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Abstract

The AGS provides a polarized proton beam to RHIC. The beam is accelerated in the AGS from
Gy =4.5to Gy =45.5 and the polarization transmission is critical to the RHIC spin program. In
the recent years, various systems were implemented to improve the AGS polarization transmis-
sion. These upgrades include the double partial snakes configuration and the tune jumps system.
However, 100 % polarization transmission through the AGS acceleration cycle is not yet reached.
The current efficiency of the polarization transmission is estimated to be around 85 % in typical
running conditions.

Understanding the sources of depolarization in the AGS is critical to improve the AGS polar-
ized proton performances. The complexity of beam and spin dynamics, which is in part due to the
specialized Siberian snake magnets, drove a strong interest for original methods of simulations.
For that, the Zgoubi code, capable of direct particle and spin tracking through field maps, was here
used to model the AGS.

A model of the AGS using the Zgoubi code was developed and interfaced with the current
system through a simple command: the AgsFromSnapRampCmd. Interfacing with the machine
control system allows for fast modelization using actual machine parameters. Those developments
allowed the model to realistically reproduce the optics of the AGS along the acceleration ramp.
Additional developments on the Zgoubi code, as well as on post-processing and pre-processing
tools, granted long term multiturn beam tracking capabilities: the tracking of realistic beams along

the complete AGS acceleration cycle.



ii

Beam multiturn tracking simulations in the AGS, using realistic beam and machine parameters,
provided a unique insight into the mechanisms behind the evolution of the beam emittance and
polarization during the acceleration cycle. Post-processing softwares were developed to allow the
representation of the relevant quantities from the Zgoubi simulations data. The Zgoubi simulations
proved particularly useful to better understand the polarization losses through horizontal intrinsic
spin resonances

The Zgoubi model as well as the tools developed were also used for some direct applications.
For instance, some beam experiment simulations allowed an accurate estimation of the expected
polarization gains from machine changes. In particular, the simulations that involved involved the
tune jumps system provided an accurate estimation of polarization gains and the optimum settings

that would improve the performance of the AGS.
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Chapter 1

RHIC Experimental Complex

1.1 RHIC Spin Program

The spin, the proton and the proton spin crisis

The spin of a particle is its intrinsic angular momentum. It plays a very important role in modern
physics, but it is in particle physics that the spin is the most challenging to understand. While
the proton is known to be a spin !/, composed subatomic particle, the question of how its spin is
distributed among its constituents arises [6].

In quantum chromodynamics, the proton is composed of 3 valence quarks, gluons and sea
quarks (pairs of virtual quarks and anti-quarks). Quarks are elementary fermions (of spin § = !/5)
and gluons are bosons (S = 1). For a long time, it was assumed that only the 3 quarks of the proton
were contributing to its spin. In 1987 the EMC' realized an experiment of deep inelastic muon-
proton scattering to measure the spins of the quarks in the protons of the target. Results showed
that the spin of the valence and sea quarks (¥X) do not contribute by more than 30% to the spin of
the proton, instead of 100% as expected. This was totally unexpected by the physics community

and led to a theoretical crisis often referred as the proton spin crisis [7]. It was then stated that

'European Muon Collaboration
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the missing fraction of the spin must be created by the gluon spin (AG), gluon orbital angular
momentum (L) and quark orbital angular momentum (Lg). The contributions to the proton spin
can be summarized by:
%:%Z+AG+LQ+LG (1.1)
Overview and ambitions of the RHIC spin program
The RHIC! is the first high-energy polarized proton collider. It was commissioned at BNL? in
2001. The RHIC is capable today of delivering collisions of polarized protons at energies up to
V/s = 510GeV with an average beam polarization of 50 to 55%. Energies of /s = 510GeV or
/s = 200GeV and collisions of transversally or longitudinally polarized protons allow to probe
various characteristics of the proton spin structure. The two experiments STAR? and PHENIX*
have recently reported, for the first time, a non-zero contribution of the gluons to the proton
spin [8]. In the coming years the RHIC spin program is expected to be extended to collisions
of polarized protons with polarized *He and other heavy nuclei. The RHIC program will not only
explore important questions in spin physics but it will also give the opportunity to study cold QCD
matter effects through proton-ion collisions, as part of the heavy ion RHIC program. Whatever
the investigated physics is, the polarization of the proton beams is critical. While in general the
physics potential grows linearly with the integrated luminosity, it scales quadratically or even quar-
tically with the beam polarization, depending on the physics process explored. This drives a strong
interest to improve the beam’s polarization in collision.
While proton bunches are produced polarized, their polarization can only decrease during the
acceleration through the RHIC chain of accelerators. Polarization losses are observed through the

last two acceleration stages: in the AGS? and in the RHIC. Therefore, increasing the polarization

IRelativistic Heavy Ion Collider

2Brookhaven National Laboratory

3Solenoidal Tracker at RHIC

“Pioneering High Energy Nuclear Interaction eXperiment
3 Alternating Gradient Synchrotron
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Figure 1.1 Schematic representation of the RHIC complex with the important devices
involved in the acceleration of polarized protons.

transmission through the AGS is critical for the RHIC spin program.

1.2 General Presentation of the RHIC Complex

The experimental complex dedicated to high-energy physics at the BNL accelerates polarized pro-
tons up to 255GeV. Figure 1.1 shows that many stages and multiple specialized devices are needed

to provide collisions of polarized protons at the two physics experiments: STAR and PHENIX.

The OPPIS!  produces polarized H™ ions using multiple steps and a unique experimental ap-

paratus. After production in an atomic hydrogen injector and stripping in a gas ionizing cell,

'Optically Pumped Polarized Ion Source
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protons pick-up a polarized electron in an optically pumped rubidium vapor cell. A superconduct-
ing solenoid generates a strong magnetic field that splits the energy levels of the rubidium atoms by
Zeeman effect. A laser at 795nm is used to pump the external electron of all the rubidium atoms
into the same spin state. The polarization is then transferred to the proton in the Sona transition
region using suitable perturbing fields. The resulting polarized hydrogen atoms are negatively ion-
ized in a sodium-jet vapor cell. The ensuing beam of H™ ions leaves the source at an energy of
35KeV with a polarization estimated around 85 to 90% [9].

The ions are then accelerated to 200MeV through a 140m DTL-type' linac. Various beam
diagnostic devices are installed at the end of the linac, including a polarimeter to continuously
monitor the polarization of the beam delivered by the source. The measured polarization of the
beam at this location is today typically around 82 % [10], although this value depends on the
intensity provided by the source. The beam then goes through the LtB? transfer line and is injected
in the Booster using a continuous injection scheme by stripping the hydrogen ions from their two

electrons at the end of the LtB. The injection typically lasts for ~ 300ps.

The Booster is a synchrotron with a FODO-type lattice and a circumference of 201.7m. The
coasting beam is captured within a single proton bunch and accelerated to an energy of 2.4 GeV or
Gy = 4.5 where G is the anomalous g-factor of the proton and Y the Lorentz factor. Acceleration
is achieved using an RF harmonic number of 4 = 2 and takes approximatively 90ms [11].
Acceleration of polarized protons imposes particular manipulations in order to preserve the
beam polarization. While the extraction occurs at Gy = 4.5 the vertical tune is kept around Q, =
4.85 to avoid intrinsic spin resonances. Imperfection spin resonances at Gy = 3 and Gy = 4 are
fully overcome by spin flipping or by the harmonic correction of the vertical orbit. The polarization

of the proton beam is fully preserved during its acceleration through the Booster without the use of

IDrift Tube Linac
2Linac to Booster
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specialized devices. The BtA! transfer line transports the bunched beam to the next acceleration

stage: the AGS.

The AGS is the second synchrotron of the RHIC chain. Based on a FODO-type cell, it is four
times the size of the previous accelerator with a circumference C = 807 m. The lattice is composed
of 12 super-periods labeled from A to L, the starting point defined as the first magnet following
the inflector of the injection system. Each super-period is composed of 20 combined function
main magnets” featuring both dipole and quadrupole fields and marked from 1 to 20. Each main
magnet is identified by the letter of its super-period followed by the position in the super-period.
Every straight section is named after the upstream main magnet. Figure 1.1 shows several devices
specifically used in the polarized proton configuration of the AGS. Two specialized magnets called
partial Siberian snakes are used to preserve the polarization: a superconducting version is installed
in the A20 straight section, while a weaker normal conducting version is installed in the E20
straight section. The AGS pC polarimeter’ is located in the C15 straight section and is used
to measure the beam’s polarization. The layout and use of the specific equipment is detailed in
Chapter 3.

A single proton bunch is captured at injection using an RF harmonic number of 4 = 8 and
accelerated to 23.8GeV or Gy = 45.5 within approximatively 400ms. The single bunch is then
extracted to the AtR* transfer line, toward the last accelerator of the complex: the RHIC collider.

Polarization measurements in the AGS are particularly complex and need to be calibrated.
While an absolute polarimeter based on a polarized hydrogen jet is located in the RHIC ring and

used to calibrate the AGS polarimeter at the AGS extraction energy, no absolute measurement of

"Booster to AGS

’The lattice is similar to the CERN Proton Synchrotron where the number of main magnets is 200 instead of 240
for the AGS. The AGS was commissioned 8 months after the PS in July 1960 but at a higher maximum proton energy
of 33GeV versus 29.5GeV for the CERN PS [12].

3Makes use of the proton-Carbon scattering asymmetry to measure the polarization of the beam [13].

*AGS to RHIC
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the beam polarization during its acceleration is possible. Details regarding the AGS polarization
measurement can be found in appendix D. Optimization of the accelerator is also complex since
no measurement of the polarization losses along the acceleration cycle is possible. This is the main

motivation to simulate in detail the polarization transport and losses along the AGS cycle.

The RHIC is a circular accelerator but also a collider storage ring with a circumference of
3.8km. Composed of two independent beam pipes, it allows the circulation of different species
counter-rotating at different rigidities. The two pipes cross in 6 locations, defining 6 arcs between
the crossing points (IP). Each arc is made of 11 regular FODO cells of superconducting magnets
cooled at 4K, with a maximum dipole field of ~ 3.5T [14].

Figure 1.1 displays the role of the different interaction points. The two beams collide at lo-
cations 6 and 8 where the experiments STAR and PHENIX respectively record the events. Spin
rotators are placed on both sides of the experiments to switch the direction of the polarization in
the longitudinal direction prior to collisions without altering it elsewhere. Two full Siberian snake
magnets per ring are also used for the polarized proton collisions and acceleration. The hydrogen
jet polarimeter measures the absolute polarization of the beams, while the pC polarimeters are used
as fast relative polarization measurement devices. Being faster, they are also critical for operation
and tuning of the accelerator [13].

In the polarized proton configuration, the RHIC accelerates 111 bunches per ring to an energy
of E =254.9GeV with a usual intensity of 1.8 10!! particles per bunch. The average polarization

of the beam during the 2013 Run reached 52% [15].

1.3 Recent and Future Developments of the RHIC Complex

The RHIC complex is also famous for its research program in accelerator physics, particularly

concerning the development and implementation of new technologies improving the RHIC perfor-
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mance. Some of the most important ongoing projects on the RHIC ring include the e-lens project
in IP10, the proof of principle of the coherent electron cooling in IP2 and the spin-flipper in IP4.

The e-lens will compensate for the head-on beam-beam effect generated by the interaction of
the proton beams at the PHENIX experiment and will allow an increase of the maximum bunch in-
tensity, hence increasing the luminosity achieved in polarized proton collisions [16]. The coherent
electron cooling will be used to reduce the hadron beam emittance and increase the collision rates
for the future eRHIC electron ion collide [17]. The spin-flipper will be used to reverse the spin di-
rection during a physics store to cancel the systematic errors for the spin physics experiments [18].

As the first and only facility to accelerate polarized protons to hundreds of GeV, RHIC is a
unique machine. While the last 10 years saw numerous technologies being developed and success-
fully implemented at the RHIC complex to produce and improve the polarized proton beam, many
projects are ongoing to carry on this effort. The coming years will see a dramatic increase in both
intensity and polarization of the polarized proton beam driven by RHIC improvements and the
development and optimization of the injector chain, particularly in the AGS. We expect intensities
of 3.10'! per bunch, with an average polarization of 65% to 70% at E = 255GeV to be possible
in the next few years.

Numerous other projects are being carried out at the RHIC complex to develop different
branches of accelerator physics, from medical applications [19] to the next generation electron
ion collider [20], as well as plasma acceleration [21]. A lot of efforts are also being made at
BNL to promote accelerator science and help reach a broader audience, including future potential

researchers from local schools and universities.
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Chapter 2

Theory of Beam and Spin Dynamics

Basic theory of beam dynamics will be developed and applied to the special case of the AGS. Then
spin dynamics will be presented and we will review the history of polarized protons acceleration

in the AGS to the light of the basic theory of beam and spin dynamics.

2.1 Transverse Dynamics
The motion of a charged particle in an electromagnetic field is governed by the Lorentz force:

d_‘ - —
d—’t’:q(waB) 2.1)

where:
* P = YmgV is the momentum of the particle with my its rest mass, y the Lorentz parameter and
v the velocity. We also define p and v as the norms of the momentum and velocity.
* g is the charge of the particle.

« E and B are, respectively, the electric and magnetic fields.
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2.1.1 Equations of Motion in a Curvilinear Coordinate System

(0C0)

M

-
——
-
-
-

-
-
-

Figure 2.1 Serret-Frenet coordinate system (x, s, ).

The AGS uses a circular lattice composed of a series of magnets ideally aligned in the horizon-
tal plane defining the AGS lattice. The basic layout is defined by the AGS main magnets that create
the curvature of the orbit. It is convenient to describe all fields in the same reference frame. For
this we use a system (x,s,y) attached to a trajectory of reference called the OCO' and connected
to the reference particle of momentum pq (Fig. 2.1). Both the OCO and p( are fundamental to the
AGS and clearly defined [22,23]. The OCO is a straight line outside the main magnets and goes
through the magnetic center of every element. In the main magnets the OCO can be defined as a
curve of constant radius of curvature py in the field B= Boy [23]. The dipole field By is defined in
the AGS as the mean vertical field along the reference trajectory in a main magnet.

The referential (x,s,y) is used to describe the particle motion and the fields encountered. One

'Optimum Closed Orbit
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can locally consider a cylindrical coordinate system (r, 0,y) by defining [24]:

a0 1 sd
o _1 9:/—s 2.2)
0

r=p+x, ds  p o

In the case of a straight section we have p — o and the referential (x,s,y) transforms into a
Cartesian coordinate system [25].

The point O is the origin of the particle trajectory and is fixed relative to the OCO. In the
AGS the position O’ of the projection of O on the OCO is the origin of the lattice and taken at the

magnetic face entrance edge of the first main magnet (Fig. 2.4). We also define:

M the projection of M on the OCO

Py A S-rv- Gl

* OM =7 = OMy+xx+yy
-

. dO'M,

LI —

s the longitudinal coordinate of My from O’

The (x,s,y) coordinate system is a Serret-Frenet coordinate system. In this system the directional

derivatives of the base unit vectors are:

D d Z2=0 2.3
and (2.3)

) ) ) . . ds . )
And using Newton’s notation of the time derivatives, where § = T is the speed of M, we write
the time derivatives of the base vectors:
d¥ s S,
—=—-5 , —=—-X and —=0 2.4)
d p

Using the expression of 7 in the Serret-Frenet coordinate system its time derivatives can be written:
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: 25043
V= — = S X — = X 1 2.
[ S<1+p) and 3 <1+P>+2 +SX<P> (22)
y y
The AGS only uses magnetic elements to guide the particles, and the electric field of equation

2.1 is discarded for now. Therefore we can rewrite equation 2.1 in the Serret-Frenet system using

equations 2.5:

x-sﬁ%(wg) s'<1+g>By—y'Bs

. x G a(1) ]| =22 ; : (2.6)

S<1+E)+2S5+Sx<5> ~ ) yB, —XB, .
y 1By —s (1+%) B,

The magnetic field is expressed in the (x,s,y) system so that B = B,X + Bs5 + B,y. In the AGS
the magnetic field can always be considered as constant in time since the revolution period for
protons is around 3 is, much faster than the typical time considered to change the field in magnetic
elements (in the order of the millisecond) [26]. Nonetheless, the field varies along the OCO. It
is therefore convenient to change variables, from the time ¢ to the longitudinal coordinate s. All
quantities depending on the lattice, such as the magnetic field B or the curvature of the trajectory p,
are now a function of s. Using equations 2.4 and Lagrange’s notation of the longitudinal derivative
dx

= %’ we obtain:
ds

i=xs and y=y's

¥=x"$?+xX5  and  y=y's?+)§ (2.7)
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Then using 2.4 and 2.7 we can rewrite 2.6, the equations of motion in the transverse planes as:

Yo ) e = sl ) peme) e
s G L 0

with:

1 x \? § 1 dg(¥)2
- . 22 2o 2 |ds\s)
= \/(1+p(s)) +x'*4+y"= and 2="5 [ (2,)2 ] (2.10)

N

2.8 and 2.9 rule the particle motion in the transverse planes, but in order to solve these equations we
need to make approximations. We will expand the magnetic field around the OCO in the (x,s,y)
system, then we will use the linear part of the equation of motion to establish a linear approximate

solution of the transverse motion.

2.1.1.1 Field Expansion in the Serret-Frenet Coordinate System Around the OCO

In the ideal case the AGS magnetic elements are centered on the OCO, which is in the horizontal
plane. The magnetic field is antisymmetric relative to the plane y = 0 and we also have B, = B; =0
in the median plane. Using this symmetry and Maxwell’s equations we expand the magnetic field

in the Serret-Frenet coordinate system and obtain [24]:

By(s) = g Ky (5)y + ko (8)xy + . .. ] 2.11)
By(s) = g [ko(s)y+ o/ (s)xy+...] (2.12)
B(s)= L ko(s)+k1(s)x+%k2(s)x2—%B(s)yz—k... 2.13)

with:

o(s) = % 2(s)+ki(s) and B(s) =k{(s) —ko(s)ky(s) + ka(s) (2.14)
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where the field is expanded up to its sextupole component:

q 1 :
ko(s) = —=By(s) = ——— dipole (2.15)
dB, (s
ki(s) = % J)E ) quadrupole (2.16)
d’B
ka(s) = %(&” sextupole 2.17)

We call k the normalized field strength and it directly characterizes the effect of the field on the

particle. Also, using equation 2.15 with a constant vertical magnetic field By we have:
Bopp = —— (2.18)

where pg is a constant defined for the AGS as pg = 85.38084 m [23]. The product of the field By
by the trajectory radius of curvature is used to characterize the particle or beam momentum. We

define the magnetic rigidity Bp:

Bo=-20 o Bp=-F (2.19)
q q

The magnetic rigidity characterizes the ease of bending the trajectory of a particle in a magnetic

field.

2.1.1.2 Linear Equations of Motion in the Serret-Frenet Coordinate System

The AGS was designed to operate using the main magnets alone. Furthermore the AGS main mag-
nets are combined function dipoles featuring dipole and quadrupole fields with a small sextupole

error [27]. We will neglect for now the sextupole component and only retain the linear terms in the
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x and y components of the magnetic field. Equations 2.11 to 2.13 become:

By (s) &~ —Bpki(s)y (2.20)
By(s) ~ 0 2.21)
By(s) = —Bp(ko(s)+ki(s)x) (2.22)

By taking only linear terms in equations 2.10 we get:

L. <

X §

We also consider small variations of the particle momentum p around the reference momentum py
of the particle on the OCO, as we define p = po+ Ap with Ap < pg. By expanding 1/p for small

Ap/po in Taylor’s series and keeping only the first two terms of the expansion we get:

11 A Ap\? 1 A
— = 1——p+(—p) +1...] %—(1——17) (2.24)
P Po Po Po Po Po

Using the equations above and by taking only linear terms in x, y and Ap, equations 2.8 and 2.9

take the form:

// ! _ LA
X' — (lq (s) — pz—(s)) x = o0) 7o (2.25)
Y +ki(s)y = 0 (2.26)

Equations 2.25 and 2.26 describe the trajectory in the linear approximation in the curvilinear

coordinate system (x,s,y). In the linear approximation, the motion in the two planes appear to be
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Table 2.1 Forms of the focusing term in the most common types of elements.

Element K, (s) Ky (s)
Pure dipole p2(s) 0
Pure quadrupole —ki(s) ki(s)
Combined function dipole | p~2(s) —ki(s) | ki(s)
Drift 0 0

independent. Equations 2.25 and 2.26 can be written in a more general form:

1 Ap

'+ K (s)z= —=—
=5 b

(2.27)

where z stands for x or y and K,(s) takes different forms depending on the magnetic element
considered (Tab. 2.1). In the vertical plane the radius of curvature is infinite and the right hand
side of equation 2.27 vanishes. In the general case K;(s) varies with s periodically along the ring

and the equation 2.27 is of Hill’s type. The general solution to equation 2.27 can be written [24]:

z(s) = Cz(s)zo+Sz(s)z6+Dz(s)% (2.28)
26) = Clloa+8i(5)7 + Do) 229)

where 7/(s) is the angle between 5 and the projection of ¥ in the plane (5,7). The functions C,(s) and
S.(s) are independent solutions for the homogeneous equation associated with 2.27. The function
D.(s) is a particular solution of the inhomogeneous equation. It characterizes the chromatic effect
of the magnetic elements and is called the dispersion function.

The linear transformation expressed by equations 2.28 and 2.29 can be written in a matrix form:
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z(s) C:(s) S:(s) Di(s)) [ z(0) z(0)
Z(s) | = | Cils) SL(s) DL(s) | |Z(0)|=Tz|Z(0) (2.30)

where T, is the transfer matrix between entrance (0) and exit (s). The particular case of the transfer
matrix associated to the AGS main magnets will be described in Chapter 3.

While the method described above allows to transport the coordinates of a particle through one
or more elements, another way to express the motion along the OCO is to parametrize the motion

in terms of amplitude and phase functions.

2.1.2 Twiss Parametrization of the Transverse Motion

If we consider the reference particle for which Ap =0, 2.27 can be written:
7' +K.(s)z=0 (2.31)

The AGS being a circular machine, the restoring force term K (s) is necessarily a periodic function
of, at most, the machine circumference, i.e. K.(s) = K;(s+ Cp) with Cy the length of the OCO
over a full turn. Solution to the Hill’s equation is established using the Floquet’s theorem. The

trajectory takes a quasi-harmonic form [24]:

2(s) = v/ &/7\/B:(s) cos (U (s) — 1(0)) (2.32)

where the amplitude f3;(s) and phase p(s) terms are respectively called the betatron (or "beta")
function and the betatron phase. We also introduce &, an invariant of the motion [26]. The motion

described by the particle is usually referred as the betatron motion. The evolution of the phase
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term can be expressed as:

(s) = O/ ﬁf(‘;) (2.33)

By differentiation of equation 2.32 we find:

(s) =~ “;:(”) [sin (1. (5) — 1(0)) + 0t (s) cos (g1 (s) — 1:(0)) ] (2.34)
where:
o (s) = —%% (2.35)
We also define the function:
)2
%(s) = % (2.36)

The beta function together with equations 2.35 and 2.36 are called the Twiss functions. The Twiss
functions retain the same periodicity as the lattice.
An important quantity for circular machines such as the AGS is the number of betatron oscil-

lations per turn: the betatron tune Q.. It can be expressed from equation 2.33 and using s = Cp:

1

Q.= ﬂuz(Co) (2.37)

Equations 2.32 and 2.34 describe the equation of an ellipse in the plane (z,7’) at a given azimuth
s. Therefore the particle positions in the (z,z") phase space turn after turn, are on an ellipse. Figure
2.2 shows the trajectory of a single particle motion in (z,z") and the relations between the maximum
excursions on z or 7' and the Twiss functions.

Additionally, the Liouville’s theorem states that the area delimited by the particle in Figure 2.2

is conserved around the accelerator lattice. The parametric equation associated to the ellipse in
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&, = area

Figure 2.2 Representation of a particle trajectory in the (z,7") phase space.

Figure 2.2 is usually called the Courant-Snyder invariant of the particle and has the form:
& 2 ' ”
P Yo (8)2” 420 (s)zZ + B(5)z (2.38)

We also define the normalized invariant €, to account for the adiabatic damping of the trans-

verse motion during acceleration:

en=¢By (2.39)

with B = v/c. This invariant does not change with the energy.

2.1.2.1 Betatron and Coupling Resonances

While we have considered a perfect machine until now, one has to understand the implications of
errors on the beam dynamics. Lets consider N localized transverse deflections of the beam (or
transverse kicks) of magnitude 6; at azimuth s;. These can be attributed not only to errors in the
main magnets, but also to misalignments in other quadrupole or sextupole magnets. We can also
use dedicated low field dipole magnets located in some of the AGS straight sections to deliberately

create transverse kicks. This results in the distortion of the closed orbit, with respect to the OCO.
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The distortion at s is given by [28]:

s N
Az(s) = ZSln%r(Q)z Z V/B:(si) cos (|t (s) — pz(s:)| — wQ;) (2.40)

If O, = p with p an integer, the term in front of the sum tends toward infinity. This is called an
integer resonance and in that condition, the closed orbit is undefined. Integer values of the tune
have to be avoided at any time.

We can now study the effect of localized gradient errors. We consider N integrated quadrupole
errors (Akil); at s;. In the AGS these can be caused by orbit displacements in sextupoles or by field
errors in quadrupole or main magnets. The resulting error in the beta function Af,(s) along the

AGS is [28]:

N
Aﬁljz(i)) N ZSln(;nQZ ; (Ak10)i:(si) cos (2]pz(s) — pz(si)] — 27Q:) (2.41)

In this case the error in the beta function diverges when Q, = 2p with p an integer. This is called
a half integer resonance and the beam envelopes are undefined. The half integer values of the tune
need to be avoided.

We have developed the equations of the transverse motion in the approximation of uncoupled
motion between the two transverse planes. However, coupling can arise from errors in the main
magnets or quadrupole magnets. In the approximation of a weak coupling between the two planes,
conditions were established on the transverse tunes for the motion to be stable. It was showed
that the integer values of the tune sum, Q. + Q, = p, lead to instability whereas for integer tune
differences (Qr — Qy = p), the motion remains stable [26].

Non-linear resonances driven by non-linear multipole fields also exist. A general expression of
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all the betatron resonances can be written:

1Qx+mQy=p (2.42)

where [, m and p are integers. We define the resonance order n = |I| 4 |m|. Lower order resonances
are generally the most dangerous and need to be avoided as much as possible. As for the linear

case, sum resonances are unstable whereas difference resonances are stable [29].

2.1.2.2 Dispersion Function in the Motion Parametrization

We removed the chromatic term in equation 2.31 to find Hill’s equation. We can reintroduce it in
equations 2.32 and 2.34 to obtain the full linear form of the transverse motion, in terms of phase

and amplitude:

2(s) = Ve&/m/ Bu(s)cos (k(s) — p(0)) + %DZ(S) (2.43)

VE/T

Z(s) = - \/ﬁz—(s)[sin(uz(S)—uz(O))+06z(S)COS(uz(S)—/Jz(O))}+Ap

Po

Di(s) (2.44)

It is important to note from equation 2.27 that in the vertical plane p(s) — oo, the inhomogeneous
term vanishes and the functions D,(s) and D’(s) in the equations above are equal to zero. This is
true within the approximations used above, in the absence of coupling between the two transverse
planes. We can also see from equation 2.43 that the betatron oscillation now occurs around f)—f:DZ(s)
and no longer around the OCO or the on-momentum closed orbit. The particle oscillates around

the chromatic closed orbit.
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Figure 2.3 Drawing of the AGS main magnets cross section.

2.1.2.3 Natural Chromaticity

The chromatic term also has an important effect on the tune. We define the chromaticity denoted

Q. as the change in tune AQ, corresponding to a change in the particle momentum of Ap.

AQ,
0 — 29

— 2.45
~ Ap/po 245)

Equation 2.16 shows that the focusing term, hence the strength of the focusing, decreases when
the particle momentum p increases. This causes an intrinsic chromaticity also called the natural
chromaticity. We will see in Section 2.1.3.2 that the chromaticity of the AGS can be controlled by

sextupole magnets.

2.1.3 The AGS Lattice

The AGS uses combined function main magnets featuring both dipole and quadrupole fields. Table
2.2 summarizes the relevant optical parameters of the AGS. Two different magnet cross-sections
leading to six different types of magnets are used in the AGS. Figure 2.3 shows the cross section
of the magnets. The A and C magnets are 90 inches long while the B magnets are shorter with
75 inches. Although these lengths are the physical lengths of the magnets, we preferentially use
their effective length defined as being longer by 4 inches [30]. Every magnet can be of defocusing

or focusing effect on the beam by changing its orientation. We define the magnet function by its
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s start of the superperiod

Figure 2.4 Synoptic drawing of one AGS superperiod with the opened side of each mag-
net facing the centerline. Magnet number, type and function is also labeled. The start of
the superperiod is by convention at the magnetic edge of the first main magnet.

effect on the horizontal plane, e.g. C magnet is focusing when the open side faces the outside of
the ring and the inverse is true for A or B magnets. Figure 2.4 shows the basic layout of the AGS
superperiod. The superperiod is made of 5 FODO cells and 20 main magnets. The open sides are
oriented toward the center of the ring in the first half of the superperiod and toward the outside in
the second half.

The AGS lattice is defined by only two types of elements: the main magnets and the straight
sections. A numbering system was established to locate any element in the lattice by using the letter
associated to the superperiod followed by the main magnet number (see page 5). For instance, the
5" main magnet of the 3™ superperiod is labeled "MM CO05" and the downstream straight section
is called "SS C05".

Figure 2.5 shows the position of the long straight sections. Straight sections in positions 10
and 20 are 10 feet long, while the others are 5 feet long. The straight sections not mentioned in
Figure 2.5 are only 24 inches long and usually only host BPMs!, pumping stations or low field
dipoles used for orbit correction. Figure 2.5 identifies the location of some devices used to operate
the AGS. The horizontal and vertical tunes are controlled by two families of quadrupoles. In the
straight sections 03 are located quadrupoles to control the vertical tune, while straight sections 17
host quadrupoles to control the horizontal tune. The 10-foot straight sections are mainly used for

extraction/injection lines or RF cavities to accelerate the beam. However, straight sections A20 and

'Beam Position Monitors
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Figure 2.5 Graphic of the beta functions and horizontal dispersion along one AGS su-
perperiod. The last plot shows the evolution of the phase advance in the two transverse
planes along the superperiod.
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E20 are hosting special magnets called Siberian snakes used to manipulate the proton spin during

polarized proton operations.

Table 2.2 Relevant optical and RF parameters of the AGS, at the polarized proton extrac-
tion energy.

Paramter Value
Energy (total) E 23.8GeV
Circumference C 807.091m
Horizontal tune Oy 8.69
Vertical tune 0, 8.73
Revolution frequency Jrev 372kHz
RF harmonic number h 8
Maximum dipole field ramping rate | Byay | ~2.5T.s7!
Maximum total RF voltage Ver | =~ 280kV
Gamma transition Yir 8.5
Synchrotron tune Qs 34

2.1.3.1 Tune Control in the AGS

The AGS main magnets feature both dipole and quadrupole fields. As such the transverse tunes
of the AGS are fixed by design. However, it is very important to accurately control the transverse
tunes. Looking at the effect of a single small gradient error (Ak;[); at the location s; the resulting

variation of the tune 6Q, is [28]:
Si
00, = _%<Akll)i (2.46)

The AGS uses two families of quadrupoles located in regions where either the vertical or horizontal
beta function reaches a maximum value. In each superperiod the straight sections 03 and 17,
respectively, host the vertical and horizontal high field tune quadrupoles, commonly called tune

quads.
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2.1.3.2 Chromaticity Control in the AGS

While the natural chromaticity is intrinsic to the AGS we can use sextupole magnets to control the
total chromaticity. In the case of a series of sextupole magnet of length / and integrated sextupole

strength (ky!); at locations s;, the resulting change in chromaticity is:

1
AQ. = —Eﬁz(si)Dx(Si)(kzl )i (2.47)

In the AGS, two families of sextupoles are used. The magnets are located in the straight sections

13 and 17, respectively controlling the horizontal and vertical chromaticities.
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2.2 Longitudinal Dynamics

While we have seen that the magnetic term of the Lorentz force is used in synchrotrons to guide
the trajectory of the particle, we will now focus on the electric term used to accelerate the particle.
In synchrotrons the particles are accelerated by longitudinal RF! electric field. Resonant cavities
are driven by high frequency RF field in order to produce the accelerating field seen by the beam.

The energy gained AE by the particle across a cavity can be written [31]:
AE = qVrrT,sin ¢ (2.48)

where Vir is the RF voltage, ¢ the phase of the field as seen by the particle. The transit time factor
T, takes into account the time variation of the field during the particle travel inside the cavity. In
the AGS T, is very close to 1 so we will ignore it. By convention, the origin of phases is taken at
zero crossing of the RF voltage with positive slope.

The AGS contains several cavities, each only increases the beam energy by a small amount and
all are synchronized for the particle to arrive at each with the same phase. In the model discussed
later, we only consider single RF cavity with an RF voltage equal to the sum of the RF voltage of
each cavity. This approximation is valid in the case of the AGS because the phase slip per turn
of the particles remains very small [32]. The important quantity will be the energy gained by the

particle per turn of the AGS or acceleration rate AE;,,;,.

2.2.1 Synchronous Particle

As a synchrotron, the AGS accelerates protons while the magnetic field of the main magnets in-

creases in order to keep the average radius constant. We define the average radius R of the AGS

'Radio Frequency
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using the circumference C:

R=— 2.4
o (2.49)

In the AGS, the average radius of the closed orbit on the OCO is Ry = 128.4525m. By taking
the time derivative of equation 2.18, one can find the required energy gain per turn to conserve a

constant average radius R:

AEyum = qpBo27R (2.50)

We define a synchronous particle traveling on the closed orbit with a momentum pg called the
synchronous momentum. It is important to note that p; is not necessarily equal to pg but can be
if the synchronous particle travels on the OCO. If ps # pg the synchronous particle travels on a
chromatic closed orbit. The synchronous particle enters the cavity at the synchronous phase ¢ and

receives an energy gain given by equation 2.48:

AEum = qVir sin ¢ 2.51)

Additionally, the RF frequency frr is chosen to be an integer multiple of the revolution frequency

Jrev:
fRF = hfrev (2.52)

where £ is called the harmonic number. In the AGS, the harmonic number currently used for
protons is 4 = 8. Equations 2.50 and 2.51 link the evolution of By, Vgr and ¢;.

In the AGS, the acceleration rate is driven as high as possible in order to reduce polarization
losses (Section 2.3.4.1). The acceleration rate is limited by the main magnets power supply to
around AE;,,, = 170keV/turn. Figure 2.6 shows the evolution of the main AGS RF parameters

during the acceleration of polarized protons.
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Figure 2.6 Plot of the main RF parameters used for acceleration of polarized protons in
the AGS.

2.2.2 Non Synchronous Particle

We will describe the motion of any particle in the longitudinal plane by its deviation from the

synchronous one, we define:

p = pstAp
C = Ci+AC
R = R;+AR
E = E;+AE

f rev  — f rev,s + Af rev

o = ¢;+A9 (2.53)
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One can see that if p; = pg all the "s" indexes in equations 2.53 can be replaced by the index "0".
We now define the momentum compaction factor ¢, as the variation of the orbit length of a particle

for a variation in momentum:

AC/C
o, = €€ (2.54)
Ap/p
We also define 7 the phase slip factor:
1 1 1
¥ Y %

where 7, is the transition energy, i.e. the energy corresponding to 7 = 0. In the AGS, we have
Yir ~ 8.5. Below the transition energy 11 > 0 and particles with higher energy have higher revo-
lution frequency; and above it 7 < 0 and particles with lower momentum have higher revolution
frequency.
From the equations above one can get a simple form of the differential equation ruling the
longitudinal dynamics [31]:
d%¢

2t Q3(sin ¢ — sin ;) = 0 (2.56)

where € is given by:
2 _ qVrrnhc?

2.57
07 2nR2E, (2.57)

2.2.2.1 Small Amplitude Oscillations

We can find a simpler expression if we consider only small amplitude oscillations. We can expand
sin (@5 + A¢@) for small A¢ in equation 2.56 and obtain [31]:
d*(A9)

—7 T Q2Ap =0 (2.58)
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We can see that 2.58 is the differential equation of a harmonic oscillator of angular frequency €

given by:
qVrrNhc®

2 __ 02 _
QS - QO cos ‘Ps - 27TR%ES

0S @ (2.59)

For the longitudinal motion to be stable the squared angular frequency Q% needs to be positive.

This imposes constraints on the values of the synchronous phase and 1:
ncos@s >0 (2.60)

Figure 2.6 shows the jump in the synchronous phase during the crossing of the transition energy
in order to maintain 7 cos ¢s > 0. The AGS uses a set of 6 quadrupoles called gamma transition
quadrupoles to modify the ¥, of the lattice. The system modifies the momentum compaction factor
when the energy gets close to transition in order to accelerate the crossing of the transition.
Similarly to transverse dynamics, we define Q; the synchrotron tune as the number of syn-

chrotron oscillations per turn of the AGS. In the approximations of this section we have:

an rev,s

Qs (2.61)

In general, the synchrotron tune can excite synchro-betatron resonances [29] and synchrotron spin
resonances [4]. However, the synchrotron tune is very small in the AGS: Q; < 10~*. Therefore the

synchrotron motion does not add resonant conditions in the AGS.

2.2.3 REF System in the AGS

Table 2.2 summarizes the relevant RF parameters of the AGS. The AGS RF system is composed of
10 REF stations distributed around the lattice in 10-foot straight sections. Figure 2.7 shows one of

the AGS REF stations. Each station contains 4 cavities loaded with a ferrite core. A ferrite core is
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Dﬁ U

Figure 2.7 Picture of the RF station located in the straight section B10 and seen from
downstream.

used to reduce the sensitivity of the cavity to the beam loading and to change the cavity frequency
during acceleration [33]. Each cavity can provide a RF voltage of up to 7kV, giving a total ideal

RF voltage of around 280kV.
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2.3 Spin Dynamics in a Flat Circular Accelerator

In this section the motion of the spin will be introduced and applied to the case of a flat circular
accelerator. The theory of the spin dynamics will be developed for the case of the so called "bare
AGS", i.e. the AGS comprised of the sole combined function magnets

The spin of the proton is an intrinsic angular momentum and interacts with the magnetic field
through the magnetic moment i :

Ii=g,=5 (2.62)

where g, is the Landé g-factor of the proton, u, the nuclear magneton and S the spin vector. We
will use the anomalous g-factor G that characterizes the distance of g, to the g-factor predicted by

the Dirac equation of an electron. In the case of the proton we have:

G=f% 2

=1.7928474 (2.63)

Then considering a proton at rest subject to a magnetic field B the precession of the spin is governed
by:

- e
—_— = SXS:—gp

BxS 2.64
di 2ymy (2.64)

Although the spin is a quantum property its evolution can be described by the precession of the
classical vector S using the semiclassical spin precession vector Qs [4]. We will keep the classical

approach of the spin dynamics theory.
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2.3.1 Spin Motion of the Reference Particle

Equation 2.64 applies to protons at rest. For a moving particle the transformation of electromag-

netic fields in the laboratory frame to the proton rest frame gives the Thomas-BMT equation:

—

S e - . _ y \Exp
D 1 B 1 B _r
" mony (1+Gy)BL+ (1+G) ||+(Gy+y+1) .

(2.65)

with ﬁ = V/c. We also introduce B, and B |> the orthogonal and parallel components of the mag-
netic field to the particle velocity.

We saw in Section 2.2 that electric fields are only used to accelerate the protons. The electric
field is always considered parallel to the particle velocity and B x E = 0. The term with the electric
field can be removed from equation 2.65.

In the case of the particle traveling on the OCO, only vertical guiding fields are encountered

and B = By. This results in the simplest form of the precession of the spin:

Qs = —iy (1+ Gy)Boy (2.66)

mg
In these conditions the Lorentz equation can be written [4]:

@v -
prie Q. XV (2.67)

where Q. is the relativistic cyclotron frequency and characterizes the revolution frequency of the
particle around the machine. Now it is interesting to compare the cyclotron frequency to the

precession frequency of the spin in the same magnetic field.

&5 Gy (2.68)
Qc
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In the rotating frame, the spin makes G turns around the vertical direction per turn of the AGS.
By analogy with the betatron tunes, this defines a very important quantity called the spin tune Qs.

In the case of a circular machine Qg is the unperturbed spin tune on the OCO:

Qs = Gy (2.69)

In synchrotrons such as the AGS, the spin tune plays a critical role and G is commonly used as

unit of energy.

2.3.2 Spin Motion in the Serret-Frenet Coordinate System

As for the transverse dynamics developed in Section 2.1.1, it is convenient to use the curvilinear
coordinate system defined Figure 2.1. We will express B (s) and EH(S) along the OCO in the
curvilinear coordinate system (x,s,y). We will neglect all non linear terms in x and y.

We can express the transverse field as:
B (s)=—(¥xB(s)) x ¥ (2.70)

From equation 2.1 and using equation 2.19 we have:

ymds 1

7 B _ 1
V> Bls) q dt pvdt

2.71)

Equations 2.5 can be written using the longitudinal derivations of the coordinates from equations
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2.7. Then we can use the approximations mentioned on equations 2.23 and write:

/g "2 Jo_ 2 1 X ne2 2 1 X
X =2k (1 5t) | (20 = (14 58)
V= s<1+i> and @: 22 X ~ 72 X
p(s) d p(s) p(s)
yls y//S,Z +y/S y//S:Z
(2.72)

B (s) =~ —Bp;sz<l+ﬁ>zaxv
253%;))/ y//s~3 <1+pis)>
= —Bp (]_ X ) 1 y”S3xl—y/S3 //_Ls 1+Ls
p(s) S3<1+ﬁ>2 ( 3p<> 55))

p(s) p(s)
_y//
X /
~ — - y 2.
w(1-55) | % o
1" 1
SEIG}

In the linear approximation, fields parallel to the particle trajectory are due to longitudinal
magnetic fields Bs(s) but also to the vertical orbit through vertical magnetic fields (e.g. solenoids
or dipoles) [34]:

By|(s) = (Bs(s) +Y'By(s))5 (2.74)
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Using Gauss’s law for magnetism and equation 2.15 we have:

OB(s)  9By(s) 1y
=5 = () 27
Thus one can write:
1 /
Bs(s) = B, — 2.76
(s) py<p(s)> (2.76)

And we get an expression of the parallel field in terms of particle coordinates:

By(s) ~ Bp (%) 5 2.77)

We now change the independent variable to the angle 6 introduced Section 2.1.1. Using the

equations 2.2 and 2.23 we can express the spin precession in the cylindrical coordinate system:

ds dS 1 ds
E:@e’mp() v - (2.78)
s _X
(”p@))

Then using equation 2.65, the expressions developed in equations 2.73 and 2.77, and keeping only

the linear terms in x and y we get:

_y// 0
CA (1+Gy)| 2 |-(1+6) (L)l p(s) (2.79)
do p(s) p(s) '
1
I x// _ m 0 |

It is worth pointing out that we keep the radius of curvature as being function of s, even if we
now consider 0 as the relevant independent variable, in order to keep the notation used until now.
Although the spin vector is a function of the position 6 or s we will just write it S to lighten the

notation. New variables will not always explicitly show their dependence on the azimuth. We
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pose:
dd—gzixﬁ and F = X+ 5+ Fy (2.80)
with:
FL = —p(s)(1+Gy)y' (2.81)
!/
B = y(1+Gy) -p(s)(1+G (L) (2.82)
B = (1+Gy)(p(s)x" —1) =~ —(1+GYy) (2.83)

where the term in x” in F; is dropped since it is small and averages to 0.
In the frame which rotates with the particle at its cyclotron frequency (see Eq. 2.67), equation

2.80 can be written [35]:

— =ixS§S with A=—[RX+FA5+(1+R)j (2.84)

and

n = —[FAX+ES5+(1+F)7 (2.85)

= —FX-F§+GyZ

where 7i is the local precession axis of the spin. If we consider a particle on the OCO its transverse
coordinates are zero and F; = F> = 0. Equation 2.84 takes the form of a precession around the
vertical axis:

— =GyyxS§ (2.86)
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2.3.3 Spinor Formalism

The use of spinors and quantum mechanics formalism allows convenient representation of the
solution to the Thomas-BMT equation. In the spinor formalism, the spin vector S can be expressed
as [36]:

S=vy Gy (2.87)

where y is a two component complex vector called spinor and y' designates the hermitian conju-

gate of y. We also use G, the Pauli vector, defined as:

G = Gx)_C"f’ G§§+ Gy:)_;

and o= , Og= , Oy= (2.88)

Expressing the equation of spin motion in the spinor formalism we get [4]:

d . [ Gy ¢

= Ry=—1 v (2.89)
& Gy

The term G - 7i is called the precessing kernel and describes the evolution of the spin vector. The

diagonal terms dominate and give the precession rate of the spin vector around the vertical axis,

which is the spin tune Qg. The off diagonal terms perturb the motion around the vertical axis.

2.3.3.1 Spin Transfer Matrix

As for beam dynamics, it is convenient to use a matrix formalism to transport the spin through

successive magnetic elements in the accelerator. Since the precessing kernel in equation 2.89 is
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independent of 6, the propagation of the spinor ¥ from 6 to 6, is:
Y(6,) = e 20N (0:=01)y(g)) (2.90)

In the case of a particle traveling on the OCO, longitudinal or radial fields are zero and { = 0. Then
the transport of the spinor from 6; to 6, results in a rotation of the spin vector of 2nGy(6, — 6;)

around the vertical direction:

W(6,) = e 2010y () (2.91)

1(8+i)(6,—61)

The carrying term e~ 2( is called the spin transfer matrix usually denoted #(6,,6;). The

spin transfer matrix can conveniently be expressed using the Pauli matrices:

) I 2
t =tol — i(t,Ox + 1,05+ 1,0y) = (2.92)

1 I

where the classical nature of the spin vector constraints the matrix elements of the spin transfer
matrix to satisfy:

1y = tikl and 1) = —tikz (2.93)

Similarly to beam dynamics, we can build the spin transfer matrix of multiple elements by multi-

plying the spin transfer matrix of each element:

n
w(0) =[] 1(6;11,6,)w(61) =1(6,61)y(61) (2.94)
j=1
The spin transfer matrix for one turn of the AGS is called the one turn spin map [4]:

1(0+2m,0) = ¢ ™OsNc0G (2.95)
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where 7i, along the ring is the spin closed orbit. The transformation of the spin vector is a rotation

of 2 Qg around 7ig,.

2.3.3.2 Spin Transfer Matrix and Formal Computation

The spin tune and the spin closed orbit are fundamental quantities of the spin dynamics in the
AGS. We want to be able to visualize the effect of different parameters on Qg and 7i.,. However,
the computation of the one turn spin map and its identification to equation 2.95 gets very complex
when the number of elements considered increases. For this reason, programs were developed with
the formal computation software Mathematica [37].

First we transform the exponential notation of the rotations of in equation 2.90 using Euler’s

equation:
,L(a-.ﬁ)(e —6)) 1 Loy 1
e 2 2=%) = 1cos —5(92—91) +i(6 - i) sin —5(92—91) (2.96)

where 1 is the identity matrix. Then spin transfer matrices are multiplied to obtain the one turn

spin map #(0 + 27, 0). Finally, we solve for (a,b,c,d):
t(0+27,0) = la— i (bo, + coy + doy) (2.97)

The spin tune and spin closed orbit are given by:

b

sin(—7Qy)
1 — — o
QS:%COS 1(a) and 7., = gm(_c—ﬂQs) (2.98)
sin(—7Qy)

This gives a quick method to evaluate the effect of complicated configurations as we will see
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in Section 2.4. The flexibility of Mathematica also allows to interactively change some of the

parameters and understand their effects on the evolution of the spin vector and spin tune.

2.3.4 Depolarizing Spin Resonances

The off diagonal terms in equation 2.89 cause the spin to precess around the X and § directions.

These terms are perturbing the precession around the vertical and can be expressed [4]:

E0) = Fi—iF

— 6N + ) - p6)1+6) () 299

The perturbing term & has a very small effect on the spin compared to the precession around the
vertical axis and the spin generally stays close to y. However, when these perturbing fields add
up coherently in the machine they can have strong effects on the polarization. Therefore, when
conditions are satisfied, spin resonance can occur and amplify the effect of the perturbing fields,
possibly leading to partial or total depolarization of the beam.

Equation 2.99 shows that the perturbing term depends on the motion of the particle in the
vertical plane, which is a combination of vertical closed orbit and vertical betatron motion. Since

this motion is quasi-periodic with 6, we can expand & in a Fourier series:

£(0) =Y exe™® (2.100)
K

The resonant frequency is given by K and is called the resonant spin tune. The Fourier coefficient
gk is called the depolarization resonance strength and is detailed in Section 2.3.4.2. While we
define the depolarizing resonances, arises the question of the behavior of the polarization when
such a resonance is crossed. It is also important to understand the relevant parameters to reduce or

avoid losses of polarization across these resonances.
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2.3.4.1 Depolarization Across a Single Resonance : Froissart-Stora Formula

We consider the case of an accelerated beam across a single isolated resonance. While we de-
fined (Eq. 2.69) that the spin tune is function of the energy, we conveniently consider a constant

acceleration rate, hence a constant time derivative of the spin tune:

dGy
= — 2.101
Y= (2.101)

While o designates the acceleration rate in unit G7, it is usually called the crossing rate. When
the spin resonance at Gy = K with a strength &g is crossed, the asymptotic final polarization Py is

given by:

P lex [
5 pp s (2.102)
Pi

where P, is the initial polarization. Equation 2.102 was derived by Froissart and Stora [38] and

presents the asymptotic polarization for the crossing of a single resonance at constant speed. Equa-

ek |

tion 2.102 shows that the final polarization only depends on the ratio =, -. Hence, constraints can

be established on this ratio to have most of the polarization conserved, i.e. Py /P; ~ £1.

* In the case where the resonance strength is low enough or the crossing speed large, the
polarization can be conserved. For instance, if we aim to conserve at least 99% of the

polarization, resonance strength and crossing rate need to satisfy:

| e |2

o

<3.21073 (2.103)

* If the resonance is strong enough or the crossing rate small, the polarization can be preserved
by achieving a spin-flip. In this case the resonance is strong enough to fully flip the spin,

without loss of polarization. Again, if we want to conserve 99% of the polarization we need
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to satisfy:

| ex |?

o

>34 (2.104)

2
We have seen that polarization losses can be avoided by carefully adjusting the ratio %. We
will now investigate the parameters influencing the strength €x of depolarizing resonances.
2.3.4.2 Spin Resonance Strength

The depolarization resonance strength is a complex quantity independent of 0 [4]:

1 .
e — 5- &0

= %j{[(1+G}/)(p(s)y"+iy’)—ip(s)(l—|—G) (%)/} k%o (2.105)

The resonant condition is satisfied when the resonant tune K equals the spin tune Qg. While
equation 2.105 gives the general form of the strength of spin resonances, one can find a simpler
form by means of some approximations. In the AGS p(s) is very large, therefore the integrand
of equation 2.105 is dominated by the term p(s)y”. Neglecting the other terms and replacing the

independent variable by the longitudinal coordinate s we get:
1+G ;
£x = _;—ﬂy ?f NLCRY (2.106)

We can also express €k as a function of the perturbing field. Using equation 2.26 we can write:

1 .
£x ~ ;fy f ki1 (s)ye'K0ds (2.107)

The resonance strength €x depends on the vertical motion around the machine and we can separate

the depolarizing resonances between two types called imperfection and intrinsic spin resonances.
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2.3.4.3 Intrinsic Spin Resonance

When the relation Qg = K = vy is satisfied, perturbing fields add up coherently due to the betatron
motion of the particle. The betatron motion cannot be avoided when beam with non zero emittance
is considered. This type of resonance exists even in a perfect machine. While these resonances are
intrinsically related to the machine they are called intrinsic depolarization spin resonances.

To compute the strength of an intrinsic spin resonance we can replace y in equation 2.107 by
the parametric expression of the vertical motion (Eq. 2.43). We express the resonance strength as

a function of s [4]:

ek ~ ! ;:7\/87 f ki (5) 1/ By(s) cos (py(s) + 11,,(0)) ™0 ds (2.108)

Due to the periodicity of the beta function, the integrand is non zero only if:

K=mP+£Q, (2.109)

where m is an integer and P is the number of superperiods in the lattice. In a real accelerator, errors

break the superperiodicity and weak intrinsic spin resonances occur when:

K=n+0Q, (n#mP) (2.110)

where 7 is an integer. Table 2.3 classifies the intrinsic resonances as a function of their strengths and

shows that the strongest resonances also involve M, the number of FODO cells per superperiod [4].

One can note that in equation 2.108 the strength of the resonance depends on the Courant-
Snyder invariant of the particle. Therefore, different particles within the same beam will see differ-

ent spin resonance strength depending on their vertical invariant. This jeopardizes the possibility
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Table 2.3 Types of intrinsic spin resonances [4]

K Location in the AGS Resonance denomination

nPM +Q, 0+Qy, 360, strong intrinsic resonance
nP +Q, | 12+0Qy,24+£0,,24+0,48 L0, intrinsic resonance

n +=Q, all others weak intrinsic resonance

of spin flip addressed in Section 2.3.4.2 because some particles with lower vertical invariant will

not see a strong enough resonance to cause a full spin flip.

2.3.4.4 Imperfection Spin Resonances

When K is an integer and Qs = K, the perturbing fields due to the vertical closed orbit add up
coherently turn after turn and can cause the precession around £ and § to become significant com-
pared to G, depolarizing the beam. Since the vertical closed orbit in a synchrotron is due to field
or alignment errors, this type of resonance is called imperfection spin resonance.

We can consider a closed orbit due to random errors along the ring. The resulting closed orbit

2 ¢ il (s)
Yeo(s) = 1/ By(s) ZQ fle 2.111)

where f; is the Fourier coefficient of the error harmonic / and can be computed using: [4]

distortion is given by [4]:

% ﬁy(s)kl (S)e*ilﬂy(s)ds (2.112)

Ji= 2nQ,

Replacing y by y., in equation 2.107 we obtain [4]:

2 ¢ il (s .
oo — 1+Gy nyze ]g o (s zluy() CERE (2.113)
l

As for the intrinsic resonance, the strength of the imperfection resonance is enhanced by the pe-
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Table 2.4 Types of imperfection spin resonances [4]

K Resonance denomination
nPM | strong imperfection resonance

nP imperfection resonance

n weak imperfection resonance

riodicity of the machine. Table 2.4 summarizes the different types of imperfection resonances.
Unlike the intrinsic resonance, the strength of the imperfection spin resonance does not depend
on the vertical invariant of each particle. Furthermore, harmonic correction or distortion of the
vertical orbit, respectively, usually allow full conservation or spin-flip of all the particles within a
bunch.

Figure 2.8 shows the resonance strength obtained by the Zgoubi code. The strengths were esti-
mated using the depolarization of a single particle tracked through a single resonance and applying

equation 2.102. The results were very close to the predicted theoretical strengths [1].
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Figure 2.8 Intrinsic (a) and imperfection (b) resonances strengths in the AGS as a function
of the energy, in arbitrary units on a logarithmic scale [1].



2.4 Spin Dynamics with Partial Snakes 49

2.4 Spin Dynamics with Partial Snakes

In the early 70’s, Derbenev and Kondratenko proposed to overcome spin resonances in circular
accelerators by using a local spin rotator capable of rotating the spin vector by 180° about a hori-

zontal axis.

2.4.1 Spin Dynamics with One Full Snake

To see the effect of such a spin rotator on the spin dynamics, we can conveniently use the spin
transfer matrix formalism introduced earlier. We can consider the spin rotator as a localized ro-
tation of the spin vector of 180° around 5. With the observer at an orbital angle 6 from the spin

rotator, the resulting one turn spin map is:
1(0+27,0) = ¢ 1672T-0)0y,— 570, ,—3GY00, (2.114)

Using the tools presented in Section 2.3.3.2 one finds:

—sin (Gy(m—0))
1
Os = 5 and ﬁco = | —cos (G’)/(ﬂ? — 9)) (2.115)

0

The spin tune is not function of the energy. All imperfection resonances are avoided since the spin
tune never takes integer values. With the fractional part of the vertical betatron tune different than
0, = 0.5, all intrinsic resonances are also avoided. In this case, the spin closed orbit vector is on
the horizontal plane and precesses around the vertical dipole field around the ring.

This principle is used for RHIC, although 2 spin rotators are used to obtain a spin closed orbit

vector aligned on the vertical axis.
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2.4.1.1 Siberian Snakes

Spin rotators inducing a precession of the spin around the directions X or § are called Siberian
snakes [4]. The first type of snake is a solenoid featuring a constant longitudinal field. From
equation 2.65 we can see that such a field would slowly and continuously rotate the spin vector
around the longitudinal axis. However, a longitudinal field is not very effective, particularly at high
rigidity. The term (1 + G) in equation 2.65 shows that the required integrated field grows linearly
with the momentum, for a constant rotation of the spin vector. This system was used in the AGS
in the 90’s [39] but is generally only used at low energy.

The second type of spin rotator uses transverse dipole fields to rotate the spin. The main
advantage comes from the factor (1 + GYy) in equation 2.65 that enhances the effect of a transverse
field B, . The required integrated field to maintain the precession angle as the energy increases
is then only proportional to 1/ [4]. This is necessary for high energy machines such as RHIC.
Different solutions are possible, involving successions of horizontal and vertical dipole magnets
but an original and compact solution features a helical dipole field. This last solution is used at
RHIC and allows to minimize the excursion of the orbit inside the snake.

While Siberian snakes and especially helical magnets are a good solution to conserve the po-
larization in high energy synchrotrons, it is not always possible to use them. For instance, each
snake in the RHIC is around 10m long to create the 180° rotation of the spin vector. In the AGS,
the longer straight sections are no more than 3m long. Therefore the use of a helical snake capable
of rotating the spin vector by 180° is not possible. For this reason it was proposed to use partial

snakes in the AGS, capable of rotating the spin vector by only a fraction of 180° [40].

2.4.2 Spin Dynamics with Two Partial Snakes

The AGS uses two partial helical snakes pictured in Figure 3.4. The idea was proposed to use two

short partial snakes separated by one third of the ring [40], with the strong partial snakes being
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Figure 2.9 Pictures of the superconducting helical snake in the A20 straight section (a)
and the normal conducting helical snake in the straight section E20 (b).

short enough to fit in a long straight section of the AGS while offering a precession of the spin
around the longitudinal axis of 10 to 20 degrees.
While we have seen that a single full spin rotator allows to overcome imperfection and intrinsic

spin resonances we will see the effect of the AGS configuration on the spin dynamics.

2.4.2.1 Spin Dynamics with Two Partial Snakes Separated by One Third of the Ring

Lets consider an observer located between the two snakes, at an angle 6 from the warm snake (be-
tween A20 and E20 straight sections). With y,, and )., the angles of the spin rotation respectively

caused by the warm snake and cold snake, we can write:

1(0+2m,0) = 1(6+2m,cold snake) -e_i%%cCYZ -1(cold snake, warm snake ) - e—i%xwoz -t(warm snake, 6)

— o 1267(21/3-6)03 ,~i3%c0 , i3 GY(47/3)03 , i3 202 , i3 GYO O (2.116)
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Again, using the method introduced in section 2.3.3.2 we determine the spin tune and the spin

closed orbit between the snakes:

Qs = %arccos {cos (); ) coS (%2 ) cos(Gyrm) (2.117)
—sin (g ) sin (752 ) cos <G}/—> }
g X = m{cos ();c) sm(gc2 >sm (Gy( 9)) (2.118)
() eon (2 n(er(3+6)
- m {cos (g) sin (xz ) cos (Gy(m—9)). (2.119)
con )2 (01(2 )}
Beo-¥ = m {cos <€C> cos (xz ) sin(Gyr) (2.120)

cin(%)sn (%) in ()

In the case of an observer located in the superperiods F to A, slightly different expressions for the
spin closed orbit are found [41]. We can see that the spin tune (Eq. 2.117) now depends on the
energy (Gy). From equations 2.118 to 2.120 we can see that the stable spin direction can be away
from the vertical axis and precesses around the vertical bending field. We can now use the strength
of the two snakes to determine the evolution of the spin tune as a function of the energy.

Figure 2.10 shows the spin tune around Gy = 9 for different strengths of the two snakes. We
can see that without snakes we have the regular relation Qg = G, but with non zero snake strengths
a forbidden band for the spin tune opens around the integer. The forbidden band is called the spin
tune gap and increases with the snake strength.

Similarly to the case with a single full snake seen in Section 2.4.1, the imperfection resonances
are avoided since the spin tune cannot take integer values. The vertical intrinsic resonances can be

avoided if the resonant condition Qg = I &= Qy is avoided, i.e. if the fractional part of the vertical



2.4 Spin Dynamics with Partial Snakes 53

9.4 | one snake 20° and one 10° i §
no snake /

9o |two snakes of 70° _— , i
0]
o

Y :
2
g

o 88 1 : 8

8.6 8.8 9 9.2 9.4
Energy (GY)

Figure 2.10 Spin tune as a function of the energy from equation 2.117 and for different
snake strengths.

tune is in the spin tune gap. With our example in Figure 2.10, it would constrain the fractional part
of the vertical tune to be higher than 0.916 or lower than .084 for the case with two snakes of 10°

and 20°.

2.4.2.2 Partial Snakes Strengths in the AGS

As mentioned in Section 2.4.1.1, the spin rotation induced by helical magnets is proportional to
1/B [4]. Figure 2.11 shows the evolution of the strengths of the two snakes in the AGS, computed
using OPERA field maps of the magnets and the Zgoubi code. The knowledge of the evolution of
the snakes strengths as a function of the energy is important to accurately compute the spin tune
and the stable spin direction during the AGS acceleration cycle. For easier handling, polynomial
functions were fitted to the snake strengths in Figure 2.11. We can express the evolution of the

snake strength in degrees as a function of the energy in 7y using a polynomial function:

(B 2 Cn G
x(Y)—(lTO) (CI+T+V) (2.121)
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Figure 2.11 Snakes strengths expressed in degrees (left axis) and in fraction of full snake
(right axis) as a function of the energy in the lower range of the AGS acceleration cycle.

For the cold snake the parameters are:

B=214 , By=25 , C=247 , C1n=582 , =299 (2.122)

and for the warm snake:

B=153 , By=153 , C;=10584 , Cpp=-079 , G =11 (2.123)

We can now use equation 2.117 to plot the evolution of the spin tune as a function of the energy.
Figure 2.12 shows the evolution of the spin tune in the AGS with the two partial snakes at their
nominal strengths and allows important remarks, a periodicity of 3 in the maximum value reached
by the spin tune is apparent. The separation of the two snakes by one third of the ring causes
their strengths to add up coherently when Gy = 3n with n an integer. It also appears that the 12
superperiods of the AGS makes the strongest intrinsics spin resonances occur when the strengths
of the two snakes add up. Figure 2.12 (a) shows the spin tune gap reducing as the energy increases.
This is due to the larger strength of the snakes being at low energy as shown Figure 2.11. If the

vertical tune can be brought close enough to the integer, the resonant condition Qg+ Q, =1 is

K (%)
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Figure 2.12 Fractional part of the spin tune in the AGS (a) and a zoom in the low energy
range of the AGS (b).

avoided. In the AGS, the vertical tune is pushed above Q, = 8.96 as much as possible and the
vertical intrinsic resonances are avoided.

We have seen that the partial snakes configuration is a good solution for the AGS since it
allows overcoming both imperfection and intrinsic spin resonances. However, we will see that it

also creates new issues both for beam and spin dynamics.

2.5 Downsides of the Partial Snakes Configuration

In this section we will list the side effects of the partial snake configuration in the AGS.

2.5.1 Horizontal Intrinsic Resonances

We have seen that with the partial snakes, the stable spin orbit direction on the closed orbit (Eq.
2.120) is not vertical. Figure 2.13 shows non zero horizontal competent of the stable spin direction
rig. Therefore vertical fields can also perturb the precession of the spin. Through the same mecha-

nism as for the usual intrinsic spin resonances seen in Section 2.3.4.3, depolarization can be driven
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Figure 2.13 Evolution of the spin closed orbit around the AGS at an energy of Gy = 6.5,
on the horizontal plane (a) and on the vertical plane (b).
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by the horizontal betatron motion of the particle when:

Vs + O, = integer (2.124)

Since these spin resonances are due to the horizontal betatron motion they are called horizontal
intrinsic spin resonances. Figure 5.11 shows the crossing of the first two horizontal intrinsic spin

resonances encountered during the AGS acceleration cycle.

2.5.2 Optical Effect

The strong and highly non linear magnetic field generated by the two Siberian snakes can also be
detrimental to the beam dynamics. The effect is particularly strong at low energy and limits the
flexibility of the machine in the early part of the acceleration cycle [15,42]. This is a major aspect

of this work and addressed in the next chapters.
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Chapter 3

A Model of the AGS with the Ray-Tracing
Code Zgoubi

3.1 History of the AGS Models: from BEAM to Zgoubi

As shown in Section 2.1, beam dynamics in synchrotrons such as the AGS is complex, even within
the approximations used in this work (see Section 2.1.1.1). Hence the necessity for equally com-
plex simulations of the beam dynamics, starting as early as the design stage in the 50’s [43]. How-
ever, computation power was limited at that time and one could think that modeling was limited
to the use of first order matrix formalism (Section 2.1.1.2). Nonetheless, one of the first computer
codes used for the AGS was a tracking code, the BEAM code, operational in 1960 and devel-
oped by E.D. Courant using the Fortran language. In particular, the code was used to compute the
orbit of an injected proton beam at 50 MeV under the influence of the main magnet fringe field,
using one of the first standardized computers: the IBM 704 [44]. Other references mention the
computation of particle trajectories with high accuracy using one of the first supercomputer, the

CDC-6600 [45].

59
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Although available material from these simulations is limited, it seems that the BEAM code
was mainly used to compute stable injection orbits in the AGS, likely due to the limited computa-
tion power. The oldest systematic use of a computer model for AGS operations was based on the

MAD code [46], in the 1980’s [47,48].

3.1.1 MADX Model of the AGS

The development of the MAD model of the AGS started in the late 1980’s [49]. It uses matrices
of the AGS elements to determine the Courant-Snyder parameters along the machine lattice. In
its first implementation only main magnets and straight sections were included, without misalign-
ments. The main magnets were simulated using constant quadrupole and sextupole normalized
field strengths, available for only 6 different proton momenta (15, 20, 25, 27, 29 and 32 GeV/c),
although the source of these data is not clear in the original publications [49].

Shortly afterward, the MAD model was used for the development and commissioning of the
AGS gamma transition quadrupoles [47,48], with good agreement on the measurements. Limited
documentation on the evolution of the model precludes the establishment of a complete timeline.

Today the AGS model is well documented. It uses the MADX code and can be accessed
through the MadxFromSnaprampCmd command [50]. The command accepts several parameters
activated by specific arguments, the most relevant to understand the MadxFromSnaprampCmd

being:

* -snapramp to provide the snapramp directory. It contains AGS operational settings and
readbacks for all power supplies used, along a single cycle. The save of a snapramp is

triggered by several ways, including through a command line.

* -timeSteps to provide the timings at which the model of the AGS will be computed. A set

of timing is subsequently generated at which the model is produced.
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* -noblw and -nogammajump to respectively remove the backleg windings' or the gamma

transition quadrupoles from the model.
* -bare to only use the main magnets, ignoring all other elements.

Then MADX input files are generated using the snapramp data and optical functions are computed
at the requested timings. A graphical user interface, the AGSModelViewer(see Figure 3.1), is also

available to conveniently use the MadxFromSnaprampCmd command and display the results [51].
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Figure 3.1 The AGS "lattice" page of the AgsModelViewer, at an early timing [2].

For each requested timing, the MadxFromSnaprampCmd command generates a MADX input

file through the following steps:

* The main magnet current is used to determine the momentum of protons circulating on
the OCO. In practice a polynomial function generated from the measured integrated dipole

strength of the main magnets is used [23] (see Section 3.3.1.2).

IConductor winding on the return yoke of some AGS main magnets to modify the net excitation of groups of
magnets, to control the closed orbit. This changes the effective number of Ampere-turns and has an effect on all field
components of the magnets.
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The quadrupole and sextupole normalized field strengths of the main magnets are computed
using polynomial functions that were generated from tracking through measured field maps

[52].

Transfer functions for the high field quadrupoles [53] and sextupoles [54] are applied to the
measured currents in the snapramp to compute corresponding magnet strengths. Gamma

transition quadrupoles, used to cross the transition energy, are also accounted for.

Transfer functions for the so-called thin quads, compensating for the optical effect of the

AGS partial snakes, are used to compute the strength of these magnets [55].

Backleg windings are included, if requested.

Depending on the machine configuration the Siberian snakes may be added. The snakes are

here modeled by momentum dependent first order matrices [56].

Each input MADX file (for each timing) is processed and the output data, such as the orbit and

periodic functions along the ring, are saved in an associated text file. Access to the data is possible

via the dedicated graphical interface AgsModelViewer [2] or by direct access to the output files.

The data structure is as follow.

model_150.madx model_160.madx [...] model_900.madx twiss

Where the .madx files are the MADX input files and one can see that in this case the model was

computed from 150ms to 900ms every 10ms. The folder twiss contains the output file corre-

sponding to each timing. A file named OpticsTable.dat contains all global data such as the

tunes for each timing.
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3.1.1.1 Siberian Snakes Model

The two AGS partial snakes were extensively studied [57, 58] and it was expected that strong
focusing fields would be present, generating important optical distortions of the AGS lattice at
low energy. This drove a strong interest to include first order linear mapping of the snakes in
the MADX model, as a first approach [56]. Matrices were computed by tracking particles through
computed field maps of the snakes [57,58] for proton energies ranging from y = 2.5 to Y = 26 every
Y= 0.1. The matrices were then simplectified using the Cayley transform [59]. During the creation
of the AGS MADX input file, MadxFromSnaprampCmd uses the equilibrium proton momentum
determined from the main magnets current, in order to choose the corresponding matrices of the
two snakes.

This method presents the advantage of quickly providing the optical effect of each snake, par-
ticularly useful for the AGS online model. However, it only models linear effects of the snakes.
Furthermore, effects of the snakes on the AGS closed orbit are also ignored. These problems were
partially overcome for offline analysis by using an equivalent element approach using the MADX
code, detailed in reference [56]. However it was concluded that simulation of the AGS snakes

requires a full non-linear description of the fields to achieve accurate modeling of the machine.

3.1.1.2 AGS Control Command

The AGS control command OpticsControl was developed to control the machine tunes and chro-
maticities. Tunes are controlled using the two families of high field quadrupoles introduced Section
2.1.3.1. Similarly, the control of the chromaticities uses two families of sextupole magnets detailed
in Section 2.1.3.2. Using the MAD code and the currents in the high field quads wired in two tune
quadrupole families, linear relations were determined between the current provided to each family
and the AGS tune. AGS OpticsControl command uses the following relation to predict the tunes

Oy and Q, obtained when currents I, and I, are respectively injected in the horizontal and vertical
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tune quadrupole families [60]:

1
Oy = (m11><1h+m12><1v)p—0+on(Po) (3.1)

1
Qy = (ma1 xIy+myn X Iv)p—o +0y0(po) (3.2)

where Qx(po) and Qyo(po) are, respectively, the horizontal and vertical bare tune of the AGS only
function of the equilibrium momentum pg, such as obtained with the MAD model of the AGS with
only the main magnets [61]. The inverse relation is used to determine the current 7, and /, required
to obtain the tunes Q, and Q,. The same method was used to obtain the linear transformation
between currents in the two sextupole families and the AGS chromaticities [62].

The main advantage of this linear mapping method is the short computation time required,
which is critical during operations. However, the model does not include the effect of other ele-
ments such as the Siberian snakes or the compensation quadrupoles. Although always used, this
tool is mainly predicting relative changes in tunes, and predicted values of tunes are not accurate,
particularly at low energy with the Siberian snakes. Relative tune change prediction becomes poor
when the AGS optics deviates from the bare optics, which is particularly true at low energy during

polarized protons acceleration due to the optical effects of the snakes.

None of the models described above provide spin dynamics parameters, or tracking. The
SPINK code, based on thick element modeling from the MADX AGS model to track position
and spin of protons, was developed for that purpose [63]. SPINK does not track directly in the
field maps of the Siberian snakes but instead uses transfer matrices. This drove strong interest for
a complete modelisation of the AGS providing full particle and spin dynamics parameters as well
as tracking capabilities, in particular directly using the computed field maps of the partial snakes.

The ray-tracing code Zgoubi did offer these capabilities [64,65] in a model of the AGS started in
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2009 [66,67].
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3.2 The Zgoubi Code

The Zgoubi code computes charged particles trajectories in magnetic and electric fields [3]. It
was developed in the early 1970’s at the CEN-Saclay in France for ray-tracing in large magnetic
spectrometers. Since then, numerous developments have driven the spread of the code amongst
laboratories across the world. The Lorentz equation (Eq. 2.1) and the Thomas-BMT equation (Eq.
2.65) are respectively used to track the position and spin of the particles. The core of the code is an
integrator based on Taylor expansion of the position and velocity vectors to solve both beam and

spin dynamics in magnetic fields [64].

3.2.1 Step-Wise Ray-Tracing Method

The Zgoubi code transports the proton position, velocity and spin vectors over a defined step of

length As, in a local frame as defined Figure 3.2. Given the particle position ﬁ(Mo) and velocity
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Figure 3.2 Position and velocity of a particle in the Zgoubi reference frame [3].
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1i(My), the position and velocity at M| are obtained using truncated Taylor series [64]:

RMy) = R(M0)+“(MO)AS+M(M0)7+"'+M (Mo)? (3.3)
As® Asd
A(M1) = (M) + 7 (Mo)As + ' (Mo) -+ +7) (Mo) - (3.4)

where the derivatives i) are determined from recursive differentiation of the Lorentz equation.
This involves the magnetic field and its spacial derivatives at My, through the Lorentz equation
that can be written @ = i x B [3]. The maximum order of the Taylor expansions was chosen as a
compromise between tracking accuracy and computation time.

In practice, the magnetic field can be analytically computed by the code itself, from a built-in
library, for a wide range of magnets (the code also includes electrostatic elements) [3]. The field
and its derivatives are computed at the particle position at each step and used in equations 3.3
and 3.4. For instance, the Zgoubi element 'MULTIPOL' produces a superposition of multipolar
magnetic fields and is used for the AGS lattice to simulate sextupoles and dipole correctors. Alter-
natively, field maps of magnetic elements can be used, either simulated using a magnet simulation
code or measured from a real magnet. Zgoubi is capable of handling different types of field maps,
from 1-D to 3-D, by assuming different symmetries of the field and using the Maxwell’s equations.
This is particularly useful in the case of the AGS where 2-D measured field maps of the main mag-
nets and 3-D simulated field maps of the snakes are available. For tracking through field maps the
Zgoubi element 'TOSCA' is used and the code places a grid (generally 3x3 in 2-D and 3x3x3 in
3-D) centered closest to the particle position [3]. The field and its derivatives are computed using

the field at the field map nodes and the Maxwell equations.
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3.2.2 Spin Dynamics

The spin vector S (defined Section 2.3) is transported using the same numerical method as the
particle position [64]:
2 As?

- - - - A -
S(My) = 5(Mo) +S' (Mo)As + S”(Mo)z—s' oo S (Mo) - (3.5)

where the derivatives S are determined from recursive differentiation of the Thomas-BMT equa-
tion (Eq. 2.65). This also uses the magnetic field and its spacial derivatives at M (see equation

2.65).

3.2.3 Longitudinal Dynamics

Longitudinal dynamics is handled through equations 3.3 to 3.4 when the particle rigidity changes.
In the AGS the particles get accelerated when traveling across one of the RF cavities. In the Zgoubi
model of the AGS, changes in energy are simulated using a single longitudinal kick once per turn.
A Zgoubi element 'CAVITE', located at the end of straight section L20, simulates the combined
effect of all cavities used in the machine since the phase slip per turn remains very small [32].
The 'CAVITE' input data describes the RF wave to be used and includes the length of the closed
orbit. When a particle crosses the 'CAVITE' element at turn i the code transforms its path length
into the phase difference relative to the RF wave that the particle accumulated between turns i — 1
and i. The longitudinal phase of the particle is therefore updated at every turn and each particle
receives a longitudinal kick according to the time dependence of the RF wave. Longitudinal dy-
namics naturally include all high orders due to transverse dynamics such as non linear momentum

compaction factors and synchro-betatron coupling.
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3.3 Development of the Zgoubi Model of the AGS

3.3.1 Bare Model

As the AGS uses combined function dipoles, most of the beam focusing is achieved by these
magnets [61]. Therefore correct modelisation of the AGS main magnets is critical to realistically

simulate beam and spin dynamics.

3.3.1.1 Direct Tracking through Measured Field Maps of the Main Magnets

The AGS main magnets are combined function C-shaped magnets with two different lengths. De-
pending on the side of the wide gap, the magnets are called open (A and B-type) or closed (C-type),
as illustrated in Figure 2.3. The iron of A-type and C-type is 90 inches long, while B-type is 75
inches. Point-to-point field maps were obtained for a single A-type and a single C-type magnet,
from the fringe field region to the middle of the magnet, using a hall probe. The maps of the
vertical field component are produced in the median plane of the magnet and over 13 different
currents from 15 to 5850A. The original mesh size of these maps was Ax = 0.linch in the trans-
verse direction and As = 0.25inch or As = linch in the longitudinal one, depending on the gradient.
However, Zgoubi requires a uniform mesh, so the maps were converted to a constant longitudinal
mesh of As = 0.25inch [68]. The field maps of the B-type magnets are derived by shortening the
central region of the A-type maps. The two functions of each magnet type (focusing and defocus-
ing) are obtained by flipping the map with respect to the longitudinal axis. Analysis of these data
yielded the excitation functions [23] and the harmonic coefficients [27, 69] of the main magnets
which have been used so far in every model of the AGS. The measured field maps use a coordinate
system called the "Socket System", whereas in Zgoubi (and MADX as well) the origin of the ref-
erence frame is taken on the OCO [22]. The different coordinate systems and their relationship are

detailed in references [30,70]. Moreover, the AGS model in Zgoubi using the measured field maps,
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Table 3.1 List of elements used in the Zgoubi model of the AGS.

AGS element Zgoubi element options thesis reference | Zgoubi user’s guide | label associated
main magnet AGSMM dko, dk1, dky, p.72 p.181 AGSMM_
misalignment and
backleg winding
TOSCA dko, dky, dk; p.69 p-269 AGSMM_
and misalignment
quadrupole AGSQUAD additional winding p.73 p.182 QH_, QV_
and misalignment or QTHIN
sextuple MULTIPOL misalignment p.74 p.236 SXH_ or SXV_
cold/warm sake TOSCA misalignment p.75 p.269 CSNK or WSNK
accelerating cavity CAVITE none p.68 p-194 CAVITE
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employs the same conventions as the classical MADX model: a counter-clockwise circulation of
the particles and the positive transverse direction toward the center of the ring. In order to go from
one system to the other, at the entrance and exit of the main magnet field maps, the Zgoubi AGS
lattice uses the element 'CHANGREF' [3]. An example is given in appendix A for the case of an
A-type magnet.

Tracking in the bare AGS using the measured field maps of the main magnets showed good
optical results. However, long term trackings showed that the single particle emittance is not
conserved at large amplitudes, likely due to the lack of smoothness of the measured field maps [69].
Direct tracking through the measured field maps provides a realistic optics since high order field
components or fringe fields are included. However, long term stability is very important for spin
tracking in the AGS (typically more than 150,000 turns in the 240 main magnets of the ring for
a complete acceleration cycle), therefore the use of an analytical model for the main magnet is

required.

3.3.1.2 Multipole Model of the Main Magnets

Multipolar field components were extracted from the measured field maps of the main mag-
nets [27,71]. Convenient polynomial functions were generated to determine the multipolar field
components as a function of the magnet excitation current or equilibrium proton momentum. These
functions are used in the MADX model of the AGS main magnets and are commonly referred to
as Bleser’s polynomials. Since available documentation does not detail the method used to ex-
tract these data, it was proposed to use the Zgoubi code to redo the exercise. Tracking with the
Zgoubi code through the measured field maps provided the quadrupole and sextupole strengths, as
a function of the magnet excitation current and for proton circulating on the OCO [69]. Figure 3.3
shows good agreement between the historical polynomials from reference [27] and the new values

computed using the Zgoubi code. Appendix B provides all the computed values for the 8 different
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Figure 3.3 Quadrupole (top plot) and sextupole (bottom plot) strengths as a function of
the magnet current for a C-type magnet.

main magnet currents in the relevant range of energy.

A new Zgoubi element 'AGSMM' was developed for dedicated simulation of the AGS main
magnets [72]. The module is based on Bleser’s polynomials, as the MADX model, to provide the
same results as the MADX model. It generates a superposition of dipole, quadrupole and sextupole
fields. The element length corresponds to the magnetic length of the main magnet, namely 79 or 94
inches. Bleser’s polynomials are included in the routine and generate the correct fields associated
with the lattice rigidity [68, 72]. This element also allows advanced manipulation of each main

magnet via [3]:

* relative changes of the field components. The dipole, quadrupole and sextupole fields can be

independently modified on each magnet.

* introducing backleg windings. Up to 3 different backleg windings can be activated on each

magnet.
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* controlling fringe field region. Although hard edge model is generally used, it is possible to

control the fringe field fall-off.

* translating and rotating the magnet. This allows surveyed magnets’ misalignments and roll

to be introduced in the model.

Table 3.2 compares the tunes and chromaticities predicted by different models with measure-
ments taken at the proton injection energy using a flat magnet cycle. Although all the models are
consistent with the measurements, none perfectly predicts the machine behavior with sufficient
accuracy. For accurate simulation of the AGS behavior, in particular for long term multiparticle

spin tracking, simulation parameters have to be much closer to the measurements.

Table 3.2 Comparison of AGS bare models with machine measurements taken on January
15, 2012, at injection energy.

Source O, Oy 0. 0y
Machine measurement | 8.726 | 8.771 | —13.07 | —4.55
MADX model 8711 | 8765 | —22.73 | 1.73

Zgoubi with field maps | 8.734 | 8.774 | —26.84 | 1.44
Zgoubi with "AGSMM' | 8.711 | 8.765 | —20.86 | 1.60

3.3.2 Comprehensive AGS Model
3.3.2.1 AGS Quadrupoles and Sextupoles

Dedicated quadrupoles and sextupoles are respectively used to control the tunes and chromaticities
of the AGS. Transfer functions to compute the field generated by these magnets from the excitation
currents are well known [53, 54]. The transfer functions are used by the MADX model and were
introduced in the Zgoubi source code.

A new Zgoubi element named 'AGSQUAD' was developed to conveniently simulate the AGS

quadrupoles, based on the same transfer functions as used by the MADX model. The element
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simulates the quadrupole field the same way as the 'MULTIPOL' Zgoubi element [3]. Input data
consists of the number of amperes provided to each magnet by one or more power supplies. Some
of the high field quadrupoles can be excited by more than one source of current, for instance the
quadrupoles used to compensate the optical effects of the two Siberian snakes. The code reads the

label associated to the 'AGSQUAD' to determine the element behavior, as follow:

* if the label starts with QH_, QV_ the element describes one of the high field quadrupoles used

to control the AGS tunes and the associated transfer function is used [53].

* if the label starts with QP_ this describes a polarization quadrupole, similar to high field tune

quadrupoles but with half the number of coil turns.

* if the label is QH_A17, QP_BO3 or QH_E17 the magnet is powered by two independent power
supplies. These magnets are used to compensate the optical effects of the snakes and each
possesses a floating power supply. In practice, the code computes the total magnet excitation

from the sum of the floating power supply current and the tune power supply.

* if the label starts by Qthin_ the element describes one of the thin quadrupoles used to com-

pensate the Siberian snakes’ optical effects and the according transfer function is used [55].

* if the label starts by QGTR the element describes one of the high field quadrupoles used for

transition gamma crossing and the same transfer function as for the high field quads is used.

Sextupoles used in the AGS to control the chromaticity are simulated using the general Zgoubi
element 'MULTIPOL'. The sextupole strength is given as input to the element that generates the cor-
responding sextupole field. It is important to note that the quadrupoles provide a purely quadrupo-

lar field and the sextupoles a purely sextupolar field, both centered around the OCO by default.
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Figure 3.4 Horizontal position at the entrance of each snake (a). Trajectories in the cold
snake projected in the (X,y) plane for different energies of the reference particle from
Gy = 4.5 (outer helix) to Gy = 45.5 (inner helix) (b).

3.3.2.2 Snake Field Maps

Modeling of the AGS snakes is critical for realistic simulations. The strong optical effect of the
snakes in the AGS at low energy [56] makes the choice of the snakes model particularly important
for realistic simulations of the AGS acceleration cycle. With the capabilities of the Zgoubi code to
directly track through field maps [64, 65], tracking in the AGS using field maps of the snakes was
initiated [73]. It is important to note that both snakes are run at constant current [56], therefore a
single field map of each snake is used.

Modeling of the snakes has always involved tracking through field maps [57,74]. However,
their introduction in the Zgoubi model of the AGS posed numerous problems, in particular at
low energy, in terms of beam dynamics behavior such as losses of particles during tracking or
variations of the single particle invariant [75]. Additionally, the original field maps of the snakes,
were recomputed using the TOSCA code [76].

In the model of the AGS using the field maps of the snakes the particle trajectory inside the
element is centered around the snake axis. A transverse horizontal translation is used before each

field map to center the trajectory of the reference particle inside the magnet. The transverse shift
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is reversed as the particle exits the field map. Figure 3.4 shows that the translation maintains
the helical trajectory of the reference particle centered on the snake axis. However, Figure 3.4(b)
shows that the exit point is not exactly aligned with the entrance one. The snakes are not completely
transparent with respect to the orbit in the AGS: they have a non-negligible dipole effect on the
beam that creates a distortion of the closed orbit, particularly at low energy. To simplify the model
and make the closed orbit coincide with the OCO in the rest of the ring, a set of 4 small kicks at

the downstream end of each field map are used to correct this dipole effect.

3.3.3 Zgoubi Developments for the AGS Online Model

As shown in Table 3.2 none of the models available perfectly predicts the measured tunes or chro-
maticities. The discrepancies between measured and predicted tunes and chromaticities can be

attributed to the simplifications used in the AGS Zgoubi model :

* The closed orbit in the AGS Zgoubi model always follows the OCO. All alignment and
magnetic errors are ignored, as well as the effect of dipole correctors and backleg windings.
This can affect the tune through feed down of the sextupole field when the beam crosses a

sextupole off center.

* The beam is always considered to follow the reference momentum defined by the main
magnets current in the AGS Zgoubi model. In reality, the measured average radial beam
position can vary by up to a few millimeters during the acceleration cycle. Therefore, the

tune shift due to chromaticity when the beam is off-centered is ignored.

* While the main magnet model is based on DC magnetic measurement, effects of the fast
ramping rate, up to 2.5T.s~!, used to accelerate polarized protons are neglected. However,
it is known that Eddy currents on the vacuum chamber wall, due to ramping dipole field,

create strong enough sextupole field to influence the lattice chromaticity, particularly at low
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energy [77]. In the example Table 3.2, this effect is not accounted for and the main magnet

is considered at constant current.

It was decided to only modify the quadrupole and sextupole components in the AGS main
magnets ' AGSMM' model to respectively control the tunes and chromaticities and recover measured
values. The AGS main magnets can be separated into two families, focusing and defocusing. This
choice, although arbitrary, allows for maximum effectiveness of small changes in the quadrupole

and sextupole fields of each family to adjust the tunes and chromaticities, respectively.

* Matching of the two transverse tunes is achieved by adjusting quadrupole field strengths in
the two main magnet families, through relative variations called dk;(f) and dk;(d). The
small changes involved do not significantly change the particles trajectory in the main mag-

nets neither the closed orbit.

* Modification of the sextupole strength in the two main magnet families allows control of the
lattice chromaticities, through relative variations dk;(f) and dk;(d). Since the closed orbit
in the model always matches the OCO, small modifications of the sextupole field in the main

magnets does not change the transverse tunes nor the closed orbit.

Matching is automatically done using the FIT procedure of the Zgoubi code. In the case of the
bare machine at low energy, with parameters as shown in Table 3.2, the required changes in the

AGSMM model are:
* dki(f) =0.12% and dk;(d) = 0.10%.
* dky(f) = —0.75 and dky(d) = —0.42.

The relative changes applied to the quadrupole field are much smaller than 1 % and this is generally
the case whatever the AGS configuration. The relative changes required to match the measured

chromaticities are much larger, but the sextupole field components are themselves weak anyway.
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3.4 The Zgoubi Code as Online Model of the AGS

Predicting AGS tunes and chromaticities is particularly complex in the polarized protons config-
uration, due to the optical effects of the snakes. As shown in Section 3.1.1.2, the AGS control
system uses a linear relation that does not include the effects of the snakes on the machine optics.
Changes in the machine optics using the snake compensation quadrupoles are also ignored. On-
line modeling of the AGS aims to provide a single tool allowing machine operators to predict and
control the AGS with increasing accuracy based on staged refinement of the model. The Zgoubi
code should be able to account for all the effects mentioned above.

The approximations used in the AGS Zgoubi online model were already discussed in Section
3.3. The online model currently provides optics data along the ramp but cannot directly be used to

set machine parameters. Here it will be used for setup of multiparticle spin tracking.

3.4.1 The ZgoubiFromSnaprampCmd Command

The development of the AGS Zgoubi online model started by mirroring the MADX online model
and associated command called MadxFromSnaprampCmd. ZgoubiFromSnaprampCmd uses an in-
put file (ZgoubiFromSnaprampCmd.in) organized around keywords signaled by square brackets.
An example is given in Appendix C. The input file contains data required for the model computa-

tions:
* the directory of the snapramp to be used, associated to the keyword [SNAP RAMP DIRECTORY].
* the location of the Zgoubi lattice file to be used, associated to the keyword [TEMPLATE DATA FILE].

* the list or the range of AGS timings at which the modelisation is required, associated to the

keyword [TIMINGS].

The input file can also contain optional information to be used during the model execution:
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* the model to be used for the AGS main magnets, by default, is the 'AGSMM' model, but
the measured field maps can also be used. This option is associated with the keyword

[AGS MODEL DATA].

* to plot and possibly show optical information, such as the beta functions along the lattice at

a given energy (keyword [GET BETA FUNCTIONS]).

* to adjust the modeled tunes using measured data, or a particular tune couple (Qy,Qy), and

following the procedure detailed in Section 3.3.3, associated to the keyword [FIT].

Figure 3.5 shows the evolution of the AGS tunes along a typical acceleration cycle of polarized

protons with injection from the AGS Booster at 145 ms and maximum energy reached at 580 ms.
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Figure 3.5 Measured tunes and predicted tunes by the AGS Zgoubi online model along
the polarized protons acceleration cycle on April 14", 2013. Statistical errors on the
measured tunes are minimal and cannot be seen in the above plot.

Figure 3.6 shows the relative changes of the quadrupole field (dk|(f) and dk;(d)) in the two
families of main magnets required to match the modeled tunes to the measurements. The relative
changes required are always very small and usually below 0.35%. It is particularly important to

achieve realistic tunes along the full cycle for both spin and beam dynamics accurate modeling.
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Figure 3.7 Measured chromaticity along the polarized protons acceleration cycle on April
142013 and required relative changes of the main magnets sextupole field to match the

measurements.
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Figure 3.7 shows the measured chromaticity along the acceleration cycle, in the regular po-
larized proton setup. One can see missing data points around 300ms due to the transition jump,
perturbing the measurement of the chromaticity. The relative changes showed in Figure 3.7 allow
the modeled chromaticities to perfectly match the measured values. When the model is computed
between two timings where measured values are available, the target tunes and chromaticities are
determined by interpolation from the measured data.

A post-treatment command was developed to compile all the information regarding the lattice
for each timing. The command also gathers the dk; and dk, required to match the measured tune
and chromaticities. All the information is written in a single file, ready for use in multiturn tracking

along the ramp and using the Zgoubi code. This is addressed further in Chapter 4.
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Chapter 4

Long Term Beam Tracking in the AGS
Using the Zgoubi Code

Understanding the sources of depolarization in the AGS is critical to improve the AGS polarized
proton performance. Experimental results show that some amount of transverse beam emittance
growth occurs during acceleration of polarized protons [5]. Single particle and multiturn tracking
codes can be used to investigate both questions. The Zgoubi model of the AGS, detailed in Chapter
3, provides a realistic representation of the AGS, within the approximations mentioned, to explore
and improve both spin and beam dynamics.

This chapter will review the process involved in the setup and analysis of the tracking simula-
tions. The tools developed for this purpose will be presented and results from the Zgoubi code will

be compared to experimental data.

4.1 Setup and Parallelization of Multiturn Tracking

Complete tracking of the acceleration of polarized protons in the AGS takes approximately 150,000

turns from injection at Gy = 4.5 up to extraction at Gy = 45.5, for typical acceleration ramp

83
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settings. New methods for controlling elements of the Zgoubi AGS lattice were introduced in

order to continuously change the AGS optics as a function of the lattice rigidity.

4.1.1 Optics Setup for Multiturn Tracking

Information generated along an AGS ramp by the ZgoubiFromSnaprampCmd are compiled into
a single file. The file created contains the behavior of each magnet or power supply in the AGS
as a function of the AGS time or as a function of the equilibrium proton momentum determined
from the AGS main magnet current. The file also contains the dk; and dk, computed by the
ZgoubiFromSnaprampCmd (see Chapter 3).

Setup usually consists in computing the AGS optics every 3 ms along the ramp. The AGS lattice
makes use of the SCALING element in mode 1.12, allowing to interpolate data from a file using
the current lattice rigidity and adequately modify the designated parameter in a family of elements
[78]. This allows for the parameters of each element to be reevaluated at every turn by Zgoubi and
updated using the current lattice rigidity and the data file provided by ZgoubiFromSnaprampCmd.

1 .
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Figure 4.1 Tunes matched to measured data by the AGS Zgoubi online model compared
to the tunes from multiturn tracking data for an on-momentum particle.

Figure 4.1 shows the evolution of the transverse tunes from a single particle multiturn tracking
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simulation. Tunes are computed by DFT! of the transverse motion using a post-processing code
from the Zgoubi toolbox [78]: TunesFromFai. The particle tunes during tracking are equal to the
tunes prior obtained by ZgoubiFromSnaprampCmd. This step is important to assess the accuracy
of the multiturn simulation.

Evolution of the chromaticity during tracking is also in agreement with the values set up by
ZgoubiFromSnaprampCmd. Optics generated by ZgoubiFromSnaprampCmd is precisely repro-
duced during the multiturn tracking and changes according to the AGS setup as a function of the

energy.

4.1.1.1 Tune Jump Model

The AGS tune jumps system is made of two quadrupoles located on SS-105 and SS-JO5. Each
quadrupole can change the horizontal tune by AQ, = 40.02 within 100 us [79], up to Gy =45.5,
effectively accelerating the crossing of horizontal intrinsic resonances(Sec. 2.5.1).

Setup of the tune jumps for multiturn tracking is done by locating each horizontal intrinsic
resonance. Peak theoretical effectiveness of the tune jump is reached by crossing the horizontal
intrinsic resonance when the tune jump system is half-way to its maximum, i.e. 50 us after the
start of the ramp and generating a tune shift of AQ, = 40.02. The associated resonant condition
is:

Qs+ (0, +0.02) =1 4.1)

with 7 an integer and Qg the spin tune. The location of each resonance is determined using the
theoretical evolution of the spin tune (Eq. 2.117) and the horizontal tune.

In the AGS the strength of each of the two jump quadrupole is experimentally adjusted so
as to provide half the total horizontal tune shift. For multiturn tracking, the strength of each

quadrupole is determined to provide a horizontal tune shift of AQ, = 40.02 with both quadrupoles

IDiscrete Fourier Transform
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synchronized. The Zgoubi model makes use of option 1. 13 of the SCALING element to control each
quadrupole as a function of real time, allowing accurate control over the pulse shape and timing.
The tune jump pulse shape is simulated using a linear ramp to full strength within 100 tts [78]. The

effects of the pulse shape were not investigated, but the linear approximation is close to the real

pulse shape.
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Figure 4.2 Transverse tunes along a multiturn tracking with and without tune jumps.

Figure 4.2 shows the evolution of the transverse tunes as a function of the AGS timing when
the tune jumps are active. The tune shifts induced by the tune jumps system are AQ, = +0.04
and AQ, = —0.02. The quadrupoles are powered up, or jumped up, when the plus resonance
(Qs+ Oy =1) is crossed. Reciprocally, the system jumps down when the minus resonance (Qgs —
0O, =) is crossed, allowing the vertical tune to be maximal (i.e. closer to 9, further away from

Qs £ Qy = integer) when vertical intrinsic resonances are crossed around integer values of G7.

4.1.2 Acceleration System for Multiturn Tracking

The RF system, and in particular the synchronous phase, is generally used to control the radial
beam position during acceleration of polarized protons [80]. This process cannot be used for

simulations as described since the parallelization to track multiple particles is achieved without
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communication between each thread (see Section 4.1.4).

To simulate realistic variations of the synchronous phase, we make use of the intrinsic repro-
ducibility of the lattice conditions. Using the AGS lattice file, the exact one turn path length of
the reference particle is determined as a function of the lattice rigidity. Figure 4.3 shows large
evolution of the reference particle path length, due to its shrinking inside the Siberian snakes and

downstream of the snakes where the dipole effect of the snakes are corrected.
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Figure 4.3 Evolution of the reference particle path length as a function of the AGS energy.

Located at the end of each machine turn, the Zgoubi CAVITE element is designed to increase the
particle forward momentum, based on provided RF parameters and particle phase ¢. The particle

phase relative to the RF wave is updated using the phase change A¢ given by:

Ap = (Q _ Crer > (2nhﬁREF C> + AQ, 4.2)

Bic  Brerc CrEF

where:

* C; and B;c are, respectively, the path length of the particle and its velocity for the previous

turn.

» Crer and Prgrc are, respectively, the reference path length and velocity associated to the
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equilibrium momentum.
* Ag¢; is the change in synchronous phase between the previous and the current turn.

* his the RF harmonic number. In the AGS, & = 8 for the acceleration of polarized protons.

The tracked particle then receives a longitudinal kick AE using the provided RF voltage Vgr and

the known proton charge g (Eq. 2.51):

AE = qVgp sin ¢ (4.3)

The acceleration rate is strictly determined by logged main magnets currents since the multiturn
tracking maintains the beam around the equilibrium momentum. Typical acceleration rate for
polarized protons during AGS operations is shown in Figure 2.6.

Due to the intrinsic behavior of the CAVITE Zgoubi element when the synchronous phase is
slowly changed, the parameter ¢, in equation 4.2 might introduce numerical noise in the evolution
of the particle phase due to numerical accuracy. A simple check consists of following the momen-
tum deviation of the reference particle along the multiturn tracking. Figure 4.4 shows the particle
launched on-momentum starting to oscillate around the equilibrium momentum. The oscillation is
introduced by numerical accuracy and the period follows equation 2.59. However, the amplitude
of oscillations remains very small compared to the typical momentum spread for realistic beam
conditions. Therefore, the Zgoubi numerical accuracy is good enough for the tracking conditions

used in this study.

4.1.2.1 Transition Gamma (%,) Crossing

Crossing of the transition region is crucial for tracking realistic beams in the AGS. In the considered
lattice, 6 high field quadrupoles called gamma transition quadrupoles are located in SS17 every

other superperiod and powered before transition then quickly cut-off to accelerate the transition
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Figure 4.4 Evolution of the momentum deviation from the equilibrium momentum of the
reference particle during a multiturn tracking.

crossing. In the Zgoubi model, the gamma transition quadrupoles are present and their respective

strengths are derived from logged currents, in the same way as for all other quadrupoles. Figure

4 : 8 B Beam centroid 1
& 2
=)
£ 00
kS
[=9
)

-4
<
g 9
g
<
=}
5 88| '
B
s L P 1
= 8.6 / \

8.4 : ' '

10 12 14 16 18 20
Energy (Gy)

Figure 4.5 Evolution of the momentum distribution in a typical beam tracking and vari-
ation of the transition gamma across transition using the Zgoubi code. The black line
marks the crossing of the transition.

4.5 shows the gamma transition increasing before being abruptly cut-off for transition crossing,
effectively dropping by about 90% in 2ms. The RF synchronous phase used by the Zgoubi code

is instantaneously switched at Gy = 15.8. After transition some dipole oscillation of the beam
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can be seen in Figure 4.5, primarily due to particle losses related to the particle momentum shift
(Figure 4.4 confirms that on-momentum particles stay on-momentum after transition). Section

4.4.1.2 details the sources of the losses.

4.1.3 Beam Conditions for Zgoubi Beam Tracking

Realistic simulation of the AGS also requires accurate initial particle distributions. The 6-D dis-
tributions used for beam tracking with the Zgoubi code are generated externally by a random
Gaussian generator. The particle distributions are always cut at +30 in profile, which proves to
be a good compromise. Typical transverse emittances range from 4 to 10 7 mm.mrad at injection
to around 20 7 mm.mrad at extraction in the vertical plane [81]. Measured horizontal emittance
are estimated between 9 7 mm.mrad at injection and 12 7 mm.mrad at extraction. Emittances are

usually given as normalized (z stands for x or y):

el = (By)e (4.4)
and containing 95 % of the beam, which relates to the RMS emittance of a Gaussian beam by:

g% =6efM (4.5)

The longitudinal distribution is based on RF parameters and bunch length, as measured at
AGS extraction. Bunch profiles measured at extraction, using the AGS WCM' during Run12
under typical operations conditions and fitted to a Gaussian function, provide a bunch length of
Irms = 6.58ns. Using the RF parameters at that time (Vgr = 240kV and & = 8), the calculated

associated energy spread is Egys = 11.78 MeV. Therefore, the longitudinal emittance at extraction

'Wall Current Monitor
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is:

%% = 6m Egyslrms = 1.46eV.s (4.6)

4.1.4 Pre-Processing of Parallelized Zgoubi Tracking

The Zgoubi code tracks particles that do not interact between each other. Therefore the simplest
approach to parallelize Zgoubi tracking consists of tracking one particle per available computation
thread and combining the results during post-processing. The parallelization is commonly referred
to as embarrassingly parallel and presents the advantage of avoiding inter-threads communications
during computation, which can be the source of inefficiency. The gain is also perfectly linear and
the computation time per particle is constant. Multiple single particle tracking using the Zgoubi
code is done using the NERSC' supercomputing resources.

The pre-processing consists of all the steps required before the multiparticle tracking simulation

is run on the supercomputer. In logical order, the pre-processing:

* generates the lattice, in particular the file containing the behavior of each AGS power supply
and possibly the relative changes of the quadrupole and sextupole fields of the main magnets.

The method detailed in Section 3.4 generates realistic and stable optics along the AGS ramp.

* generates the acceleration rate along the ramp: a file containing realistic acceleration, RF
parameters and path length of the reference particle in the model is generated. Figure 4.4 is
generated to control the correct longitudinal behavior of the synchronous particle along the

tracking.

 generates the particle distributions: Twiss parameters and RF parameters at the start of the

tracking are used to generate realistic and matched particle distributions.

National Energy Research Scientific Computing Center
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* generates the tune jump timing: the energy and horizontal tune as a function of time are used
to generate perfectly timed tune jumps along the AGS ramp. The tune jumps can be shifted

in time, removed or generally altered to investigate their effects.

* transfers all required files to the NERSC computing facility and prepares the Zgoubi input

files.

After these steps, each tracking job is split into groups of (usually) 192 particles each and ran
on 8 nodes!. Each group is then associated to a computation job to effectively track each particle.
The number of particles per group was optimized to avoid in-out disk access overloads, susceptible
to occur when a large number of tracking jobs start at the same time. The group size also allows
for minimum waiting time in the supercomputer queue, which generally quickly grows with the
number of nodes to be used. Tracking data are saved at regular intervals, usually once every 21
turns. The number of particle simulated is only limited by the available resources, the simulations
are scalable to any number of particle. However, in the case of the AGS, simulation of one machine
turn for one particle on a single modern computer core takes around 30ms. We will see Section
4.4.0.1 that the number of particle per simulation was optimized to provide accurate results with a
minimum sample size.

Once completed, the tracking simulation requires multiple post-processing steps to extract all

relevant quantities from the thousands of particles tracked.

4.2 Post-Processing of Tracking Data

Post-processing of the Zgoubi tracking data is critical to present and understand the evolution of
the relevant quantities along the tracking. One of the first and very likely most interesting quantities

to look at is the polarization. However, due to the partial snake configuration (see Section 2.4),

'The node is the smallest allocatable computation unit and composed here of 24 physical computing cores.
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the average of the vertical spin component is not a convenient quantity to study depolarization.

Figure 4.6 does not show depolarization during acceleration. The polarization is not defined by the
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Figure 4.6 Evolution of the average vertical spin component over a typical multiparticle
tracking.

projection of the spin vectors on the vertical axis but by the projection on the stable spin direction
associated to each particle. Here we define the average beam polarization < P > as the projection
of the spin vector on the stable spin direction 7 on the closed orbit, averaged over the N particles
of the beam:

—

< P>= ZS,-ﬁO 4.7)
N

Typical evolution of the average polarization during a multiturn tracking is showed Figure 4.7.
The depolarizations can easily be seen when the average beam polarization drops. It is important
to note that the polarization dips observed at every integer value of Gy is due to the different
momenta of the beam. Due to the momentum spread of the beam, each particle is at a different
stage of the spin flip and the projection of the spin vectors on the 7y of the synchronous particle
drops while no polarization is lost.

In details, Figure 4.7 shows a strong polarization loss around Gy = 5. This depolarization is

mainly due to the crossing of the two weak vertical intrinsic resonances around Gy = 5 and more
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Figure 4.7 Average of the projected spin vector on the stable spin direction on the closed
orbit during a typical multiturn tracking.

detail can be found Section 5.3. The depolarization seen across Gy = 45 is due to the crossing of
the strong vertical intrinsic resonance 36 + Q). However, in typical beam and machine conditions

no depolarization is observed across Gy = 45.

4.2.1 Polarization Profile

In the AGS, one of the most relevant quantities measured is not the average polarization over
the beam but the polarization profile. The strength of an intrinsic spin resonance depends on the
Courant-Snyder invariant (Eq. 2.108), hence the depolarization experienced by a particle across
such a spin resonance also depends on the single particle invariant. The crossing of an intrinsic
resonance can result in the particles at larger amplitude being depolarized while the center of the
beam remains polarized, creating a profile of the polarization across the beam.

The polarization profile is characterized by the R-value, using op and oy respectively the stan-

dard deviations of the polarization and beam intensity Gaussians fits [41]:

2
R— (@) 4.8)
Oy



4.2 Post-Processing of Tracking Data 95

Figure 4.8 shows the result of a typical horizontal polarization profile. Unlike the average polariza-
tion, the R-value gives an indication about the source of depolarization. For instance, an increase
in the horizontal polarization profile (seen through the rise of the horizontal R-value) is the sign of

depolarization due to horizontal intrinsic spin resonnances.
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Figure 4.8 Measured horizontal polarization profile in the AGS at extraction energy in
May 2013. The beam intensity profile is represented by a grey histogram and the polar-
ization profile by blue dots. This measurement took 5 hours.

Injection in the AGS occurs at Gy = 4.5 and the vertical tune would need to be placed in the
spin gap before the first vertical intrinsic resonance, around Gy = 5. Figure 4.9 shows the vertical
tune crossing the spin tune around Gy = 5. Due to the strong optical distortions caused by the
Siberian snakes, it is not possible to push the vertical tune high enough at low energy. We expect
that the crossing of vertical intrinsic resonances in this region depolarizes part of the beam and
induces a polarization profile in the vertical plane.

While the partial Siberian snakes configuration avoids depolarizations caused by imperfection
and vertical intrinsic resonances, it also induces depolarization through horizontal intrinsic reso-
nances when Qg =1+ Q, with Q, the horizontal tune. The stable spin direction is not perfectly
vertical with partial snakes (see Figure 2.13), therefore the non-zero horizontal component of the

spin can resonate with the horizontal betatron tune. The strength of these resonances depends on
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Figure 4.9 Fractional part of the vertical tune and spin tune at low energy as a function of
the energy in the AGS.

the horizontal emittance and horizontal component of the spin vector, and crossing any of these
resonances builds up a horizontal polarization profile. Other sources of depolarization can also
contribute to the polarization profiles. For instance, linear betatron coupling or high order partial
snake resonances [4] can increase the polarization profile. Depolarization due to high order partial
snake resonances around Gy = 45 will be explored Section 5.2.2.3.

Post-processing softwares were developed to determine the polarization profile of the beam

simulated from Zgoubi tracking data. The method can be described as follows:

* the tracking data is extracted at the required timings. This part is complex due to the size
of the files containing the tracking data, easily reaching 10GB for complete cycle tracking
simulations with a few thousand particles. The particle data are generally saved at the end of
the lattice as built in the Zgoubi AGS model, i.e. at the entrance magnetic edge of the A01

main magnet.

* the chromatic closed orbit is subtracted from each particle coordinates using the known D, (s)
and D/ (s). The dispersion at the location of the recorded tracking data is used along with the
momentum deviation from the reference momentum of each particle. This has the advantage

of avoiding any possible longitudinal polarization profiles to appear in a transverse plane,
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particularly on the horizontal plane.

* each particle is assigned to a bin according to its transverse position or phase if looking at
the longitudinal plane. Since the profiles are always expected to be symmetrical, the binning
is being done symmetrically, effectively only filling half of the bins and symmetrizing the
bins afterwards. This allows mitigating adverse effects from the relatively small number of

particles used in the Zgoubi tracking.

* in each bin the average polarization is determined using equation 4.7. The intensity profile

is shown in Figure 4.10 with a grey histogram and the polarization profile by blue dots.

* both intensity and polarization profiles are fitted to Gaussian functions, then the R-value is
calculated using equation D.3. Since the fit of the polarization profile is weighted by the
beam intensity, the points far from the beam core weakly contribute to the profile and can be
far from the fitted Gaussia(detailed in Appendix D)n. Figure 4.10 shows the Gaussian fits in

black and the R-values are given using statistical error bars from the fitting.

This analysis aims at reproducing the measurement performed by the AGS polarimeter. However,

some important differences need to be pointed out:

* the average polarization in each bin is computed using equation 4.7 while the AGS polarime-
ter effectively measures < Sy > (Eq. D.2). This small difference only slightly changes the
reported P, value but does not change the computed R-value. Furthermore, it allows the
computation of the R-value from tracking data when 7iy.y ~ 0, i.e. around integer values of

Gy.

* the longitudinal polarization profile cannot be seen in either transverse plane since the effect
of the chromatic orbit is removed from each particle position before the analysis. The hori-

zontal dispersion D, ~ 1.5m at the AGS polarimeter means that a longitudinal polarization
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profile can show up in the measurement of the horizontal polarization profile. However, it is
important for the simulated data to clearly observe the polarization profiles from each of the

three planes independently.

* the simulated polarization profile is generally built from tracking data recorded at the A0l
main magnet while the polarimeter is located at the C15 straight section. However the sim-
ulated polarization profile does not depend on the location since the effect of the dispersion

1s removed.

Taking advantage of the tracking data available along the AGS acceleration cycle, the evolution
of the R value can easily be investigated. Figure 4.11 shows the evolution of the R value for the
tracking simulation used to produce Figure 4.10. A detailed analysis will not be provided, but it
1s important to point out that the statistical uncertainty on the R value is much smaller than the
variation observed by consecutive points in Figure 4.10. 4416 particles were tracked, but it seems
that a non negligible uncertainty is introduced in the R value due to that limited number of particles
being tracked. However, the number of particles seems to be sufficient to study the evolution of

the polarization profile.
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Figure 4.11 Evolution of the polarization profiles along a typical beam multiturn Zgoubi
tracking started at Gy = 6.5.
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4.2.2 Beam Emittance

Although polarization is our main interest here, beam dynamics needs to be carefully monitored.
Tracking data recorded can be used to compute the evolution of the beam emittance along the
simulation. As mentioned earlier, the main difficulty is to compute the beam emittance using
particularly large files. The code TunesFromFai, part of the Zgoubi toolbox [78], was used to
calculate the emittances. The transverse normalized 95 % emittance is estimated at regular intervals

along the tracking using [25]:

eN.95% _

! By6mV<2><z?>— <z >2 4.9)

For the longitudinal plane, the TunesFromFai code was modified to compute and store the
first two moments of relative momentum dp/p and synchrotron phase ¢ distributions. The 95 %

longitudinal emittance is then defined as

N.95% _ 6

g m o(9) MyyB*o(dp/p) (4.10)

mnrfc
with:
¢ /i the harmonic RF number of the AGS, here & = 8.
¢ C the AGS circumference, C = 807.091 m.

* o(¢) and o(dp/p), respectively, the standard deviations of the RF phase and relative mo-

mentum of the beam.



4.2 Post-Processing of Tracking Data 101

4.2.3 Single Particle Tunes

Lattice tunes, associated to the tunes of the reference particle, are easy to compute and are only
a function of the lattice. However, when large beams with momentum spread are tracked, it can
be interesting to look at the evolution of the tunes of each particle within a beam. The code
TunesFromFai was used to get the tune of each particle for dedicated multiturn simulations. The
TunesFromFai code derives the DFT! of the transverse motion and the tune is assumed to be given
by the index of the largest Fourier coefficient. This method requires the tracking data to be saved
at every turn and dedicated simulations were done. Speed of beam multiturn simulations is limited
by the recording of the tracking data at every turn. This analysis and the associated simulations

were mainly used to study beam dynamics at low energy.

IDiscrete Fourier Transform
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4.3 Zgoubi Tracking in the AGS at Low Energy

The AGS uses a dual partial Siberian snakes configuration, but these specialized magnets can have
adverse effects on beam dynamics. The strong twisted dipole field creates important longitudinal
and non-linear fields along the particle trajectory [57, 58]. Since the snakes are driven at con-
stant current, the effect on beam dynamics is stronger at low energy. Beam dynamics are notably

complex below Gy = 6 —7 due to:
* low beam rigidity that maximizes the effect of the snakes field.

* strong deformation of the AGS optics: betatron tunes are quickly changed as the rigidity in-
creases, resulting in the crossing of multiple non-linear coupling betatron resonances below

Gy=6.

Figure 4.1 shows the evolution of the betatron tunes in the early part of the AGS pp acceleration
cycle. The injection tunes are empirically optimized for intensity transmission from the AGS
Booster. The vertical tune is increased as early as possible for spin dynamics purposes (as described
in Section 2.4) and the location of the horizontal tune is optimized for intensity transmission [82].
Figure 4.12 shows the tune path in a tune diagram: the region where the tunes are quickly moved
to increase the vertical tune is usually called the tune swing and one can see that multiple resonant
lines of relatively low order are crossed in this region. The early part of the AGS acceleration
cycle experiences intensity losses, and emittance growth is not excluded. The crossing of low
order betatron resonances could degrade the beam quality by increasing the transverse emittance or
through beam losses. Beam multiturn Zgoubi trackings were used to investigate the beam dynamics
in this region.

The following simulations were done with a realistic lattice, as detailed earlier. Tracking was
performed for 528 particles picked in a 6D Gaussian distribution, leading to initial transverse

normalized 95% emittances of 8 7.mm.mrad. A longitudinal emittance of 1.46eV.s and a realistic
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Figure 4.12 Tune diagram with measured tunes and important resonant lines.

acceleration rate were used. Tracking was done from Gy = 4.55 to Gy = 21 but we will focus on
the region below Gy = 10.

Numerous beam multiturn simulations were done using the different models available for the
snakes (see Section 3) [75]. Tracking using the latest snake maps are discussed here.
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Figure 4.13 Tunes for tracking simulations for 528 particles in a tune diagram in cyan. If
a particle is lost, its tune appears in red for its last 300 turns.

Figure 4.13 shows the evolution of the tune footprint for a beam multiturn tracking job from

Gy=4.5to Gy=21. Beam dynamics are especially complex during the tune swing, below Gy = 6.
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Losses at that time appear to be associated with the 20, — O, and Qy — O, resonant lines). However,
beam dynamics in this region are not well understood yet, developments are carried on.

The evolution of the beam and its shape in this region makes the study of spin dynamics par-
ticularly hard. Nevertheless, other simulations associated with the study of vertical tune jumps
during the AGS Runl14 showed polarization profiles in agreement with measurements [83]. These
simulations did not use the snakes magnets model discussed above but instead were using first
order matrices to simulate the snakes.

It was therefore proposed to use the field maps of the Siberian snakes to simulate the AGS
starting at Gy = 6.5, overcoming the complex tune swing region. To account for the depolarization
experienced by the beam below Gy = 6.5, the initial spin distribution is extracted from the tracking
data in the context of the vertical tune jump scheme. Due to the reproducibility of the pseudo
random generator used for the initial particle distributions, the polarization profile can be copied
from one tracking to the other.

This method is used in the simulations below to track realistic beam from Gy = 6.5 to Gy =

45.5.
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4.4 Tracking Results and Experimental Measurements

4.4.0.1 Uncertainty and Number of Particles

The choice of using 4416 particles was driven by the uncertainty associated to the limited number
of particles tracked. Table 4.1 shows the spread of the data at the end of a typical tracking job,
from Gy = 6.5 to Gy = 45.5. The same simulation was repeated four times with four different
initial beam distributions generated by changing the seed used by the random generator. For three
different numbers of particles the final average polarization and the horizontal polarization profile

were determined. The standard deviation used here is defined for n simulations by:

o=/ [Ex] - [T @)

with n = 4 here and X the quantity of interest in Table 4.1. It appears that 2000 particles seems to

Table 4.1 Summary of the effect of the sample size on the mean polarization and hori-
zontal R-value.

Number of particles 1000 | 2000 | 4416 | 17664
Mean Polarization(%) | 84.16 | 81.65 | 81.31 | 81.31
Standard deviation 5.2 0.5 0.15 -
Mean horizontal R value | 0.189 | 0.192 | 0.194 -

Standard deviation 0.012 | 0.014 | 0.007 -

be enough to study the final average polarization but the standard deviation on the horizontal profile
remains large. Using 4416 particles gives a small enough spread for the computed horizontal R
value. The number of particles needs to be kept as small as possible to use the allocated computing
resources as efficiently as possible: for instance, the simulations discussed here (4416 particles

over 130,000 turns using Zgoubi) require around 12,000 CPU hours' each. Therefore it is not

'Unit commonly used to quantify computer resources consumption and defined as the use of a single core CPU
during one hour.
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possible to track tens of thousands of particles if one wants to investigate the effects of some
parameters such as the beam size or the tune jumps timings, which requires numerous simulations
to understand the effect of each parameter on the final beam polarization. Taking into account the
yearly allocations of computer resources from NERSC, in the order of one to two million CPU

hours, it is best to keep the number of particles as low as possible.

4.4.1 General Tracking Results and Machine Measurements

The simulations consist of a tracking job with 4416 particles initially picked in a 6D Gaussian
distribution leading to transverse emittances of 14 7.mm.mrad in the vertical and horizontal planes.
The initial longitudinal emittance is taken at 1.46eV.s, and the distributions are cut at 30 in all 6

dimensions. These are typical beam sizes measured at the AGS extraction [5].

4.4.1.1 Transverse Beam Dynamics

Figure 4.14 shows non-negligible variations of the estimated beam emittance along the tracking.
It is important to note that the spikes observed are not realistic, the increased excursion of one
or more particles leads to an overestimation of the beam emittance before the particle is lost. In
particular, the transverse emittances seem to slowly vary between Gy = 15 and the end of the
tracking. One would expect this quantity to remain constant according to Equation 2.39. However,
the estimation of the beam emittance (see Section 4.2.2) can be influenced by changes in the beam
distribution: while the initial distribution is closely Gaussian, it can be altered during the tracking.
Figure 4.15 shows the beam projections at the start and at the end of the tracking. It can clearly
be seen on Figures 4.15(b) and 4.15(d) that the profiles are not Gaussian anymore at the end of the
tracking. Beam dynamics below Gy = 15 are particularly dependent on the strong optical effects
of the snakes and the large motion of the tunes (Figure 4.1), which could explain the variations of

the emittance.
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Figure 4.14 Estimated transverse emittance from Zgoubi multiparticle tracking for real-
istic conditions, as a function of the beam energy.

Figure 4.16 shows the effect of the integration step size used for tracking inside the AGS
main magnets by the Zgoubi code on the horizontal emittance. The same behavior is seen in the
vertical plane. Lower integration step size leads to better behavior of the beam dynamics since
the invariant represented in Figure 4.16 should remain constant. However, the computation time is
inversely proportional to the integration step used in the Zgoubi code. Therefore the choice for the
integration step size is a compromise between the conservation of the emittance and the tracking
speed. Figure 4.16 shows a drop of around 10 % in horizontal emittance for an integration step
in the main magnets of 3 cm over 80,000 turns of tracking. Considering the large amount of CPU
power needed for beam multiturn Zgoubi tracking, an integration step of 3 cm in the main magnets
is a good compromise. Dedicated simulations with smaller integration step size can be considered
for specific studies, but are not discussed here.

Due to this choice of integration step size, Figure 4.14 should be interpreted carefully. It can
clearly be seen though that the tune jumps do not modify the evolution of the transverse emit-
tance. This particular issue will not be discussed here but it is especially relevant since significant

emittance growth due to the tune jumps has been observed, and solved, in the past [79].
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Figure 4.15 Projection of the beam distribution at the start (a)(c) and at the end (b)(d) of
the multiparticle tracking, using the Zpop Zgoubi post processing tool.
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Figure 4.16 Evolution of the single particle horizontal normalized emittance for a 80,000
turns tracking using the AGS bare model.

4.4.1.2 Longitudinal Beam Dynamics

Looking at the longitudinal plane, Figure 4.17(a) shows a large drop in the estimated longitudinal
emittance. This behavior is associated to losses around Gy = 15, during the powering of the
gamma transition quads. Figure 4.17(b) shows an increase in the average relative momentum of
the beam associated to particle losses. Particles below the reference momentum were preferentially
lost, causing the average beam momentum to shift above zero. These losses are not observed in
the machine but the transition region is known to be very sensitive and requires frequent tuning to
achieve the low level of losses typically experienced during operations [82]. Although non realistic,
these losses cannot be avoided without introducing realistic orbit in the model; Figure 4.17(b)
still shows that dipole oscillations of the beam remain small compared to the beam extension in
momentum, as shown by the 2 ¢ envelope.

Studies on the effect of the longitudinal emittance should, therefore, be interpreted carefully.
However, most of the beam remains unchanged from losses at transition, so the final quantities
simulated should still be realistic. Additionally, further simulations (not shown here) demonstrated
that the longitudinal emittance does not strongly influence the final beam polarization; simulations

as described in this section can therefore be compared to machine measurements even if the lon-
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gitudinal emittance being used is somewhat smaller than the actual one after transition. However
it is important to note that longitudinal emittance reduces the efficiency of the tune jumps system,

hence the polarization gain from the tune jumps [84].

Horizontal Dispersion D, (m)
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Figure 4.18 Horizontal dispersion and transverse beam position during tracking, at Gy =
15.7.

Figure 4.18 presents the dispersion function and the horizontal beam projection along the AGS
lattice, just before the transition jump. The large deformation in dispersion is caused by the gamma
transition quadrupoles and induces the beam losses observed during multiturn tracking. Further

work to implement realistic orbits in Zgoubi should allow for a better control of these losses.

4.4.1.3 Spin Dynamics

Figure 4.19 shows the evolution of the polarization profiles along the tracking. The horizontal po-
larization profile grows regularly along the tracking, although the later part of the tracking seems to
contribute more to the final profile. The use of the tune jumps considerably reduces the horizontal
polarization profile at Gy = 45.5 and it can be seen in Figure 4.19 that the effect is also built-up
along the tracking.

The vertical polarization profile, however, does not seem to vary along the tracking. The verti-
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Figure 4.19 Polarization profiles from Gy = 6.5 simulated by the Zgoubi code, with
typical beam and machine conditions.

cal tune being kept within the spin tune gap, it is expected that polarization losses through vertical
intrinsic spin resonances are avoided, hence the vertical polarization profile remains constant. The
initial polarization profile at Gy = 6.5 in the vertical plane seems to be conserved along the track-
ing.

The most recent measurements of polarization profiles are presented in Table 4.2, for typical
beam and machine conditions. Measured and simulated horizontal polarization profiles without
tune jumps are very close, giving a strong confidence in the spin dynamics simulated by the Zgoubi
code. With tune jumps the simulated horizontal polarization profile is also very close to the mea-
surement, which validates the model of the tune jumps but also confirms that the experimental
timing of the tune jumps is accurate.

Measured vertical polarization profiles are much larger than the simulations. The value of the
simulated vertical polarization profile is expected since no vertical intrinsic resonance is crossed.
However measurements consistently show strong vertical polarization profiles. The tune jumps
also seem to reduce the measured vertical polarization profile, which is rather unexpected and so
far remains unexplained.

The simulated spin dynamics using the Zgoubi code is qualitatively conform to the expecta-

tions. Measured values of horizontal polarization profiles are successfully predicted by the Zgoubi
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Table 4.2 Comparison of simulated polarization profiles from Figure 4.19 with measure-
ments from the AGS ppRun 14 for typical beam and machine conditions [5]. Uncertain-
ties on the simulated polarization profiles are estimated from Table 4.1.

Measured [5] Simulated
R, R, R, R,
0.206 £+ 0.020 | 0.181 £ 0.033 | 0.250 £ 0.007 | 0.021 £ 0.007 | Without tune jumps
0.127 £ 0.019 | 0.124 £+ 0.026 | 0.100 £ 0.007 | 0.035 4+ 0.007 | With tune jumps

Machine conditions

code with and without tune jumps. As for the vertical plane, the simulated polarization profile
evolution is understood, but discrepancies with measurements drove strong interest in a better un-
derstanding of the evolution of polarization profiles along the AGS acceleration cycles. Numerous
explanations for the large measured vertical polarization profiles have been advanced so far, such
as the transverse coupling or higher order snake resonances. New polarization profile measure-
ments at intermediate energies between Gy = 4.5 and Gy = 45.5 are scheduled for the pp-Run 15.
These should help understanding the discrepancies observed with the Zgoubi simulations and the

mechanisms leading to it.

4.4.2 Example of Parameter Study: Horizontal Emittance and Polarization

Profiles

Simulations presented above are especially interesting when trying to quantify the effect of ma-
chine or beam parameters on the final polarization and its profiles. It was shown earlier that Zgoubi
simulations correctly predict the horizontal polarization profile at Gy = 45.5. Using the Zgoubi
code gives the opportunity to quickly estimate the effect on the final polarization profile of e.g.,
the initial horizontal beam emittance. A similar measurement during machine operations, while
possible, would be particularly complex and slow due to the limited control on the beam emittance

and time required for a single polarization profile measured at Gy = 45.5, which would be at least
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Figure 4.20 Simulated horizontal polarization profile as a function of the energy for dif-
ferent initial beam horizontal emittances (in 95% wmm.mrad normalized and at Gy = 6.5)
without (a) and with tune jumps (b).

Shours.

Figure 4.20 shows the effect of the horizontal beam size at the start of the tracking on the evolu-
tion of the horizontal polarization profile R,. Although it is known that the horizontal polarization
profile increases with the horizontal emittance, this simulation gives a quantitative evaluation of
this effect. Beam multiturn tracking correctly predicted the horizontal polarization profile in nomi-
nal conditions (Table 4.2), therefore the results from Figure 4.20 can be used to predict the effect of,
for instance, an increase in injected beam intensity, which is known to change the beam emittance
in the machine.

Several other beam and machine parameters can be, and were, explored using beam multiturn
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Zgoubi tracking. Section 5.2.1 reviews the effect of errors in the tune jump timing on the final

polarization using systematic simulations.
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Chapter 5

Simulations and Direct Application to

Experimental Work

The Zgoubi model of the AGS, as well as the procedure and general results related to beam mul-
titurn tracking in the AGS, were detailed in Chapter 3 and 4. Now we will focus on a few direct
applications of the simulations using the Zgoubi code in the AGS. We will see that these sim-
ulations in the AGS are very important to understand the depolarization through the horizontal
intrinsic spin resonances. Then the importance of the tune jumps timing will be explored and an

original scheme for the tune jumps at low energy will be developed.

5.1 Depolarization through Horizontal Intrinsic Resonances

We have seen in Section 4 that the crossing of horizontal intrinsic resonances causes most of the
explained polarization losses. At the start of beam multiturn simulations of the AGS using the
Zgoubi code, in 2012, one of the first simulations done was limited to the end of the cycle. The
goal was to study the effect of the tune jumps on the polarization at the end of the ramp, and to

better understand the depolarization in this region.

117
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5.1.1 Flat Top Roll Over and Depolarization

At that time the AGS acceleration cycle was slowly decreasing at the end of the ramp to smoothly
reach the extraction energy. Figure 5.1 shows the measured acceleration rate compared to a con-
stant and maximum acceleration rate up-to extraction energy. The later scheme involved an extrac-

tion of the beam during the ramp, hence named extraction-on-the-fly. Also, it is known that the
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Figure 5.1 Acceleration rate in the AGS at the end of the ramp, as a function of the energy.

depolarization through an intrinsic spin resonance is linked to the acceleration rate (Eq. 2.102).
Therefore, Figure 5.1 shows that a number of horizontal intrinsic resonances were crossed at a low
speed compared to the rest of the ramp. In particular, the last horizontal intrinsic spin resonance
at Gy = 45.3 was very slowly crossed, possibly leading to large polarization losses. Zgoubi was
used to simulate the expected polarization gain in the case of the extraction-on-the-fly. Simula-
tions were required to quantify the polarization gain since the investment needed to implement an
extraction-on-the-fly scheme would have been considerable. Figure 5.2 shows the results from a
beam multiturn tracking of 2000 particles from Gy = 19.5 launched on the 7 vector, with typical
beam and machine conditions. The absolute polarization is not relevant since the simulation was
started with full polarization. However, one can determine the relative gain from the extraction-
on-the-fly. Without the tune jumps the relative increase would be 6.8%. Despite the high crossing

rate provided by the tune jumps, a relative gain of 2.4% can be seen in the case with tune jumps.
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Figure 5.2 Simulated average beam polarization as a function of the energy in the AGS,
at the end of the acceleration cycle.

Expectation of higher polarization drove a strong interest for the extraction-on-the-fly scenario
but a simpler solution was found. A new power supply function for the AGS main magnets was
set up to provide a quick transition between the ramp and the flat-top. This new function allows
the AGS to ramp at the full acceleration rate up to the extraction energy. Thus, the last horizontal
intrinsic resonance 1s also crossed at the maximum acceleration rate. Comparisons were then
possible between the simulation involving extraction-on-the-fly and measurements carried out in
the AGS using the fast roll-over.

Polarization measurements were taken with both magnet functions, with or without tune jumps.
Table 5.1 summarizes the measurements taken using a vertical fixed target polarization measure-
ment. The experiment was carried with 1.2.10!! particles per bunch and typical beam emittances.
With the tune jumps active the effect of the fast roll-over is expected to be smaller since the cross-
ing rate of the horizontal intrinsic resonances is dominated by the tune jumps. Nevertheless, the
simulations show a relative gain of 2.4%. We can see in Figure 5.2 that the polarization gain oc-
curs across the last horizontal intrinsic resonance, at Gy = 45.3, where the acceleration rate is very
small. The discrepancy between the simulated and measured gains is not completely understood

but the probable causes are:

» The fast roll-over imposes a fast modification of the 9" vertical harmonic orbit across Gy =
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Table 5.1 Summary of the polarization measurements taken in March 2012 with both
main magnet functions and the associated simulation results.

machine state | measured polarization | measured gain | simulated gain
tune jumps OFF

slow roll over 62.8 + 1.1 %

fast roll over 673 £ 1.1 % +7.2% +6.8%
tune jumps ON

slow roll over 70.1 £ 1.1 %

fast roll over 705 £ 1.1 % +0.6% +2.4%

45 to avoid the depolarization due to the imperfection resonance. This is harder with the two

closest tune jumps at Gy = 44.7 and Gy = 45.3, separated by 5 ms [47].

* The uncertainty on the measurement leads to an uncertainty in the measured gain of 3.3%.
Therefore the measured gain can be considered in agreement with the simulations if the

uncertainty of the measurement is propagated to the gain.

Polarization measurements did not show measurable gain from the fast roll-over with the tune
jumps, more measurements are required to reduce the uncertainties. Nevertheless, a clear gain
has been measured without tune jumps, giving strong confidence in the Zgoubi model for this
application. The fast roll-over is used for operations since March 2013.

This application of the Zgoubi beam multiturn tracking perfectly illustrates the necessity of
these simulations to investigate depolarization sources and develop new schemes. The investment,
in terms of man power, budget, and beam study time, required to improve polarization transmission

in the AGS makes realistic simulations absolutely necessary.
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5.2 Tune Jump Timing and Energy Measurement in the AGS

The tune jumps system and its interest has been discussed in Section 2.4 and Chapter 4. Here we
will use Zgoubi beam multiturn simulations to show how critical the timing of the tune jumps is
to the efficiency of the system. We will then detail experiments to improve the tune jumps timing

that were setup using the Zgoubi code.

5.2.1 Tune Jumps Timing Shift

Measuring the efficiency of the tune jumps system is particularly complex, especially if one wants
to estimate the accuracy of the tune jumps timings. The only measurement meant to give an idea
about the accuracy of the tune jumps timing consists of polarization measurements with shifted
tune jumps timing. The expected final polarization as a function of the tune jumps timing shift
follows the shape of the beam in the longitudinal plane. The figure eventually widens or shifts in
case of errors in the tune jumps timing [79].

Figure 5.3(a) shows such a measurement taken in 2013. A Gaussian function seems to fit
the data well, with an estimated standard deviation in agreement with the theoretical expectations
detailed in [79]. The shift A+ measured is not expected and will not be discussed here, but a
lot of work has been done to improve the tune jumps timing since May 2012 [84, 85]. Figure
5.3(b) shows the simulated polarization using Zgoubi beam multiturn trackings. The beam and
machine conditions used for these simulations were detailed in Chapter 4. The error bar visible
on the simulated average polarization was introduced in Table 4.1. In this case the estimated shift
is compatible with zero, which is expected since the simulations allow for perfectly timed tune
jumps.

Measurement and simulations are in good agreement, giving a strong confidence in the model.

The important is the estimated standard deviation, which is around 200 us. This parameter is
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Figure 5.3 Polarization at Gy = 45.5 as a function of a global shift of the tune jumps
timing measured during the AGS Runl3 (a) and simulated using beam multiturn Zgoubi
tracking (b).

expected to increase if random errors in the timing of the tune jumps are introduced. This gives an

upper limit of £100 us in the acceptable error of the timing of the tune jumps to maintain a good

efficiency of the system.

5.2.2 Energy Measurement Methods

We have seen that the tune jumps timings are critical for polarization transmission in the AGS. We
will now see how the Zgoubi code helped identify and correct an error detected in the tune jumps
timing during the AGS Run13.

While the spin tune Qs is a function of the energy, tune and energy measurements along the
ramp allow precise timing of each jump. During the polarized proton operations, these measure-
ments are regularly used to generate new timings for the tune jumps. This is supposed to compen-
sate for any drift in the timing of the resonant condition, for instance due to a drift of the tune over

time. During the AGS Polarized Proton Run 13, these measurements were regularly conducted
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to provide the highest polarization to the RHIC. In late April 2013, after a few weeks of running

Table 5.2 Polarization measurements during Run 13.

Measurement date | Tune jumps timing | Polarization
May 5" from April 6* 66.0+0.9%
May 5" from April 29" 59.7+£1.1%
May 5" from May 5" 62.8+1.1%
June 6" Uncalibrated 64.4+3.9%
June 6" After calibration | 70.9+1.6%

with the same tune jumps timings, new timings were generated but the polarization decreased un-
expectedly. Table 5.2 shows that on May 5" the measured polarization was higher for the older
timings.

To explain this deterioration, the entire process from the computation of the tune jumps timing
to the trigger of the pulsed power supply was verified, without finding any error. We decided to in-
vestigate on the measurements used to compute the jump timings: tune and energy measurements.
The tune measurement is based on the free oscillation of the beam. It is therefore an absolute mea-
surement and is unlikely a source of significant error. The energy measurement is more complex

and needs to be calibrated, making it a possible suspect for our problems.

5.2.2.1 Conventional Energy Measurement in the AGS

The AGS uses a dedicated device called the GgammaMeter to measure the energy along the ramp.
The energy is determined using the measured RF frequency f and average radius of the beam dR

(Eq. 5.1), or the measured field (Biyj + Beiock /Csca) and average radius (Eq. 5.2):
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Gy= G . (5.1)
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with ¥, the gamma, R the radius of the AGS, m the proton rest mass and pg the radius of curvature

in the main magnets. The parameters in red (f, R and B.,) are measured quantities, while the

blue ones are machine parameters (R, 2, po, Binj and Cy) that can be adjusted, and the black are

fixed physical constants.

The GgammaMeter is cross calibrated: at low energy the machine parameters in equations

5.2 and 5.1 are adjusted manually until the two methods report the same energy along the ramp.

However, at high energy the measurement based on the RF frequency (Eq. 5.1) is too sensitive,

due to the highly relativistic beam.
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Figure 5.4 Error on the reported energy caused by an error of 1 mm in the measured
average beam radius.

Figure 5.4 shows the derivative of equations 5.2 and 5.1 with respect to the measured aver-

age radius: dGy/d(dR). As the energy increases, we can see that the sensitivity of the energy

measurement based on the revolution frequency becomes very large. While we consider that the
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measured average radius is known within a fraction of millimeter we also need an accuracy of
around 0.01 Gy. It is visible that the conventional method of cross calibration is very hard at high

energy.

5.2.2.2 Fitting Assisted Energy Calibration

In order to reach and maintain the accuracy of the AGS energy measurement system, frequent cal-
ibrations are performed during polarized proton operations. The procedure consists of minimizing
the difference between the energy computed by equations 5.1 and 5.2 along the acceleration ramp
(shown in pink in Figure 5.5(b)). However, the manual modification of the adjustable parameters
to calibrate the GgammaMeter is particularly complex and requires an expert of the system.

It was proposed to develop an application capable to automatically calibrate the GgammaMeter
parameters using fitting procedures. Figure 5.5 shows the graphical interface of the application,
developed in collaboration with the RHIC Control System group. The application provides a con-
venient interface to load and present data averaged over multiple consecutive cycles of the AGS.
The mean is used to determine the statistical accuracy associated with each of the measured param-
eters. The correct transport of the uncertainties from the measured parameters allowed to compute
and plot the resulting uncertainties in the differences between the two methods of energy compu-
tation (showed in grey in Figure 5.5(b)).

The automatic fitting of the machine parameters, shown Figure 5.5(b), allows the application
to be used by non experts of the system. This effectively grants the ability for the calibration to be
carried out by operation, and on a regular basis during polarized proton operations.

However, Figure (b) clearly shows large uncertainties at high energy, considerably limiting the
calibration method in the later part of the acceleration cycle. This raises a strong interest to develop
an independent method on energy measurement, possibly to calibrate the GgammaMeter. Since

the AGS accelerates polarized protons, approaches based on the depolarization of the beam can be
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Figure 5.5 Screenshot of the AgsGgammaCal application showing the energy as a func-
tion of the AGS time and the manual calibration tab (a), and the difference between the
two methods of energy computation and the auto calibration tab (b)
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explored. A promising method using the current hardware of the AGS takes advantage of the tune

jump system to accurately locate a strong vertical intrinsic resonance.

5.2.2.3 Tune Jumps Based Energy Measurement

While the tune jump system is used for its effect on the horizontal tune, it also induces a tune shift
of AQ, ~ —0.02 in the vertical plane, within 100 us. In addition, the partial snake configuration of
the AGS modifies the spin tune, opening a forbidden band or "spin gap" in which the vertical tune
is placed to avoid the vertical intrinsic resonances Qs 4= Q, = n. It is then possible to use a single
tune jump to lower the vertical tune below the maximum value of the spin tune Q7%*, leading to a

depolarization of the beam.

(_A_\
\ / Vertical tune

Up jump

Spin tune Spin tune

Time> Time>

Figure 5.6 Illustration of the method used to locate the vertical intrinsic resonance.

Figure 5.6 shows the principle of the measurement. First the vertical tune is lowered to just
above O"**, such that the tune jump is able to lower the vertical tune out of the spin gap. Then
the timing of the tune jump is scanned across the spin resonance and the polarization at the end of
the ramp is measured for each timing of the tune jump. If the spin tune crosses the vertical tune,
a lower polarization is measured due to the depolarization across the resonance. The up-jump
determines the location of the right side of the resonance and the down-jump allows to locate the

left side.
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The single crossing of the resonance, at the regular acceleration rate, has to strongly depo-
larize the beam in order for the difference in polarization to be clearly measured. Therefore, the
measurement is only carried at the two very strong vertical intrinsic resonances: 0+ and 36-+.

While the method shown in Figure 5.6 is very simple, several factors complicate the expected

behavior:

* the vertical and spin tunes feature some spread due to energy spread of the beam and chro-
maticity of the machine, potentially blurring the transition between no depolarization and

depolarization.

max

* the two resonances on each side of Of

can have different strengths, depending on the

distance between them.

The experimental results are expected to be complex and no simple theoretical model can predict
the observed polarization. One solution to take everything into account would be to completely
simulate the experiment. The Zgoubi code and the AGS Zgoubi on-line model provide the perfect

tools for that purpose.

8.975

8.97 Q2
8.965
-

8.96 [ 1
e N

8.955 / \
“\

8.95 1 .
44.9 44.95 45 45.05 45.1
Gy

-08 -06 -04 -02 0 02 04 06 038
Time (ms)

! L L L

Figure 5.7 Vertical tune for the 5 different simulations, and resonant condition for the
second order snake resonance (Q;/2) as a function of the energy or the time from Gy =45.
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Simulation at 36+

The Zgoubi code allowed us to quickly estimate that the crossing of the second order snake reso-
nance (Qs + 20\, = n with n an integer) would create a strong enough depolarization of the beam
to be easily measured by the AGS polarimeter. At Gy = 45, the resonance Q) + 36 = Qy is strong
enough that the crossing of the second order snake resonance induces a significant depolarization
of the beam. Beam multiturn trackings using the Zgoubi code were done for a short simulation
from Gy = 44.5 to Gy = 45.5. Realistic beam and machine conditions were set up using the AGS
Online model. Each simulation consists of a tracking of 408 particles picked in a realistic 6-D
Gaussian distribution for 3800 turns. The simulations total up to around 20,000 CPU hours.

Figure 5.7 shows the vertical tune without tune jump at Q) ~ 8.975, which is lower than the
operational tune across this resonance in order to cross the spin resonance when the jump quads
are fired. Below this, the different tunes on the jump were chosen across a wide range to determine
the best configuration for the measurement.

Figure 5.8 shows the experiment simulated for the different vertical tunes on the jump shown
in Figure 5.7. On Figure 5.8(b) the vertical tune on the jump is very close to the maximum value
of the Qg /2. The two vertical intrinsic resonances on either side of Gy = 45 are so close that they
have the same effect on the beam and the figure is very symmetric, centered around Gy = 45. For
a lower vertical tune, the result is distorted due to the two resonances having different strengths
when the distance separating them increases. These simulations show that the vertical tune on the

jump should be positioned as close as possible to the maximum value of the spin tune.

Experiment at 36+

In order to correctly place the vertical tune, we determined the maximum value reached by the spin
tune across the resonance. By measuring the final polarization as a function of the vertical tune
across Gy = 45 we determined that QX /2 = 0.956. The vertical tune on the jump was placed at

0O, = 8.954, just below the resonant condition.
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Figure 5.8 Final polarization for the up and down jump locations, as a function of the
time from Gy = 45 for the vertical tune on the jump just above the second order snake
resonance (a), for O, = 8.951 (e) and for the other cases shown in Figure 5.7, in decreasing
order.
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The polarization on the flat-top was measured as a function of the up and down jump locations,
by steps of 200 us. Figure 5.9 shows the measured data, along with the simulation closest to the
experimental conditions. The simulation results were numerically matched: vertically to account

for the polarization lost outside the simulated range and horizontally shifted. The matched hori-
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Figure 5.9 Final polarization for the up and down jump locations as a function of the
AGS time.

zontal shift of the simulation allows to determine that Gy = 45 is crossed at 7 = 571.85ms. From
the GgammaMeter data, we expected to see Gy = 45 at T = 572.7ms. This 850 us difference is
equivalent to ~ 0.1 G7.

The energy measurement at 36+ led to surprising results, but the magnitude would suffice to
explain an important loss of efficiency for the tune jumps. The same method was applied at Gy =9,
where a strong vertical intrinsic resonance is located, reporting a smaller disagreement with the
energy measured by the GgammaMeter of AT = 0.1 ms. Therefore it would appear that the energy
reported by the GgammaMeter drifts along the ramp. These results were used to recalibrate the
the GgammaMeter and generate new tune jump timings. Higher polarization was measured with
the new timings on June 6™ (Table 5.2), giving strong confidence in the energy measurement. The
energy measurement, based on depolarization, provided interesting results, but the procedure is
complex and the data collection is very long. However, a faster method based on a continuous

polarization measurement along the ramp is being developed and could be used for operations,
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while the method described above would be an important tool for experts to cross-check the results.

5.2.2.4 Ramp Polarization Based Energy Measurement

Continuous polarization measurements in the AGS provide the evolution of the non-calibrated po-
larization, also called asymmetry, as a function of the AGS time (see Appendix D, Figure D.1).

The approach exploits the spin flip occurring when the beam crosses an integer value of Gy during
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Figure 5.10 Measured and fitted asymmetry as a function of time around Gy = 39.

acceleration, due to the partial snake configuration of the AGS (Eq. 2.120). The method is de-
scribed in [84] but Figure 5.10 shows the result of a measurement acquired in May 2013, around
Gy = 39. The measured asymmetry is fitted by the theoretical, known, evolution of the vertical
component of 7 at the polarimeter as a function of the energy Gy (Eq. 2.120).

For Figure 5.10 the analysis provides an estimate of the timing associated with the crossing
of Gy = 39 with a statistical uncertainty of around 30 us. The repetition of the fit along the ac-

celeration cycle offers an accurate estimate of the energy at every spin flip. This has shown to
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be particularly useful to validate the energy measured with the conventional method (reported in

Section 5.2.2.1).
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5.3 Vertical Tune Jumps Scheme in the AGS

We have seen in Chapter 4 that the AGS vertical tune cannot be pushed high enough to overcome
the first 2 vertical intrinsic spin resonances. Figure 4.9 shows the crossing of the two resonances
on either side of Gy = 5.

Although the tune jump system was designed for fast change of the horizontal tune, it also
changes the vertical tune by AQ, = —0.02 within 100 us. It was proposed to use the vertical tune
shift induced by the AGS tune jump system to accelerate the crossing of the two vertical intrinsic
resonances around Gy = 5. Although each tune jump changes the tune in both planes, we define the
vertical tune jump as the tune jump used to accelerate the crossing of a vertical intrinsic resonance.
We will present the new scheme and hardware limitations of the system for this application. Then
the gain in polarization will be estimated using multiparticle trackings with the Zgoubi code and

compared to experimental data.

5.3.1 Vertical Tune Jumps Scheme Setup

Figure 5.11 shows the proposed vertical tune jumps at Gy = 4.9 and Gy = 5.1. The first constraint
of this scheme is the distance between the vertical and horizontal tunes. Since the tune jump power
supplies need around 3ms between two consecutive tune jumps, the case shown in dashed lines
was technically impossible. Lowering the horizontal tune allowed to increase the time between
the vertical and horizontal tune jumps, as seen in Figure 5.11. In the final scheme, corresponding
to the plain lines in Figure 5.11, the minimum time between two consecutive jumps is 2.8 ms.
This is very close to the usual charging time and can be achieved by the current tune jump system

hardware.
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Figure 5.11 Representation of the proposed tune jump scheme around Gy = 5, using
realistic tunes and energy spread.

5.3.1.1 Zgoubi Beam Multiturn Trackings

The tracking code Zgoubi and the Zgoubi AGS online model were used to simulate the effect, and
expected polarization gain, of the vertical tune jump scheme. The lattice was setup using mea-
sured magnets currents and measured tunes. Unlike in Chapter 4, the snakes here were simulated
using first order simplectic matrices. Although not as realistic as tracking using field maps of the
snakes, the results were easier to interpret due to the particularly complex beam dynamics at low
energy. Realistic longitudinal dynamics were simulated using measured acceleration rate and total
RF voltage. The simulations consist of the tracking of 1000 particles picked in a 6D Gaussian
distribution leading to realistic transverse normalized 95% emittances of 4 7.mm.mrad and longi-
tudinal emittance of 1.43eV.s. The initial spin vectors were aligned with the stable spin direction,
resulting in an initial polarization of 100%. Therefore the vertical polarization profile is flat at
Gy =4.5, as measured in the machine. Figure 5.12 shows the evolution of the average polarization
predicted by the Zgoubi code. The tracking results clearly show that the polarization losses are

dominated by vertical intrinsic resonances, located around Gy = 4.9 and Gy = 5.1. The horizontal
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Figure 5.12 Average polarization over the whole beam as a function of the energy for
different tune jump settings simulated using the Zgoubi code.

intrinsic resonances cause minor polarization drops at Gy = 4.8 and Gy = 5.2, as well as around
Gy =6 and Gy ="7. This is confirmed by the simulations with the tune jumps. While the effect of
the horizontal tune jumps is negligible, we can see that the vertical tune jumps greatly reduce the
polarization losses around Gy = 5. The simulations show an increase in the overall polarization
transmission from the vertical tune jumps from 97.6% to 99% between Gy = 4.5 and Gy = 7.5.
Assuming a final polarization of 70% at Gy = 45.5, the effect of the vertical tune jump would be
an increase of 1% average beam polarization, which cannot be measured without excessively long
measurements due to the statistical uncertainty inherent to the polarization measurements in the
AGS.

In order to take advantage of the larger analyzing power at low energy of the AGS CNI po-
larimeter (see Appendix D), it was proposed to measure the effect of vertical tune jumps before the
AGS extraction energy of Gy = 45.5. Measurements of the polarization were done at Gy = 7.5.
The simulations were stopped and analyzed at Gy = 7.5.

Figure 5.13 shows the polarization profiles predicted by the Zgoubi code at Gy = 7.5 without
tune jumps. The polarization profile in the vertical plane dominates, which is an additional proof
that most of the polarization losses occurred through vertical intrinsic resonances.

Following these promising results predicted by the Zgoubi simulations, measurements in the
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Figure 5.13 Polarization profile obtained from the Zgoubi tracking at Gy = 7.5 for the
horizontal (top plot) and vertical plane (bottom plot).

AGS were conducted.

5.3.2 Experimental Results

The experimental conditions were very close to the simulations. Even though the machine tunes
were slightly different from the ones used in simulations, no major impact on the results were
expected. Dedicated tune jump functions were generated with only vertical tune jumps and timed
to accelerate the crossing of the vertical intrinsic resonances, although the timing of the tune jump
is experimentally difficult to set up perfectly. Polarization profiles were then measured at Gy = 7.5
with and without vertical tune jumps, but only in the vertical plane.

Polarization measurement at Gy = 7.5 only gives relative numbers since the analyzing power
of the polarimeter is only known at Gy = 45.5. Therefore, comparing simulated and measured

polarization profiles through the R allows to directly compare measurements to simulations using
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the Zgoubi code. Figure 5.14 shows the result of a polarization profile measurement. The relevant
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Figure 5.14 Measured vertical polarization profile at Gy = 7.5 with vertical tune jumps.

parameter is the R value and can directly be compared to the Zgoubi simulations.

Table 5.3 Summary of the measured and simulated R values of the polarization profiles.

Conditions Horizontal Vertical
Zgoubi simulations
No tune jumps 0.001 £0.001 | 0.018 0.001
Vertical tune jump | 0.007 £0.001 | 0.003 £0.001
Horizontal tune jumps | 0.003 +£0.001 | 0.014 +0.001
Measured data
No tune jumps not measured | 0.017 40.005
Vertical tune jump not measured | 0.010£0.005
Horizontal tune jumps | not measured | not measured

Table 5.3 summarizes the R values determined from the polarization profiles, measured and
simulated using the Zgoubi code. The agreement between simulated and measured polarization
profiles is very good in the absence of tune jump. However the larger horizontal profile predicted
by the trackings with the vertical tune jump is not yet understood. Similarly the effect of the
horizontal tune jumps on the R values are yet to be explained. Although a transfer of polarization
profile between the two planes is not excluded when vertical and horizontal tunes are close. Further

studies should help in understanding these effects.
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Time constraints limited the quantity of measurements taken, mainly due to the large amount
of time required to reach a small enough uncertainty on the measured R value.

The Zgoubi code accurately predicts the vertical polarization profile at low energy. The losses
through the first 2 vertical intrinsic resonances were estimated to be large enough for a measure-
ment, and successfully measured. A new tune jump scheme was designed and tested, again us-
ing the Zgoubi code. Hardware limitations were taken into account and the simulated tune jump
scheme was successfully tested in the machine. Measurement of the vertical polarization profile
with vertical tune jumps indicates a polarization gain, in agreement with the Zgoubi simulations.

This last example illustrates the design and simulation of a complex and original tune jumps
scheme using the Zgoubi code. We also show that the simulated polarization profile can directly

be compared to the measured one.
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Conclusion

The development of the AGS Zgoubi model, described in Chapter 3, provides a tool that realis-
tically simulates the AGS optics. The use of the measured magnet currents ensures the accuracy
of the computed optics. Additionally, the Siberian snakes are modeled using 3D simulated field
maps; this is particularly important since beam and spin dynamics are strongly determined by those
unusual magnets.

Online capabilities were added and interface with the AGS Control System through the ZgoubiFrom-

SnaprampCmd allows a fast access to the Zgoubi modeled AGS optics.

Chapter 4 introduces the parallelized multiturn beam trackings and some of the most impor-
tant results. Simulated polarization using Zgoubi beam tracking showed good agreement with
the measurements, in particular the depolarization through horizontal intrinsic resonances. The
simulations helped to better understand the behavior of the depolarizations in the AGS, the role
and challenges associated with the tune jumps system and the polarization losses dependence on
different parameters.

Beam dynamics simulations also provided important insight in the low energy range. The role
of some non-linear resonant lines crossing during the early range of the AGS acceleration cycle

was clearly highlighted.

141
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We have seen in Chapter 5 that Zgoubi simulations were very useful to simulate realistically
many experiments. Complex schemes were tested using the Zgoubi code to investigate the possible
polarization gains and to design the experiments in order to limit the required beam time. The
AGS Zgoubi online model and the beam trackings provide a set of versatile and complete tools to

investigate many aspects of the AGS, in order to improve machine performances.

However, some results from the beam tracking simulations disagree with experiments. In par-
ticular, measured vertical polarization profiles were not reproducible using Zgoubi simulations,
hinting at polarization losses through vertical intrinsics resonances. Measurements focused on the
evolution of the vertical polarization profile are schedule for the AGS Runl5. Simulated beam
dynamics in the low energy range is also hard to directly relate to measurements. The role of
the snakes in the observed and simulated beam dynamics issues such as beam losses or emittance
increase during the ramp is not yet completely understood.

Furthermore, refinements of the Zgoubi model remain to be done. As seen in Chapter 4, im-
provements of the beam dynamics at low energy range are necessary to completely simulate the
AGS. Better understanding of the beam dynamics in the low energy could also lead to improved
polarization transmission through a reduction of the transverse emittance.

Introduction of realistic orbit in the AGS Zgoubi online model and beam trackings is necessary
to clearly understand the beam and spin dynamics effects in the AGS. Study of the effect of the
orbit on the polarization transmission remains to be studied. Beam dynamics effect of the orbit
will also be studied and could lead to improve the beam emittances and polarization at the end of

the AGS acceleration cycle.
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Finally, better online capabilities with the direct control of the AGS by the AGS Zgoubi on-
line model need to be undertaken. This could simplify numerous procedures commonly carried
by operations such as the orbit and optics adjustment, which might also improve the machine

performances.
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Appendix A
Main Magnet Field Map Positioning

Tracking through measured field maps of the main magnets requires a change of reference frame
in the Zgoubi model of the AGS. The element 'CHANGREF' is used and an example in the case of

the A-type magnet is given below:
'"CHANGREF' TOP

ZR 0.801138237 YS -0.5564124 XS -38.1
'TOSCA'

[...]

'CHANGREF' BOTTOM

XS -38.1 YS 0.5564124 ZR 0.801138237

Each 'CHANGREF' element consists of 3 successive changes of referential before the field map:
* a rotation around y corresponding to half the deviation of the OCO across the magnet,

0.801138237° for the long magnets and 0.6732941642° for the short magnets.

* ahorizontal translation along X corresponding to the distance between the OCO and SOCKET

systems, 5.564124 mm for the long magnets and 3.929888 mm for the short magnets.

* a longitudinal translation since the field maps are longer than the magnetic length of the

magnets by 38.1cm on each side.

After tracking through the magnet, the referential is changed again in reverse order to carry the

tracking in the OCO system.
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Appendix B

Computed Quadrupole and Sextupole
Strengths of the AGS Main Magnets

Table B.1 Computed quadrupole strengths of the AGS main magnets using the Zgoubi
code, by tracking through measured field maps.

Intensity Equilibrium AD | AF BD BF | CD | CF
(Amps) | momentum (GeV/c) (10?m~?)
108 0.65084943 -4.8327 | 4.8407 | -4.8227 | 4.8295 | -4.8953 | 4.9060
360 2.0952495 -4.8627 | 4.8714 | -4.8492 | 4.8565 | -4.8519 | 4.8633
1000 5.8006843 -4.8714 | 4.8793 | -4.8575 | 4.8643 | -4.8394 | 4.8503
2650 15.355370 -4.8750 | 7.8834 | -4.8605 | 4.8676 | -4.8387 | 4.8494
3550 20.546276 -4.8677 | 4.8767 | -4.8518 | 4.8595 | -4.8324 | 4.8439
4450 25.625960 -4.8524 | 4.8637 | -4.8328 | 4.8323 | -4.8186 | 4.8320
4800 27.495482 -4.8445 | 4.8566 | -4.8221 | 4.8323 | -4.8115 | 4.8260
5150 29.241457 -4.8250 | 4.8350 | -4.7997 | 4.8105 | -4.7919 | 4.8071
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Table B.2 Computed sextupole strengths of the AGS main magnets using the Zgoubi
code, by tracking through measured field maps.

Intensity Equilibrium AD | AF | BD | BF | CD | CF

(Amps) | momentum (GeV/c) (1073 m™?)
108 0.65084943 -12.961 | -13.516 | -14.452 | -14.968 | -2.987 | -3.113
360 2.0952495 -8.196 | -8.136 | -9.547 | -9.703 | -8.192 | -8.229
1000 5.8006843 -6.420 | -6.315 | -7.732 | -7.619 | -8.923 | -9.038
2650 15.355370 -6.465 | -6.651 -7.894 | -8.036 | -8.328 | -8.772
3550 20.546276 -7.662 | -7.736 | -9.180 | -9.229 | -9.173 | -9.568
4450 25.625960 -10.601 | -10.601 | -12.568 | -12.537 | -11.867 | -12.073
4800 27.495482 -13.556 | -13.495 | -15.715 | -15.723 | -15.077 | -15.351
5150 29.241457 -18.971 | -18.742 | -21.143 | -21.067 | -20.547 | -21.007




Appendix C

Typical Input File for the AGS Online
Z.goubi Model

[SNAP RAMP DIRECTORY] ! path of the folder containing the snapramp
/operations/app_store/RunData/run_fy13/fullRun/Ags/Snapramp/13Apr14/ppmUserd/A13Apri4

[TEMPLATE DATA FILE] ! template zgoubi input file containing the AGS lattice
./templateZgoubi4ZgoubiFromSnaprampCmd.dat

[TIMINGS] ! list of timings or first, last and timing step
145 610 3

[GNUPLOT OPTICS TABLE] ! 1/0 to respectively plot the optics for each timings or n
1

[AGS MODEL DATA]

0 0 1 ! 0/1/2 for main magnet model as AGSMM/ MULTIPOL/ TOSCA
0 ! 0/1/2/3 to activate some or all orbit bumps
0 0.d0 0.00 ! to use the measured average beam radius for off-momentum beams
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1 0 ! 1/2 for the quadrupole model AGSQUAD/MULTIPOL and 0/1 for tune
### db0 values for the 6 MM types
0. 0. 0. 0. 0. O.
### dbl values for the 6 MM types
1. 1. 1. 1. 1. 1.
### db2 values for the 6 MM types
1. 1. 1. 1. 1. 1.
0

[GET BETA FUNCTIONS] ! to control and plot the beta function along the lattice
111

[FIT TUNES] ! to control the adjustment of the tunes using measured data
11 11

'FIT2'
2 nofinal

4 4 0 [-5.e-1, 5.e-1]

4 10 0 [-5.e-1, 5.e-1]
2 1.0000E-8 1000

0.10 7 7 956 0.695548111  1.000000 0
0.10 8 8 956 0.876328559  0.800000 O
./Chroma_1.out
126



Appendix D

AGS Polarimeter

The AGS polarization measurement system is a Coulomb-Nuclear Interference polarimeter' lo-
cated in the AGS C15 straight section [41, 86]. The measurement of the beam polarization is done
by plunging a thin carbon strip target in the beam and by measuring the asymmetry A; of recoiled
carbon nucleus scattered by the polarized protons of the beam. The AGS polarimeter determines
the average vertical spin component < Sy > of the particles crossing the target, related to the mea-

sured asymmetry by the analyzing power Ap, only known at Gy =45.5:

<8y >=AgxAp (D.1)
Furthermore, the absolute polarization P is related to < Sy > by:

<8y >= P x 1.y (D.2)

However, at the location of the polarimeter and at Gy = 45.5 we have 7.y ~ 0.99 such that the
measured < Sy, > is very close to the beam polarization. When the beam polarization is measured
with the AGS polarimeter the factor 7.y is neglected and the analyzing power at Gy = 45.5,
Ap(Gy=45.5), is always used.

The absolute polarization measurement can only be carried at extraction energy while A (also

referred to as relative polarization) can be measured at any energy. This is a strong limitation of

ICNI polarimeter
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the system and, for instance, dramatically complicates the localization of depolarizations during

the acceleration ramp. This system can function in three different modes:

* In the fixed target mode the target is moved to the center of the beam. In this case the
polarization is averaged over one plane, while it is the "core" polarization of the other plane
being measured. For instance if the horizontal target is used, the polarization measured is
averaged on the horizontal plane while only the core polarization from the vertical plane
is sampled. This measurement typically requires 20 to 30 AGS cycles when done at the
extraction energy, with nominal beam intensity and emittances. The measure obtained is
only absolute at Gy = 45.5, and measurements done at other energies cannot be compared
to simulations since calibration data associated to the CNI polarimeter only exists for Gy =

45.5.

* Derived from the fixed target mode has recently been developed the ramp measurement
mode. In this configuration the target is plunged into the beam at the AGS injection and
maintained into the beam along the ramp. Figure D.1 shows the measured asymmetry along
the AGS cycle, clearly showing the effect of the partial snake configuration with the spin flip
during acceleration. It can also be seen that the maximum measured asymmetry decreases
fast along the AGS cycle, mainly due to the decrease in analyzing power since polarization

changes are too small to be seen in Figure D.1.

* In the sweep mode, the target is swept across the beam while the beam is kept at constant
energy. From this measurement one can extract the intensity and measured asymmetry as a
function of the target position. Figure 4.8 shows the result of a typical polarization profile
measurement. The relevant quantity is the the R-value, constructed from the standard devia-

tions op and oy, respectively, from the Gaussian fit of the polarization and intensity profiles:

2
R (@) (D.3)
Oj

The R-value characterizes the depolarization of the beam due to the crossing of intrinsic
depolarization resonances [41]. Furthermore, the R-value measured does not depend on Ap

such that this measurement can be done at any energy and directly compared to simulations.
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Figure D.1 Asymmetry measured by the AGS polarimeter along the acceleration cycle
with typical polarized protons beam and machine conditions.
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Appendix E

Résumé en francais

Résumé

L’ AGS fournit un faisceau de protons polarisés a RHIC. Le faisceau est accéléré dans I’AGS de
Gy=4.5a Gy=45.5 et la transmission de la polarisation est critique pour le programme de spin
de RHIC. Au cours des dernieres années, divers systemes ont ét€ mis en place pour améliorer
la transmission de la polarisation dans I’AGS. Ces améliorations consistent essentiellement en
I’introduction de deux serpents siberien partiaux et du systeme de saut de nombre d’onde. Cepen-
dant, la transmission de la polarisation n’atteint pas encore 100 % durant le cycle d’accélération de
I’ AGS. L’efficacité actuelle de la transmission de la polarisation est estimée a environ 85 % dans
les conditions de fonctionnement typiques.

Comprendre les sources de dépolarisation dans I’AGS est essentiel pour améliorer les perfor-
mances en protons polarisés de la machine. La dynamique de faisceau et de spin, notamment en
présence des aimants spécialisés appelés serpent sibériens, justifient le fort intérét pour des méth-
odes de simulation originales. Le code Zgoubi, capable de résoudre I’équation du mouvement et
de I’évolution du spin directement a partir d’une carte de champs, est utilisé pour modéliser I’ AGS.

Un modele de I’AGS utilisant le code Zgoubi a pour cette raison été développé et interfacé
avec le systeme actuel par une simple commande: I’AgsFromSnapRampCmd. L'interfacage avec
le systeme de controle de la machine permet la modélisation rapide en utilisant les parametres réels

la machine. Ces développements ont permis de reproduire fidelement I’optique de I’ AGS le long

163



164 Chapter E Résumé en frangais

du cycle d’accéleration. Des développements supplémentaires sur le code Zgoubi, ainsi que sur
des outils de post-traitement et de pré-traitement, ont fournis au code la possibilité de suivre les
faisceaux sur de nombreux tours, ce qui s’avere étre fondamental pour une représentation réaliste
du cycle d’accélération complet de la machine.

Des simulations de faisceaux sur de nombreux tours dans 1’ AGS, en utilisant des conditions
réalistes de faisceau et de machine, ont fourni une vision unique des mécanismes sous-jacents de
I’évolution de I’émittance et de la polarisation du faisceau au cours du cycle d’accélération. Des
programmes de post-traitement ont été développés pour permettre la représentation des quantités
pertinentes des données simulées par Zgoubi. Les simulations se sont avérées particulierement
utiles pour mieux comprendre les pertes de polarisation a travers les résonances horizontales in-
trinseques de spin.

Le modele Zgoubi ainsi que les outils développés ont également été utilisés pour certaines ap-
plications directes. Par exemple, les simulations d’expériences de faisceau ont permis 1’estimation
précise des gains de polarisation attendus en fonction des changements apportés. En particulier,
des simulations d’expériences impliquant le systeme de saut du nombre d’onde ont fournis des
estimations précises de la polarisation gagnée et permis le choix des conditions optimales de la

machine.
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E.1 Introduction

E.1.1 Le Proton, le Spin et la Crise du Spin du Proton

Le spin d’une particule est son moment cinétique intrinseque. Il joue un rdle tres important dans la
physique moderne, mais c’est en physique des particules que le spin est particulierement difficile
a comprendre. Alors qu’il est clairement établi que le proton est une particule composite de spin
1/,,1a question est de comprendre comment le spin est distribué parmi ces composants [6].

En chromodynamique quantique, le proton est composé de trois quarks de valence, de gluons
et d’une mer de quarks (paires de quarks anti-quarks virtuels). Les quarks sont des particules
élémentaires de spin !/ et les gluons sont de spin 1. Pendant longtemps, il a été communément
admis que seuls les trois quarks du proton contribuaient a son spin. Cependant, en 1987, 'EMC!
réalisa une expérience de diffusion profondément inélastique de muons sur une cible de protons
pour mesurer la contribution des quarks au spin du proton. Les résultats ont montré que les spins
des quarks de valence et de la mer de quarks (X) ne contribuent pas a plus de 30% du spin du
proton, au lieu des 100% attendus. Cela a été une grande surprise pour la communauté scientifique
et a conduit a une crise théorique souvent désigné comme la crise du spin du proton [7]. 1l a
ensuite été établi que la fraction manquante du spin devait étre créée par le spin des gluons (AG),
le moment cinétique orbital des gluons (L) et le moment cinétique orbital des quarks(Lg). Les

contributions au spin du proton peuvent étre résumées par:

11
5= 3ZHAG Lyt Lg (E.1)

E.1.2 Apercu et Ambitions du Programme de Spin de RHIC

RHIC? est le premier collisionneur de protons polarisés a haute énergie. 11 a été construit 3 BNL
3 en 2001. RHIC est capable aujourd’hui de fournir des collisions de protons polarisés a des
énergies allant jusqu’a /s = 510GeV avec une polarisation moyenne du faisceau de 50 a 55 %. Des

énergies de /s = 510GeV ou /s =200GeV et des collisions de protons polarisés transversalement

'European Muon Collaboration
2Collisionneur d’ions lourds relativistes
3Brookhaven National Laboratory
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ou longitudinalement permettent d’explorer diverses caractéristiques de la structure de spin du
proton. Les deux expériences STAR ! et PHENIX 2 ont récemment montré, pour la premiére fois,
une valeur non nulle de la contribution des gluons au spin du proton [8]. Dans les années a venir,
le programme de spin de RHIC devrait étre étendu a des collisions de protons polarisés avec des
noyaux >He polarisés ainsi qu’avec d’autres ions lourds. Le programme de physique de RHIC n’a
pas pour seul but d’explorer la structure du spin du proton, il donne également I’occasion d’étudier
certains effets dit de "cold QCD matter" griace aux collisions entre protons et ions, dans le cadre
du programme d’ions lourds de RHIC.

Quelle que soit la physique étudiée, la polarisation des faisceaux de protons est primordiale.
Bien qu’en général le facteur de mérite croisse linéairement avec la luminosité intégrée, il évolue
de maniere quadratique ou méme a 1’ordre 4 avec la polarisation du faisceau, selon le phénomene
physique exploré. Cela conduit a un fort intérét pour I’amélioration de la polarisation du faisceau
de protons.

Alors que les faisceaux de protons sont produits polarisés, leur polarisation ne peut que décroitre
pendant I’accélération a travers la chaine des accélérateurs du complexe de RHIC. Des pertes de
polarisation sont observées a travers les deux derniers étages d’accélération: dans I’AGS?> et dans
RHIC. Par conséquent, I’augmentation de la transmission de la polarisation a travers I’AGS est

critique pour le programme de physique de RHIC.

E.1.3 Chaine d’Accélération de Protons Polarisés a BNL

La chaine d’accélérateurs utilisée a BNL pour accélérer des protons polarisés jusqu’a 255 GeV est
schématisée Figure E.1. L’OPPIS* produit des ions H~ polarisés selon un processus complexe
impliquant de multiples étapes [9]. Les ions H~ sont ensuite ionisés et les protons résultants
injectés dans le linac. Le linac, de type DTL?, accélere des paquets de protons & une énergie de
200MeV. Le polarimetre présent a la fin du linac permet de mesurer une polarisation d’environ

82% [10].

1Solenoidal Tracker at RHIC

2Pioneering High Energy Nuclear Interaction eXperiment
3Alternatif Gradient Synchrotron

4Optically Pumped Polarized Ion Source

3Drift Tube Linac
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Figure E.1 Schéma de la chaine d’accélération des protons polarisés du complexe de
RHIC.



168 Chapter E Résumé en frangais

L’ étage suivant d’accélération est le Booster, un synchrotron basé sur une maille de type FODO
et d’une circonférence de 201.7m. Le faisceau est capturé puis accéléré dans un unique paquet
jusqu’a une énergie de 2.36 GeV en approximativement 90ms. La préservation de la polarisation
durant I’accélération ne fait pas intervenir d’équipements spécialisés mais requiert une gymnas-
tique particuliere de I’orbite et du nombre d’onde vertical.

’AGS est le deuxieme synchrotron du complexe. Basé lui aussi sur une maille de type
FODOQO, il est quatre fois plus grand que le Booster avec une circonférence de 807.1m. Le cycle
d’accélération permet d’accélérer un unique paquet de protons jusqu’a une énergie de 25.38 GeV
en environ 450ms. La Figure E.1 montre plusieurs éléments spécialisés présents sur la maille de
I’ AGS. Les deux serpents sibériens partiaux sont des aimants produisants un puissant champ dipo-
laire entrelacé permettant de préserver la polarisation durant 1’accélération. Les deux quadrupdles
de saut de nombre d’onde sont utilisés pour améliorer la transmission de la polarisation du-
rant I’accélération des protons polarisés. Le polarimetre mesure une polarisation du faisceaux
a I’énergie d’extraction d’environ 72 %.

Le dernier étage du complexe est le synchrotron RHIC. Les aimants de RHIC sont supracon-
ducteurs et donc maintenu a une température de 4 K permettant d’atteindre des champs dipolaires
d’environ 3.5T. Deux conduits indépendants permettent d’accélérer deux faisceaux de protons,
tournants dans des direction opposées, a des énergies maximales de 255GeV. Les deux faisceaux
se croisent en 6 endroits, nommé IP1 a IP6. Des collisions entre les deux faisceaux se produisent
a I’'IP6 ainsi qu’a I’IP8, autour desquels les détecteurs STAR et PHENIX enregistrent les évene-
ments. La Figure E.1 montre de nombreux dispositifs présents sur la maille de RHIC, tous spécial-
isé€s dans la manipulation, la mesure, ou la préservation de la polarisation des faisceaux de protons.
En particulier les polarimetres présents permettent de mesurer une polarisation d’environ 50 a 55 %

a une énergie de 255GeV.
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Figure E.2 Dessin schématique de la coupe transversale des aimants principaux de
I’AGS.

E.2 Théorie de Dynamique des Faisceaux de Spin dans I’AGS

E.2.1 La Maille de ’AGS

L’ AGS utilise des aimants a fonctions combinées produisant a la fois un champ dipolaire pour le
guidage des particules et un champ quadrupolaire pour le maintien de la cohésion du faisceaux. Le
Tableau E.1 résume les parametres pertinent de 1’optique de 1’ AGS.

Deux différentes conceptions de section transversales d’aimants principaux sont utilisé dans
I’AGS. La Figure E.2 montre la coupe transversale des deux types d’aimants. Les aimants A et
C sont long de 90 pouces tandis que les aimants de type B sont plus courts, avec 75 pouces. Ces
longueurs correspondent aux longueurs physiques des aimants mais nous utiliserons préférentielle-
ment leur longueur effective définie comme étant plus longues de 4 pouces [30]. Chaque aimant
peut avoir un effet défocalisant ou focalisant sur le faisceaux, suivant sont orientation. La fonction
d’un aimant est définit par son effet sur le plan horizontal.Par exemple un aimant de type C a un
effet focalisant lorsque le c6té ouvert est dirigé vers I’extérieur de I’anneau, 1’inverse étant vrai
pour les aimants de type A ou B.

La Figure E.4 montre la structure de base d’une super-période de I’AGS. La super-période est
faite de 5 cellules FODO et de 20 aimants principaux. Les cotés ouverts sont orientés vers le centre
de I’anneau dans la premiere moitié de la super-période et vers I’extérieur dans la seconde moitié.
La maille de I’AGS est définie par deux types d’éléments: les aimants principaux et les sections
droites. Un systeme de numérotation a été créé pour localiser un élément dans la maille en utilisant
la lettre associée a la super-période suivie par le numéro de I’aimant principal. Par exemple, le 5°

aimant principal de la 3° super-période est nommé "MM CO05" la section droite en aval est appelé
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Figure E.3 Graphique des fonctions optiques le long d’une super-période de I’AGS. Le
dernier graphique montre 1’évolution de 1’avance de phase dans les deux plans transver-
saux le long de la super-période.

yDébut de la super-période

Figure E.4 Dessin synoptique d’une super-période de 1’AGS avec le c6té ouvert de
chaque aimant orienté vers la ligne centrale. Le numéro, le type et la fonction de chaque
aimant sont également indiqués. Le début de la super-période est, par convention, définie
au bord magnétique du premier aimant principal.

"SS CO05".
La Figure E.3 montre la position des longues sections droites de la maille de I’ AGS. Les sec-
tions droites en positions 10 et 20 font 10 pieds de long, tandis que les autres font 5 pieds de long.

Les sections droites qui ne sont pas mentionnées dans la Figure E.3 font seulement 24 pouces de
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Table E.1 Important parametres optique et d’acceleration de I’ AGS, dans le cas de proton

polarisés a I’énergie d’extraction.
Parametre Valeur
Energie (totale) E 23.8GeV
Circonférence C 807.091m
Nombre d’onde horizontal Oy 8.69
Nombre d’onde vertical 0y 8.73
Fréquence de révolution Srev 372kHz
Nombre d’harmonique RF h 8
Vitesse maximal de rampe du champ dipolaire | By | = 2.5T.s7!
Volage RF maximal Vrr | =~ 280kV
Gamma de transition Yir 8.5
Nombre d’onde synchrotron O 34

long et accueillent uniquement les BPM !, les stations de pompage ou les correcteurs dipolaires

utilisés pour la correction de 1’orbite.

LBeam Position Monitor
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E.2.2 Dynamique de Spin dans ’AGS

Pour une particule en mouvement, la transformation du champ magnétique dans le référentiel du
laboratoire vers le référentiel de la particule conduit a I’équation de Thomas-BMT, en 1’absence de

champ électrique :

e g =g —
—_— = 1 B 1 B E.2
% moysx (1+Gy)BL+(1+G)B (E.2)

Avec ﬁ =V/c, e la charge du proton, m( sa masse, G son moment magnétique anomal et y le facteur
de Lorentz. Sont aussi introduits les composantes du champ magnétique B, et EH respectivement
orthogonale et parallele a B

Dans le cas d’une particule circulant sur la trajectoire de réference, les champs magnétiques
rencontrés sont uniquement verticaux et B= Boy. L’équation E.2 prend alors sa forme la plus
simple :

S%:-E;U+Gw8w (E3)

my
ou Qg est la fréquence de précession du spin.
Dans ces conditions 1’équation de Lorentz peut étre écrite :
dv

C—Goxy (E4)

avec Q. la fréquence cyclotron relativiste qui caractérise la fréquence de révolution de la particule
autour de la machine. II est intéressant de comparer la fréquence cyclotron a la fréquence de
précession du spin.

Qg
I E.
Oc + Gy (E.5)

Dans le référentiel tournant, le spin fait G tours autour de 1’axe vertical par tour de I’AGS. Par
analogie avec le nombre d’onde bétatron, est définit une quantité capitale en dynamique de spin
appelé le nombre d’onde de spin Qg. Dans le cas d’'une machine circulaire, Qg est le nombre

d’onde de spin non perturbé sur 1’orbite de référence :

Os = Gy (E.6)
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Dans un synchrotron comme I’ AGS, le nombre d’onde de spin est tres important et Gy est souvent

utilisé comme unité de I’énergie des particules.

E.2.2.1 Résonances de Spin Dépolarisantes

Les champs magnétiques horizontaux rencontrés par les particules perturbent la précession du
spin autour de I’axe vertical. La sommation cohérente de ces champs le long de la machine peut
conduire a une perte de polarisation du faisceau. Il existe deux types de résonances de spin dépo-

larisantes en fonction des valeurs prises par le nombre d’onde de spin :

* lorsque larelation Qg = K, avec K un entier, est satisfaite on parle alors de résonance de spin
d’imperfection. Dans ce cas les champs perturbateurs horizontaux dus a I’orbite fermée ver-
ticale causent une perte de polarisation. Il est intéressant de noter que ce type de résonance

de spin n’existe pas dans le cas d’une machine idéal, sans orbite fermée verticale.

¢ lorsque larelation Qg = K 4= Q), avec Q) le nombre d’onde bétatron vertical, est satisfaite on
parle alors de résonance de spin intrinseque. Dans ce cas ce sont les champs perturbateurs
horizontaux dus au mouvement bétatron vertical qui sont responsables de la dépolarisation.
La dépolarisation du a ce type de résonance existe méme dans le cas d’une machine idéale,

du moment qu’une emittance verticale non nulle est considérée.

E.2.2.2 Dynamique de Spin en Présence de Serpents Sibériens

Dans les années 70, Derbenev et Kondratenko proposerent de surmonter les résonances de spin
depolarisantes dans les accélérateurs circulaires en utilisant un rotateur local de spin, capable de
faire tourner le vecteur de spin de 180° autour de 1’axe horizontal et couramment appelé serpents
sibériens complets. Alors que dans un accélérateur circulaire plan classique Qs = G et la direction
de précession de spin pour une particule circulant sur 1’orbite de référence, 7, est vertical le long
de la machine, I’introduction d’un serpent Sibérien complet modifie ces grandeurs qui deviennent
alors :

1(0+27,0) = ¢~ 2G1(27—0)0y ,— 370, ,— 5 GY60, (E.7)



174 Chapter E Résumé en frangais

Figure E.5 Image du serpent sibérien supraconducteur dans la section droite A20 (a) et
du serpent sibérien normal-conducteur dans la section droite E20 (b).

et
—sin (Gy(m—6))

1
Qs = 3 and 7, = | —cos (Gy(m—6)) (E.8)
0

Il est intéressant de noter que le nombre d’onde de spin est maintenant constant et indépendant
de I’énergie. L’utilisation d’un unique serpent Sibérien complet permet donc de s’affranchir des
résonances de spin dépolarisantes.

Dans le cas de RHIC, nous pouvons voir Figure E.1 que deux serpents sibériens complets par
anneau sont utilisés. Cette configuration permet aussi de fixer Qg = % mais maintient aussi 7i, = y.

Dans le cas de I’AGS il n’est pas possible d’utiliser des serpents sibériens complets. Alors que
les sections droites les plus longues de I’ AGS font environ 3 m, un serpent sibérien complet tel que
ceux fabriqué pour RHIC fait environ 10m de long. L’ AGS utilise deux serpents sibériens partiaux.
Le schéma utilisé ici est composé de deux serpent sibériens partiaux séparés par un tiers de I’anneau
[40]. Les serpents sibériens ont été construits pour €tre suffisamment courts afin de rentrer dans
une longue section droite de I’ AGS tout en offrant un angle de précession du spin de 10 a 20 degrés
autour de I’axe longitudinal. Cette configuration ne permet pas, contrairement au schéma utilisé
dans RHIC, de fixer le Qg et 7i,. Cependant cette configuration permet de s’ affranchir naturellement

des résonances de spin d’imperfection et le placement du nombre d’onde bétatron vertical pres de
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I’entier, typiquement a Q) = 8.98, permet aussi de s’ affranchir des résonances de spin intrinseques.

Cette configuration présente cependant deux difficultés :

* les serpents sibériens présentent une conception et des champ magnétiques particulicrement
complexes afin d’atteindre les angles de précession requis, tout en maintenant une longueur
suffisamment courte. Ces champs, dont des composantes non linéaires importantes, causent
de nombreuses limites en terme de dynamique de faisceaux et d’ouverture dynamique. En
particulier I’optique a basse énergie, typiquement en dessous de Gy = 6, est fortement dis-

tordue par les serpents sibériens.

* alors que 7, posseéde une composante non nulle dans le plan horizontal, un nouveau type
de résonance de spin dépolarisante est crée. Les champs perturbateurs peuvent désormais
s’ajouter due au mouvement bétatron horizontal et un nouveau type de résonance intrin-
seque dépolarisante dite horizontal est créé. La condition résonnante associée aux réso-
nances dépolarisantes intrinseques horizontales est Qs = K 4= Qy, avec Oy le nombre d’onde

bétatron vertical.
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E.3 Modele de I’AGS et Application

E.3.1 Du Modéle MAD vers le Modele Zgoubi de ’AGS

Le développement du modele MAD de I’AGS a commencé a la fin des années 1980 [49]. Ce
modele utilise une représentation matricielle des éléments de I’ AGS pour déterminer les parametres
optiques le long de I’anneau. Dans sa premiere mise en oeuvre, seulement les aimants principaux
et sections droites ont été inclues. Les aimants principaux ont été simulés en utilisant les forces
quadrupolaires et sextupolaires calculées, disponibles pour seulement 6 moments différents (15,
20, 25, 27, 29 and 32 GeV/c). 1l est important de noter que la source de ces données n’est pas clair
dans les publications disponibles aujourd’hui [49].

Par la suite, le modele MAD a été utilisé pour le développement et la mise en service des
quadrupoles de saut de transition [47,48], avec un bon accord sur les mesures. La documentation
limitée, sur I’évolution du modele, exclut la composition d’une chronologie plus complete. Au-
jourd’hui, le modele courant MADX de I’ AGS est bien mieux documenté. Il utilise le code MADX

et est accessible par la commande MadxFromSnaprampCmd [50].

E.3.2 Modéele des Serpents Sibériens

Les deux serpents partiaux ont été largement étudiés [57,58] et de puissants champs magnétiques
focalisants ont été constatés, générant des distorsions optiques importantes de la maille de I’AGS
a basse énergie. Cela a conduit a I’introduction d’un modele linéaire des serpents dans le mod-
ele MADX sous la forme de matrices du premier ordre, comme une premiere approche [56]. Les
matrices ont été calculées par I'intégration des trajectoires de particules a travers des cartes de
champs calculées des serpents sibériens [57, 58] pour des énergies de protons allant de Gy = 2.5
a Gy =26 par pas de 0.1. Les matrices ont ensuite été simplectifiées en utilisant une transforma-
tion de Cayley [59]. Lors de la création du fichier d’entrée de MADX, MadxFromSnaprampCmd
utilise le moment d’équilibre des protons, déterminé a partir du courant circulant dans les aimants

principaux, afin de choisir les matrices correspondantes pour chaque serpent sibérien.
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E.3.3 Modele Complet et Résultats

Des quadrupdles et sextupdles dédiés sont respectivement utilisés pour contrdler les nombres
d’onde et chromaticitées de I’AGS. Les fonctions de transfert permettant de calculer le champ
produit par ces aimants sont bien connues [53,54]. Les fonctions de transfert sont utilisées par le
modele de MADX et ont été introduites dans le code Zgoubi. Un nouvel élément du code Zgoubi,
nommé 'AGSQUAD', a été développé pour simuler les quadrupdles de I’AGS, basé sur les mAtmes

fonctions de transfert que le modele de MADX.

E.3.4 La commande ZgoubiFromSnaprampCmd

Le développement du modele en ligne de I’ AGS a été réalisé sur le modele de la commande MADX
existante MadxFromSnaprampCmd. La commande ZgoubiFromSnaprampCmd utilise un fichier
d’entrée (ZgoubiFromSnaprampCmd.in) organisé autour de mots clés, signalés par des crochets.
Un exemple est donné en annexe C.

La Figure E.6 montre I’évolution des nombres d’ondes de I’ AGS durant un cycle d’accélération
typique de protons polarisés, avec I’injection depuis I’AGS Booster a 145 ms et I’énergie maximum

atteinte a 580 ms.
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Figure E.6 Nombres d’onde mesurés et prédits par le modele en ligne de I’AGS le long
du cycle d’accélération des protons polarisés, le 14 Avril 2013. L’incertitude statistique
sur les nombres d’onde mesurés est négligeable et n’est pas visible ici.
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Figure E.7 Changements relatifs requis sur les deux familles d’aimants principaux pour
reproduire les nombres d’onde mesurés.

La Figure E.7 montre les variations relatives du champ quadrupolaire (dk; (f) et dk;(d)), dans

les deux familles d’aimants principaux, nécessaires pour faire correspondre les nombres d’onde

modélisés aux mesures. Les changements relatifs requis sont toujours tres faible et généralement

en dessous de 0.35 %. Il est particuliecrement important de reproduire fidelement les nombre d’onde

le long du cycle d’accélération pour simuler précisément la dynamique des particules et de leur

spin.

durant le cycle d’accélération, en utilisant le code Zgoubi.

Il est des lors possible d’utiliser la maille générée ici afin de réaliser le suivi des particules
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E.4 Suivi de Faisceau a Long Terme dans I’AGS en Utilisant le

Code Zgoubi

Comprendre les sources de dépolarisation dans I’AGS est essentiel pour améliorer les perfor-
mances de la machine. Des résultats expérimentaux montrent aussi qu’une augmentation de
I’émittance transverse se produit lors de 1’accélération de protons polarisés [S]. Des codes de
suivi de particules uniques et multitours peuvent étre utilisés pour étudier ces questions. Le mod-
¢ele Zgoubi de I’ AGS, détaillé dans le Chapitre 3, fournit une représentation réaliste de I’ AGS, dans
les approximations mentionnées, permettant d’explorer et d’améliorer la dynamique des spins mais

aussi du faisceau.

E.4.1 Mise en Place de la Parallélisation et du Suivi Multitours

Les données produites le long de la rampe de I’ AGS par la commande ZgoubiFromSnaprampCmd
sont regroupées dans un seul fichier. Le fichier créé contient le comportement de chaque alimen-
tation ou aimant présent dans 1I’AGS en fonction du temps, ou en fonction du moment d’équilibre
des protons, déterminé a partir du courant circulant dans les aimant principaux.

Plusieurs étapes sont ensuite nécessaires afin de préparer les fichiers d’entrées, incluant le reste

des éléments nécessaires. La procédure se déroule ainsi:

* les quadrupdles de saut de nombre d’onde sont réglés et temporisés pour une efficacité max-

imale.

le systeme d’accélération RF est réglé pour reproduire fidelement la vitesse d’accélération

de la machine, sans provoquer d’élargissement de 1’émittance longitudinale.

les quadrupodles de saut de gamma de transition sont inclus et le saut de phase du systéme

d’accélération ajusté a 1I’évolution du gamma de transition.

les coordonnées initiales des particules suivies sont générées en utilisant des grandeurs réal-

istes, typiquement rencontrées dans I’AGS pour 1’accélération de protons polarisées.

Les fichiers d’entrée sont ensuite téléversés sur les serveur de calcul. A chaque particule suivie

est attribué un coeur de calcul unique. Les travaux sont généralement démarrés par groupes de
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192 pour éviter les goulets d’étranglement qui peuvent survenir lorsque des milliers de suivis de

particules sont initialisés simultanément.

E.4.2 Résultats de Suivis et Comparaison a des Mesures Expérimentales

Une des grandeurs pouvant €tre extraite des résultats de simulation est appelé le profil de polar-
isation, caractérisé par la grandeur R. Le profil de polarisation permet de sonder les pertes de
polarisation dues a la traversée de résonances de dépolarisation intrinseques par le faisceau. Cette
grandeur présente aussi 1’avantage d’étre directement mesurable a quelque énergie que ce soit,

alors que la polarisation absolue ne peut €tre mesurée qu’a 1’énergie d’extraction.

0.3 T T T T T T
Horizontale, sans saut de nombre d’onde ——
025 | Verticale, sans saut de nombre d’onde |
. Horizontale, avec saut de nombre d’onde ———
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Figure E.8 Profil de polarisation a partir de Gy = 6.5 simulés par le code Zgoubi, en
utilisant des conditions de faisceau et de machine typique.

La Figure E.8 montre 1’évolution des profils de polarisation le long du cycle d’accélération de
I’AGS. Le profil de polarisation horizontal croit régulierement le long de la rampe, bien que la
derniere partie de 1’accélération semble contribuer davantage au profil final. L’utilisation des sauts
de nombre d’onde réduit considérablement le profil de polarisation horizontale a Gy =45.5 et ’on
peut voir Figure E.8 que I’effet est reparti tout au long du suivi.

La table E.2 montre que le profil horizontal mesuré est en accord avec les simulations mais le

profil vertical reste largement inexpliqué par les simulations.
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Table E.2 Comparaison des profils de polarisation simulés Figure E.8 et mesurés durant
I’opération de protons polarises de I’AGS de I’année 2014.

Mesures [3] Simulations Conditions de la machine
R, R, R, R,
0.206 = 0.020 | 0.181 £ 0.033 | 0.250 £ 0.007 | 0.021 =+ 0.007 | sans sauts de nombre d’onde
0.127 £0.019 | 0.124 £ 0.026 | 0.100 £ 0.007 | 0.035 £ 0.007 | avec sauts de nombre d’onde
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E.5 Conclusion

Le développement du modele de I’ AGS avec le code Zgoubi fournit un outil pour simuler de fagon
réaliste I’optique de I’AGS. L’utilisation des courant mesurés des aimants assure la précision de
I’optique calculée. Qui plus est, les serpents sibériens sont modélisés en utilisant des cartes de
champs en trois dimensions simulées, ce qui est particulierement important, car les dynamiques de
faisceau et de spin sont fortement contraintes par ces aimants inhabituelles.

Des capacités en ligne ont été ajoutées et I’interface avec le systeme de contrdle de I’AGS

ZgoubiFromSnaprampCmd permet un acces rapide a I’optique modélisé de AGS.

Le suivi des faisceaux, pour de nombreux tours, fournissent d’important résultats. La polari-
sation simulé en utilisant le code Zgoubi a montré un bon accord avec les mesures, en particulier
pour les dépolarisations dues aux résonances intrinseques horizontales. Les simulations ont permis
de mieux comprendre le comportement de la polarisation dans I’ AGS, les défis associés au systeme
de saut de nombre d’onde et la perte de polarisation en fonction de différents parametres.

La dynamique simulée des faisceaux a également fourni des résultats importants a basse én-
ergie. Le role de certaines lignes de résonance non linéaires que le faisceau traverse a été clairement

mise en évidence.

Cependant, certains résultats des simulations de suivi du faisceau sont en désaccord avec les
expériences. En particulier, les profils verticaux de polarisation mesurés ne sont pas reproduits par
les simulations. Des mesures axées sur 1I’évolution du profil de la polarisation verticale sont prévus
pour I’année 2015. La dynamique simulée des faisceaux a basse énergie est également difficile a
corréler directement a des mesures. Le role des serpents sibériens dans les questions de dynamique
des faisceaux observés et simulés tels que les pertes de particules ou augmentation de 1’émittance
au cours de la rampe n’est pas encore complétement compris.

En outre, des améliorations du modele Zgoubi restent a faire. Des améliorations de la dy-

namique de faisceaux a basse énergie sont nécessaires pour simuler completement le cycle d’accélération
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de I’AGS. Une meilleure compréhension de la dynamique de faisceaux a basse énergie pourrait
également conduire a une meilleure transmission de polarisation via une réduction de 1’émittance
transverse.

L’introduction d’une orbite réaliste dans le modele est nécessaire pour mieux comprendre la
dynamique de faisceaux et de spin dans I’AGS. L’étude de I’effet de I’orbite dans la transmission
de polarisation reste a étudier.

Enfin, le développement des capacités en ligne du modele de I’AGS avec un controdle direct
de la machine par le modele en ligne doivent étre entrepris. Cela pourrait simplifier de nom-
breuses procédures couramment pratiquées par des opérateurs, telles que le réglage de I’ orbite et

de I’optique, ce qui pourrait également améliorer les performances de la machine.
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