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I. I n t r o d u c t i o n  

The state vector of a quantum system which undergoes cyclic evolution develops 
not only the usual dynamical phase but also a geometrical phase [1],[2]. Cyclic evolution 
means that the physical state of a quantum system returns to the same physical state 
after some time period T. Since state vectors which differ by a phase represent the 
same physical state, the fmal state vector can differ from the initial state vector by a 
phase. The dynamical part of the phase depends explicitly on the Hamiltonian. The 
geometrical part of the phase is produced by the non-trivial geometry of the space of 
physical states. This geometry can be described using the mathematical theory of fiber 
bundles [3],[4]. We will begin by describing the geometry of Hilbert space in terms 
of a fiber bundle. We will then introduce the geometrical ideas of a connection and 
horizontal lift, and see that the scalar product defines the connection. The resulting 
geometric phase will be expressed in terms of the connection one-form. 

II .  T h e  G e o m e t r y  of  H i l b e r t  Space  

A state vector will be denoted by [ ¢(~)) which is an element of a N-I-1 dimensional 
or infinite dimensional complex vector space denoted by C N+I - {0} or 7~ - {0). This 
vector space is endowed with the usual scalar product or Hermite~u metric. We want 
to consider normalized state vectors undergoing unitazy evolution, namely all [ ¢) such 
that (¢(t) [ ¢ ( t ) )=  1 for all time. Normalized state vectors are elements of the sphere 
S ~N+I or S °°, which is a submanifold of C N+I - {0} or ~ - {0). 

In quantum mechanics a physical state is not represented by a normalized state 
vector [ ¢(~)) but by a ray. A ray is the one-dimensional subspace to which this vector 
belongs. Two normalized vectors are equivalent I ¢) '  "~[ ¢)  if they belong to the same 
ray, i.e. if [ ¢) '  = e i° 1 ¢) where e i° E U(1). This equivalence relation forms equivalence 
classes on S N+I or S ~ .  The set of all equivalence classes S°°/U(1) forms the space 
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of physical states (rays) which we denote by P(7-/) = S° ° /U(1 )  = ~-{0} s ¢~ c-{0} = "-£- or by 
C P  N ( N  dimensional complex projective space) when N is finite. 

We can express the above ideas in terms of fiber bundles. A fiber bundle consists 
of a topological space E called the total space, a topological space M called the base 
space, a fiber space F ,  a group G acting on the fibers (called the structure group) and a 
projection map Ir which projects the fibers above M to points in M. In our case the fiber 
bundle consists of a total space E which is the normalized state vectors in C N+I - {0) 
or 7 - / -  {0), the base space M is the complex projective space C P  N or P(T/) whose 
elements are the rays (one-dimensional subspaces of 7-/- {0}), a fiber consists of all unit 
vectors from the same ray, the group G is U(1) and the association of the unit vector 
] ¢(~)) to the operator [ ¢(t))(¢($) l is the projection map 7r. This fiber bundle is a 
particular type of fiber bundle called a principal fiber bundle over C P  g or P(7%) with 
group U(1) [41. 

I I I .  T h e  C o n n e c t i o n  and  Hor i zon ta l  Lift 

The geometry of the fiber bundle is given once a connection is chosen. Intuitively 
a connection provides a way to compare fibers at different points on the space M. 
Mathematically a connection is specified by defining a horizontal subspace H of the 
tangent space T E  to E. Complementary to the horizontal subspace is a vertical subspace 
V such that T E  = I - I ~ V .  Consider a point u in E,  the vertical subspace at u is defined 
to consist of those tangent vectors in T E  which are tangent to the fiber passing through 
u, i.e. whose projections to the tangent space M are zero. While the vertical subspace 
is defined by the fibers, the horizontal subspace (connection) is a matter  of choice. Once 
a connection is specified, the notion of a horizontal lift can be introduced. A horizontal 
lift is defined by lifting the tangent vectors of a curve in M to tangent vectors of a 
curve in E such that they are horizontal. The horizontal lift of a closed curve is in 
general open. Starting at a given point in the fiber, the horizontal lift will return to a 
different point on the same fiber. This difference is called holonomy, and in our case it 
is a phase. In this way, the horizontal lift with respect to a given connection defines the 
geometrical phase. The total phase can then be decomposed into a geometrical part 
aad a remaining part called dynamical. 

Before choosing a horizontal subspace (connection) we will identify the vertical 
subspace (or vertical direction). The action of the group U(1) on S 21v+1 or S °° generates 
the fibers. Each element of a fiber points in the same direction (they just differ by a 
phase). This direction generated by the U(1) action is called the vertical direction. 

The scalar product provides a natural choice for the horizontal subspace. To see 
this consider I ¢(t)), the tmugent vectors to the curve 1 ¢(t)> in E. These tangent 
vectors are in T E  and can be decomposed into vertical and horizontal parts via the 
scalar product, 

t ¢ ( t ) > = ( ¢ ( 0 1 ¢ ( t ) ) l ¢ ( t ) >  + l h~(t)>. (1) 

From the above discussion we know that [ ¢(t)) points in the vertical direction (so does 
[ ¢'(t)) = e i° [ ¢(t))). Thus, (¢(t) [ ¢(t)) is the vertical part of [  ¢(t)). We note that 

@47 



the above decomposition is independent of the particular fiber element we choose to 
represent the vertical direction. 

The horizontal component satisfies 

(¢(t) i h,(t))  = O. (2) 

This equation defines the horizontal subspace as being orthogonal to the vertical sub- 
space providing a natural connection on the fiber bundle. Vertical tangent vectors axe 
proportional to [ ¢(t)), and horizontal vectors are proportional to [ he(t)). 

We will now evaluate the holonomy produced by the horizontal llft of a closed curve 
in M with respect to the connection given above. We will denote the horizontal lift by 
I f3(t)). By definition, the tangent vectors to the curve 1 ¢(t)) must be horizontal. From 
equation (1) this means 

<~(~) I ~(~)):= o (3) 
(i.e. their vertical component is zero). We can express the open path I ¢(t)> in E in 
terms of a closed path I ¢(t)) in E 

I ¢(t))  = Jm)  JC(t)> (4) 

where I ¢(T)> = e i(I(T)-I(°)) I ¢(0)) and I ¢(T)> =1 ¢(0)). The path I ¢(t)) represents 
a section which is a continuous mapping of a patch U on M into the region of E above 
U. A section maps a closed path in M onto a closed path in E. Choosing a different 
patch on M corresponds to choosing a different section or dosed path in E. Different 
sections axe related by the structure group, 

I ¢'(t)) = d °(t) I ¢(t)). (5) 

In order for 1 ¢'(t)) to be a dosed path in E, O(t) must satisfy O(T) = 0(0) + 2rrn (n an 
integer). Equation (5) is called a gauge transformation. 

Defining f l  = I ( T )  - f(O), substituting equation (4) into (3) and integrating yields 

# = i ( ¢ ( t )  1 ¢(t))dt. 

The tangent vector I ¢) is given by 

d . 0  _>~, 0 
d--/I ¢(t)> = o N I ¢) + x 82- ;  I ¢> 

where 0 is the fiber coordinate and the X ~ are the coordinates of M. Contracting this 
equation with i(¢ I from the left and integrating yields 

J0T 0(¢ 0 f0 T 0 = i I ~ I ¢)dt + i X " ( ¢  I ~ - ~  1 ¢)dt. (6) 

By considering a U(1) action, it can be shown 

01 ¢) _ i 1 ¢>. (7)  
00 
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Using equation (7) and (¢ I ¢) = t, equation (6) becomes 

// // /3 = - Odt + i (¢ I 1 ¢ ) 2 " d t .  (S) 

We define the connection form 

0 
~i = i(¢1 b - ~  I ¢ ) d X " .  (9) 

Using equation (9), we can express the second term in equation (8) as 

i I -6-27 l ¢ ) 2 " d t  = .4. 

The first integral in equation (8) yields 

~o T = O(T) - 0(0) = Od~ 2~rn. 

This contribution to the phase represents the gauge freedom as discussed above. The 
holonomy (or geometric phase) e i# is independent of the choice of gauge 

e i# .~. e i ~c/te--i2~rn 

ei # ~_ ei ~ / i  

With this understanding we can choose a gauge and write 

/3 = ~ A. (10) 

The phase angle/3 is the standard geometric phase angle. Equation (10) expresses fl as 
a line integral of the connection form A over a closed path C in M. We note that for 
unitary evolution R e ( ¢  [ ¢) = 0 which implies that equation (9) can be written as 

= - I m ( ¢ [ d [ ¢ )  

where d is the exterior derivative with respect to the coordinates X ~' on M. The 
curvature two-form of M is 

= - I m ( d ( ¢  ]) A (d] ¢)) 

and by using Stoke's theorem we can express ,8 as [5],[6] 

/3=jfs ~ 
where S is the two-dimensional surface enclosed by the path C in M. 
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IV. S u m m a r y  

We have seen that the equivalence of state vectors which differ by a phase, along 
with the scalar product, define the geometry of Hilbert space (i.e. the fiber bundle and 
connection). The geometry is non-trivial. It induces a U(1) holonomy in a normalized 
state vector which undergoes cyclic evolution. This induced phase is called the geo- 
metric phase. It depends only on the path in the space of physical states, not on the 
Hamiltonian which generates this path. 

Physical effects of non-trivial geometries appear in molecular physics [7]. These 
effects ave described by the introduction of a vector potential (connection) into the 
molecular equations of motion [8]. The relative momenta coordinates t5 go into/5 _ .~. 
This change alters the canonical commutation relations [9], and may be of interest in a 
spectrum generating group approach [10]. 
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