)
S is a somewhat arbitrary choice, as

different experiments are in principle sensitive to different combinations of g
(0,1)
S .

However, once we assume a single Wilson coefficient, plotting g
(1)
S instead would

result in a rescaling of the (left) y-axis. The purple lines arise from searches
for WEP violation, while the red lines are from tests of the inverse-square law.
The constraints are most stringent for axion masses below 10−13 eV, reaching

a sensitivity of g
(0)
S ≲ 10−24 which stems from the MICROSCOPE experiment.

The limits are weaker for larger axion masses and disappear for ma > 1 eV.
At the same time, the presence of a quark chromo-EDM can be looked for in

EDM experiments. A down quark chromo-EDM induces the CP -odd pion-nucleon
coupling ḡ1 (among other CP -odd hadronic interactions), which leads to EDMs
of nucleons and nuclei. In particular the limit on the EDM of the 199Hg atom



4.7. Applications 103

sets a strong limit on ḡ1 and thus Ld5 ∼ Λ−2. This limit can be converted into

an indirect constraint on g
(0)
S using Eq. (4.72). The corresponding constraints are

depicted by dotted lines in Fig. 4.3. We observe that the indirect limits are at
least several orders of magnitude stronger than the direct limits from fifth-force
experiments, depending on ma, in line with the conclusions of Ref. [198]. We also
depict the constraint from a prospected 225Ra EDM measurement at the level of
10−28 e cm [243]. This atom is particularly sensitive to ḡ1 due to the octopole
deformation of its nucleus. It would improve upon the current 199Hg limit by
one-to-two orders of magnitude at the projected sensitivity.

Perhaps a more promising way to detect CP -violating axion interactions than
the current fifth-force measurements are monopole-dipole searches. Under the
reasonable assumption that axions also have a CP -even axion-nucleon interaction
of typical size, the proposed ARIADNE experiment could come very close to the
EDM sensitivity for axions in the 10−5 - 10−1 eV mass range. The envisioned
upgrade could even overtake the EDM limits in the same mass window. However,
the CKM-induced CP -odd axion-nucleon couplings would still be too small by
many orders of magnitude to be detected.

Finally, in Fig. 4.4, we show the same information slightly differently by putting
the BSM scale Λ on the vertical axis. We observe that EDM limits reach scales of
102 to 103 TeV (note that this relies on the assumption Ld5 = md

Λ2 , while the quark
chromo-EDMs are induced at one-loop order in many explicit BSM models), while
fifth-force experiments only reach 10 TeV. The upgraded ARIADNE set-up could
compete with EDM experiments in reaching a scale of around 103 TeV.

4.7.2 A leptoquark extension

Leptoquarks are hypothetical bosons that transform quarks into leptons and vice
versa. They have become a popular model of BSM physics in light of various
signals of lepton-flavor-universality violation, see e.g. [22, 23]. Leptoquarks gen-
erally have CP -violating interactions proportional to new, unconstrained phases.
Unless these phases are chosen to be very small by hand, leptoquarks induce
large radiative corrections to the QCD theta term and EDMs [238]. To illus-
trate this, we consider a simple scenario involving one scalar leptoquark. We
pick the S1 leptoquark that transforms as (3̄, 1, 1/3) under the SM gauge sym-
metries, SU(3)c × SU(2)× U(1)Y . These quantum numbers lead to four allowed
dimension-four Yukawa-like interactions

L(S1)
Y = Sγ1

[
Q̄c,Iγ yLLϵIJL

J + ūcR γyRReR − ϵαβγQ̄Iαz
†
LLϵIJQ

c,J
β + ϵαβγ d̄Rαz

†
RRu

c
R β

]

+ h.c. . (4.75)

Here α, β, γ are SU(3)c indices, yLL,RR and zRR are generic 3×3 matrices in flavor
space, while zLL is a symmetric 3× 3 matrix. Q = (uL , dL)

T and L = (νL , eL)
T

denote the left-handed quark and lepton doublets in the weak eigenstate basis.
We pick a basis in which the up-type quark and charged-lepton mass matrices are
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diagonal so that the translation from weak to mass basis is given by dweak
L = V dL,

where V is the CKM matrix. In principle, the interactions of S1 lead to baryon-
number-violating interactions, which can be avoided if either yLL = yRR = 0 or
zLL = zRR = 0. These two cases lead to rather different conclusions regarding
which EDM experiments are relevant and the type of axion interactions that are
induced; we, therefore, consider both cases separately.

In the absence of an IR solution to the strong CP problem, the above LQ
interactions can generate dangerously large contributions to θ̄. Similar to the R2

leptoquark [293], the S1 interactions induce the following threshold correction at
the scale µ = mS1

(in the MS scheme)

δθ̄ ≃ 1

(4π)2

(
ln

(
m2
S1

µ2

)
− 1

)
ImTr

[
Y −1
u y∗LLY

∗
e y

T
RR

+4z†LL

((
Y Tu
)−1

zRRY
†
d + Y ∗

u zRRY
−1
d

)]
+ . . . , (4.76)

where the SM Yukawa couplings are defined through −LY = Q̄YuH̃u+ Q̄YdHd+
L̄YeHe+h.c. Furthermore, the ellipses are terms requiring two insertions of the
SM Yukawa couplings. Any high-energy scale does not suppress the correction to
θ̄. Thus, even when θ̄ = 0 at the high scale, significant tuning of the LQ couplings
is needed to ensure it remains small at low energies unless an IR solution of the
strong CP problem, such as a PQ mechanism, is implemented. Therefore, we
consider the above LQ interactions supplemented by a PQ mechanism.

Integrating out the leptoquarks at the tree-level leads to the following SMEFT
operators

Lψ4 = C
(1) abcd
lequ (L̄IaeRb

)ϵIJ(Q̄
J
c uRd

) + C
(3) abcd
lequ (L̄Iaσ

µνeRb
)ϵIJ (Q̄

J
c σµνuRd

)

+ C
(1) abcd
quqd (Q̄IauRb

)ϵIJ(Q̄
J
c dRd

) + C
(8) abcd
quqd (Q̄IaT

AuRb
)ϵIJ(Q̄

J
c T

AdRd
) + h.c. ,

(4.77)

with Wilson coefficients evaluated at the leptoquark threshold

C
(1) abcd
lequ (mS1

) = −4C
(3) abcd
lequ (mS1

) =
1

2

(y∗LL)
ca

(yRR)
db

m2
S1

,

C
(1) abcd
quqd (mS1

) = −1

3
C

(8) abcd
quqd (mS1

) = −2

3

(z∗LL)ac (zRR)bd
m2
S1

. (4.78)

The running of the induced SMEFT operators, as well as the subsequent match-
ing onto the LEFT, is known as one-loop order [111–113, 211, 212], however, as
we mainly aim to illustrate the connection between EDMs and probes of axion
couplings, we neglect these effects in what follows. Since the same dimension-six
operators generate CP -odd effects with and without axions, their renormalization
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does not impact the comparison between the two types of experiments. However,
the extraction of the bound on the BSM scale, Λ ∼ mS1 , can be affected by O(1)
factors.

After electroweak symmetry breaking, these SMEFT coefficients generate the
following LEFT interactions at tree level 9

LS,RReu
prst

= −C(1)
lequ
prst

, LS,RRνedu
prst

= C
(1)
lequ
prvt

V ∗
vs , LT,RReu

prst
= −C(3)

lequ
prst

, LT,RRνedu
prst

= C
(3)
lequ
prvt

V ∗
vs ,

LS1,RRud
prst

= −LS1,RRuddu
prst

= C
(1)
quqd
prvt

V ∗
vs , LS8,RRud

prst
= −LS8,RRuddu

prst
= C

(8)
quqd
prvt

V ∗
vs . (4.79)

Setting Vud ≃ 1, these matching conditions then imply that L2211
3×3

= 1
2C

(1)
quqd
1111

while

L2211
6×6

= 0 and similar for couplings with C
(1)
quqd → C

(8)
quqd and Li → L̄i.

Semi-leptonic CP -violation. We begin by setting zLL = zRR = 0 such that
only semi-leptonic operators are induced. For simplicity we consider couplings to
first-generation fermions and set a = b = c = d = 1 in Eq. (4.78) resulting in
CP -odd interactions between electrons and first-generation quarks. In particular,
we obtain

C
(0)
S = −v2H

σπN
mu +md

ImLS,RReu
eeuu

, C
(1)
S = −v

2
H

2

δmN

md −mu
ImLS,RReu

eeuu
, (4.80)

which contribute to CP -odd effects in ThO through Eq. (4.42). Here C
(1)
S plays a

marginal role and can be neglected for the present discussion. At the same time,
the PQ mechanism leads to CP -odd axion-electron interactions. From Eq. (4.20)
we read off

g
(e)
S =

m∗
2fa

m2
πF

2
π

mu +md

1

mu
ImLS,RReu

eeuu
, (4.81)

so that the ratio of these CP -odd interactions depends only on fa (and thus the
axion mass) and known QCD matrix elements

C
(0)
S

g
(e)
S

= −2

(
fa
Fπ

)
σπNv

2
H

m2
πFπ

mu +md

md
, (4.82)

in the limit mu,d/ms → 0.
We compare the resulting constraints from EDM experiments and fifth-force

searches in the g
(e)
S versus ma plane in the top panel of Fig. 4.5. Fifth-force ex-

periments constrain g
(e)
S ≲ 10−24 for axion masses below 10−13 eV. The indirect

constraints from EDM experiments are many orders of magnitude more stringent
over the entire axion mass range. This gap is larger than was the case for the

9Here we moved to the mass basis of the quarks and charged leptons but left the neutrinos
in the flavor eigenstates as they (and their masses) will not play a role in our analysis.
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Figure 4.5: Constraints on the axion-electron and isoscalar axion-nucleon coupling
in the leptoquark scenario discussed in Section 4.7.2. The top panel depicts the case
in which semi-leptonic operators are induced by yLL,RR ̸= 0 while we set zLL,RR =
0. The bottom panel shows the inverted scenario with yLL,RR = 0 and zLL,RR ̸= 0,
which leads to hadronic four-quark interactions. To obtain the mass scale, mS1 , on
right vertical axes we set the coupling constants to one, Im (y∗LL)

11 y11RR = 1 and
Im (z∗LL)

11 z11RR = 1, for the upper and lower panels, respectively. The CP -even
axial axion-fermion couplings are chosen as in the DFSZ model with tanβ = 1. For
an explanation of the various lines, we refer to the caption of Fig. 4.3.
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purely hadronic chromo-EDM operator because of the extremely tight limit from
the ACME ThO experiment (Hg is slightly less constraining). The envisioned
sensitivity of the ARIADNE experiment is no longer competitive with the EDM

experiments in this case. Note that the SM contribution to g
(e)
S is also harder to

observe than the SM value of g
(0)
S , as can be seen from the fact that our estimate

in Eq. (4.21) is too small to appear in Fig. 4.5.

Hadronic CP -violation. We now set yLL = yRR = 0 and focus on the resulting
CP -odd four-quark interactions. In this case, we obtain CP -odd pion-nucleon
couplings

ḡ0 = −FπA3×3

4B

∂δmN

∂(m̄ϵ)
Im
(
C

(1)
quqd

)
, ḡ1 = ḡ2 = 0 , (4.83)

and axion-nucleon interactions

g
(0)
S =

1

2

m∗
fa

mu +md

mumd
Im
(
C

(1)
quqd

)[1
2

F 2
πA3×3

B

∂

∂m̄
+

∂

∂ReL2211
3×3

]
∆mN ,

g
(1)
S =

m∗
8fa

md −mu

mumd
Im
(
C

(1)
quqd

) F 2
πA3×3

B

∂δmN

∂(m̄ϵ)
, (4.84)

with similar contributions from color-octet operators, C
(1)
quqd → C

(8)
quqd, Li → L̄i,

A3×3 → Ā3×3.
The ratios of these CP -odd interactions depend on the QCD matrix element

∂∆mN/∂ReL
2211
3×3

which is not known. For our analysis, we consider the indirect
pieces only for which we do control the matrix elements. Under this assumption,
we obtain

ḡ0

g
(0)
S

= −1

2

fa
Fπ

mumd

m∗(mu +md)

∂δmN

∂(m̄ϵ)

(
∂∆mN

∂m̄

)−1

≃ −1

2

fa
Fπ

∂δmN

∂(m̄ϵ)

(
∂∆mN

∂m̄

)−1

+O
(
mu,d

ms

)
,

ḡ0

g
(1)
S

= −2
fa
Fπ

mumd

m∗(md −mu)
≃ −2

fa
Fπ

mu +md

md −mu
+O

(
mu,d

ms

)
, (4.85)

where the first ratio could be affected by O(1) factors due to unknown direct
contribution.

In the bottom panel of Fig. 4.5 we compare limits from fifth-force experiments,

EDM searches, and monopole-dipole experiments in the g
(0)
S − ma plane. Here

the mass scale on the right vertical axis is obtained by setting Im (z∗LL)
11
z11RR = 1

and using the color-singlet contributions as an estimate of the complete effect,
with A3×3 = Λ2

χ, see Appendix C.1. As in Fig. 4.3, EDM experiments are more
stringent than fifth-force searches. In this case, the projected 225Ra measurement
provides a smaller improvement on the 199Hg limit than was the case for the
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down-quark CEDM. This is because the generated four-quark operator, L2211
3×3

,
only induces ḡ0 instead of ḡ1, which comes with a smaller LEC (proportional
to ∼ δmN compared to ∼ σπN ). We again find that an upgraded version of
ARIADNE could overtake the EDM limits in a small window of axion masses.

4.7.3 Left-right symmetric models

Left–right symmetric models are based on an extended gauge symmetry SU(3)c×
SU(2)L × SU(2)R × U(1)B−L [17,18,190]. Minimal versions contain an enlarged
scalar sector with one scalar bidoublet and two triplets whose vevs spontaneously
break the extended gauge symmetry. Variants of the model with generalized
parity forbid a QCD theta term at high scales where the discrete symmetry is
exact. While this naively solves the strong CP problem, dangerous contributions
to θ̄ are induced once the vevs spontaneously break the parity of the scalars. The
leading correction arises from the phases in the quark mass matrices, which we
can calculate explicitly [191]

θ̄ ∼ ArgDet (MuMd) ∼
mt

mb

ξ

1− ξ2
sinα , (4.86)

where α is a phase related to CP -violation in the scalar sector, and ξ is related
to the ratio of vacuum expectation values. This implies there is still a strong CP
problem in the model: why θ̄ is much smaller than the naive O(1) expectation is
then essentially translated to the question of why α≪ 1 in the mLRSM.

If one extends the mLRSM with a PQ mechanism, the above contribution to

θ̄ is relaxed to 0, but other contributions to ⟨θa⟩ = θ̄ + ⟨a⟩
fa

arise from CP -odd
higher-dimensional operators that appear in the left-right model. In particular,
integrating out the right-handed W boson leads to a dimension-six SMEFT op-
erator [142]

L6,mLRSM = CijHudiφ̃
†Dµφ ū

i
Rγ

µdjR + h.c. , (4.87)

where

CijHud =
g2R
m2
WR

ξeiα

1 + ξ2
VR, ij , (4.88)

in terms of the SU(2)R gauge coupling, gR = g, and the mass of the right-
handed gauge boson mWR

. The matrix VR is the right-handed version of the
CKM matrix, and under a generalized parity symmetry we have VR = V in the
limit ξ sinα→ 0 [296]. For more details, we refer to Ref. [295].

Again neglecting renormalization-group effects, we match to the LEFT opera-
tors below the electroweak scale

LV,LRνedu
prst

= −δpr
(
CtsHud

)∗
, LV 1,LR

uddu
prst

= −Vpr
(
CtsHud

)∗
, LV 8,LR

uddu
prst

= 0 . (4.89)
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Figure 4.6: Constraints on the isoscalar axion-nucleon coupling in the left-right
model discussed in Section 4.7.3. The CP -even axial axion-fermion couplings are
chosen as in the DFSZ model with tanβ = 1. To obtain the mass scale, mWR

, on
the right vertical axis, we assumed ξ sinα

1+ξ2
= mb/mt sinα (see Refs. [294, 295]) and

pick sinα = 1. The labeling of the lines is explained in the caption of Fig. 4.3.

Focussing on the couplings to the first generation, we have L1221
8×8

= −Vud
(
CudHud

)∗
and we read off the CP -odd pion-nucleon and axion-nucleon interactions

g
(0)
S =

m∗
fa

md −mu

mumd
ImL1221

8×8

[
∂

∂ReL1221
8×8

+
1

2

F 2
πA8×8

2B

∂

∂m̄

]
∆mN ,

g
(1)
S =

m∗
fa

md +mu

mumd
ImL1221

8×8

F 2
πA8×8

8B

∂δmN

∂(m̄ϵ)
. (4.90)

The CP -odd pion-nucleon couplings are

ḡ0 = ḡ2 = 0 , ḡ1 = − 2

Fπ
ImL1221

8×8

[
∂

∂ReL1221
8×8

+
1

2

F 2
πA8×8

2B

∂

∂m̄

]
∆mN . (4.91)

While the matrix element ∂∆mN/∂ReL
1221
8×8

is not known, it drops out in the
ratio of the isovector CP -odd pion-nucleon coupling to the isoscalar axion-nucleon
coupling

ḡ1

g
(0)
S

= −2
fa
Fπ

mumd

(md −mu)m∗
, (4.92)
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Figure 4.7: Limits on the mass of right-handed gauge bosons from various experi-
ments discussed in Section 4.7. The labeling of the lines is explained in the caption
of Fig. 4.3.

while the less relevant ratio ḡ1/g
(s)
S depends on the unknown matrix element. If

we consider only the indirect pieces, we get a rough estimate

g
(0)
S ≃ 0.11GeV2 Fπ

fa
ImL1221

8×8
, ḡ1 ≃ −0.62GeV2 ImL1221

8×8
, (4.93)

which we use to generate the lines in Fig. 4.6. In Fig. 4.7 we show the same
information but now interpreted in terms of a limit on the mass of the right-
handed gauge bosonsMWR

. EDM experiments set stringent limits on the CP -odd
axion-nucleon coupling and on the mass of right-handed gauge bosons of around
MWR

> 100 TeV for reasonable choices of ξ and sinα. The neutron EDM limit
was recently discussed in a similar LR scenario [201], with which we find general
agreement. In addition, we observe that the Hg EDM sets an even more stringent
constraint that can only be overtaken by the upgraded set-up of ARIADNE in
a small window of axion masses around 10−4 eV. Note that the projected 225Ra
EDM measurement would provide a significant improvement on the current 199Hg
limits, as the generated four-quark operator, L1221

8×8
, contributes to ḡ1 in contrast

to L2211
3×3

discussed in the previous section.
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4.8 Conclusions

Axions provide a compelling solution to the strong CP problem that has led to
a tremendous amount of theoretical and experimental effort toward their first
detection. In the presence of CP -violating sources beyond the QCD θ̄-term, the
axion develops interactions with SM fields that violate CP symmetry. Within
the Standard Model, the CKM phase leads to small CP -odd axion-lepton and
axion-hadron interactions that seem impossible to detect with foreseeable tech-
nology. However, in the presence of BSM sources of CP -violation, motivated, for
instance, by the matter-antimatter asymmetry, CP -odd axion interactions can be
much larger. Moreover, if such BSM sources emerge at energies well above the
electroweak scale, they can be captured by local effective operators. In this part
of the thesis, we have systematically studied the form and size of CP -violating
axion interactions induced by CP -violating dimension-six interactions. We list
here the main results of our analysis:

• We have implemented a Peccei-Quinn mechanism in the presence of a general
set of CP -violating EFT operators built from elementary Standard Model
fields. The CP -odd interactions involving quarks and gluons shift the min-
imum of the axion potential away from that of the pure QCD-axion case,
leaving a remnant of CP -violation behind. In addition, hadronic CP -odd
operators can cause a misalignment of the vacuum, allowing for meson-
vacuum transitions. We determined the chiral rotations that are needed
in order to align the vacuum in Section 4.2.2, with explicit expressions in
Appendix C.5. The main consequence is that electric dipole moments and
other CP -violating observables can be larger than the predictions from the
CKM phase of the Standard Model and that axions can obtain CP -odd
Lorentz-scalar interactions with nucleons and leptons in addition to the
usual (derivative) axial-vector couplings.

• We have used chiral perturbation theory to derive CP -violating axion-lepton,
axion-meson, and axion-baryon interactions, for dimension-five and -six
CP -violating operators involving light quarks and gluons in LEFT. The
axion-lepton interactions arise from CP -violating lepton-quark interactions
that, for example, appear in leptoquark models. Because of spontaneous
chiral symmetry breaking and the appearance of a nonzero quark conden-
sate, these interactions allow the axion to couple to leptons. Hadronic CP -
violation leads to couplings between axions and two pseudoscalar Goldstone
bosons without derivatives. Axion couplings to pions lead to corrections to
axion-nucleus interactions through loop diagrams and two-nucleon currents.
Flavor-changing axion-meson-meson couplings can lead to rare decays such
as K → π + a.

The most important hadronic interactions, however, are axion-nucleon cou-
plings. We determined which low-energy constants, or QCD matrix ele-
ments, are required to calculate the coupling strengths. These axion-nucleon
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couplings generally obtain indirect contributions from purely mesonic ma-
trix elements after vacuum alignment. Most of these matrix elements are
relatively well known, for instance, from lattice-QCD calculations for neu-
trinoless double beta decay [297] or the bag factors that enter B − B̄ oscil-
lations [298]. In addition, there are direct contributions in the same order
involving baryonic matrix elements, about which much less is known. An
advantage is that the same matrix elements appear in EDMs’ study, which
has led to large-scale efforts to determine them from lattice-QCD calcula-
tions; see Ref. [299] for a recent review.

• The CP -odd LEFT operators not only induce CP -odd couplings of the ax-
ion, but they also generate CP -violating nucleon-lepton and nucleon-pion
couplings. Moreover, we show that these CP -odd couplings depend on the
same QCD matrix elements that enter the expressions for the axion-lepton
and axion-nucleon interactions. As a result, a clear relationship exists be-
tween the CP -odd couplings with and without axions.

• We have collected direct and indirect constraints on CP -odd axion-nucleon
and axion-electron couplings from a broad range of experiments. Searches
set the direct constraints for fifth-forces that are proportional to the prod-
uct of two CP -odd couplings and by astrophysical processes. Indirect con-
straints arise from the product of a CP -even and CP -odd coupling. This
leads to some model dependence as the CP -even couplings depend on the UV
implementation of the Peccei-Quinn mechanism. Indirect constraints also
arise from experiments probing beyond-the-Standard-Model CP -violation,
in particular, electric dipole moment searches.

For a given source of CP -violation and a given axion mass, a direct con-
nection exists between CP -odd axion-nucleon and axion-electron couplings
and electric dipole moments of nucleons, atoms, and molecules. In general,
we find that EDMs set the most stringent constraints, but the prospects for
the ARIADNE experiment are sufficiently strong to overtake EDM limits in
a window of axion masses (10−5-10−1 eV). This implies that if ARIADNE
measures a nonzero signal, it will point to a specific range of axion masses.
Similarly, if future fifth-force experiments find evidence for axions, it will
point to a rather non-generic beyond-the-Standard-Model scenario. One op-
tion is that the dimension-six operators arose in a very specific combination,
such that their contributions to EDMs are negligible while still generating
sizable CP -odd axion couplings. The second possibility would be that the
effective-field-theory framework set-up in this part of the thesis does not
apply, implying the existence of additional light degrees of freedom.

4.9 Outlook

The framework we have constructed can be further developed in several directions.
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• First of all, we have only computed the leading-order axion-nucleus inter-
actions. In principle, the chiral Lagrangian leads to a richer structure at
higher orders where, in addition to axion-nucleon effects, there also appear
axion-nucleon-nucleon interactions (see Fig. 4.2). The power counting for
nuclear currents is not fully understood as demonstrated in Chapter 3, and
it would be interesting to study such contributions further, in analogy to
similar studies for WIMP-nucleus scattering [100,253,254].

• Another direction would involve the study of EFT interactions with heavier
leptons. We have focused on axion-electron couplings, probed by fifth-force
searches and for which strong indirect constraints exist from EDM experi-
ments. By turning on effective interactions between quarks and muons (mo-
tivated, for instance, by the muon g − 2 discrepancy), CP -odd axion-muon
interactions can appear which are not as stringently constrained directly
and for which no indirect EDM constraints exist. Such axion-muon interac-
tions can potentially be constrained by supernovae cooling rates in analogy
to the analysis in Ref. [300] for CP -even axial vector couplings.

• This part of the thesis has mainly focused on flavor-conserving CP -violating
LEFT operators involving light quarks and electrons. While we have briefly
discussed more general couplings, for example the CP -odd ∆S = 1 couplings
that lead to K → π+ a transitions or lepton-flavor-violating operators that
could lead to µ+N → e+N , a more thorough analysis of such interactions
would be very interesting. We have also not discussed operators involving
bottom or charm quarks or SMEFT operators containing electroweak gauge
and Higgs bosons, or top quarks, that are integrated out at the level of our
LEFT analysis. It might be that CP -odd axion couplings to heavier fields
could lead to interesting phenomenology at higher energies not discussed in
this part of the thesis. Of course, the CP -odd operators are still stringently
constrained by low-energy experiments such as EDMs or probes of lepton
number violation. It remains to be seen how much room there is for axionic
couplings.

• If axions form our Universe’s dark matter, this will lead to additional tests.
A popular axionic DM model is where axion acts like a coherently oscillating
scalar field

a(t) = a0 cos(mat) , (4.94)

where a0 =
√
2ρDM/ma is the amplitude of axion oscillation, ρDM is the local

DM density, and the frequency is given by the axion mass ma. This axion
DM creates a time oscillation of fundamental parameters. For example, by
Eq. (4.20) we get time varying electron mass

L = −meēe+ g
(e)
S a(t)ē = −m̃e(t)ēe , (4.95)



114 Chapter 4. CP -violating axion interactions in effective field theory

where

m̃e(t) = me

(
1− g

(e)
S

√
ρDM

mame
cosmat

)
. (4.96)

Similarly, we get the time-varying nucleon masses m̃p(t), m̃n(t). The axion

interaction to the electromagnetic tensor L = − ḡaγa(t)
4 FµνFµν leads to time-

varying fine-structure constant αem(t). We are currently exploring whether
these time-varying quantities lead to some resonance effects, which can be
searched through atomic experiments. We are investigating whether these
experiments provide competent constraints as the various experiments dis-
cussed in Sections 4.4, 4.5, and 4.6. The proposed atomic clock experiments
exploit the DM axion-induced time oscillation of fine-structure constant to
constrain the CP -violating axion couplings [301].

The a(t)FF ∼ a(t)(B·B−E·E) interaction can lead to a coherently oscillat-
ing electric (magnetic) field for a static electric (magnetic) field background
in ion trap experiments. This could result in a time-dependent potential for
ions in a radiofrequecy trap. Furthermore, the micromotion induced by such
potential could heat the ions by ion-atom collissions [302]. This could be a
novel addition to axion searches. We are currently exploring the possibility
of using ion traps and atomic clocks for setting constraints on CP -violating
axion interactions.
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“Dark Matter scattering off 4He through scalar interactions”
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5.1 Introduction

There is an abundance of astrophysical and cosmological evidence for the existence
of dark matter (DM) [9]. However, we have not yet observed any conclusive DM
signal from any of the direct detection, indirect detection, or collider experiments
(see Section 1.7). In the previous chapter, we explored axion as a possible DM
candidate. In this part of the thesis, we consider the other famous class of DM
candidates: weakly interacting massive particles (WIMPs). If the puzzle of DM
has a particle solution, it must correspond to a massive, (semi-)stable particle
that is not charged under QCD or quantum electrodynamics (technically it could
be a milli-charged particle but we do not consider that there). While DM has
to interact gravitationally we can only hope to detect it if it has some other
interactions as well. In this chapter, we consider a specific well-motivated set of
interactions and focus on DM direct detection using light nuclei.

Next-generation direct detection experiments aim to probe uncharted param-
eter space for a wide range of DM masses well beyond the ‘traditional’ WIMP
regime of GeV-to-TeV DM masses. To interpret these direct detection searches
in terms of the underlying DM models and to connect to cosmological aspects
of DM, such as the relic density, it is essential to have well-controlled theoret-
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ical predictions for WIMP cross-sections off atomic nuclei. These predictions
are complicated due to widely separated energy scales associated with particle,
hadronic, and nuclear processes. The last decade has seen the development of
effective field theory (EFT) approaches to overcome this difficulty. For example,
by assuming that DM fields are singlets under the Standard Model (SM) gauge
symmetries, the DM interactions with SM fields can be captured by a series of
effective operators which are dominated by the operators of the lowest dimension.
After renormalization-group evolution to lower energies, these interactions can be
matched to effective interactions between DM and hadrons and nuclei, which, in
turn, can be used to compute DM-nucleus scattering rates.

The nuclear physics aspects of DM direct detection have also been discussed
in different EFT frameworks [253, 303–307]. Ref. [304] described an EFT for
DM-nucleon interactions by constructing all interactions up to a given order in
momentum transfer. We take an approach that is grounded in QCD and includes
the consequences of spontaneous chiral symmetry breaking. Assuming a given set
of DM-SM interactions, the chiral-EFT approach allows for a systematic construc-
tion of DM-hadron interactions with a well-defined power counting. In chiral EFT,
DM-nucleus scattering does not depend purely on DM-nucleon interactions but
also from two- and more-nucleon currents that, for example, arise from DM-pion
interactions [253, 305, 307, 308]. We will focus on scalar-mediated DM-SM inter-
actions for several reasons. First of all, they appear in well-motivated scenarios
such as Higgs portal DM [309]. Second, scalar current leads to spin-independent
scattering rates that grow with A2 where A is the atomic mass number of the
target atoms. Third, for scalar currents, two-nucleon currents appear at the next-
to-leading-order (NLO) in Weinberg’s power counting. This last point is very
interesting, NLO would imply O(30%) corrections, and if they can be experimen-
tally isolated, it might be possible to determine the type of DM-SM interactions
(for instance, vector-mediated interactions also lead to spin-independent scat-
tering rates but have much smaller two-body currents). Unfortunately, explicit
computations of the two-body corrections are found to be inconclusive. While
shell-model computations for 132Xe found O(20%) corrections [310], of the ex-
pected size, calculations on lighter nuclei found smaller effects [311].

More problematic is the observation that the two-body corrections in DM scat-
tering off the deuteron, 3H, and 3He, strongly depend on the details of the applied
wave function and thus on the applied nucleon-nucleon potential used to generate
the wave functions [100]. Similar conclusions were drawn in Ref. [312], which ap-
plied phenomenological wave functions of various light nuclei and observed a large
dependence on the applied regulator used in intermediate steps of the numerical
calculations. These results are worrisome as they indicate a potential problem
in the chiral EFT power counting and jeopardize the interpretation of large-
scale WIMP-nucleus cross-section predictions. In Chapter 3, we have verified
the failure Weinberg’s power counting rule for CP -violating nuclear forces. Sim-
ilar power-counting problems were recently identified in other nuclear probes of
beyond-the-Standard Model physics, such as neutrinoless double beta decay [147]
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and indicate the presence of additional short-range two-nucleon currents [179]. In
this part of the thesis, we extend the calculations of Ref. [100] to scattering off
4He nuclei in order to test the power counting.

We select 4He because of two reasons. First of all, WIMP searches [313], see
e.g. [314], have been proposed using a liquid 4He detector [102]. The main moti-
vation to use relatively light target nuclei is to get sensitivity to lighter WIMPs
to which more conventional experiments, for instance, those involving Xe nuclei,
have less sensitivity. Second, compared to A = 2 and A = 3 nuclei, the binding
energy per nucleon is much larger and comparable to heavier isotopes. We are
particularly interested in determining whether the conclusions of [100] regard-
ing two-nucleon currents are related to specific spin-isospin properties and/or the
diluteness of the deuteron, 3H, and 3He nuclei.

This chapter is organized as follows. In Section 5.2, we explain the compu-
tational framework in detail. This includes the chiral Lagrangian, scattering
diagrams, LO and NLO DM currents, and the scattering cross sections. In Sec-
tion 5.3, we outline the procedure we used to calculate the cross-section and briefly
discuss the density matrix formalism. We present our results in Section 5.4 and
conclude in Section 5.5.

5.2 Computational framework

We perform first-principle computations of DM scattering off 4He isotopes. We
apply chiral EFT to both generate the 4He wave functions as well as the DM
currents and systematically compute the resulting DM-4He scattering rate. The
scalar DM-SM interactions are given by

Lχ = χ̄χ
(
cumu ūu+ cdmd d̄d+ csms s̄s+ cG αsG

A
µνG

µν A
)
, (5.1)

where χ denotes a spin-1/2 DM fermion (for other DM spins, the computations
are almost identical). u, d, and s denote, respectively, quark fields with quark
masses mu,d,s, and GAµν is the gluon field strength. We factored out one power
of αs = g2s/(4π). cu,d,s,G describe four unknown coupling constants of mass
dimension (−3) that parametrize the couplings strengths of DM with quarks and
gluons. They can be computed in specific DMmodels, for example, in Higgs portal
models [309]. We consider the Lagrangian in Eq. (5.1) to be valid at relatively
low energies (µ = 1 GeV) where we match to hadronic DM interactions. Other
interactions beyond those in Eq. (5.1) are certainly possible but tend to lead to
suppressed two-body currents. See, for instance [307] for recent first-principle
computations for spin-dependent cross sections. In what follows, we focus on
the couplings to up and down quarks as only these lead to sizeable two-nucleon
currents. For a discussion of the strange quark and gluonic interaction we refer
to Ref. [100]. Since these interactions are dominated by one-body currents, they
do not involve additional nuclear calculations from those performed here.
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5.2.1 Chiral Lagrangian

By application of chiral perturbation theory, the interactions in Eq. (5.1) can be
matched to interactions between DM and nucleons, pions, and heavier hadrons.
We will use the SU(2) χPT framework for simplicity. The relevant Lagrangian is

L =
F 2
π

4
Tr[U †χ+ Uχ†] + c1Tr(χ+)N̄N + c5N̄ χ̂+N , (5.2)

where 1

U = u2 = exp

(
iπ⃗ · τ⃗
Fπ

)
, χ = 2B(M0 + s) , (5.3)

M0 =

(
mu 0
0 md

)
, χ+ = u†χu† + uχ†u . (5.4)

with χ̂+ = χ − 1
2Trχ. The DM interactions enter as the scalar current s =

Diag(cumuχ̄χ, cdmdχ̄χ) and the pion triplet and Pauli matrices are denoted by
π⃗ and τ⃗ , respectively. c1,5 ∼ O(1/Λχ) are the LECs associated with the nucleon
sigma term and the strong proton-neutron mass splitting.

The relevant DM-pion interactions from Eq. (5.2) are

Lπ =
m2
π

2
c̄q(is) π⃗ · π⃗ χ̄χ . cπq =

m2
π

4
[cu(1− ε) + cd(1− ε)] ≡ m2

π

2
c̄q(is) . (5.5)

Effective isoscalar DM coupling is defined as

c̄q(is) =
1

2
[cu(1− ε) + cd(1− ε)] , (5.6)

with ε = (md − mu)/(md + mu) = 0.36 ± 0.03 [53]. The relevant DM-nucleon
interactions are

LN = −4m2
πc1c̄q(is)N̄Nχ̄χ+B(md −mu)c5c̄q(iv) , (5.7)

where we defined the effective isovector DM coupling as

c̄q(iv) = cu(1− ε−1) + cd(1 + ε−1) . (5.8)

5.2.2 Power counting

The diagrams contributing to the DM-nucleon scattering are given in Fig. 5.1. The
diagram 5.1a depicts the DM-nucleon contribution to the scattering, and diagrams
5.1b and 5.1c depict the DM-pion contributions to the scattering via one-nucleon
and two-nucleon interactions, respectively. We use the χPT power counting rules,
see Section 2.3.4, to determine the relative relevance of the DM-nucleon scattering
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(a) (b) (c)

Figure 5.1: Diagrams contribution to DM-nucleus scattering. Solid lines corre-
spond to nucleons, dashed lines to pions, and double-solid lines to DM.

diagrams in Fig. 5.1. Since we do not know the relative size of the scalar DM
couplings, we treat the isoscalar and isovector interactions separately.

The power counting of diagram 5.1a gives

Aa ∼ m2
πc1c̄q(is) ∼ c̄q(is)

m2
π

Λχ
. (5.9)

Here we are including the overall normalization common to all diagrams. This
diagram defines the LO contributions for DM scattering.

In comparison with the LO diagram, diagram 5.1b has an additional irreducible
loop, one nucleon propagator, two pion propagators, and two pion-nucleon ver-
tices. Thereby, the power counting gives

Ab ∼ m2
π c̄q(is) ·

p4

(4π)2
· 1
p
·
(
1

p

)2

·
(
gAp

Fπ

)2

∼ c̄q(is)
m2
π

Λχ
× p

Λχ
, (5.10)

where we used 4πFπ = Λχ and gA ∼ 1. This diagram contributes at the NLO
since it has an additional factor of p/Λχ with respect to the LO diagram.

Once we compare the diagram 5.1c to the LO diagram, the former has an
additional reducible loop, a nucleon propagator, two pion propagators, and two
pion-nucleon vertices in comparison to the latter. The power counting rules gives

Ac ∼ m2
π c̄q(is) ·

p5

mN (4π)2
· mN

p2
·
(
1

p

)2

·
(
gAp

Fπ

)2

∼ c̄q(is)
m2
π

Λχ
× p

Λχ
. (5.11)

Thereby, this diagram also contributes at the NLO.
Now we repeat the process for isovector interactions. Diagram 5.1a scales as

∼ c̄q(iv)(εm
2
π/Λχ) and contributes at LO. Naively, it seems that the isovector

LO diagram is suppressed by a factor of ε relative to the isoscalar LO diagram.
However, since we do not know the relative size of c̄q(is) and c̄q(iv) , we can not make
any such conclusions. Since there are no isospin-breaking DM-pion interactions
in Eq. (5.5), the diagrams 5.1b and 5.1c do not contribute at NLO.

1χ is used to denote both DM and the chiral field. Since DM always appears as χ̄χ it is easy
to distinguish it from the chiral field.
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5.2.3 LO and NLO DM currents

The leading-order (LO) currents involve a single nucleon and are conveniently
written as

J (one−body)(q) =

[
σπN − 9g2Aπm

3
π

4(4πFπ)2
F

( |q|
2mπ

)]
c̄q(is) −

δmN

4
c̄q(iv) τ

3
i , (5.12)

where qi = p′
i − pi is the difference between the outgoing and incoming momen-

tum of nucleon i, and σi (τi) the spin (isospin) of nucleon i. The loop function
associated to diagram 5.1b is

F (x) =
−x+ (1 + 2x2) arctanx

3x
. (5.13)

The various low-energy constants are given by [155]

σπN = (59.1± 3.5)MeV , δmN = (2.32± 0.17)MeV , (5.14)

where we used a Roy-Steiner extraction of the pion nucleon sigma term [225].
Lattice QCD tends to predict somewhat smaller values but might be plagued by
excited-state contamination [315,316]. dequation

In addition, diagram 5.1c induces a two-body current given by

J two−body(q) = −m2
π

(
gA
2fπ

)2
(σ1 · q1)(σ2 · q2)

(q 2
1 +m2

π)(q
2
2 +m2

π)
τ1 · τ2 c̄q(is) . (5.15)

5.2.4 Scattering cross section

We investigate scattering processes χ(pχ) + T (pT ) → χ(p′
χ) + T (p′

T ), where T
denotes the target nucleus consisting of A nucleons and has a mass mT . The
elastic unpolarized differential cross section is given by

dσ

dq2
=

1

4πv2χ

1

2j + 1

j∑

mj ,m′

j=−j

∣∣∣∣
〈
ΨT , jm

′
j | Ĵ(q2) |ΨT , jmj

〉 ∣∣∣∣
2

, (5.16)

where q is the momentum transfer from DM to the target nucleus, and vχ the
DM velocity. The wave function of the target nucleus |ΨT , jmj⟩ corresponds to
a nucleus with total angular momentum j and polarization mj .

It is convenient to factor out the isoscalar piece to discuss the various one- and
two-body nuclear response functions. We follow the Ref. [100] and express the

differential cross section in terms of response functions F (ν)
i,a (q

2)

dσ

dq2
= c̄2q(is)

σ2
πNA

2

4πv2χ

∣∣∣∣
(
F (0)

is

(
q2
)
+ F (1)

is, 2b

(
q2
)
+ F (1)

is, r

(
q2
)
+ . . .

)

+ αiv

(
F (0)

iv

(
q2
)
+ . . .

) ∣∣∣∣
2

, (5.17)
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where we kept terms up to NLO in the chiral power counting. For response

function F (ν)
i,a (q

2), the superscript ν denotes the chiral order, the subscript i =
{is, iv} denote the types of DM couplings, and the subscript a = {r, 2b} indicate
the NLO radius and two-body corrections. We have defined

αiv = −
(
δmN

4σπN

)
c̄q(iv)

c̄q(is)
. (5.18)

The above definitions imply a normalization F (0)
is (0) = 1. The radius correction

F (1)
is, r

(
q2
)
involves the same nuclear information as F (0)

is except for an additional

overall dependence on q2. We therefore need to perform nuclear calculations of

F (0)
is (q2), F (0)

iv (q2), and F (1)
is, 2b

(
q2
)
, which we will present below for various target

nuclei.

5.3 Cross section calculation

To compute the necessary matrix elements, we require nuclear wave functions of
various light isotopes. As our aim is to work fully in χPT, we want to derive wave
functions and currents both from χPT Lagrangians. We refer to Chapter 3 for a
discussion of χPT nucleon-nucleon potentials. We use the chiral interactions from
Ref. [317] to calculate the chiral wave functions up to N4LO chiral order. For 4He,
we also show results for wave functions which include N5LO contact interactions
in the F-waves; these are labeled N4LO+. The main success of this approach is
that it is able to describe various NN observables with high accuracy and that,
once used in few-body calculations, can describe a large set of nuclear properties.
The integral equations are divergent and are regulated using finite value cut-offs.
In Chapter 3, we implemented a similar method to calculate the CP -violating
observables for NN scattering process. Here, we use the regularization defined
in the configuration space and use a short-distance scale R as a parameter. The
previous works have shown that the R > 0.8 fm to capture the relevant physics,
and the best results are obtained for R = 0.9 fm (R2) [100]. Unfortunately, chiral
potentials are only available for a mild range of cut-off variations up to R ≤ 1.2
fm. For larger cut-offs, spurious bound states appear in the nuclear spectrum,
which becomes harder and harder to subtract at higher orders in perturbation
theory.

We use the momentum-space basis to calculate the wave function and matrix
elements involving the DM interactions discussed above. 2H, 3He, and 4He wave
functions are evaluated by solving the non-relativistic Schrödinger equation in
momentum-space. The wave function of deuteron (d) is easily evaluated by solving

|ψd⟩ =
1

Ed − T
V12 |ψd⟩ , (5.19)

where Ed is the deuteron binding energy, T is the two-nucleon (NN) kinetic
energy, and V12 is the NN potential. As we have discussed in Chapter 3, it is
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convenient to use the partial wave basis |pα⟩. Then the partial waves contributing
to the deuteron bound state is evaluated by solving the above equation with the
constraint: the orbital angular momentum l12 = 0, 2, NN spin s12 = 1, and the
total angular momentum j12 = 1. This calculation can be easily performed on a
laptop.

Obtaining wave functions for larger systems is much more complicated. For
instance, for 3He we rewrite the Schrödinger equation into a Faddeev equation

|ψ12⟩ = G0 t12 P |ψ12⟩+G0 (1 + t12G0)V
(3)
123 (1 + P ) |ψ12⟩ , (5.20)

in terms of Faddeev components |ψ12⟩. The various Faddeev components can be
related to |ψ12⟩ using permutation operators due to the anti-symmetric nature of
the wave functions. G0 stands for the three-nucleon free-propagator. Nucleon-
nucleon interactions enter via the T -matrices t12, which we obtain by solving a
Lippmann-Schwinger equation for the NN system embedded into a 3N system.
Similar but larger equations are derived for the 4He nucleus. These equations
are then numerically solved on the supercomputer cluster of Forschungszentrum
Jülich. These computations have been carried out by my collaborators Andreas
Nogga and Christopher Körber.

5.3.1 Density matrix Formalism

In this section, we describe the theoretical framework for calculating matrix el-
ements in Eq. (5.16). We can separate this calculation into two parts: the first
part is the interaction kernel, which captures the one- and few-body currents, and
the second part is the structure, which contains the accurate eigenstates of the
Hamiltonian of the nucleus.

In the traditional method, we calculate the cross-section by integrating the
interaction kernel directly with the wave function of the nucleus.

⟨Ψ′|O|Ψ⟩traditional =
∫
{dpi}Ψ

′†({pi})Ψ({pi})O({pi}) , (5.21)

where {pi} are the momentum of the internal nucleons i, the quantum numbers
of the nucleons are suppressed for simplicity.

Ref. [101] introduces a novel method using transition density amplitudes (re-
ferred to as densities).

⟨Ψ′|O|Ψ⟩density formalism =
∑

{ni}
ρ({ni})⊗O({ni}) , (5.22)

where {ni} are the quantum number of the internal nucleons i. This approach
significantly improves the computational time; they have shown that for Compton
scattering, the computation time gets reduced by a factor of ten [101]. We have
used this method to calculate the matrix elements for this part of the thesis and
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also found an order-of-magnitude speed-up. This works because the densities do
not depend on the interaction probes (in our case, scalar dark matter interac-
tion), and the nuclear-structure part of the calculation gets factorized from the
interaction kernel part.

For any external-probe matrix element, we need to read these nuclear densi-
ties and do convolution with the appropriate interaction kernels that encode the
one- and two-body current operators on the momentum-spin basis. The compu-
tational effort associated with this structured piece of the calculations increases
significantly with A, but highly parallelized and optimized codes exist that solve
the wave functions of light nuclei. Constructing densities from those wave func-
tions is straightforward. In short, once we generate the nuclear densities using a
supercomputer, all future matrix element calculations can be performed on per-
sonal computers by reading these densities. A detailed calculation of one- and
two-body densities are given in Ref. [101]. In Appendix D, we provide a short
version of this formalism for DM-nuclei scattering.

5.4 Results and discussions

We calculated the response functions F (0,1)
is (q2) for transfer momentum q = (0−

200) MeV, cut-off {R2, R3, R4, R5} = {0.9, 1.0, 1.1, 1.2} fm. Before we discuss the
wave function dependence and theoretical uncertainties of our computations, we
first analyze the general features using a fixed wave function. As the response
functions for 2H and 3He showed the fastest convergence for cut-off R2 and the
highest accuracy for N4LO wave function, we chose this one. In Fig. 5.2, we
present the response functions for 2H, 3He, and 4He nuclei as function of the
transferred momentum. The maximum momentum transfer is related to the DM
and target mass and the DM velocity distribution. Using the standard distribution
and the DM escape velocity vescχ ≃ 550 km/s [318], and assuming mχ ≫ m4He the
maximum momentum transfer is about |q| ≤ 3 × A MeV, so about 12 MeV for
4He [100]. We show results for larger momentum transfer as well to analyze the
accuracy and cut-off dependence of our results and for non-standard DM velocity
distributions.

At zero momentum transfer, the LO response function approaches unity. This
is the direct result of the normalization condition. The LO response function with
the NLO radius and two-body corrections is

|F (0+1)
is (q2)|2 ≡ |F (0)

is (q2) + F (1)
is,r(q

2) + F (1)
is,2b(q

2)|2 . (5.23)

The results conclude that F (0)
is (q2) is a good approximation for the considered

range of transfer momentum, as shown in Fig. 5.2. The NLO contributions only
deviate LO results by a few percent even for 4He. Our hopes that the correction
would be larger for the much denser 4He compared to the dilute 2H and 3He
have been dashed. It is intriguing that much larger corrections, up to 20-30%, are
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Figure 5.2: Isoscalar structure functions of 2H, 3He, and 4He as a function of
transfer momentum q. We apply a fixed wave function corresponding to N4LO
wave functions with a fixed cut-off R2 = 0.9 fm. The chiral order ν = 0 (0 + 1) is
shown by the blue (red) line.

found for heavier systems [310]. For 2H and 3He the NLO corrections decrease for
larger transfer momentum due to a cancellation between the radius and two-body
NLO corrections. This is not true for 4He where both terms have the same size,
although, as discussed below, this does depend on the applied regulator.

To capture the details of NLO contribution, we introduce the relative radius
and two-body corrections

∆(r) =
|F (0+1)

is (q2)|2 − |F (0)
is (q2) + F (1)

is,2b(q
2)|2

|F (0+1)
is (q2)|2

,

∆(2b) =
|F (0+1)

is (q2)|2 − |F (0)
is (q2) + F (1)

is,r(q
2)|2

|F (0+1)
is (q2)|2

. (5.24)

The radius contribution does not depend on the chiral order of the wave function
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Figure 5.3: The percentage relative contribution of radius corrections of 4He as
a function of transfer momentum q for cut-off R2 and N4LO wave function.
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Figure 5.4: The percentage relative contribution of two-body corrections of 2H,
3He, and 4He as a function of transfer momentum q for various cut-offs for N2LO
(left panel) and N4LO (right panel) chiral wave functions.

or the nuclear aspects. This can be seen by

∆(r) ≃
2F (1)

is,r(q
2)

F (0+1)
is (q2)

≃ − 2

σπN

9g2Aπm
2
π

4(4πFπ)2
F

( |q|
2mπ

)
|q|≪2mπ−−−−−−→ − 2

σπN

5g2Aπm
2
π

4(4πFπ)2
|q|2
4m2

π

.

(5.25)

From this, we can see that the radius contribution vanishes at lower momentum
but becomes dominant at higher momentum, making the net NLO correction
negative. Furthermore, all the nuclear effects drop out, and ∆(r) shows identical
momentum dependence for all nuclei; our results have verified this. In Fig. 5.3,
we have shown momentum dependence of ∆(r) for 4He nucleus; we omitted other
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Figure 5.5: Isoscalar one-body structure functions as a function of transfer mo-
mentum q for LO to N4LO chiral wave functions. The left (right) panel matrix
elements are calculated using cut-off R2 = 0.9 fm (R5 = 1.2 fm).

nuclei because of the identical behavior.
In Fig. 5.4, we present our results on ∆(2b) for various nuclei. In the left

panel, we apply N2LO chiral wave functions and show results for the four ap-
plied regulators. The two-body corrections are small and lie well below power-
counting estimates, as was found in Refs. [100, 312]. What is worrisome is that
the regulator dependence is large, ranging from ∆(2b)(3He) = (−0.01 ± 0.13)%
to ∆(2b)(4He) = (0.4 ± 1.9)% at q2 = 0. Even the sign for 4He is uncertain.
One might hope this would improve once higher-order wave functions are applied,
and the corresponding results are shown in the right panel. While the 2H and
3He results are now essentially regulator independent, confirming results found in
Ref. [100], no such convergence is shown for 4He. This can be seen in detail in
Table 5.1. This is puzzling. The power counting indicates that at this order, only
NLO currents are coming from one-body radius corrections and the pion-range
two-body corrections. There are no free counter terms, so the calculations should
show regulator-independent matrix elements. The fact that we do not observe this
indicates a potential problem with Weinberg’s power counting for scalar currents.
In Fig. 5.5, we demonstrate that the power-counting issues only affect the two-
body currents. The one-body corrections show good convergence for all nuclei,
even for N2LO wave functions.

The cut-off dependence of our results can be cast in a different light. In Fig. 5.6,
we present an observed linear correlation between the two-body matrix element
and the D-wave probability for 2H, 3He, and 4He. The D-wave probability de-
scribes how much of the nuclear wave function involves l = 2 nucleon-nucleon
states and is a consequence of S−D mixing from the nuclear tensor force. It was
pointed out by Friar [319] already that the D-wave probability is not an observable:
it can be changed by unitary transformations of the nucleon-nucleon potential.
However, suppose our computations are correct in principle. In that case, the two-
nucleon scalar matrix elements can be measured in the laboratory (for instance,
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NN interactions ⟨Ĵ(is),2b⟩2H ⟨Ĵ(is),2b⟩3He ⟨Ĵ(is),2b⟩4He

AV18 + Urb 1XF / 2.62 · 10−3 /

AV18 1.58 · 10−4 2.83 · 10−3 /

CD-Bonn + TM / 1.51 · 10−3 /

CD-Bonn 1.17 · 10−4 1.62 · 10−3 /

NIJM 1.57 · 10−3 / /

LO (Q0) R1 2.28 · 10−3 −1.45 · 10−3 /

LO (Q0) R2 −5.95 · 10−4 −1.77 · 10−3 −8.45 · 10−2

LO (Q0) R3 −2.66 · 10−3 −2.02 · 10−3 −9.18 · 10−2

LO (Q0) R4 −4.12 · 10−3 −2.22 · 10−3 −9.17 · 10−2

LO (Q0) R5 −5.13 · 10−3 −2.38 · 10−3 −8.55 · 10−2

NLO (Q0) R1 1.17 · 10−2 1.62 · 10−3 /

NLO (Q0) R2 8.80 · 10−3 8.18 · 10−4 −1.33 · 10−3

NLO (Q0) R3 6.09 · 10−3 1.08 · 10−4 −8.78 · 10−3

NLO (Q0) R4 3.70 · 10−3 −4.91 · 10−4 −1.83 · 10−2

NLO (Q0) R5 1.65 · 10−3 −9.78 · 10−4 −3.01 · 10−2

N2LO (Q0) R1 1.1 · 10−2 1.51 · 10−3 /

N2LO (Q0) R2 8.59 · 10−3 8.39 · 10−4 1.39 · 10−2

N2LO (Q0) R3 6.17 · 10−3 1.93 · 10−4 6.93 · 10−3

N2LO (Q0) R4 3.97 · 10−3 −3.75 · 10−4 −1.80 · 10−3

N2LO (Q0) R5 2.04 · 10−3 −8.55 · 10−4 −1.12 · 10−2

N3LO (Q0) R1 7.31 · 10−3 8.61 · 10−4 /

N3LO (Q0) R2 1.09 · 10−2 1.81 · 10−3 6.37 · 10−3

N3LO (Q0) R3 1.29 · 10−2 2.38 · 10−3 2.69 · 10−3

N3LO (Q0) R4 1.37 · 10−2 2.62 · 10−3 −3.97 · 10−3

N3LO (Q0) R5 1.38 · 10−2 2.69 · 10−3 −1.23 · 10−2

N4LO (Q0) R1 1.06 · 10−2 1.77 · 10−3 /

N4LO (Q0) R2 1.13 · 10−2 1.92 · 10−3 8.27 · 10−3

N4LO (Q0) R3 1.18 · 10−2 2.07 · 10−3 3.08 · 10−3

N4LO (Q0) R4 1.25 · 10−2 2.27 · 10−3 −4.28 · 10−3

N4LO (Q0) R5 1.27 · 10−2 2.38 · 10−3 −1.31 · 10−2

N4LO+ (Q0) R2 / / 1.03 · 10−2

N4LO+ (Q0) R3 / / 4.76 · 10−3

N4LO+ (Q0) R4 / / −3.48 · 10−3

N4LO+ (Q0) R5 / / −1.27 · 10−2

Table 5.1: ⟨Ĵ(is),2b⟩ = (A|σπN c̄q(is) |)−1
〈
ΨT , jmj | Ĵis,2b(q2) |ΨT , jmj

〉
for chiral

and phenomenological wave functions at zero transfer momentum q = 0 for 2H,
3He, and 4He nuclei. For 2H and 3He, we have used cut off R1 = 0.8 fm and
phenomenological wave functions results from Ref. [100].
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Figure 5.6: The plots show the correlation between the isoscalar structure func-
tions and the D-wave probability for 2H, 3He, and 4He represented by circle, square,
and diamond data points. The data points are assigned different colors correspond-
ing to the chiral order of the wave function. The cut-off Ri used for the calculation
is indicated by label i on the data point. For 2H and 3He, we have used cut off
R1 = 0.8 fm and phenomenological wave functions results from Ref. [100].

by comparing scalar currents on the deuteron and subtracting the single-nucleon
contributions), and the D-wave admixture can then be experimentally extracted
from the correlation in Fig. 5.6. This again highlights that something is missing
in our computation.

Our findings indicate that something is wrong with Weinberg’s power count-
ing for scalar-induced currents. It might be that a short-distance contact term,
describing DM-nucleon-nucleon scalar interactions, must be promoted to NLO to
absorb the regulator dependence and, presumably, destroy the correlation with the
D-wave probability. In Weinberg’s power counting, such counter terms do appear
but only at N3LO in the scalar currents, see Ref. [320] for an explicit derivation.
If true, this would impact the results for WIMP scattering of heavier nuclei as
performed in the literature, where only pion-range currents are included. It would
also impact our understanding of the quark mass dependence on nuclear binding
energies through the nuclear sigma terms. Interestingly, given sufficiently accu-
rate lattice QCD data on nuclear binding energies as a function of the quark mass,
it should be possible to fit the scalar contact counter term to lattice data and de-
termine whether indeed these terms must be promoted to leading order [311,321].
Finally, while it is tempting to argue that the missing counter term is not too
relevant considering that the two-nucleon matrix elements are found to be only
a few percent, this is somewhat dangerous as there is no guarantee that the fi-
nite part of the counter term is of the same size and could be a genuine O(30%)
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correction. This has to be determined in the future.

5.5 Conclusions and outlook

We have investigated the DM scattering of light nuclei using the framework of
χPT. Our main focus was on 4He nucleus, but we also investigated 2H and
3He nuclei. The nuclear wave functions were calculated using the χPT, and we
included up to N4LO chiral order. The light nuclei allowed us to calculate bound-
state and scattering equations directly, and with a high degree of accuracy. This
allowed us to investigate the uncertainties and convergence of observables for
different chiral orders of the wave functions with a higher degree of precision than
any previous works.

We focused on the scalar interaction of DM and quarks. Using χPT, we calcu-
lated the ensuing scalar hadronic current up to NLO. The NLO current consists
of radius and two-body corrections. For 2H, 3He, and 4He, the NLO current mod-
ified the LO current by a few percent for the transfer momentum q < 200MeV.
However, NLO currents could lead to more significant effects for heavier nuclei.

We observed that two-body contributions exhibit a regulator dependence for
all three nuclei. Even though 2H and 3He recovers regulator independence when
using higher order chiral wave functions, 4He does not show any such features.
Furthermore, in 4He, the sign of the two-body contribution depends on the value of
the regulator. Since there are no contact terms at NLO to absorb this regulator
independence, we believe this is because the scalar currents are not properly
renormalized. The LO current and NLO radius contributions do not show any
such regulator dependence, indicating that all the regulator dependence arises
from the two-body effects.

As an independent check of renormalization of two-body currents, we investi-
gated the effects of D-wave probability on two-body currents for 2H, 3He, and 4He.
All three nuclei exhibited a linear correlation with 4He showed the largest varia-
tion. This provides additional evidence that Weinberg’s power counting fails for
scalar currents. As we have seen in Chapter 3, the scalar can be renormalized by
promoting a higher-order contact term to NLO to absorb the regular dependence.
The first higher-order contact term for scalar currents occurs at N3LO.

Even though we are promoting the contact term to NLO, we can not assume
it can only contribute at few percent level to the two-nucleon matrix elements.
The finite part of the contact term could have large contributions and lead to
significant contribution to the calculations of WIMP DM scattering of heavy nu-
clei. Similarly, we need to revisit the quark mass dependence on nuclear binding
energies in the presence of this contact term. Further studies are required to
understand the effects of this promoted contact term.

In this part of the thesis, we only focused on the scalar interaction of DM with
light quarks and gluons. One of our future goals is to perform similar studies
for the axial-vector DM interactions with light quarks and gluons. The axial-
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vector interactions lead to nuclear spin-dependent interactions. By analyzing the
scattering result from different nuclei with different spins, we can understand
the underlying axial-vector DM interactions with quark/gluons. Furthermore, we
are looking forward to checking whether axial-vector currents exhibit a similar
renormalization problem.

Since we have used the density matrix formalism, once we calculate the axial-
vector operators, we can easily calculate the cross sections by reading the density
of the light nuclei. We have already calculated the LO and NLO axial-vector
DM-nucleon operators in a partial wave basis and used this result to analytically
calculate the cross sections using a test nuclear wave functions.



Chapter 6

Conclusions and outlook

This thesis investigates the CP -violating interactions in the strong sector of the
Standard Model and from hypothetical beyond-the-Standard-Model (BSM) sources.
CP violation is closely connected to several intriguing puzzles of particle physics
such as the strong CP problem, the related physics of axions, and the matter-
antimatter asymmetry of the Universe. In this thesis, we have studied how strong
CP violation arising from the QCD θ̄ term manifests at the hadronic and nuclear
level, how BSM CP violation in the presence of a Peccei-Quinn mechanism leads
to long-range axionic forces, and, somewhat off-topic, how dark matter (DM)
particles scatter of atomic nuclei. Throughout the thesis, we have used a model-
independent approach for BSM physics relying on the Standard Model effective
field theory (SMEFT) framework, which is suitable as we focused on the descrip-
tion of low-energy precision experiments. We have gone beyond the SMEFT by
introducing new fields, such as axions and DM fields, when necessary. Another
crucial role in this thesis is played by chiral perturbation theory (χPT), which
we have used to match quark-level interactions to hadronic interactions. This has
allowed us to perform accurate computations for a large number of low-energy
experiments that aim to further our understanding of the nature or constraints
of BSM interactions.

Chapter 2 introduces the concept of EFTs and provides a detailed description
of χPT. EFTs provide us with a means to approach a problem in a model-
independent way. In some scenarios, EFT becomes the only viable solution. For
example, QCD is the established theory of strong interactions. It could predict
and describe various phenomena with a high degree of accuracy. However, because
of the asymptotic freedom of QCD, it becomes non-perturbative in the energy
scale of hadrons. Thereby making it impossible to use QCD to describe the nuclear
physics phenomena. EFTs are extremely qualified to handle such situations. The
χPT, a low-energy EFT of QCD, was able to describe these nuclear phenomena
successfully and is the most popular QFT in this energy scale. This chapter briefly
discusses other popular EFTs. We provide the key ingredients and the recipe to
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construct any general EFT. We then use this prescription to construct χPT. We
make use of these results in the later chapters.

In this thesis, we have emphasized the importance of CP violation in under-
standing the nature of the Universe. The current best model, the SM, can not
describe the observed matter-antimatter asymmetry. This strongly indicates the
existence of BSM CP -violating sources. One of the best probes for CP violation is
EDMs. It has the added benefits of small backgrounds, requires relatively cheaper
experimental setups, and is able to measure in different systems such as nuclear,
atomic, and molecular EDMs. One of the key ingredients for calculating EDMs
is the CP -violating nuclear force.

In Chapter 3, we investigated the renormalization of CP -violating nuclear
forces. The most popular approach in calculating nuclear forces is using the
χPT framework. Since it is an EFT, it should be renormalized at all orders in
chiral expansion. It has been known that the power counting followed by χPT,
Weinberg’s power counting, fails for CP -even nuclear force and thereby fails to
renormalize the nuclear force. However, there have been no such studies for
CP -violating nuclear force. In this chapter, we checked the renormalization of
CP -violating nuclear force by checking the dependence of various CP -even and
CP -odd nucleon-nucleon scattering phase shifts and mixing angles on unphysical
momentum cut-offs. If the nuclear force is properly renormalized, the observ-
able should be cut-off independent. Our investigations revealed that 1S0-

3P0 is
not properly renormalized. We demonstrated that the promotion of N2LO short-
distance term to LO recovered the renormalization of this channel. However, the
absence of CP -violating NN data make it impossible to calculate the LEC C̄0 as-
sociated with this short-distance term. We proposed a new strategy to calculate
C̄0 indirectly using the available data on charge-symmetry-breaking in few-body
systems. We hope our results motivate the community to calculate the C̄0 using
LQCD or the proposed CSB data. Since current EDM calculations consider only
the OPE term at the LO, these results are missing the O(1) effects caused by the
promoted LO short-distance term.

In Chapter 4, we studied the CP -violating axion interactions in an EFT frame-
work. Axions are the most popular solution to the problem of why the QCD
θ̄ angle is vanishingly small, commonly known as the strong CP problem. The
QCD θ̄ term is technically natural in the SM. That is, if θ̄ is chosen small at some
specific energy scale then neither threshold corrections nor renormalization-group
evolution induce a large θ̄ angle. This is no longer the case in BSM scenarios.
A model with more CP violation than the SM, for instance, those motivated by
the matter-antimatter asymmetry, generally renormalize θ̄ to unacceptably large
values. This ‘BSM CP problem’ strongly motivates an infrared solution point-
ing towards the Peccei-Quinn mechanism and the existence of axions. We have
investigated the impact of BSM sources of CP violation on axion interactions
in the framework of the SMEFT and the LEFT. We start with dimension-six
SMEFT operators in the presence of axions and ‘integrate out’ the top quark and
massive W, Z bosons to get the low-energy effective field theory. Next, we list
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out all possible dimension-six CP -violating LEFT operators and then use χPT
to calculate the CP -violating axion interactions with baryons, mesons, leptons,
and photons. We then collected the direct and indirect constraints on CP -odd
observables from various experiments such as EDMs, fifth-force experiments, as-
trophysical experiments, and monopole-dipole experiments. We found that the
EDMs set the strictest constrains among all these experiments. However, the
upgraded ARIADNE setup could compete with EDM experiments in reaching a
scale of around 103 TeV axion mass. Finally, we translated our EFT results to
set constraints on parameters of some specific BSM models, such as leptoquarks
and left-right symmetric models.

In Chapter 5, we studied DM scattering off light nuclei. We performed a
first-principle calculation, i.e., we calculated the DM-nucleus cross-section start-
ing with DM-quarks/gluon interactions. We focused on the light quarks (u, d, s)
and restricted ourselves to the class of scalar interactions. We mainly focused on
the 4He nucleus, but we also considered 2H and 3He nuclei. We used the χPT
framework to calculate DM-nucleon/pion interactions and the nuclear wave func-
tions. The scattering cross section was calculated up to NLO order. Our results
revealed a strong regulator dependence of the size of two-nucleon NLO corrections
and a linear correction between the two-nucleon matrix element and the D-wave
probability of the considered nucleus. These findings indicate a problem in the
EFT framework: at this order, all results should have been regulator independent,
and no correlation should exist between observables and unphysical wave function
features such as the D-wave probability. We suspect that the χPT power count-
ing for scalar nuclear currents needs to be modified, for instance, by promoting
short-distance DM-nucleon-nucleon interaction to NLO. If so, this would directly
impact the existing calculations for heavier nuclei. More work in this direction is
needed.

Our work can be extended in various directions. Motivated by our results in
Chapter 3, we plan to expand our work to calculate the EDM of 3He. We expect
to see the same renormalization problem for this EDM. We then plan to redo the
calculation with the promoted LO short-distance term and hope to recover cut-off
independence.

In Chapter 4, we considered the CP -violating axion interactions. If axions form
the DM of our Universe, these interactions lead to interesting signals. Axion DM
acts like a coherently oscillating scalar field a(t) = a0 cosmat. In this case, the
CP -odd axion interactions lead to oscillating physical quantities such as electron
mass (me(t)), proton mass (mp(t)), neutron mass (mn(t)), and the fine structure
constant (αem(t)). Various atomic physics experiments make use of the oscillating
nature of these physical quantities to get constrains on axion couplings. We plan
to check whether these experiments can provide better constraints than the axion
searches we studied in Chapter 4. Furthermore, atomic physics experiments are
showing tremendous advancements in a shorter time compared to EDM experi-
ments, which could become an important avenue for future axion searches.

We studied the class of scalar interactions of DM with quarks and gluons in
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Chapter 5. We plan to explore the class of axial-vector DM interactions of DM
with quarks and gluons for our future work. The axial-vector interactions will
lead to spin-dependent cross-sections. By comparing the results of DM-nucleus
scattering with nuclei with different spins, we can identify the underlying nature
of DM-quark/gluon interactions. Since we used density matrix formalism, we can
reuse the nuclear wave functions we calculated and save considerable time for our
calculations.



Appendix A

Spontaneous symmetry
breaking

A.1 SO(3) → SO(2)

Let us first consider the following Lagrangian with three scalar fieldsΦ = (Φ1,Φ2,Φ3)
T

L =
1

2
∂µΦi∂

µΦi −
m2

2
Φi · Φi −

λ

4
(Φi · Φi)2 , (A.1)

where λ > 0, and we are interested in the case where the potential has more
than one minima (m2 < 0). The Lagrangian is invariant under a global SO(3)
symmetry,

g ∈ G = SO(3) : Φi → Φ′
i =

(
e−iαkTk

)
ij
Φj . (A.2)

The hermitian (Φ†
i = Φi) and orthogonality (Φ′·Φ′ = Φ·Φ) condition ensures that

Tk are purely imaginary and anti-symmetric, and they satisfy the so(3) Lie algebra
[Ti, Tk] = ϵijkTk. For this discussion, we use the representation (Ti)jk = −iϵijk.
The minimum of the potential that is independent of x is

|Φmin| =
√

−m2

λ
≡ v , |Φ| =

√
Φ2

1 +Φ2
2 +Φ2

3 . (A.3)

In general, Φmin can point in any direction. This implies we have an infinite
number of degenerate vacua. However, any infinitesimal external perturbation
(spontaneous symmetry breaking) invariant under SO(3) could break this de-
generacy and ‘choose’ one particular vacuum. Without loss of generality, let us
assume this vacuum lies along ê3

Φmin =




0
0
v


 , (A.4)
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and

T1Φmin =




0
−iv
0


 , T2Φmin =




iv
0
0


 , T3Φmin = 0 . (A.5)

One observation from the above results is that the set of all transformations that
leave the vacuum invariant form the SO(2)({e−iθT3}) subgroup of SO(3)

h ∈ H = SO(2) : Φmin → Φ′
min = e−iα3T3Φmin = Φmin . (A.6)

The Lagrangian for scalar fields around the vacuum Φ = (Φ1,Φ2, v + η) will give
the potential

V =
λ

4
v4 +

1

2
(−2m2)η2 + λv(Φ2

1 +Φ2
2 + η2)η +

λ

4
(Φ2

1 +Φ2
2 + η2)2 . (A.7)

From this, one can obtain the masses of the scalar fields as

m2
Φ1

= m2
Φ2

= 0 , (A.8)

m2
η = −2m2 . (A.9)

From these observations, we can make the general remarks that for each generator
that does not annihilate the vacuum, we obtain a massless Goldstone boson (see
Eq. (A.5)).

A.2 G → H

In this section, we will consider a multiplet of scalar (or pseudoscalar) fields
Φ = ({Φi})T . We assume the Lagrangian takes the form

L =
1

2
∂µΦ∂

µΦ− V(Φ) , (A.10)

and is invariant under the global compact Lie group G of the order nG with
generators T a. Then an infinitesimal transformation of the fields is given by

g ∈ G : Φi → Φ′
i = Φi + δΦi, δΦi = −i

nG∑

a=1

ϵa(T
a)ijΦj . (A.11)

The Hermitian condition ensures that T a is anti-symmetric. Similar to the pre-
vious section, after spontaneous symmetry breaking, the ground state gets the
vacuum expectation value (vev) Φmin = ⟨Φ⟩ which is invariant under the group
H of order nH < nG. The potential near Φmin is

V(Φ) = V(Φmin) +
∂V(Φmin)

∂Φi
ηi +

1

2

∂2V(Φmin)

∂Φi∂Φj
ηiηj +O(η3i ) (A.12)
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where |Φmin| = v,Φ = Φmin+η. By construction ∂V(Φmin)
∂Φi

= 0 and we define the

symmetric matrix (M2)ij = m2
ij =

∂2V(Φmin)
∂Φi∂Φj

= m2
ji. Then Eq. (A.12) becomes

V(Φ) = V(Φmin) +
1

2
η ·M2 · η +O(η3i ) (A.13)

The invariance of V under G gives

V(Φmin) = V(Φmin + δΦmin) ,

= V(Φmin) +
1

2
Φmin ·M2 ·Φmin +O(δΦ3

min,i) . (A.14)

From this, we can conclude

Φmin ·M2 · δΦmin = 0 , (A.15)

⇒M2δΦmin = 0 .

By using Eq. (A.11) we have

M2T aΦmin = 0 , a = 1, 2, . . . , nG. (A.16)

Let us assume T 1, . . . , TnH form the representation of the subgroup H. Since
the vacuum is invariant under H,

Φmin =

nH∑

a=1

e−iϵaT
a

Φmin (A.17)

≃ Φmin − i
∑

a

ϵaT
aΦmin

⇒ T aΦmin = 0 , a = 1, 2, . . . , nH .

Since T a, a = nH+1, . . . , nG does not form the representation of H, T aΦmin ̸=
0. This result, along with Eq. (A.16) implies that T aΦmin are non-trivial eigen-
vectors of M2 with eigenvalue 0. Moreover, they are also linearly independent

nG∑

a=nH+1

ca(T
aΦmin) =

(
nG∑

a=nH+1

caT
a

)
Φmin , (A.18)

= TΦmin ̸= 0 ,

since T does not belong to the space of representation of the subgroup H. These
nG − nH linearly independent massless scalar (or psuedoscalars) corresponds to
Goldstone bosons.

A.2.1 SU(3)L × SU(3)R → SU(3)V

In the case of χPT, SU(3)L × SU(3)R(nG = 8 + 8) is spontaneously broken to
SU(3)V (nH = 8) when the Universe cool down below TC = ΛQCD ∼ 300MeV,
which resulted in nG − nH = 8 Goldstone bosons. These Goldstone bosons are
the meson octet (π±,0,K±,0, K̄0, η).





Appendix B

Partial wave analysis

B.1 Scattering

We are considering the scattering between two nucleons. Since the nuclear po-
tential only depends on the relative orientation of the nucleons, the potential is
spherical V (r) = V (r), and only leads to elastic scattering. We will ignore the
spin part of the wave function for this analysis.

R = 0 Beam direction +z

Incoming plane wave exp(ikz)

Outgoing spherical waves exp(ikR)/R

Figure B.1: The incoming plane waves in the +z direction is scattered off a
spherical target 1

The incoming plane wave is assumed to travel along the +z-axis. This will
make the scattering symmetric around the z-axis and ψ(r, θ, ϕ) = ψ(r, θ). The

1The image is taken from the lecture notes on ‘Scattering theory’ by Prof. Filom-
ena Nunes, available at https://www.asc.ohio-state.edu/physics/ntg/8805/refs/Filomena_
Nunes_scattering-v3b.pdf.

https://www.asc.ohio-state.edu/physics/ntg/8805/refs/Filomena_Nunes_scattering-v3b.pdf
https://www.asc.ohio-state.edu/physics/ntg/8805/refs/Filomena_Nunes_scattering-v3b.pdf
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Schrödinger equation for the relative motion of the nucleons is
(
− 1

2µ
∇

2 + V (r)− E

)
ψ(r, θ) = 0 , (B.1)

where µ is the reduced mass and E = k2

2µ is the center of mass energy. Since the
detectors are located outside the range of short-distance scattering potential, we
are only interested in ψ(r → ∞, θ) ≡ Ψ(r, θ). The incident and scattered waves
are

Ψinc = eikz = eikr cos θ , (B.2)

Ψsct = eikz + f(θ)
eikr

r
, (B.3)

where f(θ) is the scattering amplitude and the differential cross section is dσ
dΩ =

|f(θ, ϕ)|2 = |f(θ)|2. From now on, unless explicitly stated ψ/Ψ ≡ ψsct/Ψsct.
We will expand the wave function in terms of partial waves. It is convenient to

work with the partial wave because they are the eigenstates of angular momentum
L2 and Lz with eigenvalues l(l + 1) and ml (=0). The wave function in partial
wave basis is given by

ψ(r, θ) =

∞∑

l=0

il(2l + 1)Pl(cos θ)Rkl(r) . (B.4)

where Pl are the Legendre polynomials and the il(2l + 1) factors are for later
convenience. Each term in Eq. (B.4) is known as a partial wave. If we define
ukl(r) ≡ rRkl(r) and ρ ≡ kr, the radial part of the wave function satisfies

[
d2

dρ2
− l(l + 1)

ρ2
+ 1

]
ukl(ρ/k) = 0 . (B.5)

This is a particular case of the general ‘Coulomb wave equation’
[
d2

dρ2
− l(l + 1)

ρ2
− 2η

ρ
+ 1

]
wl(ρ) = 0 , (B.6)

with η = 0. The general solution to the above equation are Fl(η, ρ) and Gl(η, ρ).
In the asymptotic limit ρ≫ l (or r → ∞), these solutions becomes

Fl(0, ρ) ∼ sin(ρ− lπ/2) , (B.7)

Gl(0, ρ) ∼ cos(ρ− lπ/2) . (B.8)

Since the scattering wave function in Eq. (B.3) take the form e±iρ, it is more
convenient to use the Coulomb Hankel solutions H±

l (η, ρ) = Gl(η, ρ) ± iFl(η, ρ),
which takes the following form in the asymptotic limit

H±
l (η, ρ) ∼ e±(ρ−lπ/2) = i∓le±ρ . (B.9)
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Using these solutions, the partial wave decomposition of the incident wave is

ψinc(r, θ) = eikz = eikr cos θ

=

∞∑

l=0

il(2l + 1)Pl(cos θ)
1

kr
Fl(0, kr)

=
∞∑

l=0

il(2l + 1)Pl(cos θ)
1

kr

i

2
[H+

l (0, kr)−H−
l (0, kr)] , (B.10)

Ψinc(r, θ) =

∞∑

l=0

il(2l + 1)Pl(cos θ)
1

kr

i

2
[ile−ikr − i−leikr] . (B.11)

From the above equations, it is easy to see that the incident wave has the same
amplitude for the radially incoming wave H−

l and radially outgoing wave H+
l .

Outside the range of potential, ukl(r) should be given by some linear combi-
nation of H±

l (0, kr)

ukl(r)
r→∞−−−→ Al[H

+
l (0, kr)− SlH

−
l (0, kr)] . (B.12)

The Sl is called the partial wave S matrix element. For the above equation to be
proportional to Eq. (B.10) in the absence of potential, Sl = 1 for V (r) = 0. The
scattering wave function for a general potential V (r) is given by

ψ(r, θ) =

∞∑

l=0

il(2l + 1)Pl(cos θ)
1

kr
Al[H

+
l (0, kr)− SlH

−
l (0, kr)] . (B.13)

For r → ∞

Ψ(r, θ) =

∞∑

l=0

il(2l + 1)Pl(cos θ)
1

kr
Al[i

le−ikr − Sli
−leikr] . (B.14)

The Al and Sl for a general potential V (r) is determined by matching the above
equation with Eq. (B.3)

∞∑

l=0

il(2l + 1)Pl(cos θ)
1

kr
Al[i

le−ikr − Sli
−leikr]

=
∞∑

l=0

il(2l + 1)Pl(cos θ)
1

kr
Al[i

le−ikr − i−leikr] + f(θ)
eikr

r
. (B.15)

By matching the coefficients of the linearly independent functions e±ikr we get
Al =

i
2 and

f(θ) =
1

2ik

∞∑

l=0

(2l + 1)Pl(cos θ)(Sl − 1) . (B.16)
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An equivalent parameterization is to represent the Sl in terms of phase shifts

Sl = e2iδl . (B.17)

Note that, for r → ∞ the incident (Eq. (B.11) and scattered wave function
(Eq. (B.14)) take the form

Ψinc(r, θ) =

∞∑

l=0

il(2l + 1)Pl(cos θ)
1

kr
sin(kr + lπ/2) , (B.18)

Ψ(r, θ) =

∞∑

l=0

il(2l + 1)Pl(cos θ)
1

kr
eiδl sin(kr + lπ/2 + δl) , (B.19)

the latter is called the distorted plane wave. It differs from the incident plane
wave by a phase shift δl. The δl are called the phase shift of the lth partial wave.

We can express the scattered wave function as

Ψ(r, θ) =

∞∑

l=0

il(2l + 1)Pl(cos θ)
1

kr

[
Fl(0, kr) + TlH

+
l (0, kr)

]
, (B.20)

the Tl = eiδl sin δl are called partial wave T matrix element and Sl = 1+ iπTl. Tl
is proportional to the amplitude of the outgoing scattered wave function.

The differential cross-section is given by

dσ

dω
= |f(θ)|2 =

∣∣∣∣∣

∞∑

l=0

fl(θ)

∣∣∣∣∣

2

=

∣∣∣∣∣

∞∑

l=0

1

2ik
(2l + 1)Pl(cos θ)(Sl − 1)

∣∣∣∣∣

2

=

∣∣∣∣∣

∞∑

l=0

1

k
(2l + 1)Pl(cos θ)e

iδl sin δl

∣∣∣∣∣

2

=
1

2µE

∞∑

l=0

∞∑

l′=0

(2l + 1)(2l′ + 1)Pl(cos θ)Pl′(cos θ)e
i(δl−δl′ ) sin δl sin δl′ .

(B.21)

B.1.1 Nucleon scattering

In this section, we will generalize the scattering results for nucleons with spin
quantum numbers (s,ms). The scattered wave function of the nucleon with spin
quantum numbers (s,ms) in the r → ∞ is

Ψ =

(
eikz + fsms

(θ, ϕ)
eikr

r

)
χsms

, (B.22)
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where χsms
are the spin-state basis vectors. The scattering amplitude is given

by [322]

fsms
(θ, ϕ) =

∑

s′,m′

s

Msms,s′m′

s
(θ, ϕ)as′m′

s
, (B.23)

where asms
are the amplitudes of various spin states in the incident plane wave.

As we did in the previous section, we will expand the M matrix in the partial
wave basis

Msms,s′m′

s
(θ, ϕ) =

∑

l,ml

Ylml
(θ, ϕ)M(l ml sms; l

′m′
l)

=
∑

s′,m′

s

Ylml
(θ, ϕ)M(l ml sms; s

′m′
s) , (B.24)

where Ylml
are the spherical harmonics and

M(l ml sms; l
′m′

l) =
1

ik
i−l
∑

l′

il
′
√
π(2l′ + 1)R(l ml sms; l

′ 0 s′m′
s) , (B.25)

where R is related to S matrix by S = 1 + R. Note that, in the absence of spin
quantum numbers (s = ms = as/,ms

= 0) and spherically symmetric potential,
the angular momentum gets conserved, and we have R(l ml = 0 s = 0ms =
0; l′ 0 s′ = 0m′

s = 0) ≡ Rlδll′ = δll′(Sl − 1). In this specific case, we recover the
scattering amplitude from Eq. (B.16)

f0 0(θ, 0) ≡ f(θ)

=
1

2ik

∑

l,l′

Yl 0(θ, 0)
√
4π(2l′ + 1)il

′−lδll′(Sl − 1)

=
1

2ik

∞∑

l=0

(2l + 1)Pl(cos θ)(Sl − 1) . (B.26)

It is convenient to represent the scattering amplitude in terms of phase shifts
related to α = (ls)j quantum number. We start with representing R matrix in
the α basis

R(l ml sms; l
′m′

l s
′m′

s) =
∑

j,mj

⟨l ml, sms|j mj⟩ ⟨l′m′
l, s

′m′
s|j′m′

j⟩

×R(l s jmj ; l
′ s′ j′m′

j) . (B.27)

Since the total momentum and its z-components are conserved, we have j′ = j
and m′

j = mj . The parity conservation and wave function asymmetry conserve
the spin of p − p scattering, i.e., s′ = s. The spin is also conserved for isospin-
conserving interaction for n− p scattering. Since we are interested in these types
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of scattering, we will have j′ = j,m′
j = mj , and s′ = s. This is the main

advantage of the (ls j) basis. Then, the only non-zero R matrix elements Rsjll′ ≡
R(l s jmj ; l

′ s′ j′m′
j) are

• s = 0, l′ = l = j : R0j
jj = S0j

jj − 1

• s = 1, l′ = l = j : R1j
lj = S1j

lj − 1

• s = 1, l = j ± 1, l′ = j ∓ 1 : R1j
j±1 j∓1 = S1j

j±1 j∓1

The S matrix in terms of phase shifts for the uncoupled channels are

S0j
jj = e2iδ

0j
j , S1j

jj = e2iδ
1j
j , (B.28)

and for coupled channels are

S =

(
S1j
j−1 j−1 S1j

j−1 j+1

S1j
j−1 j+1 S1j

j+1 j+1

)
=

(
cos(2ϵ)e2iδ

1j
j−1 i sin(2ϵ)ei(δ

1j
j−1+δ

1j
j+1)

i sin(2ϵ)ei(δ
1j
j−1+δ

1j
j+1) cos(2ϵ)e2iδ

1j
j+1

)
,

(B.29)

this is the Stapp parametrization [322] and ϵ is called the mixing angle.

B.2 Partial wave decomposition

The CP -even OPE potential is given by

Vstr,π(p
′,p) = − 1

(2π)3

(
gA
2Fπ

)2
(σ1 · q)(σ2 · q)

q2 +m2
π

τ⃗1 · τ⃗2 , (B.30)

with q = p− p′. The partial wave decomposition of the potential is

V α
′,α

str,π (p
′, p) = ⟨p′(l′s′)j′m′

j ; t
′m′

t|Vstr,π(p′,p)|p(ls)jmj ; tmt⟩ . (B.31)

We will follow the notations defined in Section B.2.1. The isospin part can be
calculated separately

⟨t′m′
t|τ⃗1 · τ⃗2|tmt⟩ = −

√
3 ⟨tmt00|t′m′

t⟩ ⟨t′||{ ⃗τ1, τ2}0||t⟩ , (B.32)

where we used the tensor representation of the scalar product a ·b = −
√
3{a, b}00,

and Wigner–Eckart theorem. Using Eq. (B.42) and Eq. (B.43) on the above
equation we get

⟨t′m′
t|τ⃗1 · τ⃗2|tmt⟩ = (2t(t+ 1)− 3)δt

′tδm
′

tmt . (B.33)
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The remaining part of the partial wave decomposition can be done by using
the tensor representation of the scalar product and q vector in terms of spherical

harmonics qm = q
√

4π
3 Y1m(q̂). Using the following relation

|(j1, j4)j7, (j2, j5)j8; j9,mj9⟩ =
∑

j3,j6

√
ĵ3 ĵ6 ĵ7 ĵ8





j1 j4 j7
j2 j5 j8
j3 j6 j9





× |(j1, j2)j3, (j4, j5)j6; j9,mj9⟩ , (B.34)

and relations in Section B.2.1, we can separate the spin and angular momentum

⟨p′(l′s′)j′m′
j |
(σ1 · q)(σ2 · q)

q2 +m2
π

|p(ls)jmj⟩ = δj
′jδm

′

jmj

2∑

f=0

3

√
f̂

4π





1 1 0
1 1 0
f f 0





× ⟨1010|f0⟩
√
l̂′ŝ′ĵ





l′ l f
s′ s f
j′ j 0





× ⟨p′l′|| 4πq2

q2 +m2
π

Yf (q̂)||pl⟩ ⟨s′||{σ1, σ2}f ||s⟩ . (B.35)

The spin part calculations follow the same method as the isospin part, and we get

⟨s′||{σ1, σ2}f ||s⟩ = 6

√
f̂ ŝ





1
2

1
2 1

1
2

1
2 1

s′ s f




. (B.36)

The orbital part using the spherical harmonics and other relations in Section B.2.1
is

⟨p′l′|| 4πq2

q2 +m2
π

Yf (q̂)||pl⟩ =
∑

λ1,λ2≥0
λ1+λ2=f

√
4πf̂ !

λ̂1!λ̂2!
pλ1(−p′)λ2

∞∑

k=0

gfk (p, p
′)k̂

√
f̂ λ̂1λ̂2

×





k k 0
λ1 λ2 f
l l′ f



 ⟨k0λ10|l0⟩ ⟨k0λ20|l′0⟩ (−1)l

√
f̂

l̂′
, (B.37)

where gfk (p, p
′) =

∫ 1

−1
dxPk(x)

4πq(x)2−f

q(x)2+m2
π
with q(x) =

√
p2 + p′2 − 2pp′x.

Combining all the above results, the partial wave decomposition of OPE CP -
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even potential is

V α
′,α

str,π (p
′, p) = δj

′jδm
′

jmj
−1

(2π)3

(
gA
2Fπ

)2 2∑

f=0

3

√
f̂

4π





1 1 0
1 1 0
f f 0



 ⟨1010|f0⟩

×
√
l̂′ŝ′ĵ





l′ l f
s′ s f
j′ j 0





∑

λ1,λ2≥0
λ1+λ2=f

√
4πf̂ !

λ̂1!λ̂2!
pλ1(−p′)λ2

∞∑

k=0

(−1)k
k̂

2
gfk (p, p

′)

× k̂

√
f̂ λ̂1λ̂2 ⟨k0λ10|l0⟩ ⟨k0λ20|l′0⟩





k k 0
λ1 λ2 f
l l′ f









1
2

1
2 1

1
2

1
2 1

s′ s f





× (−1)l

√
f̂

l̂′
6

√
f̂ ŝ(2t(t+ 1)− 3)δt

′tδm
′

tmt . (B.38)

The CP -odd OPE potential is

Vḡ0 = − 1

(2π)3
gAḡ0
2Fπ

i(σ1 − σ2) · q
q2 +m2

π

τ⃗1 · τ⃗2 . (B.39)

The partial wave decomposition of the CP -odd OPE potential can be done by
following the same calculations as the CP -even OPE potential, and the final
result is

V α
′,α

ḡ0,π (p′, p) = −δj′jδm′

jmj
1

(2π)3
igAḡ0
2Fπ

(−
√
3)

√
l̂′ŝ′ĵ





l′ l 1
s′ s 1
j′ j 0





×
∑

λ1,λ2≥0
λ1+λ2=1

pλ1(−p′)λ2

√
3

∞∑

k=0

(−1)k2π k̂ gf=2
k (p, p′)

k̂
√
3λ̂1λ̂2
4π

⟨k0λ10|l0⟩ ⟨k0λ20|l′0⟩

×





k k 0
λ1 λ2 f
l l′ 1



 (−1)l

√
3

l̂′
6
√
ŝ(1− (−1)s+s

′

)





1
2

1
2 1

1
2

1
2 0

s′ s 1





× (2t(t+ 1)− 3)δt
′tδm

′

tmt . (B.40)

B.2.1 Notations and relations

By Wigner–Eckart theorem for tensor operator for the M -th of the spherical
tensor operator OL with rank L is

⟨j′m′
j |OLM |jmj⟩ = ⟨jmjLM |j′m′

j⟩ ⟨j′||OL||j⟩ , (B.41)
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where ⟨j′||OL||j⟩ is the reduced matrix element. The Clebsch–Gordan coefficient
notation for spin j1 and j2 added to get j is ⟨j1mj1j2mj2 |jmj⟩.

Some common relations of reduced matrix elements are

⟨(j1j′2)j||{Tk1(j1), Tk2(j2)}k||(j1j2)j⟩ =
√
ĵ′1 ĵ

′
2 k̂ ĵ





j′1 j1 k1
j′2 j2 k2
j′ j k





× ⟨j′1||Tk1(j1)||j1⟩ ⟨j′2||Tk2(j2)||j2⟩ ,
(B.42)

⟨ 12 ||σ|| 12 ⟩ =
√
3 , (B.43)

⟨l′||YL||l⟩ = (−1)l

√
L̂l̂

4π

{
l′ L l
0 0 0

}
, (B.44)

⟨l′||Yfg1g2(p̂
′p̂)||l⟩ = (−1)lδg1l

′

δg2l

√
f̂

l̂′
, (B.45)

where
{
. . .
}
are 9-j/3-j symbols, x̂ = 2x+1, and Yfg1g2(p̂′p̂) ≡ {Yg1(p̂′), Yg1(p̂)}f .

Some relations of spherical harmonics and Legendre polynomials (Pl) are

Yl,m(â± b) =
∑

l′,l′′,
l′+l′′=l

√
4πl̂!

l̂′! l̂′′!

al
′

(±b)l′′

|a+ b|l Y
l,m
l′,l′′(â, b̂) , (B.46)

Y l,ml′,l′′(x̂, x̂) =

√
l̂′ l̂′′

4πl̂
⟨l′, l′′; 0, 0⟩ l′, l′′; l, 0Yl,m(x̂) , (B.47)

f(q = |p− p′|) =
∞∑

k=0

2π(−1)k
√
k̂Y0,0

k (p̂, p̂′)

∫ 1

−1

dxPk(x)f [
√
p2 + p′2 − 2pp′x], .

(B.48)





Appendix C

LEFT operators

C.1 Notation and selection of operators

Here we clarify some of the notation related to the LEFT as well as the selection
of the operators in Table 4.1.

As mentioned, the sum in Eq. (4.5) extends over all the operators in Ta-
ble 4.1, as well as their hermitian conjugates, and flavor indices. For exam-

ple, the Lagrangian due to OS1,RR
dd and its hermitian conjugate is written as

L ⊃
∑
p,r,s,t L

S1,RR
dd
prst

(q̄pLq
r
R) (q̄

s
Lq

t
R) + h.c., where we explicitly sum over all pos-

sible flavor combinations. Note that this means that several different coefficients
multiply the same operator since, e.g. OS1,RR

dd
prst

= OS1,RR
dd
stpr

. Without loss of gener-

ality this allows us to assume similar relations between the Wilson coefficients.
The relevant cases for the operators of interest are

LS1,RR
dd

prst

= LS1,RR
dd

stpr

, LS8,RR
dd

prst

= LS8,RR
dd

stpr

,

LV1,LR
ud

uust

=

(
LV1,LR

ud
uuts

)∗

, LV1,LR
du

stuu

=

(
LV1,LR

du
tsuu

)∗

, LV1,LR
dd

prst

=

(
LV1,LR

dd
rpts

)∗

, (C.1)

and similar for the LV8,LR couplings.
As we focus on the dimension-five and -six operators that can be written as

external sources or give rise to leading-order chiral interactions, it will be useful
to write them in terms of the SU(3)L × SU(3)R representations they belong to.
Below we consider the different classes of operators and the chiral representations
they lead to. It turns out that all the operators in Table 4.1 only lead to a limited
set of irreducible representations

• X3

This class only includes SU(3)L × SU(3)R singlets and the CP-odd term
does not appear in the chiral Lagrangian at LO.
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• (L̄R)X
This class contains the quark EM dipole moments that can be captured by
the tensor sources, tµνR , described in Appendix C.2. In addition, there are
the chromo-magnetic dipole moments which transform in the same way as
the quark mass terms, 3̄L × 3R, leading to analogous interactions in the
chiral Lagrangian. These cannot be captured by the external sources and
are discussed in Appendix C.3.

• (L̄L)(L̄L) and (R̄R)(R̄R)
The semi-leptonic operators in these classes contribute to the external cur-
rents, lµ and rµ given in Appendix C.2. The four-quark interactions trans-
form as (3̄× 3× 3̄× 3)L,R, which lead to singlet terms that appear at LO
but are CP even, or representations that can be CPV but require derivatives
in the chiral Lagrangian. We thus only take into account the semi-leptonic
terms.

• (L̄L)(R̄R)
The semi-leptonic operators can again be captured by lµ and rµ discussed
in Appendix C.2. The four-quark interactions now transform as (3̄× 3)L ×
(3̄ × 3)R. This again includes singlet terms that are CP even, as well
as non-singlet pieces, ∼ 1L × 8R, that come with derivatives in the chiral
Lagrangian. The remaining representation, 8L×8R, can lead to CPV terms
that appear at LO in the chiral Lagrangian and is discussed further in
Appendix C.3.

• (L̄R)(L̄R)
The semi-leptonic operators in this class can be described by the scalar
and tensor currents s, p, and tµνR . The four-quark operators now lead to
two representations that can violate CP and appear at LO in the chiral
Lagrangian, (3̄× 3̄)L × (3× 3)R ⊃ 3L × 3̄R ⊕ 6̄L × 6R.

• (L̄R)(R̄L)
This class only involves semi-leptonic operators which are captured by the
scalar currents s and p.
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C.2 External sources

Here we list the explicit expressions of the external sources appearing in Eq. (4.7).
The vector sources can be written as,

lµ =− eQAµ +
∂µa

2fa
cqL

+ ēpLγµe
r
L




LV,LL
eu

pruu
0 0

0 LV,LL
ed

prdd

LV,LL
ed

prds

0 LV,LL
ed

prsd

LV,LL
ed

prss


+ ν̄pLγµν

r
L




LV,LL
νu

pruu
0 0

0 LV,LL
νd

prdd

LV,LL
νd

prds

0 LV,LL
νd

prsd

LV,LL
νd

prss




+ ēpRγµe
r
R




LV,LR
ue

uupr
0 0

0 LV,LR
de

ddpr

LV,LR
de

dspr

0 LV,LR
de

sdpr

LV,LR
de

sspr


+

[
ν̄pLγµe

r
L




0 0 0

LV,LL
νedu
prdu

0 0

LV,LL
νedu
prsu

0 0


+ h.c.

]
,

(C.2)

rµ =− eQAµ +
∂µa

2fa
cqR

+ ēpLγµe
r
L




LV,LR
eu

pruu
0 0

0 LV,LR
ed

prdd

LV,LR
ed

prds

0 LV,LR
ed

prsd

LV,LR
ed

prss


+ ν̄pLγµν

r
L




LV,LR
νu

pruu
0 0

0 LV,LR
νd

prdd

LV,LR
νd

prds

0 LV,LR
νd

prsd

LV,LR
νd

prss




+ ēpRγµe
r
R




LV,RR
eu

pruu
0 0

0 LV,RR
ed

prdd

LV,RR
ed

prds

0 LV,RR
ed

prsd

LV,RR
ed

prss


+

[
ν̄pLγµe

r
L




0 0 0

LV,LR
νedu
prdu

0 0

LV,LR
νesu
prsu

0 0


+ h.c.

]
,

(C.3)

while the scalar, pseudoscalar, and tensor terms are given by

−(s+ ip) =ēpLe
r
R




LS,RL
eu

pruu
0 0

0 LS,RL
ed

prdd

LS,RL
ed

prds

0 LS,RL
ed

prsd

LS,RL
ed

prss


+ ēpRe

r
L




LS,RR
eu

rpuu
0 0

0 LS,RR
ed

rpdd

LS,RR
ed

rpsd

0 LS,RR
ed

rpds

LS,RR
ed

rpss




∗

+ ν̄pLe
r
R




0 0 0

LS,RL
νedu
prdu

0 0

LS,RL
νedu
prsu

0 0


+ ēpRν

r
L



0 LS,RR

νedu
rpdu

LS,RR
νedu
rpsu

0 0 0
0 0 0




∗

, (C.4)
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tµνR =Fµν




Luγ
uu

0 0

0 Ldγ
dd

Ldγ
ds

0 Ldγ
sd

Ldγ
ss


+ ēpLσ

µνerR




LT,RR
eu

pruu
0 0

0 LT,RR
ed

prdd

LT,RR
ed

prds

0 LT,RR
ed

prsd

LT,RR
ed

prss




+ ν̄pLσ
µνerR




0 0 0

LT,RR
νedu
prdu

0 0

LT,RR
νedu
prsu

0 0


 . (C.5)

C.3 Hadronic dimension-five and -six terms

The expressions for the couplings that are induced by the purely hadronic oper-
ators, appearing in Eq. (4.8) are given by

L5 =




LuG
uu

0 0

0 LdG
dd

LdG
ds

0 LdG
sd

LdG
ss


 , (C.6)

Lijkl
8×8

= LijklLLRR − δij

3
LnnklLLRR − δkl

3
LijnnLLRR +

δijδkl

9
LnnmmLLRR , (C.7)

where

Lijkl
LLRR =LV1,LR

ud
uuds

δi1δ
j
1δ

k
2 δ

l
3 + LV1,LR

ud
uusd

δi1δ
j
1δ

k
3 δ

l
2 + LV1,LR

du
dsuu

δk1 δ
l
1δ

i
2δ

j
3 + LV1,LR

du
sduu

δk1 δ
l
1δ

i
3δ

j
2

+ LV1,LR
dd

sddd

δi3δ
j
2δ

k
2 δ

l
2 + LV1,LR

dd
dsdd

δi2δ
j
3δ

k
2 δ

l
2 + LV1,LR

dd
ddsd

δi2δ
j
2δ

k
3 δ

l
2 + LV1,LR

dd
ddds

δi2δ
j
2δ

k
2 δ

l
3

+ LV1,LR
dd

dsss

δi2δ
j
3δ

k
3 δ

l
3 + LV1,LR

dd
sdss

δi3δ
j
2δ

k
3 δ

l
3 + LV1,LR

dd
ssds

δi3δ
j
3δ

k
2 δ

l
3 + LV1,LR

dd
sssd

δi3δ
j
3δ

k
3 δ

l
2

+ LV1,LR
dd

dssd

δi2δ
j
3δ

k
3 δ

l
2 + LV1,LR

dd
sdds

δi3δ
j
2δ

k
2 δ

l
3 + LV1,LR

dd
dsds

δi2δ
j
3δ

k
2 δ

l
3 + LV1,LR

dd
sdsd

δi3δ
j
2δ

k
3 δ

l
2

+ LV1,LR
uddu
uddu

δi1δ
j
2δ

k
2 δ

l
1 + LV1,LR

uddu
usdu

δi1δ
j
3δ

k
2 δ

l
1 + LV1,LR

uddu
udsu

δi1δ
j
2δ

k
3 δ

l
1 + LV1,LR

uddu
ussu

δi1δ
j
3δ

k
3 δ

l
1

+

[
LV1,LR

uddu
uddu

δj1δ
i
2δ

l
2δ

k
1 + LV1,LR

uddu
usdu

δj1δ
i
3δ

l
2δ

k
1 + LV1,LR

uddu
udsu

δj1δ
i
2δ

l
3δ

k
1 + LV1,LR

uddu
ussu

δj1δ
i
3δ

l
3δ

k
1

]∗
,

(C.8)

where we neglected CP even terms such as LV 1,LR
uu
uuuu

. L̄ijkl
8×8

can be obtained from

the expressions above by replacing, LV1,LR
α → LV8,LR

α in Eq. (C.8).
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For the operators in the LRLR class, we can define

Lijkl
LRLR =LS1,RR

uu
uuuu

δi1δ
j
1δ

k
1 δ

l
1 + LS1,RR

dd
dddd

δi2δ
j
2δ

k
2 δ

l
2 + LS1,RR

dd
ssss

δi3δ
j
3δ

k
3 δ

l
3

+ LS1,RR
dd

ssdd

δi3δ
j
3δ

k
2 δ

l
2 + LS1,RR

dd
sdsd

δi3δ
j
2δ

k
3 δ

l
2 + LS1,RR

dd
sdds

δi3δ
j
2δ

k
2 δ

l
3

+ LS1,RR
dd

dssd

δi2δ
j
3δ

k
3 δ

l
2 + LS1,RR

dd
dsds

δi2δ
j
3δ

k
2 δ

l
3 + LS1,RR

dd
ddss

δi2δ
j
2δ

k
3 δ

l
3

+ LS1,RR
dd

sddd

δi3δ
j
2δ

k
2 δ

l
2 + LS1,RR

dd
dsdd

δi2δ
j
3δ

k
2 δ

l
2 + LS1,RR

dd
ddsd

δi2δ
j
2δ

k
3 δ

l
2 + LS1,RR

dd
ddds

δi2δ
j
2δ

k
2 δ

l
3

+ LS1,RR
dd

dsss

δi2δ
j
3δ

k
3 δ

l
3 + LS1,RR

dd
sdss

δi3δ
j
2δ

k
3 δ

l
3 + LS1,RR

dd
ssds

δi3δ
j
3δ

k
2 δ

l
3 + LS1,RR

dd
sssd

δi3δ
j
3δ

k
3 δ

l
2

+ LS1,RR
ud

uudd

δi1δ
j
1δ

k
2 δ

l
2 + LS1,RR

ud
uuds

δi1δ
j
1δ

k
2 δ

l
3 + LS1,RR

ud
uusd

δi1δ
j
1δ

k
3 δ

l
2 + LS1,RR

ud
uuss

δi1δ
j
1δ

k
3 δ

l
3

+ LS1,RR
uddu
uddu

δi1δ
j
2δ

k
2 δ

l
1 + LS1,RR

uddu
udsu

δi1δ
j
2δ

k
3 δ

l
1 + LS1,RR

uddu
usdu

δi1δ
j
3δ

k
2 δ

l
1 + LS1,RR

uddu
ussu

δi1δ
j
3δ

k
3 δ

l
1 ,

(C.9)

so that

Lijkl
6×6

=
1

4

[
LijklLRLR + LilkjLRLR + LkjilLRLR + LklijLRLR

]
,

Lijkl
3×3

=
1

4

[
LijklLRLR − LilkjLRLR − LkjilLRLR + LklijLRLR

]
. (C.10)

The couplings with different color structures, L̄6×6 and L̄3×3, can be obtained
from the expressions for L6×6 and L3×3 with the replacement LS1,RR

α → LS8,RR
α .

The four-quark operators in Eq. (4.6) then reproduce those in the original
Lagrangian, Eq. (4.1), after one takes into account the relations

LS1,RR
dd
prst

= LS1,RR
dd
stpr

, LS8,RR
dd
prst

= LS8,RR
dd
stpr

. (C.11)

C.4 Hadronic dimension-five and -six terms

The matrix elements that enter in the rotation angles αi discussed in Section 4.2.2
and their relations to the LECs discussed in Section 4.3, can be written as

⟨0|q̄pqr|0⟩ = −F 2
0Bδpr , ⟨0|q̄pσµνGAµνtAqr|0⟩ = −2F 2

0 B̄δpr ,

⟨0|(q̄LpγµqLr) (q̄RsγµqR t)8L×8R
|0⟩ = −F

4
0

4
A8×8

(
δptδrs −

1

3
δprδst

)
,

⟨0|(q̄LpγµtAqLr) (q̄RsγµtAqR t)8L×8R
|0⟩ = −F

4
0

4
Ā8×8

(
δptδrs −

1

3
δprδst

)
,

⟨0|(q̄LpqRr) (q̄LsqR t)3×3|0⟩ = −F
4
0

4
A3×3

δprδst − δptδrs
2

,

⟨0|(q̄LpqRr) (q̄LsqR t)6×6|0⟩ = −F
4
0

4
A6×6

δprδst + δptδrs
2

,
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⟨0|(q̄LptAqRr) (q̄LstAqR t)3×3|0⟩ = −F
4
0

4
Ā3×3

δprδst − δptδrs
2

,

⟨0|(q̄LptAqRr) (q̄LstAqR t)6×6|0⟩ = −F
4
0

4
Ā6×6

δprδst + δptδrs
2

. (C.12)

These relations hold after performing the basis transformation in Eq. (4.9) has
been performed. Here B, B̄, Ai, and Āi are low-energy constants which appear
in the chiral Lagrangian. Comparing with [295,323] we have,

B̄ = −B̃/gs ,

A8×8 = A1LR = −gππ4 , Ā8×8 =
1

2
A2LR − 1

2Nc
A1LR = −

[
1

2
gππ5 − 1

2Nc
gππ4

]
,

A6×6 = −gππ2 , Ā6×6 = −
[
1

2
gππ3 − 1

2Nc
gππ2

]
. (C.13)

The LECs of these four-quark operators can be determined from matrix el-
ements of the form ⟨(ππ)I=0,2|Oi|K0⟩ which have been computed on the lat-
tice [234, 324, 325]. Using chiral symmetry, the same LECs can be related to
matrix elements that play a role in neutrinoless double beta decay [297] or to the
bag factors appearing in K − K̄ oscillations [298], up to SU(3) corrections [326].
Using the results of Ref. [297] , we have

gππ2 = 2.0(0.2)GeV2 , gππ3 = −0.62(0.06)GeV2 ,

gππ4 = −1.9(0.2)GeV2 , gππ5 = −8.0(0.6)GeV2 , (C.14)

while A3×3 and Ā3×3 have not been computed. They are expected to be O(Λ2
χ)

by naive dimensional analysis [127,223] and we use the estimate A3×3 = Ā3×3 ≃
1GeV2 in numerical evaluations.

C.5 Chiral rotations

Here we give explicit expressions for the rotations discussed in Section 4.2.2.
Starting with the vev of the axion, we have a = ⟨a⟩+ aph with

⟨a⟩
fa

=− B̄

B
⟨iL5M

−1
0 + h.c.⟩+ F 2

0A8×8

2B

∑

i>j

(
1

mi

− 1

mj

)
A8×8 ImLijji

8×8
+

(
Lα → L̄α

Aα → Āα

)

+
F 2
0

B

∑

i≥j

(1− 1

2
δij)

(
1

mi

+
1

mj

)(
A3×3 ImLiijj

3×3
+A6×6 ImLiijj

6×6

)
. (C.15)
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The axion-independent parts of the rotation angles needed to align the vacuum
are given by

α3 =
m∗F

2
0

2Bmumdms

{
A3×3Im

[
(md −mu)L

2211
3×3 + (2ms +mu)L

3311
3×3 − (2ms +md)L

3322
3×3

]

+A6×6Im
[
(2ms +md)L

1111
6×6 − (2ms +mu)L

2222
6×6 + (mu −md)L

3333
6×6

+ (md −mu)L
2211
6×6 + (2ms +mu)L

3311
6×6 − (2ms +md)L

3322
6×6

]

+
1

2
A8×8Im

[
(2ms + 2mu −md)L

3223
8×8 − (4ms +md +mu)L

2112
8×8

− (2ms −mu + 2md)L
3113
8×8

]
+

2B̄

F 2
0

Im
[
(2ms +md)L

11
5 − (2ms +mu)L

22
5

+ (mu −md)L
33
5

]}
+ . . . ,

α7 + iα6 =
F 2
0

B(md +ms)

{
∑

i

[
A3×3

(
L23ii

3×3 −
(
L32ii

3×3

)∗)
+A6×6

(
L23ii

6×6 −
(
L32ii

6×6

)∗ )]

+
A8×8

2

∑

i

(
L2ii3

8×8 −
(
L3ii2

8×8

)∗ )
+

2B̄

F 2
0

[
L23

5 −
(
L32

5

)∗ ]
}

+ . . . ,

α8 =

√
3m∗F

2
0

2Bmumdms

{
A3×3Im

[
(md +mu)L

2211
3×3 −muL

3311
3×3 −mdL

3322
3×3

]

+A6×6Im
[
mdL

1111
6×6 +muL

2222
6×6 − (mu +md)L

3333
6×6

+ (md +mu)L
2211
6×6 −muL

3311
6×6 −mdL

3322
6×6

]

+
1

2
A8×8Im

[
(mu −md)L

2112
8×8 − (2mu +md)L

3223
8×8 − (2md +mu)L

3113
8×8

]

+
2B̄

F 2
0

Im
[
mdL

11
5 +muL

22
5 − (mu +md)L

33
5

]}
+ . . . , (C.16)

where the dots stand for analogous terms for the color-octet operators, with
Lα → L̄α, Aα → Āα, as well as axion-dependent contributions and higher-order
terms in 1/Λ. The remaining angles vanish, α1,2,4,5 = 0.

C.6 Meson-meson-axion couplings

As discussed in Section 4.3.4, the hadronic LEFT operators can induce CP-odd
interactions between the axions and mesons through the chiral Lagrangian of
Eq. (4.14). These interactions can arise both from the terms in Eq. (4.14) involv-
ing the LEFT Wilson coefficients, as well as from those involving ∼ χ. The former
arise after performing the U(1)A rotation that removes the aGG̃ term from the
Lagrangian, while the latter are induced once the αi rotations, needed for vac-
uum alignment, have been performed as well. Although the general expressions
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are fairly lengthy, the axion-meson interactions can be related to the somewhat
simpler contributions to the meson masses. These contributions to the meson
masses can be written as,

Lm =F 2
0

{
(t · π)ij(t · π)kl

[(
A3×3

Ljilk
3×3

− Llijk
3×3

2
+A6×6

Ljilk
6×6

+ Llijk
3×3

2
+ h.c.

)

−A8×8L
lijk
8×8

]
+ (t · π t · π)ij

[(
A3×3

Laaji
3×3

− Ljaai
3×3

2
+A6×6

Laaji
6×6

+ Ljaai
3×3

2
+ h.c.

)

+
A8×8

2

(
Laija

8×8
+ Ljaai

8×8

)
+

1

F 2
0

(
−B

(
Mq +M†

q

)
+ 2B̄

(
L5 + L†

5

))

ji

]}
,

(C.17)

with analogous terms for the L̄3×3,6×6,8×8 Wilson coefficients. Using the fact
that

π · t = 1√
2




π3√
2
+ π8√

6
π+ K+

π− − π3√
2
+ π8√

6
K0

K− K
0 −2 π8√

6


 , (C.18)

the contributions from a specific a given Wilson coefficient can then be read off.
These mass terms also allow one to obtain the axion-meson-meson interactions
after making the following replacements

Laπ2 =
m∗

2

a

fa
Lm

(
Mq → M̃q , Lα → L̃α

)
,

(
M̃q

)

ij
= i

m2
i + 6mimj +m2

j

mimj(mi +mj)

[
B̄

B
Lij

5 +
F 2
0A3×3

2B
Laaij

3×3
+
F 2
0A6×6

2B
Laaij

6×6
+
F 2
0A8×8

4B
Liaaj

8×8

]
,

L̃ij
5 = i

(
1

mi

+
1

mj

)
Lij

5 ,

L̃ijkl
3×3

6×6

= i

(
1

mi

+
1

mj

+
1

mk

+
1

ml

)
Lijkl

3×3

6×6

,

L̃ijkl
8×8

= i

(
1

mi

− 1

mj

− 1

mk

+
1

ml

)
Lijkl

8×8
. (C.19)

Note that these replacements do not change the flavor structure, so that the con-
tribution from a specific Wilson coefficient to the π2a interactions is determined
purely from its contribution to the meson masses and M̃q.



Appendix D

Density matrix formalism

D.1 Kinematics and partial-wave decomposition

We assume the nucleus has A nucleons, which in the initial state have total angular
momentum J , spin-projection M onto the z-axis, and isospin-projection MT ,
several isospins T may contribute in general. As an example, for 3He one has
A = 3, J = 1

2 ,MT = 1
2 , the dominant contribution comes from T = 1

2 , but isospin
breaking introduces small T = 3

2 contribution to the 3He wave function.
Additionally, we also assume that the scattering happens in the center of mass

frame of the nucleus-DM system. We denote the momentum of the incoming
(outgoing) nucleon as −k (−k′), and the incoming (outgoing) DM will have the
opposite momentum. The momentum of incoming DM chosen to lie along the
z-axis k = ke⃗z, which also the quantization axis for the spin-projections, and we
also assume the scattering is happening in x-z plane.The elastic scattering ensures
|k| = |k′|, and the transfer momentum into nucleus is q.

~p12

1

2

~p3

1

2

3
~p12

~q4

~p3
1

2

3

4
~p12

Figure D.1: Jacobi coordinates of the two-, three- and four-nucleon systems. The
relative momenta of the constituent nucleon is denoted by p and q. This figure is
taken from Ref. [101]

.

The most efficient Jacobi momentum coordinate to represent the few-body
wave function (A ≥ 4) are the hierarchical framework shown in Fig. D.1. We
always choose the (12) subsystem for the two-body operators and the last nu-
cleon (Ath) nucleon for the one-body operators. We label the momentum of the
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individual nucleons as k1,k2, . . ., which satisfies
∑
i ki = −k from conservation

of momentum.
For one-body densities, we define the momentum of the Ath nucleon as,

pA =
A− 1

A
kA − 1

A

A−1∑

i=1

ki, (D.1)

for 3He (A=3) nucleus,

p3 =
2

3
k3 −

1

3
(k1 + k2) = k3 +

1

3
k. (D.2)

The relative and total pair momenta of the (12) nucleon system is,

p12 =
1

2
(k1 − k2), k12 = k1 + k2. (D.3)

We will be focusing on 3He for the remaining discussions. We denote the spin-
projection state of 3He as |M⟩, where we suppress the labels of JMT and bound-
state energy. This state is the eigenstate for the nucleus at rest, total angular
momentum, and its z-component. We can define the wave function as,

ψα(p12p3) = ⟨p12p3α|M⟩ , (D.4)

where α represent the labels of orbital angular momentum (l) and spin (s) (com-
bined to give j), and isospin quantum numbers (t) of our Jacobi-momentum basis,

|α⟩ = |[(l12s12)j12(l3s3)j3]JM, (t12t3)TMT ⟩ . (D.5)

The labels of outgoing particles are primed. The states |M⟩ must be multiplied by
an eigenstate of the nuclear cm momentum operator to conserve the momentum.
In the non-relativistic case, this will result in the δ(3)(k−k′−q). These momentum
delta functions are not included in the following calculations for convenience.

D.2 One-body density

The relevant matrix element for one-body operator is,

⟨k′
3| ⟨l′3ml′

3 | ⟨s′3ms′
3 | ⟨t′3mt′

3 | Ô3(k, q) |t3mt
3⟩ |s3ms

3⟩ |l3ml
3⟩ |k3⟩

= δmt′

3 ,m
t
3
δ(3)(k′

3 − k3 − q)O3(m
s′

3 m
s
3m

t
3;k3;k, q). (D.6)

Here mt is conserved because the DM interaction does not change the charge of
the struck nucleon. Now we do a multipole expansion of the k3 dependence of
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the spin-isospin matrix elements in spherical coordinates up to the multipolarity
Kmax,

O3(m
s′
3 m

s
3m

t
3;k3;k, q) ≡

Kmax∑

K=0

K∑

κ=−K

√
4π

2K + 1
(k3)

KYKκ(k̂3)Õ3(m
s′
3 m

s
3m

t
3;Kκ;k, q),

(D.7)

where k̂3 is the unit vector of k3.
Now let us look at matrix element of Ô3 that we want to calculate

⟨M ′| Ô3(k, q) |M⟩ =
∑

αα′

∫
dp12 p

2
12 dp3 p

2
3 dp′12 p
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′
3)T

′M ′
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|p12p3, [l12s12]j12(l3)j3]JM, (t12t3)TMT ⟩ . (D.8)

Using Clebsch-Gordan coefficients ⟨j1m1, j2m2|j m⟩ we can explicitly decompose
α so as to separate the spin-isospin quantum numbers of the pair from those of
the third nucleon:

⟨M ′| Ô3(k, q) |M⟩ = (D.9)
∑
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Here we used identities from the spin projections: M = m3 +m12,MT = mt
3 +

mt
12, . . .. Now we expand the last term in the above equation using Eq. (D.6), the

momentum conserving delta function can be rewritten using Eq. (D.2) as

δ(3)(k′
3 − k3 − q) = δ(3)(p′

3 − p3 −
2

3
q) (D.11)

We further expand the last line of Eq. (D.10) by inserting the solid angles p̂3, p̂
′
3 of

the third particles’ momentum. Then we use the result in Eq. (D.7), and perform
the integrations and summations corresponding to the appropriate delta functions
to arrive at the final form
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where we define the one-body (transition) density by summing over those quantum
numbers that are not involved in the interaction:
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D.3 Two-body density

Now we will focus on the two-nucleon currents where DM interacts with the
nucleon pair (12). The relevant matrix operator is given by,
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The two-nucleon operator is usually represented in terms of partial-wave states,
which can be written as,
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Using Eq. (D.2) and Eq. (D.3) along with
∑
i ki = −k, we can rewrite the delta

function as,

δ(3)(k′
12 − k12 − q) = δ(3)(p3 − p′

3 −
1

3
q), (D.16)

we can use this delta function to integrate p3 while calculating the matrix element.
Now we can write the two-body matrix element following the same procedure as
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one-body matrix element and we get the factorization,
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(D.17)
where we define the two-body (transition) density as:
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Summary

In this thesis, we have traveled a few new paths in search of the true nature of
the Universe. However, unless you are already deep in the broad highway of high-
energy physics, it isn’t easy to follow all the details. This summary provides an
easy-to-understand version of the reasons for the paths I chose and the results I
discovered during my journey during my Ph.D.

Particle Physics

Particle physics is one of the current frontiers in the journey undertaken to ful-
fill human curiosity in finding the fundamental nature of our Universe. We took
the first step in this endeavor around 3000 BCE when ancient civilizations got
mesmerized by the night sky. These civilizations had a basic knowledge of the
Moon, Sun and other stars. They both marveled at these heavenly bodies, and
their desire to understand these heavenly bodies led to the branch of Astronomy.
Human curiosity to understand the world we live in led to the independent devel-
opment of science around the globe. By 13th century, scientists started to gather
at universities to share their observations and findings. By the 17th century, this
developed into modern science and the scientific method: make observations, an-
alyze them, formulate a mathematical theory to explain the observations, and
predict future observations. If the predictions fail, repeat the process by account-
ing for the failure. We can broadly separate two branches of modern physics:
theory and experiments. Theorists often come up with new ideas and theories
and various ways to test them. Experimentalists test these ideas/theories in the
lab and provide evidence to support or disprove the theoretical models. If they
support the theory, then theorists make more predictions to test at the lab, and if
the theory is successful in all these tests, then we are one step closer to unraveling
the true nature of the Universe. If the experiments disprove the theory, then
theorists work on a new model with the added knowledge of the previous model’s
failure to develop a better theoretical model. This interplay between these two
branches is key in advancing this far in our quest to understand the true nature
of the Universe. This thesis falls into the theory category and combines various
experimental results to arrive at the results.
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Figure 2: The constituents of Standard Model of particle physics. The gluons,
W and Z bosons, and photons mediate the strong, weak, and electromagnetic
interactions. The Higgs boson gives mass to the elementary particles.

Another approach to learning about the Universe is by figuring out the fun-
damental building blocks of matter. We believed atoms were the fundamental
particles. However, more precise measurements indicated that atoms are made
up of a positively charged nucleus, which, in turn, is made up of protons and neu-
trons and surrounded by a cloud of electrons. Moreover, common sense did not
seem to work at this length/energy scale and led to the invention of quantum me-
chanics. By colliding atoms at higher energies, we were able to see smaller length
scales (or higher energy scales) and found hundreds of particles called hadrons. It
turned out that these particles themselves are made up of more fundamental par-
ticles called quarks. For example, protons and neutrons are members of baryons,
which are hadrons composed of three quarks. Particle physics is the branch of
physics that studies the nature of all these subatomic particles. By analyzing
various subatomic phenomena, we came up with the Standard Model (SM) of
particle physics. The constituents of the SM are given in Fig. 2. The Standard
Model successfully explains the electromagnetic, weak and strong interactions,
and essentially all subatomic phenomena to a high degree of accuracy.

Beyond the Standard Model

We now know that SM is not the final destination in our search for the fun-
damental building blocks of nature. It fails to explain gravity, which is best
described by Einstein’s general theory of relativity. It also fails to explain the
matter-antimatter asymmetry, the nature of dark matter, and the masses of the
neutrinos. All this indicates the existence of new physics that lies beyond the
Standard Model (BSM). Antimatter is similar to matter but with opposite charge.
When matter and antimatter particles interact, they destroy one another, releas-
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ing a significant quantity of energy. The bulk of the Universe’s mass is made up
of dark matter, a mystery element. It makes up around 85% of the Universe’s
total matter, whereas regular matter, like stars and planets, only accounts for
15%. Dark matter is not visible to telescopes and other devices because it does
not emit, absorb, or reflect any light or other types of electromagnetic radiation,
unlike regular matter that humans can see and interact with, such as stars and
galaxies.

There are two main approaches on the theoretical front to address BSM physics.
These are the model-dependent approach and model-independent approach. In
the model-dependent approach, we start with a theoretical model with a handful
of parameters (or constants). For example, Newton’s law of gravitation has the
parameter G, the gravitational constant. This approach has the benefit of making
predictions and providing a unique signature that can be tested in experiments.
However, the primary limitations come from the assumptions of the model, which
can be wrong and thereby overlook the underlying physics. A successful example
of this approach is Kepler’s laws, verified by the experimental data.

On the other hand, the model-independent approach focuses on directly mea-
suring and analyzing experimental data and extracts the underlying physics. The
main advantage is that any biased assumptions do not limit this approach, and
the comprehensive view of the data could lead to a comprehensive understanding
of the new physics. However, this approach needs a large set of parameters, which
makes interpreting data difficult and slows down progress. Therefore, this method
is best used when the underlying physics is poorly understood. An example of
this approach is using the observations of galaxy rotations and their velocities
to determine the mass of the galaxy without relying on any specific model. In
this thesis, I adopt the model-independent approach to study dark matter, and a
proposed BSM particle called the axion.

Quantum field theories (QFTs) form an important tool in the manufacturing
process of fundamental theories. From a theoretical point of view, particles are
the quantum excitation of the quantum fields. This makes quantum fields more
fundamental than particles. A key feature of all fundamental theories are they are
constrained by a set of local and global symmetries. These symmetries manifest
in nature as conservation laws. For example, the conservation of electric charge is
the consequence of local symmetry. The main obstacle in making BSM models is
that we do not yet know the new physics’s symmetries or conservation laws. If CP
was a good symmetry of nature, then there would have been an equal number of
matter and antimatter particles. Similar to having an equal number of positively
and negatively charged particles, making the electric charge a conserved quantity.
However, nature chooses to prefer matter over antimatter. This matter-antimatter
asymmetry implies that the CP symmetry is violated in theory. The CP symmetry
is the combination of charge conjugation (C) and parity (P ) symmetry. If the
former is true, then nature would not get affected if we replace particles with
their antiparticles. If the latter is true, then nature has the same preference for
physical processes and their mirror image processes.
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The CP symmetry states that the physical laws should remain unchanged if
a particle’s charge is reversed and its spatial coordinates are inverted (i.e. left
becomes right and vice versa). It means that if we swap the positions of all
particles with the opposite charge and the opposite handedness, everything will
look the same as before. If it is still hard to visualize, consider a toy with blue
color on one side and red color on the other side. If you flip the top over, it looks
the same to nature given CP is a good symmetry.

Even though SM contains CP violation, it can not account for all the observed
matter-antimatter asymmetry. This is clear evidence that new physics has CP
violating sources. The only source of CP violation in the strong sector of SM is
the θ̄ term. The experimental evidence indicates that the strength of this term is
1010 times smaller than we expected. Even though nothing is wrong with this, it
could be a consequence of BSM physics that we are yet to discover. This is called
the strong CP problem. A popular solution to this problem is the existence of
a BSM particle called the axion, even though we have yet to obtain any direct
evidence. In this thesis, I investigate the effects of CP violating BSM sources on
nuclear forces and axions.

Effective field theories

Do we need to know what happens at the fundamental level to describe the phys-
ical phenomena around us? The answer is not really. However, the microscopic
effects do have macroscopic consequences. For example, the energy of water
molecules determines whether the water exists in a solid, liquid, or gaseous state.
Once we determine the macroscopic laws based on the macroscopic observations,
we no longer need to care about the microscopic laws. This is because of a feature
of nature called decoupling. It states that physics at a given energy (length) scale
has almost no influence over physics at a different energy (length) scale. This is
why engineers do not consider atomic theory or particle physics when designing
and constructing bridges and houses. Effective field theories (EFTs) are based on
this feature of nature.

The search for BSM physics happens in mainly three frontiers. The first one
is the high energy frontier, where we collide protons/neutrons traveling almost at
the speed of light. Next, the high-precision frontier includes high-precision atomic
and nuclear experiments, and finally, the cosmological and astrophysical frontier
covers galaxies and the aftereffects of the big bang. It became inconvenient to use
a theory tailor-made in one energy scale to describe the phenomena happening at
a wide range of energies. For example, chemists do not need to know about the
existence of quarks for their work.

EFTs are powerful theoretical tools to describe phenomena at a given energy
scale in a model-independent way. We choose an energy scale and a problem we
want to study, then follow the general recipe to make the EFT. This recipe is
outlined with an example in Chapter 2. The trade-off for model independence is
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that we have to deal with many constants, called low energy constants (LECs),
which must be determined from the data. However, EFTs come with a built-in
mechanism to handle this. This mechanism comprises expansion parameters and
a power counting rule. We can think of an EFT calculation similar to a power

series expansion for easier visualization. Consider ex = 1 + x+ x2

2! +
x3

3! +O(x4),
in this context x is analogous to the expansion parameter, 1

n! corresponds to the
LECs. Power counting rules determine how many operators come in O(xn). The
results are commonly denoted as the leading order (LO), next-to-the-leading order
(NLO), next-to-the-next-to-the leading order (N2LO), and so on as we go higher
in the power of expansion parameters and thereby higher in accuracy.

In this thesis, I chose high-precision frontier experiments involving nucleons,
atoms, or light particles like pions (pions are members of mesons, which are
hadrons composed of one quark and one anti-quark). Since nucleons originate
from the strong interaction of quarks, I used an EFT based on quantum chromo
dynamics (QCD), which describes the strong interaction, commonly known as
chiral perturbation theory (χPT). χPT is based on the chiral symmetry of the
QCD, which states that the laws of physics are the same for objects that are
mirror images of each other, but the objects themselves cannot be superimposed
onto each other. For example, consider left and right gloves. Both are mirror
images of each other but cannot be worn in the wrong hand. In QCD, this
symmetry is violated by the masses of quarks. However, chiral symmetry is a good
approximation for light quarks, and χPT can describe the interactions of particles
composed of light quarks to a good approximation. χPT provides a systematic,
low-energy approximation to the underlying theory (QCD) that describes the
interactions of subatomic particles like nucleons and pions.

Results

In Chapter 3, we investigated the renormalization of the CP -violating nuclear
force using χPT. In QFT, we consider particles as point-like objects, leading to
infinities in the calculation. Regularization is a mathematical procedure used to
remove these infinities by introducing a cut-off, which regulates the behavior of
infinite quantities. This makes the observables finite values, and this arbitrary
cut-off is removed in the final step of the calculation. This process is called
renormalization. Renormalization is a necessary condition for all QFTs describing
physical phenomena. In an EFT, renormalization is achieved in every order in
the expansion parameter. If the theory is renormalized and the regulator is above
the relevant energy scale, then the observables should be regulator independent.

Our results revealed that the CP -violating observable ϵ0SP displays an oscilla-
tory behavior and even changes sign as a function of regulator, thereby confirming
that CP -violating nuclear force is not properly renormalized. This indicates a
missing contact term (or counter term) at the LO to absorb the infinities. Since
the power counting rule of an EFT determines the terms for any given order,
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our results point to the failure of the power counting rule. Therefore, we fixed
the power counting rule by promoting a higher order contact term to the LO.
We confirmed that this added term restores the regulator independence of ϵ0SP.
However, given the absence of experimental data, there is no direct way to obtain
the low energy constant (LEC) associated with this counter term. Therefore, we
proposed a novel solution to calculate the LEC indirectly. Our results will im-
pact the current calculations of electric dipole moment (EDM) and other searches
for CP -violating BSM physics, which neglect this LO term. We plan to expand
on this project by calculating 3He EDM with the counter term and checking its
cut-off dependence.

In Chapter 4, we studied the CP -violating axion interaction in effective field
theory. We start with the most general CP -violating sources in the low energy ef-
fective field theory framework (LEFT) up to two orders in expansion parameter.
This popular EFT in particle physics describes physics below the electroweak
symmetry-breaking scale. Then we used χPT to calculate CP -violating axion-
baryons, -mesons, and -leptons interactions. For easier interpretation of experi-
mental results, we narrowed our focus to CP -violating interaction between axion
and nucleons, pions, and electrons. Next, we studied a wide range of experiments
searching for CP -violating axion interactions and summarized the constraints im-
posed by these experiments on the CP -violating BSM parameters. The EDM
experiments set the most stringent constraints, and the projected Axion Reso-
nant InterAction Detection Experiment could compete with EDM experiments in
a limited range of parameter space. Finally, we translated our EFT results to a
few BSM models, such as leptoquarks and the left-right symmetric model.

In the future, we plan to use our results to study the flavor violating CP -
violating processes like kaon to pion decay, muon to electron conversions, and
so on. Since axions satisfy the criteria for a dark matter (DM) candidate, we
plan to study the implications of our results for DM axion. We found that the
CP -violating interactions of DM axion lead to time-varying oscillations in the fine
structure constant and the masses of nucleons and electrons. The oscillation of
the fine structure constant leads to oscillations of energy levels of atoms, which
can be searched in atomic clock experiments. The DM axion-photon can induce a
time-varying potential for ions in ion-trap experiments, providing a novel addition
to axion searches.

In Chapter 5, we studied the dark matter scattering off 4He through scalar
interactions. Scalar interactions are interesting because it does not depend on
the spin of the nuclei and scales as the number of nucleons in the nuclei. We
focused on 4He because of the proposed 4He DM detectors and 4He have binding
energy comparable to heavier isotopes used in other DM detectors. We started
with a scalar DM-quark and -gluon interactions and translated it to scalar DM-
nucleon and -pion interactions using χPT. We calculated DM-nucleon scattering
amplitudes for 2H, 3He, and 4He nuclei up to NLO. The NLO contributions can
be divided into two parts: the radius (or one-body) correction, which involves
scattering with one nucleon, and two-body corrections, which involves scattering
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with two nucleons. We included up to N5LO nuclear wave functions to check the
convergence of our results with increasing order in the wave function. We found
that the NLO contributions only change the LO results by a few percent. The
most interesting results were the NLO two-body corrections displayed a significant
cut-off dependence. We strongly suspect this points to the failure of the power
counting rule at the NLO level. The linear correlation between two-body currents
and the D-wave probability of the wave functions provides further evidence for this
hypothesis since D-wave probability is not a physical observable. We suspect that
promoting a higher-order contact term to NLO could restore the renormalization.
However, further studies are required to confirm this hypothesis. We plan to
study spin-dependent DM-nuclei scattering in the future.





Nederlandse samenvatting

In dit proefschrift hebben we een aantal nieuwe wegen bewandeld op zoek naar
de ware aard van het heelal. Tenzij je al diep in de brede snelweg van hoge-
energiefysica zit, is het niet eenvoudig om alle details te volgen. Deze samenvatting
is een gemakkelijk te begrijpen versie van de redenen voor de paden die ik heb
gekozen en de resultaten die ik ontdekte tijdens mijn reis tijdens mijn Ph.D.

Deeltjesfysica

Deeltjesfysica is een van de huidige grenzen in de reis die wordt ondernomen om
de menselijke nieuwsgierigheid naar het vinden van de fundamentele aard van
ons universum te bevredigen. Men zette de eerste stap in dit streven rond 3000
v.Chr. toen oude beschavingen betoverd raakten door de nachtelijke hemel. Deze
beschavingen hadden een basiskennis van de maan, de zon en andere sterren.
Ze verwonderden zich beiden over deze hemellichamen en hun verlangen om deze
hemellichamen te begrijpen, leidde tot de wetenschap van de astronomie. Menseli-
jke nieuwsgierigheid om de wereld waarin we leven te begrijpen, heeft geleid tot
de onafhankelijke ontwikkeling van wetenschap over de hele wereld. Rond de
13e eeuw kwamen wetenschappers bijeen op universiteiten om hun observaties
en bevindingen te delen. Tegen de 17e eeuw ontwikkelde dit zich tot moderne
wetenschap en de wetenschappelijke methode: voer waarnemingen uit, analyseer
ze, formuleer een wiskundige theorie om de waarnemingen te verklaren en voor-
spel toekomstige waarnemingen. Als de voorspellingen mislukken, herhaalt u het
proces door rekening te houden met de mislukking. We kunnen grofweg twee
takken van de moderne natuurkunde scheiden: theorie en experimenten. Theo-
retici bedenken vaak nieuwe ideeën en theorieën en verschillende manieren om ze
te testen. Experimentalisten testen deze ideeën/theorieën in het laboratorium en
leveren bewijs om de theoretische modellen te ondersteunen of te weerleggen. Als
ze de theorie ondersteunen, doen theoretici meer voorspellingen om in het lab te
testen, en als de theorie in al deze tests slaagt, zijn we een stap dichter bij het
ontrafelen van de ware aard van het heelal. Als de experimenten de theorie weer-
leggen, werken theoretici aan een nieuw model met de toegevoegde kennis van het
falen van het vorige model om een beter theoretisch model te ontwikkelen. Dit
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Figure 3: De bestanddelen van het Standaard Model van deeltjesfysica. De gluo-
nen, W en Z bosonen en fotonen bemiddelen de sterke, zwakke en elektromagnetis-
che interacties. Het Higgs-deeltje geeft massa aan de elementaire deeltjes.

samenspel tussen deze twee wetenschappelijke takken is de sleutel om zo ver te
komen in onze zoektocht om de ware aard van het universum te begrijpen. Dit
proefschrift valt in de categorie theorie en combineert verschillende experimentele
resultaten om tot de resultaten te komen.

Een andere benadering om meer te weten te komen over het heelal, is door de
fundamentele bouwstenen van de materie nader te onderzoeken. Men geloofde dat
atomen de fundamentele deeltjes waren. Nauwkeurigere metingen gaven echter
aan dat atomen zijn opgebouwd uit een positief geladen kern, die op zijn beurt is
opgebouwd uit protonen en neutronen en is omgeven door een wolk van elektronen.
Bovendien leek gezond verstand niet te werken op deze lengte-/energieschaal en
leidde dit tot de uitvinding van de kwantummechanica. Door atomen met hogere
energieën te laten botsen, konden we kleinere lengteschalen (of hogere energi-
eschalen) zien en vonden we honderden deeltjes die hadronen worden genoemd.
Het bleek dat deze deeltjes zelf zijn opgebouwd uit meer fundamentele deeltjes
die quarks worden genoemd. Protonen en neutronen zijn bijvoorbeeld leden van
baryonen, dit zijn hadronen die zijn samengesteld uit drie quarks. Deeltjesfys-
ica is de tak van de natuurkunde die de aard van al deze subatomaire deeltjes
bestudeert. Door verschillende subatomaire fenomenen te analyseren, kwamen
we tot het Standaard Model (SM) van de deeltjesfysica. De bestanddelen van
het SM worden gegeven in Fig. 3. Het standaardmodel verklaart met succes de
elektromagnetische, zwakke en sterke interacties, en in wezen alle subatomaire
verschijnselen met een hoge mate van nauwkeurigheid.
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Voorbij het standaardmodel

We weten nu dat het SM niet de eindbestemming is in onze zoektocht naar de
fundamentele bouwstenen van de natuur. Het verklaart de zwaartekracht niet,
die het best beschreven kan worden door de algemene relativiteitstheorie van Ein-
stein. Het kan ook de asymmetrie tussen materie en antimaterie, de aard van
donkere materie en de massa’s van de neutrino’s niet verklaren. Dit alles duidt
op het bestaan van nieuwe fysica die buiten het Standaard Model (BSM) ligt.
Antimaterie lijkt op materie, maar heeft een tegenovergestelde lading. Wanneer
materie en antimaterie met elkaar in aanraking komen, vernietigen ze elkaar, waar-
bij een significante hoeveelheid energie vrijkomt. Het merendeel van de massa in
het universum bestaat uit donkere materie, een geheimzinnig onderdeel. Het is
verantwoordelijk voor 85% van alle materie in het universum, terwijl normale ma-
terie, zoals sterren en planeten, slechts voor 15% bijdragen. Donkere materie is
niet zichtbaar voor telescopen en andere meetapparatuur, omdat het geen licht,
of enkele andere vorm van elektromagnetische straling, uitzendt, absorbeert of re-
flecteert. Dit geldt niet voor normale materie die mensen wel kunnen waarnemen,
zoals de sterren en sterrenstelsels.

Er zijn twee hoofdbenaderingen op het theoretische front om BSM-fysica aan
te pakken. Dit zijn de modelafhankelijke benadering en modelonafhankelijke be-
nadering. Bij de modelafhankelijke benadering vertrekken we van een theoretisch
model met een handvol parameters (of constanten). De zwaartekrachtwet van
Newton heeft bijvoorbeeld de parameter G, de zwaartekrachtconstante. Deze be-
nadering heeft het voordeel dat er voorspellingen worden gedaan en dat er een
unieke signatuur ontstaat die in experimenten kan worden getest. De primaire
beperkingen komen echter voort uit de aannames van het model, die verkeerd
kunnen zijn en daardoor de onderliggende fysica over het hoofd zien. Een suc-
cesvol voorbeeld van deze benadering zijn de wetten van Kepler, geverifieerd door
de experimentele gegevens.

Aan de andere kant richt de modelonafhankelijke benadering zich op het direct
meten en analyseren van experimentele gegevens en extraheert de onderliggende
fysica. Het belangrijkste voordeel is dat vooringenomen aannames deze benader-
ing niet beperken, en het uitgebreide overzicht van de gegevens kan leiden tot een
alomvattend begrip van de nieuwe fysica. Deze aanpak vereist echter een groot
aantal parameters, wat het interpreteren van gegevens bemoeilijkt en de voort-
gang vertraagt. Daarom kan deze methode het beste worden gebruikt wanneer de
onderliggende fysica slecht wordt begrepen. Een voorbeeld van deze benadering
is het gebruik van de waarnemingen van de rotaties van sterrenstelsels en hun
snelheden om de massa van de melkweg te bepalen zonder te vertrouwen op een
specifiek model. In dit proefschrift pas ik de modelonafhankelijke benadering toe
om donkere materie te bestuderen, en een voorgesteld BSM-deeltje genaamd het
axion.

Kwantumveldentheorieën (QFT’s) vormen een belangrijk hulpmiddel in het
fabricageproces van fundamentele theorieën. Vanuit theoretisch oogpunt zijn
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deeltjes de kwantumexcitatie van de kwantumvelden. Dit maakt kwantumvelden
fundamenteler dan deeltjes. Een belangrijk kenmerk van alle fundamentele theo-
rieën is dat ze worden beperkt door een reeks lokale en globale symmetrieën. Deze
symmetrieën manifesteren zich in de natuur als behoudswetten. Het behoud van
elektrische lading is bijvoorbeeld het gevolg van een lokale symmetrie. Het belan-
grijkste obstakel bij het maken van BSM-modellen is dat we de symmetrieën of
behoudswetten van de nieuwe natuurkunde nog niet kennen. Als CP een geldige
symmetrie was geweest in de natuur, dan zou er een gelijk aantal materie- en
antimateriedeeltjes zijn geweest. Net zoals een gelijk aantal positieve en nega-
tive geladen deeltjes het ladingsgetal behouden maakt. Deze materie-antimaterie
asymmetrie houdt in dat de CP symmetrie in theorie geschonden wordt. De CP
symmetrie is de combinatie van ladingsconjugatie (C) en pariteitssymmetrie (P ).
Als het eerst genoemde waar is, dan zou de natuur niet worden aangetast als
we deeltjes vervangen door hun antideeltjes. Als het laatst genoemde waar is,
dan eeft de natuur dezelfde voorkeur voor fysische processen en hun spiegelbeeld
processen.

De CP symmetrie stelt dat de fysische wetten onveranderd moeten blijven als
de lading van een deeltje wordt omgekeerd en de ruimtelijke coördinaten worden
omgekeerd (d.w.z. links wordt rechts en vice versa). Het betekent dat als we de
posities van alle deeltjes met de tegenovergestelde lading en de tegenovergestelde
handigheid verwisselen, alles er hetzelfde uit zal zien als voorheen. Als het nog
steeds moeilijk te visualiseren is, overweeg dan speelgoed met een blauwe kleur
aan de ene kant en een rode kleur aan de andere kant. Als je de bovenkant
omdraait, lijkt hetzelfde voor de natuur, gegeven dat CP een goede symmetrie is.

Ook al bevat het SM CP -symmetry schending, het kan niet alle waargenomen
materie-antimaterie asymmetrie verklaren. Dit is een duidelijk bewijs dat nieuwe
fysica bronnen heeft die CP schenden. De enige bron van CP schending in de
sterke sector van het SM is de θ̄ term. Het experimentele bewijs geeft aan dat de
kracht van deze term 1010 keer kleiner is dan we hadden verwacht. Ook al is hier
niets mis mee, het zou een gevolg kunnen zijn van BSM-fysica die we nog moeten
ontdekken. Dit wordt het sterke CP -probleem genoemd. Een populaire oplossing
voor dit probleem is het bestaan van een BSM-deeltje, het axion genaamd, hoewel
we nog geen direct bewijs hebben. In dit proefschrift onderzoek ik de effecten van
CP schendende BSM-bronnen op nucleaire krachten en axions.

Effectieve veldentheorieën

Moeten we weten wat er op het fundamentele niveau gebeurt om de fysieke ver-
schijnselen om ons heen te beschrijven? Het antwoord is niet echt. De microscopis-
che effecten hebben echter wel macroscopische gevolgen. De energie van water-
moleculen bepaalt bijvoorbeeld of het water in een vaste, vloeibare of gasvormige
toestand bestaat. Zodra we de macroscopische wetten hebben bepaald op ba-
sis van de macroscopische waarnemingen, hoeven we ons niet langer druk te
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maken om de microscopische wetten. Dit komt door een eigenschap van de natuur
genaamd ontkoppeling. Het stelt dat fysica op een gegeven energie(lengte)schaal
bijna geen invloed heeft op fysica op een andere energie(lengte)schaal. Daarom
houden ingenieurs geen rekening met atoomtheorie of deeltjesfysica bij het on-
twerpen en bouwen van bruggen en huizen. Effectieve veldtheorieën (EFT’s) zijn
gebaseerd op dit kenmerk van de natuur.

De zoektocht naar BSM-fysica gebeurt op voornamelijk drie fronten. De eerste
is het hoge-energie front, waar we protonen/neutronen laten botsen die bijna
met de snelheid van het licht reizen. Vervolgens omvat het hoge-precisie front
de uiterst nauwkeurige atoom- en kernexperimenten, en tot slot omvatten de
kosmologische en astrofysische fronten sterrenstelsels en de nawerkingen van de
oerknal. Het werd onhandig om een op maat gemaakte theorie in één energieschaal
te gebruiken om de verschijnselen te beschrijven die plaatsvinden bij een breed
scala aan energieën. Zo hoeven scheikundigen voor hun werk niets af te weten
van het bestaan van quarks.

EFT’s zijn krachtige theoretische hulpmiddelen om fenomenen op een bepaalde
energieschaal op een modelonafhankelijke manier te beschrijven. We kiezen een
energieschaal en een probleem dat we willen bestuderen, en volgen dan het al-
gemene recept om de EFT te maken. Dit recept wordt geschetst met een voor-
beeld in Hoofdstuk 2. De afweging voor modelonafhankelijkheid is dat we te
maken hebben met veel constanten, lage-energieconstanten (LEC’s) genoemd, die
uit de gegevens moeten worden bepaald. EFT’s hebben echter een ingebouwd
mechanisme om hiermee om te gaan. Dit mechanisme omvat uitbreidingsparame-
ters en een regel voor het tellen van machten in macht-reeksen. We kunnen denken
aan een EFT-berekening die vergelijkbaar is met een machtreeksuitbreiding voor

eenvoudigere visualisatie. Beschouw ex = 1 + x + x2

2! +
x3

3! +O(x4), in deze con-
text is x analoog aan de uitbreidingsparameter, 1

n! komt overeen met de LEC’s.
Macht-reeks regels bepalen hoeveel operatoren er in O(xn) voorkomen. De resul-
taten worden gewoonlijk aangeduid als de leidende volgorde (LO), volgende-aan-
de-leidende volgorde (NLO), volgende-aan-de-volgende-aan-de-leidende volgorde
(N2LO), enzovoort als we hoger gaan in de kracht van uitbreidingsparameters en
daardoor hoger in nauwkeurigheid.

In dit proefschrift heb ik gekozen voor hoge-precisie front grensexperimenten
met nucleonen, atomen of lichtdeeltjes zoals pionen (pionen zijn leden van meso-
nen, dit zijn hadronen die zijn samengesteld uit één quark en één antiquark).
Omdat nucleonen voortkomen uit de sterke interactie van quarks, heb ik een EFT
gebruikt op basis van kwantumchromodynamica (QCD), die de sterke interac-
tie beschrijft, algemeen bekend als de chirale perturbatietheorie (χPT). χPT is
gebaseerd op de chirale symmetrie van de QCD, die stelt dat de wetten van de
fysica hetzelfde zijn voor objecten die elkaars spiegelbeeld zijn, maar dat de ob-
jecten zelf niet op elkaar kunnen worden gelegd. Denk bijvoorbeeld aan linker- en
rechterhandschoenen. Beide zijn spiegelbeelden van elkaar maar kunnen niet in
de verkeerde hand gedragen worden. In QCD wordt deze symmetrie geschonden
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door de massa’s van de quarks. Chirale symmetrie is echter een goede benadering
voor lichte quarks, en χPT kan de interacties beschrijven van deeltjes die zijn
samengesteld uit lichte quarks tot een goede benadering. χPT biedt een sys-
tematische, lage-energie benadering van de onderliggende theorie (QCD) die de
interacties van subatomaire deeltjes zoals nucleonen en pionen beschrijft.

Resultaten

In Hoofdstuk 3, onderzochten we de renormalisatie van de CP -symmetrie-schendend
- kernkracht met behulp van χPT. In QFT beschouwen we deeltjes als pun-
tachtige objecten, wat leidt tot oneindigheden in de berekening. Regularisatie is
een wiskundige procedure die wordt gebruikt om deze oneindigheden te verwi-
jderen door een grens te introduceren, die het gedrag van oneindige hoeveelheden
regelt. Dit maakt de waarneembare waarden eindig en deze willekeurige grens
wordt verwijderd in de laatste stap van de berekening. Dit proces wordt renor-
malisatie genoemd. Renormalisatie is een noodzakelijke voorwaarde voor alle
QFT’s die fysieke verschijnselen beschrijven. Bij een EFT wordt renormalisatie
bereikt in elke orde in de uitbreidingsparameter. Als de theorie opnieuw is genor-
maliseerd en de regulator boven de relevante energieschaal ligt, dan zouden de
waarneembare gegevens regulatoronafhankelijk moeten zijn.

Onze resultaten onthulden dat de CP -symmetrie-schendend observabele ϵ0SP
een oscillerend gedrag vertoont en zelfs van teken verandert als functie van de
regulator, waarmee wordt bevestigd dat CP -symmetrie-schendend - kernkracht
niet correct is gerenormaliseerd. Dit duidt op een ontbrekende contactterm (of
tegenterm) bij de LO om de oneindigheden op te vangen. Aangezien de machttel-
regel van een EFT de termen voor een bepaalde orde bepaalt, wijzen onze re-
sultaten op het falen van de machttel-regel. Daarom fixeerden we de machttel-
regel door een contactterm van hogere orde te promoten bij de LO. We hebben
bevestigd dat deze toegevoegde term de regulator-onafhankelijkheid van ϵ0SP her-
stelt. Gezien de afwezigheid van experimentele gegevens, is er echter geen directe
manier om de lage energieconstante (LEC) te verkrijgen die bij deze tegenterm
hoort. Daarom hebben we een nieuwe oplossing voorgesteld om de LEC indirect
te berekenen. Onze resultaten zullen van invloed zijn op de huidige berekenin-
gen van het elektrisch dipoolmoment (EDM) en andere zoektochten voor CP -
symmetrie-schendend BSM-fysica, die deze LO-term verwaarlozen. We zijn van
plan dit project uit te breiden door 3He EDM te berekenen met de tegenterm en
de grensafhankelijkheid ervan te controleren.

In Hoofdstuk 4, bestudeerden we de CP -symmetrie-schendend axion-interactie
in effectieve veldtheorie. We beginnen met de meest algemene CP -symmetrie-
schendend-bronnen in het lage energie effectieve veldentheorie framework (LEFT)
tot twee orden in uitbreidingsparameter. Deze populaire EFT in de deeltjesfysica
beschrijft de fysica onder de elektrozwakke symmetrie-brekingsschaal. Daarna
gebruikten we χPT om CP -symmetrie-schendend axion-baryonen, -mesonen en
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-leptonen interacties te berekenen. Om de experimentele resultaten gemakkeli-
jker te kunnen interpreteren, hebben we onze focus beperkt tot CP -symmetrie-
schendend - interactie tussen axion en nucleonen, pionen en elektronen. Ver-
volgens bestudeerden we een breed scala aan experimenten op zoek naar CP -
symmetrie-schendend axion-interacties en vatten we de beperkingen samen die
deze experimenten oplegden aan de CP -symmetrie-schendend BSM-parameters.
De EDM-experimenten stelden de strengste beperkingen en het geprojecteerde
Axion Resonant InterAction Detection Experiment zou kunnen concurreren met
EDM-experimenten in een beperkt bereik van parameterruimte. Ten slotte hebben
we onze EFT-resultaten vertaald naar enkele BSM-modellen, zoals leptoquarks en
het links-rechts symmetrische model.

In de toekomst zijn we van plan om onze resultaten te gebruiken om de smaak-
schendende CP -symmetrie-schendend - processen te bestuderen, zoals kaon naar
pion-verval, muon naar elektron-conversies, enzovoort. Aangezien axions voldoen
aan de criteria voor een kandidaat voor donkere materie (DM), zijn we van plan
de implicaties van onze resultaten voor DM-axion te bestuderen. We ontdekten
dat de CP -symmetrie-schendend - interacties van DM-axion leiden tot in de tijd
variërende oscillaties in de fijne structuurconstante en de massa’s van nucleonen
en elektronen. De oscillatie van de fijne structuurconstante leidt tot oscillaties
van energieniveaus van atomen, die kunnen worden doorzocht in atoomklokex-
perimenten. Het DM-axion-foton kan een in de tijd variërend potentiaal voor
ionen in ion-trap-experimenten induceren, wat een nieuwe toevoeging vormt aan
axion-zoektochten.

In Hoofdstuk 5, bestudeerden we de verstrooiing van donkere materie tegen
4He door middel van scalaire interacties. Scalaire interacties zijn interessant om-
dat het niet afhankelijk is van de spin van de kernen en schalen als het aantal
nucleonen in de kernen. We hebben ons gericht op 4He vanwege de voorgestelde
4He DM-detectoren en 4He heeft een bindingsenergie die vergelijkbaar is met
zwaardere isotopen die in andere DM-detectoren worden gebruikt. We zijn be-
gonnen met een scalaire DM-quark- en -gluon-interacties en hebben dit vertaald
naar scalaire DM-nucleon- en -pion-interacties met behulp van χPT. We berek-
enden DM-nucleonverstrooiingsamplitudes voor 2H, 3He en 4He kernen tot aan
NLO. De NLO-bijdragen kunnen in twee delen worden verdeeld: de radiuscorrec-
tie (of eenlichaamscorrectie), waarbij verstrooiing met één nucleon plaatsvindt,
en tweelichaamscorrecties, waarbij verstrooiing met twee nucleonen plaatsvindt.
We hebben maximaal N5LO nucleaire golffuncties opgenomen om de convergen-
tie van onze resultaten met toenemende orde in de golffunctie te controleren.
We hebben geconstateerd dat de NLO-bijdragen de LO-uitkomsten slechts met
enkele procenten veranderen. De meest interessante resultaten waren dat de NLO
tweelichaamscorrecties correcties een significante afkapafhankelijkheid lieten zien.
We hebben sterk het vermoeden dat dit wijst op het falen van de machttel-regel op
NLO-niveau. De lineaire correlatie tussen tweelichaamsstromen en de D-golfkans
van de golffuncties levert verder bewijs voor deze hypothese, aangezien de D-
golfkans niet fysiek waarneembaar is. We vermoeden dat het promoten van een
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contactterm van hogere orde voor NLO de renormalisatie zou kunnen herstellen.
Verdere studies zijn echter nodig om deze hypothese te bevestigen. We zijn van
plan om in de toekomst spin-afhankelijke DM-kernverstrooiing te bestuderen.
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[190] G. Senjanović and R. N. Mohapatra, “Exact Left-Right Symmetry and
Spontaneous Violation of Parity,” Phys. Rev. D 12 (1975) 1502.
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