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Abstract. In this work, we study the temperature driven deconfining phase transition, at zero
chemical potential, in a statistical way, by means of the probability distribution of finding the
mixed hadronic gas-QGP phase system in a finite volume, in a specific state defined by a
parameter lying between 0 and 1, whose mean value represents the order parameter of the
studied system. We calculate mean values of other characteristic quantities, called response
functions, which are mainly the second, third and fourth cumulants of the probability
distribution representing the variance, skewness and kurtosis respectively, as well as the three
first thermal derivatives of the order parameter. Integral expressions are obtained for all these
quantities, and their evaluation is done numerically. The such obtained results are adequately
translated into graphs, illustrating the variations of the response functions with temperature, for
various volumes. By examining their behavior, we notice a striking similarity between the
behavior of the order parameter derivative and that of the cumulant, at the same order. We
investigate this similarity and try to deeply analyze it, to obtain some important features
characterizing the occurring deconfining phase transition.

1. Introduction
The thermodynamics of hadronic matter at high temperature has received great attention in the last
few years. In this work, we study the thermal Deconfinement Phase Transition (DPT) from a Hadronic
Gas (HG) phase to a color-singlet Quark Gluon Plasma (QGP) phase, at vanishing chemical potential,
in a finite volume. For this purpose, we calculate the partition function of the QGP with the color-
singletness requirement, using the projection method [1, 2]. The obtained partition function is then
used for the calculation of mean values of some response functions, namely the order parameter and
its three first thermal derivatives, whose behavior with temperature and volume is studied. Also, we
examine the first four cumulants of the probability distribution p(h) so we may obtain several
characteristics of the DPT and get more information on the finite volume transition point and
determine the effective transition temperature.

2. Thermal behavior of the order parameter and its derivatives
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This section is devoted to the extraction of information about the thermal DPT at vanishing chemical
potential µ = 0 via a deep analysis of the behavior with temperature of some response functions, well
characterizing the mixed hadronic gas (HG)-QGP system. In the framework of the phase coexistence
model [3], a parameter h representing the hadronic volume fraction is defined such that /HGh V V
with HG QGPV V V  the finite volume of the mixed (HG-QGP) system. The mean value of a given
physical quantity ( , )X T V is then calculated based on the following definition [3, 4],
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0

( , , ) ( )d
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( )d

X h T V Z h h
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Z h h


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with ( )Z h the partition function of the mixed system and ( , , )X h T V the physical quantity in the state
h . Assuming non-interacting phases, the total partition function ( )Z h is given by:

( ) ( ) ( )QGP HGZ h Z h Z h (2)

where QGPZ and HGZ are the partition functions of the individual QGP and HG phases, respectively.
( )QGPZ h is calculated taking into account the color-singletness condition in the QGP phase, by using

the projection method [1, 2]. For this, we use a density of states which contains the volume term only,
in a first step, as in [4, 5].
The total partition function of the mixed system composed of a HG of massless pions and a QGP
consisting of gluons, massless u and d quarks and their antiquarks, in the state h , at temperature T
and zero chemical potential, is after calculation given by [4, 5]:
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with:

 
2

,
1 1sin sin sin
2 2 2 2 2

M  
   

                            
(4)

and:

 
 

22222 2 2 4

0 2 2
, , 1

21 16, 1 1 1
12 30 15 12 2 12 2

gQ q G
Q G

q r g b g

d dg d d

    
 

 

                           
  (5)

with: dQ = 2Nf and dG = 2 the degeneracy factors of quarks and gluons respectively, Nf being the
number of flavors, taken here as Nf =2 (the two lightest u and d quarks), B1/4 = 192MeV and

( , , )q q r g b  and ( 1,...,4)g g  the angles given by:
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We have then to calculate mean values of some relevant quantities analytically and the obtained
integral expressions have to be calculated numerically.
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The first quantity of interest for our study is the order parameter of the occurring deconfining phase
transition, which is the mean value of the hadronic volume fraction ( , )h T V . It is calculated using
equation (1):
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The second quantity of interest is the thermal susceptibility ( , )T V defined as the first derivative of
the order parameter with respect to temperatureT :
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It is also worth to illustrate two additional thermal response functions, which are the second
2
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by differentiating this latter with respect to temperature twice and three times, respectively.

136 137 138 139 140 141 142 143 144 145
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

 <
h>

T (MeV)

 

 

  V=200 fm3

 V=400 fm3

 V=600 fm3

 V=800 fm3

138,0 138,5 139,0 139,5 140,0 140,5 141,0 141,5 142,0

-7

-6

-5

-4

-3

-2

-1

0


(M

eV
 -1

)

  V=200 fm3

 V=400 fm3

 V=600 fm3

 V=800 fm3

T (MeV)

 

 

Figure 1. Plot of the order parameter versus
temperature for different system volumes.

Figure 2. Plot of the susceptibility versus
temperature for different system volumes.
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Figure 3. Plot of the second thermal derivative
of the order parameter versus temperature for
different system volumes.

Figure 4. Plot of the third thermal derivative of
the order parameter versus temperature for
different system volumes.
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The previous graphs illustrate the variations of the order parameter ( , )h T V (Figure 1), its
first derivative representing the susceptibility (Figure 2) and the second and third derivatives (Figure 3
and figure 4 respectively) with respect to temperature for different volumes of the system. It can
clearly be seen that the order parameter exhibits a sharp discontinuity at large volumes, which appears
at the level of the first derivative as a sharp peak. This occurs at the thermodynamic limit at a true
transition temperature noted ( )CT  . In small volumes, the order parameter is rounded off, and the
susceptibility peak is smeared out, acquiring a bigger width and a smaller height, smaller is the volume.
The effective transition temperature in small volumes ( )CT V , shifted from the true one in the
thermodynamic limit, can be defined at the value ( , ) 0.5h T V  , meaning that both hadronic and QGP
states contribute with equal probability to the total system. Similarly, it can be defined at the minimum
of the susceptibility, at vanishing ( , )h T V  and at the maximum of ( , )h T V  . Also, the width ( )T V
of the transition region over which the transition is rounded off can be defined as the gap in
temperature between the two extrema of the second derivative, and we can see that this gap decreases
with increasing volume.

3. Probability Density Cumulants
In the following, we examine the first four cumulants of the probability density. The first order
cumulant is the order parameter ( , )h T V defined in equation (7).
The second order cumulant is the variance 2 ( , )T V given by:

2 2 2 2( , ) ( )T V h h h h          (9)

and the third cumulant is the skewness times 3 , where the skewness measuring the asymmetry of the
distribution is given by:
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The fourth cumulant is the kurtosis times 4 , where the kurtosis measuring the flatness of the
distribution is given by:
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The mean values nh appearing in the expressions of the considered cumulants are calculated
using the definition in equation (1) as follows:
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Figures 5 to 7 illustrate the variations of the variance, skewness and kurtosis respectively, and a clear
similarity between the behavior of the first thermal derivative of the order parameter and the variance,
and that of the second thermal derivative of the order parameter and the skewness, as well as that of
the third thermal derivative of the order parameter and the kurtosis is noted. However, we notice that
the derivatives are symmetric whereas the cumulants are not. For example, figure 8 which illustrates
both the kurtosis and the third thermal derivative of the order parameter variations with temperature
for V=100 fm3, shows that the two minima of the third derivative have the same height while kurtosis
has a high first extrema and a short second one. A careful analysis shows that the effective transition
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temperature can be defined at the maximum of the 3rd derivative and at the minimum of kurtosis, while
the width of the rounded transition region may be the gap in temperature between the localizations of
the two points at which the 3rd derivative vanishes, but cannot be extracted from kurtosis [5, 6].
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Figure 5. Plot of the variance versus
temperature for different system volumes.

Figure 6. Plot of the skewness versus
temperature for different system volumes.

137,0 137,5 138,0 138,5 139,0 139,5 140,0 140,5 141,0
0

20000

40000

60000

80000

100000

120000

140000

  V=200 fm3

 V=400 fm3

 V=600 fm3

 V=800 fm3

K

T (MeV)

 

 

132 134 136 138 140 142 144 146 148

0

200

400

600

800

1000

1200

1400

1600

1800

138 139 140 141 142 143 144 145 146 147
-2

-1

0

1

2

3

4

5

T

TC

T (MeV)

 <
h 

(V
=1

00
 fm

3 )>
''' 

(M
eV

 -3
)

(b)

(a)

T (MeV)

K 
(V

=1
00

 fm
3 )

Figure 7. Plot of the kurtosis versus
temperature for different system volumes.

Figure 8. Variations with temperature of (a)
kurtosis and (b) the third thermal derivative of
the order parameter for V=100 fm3.

4. Conclusion
The present study gives some characteristics of the temperature driven deconfining phase transition in
a finite volume, namely the effective transition temperature and the width of the rounded transition
region in a finite volume. Besides, a similarity between the behavior of the first three derivatives of the
order parameter and that of the second, third and fourth cumulants of the probability distribution is
noted and is analyzed. A more complete work, where an explicit relationship between the variance and
the susceptibility has been obtained can be found in [7]. More graphic illustrations are presented there
and a deeper analysis is investigated.
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