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I. Introduction

The state vector of a quantum system which undergoes cyclic evolution develops
not only the usual dynamical phase but also a geometrical phase [1],[2]. Cyclic evolution
means that the physical state of a quantum system returns to the same physical state
after some time period T. Since state vectors which differ by a phase represent the
same physical state, the final state vector can differ from the initial state vector by a
phase. The dynamical part of the phase depends explicitly on the Hamiltonian. The
geometrical part of the phase is produced by the non-trivial geometry of the space of
physical states. This geometry can be described using the mathematical theory of fiber
bundles [3],[4]. We will begin by describing the geometry of Hilbert space in terms
of a fiber bundle. We will then introduce the geometrical ideas of a connection and
horizontal lift, and see that the scalar product defines the connection. The resulting
geometric phase will be expressed in terms of the connection one-form.

II. The Geometry of Hilbert Space

A state vector will be denoted by | (%)} which is an element of a N +1 dimensional
or infinite dimensional complex vector space denoted by CN+! — {0} or H — {0}. This
vector space is endowed with the usual scalar product or Hermitean metric. We want
to consider normalized state vectors undergoing unitary evolution, namely all | ) such
that (¥(t) | ¥(t))= 1 for all time. Normalized state vectors are elements of the sphere

ZN+1 or §%°, which is a submanifold of CN+! — {0} or H — {0}.

In quantum mechanics a physical state is not represented by a normalized state
vector | (%)) but by a ray. A ray is the one-dimensional subspace to which this vector
belongs. Two normalized vectors are equivalent | 9}’ ~| ¢} if they belong to the same
ray, i.e. if | )’ = €'’ | ) where ¢*® € U(1). This equivalence relation forms equivalence
classes on SN+ or §%°. The set of all equivalence classes $°°/U(1) forms the space
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of physical states (rays) which we denote by P(H) = §°/U(1) = %—:—{-g—% = £ or by
CPY (N dimensional complex projective space) when N is finite.

We can express the above ideas in terms of fiber bundles. A fiber bundle consists
of a topological space F called the total space, a topological space M called the base
space, a fiber space F, a group G acting on the fibers (called the structure group) and a
Projection map 7 which projects the fibers above M to points in M. In our case the fiber
bundle consists of a total space E which is the normalized state vectors in CV*? — {0}
or H — {0}, the base space M is the complex projective space CPN or P(H) whose
elements are the rays (one-dimensional subspaces of H — {0}), a fiber consists of all unit
vectors from the same ray, the group G is U(1) and the association of the unit vector
| %(t)) to the operator | 1(t))(s(t) | is the projection map . This fiber bundle is a
particular type of fiber bundle called a principal fiber bundle over CPY or P(H) with
group U(1) [4].

III. The Connection and Horizontal Lift

The geometry of the fiber bundle is given once a connection is chosen. Intuitively
a connection provides a way to compare fibers at different points on the space M.
Mathematically a connection is specified by defining a horizontal subspace H of the
tangent space T'E to E. Complementary to the horizontal subspace is a vertical subspace
V such that TE = H®V. Consider a point u in E, the vertical subspace at u is defined
to consist of those tangent vectors in TE which are tangent to the fiber passing through
u, i.e. whose projections to the tangent space M are zero. While the vertical subspace
is defined by the fibers, the horizontal subspace (connection) is a matter of choice. Once
a connection is specified, the notion of a horizontal lift can be introduced. A horizontal
lift is defined by lifting the tangent vectors of a curve in M to tangent vectors of a
curve in E such that they are horizontal. The horizontal lift of a closed curve is in
general open. Starting at a given point in the fiber, the horizontal lift will return to a
different point on the same fiber. This difference is called holonomy, and in our case it
is a phase. In this way, the horizontal lift with respect to a given connection defines the
geometrical phase. The total phase can then be decomposed into a geometrical part
and a remaining part called dynamical.

Before choosing a horizontal subspace (connection) we will identify the vertical
subspace (or vertical direction). The action of the group U(1) on §2N+! or S generates
the fibers. Each element of a fiber points in the same direction (they just differ by a
phase). This direction generated by the U(1) action is called the vertical direction.

The scalar product provides a natural choice for the horizontal subspace. To see
this consider | ¢(t)), the tangent vectors to the curve | ¢(t)) in E. These tangent
vectors are in TE and can be decomposed into vertical and horizontal parts via the

scalar product, ) )
o)) = (¢(t) | 8(£)) | 6(2)) + | Bg(2)). (1

From the above discussion we know that | ¢(2)} points in the vertical direction (so does
| (1)) = e | $(2))). Thus, (#(t) | $()) is the vertical part of | ¢(t)). We note that
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the above decomposition is independent of the particular fiber element we choose to
represent the vertical direction.
The horizontal component satisfies

(6(2) | ho(2)) = 0. (2)

This equation defines the horizontal subspace as being orthogonal to the vertical sub-
space providing a natural connection on the fiber bundle. Vertical tangent vectors are
proportional to | ¢(t)), and horizontal vectors are proportional to | hg(t)).

We will now evaluate the holonomy produced by the horizontal lift of a closed curve
in M with respect to the connection given above. We will denote the horizontal lift by
| ¥(t)). By definition, the tangent vectors to the curve | ¢(t)) must be horizontal. From

equation (1) this means ~ .
#(®) | d(®)=0 3)

(i.e. their vertical component is zero). We can express the open path | %(¢)) in E in
terms of a closed path | ¢(¢)) in E

| (1)) = 7O | 4(2)) (4)

where | $(T)) = e/S(T=FO) | (0)) and | $(T)) =| #(0)). The path | #(t)) represents
a section which is a continuous mapping of a patch U on M into the region of E above
U. A section maps a closed path in M onto a closed path in E. Choosing a different
patch on M corresponds to choosing a different section or closed path in E. Different
sections are related by the structure group,

| #'(£)) = O | ¢(2)). ()

In order for | ¢'(t)) to be a closed path in E, 6(t) must satisfy 6(T) = 6(0) + 2wn (n an
integer). Equation (5) is called a gauge transformation.
Defining # = f(T') — f(0), substituting equation (4) into (3) and integrating yields

T .
=i / ($(2) | S(t))t.

The tangent vector | ¢) is given by

d 9 8
7 [9) =055 1 8) + X ost | 4)

where 8 is the fiber coordinate and the X* are the coordinates of M. Contracting this
equation with i(¢ | from the left and integrating yields

T K T
p=i [ B0l g1 0eei [ X061 55 | et (©)
By considering a U(1) action, it can be shown
o9 i1y, ™
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Using equation (7) and (¢ | ¢) = 1, equation (6) becomes

/ bt + / o1 5 | )Xkt (8)
We define the connection form

A=i(¢| | pydX*. (9)

BX“

Using equation (9), we can express the second term in equation (8) as

T 3 . .
y Bdt =
z./; (¢13X“1¢>X dt ch
The first integral in equation (8) yields

T
/ fdt = 6(T) — 6(0) = 2mn.

This contribution to the phase represents the gauge freedom as discussed above. The
holonomy (or geometric phase) e*# is independent of the choice of gauge

B = i 8, A —iamn
e = S A,

With this understanding we can choose a gauge and write

g = ]{ A. (10)

The phase angle f8 is the standard geometric phase angle. Equation (10) expresses f as
a line integral of the connection form A over a closed path C in M. We note that for
unitary evolution Re(¢ | <)5) = 0 which implies that equation (9) can be written as

A=-Im(g|d|9)

where d is the exterior derivative with respect to the coordinates X# on M. The
curvature two-form of M is

F=dA
F=—Im(d(g)A(d] )

and by using Stoke’s theorem we can express £ as [5],[6]

o= [ F

where S is the two-dimensional surface enclosed by the path C in M.
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IV, Summary

We have seen that the equivalence of state vectors which differ by a phase, along
with the scalar product, define the geometry of Hilbert space (i.e. the fiber bundle and
connection). The geometry is non-trivial. It induces a U(1) holonomy in a normalized
state vector which undergoes cyclic evolution. This induced phase is called the geo-
metric phase. It depends only on the path in the space of physical states, not on the
Hamiltonian which generates this path.

Physical effects of non-trivial geometries appear in molecular physics [7]. These
effects are described by the introduction of a vector potential (connect1on) into the
molecular equations of motion [8]. The relative momenta coordinates P go into P — A.
This change alters the canonical commutation relations [9], and may be of interest in a
spectrum generating group approach [10].
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