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Abstract

How the principle of inertia survives quantum fluctuations is an interesting question. Smolin has pro-
posed a hypothesis that quantum fluctuations are in fact real statistical fluctuations. In this work, combining 
the works on Hawking-Unruh radiation and Jacobson’s idea in his thermodynamics derivation of Einstein 
equation, we confirmed Smolin’s guess: the quantum fluctuations leading to Hawking-Unruh radiation, sat-
isfying the fluctuation theorem, are statistical fluctuations. Therefore, inertia is found to be a result of the 
second law of thermodynamics: the principle of entropy increases has the tendency to eliminate the effects 
of fluctuations and makes accelerated observers express inertia force.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

There should be no doubt that the principle of inertia can be among the most important laws of 
physics. Look backing at the history of physics, we can find that the ever-deepening understand-
ing of inertia has played important roles in both the development of classic mechanics and the 

* Corresponding authors.
E-mail addresses: liangsuo_shu@hust.edu.cn (L. Shu), xk_liu@hust.edu.cn (X. Liu), cuikaifeng@wipm.ac.cn

(K. Cui), zcliu@hust.edu.cn (Z. Liu), w_liu@hust.edu.cn (W. Liu).
https://doi.org/10.1016/j.nuclphysb.2019.114873
0550-3213/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
https://doi.org/10.1016/j.nuclphysb.2019.114873
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:liangsuo_shu@hust.edu.cn
mailto:xk_liu@hust.edu.cn
mailto:cuikaifeng@wipm.ac.cn
mailto:zcliu@hust.edu.cn
mailto:w_liu@hust.edu.cn
https://doi.org/10.1016/j.nuclphysb.2019.114873
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2019.114873&domain=pdf


2 L. Shu et al. / Nuclear Physics B 950 (2020) 114873
discovery of general relativity. Study on the details of the gravitational coupling between matter 
and spacetime which results in inertia may provide us more useful information.

According to the uncertainty principle, the energy of a particle has big fluctuations during 
short time intervals because of quantum fluctuations. However, the principle of inertia can sur-
vive these quantum fluctuations when the time interval is long enough. This naturally reminds 
us of the relationship between the second law of thermodynamics and statistical fluctuation. In 
fact, Smolin has proposed a hypothesis that quantum fluctuations are in fact real statistical fluc-
tuations in 1986 [1]. A series of important theoretical advances have enabled us to revisit this 
problem in more depth. The discovery of fluctuation theorem [2,3] gives an analytical expression 
for the probability of fluctuations quantitatively. The close relationships between the second law 
of thermodynamics and some basic assumptions in both relativity and quantum mechanics were 
discovered [4–7]. The attempt to interpret the gravity and inertia in a thermodynamic context has 
been one important topic of the theoretical progress in gravitational interaction [8–11]. In [8], 
Jacobson deduced the Einstein equation using thermodynamics method by assuming that “the 
fundamental thermodynamic relation δQ = T dS hold for all the local Rindler causal horizons 
through each spacetime point”. Recently, a quantum picture of space as Bose-Einstein conden-
sates of gravitons has been developed [12].

The plan of the paper is as follows. In the second section, using the works about the ther-
mal spectrum of Hawking-Unruh radiation [13–17] and Jacobson’s idea in his thermodynamics 
derivation of Einstein equation [8], we confirmed Smolin’s guess [1]: quantum fluctuations, sat-
isfying the fluctuation theorem, are real statistical fluctuations. In the third section, we analyzed 
the energy exchange between accelerated objects and space during the acceleration process from 
the perspective of different observers.

2. Quantum fluctuations as statistical fluctuations

According to the fluctuation theorem [2,3], the probabilities of a fluctuation with an entropy 
decrease of �S and its reverse process with an entropy increase of �S satisfies the following 
equation

p(−�S)

p(+�S)
= exp(−�S) (1)

If the quantum fluctuations of vacuum resulting in Hawking-Unruh radiation are statistical fluc-
tuations, they should satisfy fluctuation theorem described by equation (1).

Our analysis will be based on Sannan’s work [15]. Combining Damour and Ruffini’s approach 
[14] with the intuitive method of scattering amplitudes due to Feynman [18], he obtained the 
probability distributions of both bosons and fermions emitted from the black horizon to infinity 
[15].

2.1. Quantum fluctuations and Hawking-Unruh radiation

According to Hawking [13], a black hole, which can be regarded as an excited state of the 
gravitational field, can decay quantum mechanically because of quantum fluctuation of the met-
ric: energy tunnels out of the potential well of a black hole and gives rise to the creation of a pair: 
one particle (positive energy) going out and one antiparticle (negative energy) falling back toward 
the singularity. Using a method of barrier penetration in curved spaces, Damour and Ruffini [14]
obtained the relative scattering probability of the outgoing wave by the horizon as
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pω = exp(−8πMω) (2)

where M is the mass of a Schwarzschild black hole and ω is the energy mode of the particle or 
the antiparticle.

According to Feynman [18], the probability pω is also the relative probability of creating a 
particle-antiparticle pair just outside the horizon

pω = p+
p−

(3)

where p+ is the probability of creating a particle-antiparticle pair from vacuum caused by quan-
tum fluctuation, while p− is the probability that the final state is a vacuum, which can be seen as 
a re-annihilation of the creating particle-antiparticle pair. Combining equation (2) with equation 
(3), Sannan [15] obtained the probability distributions of both bosons and fermions emitted from 
the black horizon to infinity.

For an observer outside the horizon, black hole loses energy, accompanied by a decrease in the 
area of its horizon when he/she receives a particle of hawking radiation. According to the work of 
Bekenstein [19], this is an entropy reduction process for the black hole. Black hole recovers the 
energy it loses when the re-annihilation of the creating particle-antiparticle pair happens. After 
recovering the energy, the horizon area increases, which means that it is a spontaneous entropy 
increase process. The temperature of a Schwarzschild black hole with a mass of M is

Tg = 1

8πM
(4)

The entropy change of the horizon caused by the quantum fluctuation resulting in the radiation 
of a particle with energy of ω is

�S = − ω

Tg

(5)

Substituting equation (5) into (2) gives

pω = exp(−�S) (6)

Substituting equation (6) into (3) gives

p+
p−

= exp(−�S) (7)

Comparing equation (7) with equation (1), we can found that the quantum fluctuations result-
ing in Hawking radiation satisfy fluctuation theorem. In [16], Zhao and Gui have proved that 
Damour-Ruffini’s scheme for Hawking radiation [14] and Unruh’s scheme [20] dealing with the 
Hawking-Unruh effect are equivalent. Using High-dimensional global embedding Minkowski 
spacetimes, Deser and Levin [17] also discussed the equivalence of Hawking and Unruh tem-
peratures. Therefore, the above discussion of Hawking radiation should also apply to Unruh 
radiation. In this way, the quantum fluctuations of vacuum resulting in Hawking-Unruh radia-
tion satisfy fluctuation theorem and are real statistical fluctuations as guessed by Smolin [1]. The 
analysis of Bell and Leinaas [21] about the interactions between accelerated electrons and Unruh 
radiation provides evidence to support this conclusion.
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2.2. Interactions between accelerated electrons and Unruh radiation

According to the work of Gibbons and Hawking [22], the radiation of horizon is dependent 
upon the measurements of the observer: if the observer chooses not to absorb any radiation, 
there is no change in area of the horizon. In the case discussed by Bell and Leinaas [21], the 
accelerated electron is the observer of Unruh radiation. When it absorbs a particle with energy 
of �E from the horizon, its energy increases and an up transition from the ground spin state 
(E0) to the excited spin state (E = E0 +�E) occurs. At the same time, the horizon loses energy, 
accompanied by a reduction in area (and its entropy). During a reverse down transition from the 
excited spin state to ground spin state, the particles return energy to the horizon, the area (and 
entropy) of which increases.

Bell and Leinaas [21] found that the up and down transition probabilities between the ground 
spin state (E0) and the excited spin state (E = E0 + �E) of a uniformly accelerating electron 
with an acceleration of a satisfy

P+
P−

= exp(−2π�E

a
) (8)

where a is the acceleration of the accelerated electron, P+ and P− are the up and down proba-
bilities, respectively. The Unruh temperature registered by the accelerated electron [20] is

TU = a

2π
(9)

Substituting equation (9) into (8), we can get

P+
P−

= exp(−�E

TU

) (10)

When Jacobson [8] deduced the Einstein equation using thermodynamics method, the funda-
mental thermodynamic relation

δQ = T dS (11)

is assumed to hold for all the local Rindler causal horizons through each spacetime point, with 
δQ and T are the energy flux and the Unruh temperature observed by an accelerated observer 
just inside the horizon, respectively. In other word, the energy flux across a causal horizon is a 
kind of heat flow in spacetime dynamics. For an isothermal process, integrating equation (11)
gives

�Q = T �S (12)

The transitions between the two spin states are caused by the radiation field with temperature of 
Unruh temperature. In other word, the excited electron harvests energy form space through the 
horizon to make up the energy difference of �E between the ground state and the excited state. 
Therefore, the energy flux across the causal horizon, �Q, during the up transition of the electron 
is

�Q = −�E (13)

The negative sign indicates that space loses energy. From equations (12) and (13), the change in 
the entropy of horizon, �S, can be written as

�S = �Q = −�E
(14)
TU TU
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Substituting equation (14) into equation (10) gives

P+
P−

= exp(�S) (15)

3. Descriptions of an acceleration process from different perspectives

The discussion in the above section can help us understand Verlinde’s hypothesis that inertia 
force is result of entropy increase from a deeper level [10].

3.1. Verlinde’s entropic inertia force

Motivated by Bekenstein’s original thought experiment leading to black hole entropy [23], 
Verlinde [10] assumed that when a particle of mass m changes its position by �x with respect 
to some holographic screen by one Compton wavelength, the change of entropy associated with 
the information on the holographic screen equals

�S = 2π when �l = 1

m
(16)

and inertia force is an entropic force equals to

Fi�l = TU�S (17)

where T is the Unruh temperature experienced by the accelerated particle as described by equa-
tion (9), he derived Newton’s law of inertia:

Fi = ma (18)

where Fi is in fact the modulus of the inertia force (there will be a negative sign to the right of 
the equation (18) if the directions of inertia force and acceleration are considered).

As mentioned above, the radiation of horizon is dependent upon the measurements of the 
observer [22]. An accelerated observer, Alice, can obtain the Unruh temperature of the horizon 
by analyzing the energy of the particles of Unruh radiation she receives from the horizon. The 
instantaneously co-moving frame of Alice is a non-inertial frame, which means that she won’t 
realize that she is accelerating and therefore thinks her energy is constant. In this way, Alice will 
return the same energy to the horizon. Therefore, from the view of Alice, she thermalizes at the 
Unruh temperature and remains in equilibrium with the Rindler horizon by exchanging particle 
with it but there is no net radiation of energy between them, this agrees with the work of Ford 
and O’Connell [24].

The energy recovery of the horizon is a process of increasing entropy, which makes Alice 
express an inertia force.

Fi�l = �Q = TU�S (19)

where �Q is the energy recovered by the horizon from Alice. The inertia force actually acts on 
Alice’s local space.

3.2. Bekenstein’s generalized second law of thermodynamics

According to Verlinde [10], Alice merges with the microscopic degrees of freedom on the 
horizon and shares its temperature. Considering the conservation of energy, Alice will lose the 



6 L. Shu et al. / Nuclear Physics B 950 (2020) 114873
same amount of energy when she return the energy of �Q to the horizon: it is an isothermal heat 
transfer process between Alice and the horizon. The change of Alice’s entropy is

�SA = −�Q

TU

(20)

For a composite system consisting of Alice and the horizon, the total entropy change of this 
process will be

�Stotal = �S + �SA = 0 (21)

The above analysis can also apply to the process during which Alice absorbs Unruh radiation 
from the horizon. In this way, Bekenstein’s generalized second law of thermodynamics for black 
hole horizons [19] can still be applied to the Rindler horizon of an accelerated observer.

For an inertial observer Bob, the description of the acceleration of Alice will be different. 
From the view of Bob, there is no inertia force acting on the Alice: the work done by external 
force is equal to the increase of kinetic energy and the heat dissipation caused by irreversible 
loss,

F�l = T1�S1 + �Ek (22)

where T1 is the common temperature of Alice observed by Bob, �S1 is the entropy increase 
because of the heat dissipation caused by irreversible loss, �Ek is the change in the kinetic 
energy of Alice. For an ideal reversible process without any heat dissipation, �S1 = 0. Unruh 
temperature is in fact the temperature of vacuum observed by Alice where Bob (as an inertial 
observer) would observe none (the temperature of vacuum is the zero in Bob’s thermometric 
scale). Therefore T1 is an temperature difference between the vacuum and Alice from the view 
of Bob.

In summary, an ideal reversible process of acceleration is an isentropic process form the view 
of an inertial observer or a non-inertial observer. For the problem of gravity, Rindler horizons 
and their Unruh temperatures will be replaced by holographic screens and their generalized 
Bekenstein-Hawking temperature [25], respectively. In this way, the above analysis of inertial 
forces should also apply to gravity. Therefore, the total entropy increase of an ideal acceleration 
caused by gravity will be 0, which agrees with the reversible nature of gravity as a conservative 
force [26].

4. Conclusion and discussion

In this work, first, we confirmed Smolin’s guess: the quantum fluctuations leading to 
Hawking-Unruh radiation, satisfying the fluctuation theorem, are real statistical fluctuations [1]. 
Therefore, inertia is found to be a result of the second law of thermodynamics: the principle of 
entropy increases has the tendency to eliminate the effects of fluctuations and makes accelerated 
observers express inertia force. Then, we analyzed the energy exchange between accelerated ob-
jects and space during the acceleration process from the perspective of different observers. It is 
found that the total entropy change of an ideal reversible acceleration is 0 form the view of an 
inertial observer or a non-inertial observer.

In this work, we assumed that the heat transfer between the particles and the horizon is an 
isothermal reversible process. This assumption is also adopted by related works [8,10]. However, 
ideal reversibility means that the driving force is zero and the process takes in infinite time to 
complete. An actual physical process is more or less irreversible accompanied by an additional 



L. Shu et al. / Nuclear Physics B 950 (2020) 114873 7
entropy increase. The Larmor radiation of a charged particle may be related to this additional 
entropy increase.
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