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Understanding how to decompose quantum computations in the language of the shortest
possible sequence of quantum gates is of interest to many researchers due to the importance
of the experimental implementation of the desired quantum computations. We contribute
to this research by providing a quantum circuit to directly measure the three-tangle of three-
qubit quantum states. Direct measurement of outcome probabilities in the computational
basis quantifies the three-tangle of the three-qubit quantum states.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subject Index quantum circuit, Direct measurement, three-tangle

1. Introduction
Quantum entanglement has been regarded as a main nonlocal resource for quantum infor-
mation processing [1]. It is widely used in quantum information science, including quantum
key distribution [2], quantum computation [3], quantum metrology [4], and so on. Over recent
decades the growing interest in producing entangled states in an experimental setup, such as
atoms in cavities [5], entanglement among 14 trapped ions [6], five superconducting qubits [7],
or trapped ions [8], has led to extensive research in this field. Naturally, there are two main
problems: entanglement detection (determining whether a given quantum state is entangled or
separable) and entanglement measurement (measuring the degree of entanglement between the
qubits of a quantum system).

We start with the relevant definitions of multipartite entanglement. An N-partite pure state
is called fully separable if it can be written as | ψ〉 =| ψ1〉⊗ | ψ2〉 ⊗ · · · ⊗ | ψN〉. On the other
hand, a mixed state is fully separable if it can be written as a convex combination of such fully
separable pure states, ρ = ∑

k
pk | ψk〉〈ψk |, where the coefficients pk form a probability distri-

bution, i.e. pk ≥ 0,
∑
k

pk = 1. One important method for entanglement detection is entangle-

ment witness [10, 9]. Lu and coworkers [11] used machine learning methods to construct a new
entanglement-separability classifier that had an advantage over the other methods in speed and
accuracy. Also, by constructing neural networks, they can simultaneously encode convex sets
of multiple entanglement witness inequalities [12].

Another open problem in quantum information is the quantification of the degree of en-
tanglement for an arbitrary quantum system [13]. Concurrence as an entanglement measure
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to compute the entanglement of the formation of two-qubit pure and mixed states was intro-
duced in Refs. [14–16]. Until now, many entanglement measures such as negativity, geometric
measures, genuine multipartite entanglement, three-tangle, and a polynomial invariant of de-
gree 2 have been defined to specify the degree of entanglement in a quantum system [17–19].
Also, there are several works for estimating entanglement using available quantum simulators
[20–28].

A set of one- and two-qubit quantum gates can be used to perform n-qubit quantum com-
putation [1, 29]. Recent advances in the experimental implementation of quantum computa-
tion have led to an interest in analyzing quantum circuits [30, 31]. Quantum circuits consist of
wires as qubits as well as gates or quantum operators, and describe the quantum computation.
Romero et al. proposed a general scheme to measure the concurrence of an arbitrary two-qubit
pure state in atomic systems based on quantum gates that act on two available copies of the
bipartite system followed by a global qubit readout [32]. We obtained a realistic protocol for
directly measuring the polynomial invariant of degree 2 of an even N-qubit pure state [33].

In this paper we propose a protocol to measure the three-tangle of three-qubit pure states.
The proposed method is based on the availability of four copies of the bipartite state and the
direct measurement of the probability of occupying the collective state of all of the copies. We
show that the three-tangle is equivalent to the probability of finding two specific configurations.
Estimating the probabilities needs huge sampling. A theory for quantum metrology that makes
high-precision measurements of given parameters with quantum systems is quantum param-
eter estimation, and a mathematical tool to estimate the quantum parameter is the quantum
Cramér–Rao bound. In the quantum Cramér–Rao bound, two fundamental quantities to rep-
resent the limit of the precision of single- and multi-parameter estimations are, respectively, the
quantum Fisher information and quantum Fisher information matrix [34]. But we do not use
quantum parameter estimation in the three-qubit system. Instead, we implement a program re-
lated to this protocol in mathematics. In this program, we obtain all 212 possible configurations,
but only two of them are equivalent to three-tangle.

2. Method
For three-qubit systems, some ways of characterizing and quantifying entanglement have been
presented [35–37]. Three-tangle is a necessary polynomial invariant for quantifying the en-
tanglement of three-qubit states [38]. It is defined, for the general three-qubit state | φ〉 =

1∑
i, j,k=0

bi jk | i jk〉 with
1∑

i, j,k=0
| bi jk|2 = 1 as [39]

τ (|φ〉) = 2
∣∣εi1i2ε j1 j2εk1k3εk2k4εi3i4ε j3 j4bi1 j1k1bi2 j2k2bi3 j3k3bi4 j4k4

∣∣
= 4 |k1 − 2k2 + 4k3| , (1)

where ε01 = −ε10 = 1, ε00 = ε11 = 0, the sum is over all the indices, and

k1 = b2
000b2

111 + b2
001b2

110 + b2
010b2

101 + b2
100b2

011,

k2 = b000b111b011b100 + b000b111b101b010 + b000b111b110b001 + b011b100b101b010

+b011b100b110b001 + b101b010b110b001,

k3 = b000b110b101b011 + b111b001b010b100.
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Fig. 1. Quantum circuit describing a direct measurement of the three-tangle of a three-qubit pure state,
where four copies are available. Qubits 1–3 are the first copy, 4–6 are the second copy, 7–9 are third copy,
and 10–12 are fourth copy of the three-qubit quantum state. It involves five controlled-NOT gates, as
well as σy and rotation gates R, followed by the joint measurement of the 12 qubits.

In this paper we provide the protocol that implements Eq. (1) quantum mechanically. Our
purpose is to give the protocol of implementation of Eq. (1); its circuit model is displayed in
Fig. 1.

According to Eq. (1), four copies of the three-qubit system | φ〉 are required, so that the in-
dices of (i1, j1, k1), (i2, j2, k2), (i3, j3, k3), and (i4, j4, k4) are related to the first, second, third,
and fourth copies of the three-qubit quantum system, respectively. For the sake of brevity, let
us denote them by the numbers (1, 2, 3), (4, 5, 6), (7, 8, 9), and (10, 11, 12), respectively. The
protocol can be thought of as the following steps:

1. Prepare four copies of the three-qubit state given by | φ〉 as:

| η0〉 =| φ〉⊗ | φ〉⊗ | φ〉⊗ | φ〉.

2. The Pauli y gate is applied to the fourth, fifth, ninth, tenth, eleventh, and twelfth qubits:

| η1〉 = σy4 ⊗ σy5 ⊗ σy9 ⊗ σy10 ⊗ σy11 ⊗ σy12 | η0〉.

3. We need five controlled-NOT gates (CNOTs) so that for each, the control and target qubits
are specified by the epsilon indices in Eq. (1). That is, ε j1(≡2) j2(≡5)shows that one of the
CNOTs acts on qubits 2 (the second qubit of the first copy) and 5 (the second qubit of
the second copy) as control and target qubits, respectively, and so on for the next CNOTs.
So, the CNOT gates are applied between the qubits as:

| η2〉 = C2,5C3,9C6,12C7,10C8,11 | η1〉,
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where C is a CNOT gate and the subscripts in the Ci, j gate denote the control and the
target gate, respectively.

4. Finally, the rotation gates R are applied to the second, third, sixth, seventh, and eighth
qubits:

| η3〉 = R2R3R6R7R8 | η2〉.

The unitary R gate rotates the state of the qubit as:

R | 0〉 = | 0〉− | 1〉√
2

, R | 1〉 = | 0〉+ | 1〉√
2

.

Applying steps 1 to 4 for the quantum state | φ〉 =
1∑

i, j,k=0
bi jk | i jk〉, in which none of the

coefficients are zero, we obtain the following result:

| η3〉 = 1

4
√

2
(−k1 + 2k2 − 4k3) | 000000000000〉 + 1

4
√

2
(−k1 + 2k2 − 4k3) | 100100000000〉

+ · · · (2)

Note that the · · · in the above relation indicates other sentences whose coefficients, unlike
the first two sentences, are not related to the three-tangle, and we do not write them to avoid
prolonging the result. Also, k1, k2, andk3 are given at the bottom of Eq. (1). Comparing Eqs.
(1) and (2), we obtain

τ = 16
√

2P000000000000 or τ = 16
√

2P100100000000, (3)

where P000000000000 and P100100000000 are the success probability of getting the state |
000000000000〉and | 100100000000〉, respectively (a detailed proof is given in the appendix).

For the entangled (GHZ) state | φ〉 = α | 000〉 + β | 111〉 (in which only two of the eight pos-
sible coefficients for the three-qubit quantum state are nonzero), the three-tangle is equal to
τ (| φ〉) = 4α2β2. Also, similar to the calculations of Eq. (2), for the GHZ state we obtain the
following results:

τ = 16
√

2P{0,1,2,3}{0,1}{0,2,4,6}{0},

τ = 16
√

2P{0,1,2,3}{0,1}{1,3,5,7}{1},

τ = 16
√

2P{4,5,6,7}{4,5}{0,2,4,6}{0},

τ = 16
√

2P{4,5,6,7}{4,5}{1,3,5,7}{1},

τ = 16
√

2P{0,1,2,3}{6,7}{0,2,4,6}{6},

τ = 16
√

2P{4,5,6,7}{2,3}{0,2,4,6}{6},
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in which we have converted the binary form to a decimal form for shorthand as

000 → 0,

001 → 1,

010 → 2,

011 → 3,

100 → 4,

101 → 5,

110 → 6,

111 → 7.

So. τ = 16
√

2P{0,1,2,3}{0,1}{1,3,5,7}{1}, in which {0, 1, 2, 3}, {0, 1}, {1, 3, 5, 7}, and {1} are related
to the first, second, third, and fourth copies of the three-qubit quantum state, respectively,
means that:

τ = 16
√

2P0011 or τ = 16
√

2P0031 or τ = 16
√

2P0051 or τ = 16
√

2P0071 or

τ = 16
√

2P0111 or τ = 16
√

2P0131 or τ = 16
√

2P0151 or τ = 16
√

2P0171 or

τ = 16
√

2P1011 or τ = 16
√

2P1031 or τ = 16
√

2P1051 or τ = 16
√

2P1071 or

τ = 16
√

2P1111 or τ = 16
√

2P1131 or τ = 16
√

2P1151 or τ = 16
√

2P1171 or

τ = 16
√

2P2011 or τ = 16
√

2P2031 or τ = 16
√

2P2051 or τ = 16
√

2P2071 or

τ = 16
√

2P2111 or τ = 16
√

2P2131 or τ = 16
√

2P2151 or τ = 16
√

2P2171 or

τ = 16
√

2P3011 or τ = 16
√

2P3031 or τ = 16
√

2P3051 or τ = 16
√

2P3071 or

τ = 16
√

2P3111 or τ = 16
√

2P3131 or τ = 16
√

2P3151 or τ = 16
√

2P3171.

Similarly, for τ = 16
√

2P{4,5,6,7}{4,5}{0,2,4,6}{0}, τ = 16
√

2P{4,5,6,7}{4,5}{1,3,5,7}{1}, τ =
16

√
2P{0,1,2,3}{6,7}{0,2,4,6}{6}, and τ = 16

√
2P{4,5,6,7}{2,3}{0,2,4,6}{6}, according to the decimal form of

each, the corresponding results are obtained.
Then the three-tangle can be obtained using one of the formulas shown above. It is interesting

to note that for this case, which is a particular state of the X state, the genuine multipartite (GM)
entanglement is equal to the square root of the three-tangle (2 | αβ |). Recall that if, in a system
consisting of N qubits, each qubit is entangled with all of the other qubits and not only with
some of them, we say that the system has GM entanglement. One of the measures to compute
the GM entanglement is GM concurrence [40, 41], which, for a pure state | φ〉, is defined as:

CGM(| φ〉) =: minζ∈β

√
2
√

1 − Tr(ρ2
Aζ

),

where β denotes the set of all possible bipartitions {Aζ | Bζ }, and ρAζ
is the reduced density

matrix:ρAζ
= TrBζ

(| φ〉〈φ |).
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3. Conclusion
In conclusion, we have provided a circuit for the direct measurement of the three-tangle as an
entanglement measure of a three-qubit pure quantum state, where four copies are available.
For implementation, it needs five controlled-NOT gates, σ2 unitaries, and other simple R qubit
rotations. We hope that this proposal could be implemented using present technology. Also,
analyzing various aspects of the quantum circuit, such as noise entering the problem gates or
incomplete quantum state copies, are our next goals to be explored in future work.

Acknowledgments
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Appendix A.
We use a mathematical program to give Eq. (3). In this appendix we summarize the steps of the
proof by stating a few sentences from each step.

The three-tangle is defined as the following form for the general three-qubit state |φ〉 =
1∑

i, j,k=0
bi jk|i jk〉, where

1∑
i, j,k=0

|bi jk|2 = 1:

τ (|φ〉) = 2
∣∣εi1i2ε j1 j2εk1k3εk2k4εi3i4ε j3 j4bi1 j1k1bi2 j2k2bi3 j3k3bi4 j4k4

∣∣
= 4 |k1 − 2k2 + 4k3| , (A1)

where ε01 = −ε10 = 1, ε00 = ε11 = 0, the sum is over all the indices, and

k1 = b2
000b2

111 + b2
001b2

110 + b2
010b2

101 + b2
100b2

011,

k2 = b000b111b011b100 + b000b111b101b010 + b000b111b110b001 + b011b100b101b010

+ b011b100b110b001 + b101b010b110b001,

k3 = b000b110b101b011 + b111b001b010b100.

The detailed proof steps of Eq. (3) are as follows:

1. Prepare four copies of the three-qubit state given by |φ〉 as:

|η0〉 = |φ〉 ⊗ |φ〉 ⊗ |φ〉 ⊗ |φ〉

=
⎛
⎝

1∑
i, j,k=0

bi jk|i jk〉
⎞
⎠ ⊗

⎛
⎝

1∑
i, j,k=0

bi jk|i jk〉
⎞
⎠ ⊗

⎛
⎝

1∑
i, j,k=0

bi jk|i jk〉
⎞
⎠ ⊗

⎛
⎝

1∑
i, j,k=0

bi jk|i jk〉
⎞
⎠

= b4
000|000000000000〉 + b3

000b001|000000000001〉 + b3
000b010|000000000010〉

+ b3
000b011|000000000011〉 + b3

000b100|000000000100〉 + b3
000b101|000000000101〉

+ b3
000b110|000000000110〉 + b3

000b111|000000000111〉 + · · ·
2. The Pauli y gate is applied to the fourth, fifth, ninth, tenth, eleventh, and twelfth qubits:

|η1〉 = σy4 ⊗ σy5 ⊗ σy9 ⊗ σy10 ⊗ σy11 ⊗ σy12 |η0〉
= −b4

000|000110001111〉 + b3
000b001|000110001110〉 + b3

000b010|000110001101〉
−b3

000b011|000110001100〉 + b3
000b100|000110001011〉 − b3

000b101|000110001010〉
+b3

000b110|000110001001〉 + b3
000b111|000110001000〉 + · · ·
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3. The CNOT gates are applied between the qubits as:

|η2〉 = C2,5C3,9C6,12C7,10C8,11|η1〉
= −b4

000|000110001111〉 + b3
000b001|000110001110〉 + b3

000b010|000110001101〉
− b3

000b011|000110001100〉 + b3
000b0100|000110001011〉 − b3

000b101|000110001010〉
− b3

000b110|000110001001〉 + b3
000b111|000110001000〉 + · · · ,

where C is a CNOT gate and the subscripts in the Ci, j gate denote the control and the
target gate, respectively.

4. Finally, the rotation gates are applied to second, third, sixth, seventh, and eighth qubits:

|η3〉 = R2R3R6R7R8|η2〉.
The unitary gate R rotates the state of the qubit as:

R|0〉 = |0〉 − |1〉√
2

, R|1〉 = |0〉 + |1〉√
2

.

The result is as follows, only for the first sentence of the third step (|000110001111〉):

|η3〉 = −b4
000(|000110001111〉 − |000110101111〉 − |000111001111〉 + |000111101111〉

−|000110011111〉 + |000110111111〉 + |000111011111〉 + |000111111111〉
−|001110001111〉 + |001110101111〉 + |0011110011111〉 − |001111101111〉
−|001110011111〉 + |001110111111〉 + |001111011111〉 + |001111111111〉
−|010110001111〉 + |010110101111〉 + |010111001111〉 − |010111101111〉
+|010110011111〉 − |010110111111〉 − |010111011111〉 − |010111111111〉
+|0111110001111〉 − |011110101111〉 − |011111001111〉 + |011111101111〉
−|011110011111〉 + |011110111111〉 + |011111011111〉 + |011111111111〉) + · · ·

By factoring the sentences and summarizing them, the following expression is obtained:

|η3〉 = 1

4
√

2
(−k1 + 2k2 − 4k3)|000000000000〉

+ 1

4
√

2
(−k1 + 2k2 − 4k3)|100100000000〉 + · · · (A2)

The coefficients of the first two terms in the above expression are the same as the three-tangle.
It should be noted that the three-tangle does not appear in any of the coefficients of the other
sentences. By comparing Eqs. (A.1) and (A.2), we get the following equation:

τ = 16
√

2P000000000000 or τ = 16
√

2P100100000000, (A3)

where P000000000000and P100100000000are the success probability of getting the state
|000000000000〉and |100100000000〉, respectively.
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