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ABSTRACT

We study various forward-backward and polarization asymmetries evaluated
near Z° resonance for theories with SU(2)r x U(1)y x U(1)y: and SU(2)1 x
SU(2)r x U(1) L gauge structures. Extension to other gauge structures is very

simple in our formalism. We construct a linear combination of polarized forward-

~ backward asymmetry and polarization asymmetry with initial state electron lon-

gitudinal polarization whose deviation from the value of the standard model can

- measure the effects of new currents directly. The analysis is exact at the tree

level of the theory and enables one to study any model with any Higgs’ sector in
terms of a fixed number of parameters. The results show that for a typical class
of models the measurement of different asymmetries to 1% will impose a lower
bound on M3z, the mass of an additional neutral gauge boson, to be of order 10

Mz. Even much less accurate measurements will yield interesting information

‘about new gauge structures. We also examine the implications of extended gauge

structures for the precise value of the W¥ mass.
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1. INTRODUCTION

The standard Glashow-Weinberg-Salam (GSW) [1] model of the electroweak
interactions based on SU(2)r, x U(1)y has achieved important success in describ-
ing neutral and charged current processes and determining the mass of W and
Z gauge bosons. However, this theory contains many undetermined parameters.
If these parameters are not to be put in ad hoc but rather to be determined by
theory, then we must look for a still more fundamental theory of electroweak
interactions which reduces to GSW at low energies. These more fundamental
theories in general predict the existence of many new particles and the search
for these novel excitations has been a major preoccupation of physicists work-
ing at the highest eTe™ and pp colliders. In the late 1980’s, LEP /SLC and the

Tevatron will explore the mass region up to about 100 GeV. Further direct ex-

ploration must await the very high energy hadron-hadron colliders planned for

the late 1990’s.

We may hope to evade the need to obtain increasingly higher center-of-mass
enefgies by searching for indirect effects of the new particles. A previous paper
[2] showed how to search for indirect effects of new heavy scalars and fermions
which couple to the gauge bosons of SU(2)r X U(1)y; by studying the various

polarization and forward-backward asymmetries on Z° resonance in ete™ — ff

-processes at the 1 percent level, experimentalists at LEP/SLC could see the

virtual quantum effects of the new particles and place limits on the scalar and
fermion particle spectrum in the 100 GeV - % TeV region. In this paper, we

show how to look for indirect effects of new gauge bosons in the 100 GeV - 1

TeV mass region.

One of the more interesting theoretical proposals is the possibility of an en-



laréed electroweak gauge group structure. Some of the new gauge bosons arising
from such an enlarged gauge symmetry can have a mass of order 2 to 3 Mz with-
out contradicting presenf experimental bounds. One such class is a left-right
symmetric gauge theory [3] based on SU(2)r x SU(2)g X U(1)p-r. A left-right
symmetric theory is appealing since it allows for spontaneous breakdown of par-
ity. [4] Another class has an extra U(1) gauge group, i.e., the gauge structure
is SU(2)L x U(l)y x U(1l)y:. This might appear as a low energy electroweak
symmetry [5] arising from string theories [6]. Both gauge groups can appear as

an intermediate gauge structure within a grand unified theory.

—— -

Due to the new gauge structure there are new currents; the particles have

quantum numbers under the new group. Further, the Z and W= currents are
modified because of the admixture of the new currents and gauge bosons, thus

changing the physics even at the energy scales of the W and Z masses.

In this paper we show that a new gauge structure can be tested by measur-

ing various asymmetries in ete™ collisions at energies around the Z resonance.

Namely, the admixture of new currents changes the prediction of the standard
model. Thus, SLC/LEP physics near Z resonance offers a very important oppor-
tunity to test for new gauge structures beyond the standard model. SLC/LEP

experiments will be done with high precision, large statistics and good detectors.

~Also, ete™ physics is theoretically “clean”, since it minimizes theoretical strong

interaction uncertainties. This could enable SLC and LEP to measure deviations

of various asymmetries from the standard model to a precision of about 1% [7] .

In the present work we evaluate various asymmetries in ete~ collisions for

theories with a gauge group larger than the one of the standard model. In particu-

lar we give results for the left-right symmetric group SU(2)L x SU(2)rxU(1)p-L



anci the gauge group with an extra U(1), i.e., SU(2) X U(1)y xU(1)yr. However,
this approach can be used for any gauge group beyond SU(2)r x U(1)y. The
fermionic currents and the gauge boson mass eigenstates are determined at tree
level exactly. The results are valid for any Higgs field content and any vacuum ex-
pectation value pattern which breaks the original symmetry via SU(2)L x U(1)y
down to U(1)em. We reparametrize the models in terms of a fixed number of
parameters. Such an approach enables us to study any model within a proposed
gauge group over the whole range of permitted values of Mz, the mass of an

additional gauge boson.

—— -

As Mz — oo these models reduce to SU(2); x U(1)y irrespective of the
representation of the Higgs fields, i.e., decoupling takes place. Thus, by mea-
suring a deviation of the polarization and forward-backward asymmetries from
:che standard model one can exclude a whole range of models with additional

symmetries and impose a lower bound on Mz:.

A particularly interesting quantity is A“® (defined in Section 2), which is
a particular linear combination of the deviation from GSW of the polarized
forward-backward asymmetry for e~ (L)et — ¢, bb and the deviation from GSW
of the initial state longitudinal polarization asymmetry for e+e;ol — utu~. An

important observation is that A®® measured on Z resonance, is identically zero

-in SU(2)L x U(1)y even when the oblique [2,8] quantum corrections due to new

scalars and fermions are included. Thus, A%* # 0 is a clear indication that new
undiscovered particles couple to e, u, ¢, b, i.e., that there are new currents. At

the tree level this can only be due to new gauge structures.

Hollik [9] has considered the shifts in the left-right and forward-backward

asymmetries in ete™ — ff, f = u, d, u, 7, for specific extended gauge groups



with a very specific set of Higgs’ representations and symmetry breaking param-

eters. We generalize on his work in the following ways:

(1)

(2)

(3)

We show the effects of new gauge structures on all neutral and charged
current processes at all energies; it is then clear how to compare SLC/LEP
experiments to low energy neutrino scattering or even production of new

as yet undiscovered fermions at LEP2.

We show that the number of new parameters entering these processes is
fixed by the gauge structure alone and the quantum numbers of fermions

under the new groups. We are then able to fix a subset of these (e.g. a, G,

—— - -

and Myz ) in all models so as to display clearly the effects of new parameters
and thus constrain them by experiment.

We display exact formulae for SU(2)1, x SU(2)r X U(1)p—r, and SU(2)L X
U(l)y x U(1)y: for any set of Higgs fields with any symmetry breaking

pattern. The generalization to other gauge groups is then obvious in our

formalism.

()

We show how to distinguish on Z resonance, effects of new gauge struc-
tures from quantum corrections in SU(2)r x U(1)y by studying specific
combinations of asymmetries. We show further that a certain combination
is only sensitive to the quantum numbers of e, u, ¢, b under G when the
gauge group is SU(2)r x U(1)y x G.

There is another quantity which might be measured to high accuracy in the
near future; the W+ mass. We also show how it changes in an observable

way from the GSW prediction in an extended gauge structure.

The paper is organized as follows. In Section 2 we define the measureable

asymmetries. In Section 3 we summarize the results for SU(2)r x U(1)y; we



coxﬁment on the choice of measurable parameters of the theory, and the effect of
radiative corrections. In Section 4.1 we present the exact form of the currents and
determine parameters for a theory witl; an SU(2)L x U(1)y x U(1)y: local gauge
group and in Section 4.2 the results for the various asymmetries are presented.
In Section 5 we repeat the analysis of Section 4, but this time for theories with

SU(2)LxSU(2)rxU(1)p-L gauge group. In Section 6 we summarize our results.

2. MEASURABLES: ASYMMETRIES

We shall study processes ete< — ff at the center of mass energies -around
Z resonance. When the mass of the final state fermions f is much smaller than
M3z helicity is approximately conserved even at the one-loop level at each gauge

boson vertex. This holds well for all the known fermions except the top quark.

_ Also when f # €™, v,, the t-channel scattering graph is absent. In the following

we shall consentrate for simplicity on processes with f # e, v, t with t the top

~ quark. Also, we shall not include the effects of final state hadronization processes

for individual f = u,d,s,c,b quarks. We will, though, consider the initial state

polarization asymmetry for the total cross section e+epolan-zed

— hadrons (for

Miop > Mf-) since the hadronization for this process is understood [10].

For the processes subject to the above approximations the reaction ete™ —

~ ff can be cast in the following form [2]:

da(e+e—(1;)n—> FH(PY) _ Zs; k2 p |[M(—s)]§,fp,

2
\ (2.1)

Here P, P' denote longitudinal polarizations L or R. A kinematic factor, k?,P,,

is equal to (u/s)? for P = P! = L,R and to (t/s)? for P = L, P! = R and
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P =R, P'= L. Here, u,s,t are the Mandelstam variables. The matrix element
[M(qz)]%;, is a properly normalized invariant amplitude which carries all the
nontrivial information about the coupling. We shall write [M(qz)]%;, for the

general case of three neutral gauge bosons-photon, Z and Z':

[M(q2) éf;' - (Jem){';(‘jem){';' + (‘IZ)é(JZ){"
q? ¢* + ML — iIm[[57°%(¢?)

(2.2)

(Jz) bz b
¢ + M%, — iIm [ 57%(q?)

(The generalization to more than 3 neutral gauge bosons is obvious.) Here we
have used the Euclidean metric, and (J ){, refers to a particular fermionic current
with fermion f having polarization P. For example the electromagnetic current

is written

Jem = € JQ : (2.3)
Jo=v 7. Q¢ (2.4)

1
(Vo)1 = (o)o=@»=—3 (2.5)

with ¢ a fermion, e2 = 47a and Q the electric charge operator so that Q. =

-1, Q. = 2/3. Jz and Jz: are obviously the Z and Z' currents analogous to

~ (2.3). The tree level width of the Z (which, of course, is the imaginary part of the

1 —loop Z self-energy), Im H}Z_Zlo"p , reduces in the case where only light quarks
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and leptons are produced at ¢ = —s = —M% to the following form:

MLz =Im]] PP (—MB) = ﬁ%@ 3 { (72)] + (Jz)f;r (1 + 2—7)

f

(2.6)

with cgep = 1 for leptons and cgep =~ 3(1 + a—'"ﬂ'—(;rila) for quarks. We put

in this width and a similar Z' width (gotten by replacing Jz by Jz: in (2.6)) so

that the Z and Z' propagators remain finite on resonance.

Having the explicit form for the partial cross section (2.1) one defines the left

right initial state polarization asymmetry, the forward backward asymmetry and

7 the polarized forward backward asymmetry in the following way:

Ae+e _*ff( 5) = o(e (LYet — ff) —o(e"(R)et — ff)

(
~ o(e~(L)et = ff) +o(e-(R)et — ff)

[ dg(fl - f°,) deospdztele 21N

e+e'—>ff_; _
A ( 3) 0'(8+€_ R f'-'f)

FB

[dg(fL—[2)) dcos il (LT =)

eter=f7,
AFB ( 3) 0'(6 (L)€+—>ff)

(2.7)

(2.8)

(2.9)

W1th 6 the angle between e and f. We also define A L R > ff( —8) in the following
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way:

TSIy _ i e[l D~ 19) — ol (Rt — 7))

I,JR B Zf# e,Ve,t [0(6_(L)e+ — ff) +o(e-(R)et — f_f)] (2.10)

In Eq. (2.7) f =t is not included because of the mixing of helicity amplitudes

in the cross sections for final state top quarks.

Also of interest at SLC/LEP is the 7 polarization symmetry

olete” — rtr= (L)) —o(ete™ — 777 (R))

Arpa = o(ete~ — rtr— (L)) + o(ete~ — r+r=(R))

(2.11)

On Z resonance this is equal to.the left-right polarization .asymmetry if e — 7

universality holds.

The above quantities can readily be measured in the SLC/LEP experiments.

On the Z resonance these asymmetries take on particularly simple forms because

_ the first and third terms in (2.2) are negligible and the Z propagator in the second

term drops out of the final expressions for asymmetries (which are ratios of cross

_ sections). For example, if we define the following ratio of left and right-handed

couplings of fermion f to the Z at ¢> = —s = ——M%

4 = [(J2)L]? = [(J2)R)? ‘(2_12)

[(F2)5)2 + [(F2)R)?
ete —putpu~ ete——fF
__.Ai';g_-—*hadronS(_M%) (2.13)

= A°
so that initial state left-right polarization asymmetries to any final state fermions

(except t,e,v.) gives information on resonance only about the initial state elec-
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trons [10]. This means that we can use all hadronic data, with the increase in

statistics, to measure Arg, the quantity of most interest in this paper.

Similarly, the forward-backward asymmetries factorize

ASE T (M) ~ %Aeﬂf (2.14)

tom s fF
App I (-ME) = 24! (2.15)

W

In this paper we will assume that.all of these asymmetries have been calculated
in the GSW model with one Higgs’ doublet and three generations of quarks and
leptons including all relative O (aem) corrections — initial and final states brem-

strahlung and weak and QED one-loop effects — and that the GSW predictions

~ are known to much better than 1% accuracy. Further, we will assume that the

asymmetries could eventually be measured to 1% accuracy. These two state-

~ ments are of course the object of much controversy in the literature. There is a

small hadronic uncertainty even in purely leptonic processes [11] from the photon
vacuum plarization of Fig. 1. Also, we will be interested in the forward-backward
asymmetries for ete~ — c¢¢ and ete~ — bb with and without electron polariza-

tion. Although a measurement of the asymmetry to b quarks to high accuracy

- seems feasible, an accurate measurement of the asymmetry to ¢ quarks could be

very difficult because of the contamination of ¢ due to b decay. We use the 1%
accuracy figure here as a goal in measurement; the reader should be forwarned

that the true experimental accuracy will only be known when the experiments are

actually done. Also theoretical uncertainties in the hadronization of final-state

quarks might result in large uncertainties. Nevertheless we will assume that the

10



various asymmetries are known to +.01 in what follows.

This paper will concentrate on the shifts of the various asymmetries from

their values in the GSW model. Thus we define

+ —"ff + —'f . e —s
5Ae : Ae : d ezperimentally — Ae el (2.16)
measured GSW
o=y Yo fF +e——s
6Ae I = A;‘I; 1 experimentally — Ac T (2.17)
measured GSW

and similarly forward-backward asymmetries with left-handed electrons é Ae et
and left-right asymmetry to hadrons 5AiR‘ “—hadrons  We jmagine that A is

due to new physics from beyond the GSW model. We mention three possible

~ sources of such physics:

(¢) one loop radiative corrections due to new scalars and fermions in SU(2), x
- U(1)y in which the new particles do not couple directly to light leptons and
quarks but only enter in W%, Z, and A (photon) self-energies, the so-called

‘oblique’ loop corrections [2]: Fig. 1,

(#7) one loop radiative corrections due to new scalars and fermions in SU(2)1 x
U(1)y in which the new particles couple directly to light leptons and quarks;

the so-called ‘direct’ corrections [2]: Fig. 2,

(727) physics due to the existence of new gauge bosons in theories which are
based on extended gauge structures like SU(2)r x SU(2)gr x U(1)p_r,

SU(2)L x U(1)y x U(1)y: or even something more complicated.
We will show in Sections 4 and 5 that the particular combination of shifts in

. 11



asymmetries evaluated on Z° resonance.
AT = 6ATE T (L) — 3 AP Y \Andl B S AP (2.18)
ar

with the definition in the GSW model

TQ

sin? O cos? Oy = 2.19
W= /2 GLuME(1 - 06) (2.19)
and ay and a. calculable in the GSW model
—3.8 wu quark
—4sin’ 8y I (Q' — sin® 0w Qf
aj = fsm w B1(Q) (I, — sin’ bw Q ) o ~ ¢ —.71 d quark (2.20)
(17, —sind b Q7)7 +-(=Q7 sind O )1 S -
—-75 e

for Mz = 94 GeV is insensitive to the physics (¢) and that a non-zero value
for Af is a clear signal that some new undiscovered particle couples directly to
_e, K, cor b; e.g. that physics (¢7) or (¢47) is operative. We will further show that
the quantity %; depends only on the quantum numbers of b, ¢ and e under the
new gauge and further that its value can be used to distinguish between gauge
groﬁps.

So far we have concentrated entirely on s channel neutral current processes.

It must be emphasized that (2.2) may be used to calculate any neutral current

process. For example, the polarized Bhabha scattering cross section is easily

~written down:

do - - S e [
o (etem(L) = e*e™) = = {khp IM(—o)5 + M(—t)55
(2.21)

+ k}r I M(=8)5Rl" + I M(-t) 5"}

 The dominant weak effects on Z 0 resonance in Bhabha scattering occur for large

angle e’s and if e — p universality holds, these should be the same as for final

12



uﬂf pairs, which will be discussed extensively in this paper. We therefore will
not discuss Bhabha sca@tering furthexj but it should be remembered that this
process could give bounds which can also be used to constrain enlarged gauge
groups.

Similarly, low-energy neutral current neutrino scattering is easily written
down in terms of (2.2); this is important in understanding the limits on Mz from
present neutral current data [12]. In future, CHARM II will measure low energy
vue scattering, thus avoiding hadronic uncertainties. Of course the processes
vue — vue and Dye — Dye are easily written in terms of M(—t)7% and M(-t)7%
and so our analysis is easily extended to this case.

We now address four-fermion charged current processes. It is clearly simple
to write an effective charged current matrix element in analogy with {2.2) in
terms of the charged current Jiy and W mass and W* width [2]. In the case of

SU(2)L x SU(2)r x U(1) g~ we would obviously add a second charged current

Jw and W '% mass and width. Thus our analysis will suffice for all four-fermion

charged current processes as well.

The spirit of this paper is then the following. We will first identify the full
set of parameters describing the interaction of fermions and vector bosons in

an extended group gauge theory after spontaneous symmetry breaking. We will

“keep o, Gy, Mz fixed by experiment. Note that Mz is not allowed to vary with

the other parameters; we will use the value Mz = 94 GeV in the numerical work.
We will also choose Mz as an input parameter (the second mass scale). We will

then calculate the neutral and charged currents Jz, Jz:, Jw, Jw' as functions

~ of the parameters o, G, Mz, Mz.,... (where the dots represent other parame-

ters of O(1)) thereby allowing precise experimental determinations of neutral and

. 13



temopty— :
charged current processes such as A7z ~* # to give constraints on e.g. Mgz..

Note that we will not use the charged current masses My, My as input param-
eters but rather calculate them also as functions of a, Gy, Mz, Mz.,... This
will allow a precise experimental determination of My to separately constrain

the extended gauge theory.

3. SU(2) x U(1)y Gauge Structure

The purpose of this section is primarily to orient the reader to our method
and notation so that our treatment of enlarged gauge structures will be more
transparent. In the SU(2); x U(1)y model the interaction of the gauge bosons -

with fermions is given by the interaction Lagrangian (we suppress Lorentz four-

vector indices x in the currents J,):

L=grL Jsp W™ +grJ-tWY + grJs W3 + gy Jy B (3.1)

with gz, W*, W3 the SU(2) coupling constant and gauge fields and gy and B

" those for the U(1)y hypercharge group. The currents are

JiL = -\% R Y (32)

JsL =Y v I ¥ (3.3)
Y

Jy =95 ¥ (3.4)

and J_, = JIL. Fermions 1) have a definite helicity, I+ are the isospin raising

and lowering operators, I3, and Y are the operators for the third component

14



of isospin and hypercharge, respectively. Following the notation of Section 2 we

" write

1
(Jar)} = —3 (Jsz)k =0 (3.5)
1 1
r)=g5 (rle=-3 (3.6)
with obvious extension to other fermions e, y, ¢ ... . In order to completely

define the matrix elements arising from (3.1) we are missing only the W and
Z masses. These of course come from the Higgs’ gauge boson coupling sector in

which the i** scalar develops a vacuum expectation value (v.e.v.): (¢;)

L~ (1outil?)

Y
=3y <l (QLISLWSL +9y —2—B> éi
i

+ Z a7 <¢i (1_12: - IgL) ¢i> wWrw-

2
) 57

The identity of the photon is supplied by the equations

Q=TI+ (38)

Q| ¢:) =0 for(¢:) # 0 (3.9)
and so clearly

My = g} ((7}) - (122)) (3.10)

15



M} = 2(¢} + g} )(I3L) (3.11)

with definitions

(I3) = Z (¢: I3, ¢i) (3.12)

= Z (¢: I (I +1)4:) (3.13)

Clearly, then, all fermion-gauge boson processes can be written in terms of the

- four parameter set (besides fermion masses and mixing angles)

gL, gy, <j%>’ (ISZL) (3‘14)

These must be written in terms of experimentally measured quantities in order

to define the model. We choose the set

a, Gy, Mz, pr (3.15)

“a and G are the best known electroweak parameters of Nature. Mz will be

measured to +.1% by LEP/SLC. The parameter

(73 — 313,)

pL =1+
2(1Z;)

(3.16)

is different from 1 at tree level only if Higgs’ fields which are not SU(2)L doublets

develop a v.e.v. In the case where only Higgs’ doublets get v.e.v.’s, there is an

16



additional global SU(2)L x SU(2)g custodial isospin symmetry at the tree level
in the effective low energy Lagrangian for fermion-gauge boson interactions, and
so pr, = 1. It is known experimentally that p; ~ 1 to £.05 and so we will treat

pr — 1 as a small parameter from now on.

It is now a simple matter to write the currents in terms of the set (3.15). We

have

L=JyW* + T W_ + JemA + J22 (3.17)

with J,,, as before and

) g% _ % [1 —]1- Aj;EL (3.19)
Al = \/EG“(ja— 705 = (38.7 GeV)? (3.20)
Jw = gr J+ | (3.21)

‘and

£ (1-9) 52)

Note that as pp — 1, 5; goes to the GSW value of sin? 6y in Eq. (2.19) (a
L

number which can be calculated knowing only «, G, and Mz) and, of course,

.
gif goes to cos? Oy .
Y

17



.We now discuss the factor of 1 — .06 appearing in Eqs. (3.20) and (2.19)
which comes from one-loop radiative cqrrections. This large correction is due to
the renormalization of aey, from ¢2 = 0 to ¢% = ——M% (where experiments are to
be done) from the QED vacuum polarization graphs of Fig. 3. This is a universal
1—loop quantum correction in any unified electroweak gauge theory containing

QED. We therefore define our Born terms (2.2) to include it.

In order to understand experimentally the small effects due to new gauge
structures considered in this paper, we must understand all effects of O(1%)
which might affect the asymmetries. TFhe GSW one-loop radiative corrections
to these asymmetries have beer: callculated [13], but what ra.bout shifts& in‘ the
asymmetries from their GSW values due to the existence of new particles (mirror

fermions, SUSY stuff, etc.) which still transform under SU(2)r x U(1)y with

(iuantum numbers I3r, and Q. These effects might be mistaken for the existence

* of new gauge structures when in fact only SU(2)z x U(1)y is operative. These

corrections have also been calculated {2] and are divided into two classes.

(v) Oblique corrections in which the new scalars and fermions couple only to
vector particle A, Z, W= self-energies as in Fig. 2. It has been shown that
the effects of oblique corrections on neutral and charged current processes
can all be thought of as renormalizing the various coupling constants. In
particular, for SLC/LEP physics their effect is to change the Z current

82
Jz =c¢ ’:J;;L - TJQ:I
9L

== (¢ + 6c) [JsL - [i +6 (iﬂ JQ]

g2 g2

(3.23)

The effects of ¢ will cancel in SLC/LEP asymmetries which of course
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are ratios of cross sections so the entire effect of oblique corrections for
SLC/LEP physics is contained in 6 (5;) . The asymmetries on Z resonance
. - L

(2.13), (2.14) and (2.15) will thus be shifted by small amounts

82
6Af =a; 6 <—2> (3.24)
9L

with ay calculated in (2.20). Thus shifts in SLC/LEP asymmetries due to
oblique SU(2)r x U(1)y corrections will all be proportional to each other
no matter what representations of scalars and fermions are responsible. For

example the small shifts

§Ab ~ 2 s4e (3.25)

Qe

so that the quantity
- - 4 +ter—bh
AP = SALE M (M) — 3 AR (-ME) =0 (3.26)

for all oblique radiative corrections due to any new imagined scalar or
fermion particles in SU(2)z, x U(1)y. Similarly A¢ defined in (2.18) with
final state ¢ quarks is insensitive to oblique corrections. Oblique one loop
quantum corrections tend to be very small (< 1/2%) unless they break
the global SU(2)r x SU(2)g isospin symmetry (which kept pr = 1 at
tree level for Higgs’ doublets) and thus feed into the p; parameter at the
one loop level. This can occur e.g. via a new fermion doublet (:;) whose
Yukawa couplings generate a large mass splitting m, > m, after local
symmetry breaking. When this doublet is included in the one-loop vector

2_ .2
particle self-energies the effects can blow up quadratically like ~ a ™54
z
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In fact large mass splitting within any representation of SU(2)r can lead
to large corrections; otherwise quantum corrections tend to be small. Of

- course all of these effects have been analysed for SU(2) x U(1)y [2]. We
will need this intuition about global symmetry breaking and the size of
radiative corrections in the next sections when we comment on quantum
loop corrections in SU(2)r, x U(l)y x U(1)y: and SU(2)L x SU(2)r X
U(1)B-L-

(12) Direct corrections in which new particles couple directly to e, g, b, ¢
fermions such as in Fig. 3. Examples are corrections due to SUSY scalar
electrons, and gauginos. O'f course these cannot all be absorbed into 6 (91,) ,
and so the combinations A%? will not be zero for direct corrections although
they tend to be small since they do not diverge as the masses of new parti-
cle in internal loops m? > |¢?| and they do not break global isospin badly.
We will show in the next section that A%® are also non-zero for corrections

 due to new gauge structures and that they can be large in that case.

It is easy to calculate the W mass in terms of the set (3.15). The result is,
of course
o2
My = (1-5) M3
9L
(3.27)

_PL 443 2
14+4/1— M
2 |: M%pL Z

with pr, given in Eq. (3.16). Note that My is not a free parameter of the theory.

In (3.27) we have included the largest radiative correction in those from Fig. 3.
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4. SU(2)r x U(1)y x U(1)y: GAUGE SYMMETRY

4.1 CURRENTS

- In this section we will study a theory with an extra U(1)y: gauge symmetry
and with the symmetry breaking pattern which preserves the charge relation Q@ =
I3, + Y /2 of the Weinberg-Salam Theory. This gauge symmetry is interesting,
since it can arise from string theories [6] as an effective low energy symmetry [5].
The extension to other symmetry breaking patterns with different relations for

the charge within this gauge group is obvious.

e e

The charged currents are the same as in Section 3. However the neutral 7
currents have a new form. The part of the Lagrangian which includes neutral

currents has the following form:

L =gr Jsg War +gy Jy B+gy: Jy: B’ (4.1)

~ where gy, Jy+ and B’ are the coupling constant, current and gauge field of the

new U(1)y . The current
- Y' :
Jyr =959 (42)

includes the new hypercharge operator Y'//2. A simple extension of our notation

“in analogy with Eq. (3.6) would have us write (Jy:)§ = 1/2 Y,! with Y,! the

hypercharge of left-handed electrons under the new U(1)y . In the string model,
Y, =1 /3. There are, of course, now three neutral gauge bosons and their masses

are gotten by studying the Higgs-gauge boson coupling with Higgs’ v.e.v.’s (¢;)

) ws

1

Y Y!
7 Z <|Dﬂ¢ilz> = <‘ (gL I3, War + gy E B +ng’? B') by



Now use

Q= I3 + % (4.4)
Qlg:) =0 for  (4;) #0 (4.5)

The first relation identifies the photon while the second ensures that U(1)sm, will

be unbroken and the photon:

——yey —1/F - -
A= +0) " (ov War+91 B) (46)

remains massless. Then we have

> <|Dp¢'i|2> = <l (ISL (9L W3 — gy B) + gy Zz—’ B') bi

1

2
> (4.7)

so that in the basis (g + ¢3)~1/2 (9. Ws — gy B) and B’ the neutral mass matrix
is
(92 + 9% ){BL) (93 + 93) 2gy (I )

L]

(9% + 9} ) 2gy (IsL %) g% (L)

M? = (4.8)

The two physical eigenstates Z and Z' and masses Mz, Mz are gotten by
“diagonalizing (4.8). The Z' is a new massive neutral gauge boson which we take
heavier than the Z : Mz > Mz. In analogy with (3.12) and (3.13) we have
defined

)

<I3L %—,> =) <¢i I3, Y7, ¢i> (4.9)
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)

<Y;2> =Z<¢‘i %2¢,-> (4.10)

where the summation is over all Higgs’ with non-vanishing v.e.v.’s {¢;). It is clear
that all the interactions of fermions and gauge bosons for any SU(2) x U(1)y X

U(1)y: theory with any Higgs’ structure are given in terms of seven parameters.

(Here we assume zero at tree level a possible U(1)y X U(1)y + mixing term F, wF,
with Fy, and F,, the field strengths of the B and B'. The coefficient of this if
included, would be the eighth parameter. Such a term would of course appear
at one-loop unless there was impased some global symmetry. to prevent it.) The

seven parameters are

Y! YI 2
_ gL, 9y, 9y ', PL <I§L>, <ISL7>) < 4 > (411)

Basically, these are the three gauge couplings, W+ mass and three entries in the

- 2x2, Z — Z'mass matrix. We replace these by the seven parameter set
M% gy
a, Gu, Mz, pr, €= M—z,’ g_y’ pY! (4.12)
with pr, as in Section 3 and py: being
!
¢ = _<£3_L__2¥___/.‘_2_>_ (4.13)
(I31)

a measure of the Z — Z' mixing; this parameter will be very important for

seeing effects of the heavy Z' while doing experiments on Z resonance. Once the

fermion representation under the gauge group is chosen the theory is completely
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determined by the four quantities (3.15) which determine the SU(2)L x U(1)y

model and the new three parameters:

€, =, py: (4.14)

We now rewrite all of the neutral and charged currents (and matrix elements)
in SU(2)L x U(1)y x U(1)y in terms of this set of parameters. The 2x2 Z — Z'

mass matrix is diagonalized by the unitary matrix

v cosfy —sinfy
B ~sinfyy cosfy - .

with

tan Oy = —2z (4.15)

: (B2 — 1) + /(B2 — 1) + 47}
- with
t €
Ng = _%—’; el (4.16)
- A
1 |1 1 (e+1)2
== [= —— — 42 4.17
Bz =3 e+e+\/(€ e) g5 R (4.17)

We get the ratio —g—‘; by solving the algebraic equation

62 e2 A2
(E> (1 - E) = 2M§OpL (ﬁz +1- /(87 — 1) + 47%) (4.18)

The currents are

2 1
Jz=c { Jar — —Jg + &= = tandy Jy } (4.19)
g1, gy 9L
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2 L
Jzr=¢ {“—ta.nﬂN (Ja[;— —;—ZJQ> + gr' ¢ Jy } (4.20)
L

with the overall constant

6
c= 0N (4.21)

. (1 _ ﬁ)1/2
g 9

and e?/g% is the solution of Eq. (4.18).

The parameter ¢ is always smaller than one and actually has a strict up-
per bound which is determined by noticing that the diagonal elements of the

Hermitian Z — Z' mass matrix are real. Thus

By = gb,  (Y'2/4)

= (4.22
9% +9% (IZ,) )

is real. One can show that this bound is always stronger than the bound which

arises from the constraint that MZM%, > 0 and is of the following form

M} 2
e= 2% < (irag-hal) <1 (4.23)

with vz defined by Eq. (4.16). Therefore Eq. (4.23) has an interesting feature
that for each particular model there is a lower bound on the value of Mz arising
simply from the self consistency of the model. Note that if (I3Y') = 0 (for

example if the Higgs with nonvanishing v.e.v.’s have at least one of the quantum

numbers I3, Y' zero) vz = 0 and the constraint (4.23) becomes trivial.
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~In order to complete the discussion of all four-fermion charged and neutral

current processes, we need to calculate the W= mass.

2
M = pp, (1 - %) (M% cos? x5 + M%,sin? 0y) (4.24)
L

- with €2/g? from Eq. (4.18) and tanfy from Eq. (4.15). Note that we have

calculated My as a function of the parameters in (4.12); it is not a free parameter.
Further, the W current Ji is still given by (3.21) with gz, given by (4.18) so all

charged current processes are now calculated.

For € < 1 the theory reduces t6“the SU(2) x U(1)y theory with correétions

of order e. In this case f and 5;— are determined through
L

) tg Oy = —vyze+ O(€?) (4.25)
e? ( e2> A2
—(1-=)=-20 [1—’726-}-0 )| . 4.26

Thus, as ¢ — 0, fy — 0 and the SU(2)r x U(1)y model is recovered.

The value of gy /gy is undetermined in general. However in string theories
with the grand unified gauge group FEg the relationship between the coupling

constants determines gy = gy at some mass scale.

The value of the parameter py: depends on the particular representations
and magnitudes of the vacuum expectation values of the Higgs fields. In general
py is of order one. In particular, for the model based on the string theory py
can assume a range of values from —4/3 to +1/3. In this theory with quantum

numbers (I, Y, Y') the two doublets H ~ (1/2, ~1,1/3) and H' ~(1/2, 1, 4/3)

26



con.tribute to oy in a way that py — 1/3 when (H') — 0 and py — —4/3 when
(H) — 0 [14].

In the following subsection, we will be studying the response of the various
asymmetries to the deviation from SU(2)r x U(1)y. These will be quite small
and the reader may worry that we properly should include one-loop quantum
corrections in the full SU(2) 1 xU(1)y xU(1)y theory in order to fully understand
the response to the new gauge group at the ~ 1% level. We now address the

question of radiative corrections in SU(2)z, x U(1)y x U(1)y..

We will consider here only oblique corrections. Imagine that we want to write
down the effect of some new fermions and scalars in the extended gauge group -
which enter as oblique quantum corrections as in Fig. 3. These particles have
quantum numbers I3z, @, Y' and couple via the parameters discussed in (4.12).
There is, however, a decoupling theorem, good at tree and one-loop level [15,16],

which says

SU@)z x U(L)y x U(l)y» —— SU(2)L x U()y (4.27)

Mz
Mz,_'o

Thus the oblique quantum corrections to the deviation from GSW of some
asymmetry A at LEP/SLC which is evaluated at low energy ¢? ~ —-Mg- can be

- separated into two parts

a M?

5A oblique = 6A + O <_ _"—Z'Z") (4.28)
SU@ XUy XU ys SU(;)wx';;(xy T M3,

L )

If we are willing to drop the O (/7 M%/M%,) terms (as we will in this paper;

they will be studied later [16]) we may compute all oblique quantum corrections

: 27



by studying the transformation properties of the new and old scalars and fermions
under SU(2)r X U(1)y. To compute these, we need only the parameters listed in
Section 3, (in (3.15)) and the particles’ quantum numbers I, Q. No knowledge

of the quantum number Y’ is necessary.

Having reduced the calculation of oblique quantum corrections to SU(2)r x
U(1)y, we wonder whether such corrections can be large for the particles which
enter naturally in the extended gauge group theory. These corrections have been
studied extensively elsewhere [2,8,15]. As discussed in Section 3 such quantum
corrections are large when they contribute to py, at the one-loop level by break-
ing the custodial global SU(2)r x SU(2)r symmetry. This occurs when there is -
large mass splitting within a local SU(2), representation of scalars or fermions.

Clearly, we must introduce new particles (at least new scalars) into a theory

with an extended gauge group. The question is; will these have large mass split-

ting within the representations? We might naively expect so since there are two

~ very different scales Mz and M3z in the problem; will for example the Higgs

fields which break the local symmetry at the large scale Mz: transform under
the custodial global symmetry into those which break the local symmetry at the
lower scale Mz? We see immediately that if they are to avoid a gauge hierarchy

problem they cannot since the new Higgs’ structure must be engineered such

-that SU(2)r x U(1)y is a good local symmetry from the scale Mz all the way

down to Mz where, of course, it breaks. Thus, a solution to the gauge hierar-
chy problem in the scalar sector will simultaneously give Higgs’ representations

whose masses respect the custodial global SU(2)r x SU(2)g symmetry and thus

quantum corrections from the new Higgs’ scalars will be small in the extended

gauge group. All of this discussion of course applies to the charged currents and
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My as well.

If the gauge hierarchy problem is unsolved in the extended theory, LEP /SLC
asymmetries (or the W= mass) could receive oblique quantum corrections of
O(a/m MZ,/MZ%) [15,16]. We will assume in the rest of this paper that the
gauge hierarchy problem in the scalar sector for the mass scales Mz, Mz has
been solved by some means (fine tuning, supersymmetry) and thus that oblique
quantum corrections from the Higgs’ sector are small. We will therefore display

results in this paper for extended gauge groups considering only tree level effects.

4.2 PHYSICAL IMPLICATIONY - -

The experimental values of the Z width and total cross section, Arg (left-
right polarization asymmetries) and Arp’s (forward-backward asymmetries) can
be determined from SLC and LEP measurements [7]. The deviation of these

values from the GSW theory can thus indicate new gauge structure, i.e., the

existence of new currents such as Jy:, and can impose a lower bound on M%,

for any particular model. The various cross sections, widths and asymmetries
can be evaluated by using the definitions in Section 2 and expressions (4.19) and
(4.20) for the currents. The asymmetries are studied for a range of parameter

space and are presented in Figs. 4 to 8. The calculations are exact at tree level.

Note that all asymmetries go to their GSW values as Mz — oo.

tom iyt ]
Figure 4 represents A7 7 ~# # evaluated on the Z resonance as a function of

1/y/€e = Mz:/Mjz. The fermion representations are chosen as suggested by string

theories [14] to be those of the 27 of Eg with quantum numbers (I3, Y, Y'): Q ~

(1/2,1/3,~2/3), ur ~ (0, —4/3, —2/3), dp ~ (0, 2/3, 1/3), L ~ (1/2, 1, 1/3),

and eg ~ (0, —2, —2/3). The numerical results are given for Mz = 94 GeV,
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PL = 1 and gy = gy, while py: is chosen for two extreme values py+ = —4/3 and
py+ = 1/3 as also suggested from the st;‘ing theory. The consistency bound (4.16)
implies that the theory is defined for Mz, & 2My for a wide range of models.
One observes that by measuring Ae[";;'—va— to within 1% the effects of new
gauge structures can either be seen or the lower limit Mz:/Mz & 0(10) can be
imposed for a wide class of models. But even a 10% determination of Arp would
set interesting bounds on a new Z' mass Mz:/Mz R 3 to 4 for some models.

Note that since A;;;—_’f f (with f # e, v.) is independent of final states [10] on

Z resonance SLC/LEP data including final state hadrons could be used to study

—

these shifts thus making full use of the increased statistics. These effects éould ,
then be visible with relatively few (~ 10*) Z’s when e~ polarization is available at
SLC [7]. Note further that comparison of Azp with A,y (see Eq. (2.11)) could
&ield information about the universality of the coupling of new gauge structures

to e and 7.

In Fig. 5 we give results for the forward-backward asymmetry without ob-
serVé.tion of longitudinal polarization in ete™ — ff for py = 1, Mz = 94 GeV,
gy' = gy, py' = 1/3 as a function of Mz:. The solid lines are for final state
muons, the dashes for final state ¢ quarks, the dots for final state b quarks. Note
that A?Bf_""ﬁ“— is much less sensitive to new gauge structures than Argp. This
.can be remedied in part by forming A;T;Z —utu with electron beam polariza-

tion. These are displayed in Fig. 6 for final state u, ¢, b with the same set of

parameters and conventions as in Fig. 5.

Another possibility for seeing effects of the new gauge structure would be
in studying the s dependence of the various asymmetries and, in particular, the

tem—aputy— . . .
slope near s ~ MZ%. This is plotted for A7z ~# * in Fig. 7 with dots, dot-
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dashes, dashes and solid lines corresponding to Mz:/Mz = 2.5, 3.0, 3.5, oo
respectively; the solid line is clearly thg GSW tree level prediction. Here we have
used py: = 1/3, Mz = 94 GeV, pr = 1 and gy = gy. Note that the slope
depends substantially on the presence of the new currents via their interference
with the photon exchange diagrams because the SU(2), x U(1)y vector couplings

of e, p to the Z is suppressed by the factor 4 ez/g% — 1 ~4sin? 8y — 1.

In Fig. 8 we plot Ac e [ # e, Ve, t as a function of /s including the
leading QCD corrections for final state hadrons. The dependence of the slope
near Z resonance is somewhat v!aihed out here because ﬁnalrstate quarks: vector
coupling to the Z are not suppressed. We have also studied the /s dependence
of forward backward asymmetries for individual final state fermions Ae e/ F
and Ae teiff but did not display it here because the dependence of the slope
near Z resonance on new gauge structures is not very pronounced. The most
interesting quantity then turns out to be A ng ~BTH pecause its slope changes
significantly as the value of Mz:/Mz changes. Therefore the measurement of
the initial state polarization asymmetry into u pairs around the Z resonance
would be a sensitive test of new currents, especially when the mixing angle Oy
is relatively small. Thus even when § A} (—MZ%) < 1, the /s dependence of

Ae+e ~KE can be significantly changed due to new contributions from the Y/

_currents and the Z' boson exchange.

Finally, we calculate My in the SU(2)r x U(1)y x U(1)y: theory and display
the results in Fig. 9 for the the choice of parameters above. Note that, with a

projected experimental error of AMy = £50 MeV it will be possible to either

set very strict bounds on Mz: S 10 Mz (and the other parameters) or see the

effects of new gauge structures. Less accurate measurements will be interesting
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once the precise Z mass is known [7].

Note that the behavior of e.g. Mw in SU(2) xU(1)y xU(1)y: in Fig. 9 is not
the most general; Eq. (4.24) is. It should be numbered that for (I3Y ') = 0 the two
neutral heavy bosons sectors decouple and we are left with the SU(2)r x U(1)y
results. Thus Figs. 1 to 10 indicate only a possible outcome of experiments

although the most general outcome can be easily extracted from this section.

All of the above calculations were done exactly at tree level. We now want to
study the particular combinations of shifts in asymmetries from their GSW values
A%, A¢ in the approximation tha;tngfM%, = € < 1 keeping only the leading

terms in M%/M%, and dropping terms of O(a/m M}/M%,). The Z current is

e2
Jz=c¢{ Jap— | &
9L

then

2 2
+6 (%)) Jo + 2 \gy, } (4.29)
2x1 9L Mz,

~ where %szl is the value of e?/g% computed in SU(2)L x U(1)y at tree level,
L

6(e?/g%) includes oblique quantum corrections in SU(2)r x U(1)y as well as
O(M% /M%) corrections to €2/g% in SU(2)L x U(l)y x U(1)y:. A is a model

dependent O (1) parameter of the extended gauge group. In the theory with an

extra U(1) it is

A — g_Y__,_ . _e_ Py ! (4.30)
gy gr

Clearly, asymmetries on Z resonance are insensitive to the model-dependent con-

stant ¢. If we calculate the combinations of shifts in asymmetries A¢ and A® in

Eq. (2.18), these will be insensitive to §(e2/g%) as proved in Section 3. Thus, ne-
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glecting terms of O(M3/M%,) and O(a/m M$%/M},) a simple calculation yields

AS = —q, M A{ oy, Gk = Ur)h vk

M, (Jaz)} (Jo)% a1
_sin Uy — vy | (v
oy S (R

with a similar expression for A¢ with substitution 6 — ¢ in Eq. (4.31). Note

that the expression in brackets depends only on the quantum numbers Y/ of

the b quark and electron under the new U(1)y: gauge group; sin’ 8y and a, are
calculated in terms of @, G, Mz glone in Egs. (2.19) and (2.20) and the J3z and
Jg quantum numbers are known. The only model dependence is in the parameter
M% /MZ2,\. Further, A® is zero unless b or e have Y' quantum numbers. Thus

z_&” is directly sensitive to the new gauge current. (Remember though that we

~ saw in Section 3 that it is also sensitive to the direct quantum corrections of Fig.

3of SU(2)L X U(1)y). Thus A® # 0 is a clear, unambiguous experimental signal

that e™ and/or b couples directly to some new as yet undiscovered particle!

We plot in Fig. 10 (dotted line) A’ from Eq. (4.31) as a function of Mz:/Mj
for pr, =1, py+' =1/3, gv+ = gy and Jy: quantum numbers gotten by requiring
that e,- b appear in the 27 of Eg as suggested by string theories. We also plot

A€ (solid line) there although we expect this to be experimentally more difficult

‘to measure. Those shifts can be huge for Mz ~ 3Mz which is not ruled out by

other low energy experiments. We expect [15] direct SU(2)r x U(1)y quantum
corrections to be small (5 1/2%). Nevertheless, they will be standard elsewhere

[16]. If so, observation of such a large A’ or A would probably indicate the

existence of a Z' just above LEP/SLC energies. Note that one can easily form

Al for the top quark by taking final phase space into account [17]. We expect
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that for 2M;,p S Mz —10 GeV there is enough phase space left so that the results
of this section for the various asymmetries to ¢ quarks should be qualitatively

good for ¢ quarks as well.

Tt is easy to form a similar quantity for muons
2 terautu—
At =6Arp -3 SApgr (4.32)

The expression for A# is gotten from Eq. (4.31) by substituting b — u so this
would be zero if e—p universa.litz _}i‘?ld for the extended gauge group. The k‘direct’
quantum corrections in SU(2)L x U(1)y would also largely cancel [15,16] (except
small quantum correction ‘box’ diagrams with new heavy particles in virtual
states) if e — u universality held so observation of A# # 0 would be spectacular
i_ndeed, probably signaling a breakdown of e — u universality coupling to a new

Z'"! Remember that there is already a check on such physics; the comparison of

ALr and Ay, on Z resonance.

It is amusing to imagine that both A and A¢ # 0 experimentally. The ratio
is insensitive to the parameters of the SU(2)L x U(1)y X U(1)y' model because

the factor A M% /M:ZZ, cancels in the ratio. Thus

é_li — { }b—+b
Ac { }b—-w

(4.33)

with the bracket written in Eq. (4.31). This depends only on the quantum

numbers of b, ¢, e under Jy:. It is also independent of the symmetry breaking

~pattern and the relation @ = I3 +Y /2 could also be changed without affecting it.

Once the quantum numbers of b, ¢, e under Jy: are known, it can be calculated
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with no other information from beyond GSW. For the 27 of Eg we get

Ab .
— ~ 0.57 (4.34)
A 270fEs

for Mz = 94 GeV. Thus, this ratio allows us to probe at SLC/LEP directly for

the quantum numbers of b, ¢, e under new gauge groups even if all the new

structure is too heavy to produce directly.

We have used e~ beam polarization in A?, A°, A¥ in order to avoid factors
of 4 €2/ g% —1 =~ 45sin®  — 1. It is easy to see that we can form similar quantities
without beam polarization, all of Which will be proportional to _Ab , A¢or AH*, For

example the following combination of unpolarized forward-backward asymmetries

‘o= fF oy 1[AS af oyt 2
Ainpozan'zed = 68455 " (-M}) - 2 []; to 6Arp T H (-M3)
(4.35)
= 3y Ae AT
4 ay,

for f =0, ¢, uwith 47, A® calculated at tree level in SU(2); x U(1) Unfortu-

nately, a3/a, is a small number (~ .1) as is A°(~ .3). So Ainpola".ze

4 1s quite
insensitive to this new physics. We note from the figures that asymmetries with-
out observation of longitudinal polarization are also less sensitive to new physics.

 Thus, longitudinal e~ beam polarization is crucial to observation of effects which

could reveal the existence of new gauge structures beyond SU(2)r x U(l)y at

SLC/LEP.
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5. SU(2)1 x SU(2)r x U(1)p— GAUGE SYMMETRY
5.1 CURRENTS

We here repeat the study of Section 4 for left-right symmetric theories |3,
4] with spontaneous symmetry breaking patterns which determine the electric
charge as Q = I3y + Izg + (B — L)/2; the so-called standard one [4,18] with
certain interesting phenomenological consequences. Extension to theories with

breaking patterns which determine @ in a different way is obvious.

Due to this extended gauge symmetry the charged and neutral currents are
changed. The part of the Lagrangian with éharged and neutral current coupling -

of fermions to gauge bosons has the following form:

- L=grJi Wi +grJ_tW} + grJ+rRWg + 9rJ-RWZ
(5.1)
+ 91,J3LWsrL + grJ3rW3r + 9gp—rJB-LB

" where gr,r and W}fR, WsL,sr are the SU(2)r r gauge coupling constant and

gauge fields while gg_1 and B are the coupling constant and the gauge field for

U(1)p-r. There are new neutral and charged currents defined as

1 -
J+L,+R = % Y Tu I+L,+R¢ (5-2)
Jar3r = ¥ Yy IsL3rY (5.3)
- B—-L
JB-L =% Yy 5 P (5.4)
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and J_1_r = JIL,+R' Here I L +r, Is1,3r and B — L refer to the isospin raising
operator for SU(2)L, g, the third component of the isospin for SU(2)L,r and the
quantum number of U(1)p_L, respectively.

There are two charged and three neutral gauge bosons whose masses are

obtained by studying again the Higgs-gauge boson coupling with Higg’s v.e.v.
(#;). The relations

Q=1Ip+ Lr+ (B ; L) (5.5)

— - - -

Qlg:) =0  for  (¢i) #0 (5.8)
ensure again that U(1).m is preserved with photons remaining massless:

W. W, B
A=e( st D3R ) (5.7)
gz gr  9B-L

Here, the electric charge is

e=gp_r 9r 9L 939% + 9B_r(9} + 9%)]—1/2 (5.8)

Using (5.6) and (5.5) one obtains:

> (mei) = X

[I3L(9LW3L — g5-1B) + Isp(9rW3r — gB—LB)] o

) t

+ Z <¢i [Q%I—-LI+LWEW£ + gLgrI-RILIWEWL
:

+ grorl- LI Wi W5 + ¢hI_rI.RWEWg ]¢i>
(5.9)

We choose Wf and W}:% as basis states for the charged sector and the charged
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mass matrix is:

) g2 ((1'%> - <132L>> 2grgr (I+L1_R)
My = " (5.10)
20rgL (I-LI+R) 9% ((IR> - <132R>)
In analogy with Sections 3 and 4, where we have defined:
(LipI_g) =Y _($ilypI_re:) = (I-LIyR) (5.11)
(Ipa3g) = Z ($il33r%:) (5.12)
(Br)=Y_ ($lrr(ILr+1)¢:) (5.13)

)

. For the neutral mass-squared matrix we must choose an orthonormal basis. With

basis vectors Z; and Z2

Zy = N1(grWsr — 9B-1.B)

| N (5.14)
Zy = NagrWsr, — g—Ll (9B-LW3gr + grB)

with constants

Ny = (g% +ehp)

(5.15)

NoNy= —— —
9LIRIB-L
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the neutral mass-squared matrix ij(i, J =1,2) becomes

2 )
2 _ 2\ -
Mj, = Nz (I3L)

2
M;, = NZ ((I3r + 95N Is1)?)
1 (5.16)
M122 = M221
= 2 (e + g} NPsz) Tar)
NN, B-r{Vi43L) 13
where we define
(ILlsg) = Y _($ilsLIsrd:) (5.17)
i

The two physical charged eigenstates W and W' are gotten by diagonalizing
(5.10) while the two neutral eigenstates Z and Z' are obtained by diagonalizing
© (5.16).

Thus, the interactions of fermions and gauge bosons in SU (2)L x SU(2)r X

- U(1) p—L gauge theory with any Higgs structure is given in terms of nine param-

eters:

gL, 9R, 9B-L, <I%,>a <I§L>, <I122> ’V <I§R>’ <I3LI3R>3 (I+LI—R> (5’18)

Essentially, one has three gauge couplings, three entries in the W — W' mass
matrix and three entries in the Z — Z' mass matrix. We replace them by the
following nine parameter set:

M} gr

—5 PR, O+, 03 (519)

«, Glh MZ: PL, € = W’ JrL
7

Therefore in addition to the four quantities (3.15) which determine the SU(2)r, x
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U(1)y model there are five new parameters:

€&, —, PRy 04, O 5.20
. +> 03 (5.20)

where we introduce the parameters:

(1%) — (Br)

PR = W (5-21)
Il
aj = %’fﬁ (5.22)
_ ({IzrI3R)
03 = ﬁi’r (5.23)

Note that all but € in the set (5.20) are O(1) parameters. We now reexpress all

- the currents (and matrix elements) in the basis of mass eigenstates.

The mixing angle 8 for the neutral gauge boson is determined by the same

~ equation (4.15) with 8z and ~z given by

2 2 2 2712 [ o 2\ "1 2
= (1 - %> [glzi (1 - 52_) - e—z] = (1 - e_2> + %8s |  (5.24)
] 9./ L9L 9L gLl 9L 9L 9L

and again (compare with (4.17))

2
Bz = % L \/(% - e) - 47§w (5.25)

€

The mixing angle of the charged gauge-boson mass matrix is

—2vw .
(Bw — 1) +/(Bw —1)2 + 44,

tanf; =
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with

9

g

Bw =2 ppor/osL (5.26)
9L
dR

YW =" o0+/pL (5.27)
gr

Here og is not an independent parameter, but it is actually determined in terms

of parameters (5.19) in the following way:

——

4 2 2 2 2\ —2 2,2 2\ —1
w9505 2509
drp L L9L 91, gr, 91 g1 91, 9L
- et e? -2
mbroll s~
gr, 91,

Now the ratio e?/g% is determined for heavy right handed neutrinos by the fol-

(5.28)

lowing algebraic equation:

&2 o2 A2 Bz+1-4/(Bz—1)+47}
Z(1-5) = 52— x : (5.29)
9 g 2MZpy, (102 /4pLPROR)
Then, the charged currents assume the following form:
Jw = ew (J+L + tan 0+J+R) (5.30)

le = Cw(— tan 0+J+L + J+R) (5.31)
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and
cw = grcosf (5.32)

Similarly, the neutral currents are of the following form

82 2
Jz =¢1 (J3L — —2JQ) + ¢z <J3R — —%—Jq> (5.33)
gar 9r
e? e?
Jzi=c¢qr <J3L — _ZJQ) + ¢q <J3R — ——Z—Jq> (5.34)
9L IR
with e — i )
-1 g\ —1/2 9\ —1/2
c1=e[<—i> (1——%—-) cos0N+——(1—e—2)
gL ar, gr g7,
2 2 27-1/2
: x sinfy] [%?- (1 - e—2> - %J (5.35)
91, gL 9L

-1 2\1/2 r 2 2 21-1/2 2
e e e
ey =e (——) <1 -~ —2) [f’% (1 - —2) - 6—2] IR singy (5.36)
gL g7, ar, g7, g1, 91

-1 2\ —1/2 2\ —1/2
, e e : e e
—el(L _e —singy) - = (1- &
a=e [(gL) ( g_%) (= sinén) gL( g}é)

2 2 27-1/2
X €05 0y [—g—é—z (1 — 6—2) — %—J (5.37)
91, 97, 91,

e e
cs=¢€ (-—) (1 — ——2—) [2152_ <1 - 8—2) - %} g_,; cos Oy (5.38)
gL gar, gr, gz, gr, 91,
The parameter € is again smaller than one and could be used as an expansion

parameter of the theory. By noticing that the diagonal elements of the Hermitian
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Z _ Z' mass matrix are real one obtains the upper bound (4.23) for ¢, with vz
defined in (5.24). Similarly, one can obtain an upper bound on ew = MZ, /Mg,
from the constraint tha.trthe diagonal 'elements of the hermitian W — W' mass
matrix are real. The bound is the same as in Eq. (4.23), however € and ~z are

now replaced by ey and v which is defined in Eq. (5.27).

One can again see that for € < 1, the theory reduces to the SU(2)y x U(1)y
theory with corrections of order e. In this case the mixing angles 64 of the
charged mass matrix (5.25), the mixing angle 5 of the neutral mass matrix

(4.15), assume the following form

€2\ 2 g2 2 217! g% o. " '
tanfy = (1 - —2) [—% <1 — ——2—) - —7] __g_z — €+ O(e?) (5.39)
91, 91, 91, 9L dr, PR
A e 2 2\ 21 Y[ e2 2\ g2
tan0N=—(1——2- g% - ——=% — (1——7) +g—§¢73 €+ O(€?)
, 91/ L9r 9r gL 9L ar, g1,

(5.40)

“and the algebraic equation for e?/g% for heavy righthanded neutrinos is of the following form

2 2 A2 2\ 2,2 2 2 -1
16l C- B3 -3
g1, 91, MzPL 91, 91, 91, 91,

g e2 2\ 7! g2 2
x |22 o} - ——2—<1———2) + £ o3 e+0(e®) p . (5.41)
97, ar, 9T, gr,

Thus one can again explicitly observe that as ¢ — 0, 84, 6y — 0 and

e?/gi(1— e?/g) — A%/MZpyL, i.e., the standard model is recovered.

The ratio of coupling constants gr/gr is a quantity of order one. In manifestly
left-right symmetric theories one chooses g = gr at some mass scale. For the

recently proposed theories with the left-right symmetric group incorporated in a
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bigger gauge group, SO(10) [19] or SU(8)L x SU(8)g [20], Mz: is permitted to
be light; i.e. Mz S O(10)Mz. In these theories it turns out that gg < gz, and

typically one has gp ~ 0.7 g,.

~ Parameters pg, 03 and o4 can assume the following range of values: pp =
{0,1}, o3 = {-1,0}, o4 = {0,1}. The particular value of these parameters
depends on the pattern of the Higgs’ field v.e.v. In the standard left-right sym-
metric theory with triplet fields one has the Higgs field multiplets with quantum
numbers (Iz, Ir, B — L): A ~ (1,0,2), Ag ~ (0,1,2) and ¢ ~ (1/2,1/2,0)

with the vacuum expectation patterns:

- - -

(AR) > (¢) > (AL) (5.42)
with
— K 0 !
=1, | =<« (5.43)

7 Also, the quarks transform as Qr ~ (1/2, 0, 1/3), Qr ~ (0, 1/2, 1/3), and

leptons transform as Ly ~ (1/2, 0—1) and Lr ~ (Q, 1/2 — 1). In this case

pr=1/2, 03~ —1 and 04 < 1.

In the following subsection we shall study the effects of the left-right sym-

. metric structure on the various asymmetries: these effects are of the order

O(M2%/MZ%,) compared to the one of the SU(2)r x U(1)y. As already explained
in the previous section radiative corrections arising from the new gauge structure

are at most of O(aM% /MZ%,) and therefore they can be neglected.

Finally we consider the W* mass as a function of the set (5.19) in left-right

symmetric theories. Note that neither My or My is to be considered a free
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parameter, but rather are to be calculated. In the case where all right-handed

~ neutrino masses are larger than the muon mass we have

(5.44)

62) y 1+ﬂw—\/(1—ﬁw)2+4’7ﬁ/ g

9L 1+ﬂz—\/(1—ﬂz)2+47§-

We will display numerical results for this in the next subsection. For complete-

ness, we display the W' mass here as well

\ ( ez) 1+ﬁw+\/(1—ﬁw)2+473‘,
MW:=pL 1—-—)x

5 M3 (5.45)
91, T

T4 Bz - \/(1 —Bz)2+4v%

Here Sw, Yw, Bz, 7z and €?/g% are defined by Egs. (5.26), (5.27), (4.17), (5.24)

and (5.29) respectively.

There is a particularly simple relation among the masses

2y ~1

MZ + (M}, — M%)sin? 8y = (1 - §§-> prt (M + (ME,. — M) sin? 6,
' L

(5.46)

which clearly reduces to the SU(2)L x U(1)y relation (3.27) between the W

and Z masses as Mz:, My, — oo since sin? 0 and sin? @, are O(€?).
5.2 PHYSICAL IMPLICATIONS

We evaluated various SLC and LEP asymmetries (see Section 2 for defini-

tions) in the case of left-right symmetric gauge structure. They are presented in
Figs. 11-16.
ete —oputu~

Figure 11 represents A , evaluated at s = M%, as a function of

1/y/€ = Mz:/Mjz. The results are given for Mz = 94 GeV, pr = 1 while other
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choices of parameters are: ggr/gr = 1, 0.7, pg = 0.5, 03 = —1, —0.5 and
o+ = 0,1. We chose only one value of the PR parameter because asymmetries do
not depend significantly on pr. Note that 8 does not depend on pg in the leading
correction of order e. The upper bound (4.23) for € implies that for a wide range
of models the left-right symmetric theory is defined for Mz: < 2.5 Mz. From
Fig. 11 we find that for Ae e~k measured to 1% the limit Mz /Mz R 0(10)
can be imposed for a wide class of models. Note that even for measurements of
order 10% one can still set interesting bounds on the Z' mass Mz, R (3 — 4) Mz
for most models. Further, we may use the hadronic data on Z resonance in
Aﬁg-"’h“d"’”s to augment the ;;;istics. Also comparison (;f Arp and J;Tp;,[ on

the resonance will provide a check on e — 7 universality coupling of new gauge

structures.

In the following we use for illustration a typical set of parameters Mz = 94

GeV, pr =1, gr/9r = 1, pr = 0.5, 03 = —1,04 = 0. In Fig. 12 the forward

backward asymmetry without longitudinal polarization Ae T g given for

the final fermion state f = u (solid line), f = ¢ (dashes) and f = b (dots).

tom ity
Note again that ALz ~# # is much less sensitive to the new gauge structure

et eL—w b

than Arr. However, Ap with electron beam polarization is much more

+
sensitive to the effects of new currents than A% g BT e present A’ FB Nonale

. in Fig. 13 (solid line) along with AFBL T with f = ¢ (dashes) and f = b (dots).

The s dependence of A;;;_"”ﬁ"_ is tested in Fig. 14 for Mz./Mz = 2.5
(dots), 3.0 (dot-dashes), 3.5 (dashed), oo (solid line). The slope is very sensitive

eyt
to the effects of the new currents and thus even when §A5 7 ~# # (—-M2) <«

1, the /s dependence of A} e =K"AT can be significantly changed due to new

contributions from the new currents and the Z' boson exchange. We have also
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studied the /s dependence of Ae < =/7 and Ae “.~/7 and note here that the
dependence of the slope near Z resonance on new gauge structures is again not

very pronounced.

In Fig. 15, ALR ZU, [ # €, Ve, t as a function of /s is plotted with the
leading QCD corrections included. The slope changes less drastically when the
ratio Mz:/Mz changes because the final state quark vector couplings to the Z

are not suppressed by a factor ~ 4sin® 8y — 1.

We shall now exhibit A%¢ the particular linear combinations of shifts in
asymmetries from their GSW values, in the approximation_ € < 1 i.e., keeping

only terms up to O(M%/M?%,). In this approximation Jz is of the following form: -

e? e? MZ e? M% .
Jz =const. < Jsp, — | — +6 (————> X = Jo+ —— A J3r
: { (gi o1\ ME, T gk M3,

(5.44)
with X being:
2 (1 ) /2 2 2\ ! 2
v~ _ € gr B ?') e e 9k
A= 9% 9L . P g—z_(l_g_z> +g—20] (542)
L (1 es _ e ) L L
9L 9

A simple calculation yields a similar expression for A% as in Eq. (4.30).

My o] (Jsr)R _ (Jar)R _ . (Jsr)e . (JaRr)R
A~ —q, —Z X {sin? by R _ B _ sin? 0y E
* M3, { (sr)y (V)i (sz)z  (Jolk
(5.46)
with obvious notation (J3g)% = 1/2 and (Js3r)% = —1/2. A similar expression

for the charmed quark (or top quark) asymmetry A° is gotton from (5.46) by
the replacement b — ¢. The bracket in expression (5.46) depends only on the

quantum numbers of the b quark and electron under the new gauge group SU(2)r.
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.Thus AbC are again directly sensitive to the new gauge currents and they are
presented on Fig. 16 with dotted and 'solid line, respectively. For Mz, ~ 3Mz
this effect is again huge. Of course Ab¢ are also sensitive to direct radiative
corrections of Fig. 2 in SU(2)r x U(1)y. However since these effects are usually
small [15,16] (S 1/2%), the observation of A%¢ > 1% would probably indicate

the existence of a new gauge structure.

Another interesting observation is that if both A? and A¢ # 0 the ratio
Ab/A° would again depend only on the quantum numbers of b, ¢ and e under
the new gauge group SU(2)g; the*depen’dence on ‘A%%—, ) is cancelled in the ratio.
Thus the value of A? /A° has a characteristic value for a particular gauge group.
For the left-right symmetric gauge group one has for Mz = 94 GeV:

- Ab

S = 1.24 (5.47)
A SU(2)LxSU(2)rxU(1)p-t

This to be compared with Eq. (4.34). Thus SLC/LEP physics would allow us
" to probe directly the quantum numbers of b, ¢, e under the new gauge group,
providing a clue as to the nature of the new gauge group.

Finally, we display in Fig. 17 the W* mass as a function of Mz:/M z; with
fixed Mz =94 GeV, pr. =1, pr = 0.5, gr/gr = 1, 04 =0, 03 = 1 and note that
the effects can be large. A precise experimental determination of the W* mass

would give very serious constraints on left-right symmetric models.
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6. CONCLUSIONS

We analysed the effects of extra gauge symmetries SU(2)L x U(1)y x U(1)y+
and S U(2)L x SU(2)r x U(1)p-L on polarization and forward-backward asym-
métries as well as cross sections and Z width readily measured on and around Z°
resonance at SLC/LEP. These theories are treated exactly at the tree level and
depend only on a fixed number of parameters. A particular linear combination
of the polarized forward-back