Commun. Math. Phys. 384, 1829-1911 (2021) Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04099-7 Math ematical

Physics
®

Check for
updates

Smooth 2-Group Extensions and Symmetries of Bundle
Gerbes

Severin Bunk', Lukas Miiller?®, Richard J. Szabo>*?

' Fachbereich Mathematik, Bereich Algebra und Zahlentheorie, Universitit Hamburg, Bundesstrae 55,
20146 Hamburg, Germany. E-mail: severin.bunk @uni-hamburg.de

2 Max-Planck-Institut fiir Mathematik, Vivatsgasse 7, 53111 Bonn, Germany.
E-mail: Imueller4 @mpim-bonn.mpg.de

3 Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14
4AS, UK.

4 Maxwell Institute for Mathematical Sciences, Edinburgh, UK.

5 Higgs Centre for Theoretical Physics, Edinburgh, UK. E-mail: r.j.szabo@hw.ac.uk

Received: 13 May 2020 / Accepted: 16 April 2021
Published online: 25 May 2021 — © The Author(s) 2021

Abstract: We study bundle gerbes on manifolds M that carry an action of a connected
Lie group G. We show that these data give rise to a smooth 2-group extension of G by
the smooth 2-group of hermitean line bundles on M. This 2-group extension classifies
equivariant structures on the bundle gerbe, and its non-triviality poses an obstruction to
the existence of equivariant structures. We present a new global approach to the parallel
transport of a bundle gerbe with connection, and use it to give an alternative construction
of this smooth 2-group extension in terms of a homotopy-coherent version of the associ-
ated bundle construction. We apply our results to give new descriptions of nonassociative
magnetic translations in quantum mechanics and the Faddeev—Mickelsson—Shatashvili
anomaly in quantum field theory. We also propose a definition of smooth string 2-group
models within our geometric framework. Starting from a basic gerbe on a compact
simply-connected Lie group G, we prove that the smooth 2-group extensions of G aris-
ing from our construction provide new models for the string group of G.
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1. Introduction

This paper is motivated by the following problem from physics: In [BMS19] we showed
how a bundle gerbe with connection on R? gives rise to a 3-cocycle on the translation
group R‘é of R?. Even though this 3-cocycle is trivial in group cohomology, it is very in-
teresting from a physical as well as from a mathematical perspective: it gives a geometric
explanation to the presence of nonassociativity in quantum mechanics with magnetic
monopole backgrounds, and it implements the action of the parallel transport of a bundle
gerbe on its 2-Hilbert space of sections. This appearence of nonassociativity in quantum
mechanics goes back to [Jac85,GZ86], but as of yet the more natural extension to realis-
tic scenarios involving periodically confined motion on configuration spaces such as tori
T has not been worked out. The discussion of [Jac85] was a response to the observed
violation of the Jacobi identity for the algebra of field operators in quantum gauge theo-
ries with chiral fermions [Jo85], which is a manifestation of the chiral anomaly. Interest
in these models has been recently revived through their conjectural relevance to non-
geometric flux compactifications of string theory, which is based on backgrounds that
are tori or more generally torus bundles [Liis10,MSS12,BL14,MSS14]. However, the
original finding [BP11] of nonassociativity in Wess—Zumino—Witten models based on
other compact Lie groups has so far received considerably less attention, and in particular
has not been understood from a geometric perspective.

In the present paper we work out the geometric framework and origin behind these
results in complete generality. Subsequently, we present several applications of our
results in both physics and mathematics, along the lines discussed above. We consider
an action @: G x M —> M of a connected Lie group G on a manifold M, where M
is endowed with a bundle gerbe G. One can now ask whether G admits a G-equivariant
structure. At the very least, such a structure should consist of a choice of 1-isomorphism
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g — @;g for every g € G. Instead of considering possible choices for such 1-
isomorphisms individually, we assign to g the groupoid of all such 1-isomorphisms. This
yields an object which can be understood as a bundle Sym;(G) — G of groupoids
over G. Considering g = e, the identity element of G, we see that its typical fibre is the
groupoid HLBdI(M) of hermitean line bundles on M.

The definition of Sym; (G) so far does not capture the smooth structure of the gerbe
G. We thus enhance the construction to take into account smooth families of elements
of G. Then one can make sense of Sym;(G) as a category fibred in groupoids over a
base category Cart that encodes smooth families of geometric objects. Categories fibred
in groupoids over Cart assemble into a 2-category JH, and there exists a fully faithful
inclusion of the category of smooth manifolds into J{. Motivated by [SP11] we define
a smooth 2-group to be a group object in J{. One of the central examples for us is the
smooth 2-group HLBAI of hermitean line bundles on M. We introduce a notion of
smooth principal 2-bundle in J{ that lies between the definitions of higher principal
bundles used in [SP11] and [NSS15] (see in particular Appendix A.2). We show that our
principal 2-bundles are well behaved from a homotopical as well as from a geometric
point of view (more precisely, they form effective epimorphisms while also admitting
local sections). With the notion of smooth 2-group and principal 2-bundles, we can
make precise what it means to be a (central) extension of smooth 2-groups in analogy
to extensions of Lie groups. Then, our first main results can be summarised as

Theorem 1.1. Let G be a connected Lie group acting on a manifold M, and let G be a
bundle gerbe on M. Then:

(1) There is a (non-central) extension of smooth 2-groups
1 — HLBAY — Sym;(G) — G — 1, (1.2)

where G € H denotes the category fibred in groupoids associated to G.

(2) The smooth 2-group Sym;(G) acts on G, and the action covers that of G on M.

(3) The gerbe G admits a G-equivariant structure if and only if there exists a morphism
G — Symg(G) of smooth 2-groups which splits the extension (1.2).

An extension similar to (1.2) was considered in [FRS16], where symmetries of a gerbe
with connection were investigated in relation with higher geometric prequantisation.
Infinitesimal versions of the extension (1.2) were considered in [Coll1,FRS16], where
it was shown that these give rise to the standard H-twisted Courant algebroid on M,
where H is the 3-form curvature of the connection on G. These considerations have been
expanded on and applied to higher versions of Kaluza-Klein reductions of string theory
in [Alf20].

Our point here is that in many applications, such as nonassociativity in quantum
mechanics and string theory, anomalies in quantum field theory, as well as interesting
topological constructions, connections on G only play a secondary role: in this context,
they can be seen as a tool to compute the extensions (1.2) and their associated cocycles.
The key to this computability is an alternative presentation of Sym;(G) in terms of a
categorified descent construction.

In order to work out this construction, we introduce a novel global approach to the
parallel transport of a bundle gerbe. Parallel transport for gerbes has been constructed
in[SW11,SW09,SW17], but for our purposes a global, rather than local, treatment is nec-
essary. Our construction relies heavily on the transgression-regression machine for bun-
dle gerbes [Wal16] together with the properties of the fusion product and the connection
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on the transgression line bundle that were studied in [Wal16,BW18]. Given a connection

on G, we construct its parallel transport as a quadruple ptg = (ptg, ptg , pt*g, eg),

consisting of the following data: first, there is a 1-isomorphism pt?: evég — eng
over the path space PM of M, where ev,: PM —> M is the evaluation of a path at
t € [0, 1]. Second, there is a 2-isomorphism pt5': pt?lm — pty), for every smooth
homotopy with fixed endpoints between paths 3 and y;, which depends smoothly on the
paths and the homotopy. The 2-isomorphisms ptg and &9 implement the compatibility
of the parallel transport with concatenation of paths and with constant paths, respec-
tively. Furthermore, the collection ptYis required to be invariant under thin homotopies
in a precise way. We show

Theorem 1.3. Every bundle gerbe with connection has a canonical parallel transport.

Using the parallel transport, we are able to write down a HLBdI™ -valued Cech 1-
cocycle on the covering of G by its space of based paths. These data are equivalently
transition functions for an HLBdIY -principal 2-bundle Desy —> G . We construct
Des| explicitly by a homotopy-coherent version of the associated bundle construction.
Then we prove

Theorem 1.4. The principal 2-bundle ®es| —> G is a smooth 2-group extension of G
by HLBAI™. There is a weakly commutative diagram of smooth 2-groups

I — HLBAIM — Sym;(G) — G — 1

P

1 — HLBdAIY —— Desp —— G —> 1

The morphism W is an equivalence.

Inthecase M = R4, where G = Rg is the translation group of R4, and where G = Zp
is a trivial gerbe on R? with a connection B € Q2(R9) corresponding to a magnetic
field, we show that the extension SymR{é @ — Kdt reproduces the 3-cocycles we
obtained in [BMS19]. We achieve this by choosing a certain global section of the path
fibration of ]R{‘_f and implicitly pass through Des| in the computation. We show that the
parallel transport we defined implements nonassociative magnetic translations on the
sections of the gerbe, whereas the 2-group extension SymR(é @) — Edt allows us to
understand the algebraic structure of nonassociative magnetic translations even without
making any reference to sections. The latter is particularly useful in cases where there is
no good notion of sections, such as when the Dixmier—Douady class of G is non-torsion.
In particular, we study in detail the action of nonassociative magnetic translations on
to;i T¢ and give an explicit description of Syng (G) for general choice of a gerbe G on
T.

As a further application, we show that if I" is a group of gauge transformations,
the smooth 2-group extensions Sym(§) —> I control the Faddeev—Mickelsson—
Shatashvili anomalies in quantum field theory [Fad84,FS85,Mic85]. The relation be-
tween gerbes and these anomalies has been investigated in [CM95,CM96], but only as
algebraic objects, disregarding the smooth structures. The relevant bundle gerbe G lives
on the space A of gauge fields and describes the obstruction to a Fock bundle descending
to the orbit space A/I". Here the extension Sym(G) — I is split, so that G admits
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an equivariant structure. At the same time G is trivialisable as a bundle gerbe, but the
anomaly is precisely the obstruction to choosing a I"-equivariant trivialisation. This al-
lows us to understand the anomaly in a conceptual way as a higher smooth 1-cocycle on
r.

Finally, we consider the situation where M = G is a compact simply-connected
Lie group, acting on itself by left multiplication, and where G is a bundle gerbe on G
whose Dixmier-Douady class generates H3(G; Z) = 7. We motivate and propose a
new smooth string 2-group model for the string group of G. For this, we first show that
with our definition of principal 2-bundle, principal A-bundles on a manifold give rise to
A-valued Cech 1-cocycles, for any smooth 2-group A. Then we call a smooth 2-group
extension A —> P — G a smooth 2-group model for the string group of G if A is
equivalent to an Eilenberg-MacLane space K (Z; 2) in a certain sense and the class in
H! (G; BU(1)) = H3(G; Z) extracted from the 2-bundle P —> G is a generator. Using
this definition of smooth string 2-group models, we show

Theorem 1.5. Let Sym;(G) and Des|_ be the smooth 2-group extensions of G by HLBdI®
constructed from G with respect to the left action of G on itself via left multiplication.
Then both Sym(G) and Des|_ are smooth 2-group models for the string group of G.

The remainder of this paper is organised as follows. In Sect. 2 we briefly recall some
background material on diffeological spaces, bundle gerbes, and transgression. Section 3
provides a motivation of the later constructions on the level of principal bundles; many
concepts become clear already at this level. In Sect. 4 we provide our definition and
construction of the parallel transport associated to a bundle gerbe with connection. The
construction of Sym;(G) and Des|_ takes place in Sect. 5. Here we first motivate and
then introduce the necessary language of Grothendieck fibrations, smooth 2-groups,
and principal 2-bundles, before defining and studying the extensions Symg(G) and
Des; . We conclude this section by relating these extensions to equivariant structures
on G. In the remaining three sections we apply our general results: in Sect. 6 we study
nonassociative magnetic translations using our parallel transport, Sect. 7 contains the
discussion of chiral anomalies and the Faddeev—Mickelsson—Shatashvili anomaly, and
in Sect. 8 we show that Sym; (G) and ®es| provide new models for the string group. We
defer some technical results on categories fibred in groupoids and on principal 2-bundles
to Appendix A.

2. Preliminaries on Diffeological Spaces and Gerbes

In this section we review some of the relevant background material related to diffeological
spaces and bundle gerbes that will be used throughout this paper.

2.1. Diffeological spaces. Throughout this paper we will use diffeological spaces
(see [1Z13] for an extensive introduction) to describe the smooth structure on infinite-
dimensional spaces such as path and mapping spaces. The idea behind diffeological
spaces is to describe the smooth structure on a space X by specifying the set of smooth
maps from Cartesian spaces to X. A Cartesian space c is a smooth manifold diffeomor-
phic to R" for some n € Ny. We denote by Cart the category with Cartesian spaces as
objects and smooth maps as morphisms.

Definition 2.1. A diffeological space is a set X together with a collection of maps ¢ —>
X from Cartesian spaces into X, called plots, such that
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(1) the composition of a plot with a smooth map between Cartesian spaces is again a
plot,

(2) every map R® — X is a plot, and

(3) if f: ¢ —> X is a map such that there exists an open cover {c; };<; of ¢ by Cartesian
spaces and f; is a plot for alli € I, then f is a plot.

A map f: X —> Y between diffeological spaces is smooth if it maps plots of X to
plots of Y. We denote by Dfg the category of diffeological spaces and smooth maps.
Isomorphisms in Dfg are diffeomorphisms.

Remark 2.2. Usually plots are defined to be maps from open subsets U of Cartesian
spaces to X. Since every open subset U of a Cartesian space can be covered by Carte-
sian spaces, both definitions are equivalent. Diffeological spaces are exactly the concrete
sheaves on the site of Cartesian spaces [BH11]. This implies that the category of dif-
feological spaces Dfg admits all limits and colimits, and is Cartesian closed. For more
background on this perspective on diffeological spaces, see also [Bun20a]. O

Important examples of diffeological spaces include the following.

Example 2.3. Every manifold M (possibly with boundaries or corners) defines a diffe-
ological space by declaring a map f: ¢ —> M to be a plot if and only if f is a smooth
map of differentiable manifolds. This defines a fully faithful embedding of the category
of smooth manifolds Mfd into the category of diffeological spaces Dfg. O

Example 2.4. Let X be a diffeological space and ¥ C X a subset. We can equip ¥ with
a diffeology by declaring a map ¢ — Y to be a plot if and only if the composition with
the embedding ¥ — X is a plot. This is called the subspace diffeology on Y. O

Example 2.5. Let X and Y be diffeological spaces. The Cartesian product X x Y is a
diffeological space by declaringamap f: ¢ —> X x Y tobe aplotifand onlyif pry o f
and pry o f are plots, where pry and pry are the respective projections of X x Y onto
X and Y. This is called the product diffeology on X x Y. O

Example 2.6. Let X and Y be diffeological spaces. The set of smooth maps ¥¥ from X
to ¥ becomes a diffeological space by declaring amap f: ¢ —> YX to be a plot if and
only if the map

f_‘:ch—> Y
(u, x) —> f(u)(x)

is smooth. This is called the mapping space diffeology on Y X. O

A smooth map f: M —> M’ between smooth manifolds is a surjective submer-
sion if and only if it admits local sections through every point in M, i.e. for every
point y € M there exists an open neighbourhood U of f(y) in M’ and a smooth map
51U —> M such that f o§ = 1y is the identity map of U. Surjective submersions
define a Grothendieck topology on the category of manifolds, and many (higher) ge-
ometric objects on manifolds can be constructed via sheafification with respect to this
topology (see, for instance, [NS11]). On the category of diffeological spaces, a useful
Grothendieck topology is induced by the subductions:

Definition 2.7. A smooth map f: X —> Y of diffeological spaces is a subduction if
for all plots ¢ : ¢ —> Y and x € c there exists an open neighbourhood U, C c of x and
aplot @y : Uy —> X such that gy, = f o ¢;.
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Example 2.8. Let M be a connected manifold. The space of paths in M with sitting in-
stants P M is the subspace of M%-11 of maps which are constant in an open neighbourhood
of Oand 1, equipped with the subspace diffeology. The evaluationmapsevg: PM — M
andevi: PM — M at0 and 1, respectively, are subductions. m|

Another source for subductions are quotient maps. Let X be a diffeological space and
~ an equivalence relation on X. Then the space X/~ becomes a diffeological space in a
canonical way making the map 7 : X —> X/~ into asubduction: amapg: ¢ — X/~
is a plot if and only if for all x € c there exists an open neighbourhood U, C ¢ of x
and a plot @y : Uy —> X such that |y, = 7 o @y. Clearly all subductions are of this
type for appropriate equivalence relations. Diffeological quotients behave nicely with
respect to quotients of manifolds when they exist.

Proposition 2.9. Let M be a manifold with a free and proper action of a Lie group G.
Define an equivalence relation ~g on M by m| ~g my if and only if there exists g € G
such that g - my = my. Then the manifold M /G and the diffeological space M /~¢
agree.

Proof. From [Leel3, Theorem 21.10] it follows that 7: M — M/ G is a surjective
submersion. Since every surjective submersion is a subduction, the statement follows. O

Definition 2.10. Let X be a diffeological space and k > 0. A k-form w on X consists of
a family of differential forms w, € QK (c) indexed by the plots ¢: ¢ —> X of X such
that wy, = f*wy, for all commuting triangles

f
cp ———

N

Definition 2.11 ([Wall2b, Section 3]). Let G be a Lie group and X a diffeological
space. A principal G-bundle on X consists of a subduction 7: P —> X together with
a fibre-preserving right action P x G —> P such that the map

PxG— PxxP
(P, — (p,p-8) (2.12)

is a diffeomorphism. A connection on a principal G-bundle P is a I-form A € Q!(P; g)
satisfying

pFA = Ad;rlG (pry A) +pri 6

on P x G, where p: P x G —> P is the right G-action, 6 is the left-invariant Maurer-
Cartan 1-formon G,andprp: P xG — Pandprg: P x G — G are the projections
onto P and G, respectively.

2.2. Bundle gerbes and transgression. Bundle gerbes are higher categorical analogues
of line bundles. They provide a geometric realisation for the third cohomology group
with integer coefficients. Similarly to line bundles, bundle gerbes can be equipped with
connections. We briefly recall the definition of the 2-groupoid of bundle gerbes and their
transgression to loop space. For details we refer to [Wal07b, Wal16,Bun17,Mur96].
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Let X be a diffeological space. We denote by HLBAI(X) (resp. HLBdIV (X)) the
category of hermitean line bundles (resp. with connection) on X. Before defining bundle
gerbes we need to introduce some notation: for asubduction : ¥ — X of diffeological
spaces we denote by

Y =A{Go, y1, ooy €Y [mGo) = (y) = - = (1)} C Y

the n-fold iterated fibre product Y"1 = ¥ xy --- xx Y over X equipped with the
subspace diffeology. Then Y!*! is a simplicial diffeological space corresponding to the
subduction groupoid ¥ xx ¥ = Y,andfork <nand0 < i; < --- < iy < n we define
the smooth face maps

iy, oip ylrl 5 ylkl
30> Y1 ooy Yae1) > Yigs -+ -5 Yig) -
Definition 2.13 ([Wall6]). Let X be a diffeological space. A hermitean bundle gerbe on

X consists of a subduction 7: ¥ —> X, a hermitean line bundle L —> Y2l and a
unitary isomorphism p: 7§ ,L ® i | L —> 7§, L of line bundles over Y13, called the

bundle gerbe multiplication, which is associative over Y4 ie. Ty 3o (g | u®1) =

7w, 30 (L@ 7y 510). .
A connection on a hermitean bundle gerbe G = (7: Y — X, L, u) consists of a
hermitean connection VX on L and a 2-form B € ©2(Y) such that

(1) the isomorphism p: 7, L ® 7y | L —> 7(, L is parallel with respect to VL, and
(2) the curvature of V% is equal to i (r{B — i B).

The 2-form B is called a curving. The second condition implies that the closed 3-form
dB = 7*H descends to a unique closed 3-form H on X with integer periods, which is
called the curvature of the bundle gerbe connection (VZ, B) .

Schematically, the data corresponding to a bundle gerbe can be visualised by the
diagram

7T12L®7T01L—>7T02 L

N/

YBl —= v %; Y
o

J:

illustrating that hermitean bundle gerbes are equivalent to U(1)-central extensions of
subduction groupoids.

Example 2.14. Let X be a diffeological space. The trivial hermitean bundle gerbe 7 on
X consists of the identity subduction 1x: X — X together with the trivial hermitean
line bundle 7 := X x C over X! = X and bundle gerbe multiplication

Xx(C®C) — XxC

(x, (21 ® 22)) — (x,2122) .
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For every 2-form B € Q2(X) we can define a connection on Z by setting V/ = d and
taking B as the curving. We denote the resulting hermitean bundle gerbe with connection
by Zp. The curvature of Zp is given by H = dB. O

Hermitean bundle gerbes (resp. with connection) on a diffeological space X are the ob-
jects of a symmetric monoidal bicategory which we denote by BGrb(X)
(resp. BGrbY (X)) [Wal07b].

Definition 2.15. LetG = (n: Y — X, L, u, VL, ByandG' = (n': Y — X, L', W/,
VL', B') be hermitean bundle gerbes with connection on a diffeological space X. A 1-
isomorphism G —> G’ of hermitean bundle gerbes (with connection) consists of a
subduction £ : Z —> Y xx Y’, a hermitean line bundle E (with hermitean connection
VE) on Z and (parallel) unitary isomorphisms

a: ((pry 05)[2])*[, ® gikE N %'(;(E ) ((pfy/ o%‘)lz])*L/

over Z!?! satisfying a natural set of compatibility conditions, see [Wal16] for details. We
will denote such a I-isomorphism by (E, &) (resp. (E, &, VE)), or sometimes simply by
E.

Remark 2.16. One can also define non-invertible 1-morphisms of bundle gerbes by using
higher rank hermitean vector bundles E in Definition 2.15 [Wal07b]. In that case, a 1-
morphism is weakly invertible if and only if the underlying hermitean vector bundle E
is of rank 1 [WalO7a, Proposition 2.3.4]. However, with the exception of Sect. 6, we will
only consider invertible 1-morphisms of bundle gerbes in the present paper. O

Definition 2.17. Let (§,: Z, — Y xx Y/, E,, VEa o,) and Ep: Zp — Y xx
Y', Ep, VE» ap) be l-isomorphisms G —> G’ of hermitean bundle gerbes with con-
nection. A 2-isomorphism of bundle gerbes is an equivalence class of a subduction
w: W — Z; Xyxyy Zp and a parallel unitary isomorphism (prZa ow)*E, —>
(prz, o w)*E} satisfying a natural compatibility condition, see e.g. [Wal07b] for details
and the equivalence relation.

Bundle gerbes on a diffeological space X are classified by their Dixmier—Douady
class in H3(X; Z), analogously to the Chern-Weil classification of line bundles by their
Chern class in H2 (X; Z). For a bundle gerbe with connection, the Dixmier—Douady
class maps to the de Rham cohomology class of the curvature under the homomorphism
H3(X; Z) — H3(X; R) induced by the inclusion of coefficient groups Z < R.

Let G be a hermitean bundle gerbe defined over a subduction 7 : ¥ — X, with
underlying hermitean line bundle L — Y1, Let A: G — G be an endomorphism
of G, with underlying hermitean vector bundle A over some subduction & : Z —>
Y[2!, Consider the hermitean vector bundle LY ® A on Z, where we denote the dual
line bundle by LV. This comes with a canonical descent isomorphism defined by the
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diagram [Wal07b,Bun17]
ELY®A) —m 715‘73Lv ®EFA
T am”!

~

i, L @ mg LY ®EFA (2.18)

R

~

EF(A®LY) W 7T6k’3LV ®EA® 7ti3L

In fact, this construction establishes an equivalence of categories R: BGrb(X)(G, G) —
HLBdI(X).

From a hermitean bundle gerbe with connection G on a diffeological space X we
can construct the transgression line bundle TG over the loop space LX of X. The
fibre 7G, over a loop y: S! —» X consists of equivalence classes [[S], z] of a 2-
isomorphism class of a trivialisation S: y*G —> T in BGrbY (S!) over the unit circle
S! and an element z € C. Two pairs ([S], z) and ([S'], Z) are equivalent if and only
if 7 = hol(S', R(S” o S~ 1)) z. For the construction of a diffeological structure on
TG = ]_[V crx TG, we refer to [Wall6]. A connection on a line bundle over the

loop space LX is superficial if the holonomy around every thin loop' is equal to 1 and
thin homotopic loops” have the same holonomy. In the situation where X = M is a
manifold, a superficial connection on 7 G has been constructed from the connection on
G in [Wall6, Prop. 3.3.1]; note that in our later constructions, we will always work with
bundle gerbes over manifolds. The bundle gerbe multiplication induces, for all triples of
paths (y1, y2, y3) with sitting instants and the same start and end points, a fusion product

Al Tgﬁ*yl ® Tgﬁ*yz — Tgﬁ*yl ’

where * denotes the concatenation of paths and ¥ is the path t — y (1 — t). The
fusion product depends smoothly on the paths, is parallel with respect to the superficial
connection, and is associative. The connection and fusion product satisfy one further
compatibility condition, related to the rotation of all loops involved by 180° (see [Wal16,
Definition 2.1.5]). A line bundle over L X admitting all the structures discussed above
is a fusion line bundle with superficial connection.

For X = M a manifold, transgression extends to a functor 7 from hBGrbY (M), the
1-category obtained from BGrbY (M) by identifying isomorphic 1-morphisms, to the
category of fusion line bundles with superficial connection over L M. The central result
of [Wal16] is that 7 defines an equivalence of categories. An explicit inverse functor R
is constructed in [Wall6] and is called regression.

3. Group Extensions from Principal Bundles

In this section we construct group extensions from group actions on manifolds with
principal bundles. We generalise this extension to higher geometry in Sect. 5. We present

1 Aloop I" € LLX is thin if the adjoint map I'*: S! x S! — X has at most rank 1.
2 Two loops I', I'” € LLX are thin homotopic if there exists a homotopy # € PLLX such that the adjoint
map 17 10,11 x S! x S! — X has at most rank 2.
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two perspectives on this group extension. The first one is global. The second one is local
and can be formulated in terms of the parallel transport of an auxiliary connection on a
principal bundle.

3.1. Global description. Let H be a Lie group and P —> M a principal H-bundle on
a manifold M; principal H-bundles on M and isomorphisms form a groupoid which we
denote by Bung (M). We consider a Lie group action

b:GxM—M
(g, x) > Pg(x) = D(g, x)

on the base manifold M, and ask whether and how this action lifts to P. An action of a
Lie group G on M can equivalently be written as a smooth homomorphism of groups
®: G — Diff(M), where Diff (M) is the diffeological group of diffeomorphisms
M — M. In general, the action of G does not lift to P. Instead, we will construct a
group extension

1 — Gau(P) — Symg(P) — G — 1

of G by the gauge group Gau(P) of P. The group Sym (P) acts on the total space P in
a way compatible with the action of G on M. We show that it is the universal extension
of G having this property.

Remark 3.1. The extension can be constructed as the pullback of the short exact sequence
1 — Gau(P) — Autg(P) — Diffp(M) — 1

of diffeological groups along @, where Autg(P) is the group of G-equivariant dif-
feomorphisms of P and Diff p(M) is the subgroup of diffeomorphisms of M which
admit an equivariant lift to P. In the following we present a different construction which
generalises directly to bundle gerbes.

We can pull back the bundle P along the source and target maps of the action groupoid

P
GxM —/=M.
Pry
We define a bundle
Symg (P) I, G with Symg (P)|g := Bung (M)(P, <D;P) (3.2)

for all g € G, where Buny (M) (P, @;P) is the collection of gauge transformations
from P to @} P. In order for Symg (P) to be a bundle over G, we must ensure that the
fibres of Sym (P) are actually pairwise diffeomorphic. It might happen that a pullback
bundle @;,‘P is no longer isomorphic to P and hence the fibre over g is empty. As an

example, consider the action of the group G = Z on the 2-torus M = T? generated by an
orientation-reversing diffeomorphism f, and let P — T2 be a U(1)-bundle with non-
trivial Chern class. Then [ f*P] = —[P], and thus Symy(P); = Buny)(P, f*P) =
. Hence in (3.2) we have to ensure that the fibres of Sym;(P) are actually all non-
trivial.

We restrict our attention to connected Lie groups G; otherwise, if G is not connected,
we consider only the connected component of the identity e € G. We show that in this
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case the fibres are always non-trivial: we need to show that for any g € G the fibre of
Symg(P) —> G over g is non-empty. That is, we need to show that there exists an
isomorphism P —> &z P of H-bundles over M. Let fp: M —> BH be a map that
classifies the bundle P —> M. Then &; P is classified by themap fpo®,: M —> BH.
Since G is connected, we can find a smooth path y: [0, 1] — G with y(0) = e and
y (1) = g. Consider the smooth map

D,:[0,1]xM —M
(t,x) > d5y(t)(x) .

We can postcompose this map by fp to obtain a homotopy
fpo®,:[0,1]x M — BH

from fp to fp o @,. This shows that there exists a bundle isomorphism P — @ P.
We note for later use that this argument generalises to n-gerbes G, as these are classified
by maps fg: M — B™1U(1).

In order to equip the set Symg(P) with a diffeology, we note that Symg(P) can
be identified with the subspace of the Cartesian product of the space of H-equivariant
diffeomorphisms P — P which cover the action of an arbitrary element g € G on
M with G, and equip Sym (P) with the subspace diffeology. Concretely, for ¢ € Cart,
amap f:c —> Symg(P) is a plot if and only if the composition w o f: ¢ — G is
smooth and the induced map prj, P — QD;'ZP is an isomorphism in Bung (¢ x M),
where pry,: ¢ x M — M is the projection onto M and @y = @ o (f x 1y). The
automorphism group or group of gauge transformations

Gau(P) := Bunyg (M) (P, P)

acts simply and transitively on each fibre Sym (P)|, from the right via precomposi-
tion. The set Gau(P) forms a diffeological group with respect to the composition of
automorphisms and the smooth structure induced from the mapping space diffeology on
rr.

Proposition 3.3. 7 : Symg(P) — G is a principal Gau(P)-bundle on G.

Proof. We verify that the map 7 : Symg;(P) — G is a subduction. Let f: ¢ — G
be a plot. We can pick an isomorphism ¢ : prj, P —> q§;§P (since c is contractible)
and define the map

f: ¢ —> Symg(P)

X §0f|{x}><M .

The map fis a smooth lift of the plot f, showing that Sym;(P) — G is a subduction.
The map

Symg (P) xg Symg(P) —> Symg(P) x Gau(P)

(p: P—> ®;P.¢/: P — DIP) —> (9.9 ' 0¢))
provides a smooth inverse to the map Symg (P) x Gau(P) — Symg(P) xgSymg(P)
from (2.12), and the result follows. |
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Proposition 3.4. Sym (P) is adiffeological group. The principal bundle Sym;(P) —>
G is part of an extension of diffeological groups

1 — Gau(P) — Symg(P) — G — 1.

Proof. To complete the proof we need to equip Symg(P) with a diffeological group
structure such that the map Symg;(P) —> G becomes a morphism of diffeological
groups. Consider isomorphisms ¢ : P —> cD;fP and ¢: P — cD;,P forg, g € G.
We set

e PF . * * pXp _ gk
W §) =PI Yop: P —> OLP —> OLOIP =T P

This is associative by the associativity of pullbacks, the multiplication in G, and com-
position of morphisms. The inverse of an element ¥ : P —> @;P with respect to p is
the isomorphism

(p*—l 1//—]
P=0o* 0P *— &* P,
g~ e 8
and the result follows from the observation that these maps are smooth. O

Proposition 3.5. The group Symg (P) acts smoothly on P, lifting the action of G on M.
It is universal in the following sense: let G be a Lie group, ¢: G —> G a Lie group
homomorphism and : G x P —> P an action of G on P making the diagram

Gxp-Lsp

Wl lw

GXMTM

commute, where @ : P —> M is the bundle projection. Then there exists a unique
smooth group homomorphism G — Symg (P) such that the diagram

GxP

™

Symg(P) x P — P

| ]

GxXM — M
commutes.
Proof. The action is via the evaluation

P Symg(P) x P — P
(@, p) —> ¢(p) = Pw(p)(P) -
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The unique smooth group homomorphism in the universality statement is
G — Symg (P)
g (1///\57: P — @;@P) ,
and the result follows. O

The construction of the group Sym (P) is functorial in P, i.e. an isomorphism of
bundles ¥ : P —> P’ induces an isomorphism of group extensions

¥ : Symg(P) — Symg (P')

1 . *
(f: P— g"P)— (P’ Yop L g'P &Y, g*P’) . (3.6)

3.2. Equivariant bundles. Let G be a connected Lie group, M a manifold with G-action
®: G x M —> M, and P aprincipal H-bundle over M. A G-equivariant structure on
P consists of an isomorphism x : prj, P —> @*P of principal bundles over G x M
such that the diagram

X(gg'.x)
Py > Po, ()
X(“)\" P X(g )
P, (x)

commutes for all g, g’ € G and x € M. We denote by £(P) the set of equivariant
structures on P. A splitting s of 7: Sym;(P) — G is a smooth group homomor-
phism s: G —> Symg(P) such that 7 o s = 1. We denote the set of splittings of
: Symg(P) — G by S(G; Symg(P)).

Proposition 3.7. There is a natural bijection of sets E: £(P) —> S(G; Symg(P)). In
particular, the bundle P admits an equivariant structure if and only if the extension

1 — Gau(P) — Symg(P) — G — 1
is trivial as an extension of diffeological groups.

Proof. Let (P, x) be an equivariant bundle. We define E(P, x)(g): P — CI);,‘P to be
X|(g}xm- The inverse -1 S(G; Symg(P)) —> £(P) can be constructed by sending
a splitting s: G — Sym (P) to the isomorphism E71(s): pry, P — @*P which
is given by s(g)(x): P, — P¢g(x) at(g,x) e G x M. O

Let (P, x)and (P, x') be G-equivariant H-bundles on M. Anisomorphismvy: P —>
P’ is equivariant if the diagram

p—Y p

L

* * p/
@gP @) @gP
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commutes for all g € G. The equivariant structures on P and P’ can be described by
smooth group homomorphisms sp: G —> Symg(P) and sp: G —> Symg (P).
Since the isomorphism v defined in (3.6) intertwines the action of Symg(P) and
Symg(P’) on P and P’, respectively, it follows that v is equivariant if and only if
spr = ¥ o sp. Hence the smooth group extension Sym contains all information on
equivariance.

3.3. Description via parallel transport. The extension Sym s (P) can be described more
explicitly using the parallel transport of a connection on P, as we will now explain. In
Sect. 6 we apply this to the description of magnetic translations in quantum mechanics.
We consider a principal H-bundle P —> M. Let PyG denote the diffeological space of
smooth paths in G with sitting instants based at e € G, evi: PG —> G the evaluation
at the end point, (PyG) the fibre product PoG x g PoG with respect to evy, and LM
the space of smooth loops in M. We denote by » the concatenation of paths. For a path
y: [0, 1] — G we denote by y the precomposition of y with

[0,1] — [0, 1]
t—1—t.
For a path y € PpG and a point x € M, set
ye: [0,1] — M
t—> Dy(x) .

Endow P with an arbitrary connection A. The H-bundle P with connection then
induces a principal Gau(P)-bundle on G as follows: we set

Lg = (POG X Gau(P))/~ ,
where we define the equivalence relation
(v, #) ~ (o, hol(P, o, ¥) 0 )
with  hol(P, «, y)(x) := hol (P, (o % y)x) e End(Py)

for all (y,a) € (PQG)[Z] and x € M, and we interpret the holonomy of P along a
loop starting and ending at x as an endomorphism of the fibre Py. Note that, with this
notation, we have defined a smooth map hol(P, —): (PyG)2) — Gau(P). We endow
L with the quotient diffeology.

Then the Gau(P)-bundle £L; —> G can be defined in terms of descent data as
follows: the action @ of G on M induces a smooth map

LO: (PG x M — LM
y,a,x) —> (@*xy)x . (3.8)

Explicitly,

@xy)x(t) = Paryyin(x) € M
for all t € [0,1] and x € M. The descent data for the bundle L consists of the
subduction PgG —> G, the trivial bundle PyG x Gau(P) —> PyG, and the smooth
map

g: (PyG)?) — Gau(P)
(y,0) —> g(y, @) =hol(P,xxy) .
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Proposition 3.9. The total space Lg is a smooth group extension
Il — Gau(P) — Lg — G — 1.

Proof. Let y and y’ be two paths in G. The evaluation ev;: PpG —> G is a group
homomorphism with respect to the pointwise product of paths.
Let x € M be an arbitrary point. To any triple (x, y, ¥’), we can associate a map

Ax, v, v 1A — M
(t1, 1) —> Py (i (12)) |

where |A?| is the standard topological 2-simplex with |A%| = {(f;,1n) e R2 |0 <1, <
#1 < 1}. Diagrammatically, this is a homotopy

y()-y'(1)-x

Y (©)-y(0)-x y(@©)y (1)

!/
Y (1)x y-x

between the product path y ' € PyG and the concatenated path (y y'(1)) xy’ € PyG.
For y,y' € PyG and ¢, ¢’ € Gau(P), we define

M(()/a ¢)7 (V/, ¢/)) = (V )//» pt;:// o pty (y/(l)) o (¢;/(1)¢) © pty/ © ¢/)7 (310)

where we denote by pt,, the isomorphism P — @; P defined at a point x € M
by the parallel transport along the path y,. This is well-defined: let a, o’ € PyG with

y(1) = a(1) and (1) = &’(1). Then
u((e, hol(P, a, ¥) 0 $), (&', hol(P, o', ¥") 0 ¢))

= (ad, pt;;, 0 @y 1y (Pty o hol(P, e, y) o ¢') opty ohol(P,a’, y") o ¢')
= (ad, hol(P,ad/,y y') o pt;;, 0 @) (pty 0 ¢') opt, o¢’)
= (y V/» pt;;/ o @;/(1)(pty o ¢/) Opty/ o ¢/)
=u(ty,9), ', 8")
where we used d)]”;, 1HPLy =Pty - Associativity then follows immediately from

the associativity of the products in PoG and Gau(P), together with associativity of
taking pullbacks. Smoothness follows from the definition of the quotient diffeology and
the smooth dependence of parallel transport on the path. O

Remark 3.11. For abelian structure group H, we can use the fact that parallel transport
commutes with gauge transformations to get the simplified expression

1((v, 9, (7', ¢)) = (v ¥, hol(P, 3| A%) (D},,0) 0 ¢')

for the multiplication (3.10). O
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Remark 3.12. If G is abelian, then the multiplicative structure yields isomorphisms
Lgig X Ly — Laigg = Lclg g — Lalg X Lalg

for all g, g’ € G. That is, the group extension L spoils the commutativity of G, since
its fibres multiply commutatively only up to coherent isomorphism. O

We summarise the connection to the construction from Sect. 3.1 in

Proposition 3.13. Let G be a connected Lie group, and let P —> M be a principal
H -bundle on a manifold M with smooth G-action. The map

I': Lc — Symg(P)
[(v.#)] — (ot 0¢: P — @)}, P)
is an isomorphism of diffeological group extensions of G.

Proof. The mapis well-defined: consider two representatives (y, ¢) and («, hol(P, o, y)o
¢) of the same equivalence class in Lg, and calculate

pty ohol(P,a, ) o =pt, optzopt, o =pt,o0¢.

The map is bijective, because two gauge transformations P —> @ P differ by exactly
one gauge transformation of P. It also follows directly from the definition that I is a mor-
phism of extensions. We check that I is a group homomorphism: for [(y, @)1, [(y', ¢')] €
L we compute

w(C(,9).T(y',¢)) = ulot, o ¢, ptys o ¢’
= ¢;,(1)(pty o) opt, o ¢
=T (y v/, Pt 0Dty oy © (B)ry®) oty 0 ¢)
=1(1(r. ). /', 9))

Finally, we verify that T" is smooth. Let f: ¢ —> L be a plot admitting a lift
f ¢ —> PyG x Gau(P). We denote the components of f by f), and fGau(P) It is
enough to show that

M*P — @%L P
fy
Py pr— ptfy(,,,)(fGau(P)(u)(p)) € Por i

is a gauge transformation. This follows from the smoothness of parallel transport (re-
called in Sect. 4.1 below). |

Corollary 3.14. The action ®: G x M —> M lifts to an action
P LgxP— P

which covers the action of G on M.
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4. A Global Approach to Parallel Transport for Bundle Gerbes

In Sect. 3 we have constructed two diffeological groups, Sym (P) and L, which extend
G and control the existence of G-equivariant structures on a principal bundle P over M.
The key to constructing L, as well as to comparing the groups Sym (P) and Lg (see
Sect. 3.3), was the parallel transport on the principal bundle P.

If one replaces the principal bundle P by a bundle gerbe G on M, there exist cate-
gorified versions of both these constructions which will be given in Sect. 5. However,
in order to write down the categorification of £ we need a notion of parallel transport
for G. In this section we give a definition of parallel transport for G suited for our pur-
poses and explicitly construct such a parallel transport from any connection on G. Our
construction relies heavily on Waldorf’s transgression-regression machine [Wal16].

There is a different approach to the parallel transport on a bundle gerbe developed by
Schreiber and Waldorf [SW09,SW11,SW17]. It relies on their technology of transport
functors and is based on local constructions, which are then glued to global objects.
In [Wall8], this has been extended to a canonical assignment of a parallel transport (in
terms of a transport 2-functor) to any principal 2-bundle with connection whose structure
group is a Lie 2-group.

Here, in contrast, we directly define and construct a global version of parallel transport
suitable for our purposes. As our main goal in this paper is the construction of categorified
smooth group extensions, we leave it for future work to prove in detail that our notion
of parallel transport for G agrees with that of Schreiber and Waldorf, and instead focus
on building the necessary input for the constructions in Sect. 5.

4.1. A path space approach to parallel transport on line bundles. Before we give our
definition and construction of the parallel transport for bundle gerbes, we recast the par-
allel transport on line bundles from a global perspective. Our notion of parallel transport
for bundle gerbes will then be a categorification of this picture. Let M be a connected
smooth manifold, and fix a base point x € M; if M is not connected, we restrict to
its connected components individually. We denote by PM the diffeological space of
smooth paths with sitting instants in M and by PyM the subspace of paths starting at x.
Let L be a line bundle on M with connection. The smoothness of the parallel transport
on L can be encoded as follows: for ¢t € [0, 1], denotebyev,: PM — M,y ——> y (1),
the evaluation at 7. Parallel transport on L is in particular an isomorphism

ptl:eviL — eviL

Ly =evjLy 3 L —> ptl(£) € Ly =eviLy

of line bundles over PM.

There is a different way to construct this isomorphism using descent. Via transgression
and regression [Wal12b] we can construct a bundle R7 (L), which is isomorphic to L,
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from the descent data

u(n)

d

(PoM)?l —= PyM

Jevl

M

with respect to the path fibration. Here f is constructed as in Sect. 3.3 from the holonomy
of L. The total space of the line bundle R7 (L) consists of equivalence classes of pairs
(v, ¢) € PoM x C, where the equivalence relation reads as (y1, ¢) ~ (y2, f(v1, ¥2) ¢)
for (y1,y2) € (PoM)!?) and ¢ € C. An isomorphism g, : R7(L) —> L can be
constructed by picking a trivialisation x : C — L, of the fibre of L over the base point
x € M and defining

gx(ly. ¢1) ==ptL(x ().

The pullbacks evgR7 (L) and eviRT (L) are thus described in terms of descent
data with respect to the covers evgPoM = PoM xy PM — M and eviPoM =

PM xpy PoM —> M, respectively. In order to construct the isomorphism ptRT L)
explicitly we use the space (see Fig. 1)

Py M = CVZ‘;P()M XPM CVTP()M = PgM xp PM xp PoM |
which fits into the diagram

PBAZM

/ \*PM
~

An isomorphism from eviR7 (L) to eviR7 (L) can be described by a function
Pyp2M — U(1) which is compatible with the descent data. There is a canonical
choice for such a function given by

evy PoM

Py M —s LM 225 U(1).

Concretely, the induced map is
ptRT D) eviRT (L) — eviRT (L)
RT (L I
ey 1= pEG ) s €1 = [yae ol (L, Pz * (e % 7)) €]

where x is the fixed base point of M while y,z € M are arbitrary points, and yp
denotes a path from a to b for a, b € {x, y, z}. The holonomy appearing here agrees
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PypzM

N

eVSPQM ev’{POM
PM

Pyp2M

/

evy Py M

AN
NS

eviPyM

PM

Fig. 1. Elements in the spaces Py 2 M, ev§ PoM and evi PgM

with hol(L, (¥x7 * ¥yz) * ¥xy). The construction is independent of all choices involved.
Now a straightforward computation shows that the diagram

pt
evyL > eviL

evygy evigy

commutes. This shows that we can construct the parallel transport on L completely

in terms of the descent data with respect to the path fibration. For bundle gerbes, the
analogue of pt’ is difficult to define directly, but an analogous approach via descent
data on PpM allows us to solve this problem.
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4.2. Global definition of parallel transport on bundle gerbes. As before, let M be a
manifold, and let G € BGrb(M) be a bundle gerbe on M. A parallel transport on G
should in particular be a 1-isomorphism

ptlg: evyG — evig
in BGrb(P M) with a 2-isomorphism
cpt? = 1g,

where c: M —> P M is the embedding of M into P M as constant paths. Note that the
parallel transport is, in general, an isomorphism of gerbes without connections. The same
is true for bundles: the parallel transport on a vector bundle with connection respects the
connection if and only if the connection is flat.

To proceed further, we need some definitions. Let i, n € N with 1 <i < n. For each
s =(81,...,5—1) € [0, 11""L, define a smooth map

i 0,11 — [0, 171"

I > (slv"'ssi—lstvsis"'7S}’l—1) .
Consider the diffeological spaces P" M which are defined by the sets of all maps
>:[0,1" — M

satisfying the following property: for alli = 1, ..., n, there exists €; > 0 such the map
Yo L;’;S : [0, 1] — M is locally constant on [0, €;) LI (1 — ¢;, 1]. Note that in a plot
of P"M, the €; do not have to be constant over the domain of the plot. The space P" M
describes n-cubes in M with sitting instants in all directions perpendicular to the faces of
[0, 1]7; that is, P M describes iterated smooth homotopies of paths with sitting instants
in M.

We also consider the subspaces P;' M of the diffeological spaces P M consisting of
maps ¥ € P"M satisfying the following property: for all s € [0, 1]"~!, and for each
j=1,...,n—1such that s; € {0, 1}, the map ¥ o L:-l;s is constant for all i > j.
The space P’ M describes iterated smooth homotopies with fixed endpoints in M. For
example, P.M = P M is the space of paths with sitting instants, P*ZM consists of maps
Y € P2M such that

20,)=X(0,00 and X(1,7) = 3(1,0)

for all r € [0, 1] and so is the space of homotopies of paths with fixed endpoints in M,
and an element in P*3M is a family of fixed-ends homotopies between two fixed paths
in M. We say that an element X in PM or in P"M is thin if its differential X, has
non-maximal ranks rk(Xys) < n forall s € [0, 1]".

Lets = (s1,...,5¢) €[0,1]Fandn =k +I.For0 <ij < --- < i; < n, we define a
map
gt 10,1 — [0, 17"

i1,.

which inserts the coordinates of t = (¢1, ..., 1) € [0, 11" into the k-tuple s such that

([;11 ,,,,, il;s(t))j = tj



1850 S. Bunk, L. Miiller and R. J. Szabo

yeeey

. 1
t;llf.v.,iz;s :P"M — P'M
which map P M to P!M.
For the parallel transport of a bundle gerbe, there should also be a 2-isomorphism

pt7: (Forpef — @)'pt?

in BGrb(P*ZM ). In other words, any map X € P*ZM is in particular a smooth map
[0, 11> — M from the square to M. This map is constant on the vertical edges of the
square. Pulling back the isomorphism ptlg to the horizontal edges of the square gives
two 1-morphisms Gs (0,00 — Gx(1,0), and the 2-morphism ptg relates these. The data

(pt%, ptg) are required to satisfy the following two properties, which are motivated
by [BW19,BW18,Wall6]:

(1) For any two thin maps X, X’ € P*zM with ¥ o L%_x =XYo t%,s for s = 0, 1, there is
an equality

ptyy =ptsy . 4.1)

That is, the 2-morphism ptg evaluated on any pair of fixed-ends thin homotopies
between any two given paths in M gives the same result.
(2) We further demand that for any thin map & € P*3M , there is an equality

@50 Pt i = (%) Pt .2)

As we will be using P]' M mostly for n = 0, 1, 2, we adopt the convention to write
vy xy1 for the concatenation of smooth paths in M, and if X, X’/ € P*zM are homotopies
Y.y — vy and X'y —> y”, we write X/ xp X: y —> yp” for their vertical
concatenation. If E: o —> «' is a further homotopy in P*2M such that the starting point
of « is the endpoint of y, then we write E x X': @ x y —> o’ x ¢’ for the horizontal
concatenation of the homotopies. We will also often use the term ‘composition’ instead
of ‘concatenation’.

Definition 4.3. Let M be a smooth manifold. A parallel transport on a bundle gerbe
G € BGrb(M) is a quadruple ptg = (pt?, pt2g, ptg, eg) of

(1) a I-isomorphism
pt¥: eviG — evig

of bundle gerbes over PM,
(2) a 2-isomorphism

ptg: (L%?‘O)*ptlg — (L%;kl)*pt%

in BGrb(P2 M),
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(3) a 2-isomorphism
pty: pript{ opript{ — (- + -)"pt{

over PM X PM, where pr; and pr, are the respective projections of PM xy PM
to the first and second factors, and
(4) a 2-isomorphism

Y- C*ptlg — g

over M, where c: M —> P M is the inclusion of M as the space of constant paths.

These data are required to satisfy properties (4.1) and (4.2). Due to property (4.1),
there is a canonical 2-isomorphism

g ~ .G
pt LH(yzxy2)*xy1 — Pt ly3x(y2xy1)

for every (y1,y2,¥3) € PM xy PM xp PM, and we demand that ptg is coher-

ently associative with respect to this isomorphism. The morphism ptg also needs to be
compatible with the unitors in BGrb(P M) and sit in a commutative diagram

g

t9 opt¥ Pl 9
—>

Py, Py, P yaan

g g g
Pty 5, %Pt 5, P35,z 4.4)

g

g G
_
PLila, © P, g P areay

*|ap,aq

for all x, y, z € M, all paths y1, a1 from x to y, all paths y», oy from y to z in M, and

for all fixed-ends homotopies X; : y; —> «;. Furthermore, ptg has to respect vertical
composition and satisfy the interchange law

g g I g
P x1exy O Py xiax; T Pz z ©2 P8 5, 5, (4.5)

for all points xg, x1, xo € M, all paths «;, B;, y; from x; to x;41, and for all fixed-ends
homotopies X;: ; — B; and X/: i —> y; withi =0, 1.

Remark 4.6. The associativity condition in detail reads as follows: for every concatenable
triple (y1, 2, y3) of paths in M there is a commutative diagram

loptg ptg ol
[¢] G *v2.v1 g g G *y3.72 g g
SRR ACEAREEN
Pl O PLyjp, Py, ° Py, o Pty PLi)ysuy, O PEIy,
G (4]
Py e Pz
G G
P lysa(mun) P (sap)an

in BGrb(P M x j; P M), where the bottom arrow is the canonical 2-isomorphism obtained
via (4.1) from any reparameterisation of [0, 1] that yields a homotopy y3 * (y2 * y1) ~
(Y3 % y2) * y1. O
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Remark 4.7. By property (4.2), our definition factors through the path 2-groupoid of M
as defined by Schreiber and Waldorf [SW11,SW17]. Given a manifold M, they construct
a 2-groupoid internal to diffeological spaces, whose level sets are essentially M, P M
and the quotient P*ZM /~ of P*2M by thin homotopies. Note that in this quotient they
also implement condition (4.1). O

In contrast to the case of parallel transport on vector bundles, we can define morphisms
between parallel transports on a given bundle gerbe.

Definition 4.8. LetG € BGrb(M) be abundle gerbe on M. Letptg = (ptl pt2 ptg
¢9) and pt’9 = (pt)?, g /g’ pt;g, ¢'9) be two choices of parallel transport on G.

A morphism ptY — pt’ g of parallel transports on G is a 2-isomorphism v : ptg

pt’lg in BGrb(PM) that 1ntertw1nes the 2-isomorphism ptzg with pt, g the

2-isomorphism pt¥ with pt.Y, and the 2-isomorphism &9 with &Y. This deﬁnes a
groupoid PT(G) of parallel transports on G.

This notion of morphism of parallel transports is not an analogue of a gauge transfor-
mation, since it does not necessarily come from an automorphism of the bundle gerbe

Gg.

4.3. Construction of the parallel transport. We now proceed to show that every bundle
gerbe with connection on a manifold M has a canonical parallel transport. Let M be a
connected manifold, and fix a base point x € M; otherwise, if M is not connected, we
treat the connected components of M separately. By results of Waldorf [Wall6], any
bundle gerbe G € BGrbY (M) is isomorphic to a bundle gerbe G’ € BGrbY (M) that
is defined over the diffeological path fibration PpM — M. Given a choice of base
point x € M, Waldorf constructs a bundle gerbe G’ = R7 (G) as the regression of
the transgression line bundle of G, together with a natural 1-isomorphism Ag: G —
G’ in the homotopy category of BGrbY (M); that is, Ag is determined only up to 2-
isomorphism. (We remark, however, that the natural 1-isomorphism Ag from [Wall6]
is determined canonically once we fix a preimage of the base point x € M under the
surjective submersion 77 : ¥ —> M underlying the bundle gerbe G.)

Consider the bundle gerbe G’ = R7T(G) € BGrbY (M) with connection on M,
defined with respect to the path fibration w : PpM — M. Its line bundle L is the
pullback of the transgression line bundle 7G —> LM along the map

(PoM)?) — LM
(,0) —> o % .

By a slight abuse of notation, we also denote this pullback by 7G —> (PoM)[?.

Construction of pt(lj We would like to construct a 1-isomorphism

ptlg/: evyG — evig 4.9)

in BGrb(PM). For t = 0, 1, the bundle gerbe ev;G’ is defined over the subduction
evi PpM —> P M. There are canonical 1s0m0rphlsms of diffeological spaces

evoPoM = PoM xp PM and  eviPo)M = PM xy PoM .
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Recall from Sect. 4.1 the space
Py, M = eVZ;PoM X pm CVTP()M = PoM xp PM xpy PoM .

A point in the total space Pyx2M is a triple (ap, y, «1) of a path y € PM and based
paths o, € PoM such that y (t) = o (1) forr = 0, 1. Any I-morphism ev;G' —> eviG’
is defined over (possibly a refinement of) the subduction & : Py,oM — PM.

There is a smooth map, i.e. a morphism of diffeological spaces

S: PBAZM —_— LM
(g, y,a1) —> a1 x (¥ xap) . (4.10)

There is also the smooth map

§: PBAZM — LM

(g, Y, 01) —> (@ *y) *xag .

The maps s and § are smoothly homotopic via precomposition by a homotopy 4 of
piecewise smooth homeomorphisms [0, 1] —> [0, 1]; these fail to be smooth exactly
at those points of the interval where the concatenations happen, but at these points all
three paths have sitting instants, so that at each time the homotopy maps to LM, as
desired. For each triple of paths («g, y, 1), this results in a thin homotopy in LM from
o] * (¥ xap) to (o] * ¥) * ap. By the superficiality of the parallel transport ptZ9 on
the transgression line bundle [Wal16, Definition 2.2.1] (see also the end of Sect. 2.2),
we thus obtain a canonical isomorphism

r:s*7Gg — 8*7¢

in HLBdIY (P52 M). The fact that this isomorphism preserves connections is a direct
consequence of [Wall6, Lemma 2.3.3]. Since ptTg is thin-invariant, it follows that the
morphism r is defined independently of the choice of homotopy 4.

We define a morphism pt]g/ :evyG' — eviG' as follows: its underlying line bundle
is the line bundle s*7G —> Py,2M. To turn this into a morphism of bundle gerbes,
we need to provide an isomorphism of line bundles

B:pry7GRES'TG — E5s"TGRpri TG

over (Pyx2M)?. Let us unravel this: the fibre product (Pys2 M) = PyaoM xpy
Py 2 M consists of pairs ((a, y, 1), («)), ¥, @})) where (g, v, a1) and (g, y, @} are
elements of Py,2M. Fort = 0, 1, there are the projection maps
pr,: (Pypa M) — (o)l
((050, Vs O{l), (a63 Vs ai)) = (al’ Ol;) .
Thus

(Pr5 TG @18 TG (wp.y.an.@pyal) = T Yaray ® T95r

o *a ayx(y*ag)

(ESS*TQ ® prT Tg)((ao,y,al),(a(),y,ai)) = TgUTI*(V*‘IO) ® Tgﬁ]

ayxay C

LetA: n57G®n{, TG —> 7,7 G denote the fusion product of the transgression line
bundle 7 G over (PyM )[3] (see [Wall6, Section 4.2]), which provides the bundle gerbe
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multiplication on G’. At a point (g, a1, a2) € (PoM B3I the fusion product consists of
unitary isomorphisms

hag,ar,art T Garwag @ T Gazway — T Gazway -
The diffeological space (P52 M)!?! comes with smooth maps
po: (Pyp M) — (Pod)P!
(0. v. 1), (@, v, a})) > (@0, &), T *t})
and
pi: (P2 )P — (Pod)P!
(@0, v, 1), (g, v, @))) —> (¥ * a0, a, 1) .
We set
B:=pirtorto poro(1®r).

Explicitly, at a point ((cto, ¥, «1), (¢rf, ¥, @) € (Pyp2 M)[?1 this is the isomorphism
defined by the diagram

TgoT*ao ® gol’*(y*oz ) TgoT*a ® Tg(c?l*y)*a(/)
i
i X
! i)
|
B! T g@*y)m 4.11)
|
|
Tgal*(y*ao) ®TG 7 ¢ i TG ywatn)

This morphism is compatible with the bundle gerbe multiplication on G’: consider an
arbitrary point

(0, v, 1), (g, v, @), (@, v, o)) € (Pyp2M)P!

Then there is a commutative diagram

o ®1
TgoT*ag ® Tg ) ® Tgot”*(y*a ) o el Tga”*oto ® Tga”*(y*(x "
1®p
T ®7T ga:(m @ TG B
B®1
T Gaiu(yran) ® T Q rea ® Tmer — T Tgal*(y*a())’@ TG e,

The commutativity follows from the associativity of the fusion product A and the fact
that it respects the connection on 7' G [Wal16] so that, in particular, A is compatible with
the morphism r.
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Construction of ptg Next we construct the 2-isomorphism

ptg : (L%?‘O)*ptlg — (L%’*l)*ptlg

in BGrb(P*zM ) that is part of the parallel transport data for G’. For this, we recall that
the fibre of the hermitean line bundle 7 G at a loop y is constructed from pairs ([S], z)
of a 2-isomorphism class [S] of trivialisations S: y*G — Zj in BGrbY(S') and a
complex number z € C. The complex line 7 G, is the set of equivalence classes of such
pairs under the equivalence relation

(IS1, z) ~ (S, hol(S', R(S" 0 S™H) 2)

where for a manifold M, the functor R: BGrbY (M)(Zg, Zp') —> HLBdIY (M) for
B,B € Qz(M) is essentially descent for line bundles; for details, see [Bun17,BSS18,
Wal07b] (see also Sect. 2.2).

Let M™ be the diffeological space of smooth maps from the unit disk D? to M. Let
9: M — LM
f > f|Sl

denote the smooth map induced by restriction to the boundary of the unit disk. The

hermitean line bundle 0*7G on M D? has a canonical trivialisation which is defined as
follows: for a smooth map f: D> — M, choose a trivialisation S: f*G —> Zp for
some B € Q?(D?). Define a unitary isomorphism of hermitean complex lines

of: C— (a*Tg)f
2 07@) =[Sl exp (—i /Dz B)z]. (4.12)

This isomorphism is defined independently of the choice of S: let S’': f*G —> Tp/ be
another trivialisation. Then the line bundle R(S’ o S~!) has curvature B’ — B, which
implies that

or(z) == [[S|Sl],exp(—i /]D)Z B)z
B/

= [[S\SIL exp ( —1 /];)2 ) hol (Sl, R(S’ OS_I)) Z]

= [[S"Sl],exp(—i /Dz B’) z] .

This construction works equally well if we replace the ‘round’ unit disk D? by the unit
square [0, 112, as long as we consider maps f: [0, 11> —> M whose restrictions to
d[0, 1]% have sitting instants at the corners. By the construction of the fusion product A
on 7 G, the section o is compatible with fusion,

Ofiayf =Aofr,0f)

for all disks f, f': [0, 1]2 — M that can be concatenated vertically. (This is merely
the statement that the integral over [0, 1]2 decomposes as the sum f[o = f[o 11%10, 4]

+f[o,1]x[%,1]')
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ao o
Fig. 2. An element of the space Y

Now consider the following setup: let X': [0, 1]2 —> M be an element in P*2M s
presenting a fixed-end homotopy from a path y to a path ¥’ in M. We want to compare

the 1-isomorphisms (L%?‘O)*ptlg/ and (t%j"l )Yp tlg/ of bundle gerbes over P*ZM . The source
bundle gerbes of both these morphisms have subductions

Yo := (t%?‘o)*evaoM = ev{g.0)PoM = ev(j o) PoM — PiM
while the target bundle gerbes live over
Y1 = (i) eViPoM = ev{y | oM = ev{| |, oM —> P;M .

The fibre product Y =Y, X p2 Y1 is the space of triples (o, ¥, 1) of based paths

ap, a1 € PoM and fixed-ends homotopies X' € P*zM between arbitrary paths in M such
that o (1) = X(0, ¢) fort = 0, 1 (see Fig. 2).
The 1-isomorphism (L%f“i)*ptlg ,fori =0, 1, is defined over the subduction

Zi = () PypM — Y,

which is actually an isomorphism. Consequently, the 2-isomorphism ptg " should be
defined with respect to the subduction

7 = Zy Xy Z1 —> ?
which again is an isomorphism. Its elements are triples («p, X, «¢1) as above. Set y; :=
Yo L%[ fort =0, 1,and let x = y,(0) and y = y,(1) for¢,s =0, 1.
At a point («g, X, 1), the morphism of hermitean line bundles over Z that defines

g/

pt3 is given by the morphism

g’ .
Py, Za) T Gare(yorar) — T Gara(yixap)
of complex lines obtained as follows:

(1) Using a smooth family of rotations of S', apply parallel transport on 7 G to obtain
an isomorphism

V1t T Gare(rorae) — T Gipmaoyar —> T Gypu(apsarn) -

This is achieved by parallel transport along a thin path in LM. Hence, since the
parallel transport on 7 G is superficial, this isomorphism is independent of the choice
of a smooth family of rotations.
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(2) Use the canonical section ox (1) € 7Gyy from (4.12) to obtain an isomorphism
V21 T Gypuiaorar) — T Gypu(aoran) ® 7G55 -

(3) The boundary loop 9 X' is smoothly and thinly homotopic (via reparameterisations)
to ((idy % y1) xidy) * %0, where id, is the constant path at the point x € M. This loop
is, in turn, thinly homotopic to y1 x 9. We thus obtain a canonical isomorphism

V31 T Gypaapsar) ® TGos —> T Gypaiapsar) ® T Gy1uys -
(4) The fusion product on 7 G yields an isomorphism
Va1 T Gyputaosan ® T Gyian —> T Gyiataorary) -

(5) Finally, we again use parallel transport along a path in L M that arises from a smooth
family of rotations to obtain a canonical isomorphism

Vst T Gyuaosan) — T Gara(yizao) -
‘We then define

ptzg‘(ao’gyal) =Ysoysoyzoyroyy.

This is compatible with vertical composition in P2M: let X, X’ € P2>M be two
maps [0, 1]2 —> M that can be concatenated vertically. Since the connection on 7 G is
superficial and compatible with the fusion product, we can replace the morphism | by

Vi Tgﬂﬁ(t%j‘ol‘*ao) - Tgt%foz*(ao*m) .
Applying the fusion product with 3(X’ x X') yields an isomorphism

1z ngffox*(ao*m) — ngffl 3% (ao*a)
Combining the fact that the fusion product A is associative and compatible with the
parallel transport on 7 G, that the parallel transport on 7 G is superficial (in particular,
parallel transport along thin paths is independent of the choice of thin path), and that

4

the section o from (4.12) is compatible with A, it follows that pt3 respects vertical
concatenation. G

Since all morphisms involved in the construction of pt3 are smooth, it follows that

g

ptz/ is in fact a smooth morphism of bundle gerbes as desired.

Construction of ptg/ The 2-isomorphism
pt{ : pript{ oprypt] — (- » -)*pt{

is directly constructed from the fusion product A on the transgression line bundle 7G.
Define g: PM xp PM —> M by (y,y’) —> y(0) = y’(1). The morphism ptg/ is
defined over the subduction

Q1 :=pr] PyaoM X g+ pym prs Pyp2M —> PM xy PM .
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Given a point ((@p. 7. 1), (@1, @2)) € Q1. the morphism ptd ' is given by the
diagram

T Gara(ysag) ® T Gazw(y'sar) — T Gaia(yxag) @ T G(azny' sy

g
pty | A

I

{)

Tg@*(y’*y)*ao < Tg(DTZ*V’)*(V*QO)

where the horizontal morphisms are induced by smooth families of reparameterisations.
The compatibility of this morphism with the morphism g from (4.11) follows again from
the superficiality of the connection on 7' G and the associativity of the fusion product A.

The compatibility of ptg, with ptg/ asin (4.4) is seen analogously to how we proved
the compatibility of ptgl with vertical concatenation of homotopies. The interchange
law (4.5) is satisfied by the associativity of A, its compatibility with the parallel transport
on 7 G and with the section o from (4.12), as well as the superficiality of the connection
on7G.

Construction of e’ Finally, the 2-isomorphism
9 C*ptlg/ — lg

is obtained directly from the superficial connection on 7 G: it is defined over the space of
triples («, id,, @) € Pya2M, and all paths of the form o x ¢ are canonically contractible
by thin homotopies.

All necessary coherences in Definition 4.3 then follow from the superficiality of the
parallel transport on 7 G, the associativity of the fusion product A and its compatibility
with the section o, and the fact that the parallel transport on 7 G is compatible with the
fusion product. Thus we have

Theorem 4.13. Ler G € BGrbY (M) be a bundle gerbe with connection on M, and let

G = RT(G) € BGrbY (M) be the regression of the transgression of G. Then the

quadruple pt¥9 = (ptg , ptg ptg g9 ) defines a parallel transport on the bundle

gerbe G'.

Transfer to arbitrary bundle gerbes In [Wall6], Waldorf shows that the functors 7" and
‘R come with a canonical natural isomorphism

A:1l— RoT

as endofunctors of the homotopy 1-category hBGrbY (M). Given a bundle gerbe G €
BGrbY (M), we thus get a 2-isomorphism class of 1-isomorphisms G —> G’ = RT(G).
Let Ag: G —> G’ be a representative for this class.

Let B: G —> G’ be a 1-isomorphism with adjoint inverse B!, i.e. a weak inverse
B~! together with 2-isomorphisms eg: 1g —> B~ o Band 85: Bo B~ — 1g
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g.B

that satisfy the triangle identities. We can use it to define a 1-isomorphism pt{"~ as the

composition

!

g
pt
evy G’ — 1 5 evig’

evyB ev’l‘B’1

We define 2-isomorphisms

ptg’B = lp-1 opt2g, olp,
G.B ._ g
pt?” =154 o(pt* o) (lpt?/ OSBOIPt?/))OIB’
9B .— egop (Ig-10 9 o 1B5),
where we have omitted pullbacks. From these definitions we readily see

Proposition 4.14. The quadruple ptg’B = (ptlg’B, ptg’B, ptg’B, eg’B) defines an
object in PT(G).

For v : B —> B’ a 2-isomorphism of 1-isomorphisms B, B': G’ —> G, we obtain
a 2-isomorphism

AR Lo o ptIB s pt¥ 8 (4.15)

Here ¥ (~1 denotes the 2-isomorphism obtained from 1 by taking the inverse with
respect to horizontal composition. Again it follows from the definitions that this defines
an isomorphism

17}: ptg’B —_— ptg’B/

in the category PT(G). If ¥': B —> B’ is another (parallel unitary) 2-isomorphism,
then v and ¢ differ by multiplication with a locally constant U(1)-valued function
Sfy,y on M. Since horizontal inverses of 2-isomorphisms have dual underlying line
bundles [Wal07b], the morphisms v (~! and '~ differ by the locally constant U(1)-
valued function fw(—l)’v,/(—l) =( fw,w/)_l. Consequently, we deduce from (4.15) that

V=9.

That is, for any pair of parallel unitary 1-isomorphisms B, B': G —> G’ for which there
exists some parallel unitary 2-isomorphism 5 —> B’, we obtain a unique isomorphism
ptg’B — ptg’B/.

Let [[.Ag]] denote the full subgroupoid of BGrbY (M)(G, G') onthose 1-isomorphisms
G —> @' that are isomorphic to Waldorf’s 1-isomorphism Ag. Our constructions define
a functor

pt9 () [[Ag]] — PT(G) .
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This functor factors through a groupoid [[Ag]]. with the same objects as [[Ag]] and a
unique isomorphism between any two objects. In particular, every object in [[Ag]], is
final and the canonical functor [[Ag]] —> [[.Ag]]« is a final functor. It follows that, for
any category C, any functor F: [[[Ag]] —> C that factors through [[.Ag]]. has a colimit,
which is represented by F(B) for any object B € [[Ag]].

Definition 4.16. Let G € BGrbY (M) be a bundle gerbe with connection on M. The
parallel transport of G is

ptg := colim (ptg’('): [[Agl] — PT(Q)) .

4.4. The transgression line bundle as a holonomy. LetG € BGrbY (M) be abundle gerbe
with connection on M and write G’ = R7T (G). We will now determine the holonomy of
the parallel transport on G'. For this, consider the diffeological space L. M of smooth
maps S! —> M that have a sitting instant at 1 € S'. In other words, L. M is the
pullback

L.M ——> PM

evy evpxevy

MT>M><M

in Dfg, where ¢ denotes the inclusion map and A is the diagonal embedding. The
pullback *pt; "isan automorphism of ev{G’, which we understand as the holonomy of
ptY . Itis defined over the subduction ¢* Pyp2M — L,.M.Recall from Sect. 2.2 thata
1-automorphism of a bundle gerbe defines a line bundle via descent. Thus the holonomy

L*pt(l] gives rise to a descended line bundle hol(G) € HLBdAI(L.M). Our goal is to
understand this descended line bundle more explicitly.
Let évy: evj P)M —> PyM be the morphism induced by the pullback

eviPoM —% PoM

|

LM —5— M

in Dfg. The hermitean line bundle (with connection) underlying the bundle gerbe eviG’
is the pullback bundle

L:=e&i?Tg — (eviPoM)? = * P, o M .

We now apply the construction from the diagram (2.18) that produces a line bundle

R(A) from an automorphism A of a bundle gerbe: the tensor product bundle LY ® pt(fw
on t* Py 52 M has fibres

(LY ®ptf )twoy.ar) = T Garrar ® T Gaaretyaae) = T Gatgnar ® T Garu(ywaty) -
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Now the thin-invariant parallel transport and the fusion product on 7 G yield an isomor-
phism

T Gagrar ® T Gara(ysag) —— T Gayxag ® T Gugx(ainy)

Jk 4.17)

TgV < Tgal *(ayxy)

By the associativity of A, this is an isomorphism of descent data for line bundles on
L. M. This shows

Proposition 4.18. The morphism (4.17) yields an isomorphism of hermitean line bun-
dles

hol(G) := R(*pt¥) — TG, M
over L, M.

Thus the parallel transport ptY reproduces the transgression line bundle 7°G as its
holonomy.

Remark 4.19. For a generic bundle gerbe G with parallel transport ptY, the morphism
ptg induces a parallel transport on hol(G). It should be possible to construct from this a
fusion line bundle with connection on L M in the sense of [Wall6], which then regresses
to a bundle gerbe with connection on M. Its underlying bundle gerbe should be canoni-
cally isomorphic to G (up to 2-isomorphism), and that should allow the reconstruction
of the connection on G from its parallel transport in our sense. However, this would go
beyond the scope of this paper, and since for our applications in Sects. 5 and 6 having an
explicit construction for ptg/ is sufficient, we leave this reconstruction of the connection
on G for future work. ]

5. 2-Group Extensions from Bundle Gerbes

Let G be aconnected Lie group with a smooth group action on amanifold M. In Sect. 3 we
saw how a principal bundle P — M gives rise to a group extension Syms(P) — G
which encodes all information about equivariant structures on P. We were able to give
two equivalent constructions for Symg (P), one as a subgroup of Diff (P), and one as
descent data associated to the path fibration PoG —> G and a parallel transport on P.

In this section we study the analogous situation for a bundle gerbe G € BGrb(M)
instead of a principal bundle P € Bungy (M). There are two main differences to the
situation in Sect. 3: equivariant structures on G form a groupoid rather than a set, and
they do not assemble into a topological or smooth space. We thus cannot expect a
universal extension Sym;(G) —> G as diffeological groups. A good framework to
describe this extension is that of group objects in categories fibred in groupoids over
Cart, where the fibration encodes the smooth structure. After carefully setting up this
framework, we give two constructions of Sym;(G), in analogy to the two constructions
of Sym (P) in Sect. 3. We conclude this section by showing that, again, the extension
Symg(G) — G encodes all information about equivariant structures on G.
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5.1. Smooth groupoids and symmetries of gerbes. Let G € BGrb(M) be a bundle gerbe

on M.Let®: G x M —> M be an action of a connected Lie (or diffeological) group

G on M. Let Cart denote the category of smooth manifolds that are diffeomorphic to R"

for some n € Ny. The morphisms in Cart are the smooth maps between these manifolds.
We can view M and G as presheaves on Cart by setting

M) =C®c,M) and G(c)=C>(,G).

By adding identity morphisms, we can canonically enhance the presheaf G to a (pre)stack
on Cart, i.e. a (pre)sheaf of groupoids, which we still denote by G. Given a section
f € G(c), i.e. asmooth map f: ¢ — G, we can define a map

%1
DpiexM L G —2 5 M

We can then assign to f the groupoid
Symg(G)(f) := BGrb(c x M)(pry, G, D79) ,

where pry,;: ¢ x M — M is the projection. The groupoid Sym(P;Sh(g)(f) is non-
empty: since the map f: ¢ —> G is homotopic to the constant map at the identity in
G, it follows that pr’,‘w G and q)}g have the same Dixmier—Douady class as gerbes on

¢ X M, so that there exists an isomorphism pr’;w g — @;ﬁg.

The assignment f +—— Symf’fh(g)( f) is evidently not a presheaf of groupoids on

Cart since it depends not only on the object ¢, but also on a choice of a smooth map
f: ¢ — G. We can reformulate this in the following way: let G denote the category
with objects the smooth maps f: ¢ —> G, where ¢ € Cart is any Cartesian space. The
morphisms

p: (fic— G)— (f':c — G)

in G are commutative triangles of smooth maps

cC ——

4 ¢
N

Then SymgSh(g) is a presheaf of groupoids on G : to an object f: ¢ — G in G we
assign the groupoid SymgSh(g)( /), while to a morphism ¢: f —> f’ we assign the

pullback functor
SYymEZ(G) () = (¢ x Ly)*: SymESR(G)(f)) —> SymES(G)(f) .

By a slight abuse of notation, we will denote the functor SymgSh(g) (¢) by ¢*. Explicitly,
given a l-isomorphism A: pry, G — fb;,g over ¢/, it is defined by the commutative

diagram

p*A
Priy G —-mmmmmmmmm oS Y
(p x Iy priyi G o (¢ x In)* @56 ———=—— (P 0 (¢ x 1m)*G



Smooth 2-Group Extensions and Symmetries of Bundle Gerbes 1863

By construction of the 2-category of bundle gerbes, this defines a pseudofunctor
SymZ™(G): G — Grpd ,

where Grpd is the 2-category of groupoids, functors, and natural transformations.

Remark 5.1. The assignment f —— SymgSh(g) (f) is not a strict presheaf of groupoids

on G, as it is only pseudofunctorial [Moe02]. There are several ways to technically treat
such pseudo-presheaves of groupoids:

(1) Encode the coherence morphisms by viewing pseudo-presheaves of groupoids as
coherent simplicial presheaves, i.e. as simplicial functors € o Na (G)°P — Setp in
the notation of [Lur09].

(2) Use a strictification procedure to translate pseudo-presheaves of groupoids into
presheaves of groupoids [HolOS].

(3) Use the Grothendieck construction, or straightening, to translate pseudo-presheaves
of groupoids into categories fibred in groupoids over G [Vis05,Lur(09].

We will follow the third approach here because the transition between the parameterising
categories G and Cart becomes particularly easy in that framework. O

We will frequently make use of the Grothendieck construction to pass from Grpd-
valued pseudo-functors to categories fibred in groupoids; for background
on the Grothendieck construction and fibred categories we refer to [Vis05,Lur09]. We
will, however, describe the resulting fibred categories explicitly. For example, the canon-
ical projection functor pr : G — Cart is the category fibred in groupoids obtained by
applying the Grothendieck construction to the (pseudo)functor ¢ — G(c), where G(c)
is regarded as a groupoid with only identity arrows.

Definition 5.2. A functor 7: D — C between categories is a Grothendieck fibration
in groupoids, or makes D into a category fibred in groupoids over C, if it satisfies the
properties:

(1) For every object d € D and for every morphism f: ¢ — 7(d) in C, there exists a
morphism f: ¢ —> dinD with(f ) = f.
(2) For every pair of diagrams

do

Jor -7 02

di C12 r d
(5.3)

7 (do)

fm/ \ﬂ(loz)

I
w(dy) e 7 (d2)

in D and C, respectively, there exists a unique lift ﬁ)\l of fo; that makes the upper
triangle commute.

The first requirement resembles a path-lifting condition. The second requirement can
be viewed as a relative horn-filling property: given any A%-horn o in D and a filling
of m(o) in C to a 2-simplex, there exists a unique filling of o to a 2-simplex in D



1864 S. Bunk, L. Miiller and R. J. Szabo

that lifts the 2-simplex in C. Alternatively, consider an arbitrary functor 7: D — €
between categories and a morphism ¢ : di —> dy in D. If for every pair of solid arrow
diagrams as in (5.3) the dashed arrow exists such that the upper triangle commutes
and such that 7w (fp1) = fo1, one says that ¢, is w-Cartesian. In particular, if 7 is a
Grothendieck fibration in groupoids, then property (2) of Definition 5.2 is equivalent
to saying that every morphism in D is -Cartesian. If 7: D — C is a Grothendieck
fibration in groupoids and ¢ € C, we denote by Dj. = ~1(c) the fibre over ¢, which is
the groupoid with objects d € D such that 7 (d) = ¢ and morphisms f d —> d’ such
thatz(f ) = 1.

Definition 5.4. A category fibred in groupoids over Cart is a smooth groupoid. Let H
denote the strict 2-category of smooth groupoids. Its objects are smooth groupoids, its
morphisms are (strictly) commutative diagrams of functors

Xo —m X

NS

Cart

and its 2-morphisms are natural transformations that project to the identity. We denote
by H(X, Z) the groupoid of functors X — Z that project to the identity on Cart.

Example 5.5. Let M be a smooth manifold. An important example of a smooth groupoid
is given by the Grothendieck fibration HLBdIY — Cart, whose objects are pairs (c, L)
of a Cartesian space ¢ € Cart and a hermitean line bundle L —> ¢ x M, and whose
morphisms (¢, L) —> (c¢/, L) are pairs (¢, ¥) of a smooth map ¢: ¢ —> ¢’ and an
isomorphism ¥ : L —> (¢ x lp)*L’ of hermitean line bundles on ¢ x M. One can
interpret HLBdI¥ as describing smooth families of hermitean line bundles on M. For
M = x, we write HLBdI* =: HLBdI. O

Definition 5.6. Let p: Sym;(G) — G denote the category fibred in groupoids ob-
tained by applying the Grothendieck construction to the pseudofunctor
SymgSh(g) : G — Grpd. Explicitly, the category Sym(G) consists of:

e Objects : pairs (f, A), where f € Gisasmoothmap f: ¢ —> GandA: pry, G —>
cD}Q is a 1-isomorphism of bundle gerbes over ¢ x M.

e Morphisms : a morphism (fo, Ag) —> (f1, A1) is a pair (¢, ¥) of a morphism
¢: fo —> f1in G and a 2-isomorphism ¥ : A9 —> ¢*Aj in SymPSh(g)(fo).

The functor p: Sym;(G) —> G is automatically a fibration in groupoids, since
it arises as the Grothendieck construction of a pseudo-presheaf of groupoids. Since
Grothendieck fibrations are stable under composition [Vis05], the composite functor

Sym;(G) ———>—— G

makes Sym (G) into a smooth groupoid.
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5.2. Smooth 2-groups. We would now like to establish that Sym ; (G) is not just a smooth
groupoid, but can also be regarded as a higher group in some sense. That is, we would like
to find on Sym; (G) the same type of structure as we found on the bundle Sym; (P) —
G in Sect. 3.1. Here, however, we are working inside the ambient 2-category JH, and so
we will need to make precise what we mean by a group in H. The notion of a group object
in a 2-category goes back to [BL0O4]. The following definitions are taken from [SP11]
which are strongly based on [BL04]. Let C be a 2-category with finite products; in
particular, it has a terminal object x. Examples are the 2-categories Grpd and .

Definition 5.7. ([BL04]) A monoid object in C is a sextuple (H, U, ®, a, |, r) of

e an object H € C,
e I-morphisms u: * — Hand ®: H x H — H, and
e 2-isomorphisms

a: ®o0(®x 1) — Qo (lH X ®),
I: ®o(Uux 1) — 1y,
rr o(lg xu) — 1y.

These data are required to satisfy a pentagon and a triangle identity; see [SP11, Defini-
tion 41].

An abelian monoid object comes with an additional 2-isomorphism : Qo7 — ®
satisfying the coherence conditions in [SP11, Definition 47], where t: HxH — HxH
is the interchange of factors.

Definition 5.8. A I-morphism of monoid objects (H,u, ®, a,l,r) — (H, Vv, ®’, &,
I',r') in € consists of a triple (F}, Fg, Fy) of

e a l-morphism F;: H — H’ and

e 2-isomorphisms Fg: ® o (F; x F|) — Fio® and Fy: U — Fjou.

These are required to satisfy the coherence conditions in [SP11, Definition 42].
Morphisms of abelian monoid objects satisfy an additional compatibility condition
for the symmetries 8 and 8, which can be found in [SP11, Definition 48].

Definition 5.9. ([SP11, Definition 43]) A 2-morphism (Fy, Fg, Fy) — (E1, Eg, Ey)
of monoid objects in € is a 2-morphism 6 : F; —> E such that the diagrams

® o (Fy x F1) —2°0 &/ (Ey x Ey)

Flo® >y E1o®

fo®

N\

F]OU—)Elou

commute. 2-morphisms of abelian monoid objects are 2-morphisms of the underlying
monoid objects.
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Example 5.10. A monoid object in the 2-category Cat of categories is precisely amonoidal
category. Similarly, 1-morphisms and 2-morphisms between monoid objects in Cat are
precisely the monoidal functors and the monoidal natural transformations, respectively.
The abelian monoids in Cat are precisely the symmetric monoidal categories. O

Definition 5.11 [[SP11, Definition41]]. A group object in € is amonoid object (H, U, ®,
a, |, r) in C such that the 1-morphism

®,pry)):HxH—HxH

is (weakly) invertible. An abelian group object in C is an abelian monoid object whose
underlying monoid object is a group object.

For € a 2-category with finite products, we denote the 2-category of group objects in
C by 2Grp(C).

Definition 5.12. The 2-category of 2-groups is 2Grp(Grpd). The 2-category of smooth
2-groups is 2Grp(3H).

Both these 2-categories are enriched in groupoids. Let us examine Definition 5.12 a
little more closely. Consider two objects 7g: C —> Qart and np: D —> Cart in K.
The product in HH is given by the pullback in Cat:

(C N Cart) x (D o, Cart) = (C xean D — Cart) .
Explicitly, the category C X @a¢ D has
e Objects : pairs (¢ € C, d € D) such that 7¢(c) = np(d).
e Morphisms : pairs (¢, ¥) of morphisms ¢ in C and ¢ in D such that ng(¢p) =
mp(¥).

A monoid structure on C € H thus allows us to multiply pairs of objects in the same
fibre and pairs of morphisms that lie over the same morphism in Cart.

Example 5.13. The tensor product of line bundles turns the presheaf of groupoids of
hermitean line bundles with connection HLBd]Y — Cart into an abelian group object
in . Similarly, for any manifold M it also turns the internal hom (HLBdlv)M into an
abelian group object in H. O

5.3. Smooth principal 2-bundles. We shall now establish our precise notion of an ex-
tension of smooth 2-groups.

Definition 5.14. Let C be a 2-category with finite products, let (H, u, ®4, a,l,r) be a
monoid objectin €, and let C € C. A right action of H on C is a morphism ® : CxH —>
C in C, together with 2-morphisms « and « in C that witness the commutativity of the
diagrams

CxHxH—C® oy H c Y, CxH
®X1HJ / l@ and % l@
o 1C
CxH—"—C C

and that are coherent with respect to the 2-isomorphism a, | and r. Left actions are
defined analogously.
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Example 5.15. The standard example for an action of a monoid object is that of a module
category C over a monoidal category H in € = Cat. O

Definition 5.16. Let C be a category. Suppose there are categories fibred in groupoids
mwi: Dy — @, fori =0, 1,and mg: E — C over €, and suppose there is a diagram

TN
Do D,

of categories fibred in groupoids over €. The homotopy pullback Dy x}é D; is the
category with

e Objects : triples (dy, n, dy), where d; € D; and n: Fy(dy) —> Fi(d}) is an iso-
morphism in E that projects to the identity under ng.

e Morphisms : a morphism (do, n,d1) — (dj, n',d}) is a pair (Y, ¥1) of mor-
phisms v; : d; — d such that the diagram

Fo(do) —= Fi(dy)

Fo(l/fo)J lﬂ(lﬁl)

Fo(dy) - h ()

commutes in E.

This comes with a canonical functor

mn: Do x}é D, — ¢
(do, n, d1) —> mo(do) = m1(d1)
(Yo, Y1) = mo(Yo) = w1 (Y1) ,

which, as we show in Appendix A, is a Grothendieck fibration in groupoids.

Definition 5.17. Let H be a smooth 2-group, and let X € JH be any smooth groupoid.
An H-principal 2-bundle on X is an object P € JH{ with a morphism 7z : P — X, aright
action (®, o) of H on P and a 2-isomorphism

PxH-2P
| 7]
such that

(1) the functor 7 : P — X is an essentially surjective Grothendieck fibration,
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(2) the action (®, ) of H on P and the 2-isomorphism 7 are compatible in the sense that
the diagram

P xH
pr |
/ pr /
PxHxH | ©xln . p oy H
\
| !
1pX®n P —~
= o
P x H P

®

is coherent, where the front face carries the 2-isomorphism « that is part of the action
of H on P, the back, right-hand, and bottom faces carry the 2-isomorphism 7, and
the left-hand face commutes strictly,

(3) the compositionP xH — P xx P xH — P xgl( P is an equivalence, where the
first functor is induced by the diagonal functor P —> P xx P.

The first condition can be understood as demanding that P — X has local sections
(see Lemma A.1 from Appendix A). The second condition implements the property that
the H-action preserves the projection to X up to coherent homotopy. The third condition
says that the H-action is principal. Note that upon choosing an inverse to the equivalence
PxxP — P x?( P, one could equivalently formulate condition (3) using strict pullbacks
alone (again by Lemma A.l from Appendix A).

In order to understand the notion of an extension of smooth 2-groups, we first need
to define the kernel of a morphism of smooth 2-groups. Naively, the kernel could easily
be defined as a fibre over u, but the resulting category will not generally be fibred in
groupoids over Cart. As it turns out, the homotopy pullback does satisfy this property.

Definition 5.18. Let p: H — G be a morphism of smooth 2-groups in H. Its kernel
ker®(p) is the homotopy pullback

ker®(p) —— H

|
|

K| 14
-

Cart = ¢ - G

Explicitly, ker®(p) is given by
kerh(p) 1= kqq xg H.

Using Definition 5.16 we can equivalently describe it as the category with objects given
by pairs (h, 1) of an object & € H and an isomorphism n: p(h) —> ug(y(h)) in G.
Its morphisms (hg, n9) —> (h1, n1) are given by morphisms ¢ : hg —> h such that
N1 o p(¢) = ug(mH(¢)) o no. We readily observe that the restrictions of the structure
morphisms ®p, an, |y and ry, together with the morphism Uy, turn ker®(p) into a
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smooth 2-group. It should also be possible to turn the strict kernel ker(p) into a smooth
2-group in this case, using an inverse to the equivalence ker(p) < ker®(p) (compare
Lemma A.2 from Appendix A), but the homotopy-kernel ker™(p) carries a canonical
2-group structure, and using ker(p) instead of ker™( p) would make Construction 5.21
below rather cumbersome.

Lemma 5.19. In the setting of Definition 5.18, the functor k is a Grothendieck fibration
in groupoids.

Proof. This follows directly by Lemma A.2 (1) from Appendix A. O

Let ker(p) denote the strict pullback of the diagram Cart N LA ¥} Explic-
itly, it is the category with objects & € H such that p(h) = ug(ry(h)) and mor-
phisms ¢ : hg —> hp such that p(¢) = ug(wH(¢)). The functor ker(p) —> Cart is
not a Grothendieck fibration in groupoids in general. However, if p: H — G is a
Grothendieck fibration in groupoids, then so are the functors ker(p) —> Cart and
ker(p) —> Cart, and the canonical inclusion ker(p) — ker™( p) is an equivalence. The
next definition is loosely modelled on [SP11, Definition 75].

Definition 5.20. Let A and G be smooth 2-groups. An extension of G by A is a pair (F, p)
of a morphism of smooth 2-groups p: H — G that turns H into a ker™(p)-principal
2-bundle over G, and an equivalence of smooth 2-groups F: A — ker®(p).

By Lemma A.2 from Appendix A, we could equivalently require p to turn H into
a ker(p)-principal 2-bundle, but then we would need to use the non-canonical 2-group
structure on ker(p). This essentially amounts to choosing an inverse for the equivalence
ker(p) < ker™(p).

Our goal now is to define when an extension of smooth 2-groups is central. Again, we
follow the ideas of [SP11], where the criterion for an extension of G by A to be central
is formulated using a functor G —> Aut(A) from G into the automorphisms of A as a
2-group; the smooth structure does not matter here. In [SP11], this functor is obtained
from abstract arguments.

Construction 5.21. In our formalism, we can understand this construction as follows:
consider smooth 2-groups G and A, where A is abelian, and let (F, p) be a smooth 2-
group extension of G by A, with morphism p: H —> G. Then A is abelian if and only
if ker™(p) is abelian, which is true if and only if ker(p) is abelian (since the 2-group
structure induces Picard groupoid structures on the fibres of these smooth 2-groups,
where F induces monoidal equivalences). Fix an arbitrary Cartesian space ¢ € Cart.
Let Aut(ker™( p)|c) denote the Picard groupoid of monoidal autoequivalences of the
fibre ker( D)c of ker®(p) over c. Note that we do not claim that the Picard groupoids
Aut(ker™( P)|c) assemble into a smooth 2-group (though it might be possible to achieve
this). We claim that there is a functor G, —> Aut(ker?( D)) which is canonical up to
unique natural isomorphism.

Let(-)Y: H —> Hj. denote a choice of functorial inverse in H|... This can always be
enhanced to a functorial choice of adjoint inverse, i.e. a functor k — (kY evy, coevy)
that maps k to a triple of a dual object k¥, and duality morphisms (which are iso-
morphisms in this case) evy: k @y k¥ —> Un(c) and coevy: UH(c) — kY ®y k
which satisfy the triangle identities. The functor (-)“ acts on morphisms ¥ : k —> k’
by taking the dual of ¥ ~! with respect to the chosen duality data on k and k. This
enhancement can be achieved by choosing an adjoint inverse for the equivalence of
categories (®H, pry)ic: Hie x He — Hjc x H|¢ (which is always possible).
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To an object k € H|. we associate the functor

Ady: ker™(p)jc —> ker®(p)|c
(h, @) — (k@ h ®n k", gx)
(¢: (ho. @0) —> (h1, 1)) —> 1k ®H ¢ ®p Liv

where the morphism ¢y is the composition

pk @Hh @4 kY) pk) ®g p(h) ®g pkY)

|
|
! MMM@G‘/@GI;}(M
|
<+

Ug(c) «——— pk®1 k") +— p(k) ®c p(k”) «— p(k) ®a Ua(c) ®g pk")

Given another object ¥’ € H|. such that p(k) = p(k) in G, the principality condition
implies that there exists an object (b, 8) € ker®(p) and an isomorphism v : kK’ —
k ®n b. Since ker®(p) is abelian, this induces an isomorphism

o (Ig xevp x 1pv) o (Y x 1 x V) : Adp (h) —> Adk(h).

By the functoriality of (-)V, any other choice of (b, 8) and ¥ yields the same isomor-
phism Ady/(h) —> Adg(h) in this way. Furthermore, this isomorphism is natural in k
and & by the functoriality of ®p and (-)V. That is, the pair (Ad, ) defines an object

(Ad, @), € holim9™4 2Grp(H!*!

o Aut(ker" (p)(c)) -

where Hl[:] — Gj. denotes the Cech nerve of the functor pj.. As we show in the proof
of Proposition A.3 in Appendix A, any choice of preimages of the objects g € G under
P|c now induces a functor G, —> Aut(ker™( D)) from these data. Moreover, any
other choice of such preimages will induce a canonical natural isomorphism of functors.
Hence we obtain a well-defined isomorphism class of functors, which we denote by

[Ad, a], € 7o <29_rp(G|c, Aut(ker™(p)yc)) )

This class allows us to state when a smooth 2-group extension is central. O

Definition 5.22. Let (F, p) be an extension of a smooth 2-group G by a smooth 2-group
A. Then (F, p) is central if A is abelian, and for every ¢ € Cart the isomorphism class
[Ad, a]. agrees with the isomorphism class of the trivial 2-group morphism G, —>
Aut(ker™(p)|c).

5.4. Global description of the 2-group extension. We shall now apply the general consid-
erations of Sects. 5.2 and 5.3 to the smooth groupoid Sym (G) constructed in Sect. 5.1.

Theorem 5.23. The functor w: Symg(G) —> Cart is a smooth 2-group.
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Proof. First we show that Sym;(G) carries the structure of a monoid object in .
The terminal object *9¢ € H is the identity functor 1e,y: Cart —> Cart. We start by
defining the 1-morphism u: x5 —> Sym;(G); it is the functor that assigns to every
object ¢ € Cart the object (e, pry, 1g) € Symg(G), where e.: ¢ —> G is the constant
map at the identity object e € G.

Next we define the 1-morphism

®: Symg(G) Xear Symg(G) —> Syms(G)

in the following way: consider two arbitrary objects ( fo, Ao), (f1, A1) € Sym;(G) in
the same fibre of 7w : Sym;(G) — Cart, i.e. fy, fi are defined over the same object
c € Cart. We define the map (1, @ y,) as the composition

Ax1
cxM — s exex M

I
(l,d’fo)i lleoxl
I

~

CXM ——cxGxM
1x®

Observe that

pryo(l, @p) =Pp . Ppo(l,Pp) =Py
and  (1,&7)0(,@5)=(1,P5 ) (5.24)

where the second and third identities use the fact that @ is a group action. Thus we can
form the 1-morphism

A =
pryy G ———— @56 ———— (1, P pr}, G
I
I
i (1,8 5)% Al
I
U

qj.}k'l fog ¢ ~ ({1, (bf())*q);lg

The solid unlabelled arrows are canonical isomorphisms that stem from the fact that
BGrb is a (pre)sheaf of 2-categories on the category of manifolds Mfd [Wal07b,NS11].
By a slight abuse of notation, we denote the composite morphism by (1, @ 5)* A1 o Ag.
Then we set

(f1. A1) ® (fo, Ao) == (f1 fo. (1, @s)* A1 0 Ag) , (5.25)

and analogously on 2-isomorphisms. The associator and unitors are readily obtained
from those in the sheaf of 2-categories BGrb. The coherence conditions in BGrb imply
that Sym (G), endowed with the multiplication and coherence morphisms defined here,
is a monoid object in H.

Now we show that Sym (G) is in fact a group object in J{. Set

(A= A, @0 AT (5.26)

and analogously on morphisms, where f ~! denotes the composition of themap f : ¢ —>
G with the inversion map in the group G. It follows from the properties (5.24) of @(.)
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that this provides a functorial (two-sided) inverse object with respect to the 1-morphism
®, and hence shows that the morphism

(®, pry): Symg(G) Xeart Symg(G) —> Sym;(G) Xearr Symg (G)

is an equivalence in J{ (where the product is taken in J). Thus Sym;(G) — Cart is
indeed a group object in . O

Theorem 5.27. There is a smooth 2-group extension
1 — HLBdIY —% Sym;(G) 2+ G —> 1, (5.28)

where we abbreviate xq¢ = Cart by 1.

Proof. The projection functor pr: G —> Cart is a smooth 2-group via @G : G X eart
G —> G defined by

(firc—G) Q¢ (fo:c— G)=(f1 fo:c— G).

It is evident from (5.25) that p: Sym;(G) — G is a morphism of smooth 2-groups. It
is a Grothendieck fibration in groupoids by construction, and it is surjective on objects
since G is connected (as we have argued at the beginning of this section).

Next we define the morphism ¢: HLBdIY — Sym(G) in H. Over a Cartesian
space ¢ € Cart, it is simply the canonical inclusion

HLBdI(c x M) —> BGrb(c x M)(pry,; G, @, G) = BGrb(c x M)(pry; G, pry,; 9) .

Here e.: ¢ —> G is the constant map at the unit element of G. Since the inclusion of
line bundles into morphisms of bundle gerbes strictly maps the tensor product to the
composition [Wal07b,Bun17], we readily find that ¢ is a morphism of smooth 2-groups.

To see that (5.28) is an extension of smooth 2-groups, we first show that the inclusion
¢ is an equivalence HLBdIY — ker®(p). By Lemma A.2 from Appendix A and the
fact that p: Sym;(G) — G is a Grothendieck fibration in groupoids, it follows that
the canonical inclusion ker(p) < ker®(p) is an equivalence. Consequently, it suffices
to show that ¢ induces an equivalence HLBdI® — ker(p). Over an object ¢ € Cart,
the fibre of ker(p) consists of the automorphism groupoid of prj, G € BGrb(c x M). It
is well-known [Wal07b] that the inclusion HLBdI(c x M) — BGrb(c x M) given by
L—L® 1pr’;w G 1s an equivalence of groupoids.

To see that the functor p: Symg(G) —> G is an HLBdI™ -principal 2-bundle (see
Definition 5.17), it now suffices to show that the functor

(1, 00): Sym;(G) X eart HLBdIM — Symg(G) xg Symg;(G)
((f. A), L) — ((fL A).(f,A® L))

is an equivalence in H, where we have written out the product in H as the fibre product
over Cart. Observe that by the equivalence HLBdIY — ker®(p), it is enough to
consider the action of HLBdI™, and since G has discrete fibres, i.e. the fibres have no
non-identity morphisms, there is an identity Sym (G) xg Symg(G) = Symg(G) xg
Symg;(G), and hence we can work with the strict pullback instead of the homotopy
pullback.
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Since both sides are fibred over Cart, it suffices to show that this functor is an equiv-
alence on all fibres [Vis05, Proposition 3.36]. Thus we fix an object ¢ € Cart. We need
to check that the functor

(1, a)jc: Symg(G)|c x HLBdl(c x M) — Sym;(G)|c XG,, Symg(9)c
((f, A), L) — ((f, A, (f,A®Q L))

is an equivalence. By construction, both sides decompose into coproducts
Symg(G)|c x HLBdI(c x M)
= ] BGrb(c x M)(pri, G. #5G) x HLBdI(c x M)
fic—G
and
Symg(9)e X6, Symg(9)je
= ]_[ BGrb(c x M)(pry, G, @}g) x BGrb(c x M)(pry, G, <1>;?g) ,
fic—G
so the functor (1, @), decomposes into functors
(1, )| r: BGrb(c x M)(pry, G, q>;tg) x HLBdl(c x M)
—> BGrb(c x M)(pr}, G, (b}'@g) x BGrb(c x M)(pry, G, CD;ZQ) .

This functor acts as the identity on the first factor and as the standard action of line bundles
on isomorphisms of bundle gerbes in the second factor. Thus (1, ), s is an equivalence

since on any manifold X, the category of 1-isomorphisms between any given bundle
gerbes is a torsor category over HLBdAI(X) with respect to this action [WalO7b]. O

Proposition 5.29. If G acts non-trivially on M, then the extension (5.28) is not central.

Proof. This follows readily from the explicit forms (5.25) and (5.26) of the product
and the inverse in Symg(G), together with the fact that composition of morphisms of
bundle gerbes is compatible with tensoring by line bundles. Explicitly, given (f, A) €
Symg(G)|c and L € HLBdI(c x M) we find

(fs A @ UL) ® (f. A~ = (ec, PFL) = (PFL) .

Hence (Ad, a).(f)(L) = @’;L. Observe that since G has discrete fibres, we have

ker®(p) = ker(p), and by the equivalence HLBdI® — ker(p) it is sufficient to con-
sider the adjoint action on the smooth 2-group HLBdIY here.

Let ¢ = %, so that the data f corresponds to an element g € G. Assume that the exten-
sion (5.28) is central. Then, by Construction 5.21 and Definition 5.22, there is an isomor-
phism ¢: (Ad, @) —> lHLBdI(M) Of morphisms of 2-groups G —> Aut(HLBdI(M)).
Let I € HLBdI(M) denote the trivial line bundle, and let ¢: I — [ be any auto-
morphism, i.e. any U(1)-valued function on M. The naturality of ¢ then implies, in
particular, that the diagram

el=1 —5Y =g
¢1,gl l‘ﬂl,g
I

14
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commutes. But this is equivalent to the identity ¢ = g*y forany g € Gandy: M —>
U(1), which is a contradiction if the G-action on M is non-trivial. O

We now obtain an action of Sym;(G) on G in the following sense: let a € H denote
the category fibred in groupoids over Cart which is defined as follows. Consider the
presheaf of groupoids on M that assigns to f: ¢ —> M the category BGrb(c)(Z, f*G).
Then g : G —> M is obtained by applying the Grothendieck construction to this
presheaf. The action of Sym; (G) on G is then the morphism of categories over G x M =
G x M obtained through the diagram

)

Symg(G) x @*G -----F - s prt, G G
lq
pxq I1xq
Pry .
exi ¢ M
(]

where we suppress pullbacks and denote by pry,,®: G x M — M the functors
induced from the smooth maps pr Ty @ via postcomposition. The functor @ sends an
object (A, J) € Symg(G)|c x g‘f to the composition A*(1, x f)*(A, J), where
A: ¢ —> ¢ x cis the diagonal map.

The construction Sym is 2-functorial: let E: § —> G’ be a 1-isomorphism of bun-
dle gerbes. Pick an adjoint inverse EV. The 1-isomorphism E induces a 1-isomorphism
of smooth 2-groups

E: Sym;(G) — Symg(G)
 EY PLE
(f:c—)G,A:pr}‘wg—>q)_’;-g)r—>(fpng —>png—><1)g (pg)
Let E,E’: G —> G’ be l-isomorphisms and n: E —> E’ a 2-isomorphism. We
construct a smooth 2-isomorphism 77: £ —> E’ whose component at an object ( f, A)
of Sym () is given by

pri, EY DLE

f
pry, G pryn’ priy, G — 4 g H
prX/IE/\/ d’*El

5.5. Descent description of the 2-group extension. We can describe the smooth 2-group
Syms(G) in a way analogously to Sect. 3.3; that is, we can construct Sym;(G) in
terms of descent data for the path fibration PG — G and the parallel transport
on G introduced in Sect. 4. However, for a bundle gerbe G this construction is more
involved compared to the case of a principal bundle P. In particular, we need to replace
the associated bundle construction (PyG x Gau(P))/~ of L (cf. Section 3.3) by a
homotopy-coherent version. Once established, the descent presentation of Sym;(G)
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allows us to study and compute this smooth 2-group very explicitly in certain situations,
as we demonstrate in Sect. 6.

Recalling the notation of Sect. 3.3, let G € BGrbY (M) be a bundle gerbe with
connection on M. Using the smooth map (3.8) we obtain a diffeological hermitean line
bundle

1= (L®)Y(TG) — (PGP x M . (5.30)

This object is completely analogous to (3.8) when one views the holonomy of a line
bundle L on M as the transgression of L to the loop space LM, and subsequently the
transgression line bundle 7G as the holonomy of the bundle gerbe G on M (cf. Sec-
tion 4.4). In the adjoint picture, we can interpret L™ as a smooth assignment of a line
bundle with connection L, 4y on M to each pair of based paths (y, «) € (PoG)[z]

Consider the simplicial diffeological space (PyG)!*) x M with face maps
d; : (PG x M — (PoG)" U x M

for 0 < i < n — 1 defined by deleting the ith entry of (PoG)"™. The fusion product A
on the transgression line bundle 7 G over the loop space LM induces an isomorphism

(L®)*r: diL! @ d5L™ — djL™ (5.31)
of hermitean line bundles over (PyG)3! x M, which is coherent over (PyG)4! x M.
Remark 5.32. In an adjoint fashion, the hermitean line bundle L™ on (PyG)?! x M
from (5.30) can be seen as a morphism of smooth groupoids L: (PyG)*! — HLBdI®
(under the equivalence of diffeological vector bundles and morphisms to HLBdI fol-
lowing from [Bun20a, Thm. 4.8]). In this picture, the coherent isomorphism (L®)*A
from (5.31) corresponds to a coherent isomorphism djL ® d;L — dL of morphisms
(P()G)B] ——> HLBAI™. In this sense, (L7, (L®)*)) represent a smooth HLBdIM -
valued Cech 1-cocycle on G with respect to the Cech nerve of the subduction PyG —>

G . Note that this nicely fits the formalism for higher principal bundles with not-necessarily
strict structure groups—such as HLBdIY —from [NSS15]. O

Definition 5.33. Let ¢ € Cart be a Cartesian space and f: ¢ —> G a smooth map. We
define a category ’DesLSh(f) with

e Objects : pairs (J, j), where J € HLBAI(f*PyG x M) and where ; is an isomor-
phism of hermitean line bundles

JrdiJ — (]‘\[2] x 1)L @diJ

over (f*PyG)2! x M, where f1": (£*PyG)"l —> PyG!"] is the canonical map
induced by the pullback of the subduction PG — G along f. These data are
required to satisfy the compatibility condition that

d5 g

did;J & ((FP x L @ diJ)
1®dg

di; (2 x )L @di(FP x 1) L @drdgs (5:34)
a1

di (P x 1) LT @ djds] =——= d;(fP x1)"L" ®@d}diJ
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is a commutative diagram in HLBAI(( f* Py G)B x M), where we use the simplicial
relations.
e Morphisms : a morphism (J, j) —> (J’, j’) is an isomorphism vy : J —> J' such
that

dr) —L— (FP < )L edis

dy l/jl Jl ®di ¥

dr) ——— (fP < 1)L ®dis’
J

is a commutative diagram in HLBdAI(( f* PoG)1?! x M).

Pullbacks of morphisms of bundle gerbes turns the assignment (f: ¢ — G) —>
@esESh( f) into a presheaf of groupoids on G . (This is actually even a sheaf of groupoids,
but we will not need this fact here.) Applying the Grothendieck construction, we obtain
a category fibred in groupoids over G, p. : ®esp. — G, and composing with the
canonical projection functor pr: G —> Cart we obtain a category fibred in groupoids
over Cart

Des, — = G

A
N
\\ /
bie r
L Ny P

Cart

which defines a smooth groupoid Des) .
Proposition 5.35. The functor mr : Des) —> Cart is a smooth 2-group.

Proof. Let(fy, Jo, jo), (f1, J1, J1) € Des| betwo objects, where (J;, ;) lies in the fibre
over a smooth map f;: ¢ —> G fori = 0, 1. The product (f1, J1, j1) ® (fo, Jo, Jo) is
defined as follows. First, observe that it should lie in the fibre of ®es| over the pointwise
product map f1 fo: ¢ — G, u +—— f1(u) fo(u). Consider the smooth map

F: m*P()G XGxG prT PyG xXgxG pr§ PG — PaAzG
(v10, 1. Y0) —> F (10, v1, v0) = (v10, y1 20(1), »0) .

where m: G x G — G is the multiplication of G, and pr; and pr, are the projections
to the first and second factors of G x G. Let us denote by @y, the composition PpG x
M — G xM —> M, where the first map evaluates a based path at its end point and the
second map is the action @ of G on M. The pair ( f1, fo) definesamapc — G x G. Let
S: Pypo2G —> LG be the map defined in (4.10), and let (by a slight abuse of notation)
L®: LGxM —> LM denotethemap (y, x) —> vy, with y, (t) = D, (1) (x). Consider
the hermitean line bundle

K :=F's*"LO&*TG ® (1p,6 X Pev)*J1 ® Jo
on the diffeological space

Yii. 5o = ((fi f*PoG xc fiPoG xc f§ PoG) x M .
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We claim that the bundle K descends along the projection py: Yz, s —> (f1 fo)* PoG x
M . The descended bundle is the hermitean line bundle underlying the product ( f1, J1, j1)®
(fo, Jos Jo)-

We thus endow the bundle K with an isomorphism «: (p1)§K —> (p1)]K over

Y ][c?] o which is required to satisfy a cocycle relation over Y ][c?] for An element of Y][c?] 1, can

be identified witha pair of triples (10, ¥1, ¥0), (V10, ¥{, %)), where (y;, ¥/) € (PyG)1
fori = 0, 1. We define the isomorphism « as the composition of the fusion product A
on TG with (I x ®¢y,)*j1 ® jo. Then the cocycle condition simply follows from the
compatibility condition (5.34) and the associativity of the fusion product. (We also need
to use thin reparameterisations, but these are implemented in a completely coherent way
by the thin-homotopy invariant connection on 7 G.)

Thus we obtain a descended hermitean line bundle Des(K, «) on (f] fo)* P0G x M
(for descent properties of diffeological vector bundles, see [Bun20a]). Applying the
fusion product in the first tensor factor of K, we obtain an isomorphism which (by the
associativity of 1) descends to an isomorphism

Jk: diDes(K, k) —> (m[z] X 1)*L{ Q diDes(K, k)

over ((fi fo)*PoG)m x M. Again by the associativity of A and thin-homotopy invari-
ance, the pair (Des(K, k), k) satisfies the relation (5.34), and hence it makes sense to
set

(f1. J1. D) ® (fo. Jo. o) := (f1 fo. Des(K, k), jk) -

The action of the product ® in ®es| on morphisms simply sends (11, ¥p) to the descent
along p; of the isomorphism 17¢g ® (1 X Pey,)* ¥ ® ¥o. The unitors of ® are readily
obtained from the construction, and the associator is defined from the fusion product;
its coherence is yet another application of the associativity of A and the superficiality
of the parallel transport on 7 G. Inverses are constructed analogously to (5.26). Finally,
all constructions are compatible with pullbacks along maps ¢: ¢’ —> ¢ of Cartesian
spaces, so that we obtain the structure of a smooth 2-group on Des) . O

Theorem 5.36. There is a weakly commutative diagram of smooth 2-groups

L

1 — HLBAI® —% Symg;(G) -+ G —> 1

T

1 — HLBAIM —X Desp —2 5 G —» 1

where the functor ¥ is an equivalence.

Proof. By the functoriality of G — Sym(G) (see Sect. 5.4) we can assume that we
are in the case where G’ = R7 (G) is the regression of a transgression, so that we have
direct access to our construction of a parallel transport on G’ from Sect. 4.4. We start by
constructing the functor ¥. For this, we construct a diagram in the 2-category I of the
form

. Homl(ptlg/, 9
Symg(G') ——— Des(Symg(G)) 2 > Des|. (5.38)
(-y®pt?’
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and the functor ¥ is the composition from left to right. Each of the functors in (5.38) is
an equivalence of categories fibred in groupoids over Cart, and hence so is ¥.

For a smooth map f: ¢ — G, let wy: f*PyG x M —> ¢ x M denote the
canonical projection. First we define the category Des(Sym; (G')). It is obtained via the
Grothendieck construction applied to the presheaf Des™? (Sym(G")) of groupoids on
G, which assigns to a smooth map f: ¢ —> G the groupoid @esPSh(SymG aG@nn
where

e objects are pairs (A, o) of a 1-isomorphism A : w]’?g’ — w}*@}’}g’ over f*PyG X
M and a 2-isomorphism o : df A —> dj A over (f*PyG)!?) x M, which is coherent
over (f*PyG)B! x M, and

e morphisms (A, @) —> (A’, ') are given by 2-isomorphisms y: A —> A’ satis-
fying o’ o dfy = d§ o .

The functor @ * simply pulls back 1-morphisms A: pr}, G — ®%G’ along the sub-
ductions = y. This functor is an equivalence since morphisms of bundle gerbes satisfy
descent 3 [Bun17, Theorem A.19].

Next we introduce some notation: we define the map

Py®: PG x M — PM
(Vs X) —> ¥
where
V() = Py ) (x) = Po@(y, x)(1)
for all ¢ € [0, 1]. Observe that
evg o Pp® = pry, and evio Pp@ =@ o(evy x 1y).

Thus the pullback of the parallel transport 1-isomorphism (4.9) by the map Pp® is a
morphism

(Po@)*pt{ : priy G —> (evi x 1y)*@*¢’
in BGrb(PyG x M). Given a smooth map f: ¢ —> G, we obtain a smooth map
Po®@ o (F x 1y): f¥*PoG x M —> PM .
It satisfies
evooPocDo(fx 1M)=prM and evloPocDo(fx 1M)=4>fowf,
where wy: f*PyG x M — ¢ x M is the projection. Hence we obtain a morphism
pt? = (PP o (f x 1))*ptlg/: @ priy G — zzr.;fcb;fg’,

whichis defined over f* PyG x M. By Proposition 4.18 there is a canonical 2-isomorphism

(da‘pt?/)_l odfpt? = (L& o(t x1y)o (F12 x IM))*’TQ = (}‘[2] x Ty)*L™Y

3 In [Bun17] the descent property was proven along surjective submersions of manifolds, but the proof
directly carries over to subductions of diffeological spaces.
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of 1-automorphisms of the pullback of prj, G' to (f* PoG) x M, where t(yp, y1) =
(71, Y0). Equivalently, this is a 2-isomorphism

By diptd = (F x 1y)'L" @ djptd (5.39)

of 1-isomorphisms @} pry, g — w}*@}’ig/ over (f*PyG)?1 x M

Now we come to the definition of the functor (- ) ® pt?/. Given an object (f, J, j) €
®es) , define a morphism of bundle gerbes over f*PyG x M via

J ®pt?: oipry§ — oi®iG .

Using the 2-isomorphism (5.39), we obtain a 2-isomorphism

dii@dipt) —% s @i @ (712 x 1)L @ djptd

\\\\;\\\ 1®ﬂ71

dyJ ® dipt?

over (f* Py G)PlxM. By construction, the 2-isomorphism 7 is coherent over ( f* PyG) (3]
x M, and thus the pair (J ®pt%/, 7) defines a descent datum (with respect to the subduc-
tion f*PyG x M — ¢ X M) fora 1-isomorphism of bundle gerbes pr’, G’ —> @;.g/.
Analogously, morphisms in Des| give rise to morphisms of descent data as constructed
above. This defines the functor

(+) ®pt1g/: Desp —> Des(Symg(G)) .

This is a functor of categories fibred in groupoids over Cart by the compatibility of
pullbacks of bundles and their morphisms with the tensor product.

Finally, we introduce an inverse functor Hom; (ptlg/, -) for (1) ® pt]g/. An object
(f,A,@) € Des(Symg(G')) consists, in particular, of a I-isomorphism
A: w; pry, ¢ — wgcb*g/ of bundle gerbes over f*PyG x M. Another such mor-
phism is given by pt} . We can hence use the internal hom-functor Hom; in the 2-
category BGrb(f* POG x M) (see [Bunl7, Section 3.2] and also [BW18, Section 2.1])
to produce a hermitean line bundle

Homl(ptf ,A) € HLBAI(f*PyG x M) .

This comes with an isomorphism over ( f* PyG)[?! x M defined by the diagram

/

diHom, (ot . A) Hom (dipt? . d} A)

|
|
i JHoml(ﬂf'l,a)
|

(F2 x 13)"L7 @ dHomy (pt9 , A) «———— Homy (71 x 1y)*L7Y @ dipt§ . djA)
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where the 2-isomorphism 87 stems from (5.39) and where the lower horizontal iso-
morphism of line bundles stems from the (categorified) linearity of Hom; [Bun17, The-

orem 3.63]. It follows from the properties of « and B¢ that Hom; (pt%, A) defines an

objectin (Des )| r. By mapping amorphism ¥ in Des(Sym (G))  toHom, (pt%, V),
we obtain a functor

Homl(ptlg,, -): Des(Symg(G)) — Des.

of categories fibred in groupoids over Cart. Again by the linearity of Homy, it follows

straightforwardly that () ® ptlg/ and Hom; (ptlg/, ) are mutually inverse functors.

To conclude the proof, we need to check that ¥ is compatible with the monoid
structures on Symg; (G') and on Des . Fori = 0, 1, let f;: ¢ —> G be smooth maps
from ¢ € Cart to G, and consider objects A; € Symg(G'), s, in the fibres over f;. By the
explicit construction of the 2-group structure on Des| in the proof of Proposition 5.35
it follows that the hermitean line bundle underlying the object ¥ (f1, A1) @ ¥ (fo, Ao)
of Des| is given as the descent of the bundle

L' ® (1 x ®ey,)*(Homy (pt§ . 7} A1) ® Homy (ot . @}, Ao)
= L7 @ Homy (1 x ®ev)* F'pt{ . (I X ®ey)) @, A1) ® Homy (fypt{ . o}, Ao)
= L7 @ Hom (1 x ®ey,)* ity o fyrot{ . (I x Pey,)*w A1 o @ Ao)
= Hom ((f1 fo)*pt{ . @}, ;,(@% A1 0 Ag)). (5.40)

The first and second isomorphisms follow from the properties of the internal hom-functor
Hom;. The third isomorphism is a direct application of Proposition 4.18. The bundle
in the last line is the line bundle underlying the object lI/((fl, A1) ® (fo, Ao)) of Des
(see (5.25)). Hence the canonical isomorphism (5.40) establishes the compatibility of ¥.
Its coherence again follows from the properties of the transgression line bundle 7 G. The
proofs that ¥ respects unitors as well as the weak commutativity of the diagram (5.37)
are straightforward. O

5.6. Equivariant bundle gerbes. We shall now investigate the relation between sections
of the smooth 2-group extension Sym;(G) —> G and equivariant structures on G.
We first recall an explicit definition of an equivariant bundle gerbe from [GSW11] (see
also [M+17]), which can be understood very nicely from the perspective of the formalism
developed in [NS11].

Let G be a connected Lie group, M a manifold with G-action®: G x M — M, and
G a hermitean bundle gerbe over M. Corresponding to the action groupoid G x M = M
there is a simplicial manifold

G xM =—=3GxM _—=3 M,
with face maps d; : G*"* x M — G*"~! x M for 0 < i < n given by

(go,gl,..-,gn—z, ¢g,,,1(x)) fori =n
di(80,81s--->8n—1-%) = (g0, 81>+, 8i—1&i»---,8n—1,x) forO<i<n .
(g11~-'ag}’l—lv-x) fOI‘i:O
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On G x M, the face maps dyp = pr;; and di = @ are the source and target maps of the
action groupoid.

Definition 5.41. Let G be a connected Lie group, M a manifold with G-action @ : G x
M — M, and G a hermitean bundle gerbe over M. A G-equivariant structure on G
consists of a 1-isomorphism A: pry, G —> @*G over G x M and a 2-isomorphism

x:d;AodjA —> df A over G*? x M such that
d3x o (Lisedyyra 0 dyx) = di x © (Lidgodoy4 © d3x)

over G*3 x M. A morphism (A, x) —> (A’, x') between equivariant structures on G
consists of a 2-isomorphism ©#: A —> A’ such that the diagram

* * d;ﬂOdgﬂ k A/ * /
dyAodyA dyA" o diA

[

dfA —————— dA
arv

commutes. We denote by £(G) the groupoid of equivariant structures on G.

A splitting of p: Sym;(G) — G is a smooth 2-group homomorphism s: G —
Symg(G) such that p o s = 1. We assume here for simplicity and without loss of
generality that unitors are strictly preserved. We denote by S(G ; Sym; (G)) the groupoid
of splittings of p: Sym;(G) — G . Concretely, a splitting consists of

e a l-isomorphism s(f): prj, G — (D;}g of bundle gerbes on ¢ x M for every

Cartesian space ¢ € Cart and sections f € G(c),

e a2-isomorphism s(¢): s(f) —> @*s(f’) for every morphism ¢: f — f'in G
, and

e a2-isomorphism s(f) ® s(f') —> s(f f’) in Symg(G) for every f, f' € G(c),

such that ¢*s(¢") o s(¢) = s(¢’ o ¢) and the diagram
s(HOs(fH@s(f") ——— s(HH@s(f' f")
s(f ) @s(f") ———— s(f f f")

commutes. A morphism w: s —> s’ of splittings consists of 2-isomorphisms w (f):
s(f) —> s'(f) in BGrb(c x M) for all f € G(c) such that the diagrams

s(f) —2P s v s() @ s() L2 o1y @ 5 ()
S(w)J lx’(fp) and J J
e*s(f) W o*s'(f) s(f 1) W S'(fF D

commute.
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In what follows we construct an equivalence
E:£0G) — S(Q; SymG(g))

of categories. Let (A, x) be an equivariant structure on G and (f: ¢ — G) € G(¢).
Pulling back A along @ gives rise to a 1-isomorphism qﬁ;ﬁA: pry, G — CD’;-Q over
¢ X M. We can define the section E(A, x): G — Symg;(G) by E(A, X’)(f) =
@}A: pry, G — @}g. The 2-isomorphisms E(A, x)(¢) are induced by general
properties of pullbacks and the 2-isomorphism x induces the 2-isomorphism encod-
ing the compatibility with multiplication. The action of E on morphisms of equivariant
structures is again by pullback along @ f.

Theorem 5.42. The functor E: £(G) — S(G ; Symg(G)) is an equivalence of cate-
gories.

Proof. We start by showing that Z is essentially surjective. Let s: G — Symg(G) be
a splitting. We pick a good open cover {c;};ca of G. This induces good open covers of
G*%and G*3 given by {c; x c¢j}i jea and {¢; X ¢ X c}i,j ken, respectively. Every c;
comes with an embedding f;: ¢; —> G and hence can be regarded as an object of G .
Applying the section s: G —> Sym (G) to all elements of the open cover provides a
collection of compatible 1-isomorphisms

s(ci) :==s(fi:ci — G): pry, G —> @}ig.
On double intersections ¢;; := ¢; N ¢; we get coherent 2-isomorphisms4
S(Cij): S(Ci)lq_/ —> S(filc,'_/) = s(fj|€i_j) - S(Cj)|ci_j ’

since Sym;(G) — Cart is a Grothendieck fibration. Hence the 1-isomorphisms s(c;)
glue together to a 1-isomorphism Ay : pry, G —> @*G over G x M.

Let pry, pr, : G*?> — G be the projections to the first and second factors, and
m : G** — G the multiplication in G. From A, we can construct three 1-morphisms
pri As, pri Ag, and m* Ay over G*? x M. We would like to show that these 1-morphisms
are canonically isomorphic to the 1-morphisms constructed from the good open cover
{ci x c¢j}i jen by applying s to the morphisms Prjeixej» PP2le;xe; and m¢;xc; on
¢; x ¢j —> G, respectively. For this, consider the commutative diagram

ci Xcj XM — i xM

[ ]

G><2 x M p—r]> GxM
which implies that
= pry
pr’f‘cl,xcj A = prTlCixcj s(ci = G) — s(ci X Cj—> i > G) ,

4 Here we interpret s as a map of stacks, i.e. a natural transformation of 2-functors Cart — Cat, via the
inverse Grothendieck construction.
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where the 2-isomorphism is part of the data of the section s. The same argument shows
the claim for pr,. To show the corresponding statement for m we need to pick a refinement
{Cu} e of the cover {c; X ¢j}i jea such that the diagram

1 <

ael

A
m
~

]_[ CiXCj ]_[Ci

i,jeA ieA
x2
_—
G — G

commutes. The cover {¢,},.x can be constructed by choosing a common refinement of
the covers {c; X ¢} jea and {m~Y(c;i)}iea of G*2.

s pr . pr . .
The multiplication of ¢; x ¢; —4 G with Ci XCj -3 Gin Gisci xcj 5 G.The
structure of a smooth 2-group homomorphism on s now provides natural 2-isomorphisms

s(ci x ¢; LN G) ®s(ci x cj LN G) —> s(ci x ¢j N G) (5.43)

which glue together to a 2-isomorphism ys: @*(pr] Ay) o (pry Ay) —> m™ Ay over
G*2 x M because (5.43)is a 2-isomorphism of smooth 1-isomorphisms. The coherence
condition for x; over G*3 x M follows from the observation that the various pullbacks
to G*3 x M can be constructed by applying s to different functions from ¢; x cj X ck
to G and the coherence condition for s. This shows that E is essentially surjective.

We next show that the functor E is faithful: let 9, 9': (A, x) —> (A, x') be iso-
morphisms of equivariant structures on G such that E(¢') = Z(¢#), and let g € G.
We can take ¢ = RY and f: ¢ —> G to be the constant map at g to conclude that

Qlayxm = E(A, x)(@)(f) and @j(gjxm = E(A’, x)()(f) agree. Hence the two iso-
morphisms agree pointwise and the statement follows.

Finally, we show that the functor E is full: let (A, x) and (A’, x’) be equivariant
structures on G and w: E(A, x) —> E(A’, x’) a morphism of splittings. Evaluating
w on the good open cover {c;};ca from above provides isomorphisms w: Aj¢;xp —>
Aicz-x - Since w is a morphism of splittings, these morphisms glue together to a 2-
isomorphism ©¥,: A —> A’. That this is an isomorphism of equivariant structures
follows from the coherence conditions for w and the observation that it suffices to check
the conditions locally. O

Corollary 5.44. A bundle gerbe G on a manifold M admits an equivariant structure if
and only if the 2-group extension

1 — HLBAIY — Sym;(G) — G — 1

admits a splitting.
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Definition 5.45. Let (G, A, x) and (G', A, x') be G-equivariant bundle gerbes on M.
An equivariant 1-isomorphism G —> G’ consists of a 1-morphism of bundle gerbes
E: G —> G’ together with a 2-morphism y : ®*E — pr}, E defined by the diagram

pry G A o*G

pr}kw g/ v @ * g/

in BGrb(G x M), such that for every g, g’ € G there is an equality of diagrams

PrA D*
pri, G 2 ?:G : e 59
A @A

pri, E Z PIE z @y E x

x ol *g/ * of = Py 9 A d’;'gg
pry G e MY P Py 9
\Ji/ o, { - J¢;,RE
P

* ! * 4
Py 9 A ¢x’gg

Being an equivariant 1-isomorphism is a structure and not a property: given a 1-
morphism E: G —> G’ of bundle gerbes there is a set £(E) of equivariant structures
on E. According to Theorem 5.42 we can describe the equivariant structures on G and
G’ by splittings s: G —> Symg(G) and s': G —> Sym(G’). We shall now give a
description of an equivariant structure on E using these homomorphisms of 2-groups.
For this, recall from the end of Sect. 5.4 that any 1-isomorphism E: G —> G’ in
BGrb(M) gives rise to a morphism of smooth 2-groups E: Sym;(G) —> Symg(G'):
choose an adjoint inverse EV for E and define E via

(f,A)I—)CD}Eo(f,A)oEv.

Proposition 5.46. There is a natural bijection Ep between the set £(E) of equivariant
structures on E and the set of 2-isomorphisms 7 : E os —> s’ of smooth morphisms of
2-groups.

Proof. Let G and G’ be G-equivariant bundle gerbes on a manifold M with a smooth
G-action @: G x M —> M, and let (E,y): G —> G’ be a 1-isomorphism of equiv-
ariant bundle gerbes. Fix an adjoint inverse E" to E. We construct the 2-isomorphism
Ee(y): Eos —> s"asfollows: let f: ¢ —> G be an element of G . The natural trans-
formation Eg (y) consists of a 2-isomorphism Eg(y)r: Eos(f) — s'(f) which we
construct by the diagram
pry G — L @76
priy, EY Pz ‘
pry G [k o;E

(Ix fy*y
™~

e
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Using the same methods as in the proof of Theorem 5.42 one can show that Ef is a
bijection. O

Definition 5.47. An equivariant 2-isomorphism of G-equivariant bundle gerbes (E, y)
—> (E’, y’) consists of a 2-morphism n: E —> E’ such that there is an equality of
diagrams

A A
pri, G ——— ®*G pryy ¢ ——— @*G
priy E’ W pri, E ¢ O*E = prh, E' , O*E' ﬁ P*E

prj;/[ g/ " @*g/ pr*M g/ e @*g/

Being an equivariant 2-morphism is a property.

The 2-group extension Symg;(§) —> G can also be used to study the existence
of equivariant structures on 1-morphisms. A condition for 2-isomorphisms of bundle
gerbes to be equivariant is

Proposition 5.48. Let (E,y) and (E',y’) be equivariant I-isomorphisms. A 2-
isomorphism n: E —> E' is equivariant if and only if Eg/(y') o (o 1) = Bg(y).

Proof. This follows from Definition 5.47 using the fact that the inverses EY and E’
are adjoints to E and E’. mi

6. Application I: Nonassociative Magnetic Translations

Nonassociativity in quantum mechanics has a long history dating back to foundational
work on the theory in the 1930’s. Its interest was revived in the 1980’s with the realisation
that the magnetic translation operators on the states of a charged particle moving in a
magnetic monopole background generally form a nonassociative algebra [Jac85,GZ86];
see [Szal9a] for a mathematical introduction to the subject together with a survey and
comparison of the various approaches to the quantisation of the pertinent twisted Poisson
structures. The recent revived interest in these models has come about from their con-
jectural relevance to the low-energy dynamics of closed strings in non-geometric back-
grounds, which are based on arguments invoking T-duality applied to target spaces that
are tori or more generally total spaces of torus bundles [Liis10,MSS12,BL14,MSS14],
and other compact Lie groups [BP11]. See e.g. [Szal9b] for a contemporary introduction
to the subject with further references.

As a first application of the general framework presented in this paper, we reformulate
the well-known theory of magnetic translations for source-free magnetic fields in the
language of Sect. 3. We then use the results of Sect. 5 to describe nonassociative magnetic
translations, which were first studied from a geometric perspective in [BMS19] on R?.
They were subsequently studied from a quantum field theory perspective in [Mic19],
where generalisations from R? to connected Lie groups are also considered. Here we
will show that they are induced by a natural section of Symg;(§) —> G constructed
using the parallel transport of Sect. 4.
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6.1. Magnetic translations on T¢. Magnetic translations appear in the quantum me-
chanics of an electrically charged particle moving on a manifold M in the presence of a
magnetic field, which is given by a 2-form B € Q2(M). In the semi-classical Maxwell
theory of electromagnetism, the 2-form B is closed and has integer periods. The first
requirement H = dB = 0 is the statement that there are no magnetic monopoles. The
second requirement is the Dirac charge quantisation condition which states that B is
the curvature of a connection on a hermitean line bundle L over M. In Bloch theory
(see e.g. [Gru00]), the line bundle L is used in geometric quantisation of the shift of
the canonical symplectic structure on the cotangent bundle 7*M by the 2-form B, so
that the quantum Hilbert space of wavefunctions for the particle is H = L?(M; L), the
space of square-integrable sections of L. The (global) symmetry group G of the parti-
cle acts on M, and one would like to promote the G-action to an action on the Hilbert
space by linear operators. In quantum mechanics, this action on H is only required to
define a projective representation of G. If G acts via translations the resulting opera-
tors are called magnetic translations. The construction in Sect. 3 provides a universal
mechanism to construct magnetic translations, which we will illustrate on the example
of a d-dimensional torus M = T¢. Magnetic translations on T¢ have been studied in
e.g. [Fiol3,DGTS20] (for constant magnetic fields B), but our treatment is more general
and also fits in with expectations from string theory.

Instead of working on T¢ directly, we work equivariantly on the universal cover R? by
viewing T¢ = R?/Z? as the quotient of the natural free action T on R¥ of the discrete
subgroup Z¢ < R? by translations. The corresponding projection 7 : RY — T is
a surjective submersion. To describe line bundles on T¢ we consider the diagram of
manifolds

u(l)

]

i
RY x 74 =R xqu RY R4
f
Td
where we use the identification RY x Z¢ 3 (x,i) —> (x, x +i) € R? x4 R?; under
this identification, mp = prpe is the projection and 71 = 7 is the 74 -action on R<.

Any line bundle on T¢ can be described by a smooth function f: R? x Z¢ — U(1)
satisfying

Je+i, j) fxi)=flxi+])

for all x € R and i, j € Z¢. This means that f is a 1-cocycle on the group Z¢ with
values in the Z9-module C*®°(R4; U(1)). We will use the notation fi(s) == f(-,0) €
C OO(]Rd; U)) fori € Z4. Concretely, the U(1)-bundle described by f is the quotient

Py = (R x U(1))/~
by the equivalence relation

(x+i, 1)~ (x, ﬁ(x))
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for all x € RY and i € Z. Sections of the associated line bundle L F— T¢ are in
one-to-one correspondence with equivariant functions on the universal covering space,
which are functions ¥ € C*(R?; C) satisfying quasi-periodic boundary conditions

Vix+i) = filx) ¥ (x).

The action of the translation group G = R‘g on R?, x —> x + v, induces an
action T of RY on T?. For v € R, the bundle 7;*Ps is described by the functions
o fi = fi(- — v).> This allows us to give a concrete description for the fibres of the

principal bundle Symgg (Pf) —> RY as

Sympd (Pg)jp = Buny(y(M)(Py, Prsr)
={ge C®®R, UMW) | gx+i) = fi(x) fitx —v) ' g} .

The group6 C OO(']I“”l; u) =cC °°(]Rd ; U(l))Zd acts freely and transitively on Symeé
(Pf)v by pointwise multiplication. The multiplicative structure from Proposition 3.4
on SymR,é (Py) takes the concrete form

n((g. v), (g v)) = ((rhg) g . v+V).
A smooth section of the short exact sequence

1 — C®(T¢, U(1)) — Symga (Pf) —> R — 1

induces a twisted action of ]R{‘_f on the quantum Hilbert space H = L2(T%; L £); here we
do not require this section to be a group homomorphism, and the 2-cocycle twisting this
action takes values in C*°(T¢; U(1)). We can construct such a section from the choice
of a connection on Py, which reproduces the usual expression for magnetic translations.

A connection on Py can be described by a 1-form A € Q! (RY) satisfying
—idlog f = nfA —nfA.

This condition implies that the closed 2-form dA = 7 *B descends to a well-defined
magnetic field B on T¢. The section corresponding to A is given by parallel transport:

SA: R‘é — Symeé (Py)

vr—>sA(v):exp(—i/ A),
Al(5v)

where
Alvyy={x—v+rveRi|0<t<1}.

5 Note that the functions fi are not invariant under the subgroup Z‘é C ]R‘é, whereas the bundles Py and
P_x ¢ are canonically isomorphic. This is nothing but a concrete implementation of the fact that pullbacks are
only well defined up to canonical isomorphism.

6 For an action of a group G on a set X, we denote by X G C X the subset of G-invariants.
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We check that this is indeed an element of Symeé (Pf):

(54 () (x +i) = exp ( —i f

Al(x+i;v)

A+i f A) (s4())(x)
Al(x;v)

= exp ( / dlog £;) (54 () (x)
Al(x;v)
= £i(0) fitk =) 7" (sa)) (x) .

The corresponding 2-cocycle describing the extension agrees with the 2-cocycle con-
structed in e.g. [Sol18,BMS19].
By Proposition 3.5 the extension SymRKé (Py) acts on the total space of the line bundle

L ¢ and hence on the quantum state space . The section s 4 realises translations v € Rg
as linear operators P(v) : H —> H on this Hilbert space via

POV =sa(0) 1y ¥ .

One easily checks that P(v)y € Hfory € H,ie. (P)y)(x+i) = fi(x) (P)¥)(x).
However, they only provide a projective representation of the translation group R{’.{ since
54 1s not a group homomorphism. Explicitly, using Stokes’ Theorem we find that the
magnetic translations satisfy the relations of the twisted group algebra

P(v) P(W) = exp ( —i /

JT*B) P+v),
A2(-30,v)

where

APV, v)y=x—v—v+nv+nveRi | 0<n<n <1},
and we used the relation

INZ (v, v) = Al v) — Al v+ )+ Alr+ v x +v +0)
in the simplicial complex in RY.

Remark 6.1. By dropping the (quasi-)periodicity conditions everywhere one gets back
the description of magnetic translations corresponding to (necessarily trivialisable) line
bundles over R? (cf. [BMS19]). O

6.2. Nonassociative magnetic translations from parallel transport. Dirac’s extension of
the classical Maxwell theory assumes a singular magnetic field B whose 3-form curvature
H = dB is distributional, with zero-dimensional support consisting of the locations
of magnetic monopoles on the configuration manifold M. However, in applications to
string theory the closed 3-form H corresponds to an NS—NS flux and is typically smooth,
as we now assume. The framework described in Sect. 6.1 is not capable of encoding
magnetic fields with non-vanishing magnetic charge H = dB, since in this case B
can never be realised as the curvature of a line bundle. The quantisation problem now
concerns an H-twisted Poisson structure on the cotangent bundle 7*M [Szal9a], with
twisting of the canonical Poisson structure which spoils the Jacobi identity for functions
in C*®°(T*M; C) that vary along the vertical directions. The corresponding quantum
operators do not associate; it is not possible to realise a nonassociative algebra by linear
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operators acting on a Hilbert space. Different approaches to describing the nonassociative
quantum mechanics of charged particles moving in the background of a magnetic field
with smooth monopole sources are described in [MSS14,BBBS15,KS18].

Fluxes in string theory obey a generalised version of Dirac charge quantisation (see
e.g. [Szal3]); in particular, the closed 3-form H has integer periods and hence is the
curvature of a connection on a hermitean bundle gerbe over M. Based on this observation,
in [BMS19] we suggested the following approach: geometrically the magnetic field B
can be interpreted as the curving on a trivial gerbe Zp with curvature H. We proposed
to use the 2-Hilbert space of sections of Zp as a replacement for the usual Hilbert space
of quantum mechanics. The category of sections of a gerbe G on a manifold M is the
morphism category I'(M; G) := BGrb(Z, G); for details on the 2-Hilbert space structure
on this category we refer to [BSS18,BS17,Bunl7]. As evidence for our approach we
constructed a projective action of nonassociative magnetic translation operators on this 2-
Hilbert space, which naturally encodes the relations of the H -twisted Poisson algebra on
T*M . However, the drawback of this approach is that it does not work for topologically
non-trivial fluxes H, or equivalently for gerbes G with non-torsion Dixmier—Douady
class. Extending our geometric approach to nonassociative quantum mechanics along
these lines was in fact one of our original motivations behind the present paper.

Let us first explain how the action of nonassociative magnetic translations for mag-
netic fields with sources on M = R?, which was described in [BMS19], can be con-
structed via the 2-group extensions from Sect. 5. Every gerbe on R¢ is isomorphic to a
trivial gerbe Zp represented by the diagram

RY x C

R —= R?
Jl
Rd

with trivial connection A = 0 and curving B € Q%(R%). The connection on Z induces
07
a section

SB: ]R‘tl — SymRz(I)
via parallel transport:
T
sg(v) 1= (ptlg)m.(_;u): Ip — t1p .

Combining sp with the action of Sydet (Z) on 7 induces a higher projective action of

Rﬁ on I'(RY; 7). We refer to [BMS19, Section 4] for precise definitions.

Since all line bundles over R are isomorphic to a trivial line bundle, the category
Syng @) atv € Rg is equivalent to the category with one object and morphisms

7 To simplify the presentation, in the following we disregard smooth structures and work in the 2-category
of 2-groups 29rp(Grpd). The extensions to categories fibred in groupoids over Cart is straightfoward.
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described by smooth functions RY —s U(1). Thus
Symga (Z) = ( JC® R U1))) xR .
The 2-group structure on Symeé (Z) is given by

vV i=v+0,
(h,v) @ (W, V) == ((tih) h', v +0) .

However, under this equivalence the action of the magnetic translation operators becomes
elusive. In [BMS19] we equipped the 1-morphisms with a connection to circumvent this
problem. We did not require the 2-morphisms to preserve these connections leading to

equivalent categories. The parallel transport 1-morphisms ptIIB can be equipped with
such a connection in a canonical way. This reproduces the constructions from [BMS19].

For this, let Zp be a trivial bundle gerbe on a smooth manifold M with curving
B € Q*(M) and curvature H = dB. We fix a base point x € M. Via transgression
and regression we get a bundle gerbe R7 (Zp) defined over the diffeological path fi-
bration PpM — M. The corresponding line bundle over (PyM)!?! admits a canonical
trivialisation. It comes equipped with a connection 1-form given as the pullback of the
transgression of B to the loop space L M along the embedding [: (PoM)?) — LM.To
describe the curving of R7 (Zp) we note that a tangent vector to a based path y € PgM
is a smooth section V € I'([0, 1]; y*T M) which is zero in a neighbourhood of 0 and
constant in a neighbourhood of 1. The 2-form RT (B) € Q*(PyM) is defined by the
transgression formula

RT(BYV, V) :/ wiyH
14

where 1 denotes the interior multiplication between a vector and a form. There is a natural
1-isomorphism [Wall6, Section 6.1] W: R7T (Zg) —> Zp with underlying diagram

PN
=
~ S

of diffeological spaces. The line bundle which is part of this 1-morphism has a canonical
trivialisation for trivial bundle gerbes Z and has the connection 1-form Ay € Q! (PoM)
defined by the transgression formula

(PoM)2 —% oM

Aw (V) =/ B
Y

In order to describe the parallel transport, we pull everything back to the path space
P M along the two evaluation maps evg, evy : PM —> M.The parallel transport defined
in Sect. 4 is a 1-morphism

ptFT(IB): eviRT (Zp) —> eviRT (Ip)



Smooth 2-Group Extensions and Symmetries of Bundle Gerbes 1891

given by a line bundle with connection over the space Py 2 M. An element of Py,2M is
a triple of paths (Yxy, ¥yz, Vxz), where y;, is a path from the base point x to some other
point y € M, yy, is a path from y to a third point z € M, and y,, is a path from x to
z. Again, the line bundle for the parallel transport is trivial since we work with a trivial
bundle gerbe. Its connection is given by

/ LB,
Vxz*XVyzxVxy

where the notation means that the evaluation on a tangent vector V is given by

/ 1yB.
VxxXVyz*Vxy

We obtain a 1-morphism

Ty V*W’l FT(IB) eviWw
pty?:evyZp RAURSEN eVoRT (Ip) — eviRT (Ip) —> evilp

representing the colimit from Definition 4.16. Concretely, this is a trivial line bundle
over P M with connection
/ 1eB .

This is exactly the formula used for the magnetic translations in [BMS19] in the case
M = R?, hence it provides a conceptual underpinning of the constructions in [BMS19],
and moreover generalises them to trivial bundle gerbes on arbitrary manifolds M.

6.3. Nonassociative magnetic translations on T¢. Now we generalise the description
of nonassociative magnetic translations to the d-dimensional torus T¢, see also [Mic19]
for a discussion from a quantum field theory point of view. A problem in this context
is that for topologically non-trivial gerbes on T¢, there are no non-trivial sections. This
makes the 2-Hilbert space of sections an uninteresting object to study.® However, our 2-
group extension still exists and should encode the geometry of nonassociative magnetic
translations in this context, regardless of whether or not sections exist. Non-trivial gerbes
over T¢ are similarly treated as coming from Z¢-equivariant (topologically trivial) gerbes
over RY, as in e.g. [MW16, Section 7.1].

Bundle gerbes on T¢ can be described using the surjective submersion 77 : RY — T¢
and the corresponding diagram

f
”0 (L ® rrl oL > 710 5 L

~ o

dedeERded:;Rd

J,,

Td

8 We expect that there exists a better definition of sections circumventing this problem.
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Here we used the identification (x, i, j) € R¢xZIxZ4 — (x, x+i, x+i+j) € (R,
Concretely, a bundle gerbe consists of aline bundle L over R? x Z?, which we can assume
to be trivial without loss of generality, and an isomorphism f: 7§ | LQn{,L —> 7§, L

of line bundles over R? x Z¢ x Z¢ satisfying a coherence condition over R? x (Z4)*3.
We can describe this isomorphism by a collection of smooth maps f; ;: R? — U(1)

foralli, j € 74, and the coherence condition translates to
fi,j @) firj k) = fi jrkc(x) finlx +10)
forall x € R? and i, j. k€ 74, which is the 2-cocycle condition for
f.. € CHzZ c™® R U(1))) .

We denote the gerbe described by f as Gy.

For v € R‘é, the pullback of G along the translation 7, can be described by the
2-cocycle 7} f;.j = fi,j(+ — v). Using [Bunl7, Proposition A.31] we can describe the
category Syng Gpatv e Rﬁ up to equivalence in the following way: its objects are

functions g: R? x Z¢ — U(1) satisfying
fijx—v)gi(x) gj(x +i) = givj(x) fi,j(x),

forallx € R and i, j € 74 1tis straightforward to deduce the morphisms in SymR(é Gr)

from [Bun17, Proposition A.31]; we find that a morphism from g to g’ is described by
a function : R — U(1) satisfying

h(x) gi(x) = g{(x) h(x +1i)

forall x € R? and i € Z¢. Note that for the trivial 2-cocycle fi,j = 1 this describes the

category of line bundles over T¢ with arbitrary gauge transformations as morphisms.
The 2-group structure on

Symga (Gp) = [ [ Symga(Gp)p
veR?
from Theorem 5.23 takes the form
(g1, v) ® (87, V) = ((ry08i) gf- v +V')
(h,v) @ (W', V) == ((tyh) h', v +V') |
fitting into the 2-group extension from Theorem 5.27:

I — HLBAI(TY) — Symg¢(Gy) — R{ — 1. (6.2)

As in the case of line bundles from Sect. 6.1, a connection (A, B) on G induces a
section of the extension (6.2). A connection on G ; is described by a 2-form B € Q? (Rd)
and a 1-form A € Q' (R? x Z¢) satisfying

—idlog fi j(x) = Ajyj(x) — A;(x) — Aj(x +1),
dA=n{B—n§B,
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for all x € R? and i, j € Z“. The second condition implies that the closed 3-form
dB = 7*H descends to a well-defined flux H on T¢. Using the connection we can
construct a section

SA,B: Rﬁ - Sym]R‘é @)
by

sa.p(v) :==(gi,v) with g; =exp (i f A,-) .
Al(-:v)

We check that this is indeed an element of Symm G

g gy =en(i [ awi [ a-i A
Al(x;v) Al(x+i3v) Al(x;v)

= - dlog f; ;
eXP < AI(X;U) Og f’])
= fijx =) fi i

For the multiplication we find

sa.B(V) ®sa (V) = <€XP (i / A +i
Al(-=v50)

= <exp (1/ A —1i
Al(v40)

Ai>, v+v/>
L)
(B - ‘Ci*B)), v+ v’)
AZ(-:v v
v

)
i/AZ( )(B—ri*B)),O).

This particular product is associative on the nose. However, the line bundle on T¢
described by the transition functions exp ( —if A2y (B — Ti*B)) is non-trivial. We
can use the decomposition

/ digB = £./ B —/ 17 H |
A2(-30',0) A2(+50,v) A2(+50,v)

where £ is the Lie derivative, to construct a 2-isomorphism

J
J

=548 +0)® <eXp<

I, = exp(—i / B): sA.B(V) ® 54 (V) —> sap(v+7),
A2(-:0',v)

which has the advantage that the line bundle on the right-hand side is trivial.

Remark 6.3. In this last representation the nonassociativity of the higher magnetic trans-
lations is realised by the composition property

*
Iy yyw © T_unv,w = Wy,v,w Hysv,w o My ,

where

@y p.w = EXP (i / n*H)
A3 (- w,v,u)
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and
A3(x;w,v,u)={x—u—v—w+t1w+t2v+t3ueRd|O§t3§t2§t1 <1}.

Concretely this means that there are two different ways to go from the triple product
s4,B(u) ® 54, B(v) @54, g(w) to s, p(u + v+ w). Their difference is controlled by the
3-cocycle w., .. . on the translation group Rﬁ with values in C*°(T¢; U(1)), as depicted
in the commutative diagram

sa,BU) ®sa,p(v+w)

sa,.8(u) @ (s4,8(v) ® s4,8(w)) sA,B(u+v+w)
IJ lw;,}}.w
(s4.8() @ 54,8(v)) ® 54,8(w) sA,B(U+V+w)

M A

saBUu+v)®s4,p(w)

This is the implementation of nonassociativity in the higher categorical framework. O

7. Application II: Anomalies in Quantum Field Theory

In this section we begin by using the group extensions Sym (P) from Sect. 3 to study
the existence of equivariant trivialisations of line bundles. This has direct applications
to the path integral description of the chiral anomaly in quantum field theory on even-
dimensional spacetime manifolds. Then using the 2-group extension Sym(G) from
Sect. 5, we study the analogous questions for gerbes and apply our findings to the
Hamiltonian description of the chiral anomaly on odd-dimensional time-slices.

7.1. Even dimensions: chiral anomalies. Let G be a connected Lie group, M a manifold
with smooth G-action @: G x M — M, and (P, x) a G-equivariant U(1)-bundle on
M . The equivariant structure on P can be described by a splitting sp : G —> Symg (P).
Assume furthermore that P is trivial as a line bundle, i.e. there exists a 1-isomorphism
¥: I —> P. The trivial bundle carries a canonical equivariant structure with corre-
sponding splitting s; : G —> Symg (/).

Rewriting the result of Sect. 3.2 slightly, we see that ¥ is equivariant if and only if
the smooth 1-cocycle

G — COO(M; U(l))
g— sp() ¥ (s1(2)”"

is trivial. Every other isomorphism / — P differs from ¢ by a uniquely determined
element of C°°(M; U(1)). Their corresponding 1-cocycles differ by the coboundary
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defined by this element. Hence the obstruction for an equivariant bundle which is trivial
as a line bundle to be also trivial as an equivariant bundle is an element of the degree
one group cohomology H' (G; C® (M, U(l))). This has also been observed in [CM95]
from a different perspective.

The question of whether a bundle is equivariantly trivial is important in the path
integral perspective on chiral anomalies in quantum field theory. Let M be a based even-
dimensional compact Riemannian spin manifold, G a Lie group, Q a principal G-bundle
on M, and p: G —> End(V) a unitary representation of G on a finite-dimensional
vector space V which encodes the matter content of the field theory. Denote by S* and
S~ the positive and negative chirality spinor bundles on M, respectively, by I" the group
of based gauge transformations of Q and by A the affine space of connections on Q. The
field content of the theory are chiral spinors, which are smooth sections of the vector
bundle ST ® V, where here V is the hermitean vector bundle associated to Q via the
representation p. There is a family of (twisted) Dirac operators

Dy T(M;8T®V) — T(M; S”®V)

parameterised by gauge fields A € A, which are first order elliptic differential operators
acting on chiral spinors. These data together define the content of a chiral gauge theory.

The formal path integral over the chiral spinor fields is the determinant det()4) of
the Dirac operator Jy. However, the determinant of J)4 is in general not a number but
an element of a complex line, and it can be defined only after suitable regularisation as
an element of the fibre of the determinant line bundle det — A [AS84]. This defines
the (exponentiated) effective action functional which is a section

Z =exp(—S) : A — det,

with S(A) = —log det(fy). The action of I" on A via gauge transformations can be
lifted to the determinant line bundle, which hence descends to a line bundle over the
moduli space of gauge connections A/I".

Being an affine space, A is contractible, so over A we can trivialise the determinant
line bundle and hence identify the effective action functional Z with a complex func-
tion. However, this might not be possible over the orbit space A/I": if the descended
line bundle is non-trivial then we cannot identify the effective action functional with a
complex function in a gauge-invariant way, i.e. the gauge symmetry is anomalous. The
line bundle over A/ I is trivial if and only if we can choose a I"-equivariant trivialisation
of the line Z(A) = det(4). By our general discussion above, the obstruction to this is
an element of H! (F; U(I)A), where U(1)# is the diffeological space of maps from A
to U(1). An explicit formula for this smooth 1-cocycle is obtained in [CM95].

7.2. Odd dimensions: the Faddeev—Mickelsson—Shatashvili anomaly. We shall now
generalise the construction from the Sect. 7.1 to bundle gerbes. For this, we need to in-
troduce a categorification of the first group cohomology which takes values in a smooth
abelian 2-group. We use a definition along the lines of [BMS19], adjusted to the smooth
setting.

Definition 7.1. Let G be a Lie group and A a smooth abelian 2-group equipped with a
left action p of G . A smooth higher 1-cocycle on G with values in A consists of

e amorphismA: G — A, g —> Ag, in J(, and
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e a smooth natural isomorphism y, o/: Ag ® pg(Ag) —> Ag e Of smooth functors
G xeat G — A,

such that for every ¢ € Cart:

o L., = I. where I is the monoidal identity object of the fibre A. of A over ¢ € Cart,
and where e.: ¢ —> G is the constant map at the identity element of G,

® X, . and x. . agree with the left and right unitor morphisms in A, and

e the diagram

1®0g(Xg,¢")
2g @ pe(hg ® pgr(hg)) — s hg @ pglhg g) =% Ay g

l ng/,g”

)Lg ® ;Og()tg/) ® ;Ogg/()tg”) W} )ng’ ® /Ogg’()\g”)
8.8

commutes for all g, g/, g” € G(c).
We will also need the concept of a higher coboundary.

Definition 7.2. Let (A, x) and (1', x') be higher 1-cocycles on a Lie group G valued in
a smooth abelian 2-group A. A higher coboundary between (X, x) and (1, x’) consists
of

e a morphism 6 : * —> A, and
e smooth isomorphisms wg: A, ® pg(0) — 0 ® )»;, forevery g € G,

such that w,, agrees with the symmetry isomorphism fa, and the diagram

we®1
hg ® pg(hg ® pgr(0)) — dg @ pg(0) ® pg (1)) = 0N, ® pg ()

!
l J1®Xg,g’

A ® pg(hg) ® pggr () ———2 Aoy ® Pgg(0) —4——> 0@,
Xg'g/®1 88 88

commutes for all ¢ € Cart and g, g/, g” € G(¢).

Remark 7.3. There is a natural definition of morphisms between higher coboundaries,
but these are not relevant for our purposes. O

Let G be a connected Lie group, M a manifold with smooth G-action®: G x M —
M, and (G, A, x) a G-equivariant bundle gerbe on M. The equivariant structure on
G can be described by a splitting sg: G —> Symg(G), as explained in Sect. 5.6.
Assume furthermore that G is trivial as bundle gerbe, i.e. there exists a 1-isomorphism
E:7Z — G. From the results in Sect. 5.6 we can deduce that the obstruction to the
existence of an equivariant structure on E is the higher 1-cocycle

(f:e— G)—> sg(f)" o E(sz(f)) € BGrb(e x M)(pry, G, pry, G) = HLBdI(c x M) .

This 1-cocycle is trivial precisely if there exists a natural isomorphism to the constant
1-cocycle at the trivial line bundle /. The choice of such an isomorphism corresponds
to the equivariant structure on E. The isomorphisms y in Definition 7.1 use the smooth
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2-group structure on HLBdIY, and the isomorphisms which are part of the splittings
sg and s7, and E. Generally, two 1-isomorphisms G —> G’ of bundle gerbes differ
by the action of a 1-automorphism of G’. Hence the obstruction to the existence of an
equivariant isomorphism is an element of the first higher group cohomology of G with
coefficients in the smooth abelian 2-group HLBdI/.

Let us now explain the relation to the Hamiltonian description of chiral anomalies
in terms of bundle gerbes, which was worked out in [Mic85,CM95,CM96,CMM97,
CMMO00]. Let M be a based odd-dimensional compact Riemannian spin manifold,’ P a
principal G-bundle on M, and p: G —> End(V) a representation of G describing the
matter content of the gauge theory. Again we denote by A the affine space of connections
on P and by I" the pointed group of gauge transformations. For every A € A we can
construct a massless Dirac operator

Dy:TM; SQV)—TWM;SQV),

where S —> M is the spinor bundle. The Dirac operator is a first order self-adjoint
elliptic differential operator, which serves as the first quantised Hamiltonian acting on
the one-particle Hilbert space H =T'(M; S ® V).

To define the fermionic Fock space F4 (H) of the quantum field theory in the presence
of a gauge field A € A, one has to pick a polarisation H = H,(A) & H_(A). In general
there are gauge fields A € A for which the Dirac operator /)4 has zero modes; for these
fields there is no universal and natural way of choosing such a polarisation. Denote by
Ag C A x R the subset of pairs (A, r) such that the real number r is not contained in
the spectrum of Py. To equip this space with a diffeology we use the discrete diffeology
on R. For every point (A, r) € Ag we get a decomposition of the one-particle Hilbert
space

H =H+(A7r)®H7(A7r)

into the positive and negative eigenstates of the operator Dy — r 14. The corresponding
Fock bundle F(H) —> Ag has fibres

FHjam = AHe(A, 1) © AH_(A, 1) .

It is shown in [CM96] that the corresponding projective Hilbert bundle descends
to a bundle over A, and hence it induces a bundle gerbe G on A. The bundle gerbe
can be explicitly described in terms of determinant lines associated to families of Dirac
operators, see [CM96, Section 5] for details. Since A is contractible, over A the projective
Hilbert bundle is trivial and hence is associated to a bundle of Hilbert spaces. Again the
action of I" on A lifts to an equivariant structure on G. Therefore G as well as the projective
Hilbert bundle descends to the orbit space A/I". The Faddeev—Mickelsson—Shatashvili
anomaly is the obstruction to the existence of a well-defined bundle of Hilbert spaces
over A/I, i.e. to the existence of a trivialisation of the descended projective Hilbert
bundle. Equivalently, the anomaly vanishes if and only if G descends to a trivial bundle
gerbe on A/I". This in turn is the case if and only if G is trivial as a I"-equivariant bundle
gerbe on A.

9 The type of Hamiltonian anomaly discussed here can only occur on odd-dimensional manifolds, since
otherwise the chirality operator could be used to define consistent polarisations.
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From the general discussion above it follows that the obstruction to the equivariant
triviality of G is a smooth higher 1-cocycle on I" with values in HLBdI*. Because A is
contractible, there is an equivalence

HLBdI' = % JU(1)”

with the smooth category with one object and the diffeological mapping space U(1)*
as morphisms. Since this is a smooth 2-group with one object, Definition 7.1 in this
instance is equivalent to the definition of an ordinary group 2-cocycle on I" with values
in U(1)”. That the obstruction to the vanishing of the anomaly is a 2-cocycle of this
form is well-known, see e.g. [CM96]; this cocycle reproduces the usual Schwinger
terms in the commutator anomaly for the gauge group action. What is new here is
the construction of a smooth higher 1-cocycle, which only reduces to an ordinary 2-
cocycle because the space A is contractible, as well as a rigorous incorporation of the
smooth structures. Computing this cocycle explicitly and comparing it to the Faddeev—
Mickelsson—Shatashvili cocycle is beyond the scope of this paper. We expect this to be
possible using index theory following [CMM97].

8. Application III: The String Group

Any compact simple Lie group G has homotopy groups 73(G) = H*(G; Z) = Z and
m; (G) = Hi(G; Z) = 0fori = 0,1, 2; that is, G is 2-connected. It is of interest in
topology and geometry (see e.g. [DHH11,St096,ST04]), as well as in string theory (see
e.g. [SS20]), to study 3-connected approximations to G that arise as group extensions
of G. We denote such approximating objects by String(G) and call them models for the
string group of G. There is a variety of interpretations of what this means, based on
different choices of ambient higher categories in which one considers G to be a group
object. The general theme, however, is that one needs a way to realise a generator of
m3(G) = Z geometrically in the chosen framework, and a string group model for G will
generally be a choice of such a generator.

In this final section we recall the definition and construction of a topological string
group model, and show that our extensions Symg (P) from Sect. 3 provide a smooth
enhancement thereof. We then propose the smooth 2-groups Sym; (G) and Des| from
Sect. 5 as new string group models, for the specific choices of M = G and of a gerbe G on
G whose Dixmier—-Douady class generates H3(G; Z) = Z. A model for String(G) which
is very similar in spirit to our model Syms(G) was found in [FRS16]. However, that
construction relies on the choice of connection on G and considers connection-preserving
symmetries of G. Here, in contrast, we exhibit a construction of string group models for
G from symmetries of gerbes on G without connections, and thus from representatives
of the third integer cohomology of G rather than its differential cohomology. We defer
further details and comments to Sect. 8.2.

8.1. A smooth string group model. The simplest and original framework for considering
string group models is that of topological spaces.

Definition 8.1. Let G be a compact simple simply-connected Lie group. A topological
model for the string group String(G) of G is a topological 3-connected group String, (G)
along with a fibration String, (G) — G whose typical fibre is an Eilenberg-MacLane
space K (Z; 2).
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Using homotopy and cohomology groups one shows that String, (G) cannot be a
finite-dimen-sional Lie group [NSW13]. If a topological string group model can be
enhanced to consist of smooth spaces (such as Fréchet manifolds or diffeological spaces),
we denote it by String(G) and refer to it as a smooth model for the string group of G.

We recall Stolz’ model as a topological group [Sto96]: let PU denote the projective
unitary group of an infinite-dimensional separable Hilbert space. As a consequence of
Kuiper’s Theorem, PU has homotopy type K (Z; 2). Hence the classifying space BPU
has homotopy type K (Z; 3), while at the same time it classifies topological principal
PU-bundles. In particular, isomorphism classes of PU-bundles on a space X are in
one-to-one correspondence with elements of the set H3(X:; 7).

Let P —> G be a principal PU-bundle on G such that P corresponds to a generator
of H3(G; Z) = Z; such PU-bundles on G are called basic. Let G denote the group of
PU-equivariant homeomorphisms of P to itself which act on G as left multiplication
by some element of G. We can topologise G as a subgroup of the topological group
of homeomorphisms P —> P. Thus G comes with a continuous surjective group
homomorphism G —> G. The gauge group Gau(P) is the subgroup of G of those
elements whose projection to G is the identity element ¢ € G.

Theorem 8.2 [[Sto96, Section 5] and [NSW13]]. The extension of topological groups
1 — Gau(P) — G — G —> 1

exhibits G as a topological model for String(G).

The crux of the proof of this theorem is showing that Gau(P) is homotopy equivalent
toPU, i.e. that it is an Eilenberg-MacLane space K (Z; 2). Part of the content in [NSW13]
is to enhance this topological string group model to a smooth model in the sense that
the groups appearing are Fréchet Lie groups.

The group extension G —> G agrees with the extension Symg;(P) —> G con-
structed in Sect. 3 when we set M = G and H = PU, and let G act on itself by left
multiplication. Thus we immediately obtain

Corollary 8.3. Let P —> G be a basic PU-bundle. The extension of diffeological
groups

1 — Gau(P) — Symg(P) — G — 1

exhibits Symg (P) as a smooth model for String(G).

8.2. Smooth string 2-group models. Let G be a compact simply-connected Lie group,
and let G be a bundle gerbe on G whose Dixmier—Douady class generates H3(G; Z);
such a bundle gerbe is said to be basic. Let @: G x G —> G denote the left action
of G on itself by left multiplication. In the spirit of Sect. 5, it is reasonable to expect
that we should also be able to interpret the smooth 2-groups Sym;(G) and Des| as
models for String(G). The idea of constructing String(G) as a smooth 2-group has also
been considered in e.g. [BCSS07,SP11,Wal12a,NSW13,FRS16]. In the remainder of
this section we will describe how Sym (G) can be seen as a string 2-group model. By
Theorem 5.36 it then follows that Des| is also a model for String(G).

Smooth string 2-group models usually consist of extensions of G by the smooth
2-group BU(1), the delooping of the smooth abelian group U(1). However, recall that
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in Theorem 5.27 we established Sym(G) as an extension of G by the smooth abelian
2-group HLBAI® . Our point here is that what matters for string group models is only the
homotopy type of the fibre and the total space of the map String(G) —> G, so that there
is a lot of flexibility in choosing the smooth 2-group A that extends G. Observe that this
ambiguity is inherent already in Definition 8.1. This forces us to state which smooth 2-
groups A are admissible in order to obtain smooth 2-group extensions of G that deserve
to be called string group models. Our proposed definition for smooth string 2-group
models emphasises the structure of A as a smooth analogue of an Eilenberg-MacLane
space K (Z; 2). Note that for every smooth abelian 2-group A and any manifold M, we
can define Cech cohomology of M with coefficients in A by evaluating (a delooping of
A) on the Cech nerve of good open coverings of M.

The definition of a smooth string 2-group model is thus a two-step process: we first
fix the homotopy type of the extending 2-group A in a geometric way, and then we have
to make precise when an A-extension of G has the correct homotopy type.

Definition 8.4. Let H be a diffeological group. The delooping BH € 3 is the category
fibred in groupoids over Cart whose objects are the Cartesian spaces ¢ € Cart, and
whose morphisms c¢9 —> ¢ are pairs (fp1, #o1) of smooth maps fo1: co —> ci
and ho1: co —> H. Composition of morphisms is given by (f12, #12) o (fo1, ho1) =

(f12 0 fo1, hot (h12 o for)).
If H is abelian, then BH naturally becomes a smooth abelian 2-group.

Definition 8.5. A smooth 2-group A is string-admissible if it is abelian and equivalent
(as a smooth 2-group) to the delooping BH of a diffeological abelian group H whose
underlying topological space is an Eilenberg-MacLane space K (Z; 2).

From the equivalence A >~ BH it follows that Cech cohomology with coefficients
in A is equivalent to Cech cohomology with coefficients in H, shifted by one degree.
Then since H has homotopy type K (Z; 2), it follows that there are isomorphisms

HY(M; A) = HY(M; BH) = [M,B* ' H] = [M, K(Z; k +2)] = H*?(M; 2)

for all k € N. (For the notion of Cech cohomology with coefficients in higher smooth
groups, we refer the reader to [Sch13,NSS15].)

From any smooth principal 2-bundle P — M over a manifold M with structure
2-group A, we can distil a Cech cohomology class as follows: let/f = {U;};¢; be a good
open covering of M. Denote intersections by Uj,...;, := U;; N --- N U;,. Viewing the
(intersections of) open patches Uj,..;, <> M as objects in M , we denote by P|Ui1---in the
fibres of P over these objects. By Definition 5.17, we can choose an object ¥; € Py,
for every i € 1. We can further choose an object &;; € Ay,; for every i, j € I and an
isomorphism g;; : w,"y,.j ®a;; — ¥ JlU; in P|U,-j (where we have chosen pullbacks of
¥i and ¥ to Pyy,;). Over the triple overlaps Ui jx we obtain isomorphisms

Bijk: Yilvij @ ijluge ® jkiuie — ViU @ Bik|Usji »

which are uniquely determined by the properties of the Grothendieck fibration P — M
(as previously, since M has discrete fibres, it follows that P X}AI,I P = P x P). Since
the morphisms (lwiw,-jk , Bijr) lie in the image of the action functor P x A — P x MmP,
there are unique isomorphisms

Qijk: ij|U;je ®A Bjk|Uije — Qik|Uyji
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in A|Uijk’ which satisfy the required coherence condition over quadruple overlaps by
the fact that they are constructed as Cartesian lifts of identity morphisms. Hence these
data assemble into an A-valued Cech 1-cocycle on M with respect to the open covering
U. One can check that other choices of coverings and sections lead to 1-cocycles that
become equivalent to (@;;, @;jx) when passing to a common refinement of good open
coverings.

Definition 8.6. Let G be a compact simply-connected Lie group, and let A be a string-
admissible smooth 2-group. A smooth 2-group model for String(G) is a smooth 2-group
extension

1 — A — String(G) — G — 1

such that the principal 2-bundle String(G) —> G represents a generator of H3(G;Z) =
Z under the isomorphism H'(G;A) = H3 (G; 7).

With these definitions we have

Theorem 8.7. For any 2-connected manifold M, the smooth 2-group HLBAIM is string-
admissible.

Theorem 8.8. Let G be a compact simply-connected Lie group, and let G € BGrb(G)
be a basic bundle gerbe. Let Symg(G) and Des| be the smooth 2-group extensions of
G by HLBAIC constructed from G with respect to the left action of G on itself by left
multiplication. Then both Sym;(G) and Des|_are smooth 2-group models for String(G)
in the sense of Definition 8.6.

Remark 8.9. Note that there is a model for String(G) based on regression and trans-
gression of the basic gerbe on G [Wall2a]. Similarly, our model for String(G) which
we obtain from ®es| also heavily relies on the transgression-regression formalism.
However, the resulting models are very different: Waldorf’s model in [Wall2a] is the
regression of the transgression of the basic gerbe. Waldorf observes that this gerbe picks
up a multiplicative structure upon application of R o 7. Since any gerbe on a mani-
fold can be seen as an extension of M by BU(1) as Lie groupoids, the resulting gerbe
provides a string group model in the sense of [SP11]. Our construction differs from
this significantly not only in the fact that we work with smooth 2-groups instead of Lie
2-groups; most notably, we obtain an extension of G by the much larger smooth 2-group
B(U(1)f), which is not equivalent to BU(1) as a smooth 2-group, but only on the level
of their underlying homotopy types (see Theorem 8.7 as well as [Bun20b]). O

The rest of this section is devoted to the proofs of Theorems 8.7 and 8.8. We begin
with a few results that will combine to prove that HLBdIM is string-admissible. Then
we will prove Theorem 8.8 by observing that the HLBAI®-valued Cech 1-cocycles we
obtain from the 2-bundle Sym; (G) agree with those obtained from local trivialisations
of the bundle gerbe G.

Lemma 8.10. Let M be a simply-connected manifold and x € M afixed base point. Then
the evaluation map evy : UM — u), g +—> g(x) and the inclusionc: U(1) —

U(DM as constant maps form a homotopy equivalence of diffeological spaces.'’

10 gee Example 2.6 for the definition of the diffeological mapping space.
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Proof. Since ev, o ¢ = ly(1), it is enough to construct a smooth homotopy C o ev, =
1U<1)M. Let 7: R — U(l), r — exp(2mwir) be the universal cover of U(1). The
assumption that M is simply-connected implies (see e.g. [Bre93, Theorem 4.1]) that the
diagram

R
ML v

admits a unique continuous lift f M — R for arbitrary f € U(D)M after fixing the
lift at one point. We verify that the map f is smooth. Fix a point y € M and a sufficiently
small open neighbourhood Uy, of y which we identify with an open subset of R4, where
d = dim(M). The restriction of f to Uy is a plot of U(1). Hence by Proposition 2.9
it admits a smooth lift fy: U Jy — R for sufficiently small Uy. From the uniqueness
statement for lifts we obtain fy, = fy +ry for a fixed integer ry € Z. This implies that
f is smooth and hence shows that the map 7™ : RM — U(1)M is surjective.
Consider the commutative diagram

RﬁRM

&vx
g ]'[M

U(l) = UM

where C (r)(y) = r forall y € M, and where evx(g) = g'(x) forall g’ € RM . wWe
define a homotopy h: Igy —> T o &V, by setting h,(g YY) =g —-0)+g(x)t.
This homotopy descends to the desired homotopy /: lyjym —> Coevy.

We verify that the homotopy % is smooth: let n be a natural number, ¢ = R” a Cartesian
spaceand f: c — UMM x 10, 1] a plot; that is, the maps Pro.1] of:c—>[0,1]and
(prU(l)M of)4: ¢ x M — U(1) are smooth. We have to show thatho f: ¢ —> UM

isaplot. By the arguments above we can lift (pryym o f ) 'toasmoothmapex M — R
because ¢ x M is simply-connected. This implies that we can lift f to a smooth map
f ¢ — RM x [0, 1] making the diagram

My 10,1] —— RM

/ be o

¢ — UM x [0, 1] — UM

commute. The result now follows since / and the projection 7Y : RM — U(1)M are
smooth. O
Lemma 8.11. There is an inclusion B(U(1)M) — HLBAIM of smooth 2-groups which
is given by sending c € B(U(LH)M) (cf- Definition 8.4) to the trivial line bundle on c x M.
IfHZ(M; Z) = 0, then this inclusion is an equivalence.
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Proof. We readily see that the inclusion respects the group structures, and that it is fully
faithful. If H2(M :7Z) = 0, then HLBdIY lc = HLBdI(c x M) is connected, so that in
this case the inclusion is also fully faithful on all fibres. Thus it is an equivalence on
every fibre and hence an equivalence in the 2-category H by [Vis05, Proposition 3.36].

O

Combining Lemmas 8.10 and 8.11, we conclude that HLBAI is string-admissible
for any 2-connected manifold M; that is, we have proven Theorem 8.7.

For the diffeological group H = U(1) and a 2-connected manifold M, there is an
explicit isomorphism H¥(X; U(1)M) = HF(X; U(1)) for k > 0, for any manifold X,
given by

Proposition 8.12. Let M be a 2-connected manifold with a fixed base point x € M.
For any manifold X, evaluation at x € M induces an isomorphism H*(X; U()M) =

Hk(X :UQ)) for k > 0 of Cech cohomology groups with coefficients in the sheaves of
smooth U(1)M -valued and U(1)-valued functions, respectively.

Proof. Consider the sequence of diffeological groups
1—7Z—RM S um” — 1,

which is exact by the argument from the proof of Lemma 8.10. The sheaf RM admits
a partition of unity by picking a partition of unity for the sheaf of smooth R-valued
functions and a constant extension to RM -valued functions; hence H* (X; RM ) = 0 for
any manifold X and for any £ > 1. Now the statement follows from applying the five
lemma to the diagram

HH (G RM) — HY(X; 2) — BEOG UM — BEOGRY) — BY(X: 2)

N S R

H* (X R) —— B(X;2) — BY(X; U(D) —— BYOGR) — BA(X: 2)

induced by the long exact sequence in sheaf cohomology and the evaluation at x € M.
0O

It remains to determine the Cech cohomology classin H! (G; HLBdI®) X H3(G: Z) =
Z determined by the extension Sym;(G) — G . The isomorphisms from Lemma 8.11
and Proposition 8.12 are useful in achieving this. From the smooth 2-group extension
Syms(G) — G we can extract a Cech 2-cocycle on G with values in the sheaf of
smooth U(1)%-valued functions. To construct it, we first follow the procedure of the
paragraph preceding Definition 8.6 to extract HLBdI1®-valued cocycle data and then
choose local trivialisations of the line bundles which comprise it (which amounts to
choosing an inverse for the equivalence from Lemma 8.11).

Let Y = {U;}ics be a good open cover of G, let w;: U; x G —> G denote the
projection onto the second factor, and let m; : U; x G —> G be the multiplication map
restricted to U; x G. We choose and fix 1-isomorphisms v; : m{G —> m*G along with
adjoint inverses w;l, which induce equivalences Symg(G)y;, = HLBAI(U; x G) of
groupoids.

On double intersections U;; we can form the automorphism v;; := w._i,i, o Yijy;; of
m};G. The isomorphism v;; can be identified with a line bundle L;; on i},’ i'x G. Since

Y

H*(G; Z) = 0, we can choose and fix a trivialisation of L;; for eachi, j € I.
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On triple intersections U;j; we get a 2-isomorphism ;i : ¢ JK|Uijx © vi iWUie —
wik|Uijk inducing an isomorphism L j; ® L;; —> L;j of line bundles over U;j; x G.
(In contrast to the construction in the paragraph above Definition 8.6, here the isomor-
phisms ;jx can be obtained directly from the choice of v;;.) Using the trivialisations
of these line bundles we obtain a smooth map U;jx x G — U(1) or equivalently
amap ¢ji: Uijr —> U(1)®. The collection ¢ijk form a smooth U(1)C-valued Cech
2-cocycle.

The corresponding cohomology class is independent of all choices involved: let
Y!:m’G — mG be a different set of 1-isomorphisms. The automorphism wi_l o]
of m;."g can be identified with a line bundle A; over U; x G. The definition of L;; implies
Lij®A =A;®L; i We can pick once and for all trivialisations of all bundles involved
to identify this morphism with a function A;;: U;; x G —> U(1). The diagram

Lij®A®Lj3 @A — Aj @ Ly ® A;

| |

Aj@A®L; Ly — Aj ® Ak ® Ly,

commutes over U;jx, which follows from the fact that all inverses were chosen to be
adjoint so that the corresponding diagram involving v; and ¥/ commutes. Applying the
trivialisations we get

/
Cijk Aik = Cjj Aij Ajk -

This argument also shows that the cocycles define the same cohomology class if ¢/ = v;
and only the trivialisations of L;; differ.

The image of ¢;jx in H2(G; U(1)%) under the isomorphism ﬁz(G; U()%) = H?
(G; U(1)) of Proposition 8.12 can be computed by restricting each y; to U; x {e} C
U; x G the restriction ¥y, () is a 1-isomorphism G|y, —> G|.. After fixing once and
for all a trivialisation of G, this is just a trivialisation of G|y, . This shows that the image
of ¢jjx in HZ(G; U(1)) = H3(G; 2) agrees with the cocycle cg classifying the bundle
gerbe G, which proves Theorem 8.8.

Remark 8.13. The arguments involving cocycles can be adjusted to the simpler case
of principal bundles over the Lie group G. In that case, starting from a principal
U(1)-bundle P on G we get a principal U(1)%-bundle Symg(P) on G which is ho-
motopy equivalent to P. The homotopy equivalence is induced by the maps ev, and
¢ from Lemma 8.10. We can iterate the procedure to get larger and larger groups
Symg (- - - Symg(Symg(P)) - - - ). However, these groups are all topologically equiv-
alent, so that iterating the procedure does not produce anything that is topologically
novel. |
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A. Properties of Smooth Principal 2-Bundles

A.1. Surjectivity on objects and homotopy pullbacks. Here we provide some technical
background on smooth groupoids, as introduced in Definition 5.4.

Lemma A.1. Let 7 : X —> Cart and ©’': P — Cart be objects in H.

(1) Either X = & or 7 is surjective on objects.
(2) Let p: P —> X be a morphism in H whose underlying functor is an essentially
surjective Grothendieck fibration. Then p is surjective on objects.

Proof. To see (1), observe that Cart has a terminal object % € Cart. Thus since 7 is a
Grothendieck fibration, if X}, = 7~ !(%) is non-empty then so is Xic for any ¢ e Cart.
For any ¢ € Cart there exists a morphism x: * —> ¢ in Cart given by choosing any
point x € c. It follows that as soon as X # &, it has only non-empty fibres over Cart.
Claim (2) follows from the general observation that a Grothendieck fibration is es-
sentially surjective if and only if it is surjective on objects. O

We now consider the setup of Definition 5.16.

Lemma A.2. Let C be a category, let w;: D; —> C, fori =0, 1, and mg: E —> C be
Grothendieck fibrations in groupoids, and let F; : D; —> E, fori = 0, 1, be morphisms
of categories fibred in groupoids over C.

(1) (Dg XE Dy, mn) € H, ie. v is a Grothendieck fibration in groupoids.
(2) Any morphism G = (Go, Gg, G1) of diagrams

E
Fy Fi
D() Dl
G()l Gg JGI
D, D,
F(/) L F
E/

in H, where all vertical morphisms are equivalences, induces an equivalence D x}é
/ h /
Dy — Dy xg D).
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(3) If Fy (resp. Fy) is a Grothendieck fibration in groupoids, then the inclusion Dy xg
D; — Dy XE D, is an equivalence, and the projections prg: Do XE Dy — Dy and
pro: Do xg Dy —> Do (resp. the projections pr}l1 and pry to Dy) are Grothendieck
fibrations in groupoids.

Proof. Toprove (1), we first show that every morphismin Dg XE D, is & -Cartesian. Con-
sider morphisms (Yo, ¥1): (dy, 0, d}) — (d{j,n", d{) and (@0, ¢1): (do, n,d1) —>
(dy,n",d}) in Dy XE D;. By assumption mo(dy) = 71(d;) in € (and analogously for
d;,d!"), and (o) = m1 (1) (and analogously for ¢;). Let x : mo(dy) — mo(d;) be
a morphism in € such that o () o x = mo(¢p). Since ng is a Grothendieck fibration
in groupoids, there exists a unique lift xg ;: F;(d;) — F; (dlf ) induced by each of the
pairs (F; (i), Fi(¢;)) of morphisms in E. Similarly, the pairs (v, ¢;) induce unique
lifts x; : dj —> dl.’ of x to D; along ;. The uniqueness of lifts (along 7g) implies
that F;(x;) = xg,; fori = 0, 1. It remains to show that (xo, x1) defines a morphism
(do, n, d1) —> (d}, ', d}). That is, we need to prove that Fi(x1) o n = n" o Fo(xo) in
E. So far we have a diagram

Fo(do)

Fo()y ) \Fo(%)

Fo(dy) —o l » Foldg)
n o Fi(dy) o 0’
£y iﬂ/ \me
Fi(d)) > Fi(dy)

Fi(y1)

in E, where each face of this diagram commutes, apart from the back left square.

The commutativity of that square is what we need to prove. For this, observe that both
n' o Fy(xo) and n o Fi(x1) provide lifts of x to E with respect to the morphisms
n" o Fo(go): Fo(do) —> Fi(d]) and Fi(y1): Fi(d}) —> Fi(d). The desired identity
now follows from the uniqueness of such lifts along the functor ng.

Next we need to show that for any morphism_f: ¢ — ¢’ in € and any object
(dy,n', dy) in Do XE D, over ¢/, there exists a lift f = (fp, f1) of f to Dy X}El D; with
codomain (dy, ', d}). Such a lift is obtained by lifting f to morphisms f;: d; — d;
in D; using the fact that 7r; is a Grothendieck fibration in groupoids, for i = 0, 1. An
isomorphism n: Fo(dg) —> F1(d;) compatible with foy, fi is obtained by filling the
horn given by the morphisms 1’ o Fy(fp) and F;(f1) over the identity morphism 1. in
C. The filler is an isomorphism since the fibre E|. is a groupoid.

To prove (2), we note that by [Vis05, Proposition 3.36] the induced morphism G x ?;E

G is an equivalence in J{ if and only if it restricts to an equivalence of groupoids between
all fibres of 7y, and 7. A direct inspection on any ¢ € C reveals that

7Th—1(c) = 7T0_1(C) Xigl(c) nl—l(c)

as groupoids, and it is well-known that equivalences of spans of groupoids induce equiv-
alences on homotopy pullbacks of groupoids.
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To prove (3), we first show that pr(})1 is a Grothendieck fibration in groupoids. Consider
a span

dy.n",d})

(wo,*/fl)/ wwl)

(dy,n', dy) (do, 1, d1)

in Dg XE Dy, and a morphism xo: d9 —> d; in Do such that ¥ o xo = ¢o. We
obtain a commutative triangle in E formed by the morphisms F;(v), Fi(¢1), and
n o Fy(xo) o ;7_1. Since F7 is a Grothendieck fibration in groupoids, this gives rise
to a unique lift x; : di — di of the latter morphism to D;. The pair (xo, x1) is
automatically a morphism in Dy x}é D, which projects to xo. If (x, x{) were any other
such filling over xo of the horn given by (v, ¥1) and (¢o, ¢1), it would immediately
follow that x = xo. and the uniqueness of fillings of V1, @1 over n" o Fo(xo) o n1
would imply that x| = xi.

Let g: dy —> d|, be amorphism in Dy, and let (dj), n’, d}) be an object in Do XE D,
which projects to dj). Let ¢ be alift along 77 of f := mo(¢o) with codomain ;. The pair
of morphisms (" o Fo(¥0), F1(11)) then gives rise to a cospan in E. Both morphisms
project to f in C and hence, since 7 is a Grothendieck fibration in groupoids, there
exists a unique isomorphism 7n: Fy(dyp) —> F1(dy) such that (dy, n, d1) € Dy XE D,
and such that (Y, 1) is a lift of ¥y to Dy XE D, with codomain (d, n’, d). The claim
for pry is proven in an entirely analogous way by restricting 1, 7" and n” to be identity
morphisms.

Finally, consider the inclusion functor Dy xg D; < Dy XE D;. Since pr(r)1 is a
Grothendieck fibration in groupoids, so is its restriction to each fibre over C. It is well-
known that the inclusion of a pullback of groupoids into the homotopy pullback is an
equivalence in case one of the functors in the diagram is a Grothendieck fibration. Thus
our inclusion functor is an equivalence on each fibre over C, whence the result follows
by [Vis05, Proposition 3.36]. O

A.2. Relation to principal oco-bundles. Our notion of smooth principal 2-bundle does
not have any notion of ‘local triviality’ built into it. This differs from the version of a
principal 2-bundle defined in [SP11], but is very much in the spirit of the definition of
a principal co-bundle from [NSS15]. The fact that we require essential surjectivity is
our version of saying that the (homotopy) fibres of the bundle should be non-empty. In
contrast to [NSS15] we have to require fibration properties because we do not work purely
in an oco-categorical framework. We shall now show that an H-principal 2-bundle in H
in the sense of Definition 5.17 gives rise to a principal 2-bundle in the sense of [NSS15,
Definition 3.4], adapted from a general co-topos (described e.g. by presheaves of oco-
groupoids) to our situation involving presheaves of groupoids. Let p: P —> X be a
morphism in 3, and let P! be the Cech nerve of p. We write hocolim® (resp. holim®)
for a homotopy colimit (resp. limit) taken in a simplicial model category C.

Proposition A.3. Every morphism p: P — X in H whose underlying functor is an
essentially surjective Grothendieck fibration in groupoids gives rise to an effective epi-
morphism: the morphism

hocAcgrl)im:H plel . X
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from its Cech nerve to X is an equivalence.

Because of Lemma A.2 and the assumption that p is a Grothendieck fibration in
groupoids, it does not matter here if one uses the coherent Cech nerve, formed using
P x% -+ x% P, or the strict Cech nerve, formed using P xx - - - xx P.

Proof. We work with Hollander’s model structure on H [HolO8]. In this picture, H
is a model category enriched, tensored and cotensored in the model category Grpd
(seen as a strict category). In both I and Grpd all objects are fibrant, and the functor
H: HP x H — Grpd is homotopical by [Vis05, Proposition 3.35], i.e. it preserves
weak equivalences in each argument. The enrichment of H in Grpd even enhances to
an enrichment over Seta, the category of simplicial sets with the Kan-Quillen model
structure. Thus homotopy (co)limits in I can be computed using (co)bar construc-
tions [Riel4]. Let Q denote a cofibrant replacement functor in I, and let Z € H be an
arbitrary object. Then

3¢ (hogglim’ PI*], Z) = holim 9™ 3¢(Q(P!*), Z) = holim %™ 3(P"], Z) ,

where the first equivalence stems from the fact that Z is fibrant and H is a Grpd-enriched
model category, and the second equivalence stems from the fact that J{ is homotopical.
It thus suffices to prove that the functor

P HX, Z) — hoiimgrpd H(P, Z) =: Des(2)

is an equivalence of groupoids.

An objectin Des, (Z) is a pair (G, ) of a functor G : P — Z of categories fibred in
groupoids over Cart, together with a natural isomorphism 7(p,, p;): G(po) — G(p1)
from d{ G to d;jG of functors over Cart, where d; are the face maps in the simplicial
object PI*!. This natural isomorphism is subject to the conditions dynodgn = dinover
PBJ and A*p = 1 over P, where A : P — P2l is the diagonal map. A morphism
(G,n) — (G', 1) in Des ,(2) is a natural isomorphism y : G —> G’ in 3 such that
n odiy =djy on.

We first show that p* is essentially surjective: let (G, n) € Des,(Z) be any object. We
define a functor F: X —> Z as follows: first, recalling that p is surjective on objects by
Lemma A.1, we choose a section s : ob(X) —> ob(P) of the map of objects defined by
p-Then we set F(x) := G(s(x)) € Zforx € X. Now consider a morphism ¢ : x —> y
in X. Since p is a Grothendieck fibration, v has a lift 1 : ¥ —> s(y) to a morphism in P
with codomain s(y), where p(X) = x. Define F(): F(x) —> F(y) via the diagram

F) = G(s@) -2 G(s() = F(y)
77|(s<xml% /
G@)

e163)

The naturality of n, together with the two conditions it satisfies and the fact that p is a
Grothendieck fibration in groupoids, imply that F is a well-defined functor. Furthermore,
n establishes an isomorphism p*F = (F,1p) — (G, n) in Des,(Z). Thus p* is
essentially surjective.

That p* is fully faithful follows from its explicit construction and the fact that p is
essentially surjective. O
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