THE ASTROPHYSICAL JOURNAL, 979:48 (10pp), 2025 January 20
© 2025. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

https://doi.org/10.3847/1538-4357 /ad9449

CrossMark

Recovering Pulsar Periodicity from Time-of-arrival Data by Finding the Shortest Vector

in a Lattice

Dotan Gazith'* , Aaron B. Pearlman®>*© , and Barak Zackay1

! Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel; dotan.gazith@weizmann.ac.il,
barak.zackay @ weizmann.ac.il
2 Department of Pkéysics, McGill University, 3600 rue University, Montréal, QC H3A 2T8, Canada; aaron.b.pearlman@physics.mcgill.ca
Trottier Space Institute, McGill University, 3550 rue University, Montréal, QC H3A 2A7, Canada
4 Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
Received 2024 February 12; revised 2024 November 14; accepted 2024 November 15; published 2025 January 16

Abstract

The strict periodicity of pulsars is one of the primary ways through which their nature and environment can be
studied, and it has also enabled precision tests of general relativity and studies of nanohertz gravitational waves
using pulsar timing arrays (PTAs). Identifying such a periodicity from a discrete set of arrival times is a difficult
algorithmic problem, In particular when the pulsar is in a binary system. This challenge is especially acute in v-ray
pulsar astronomy, as there are hundreds of unassociated Fermi-LAT sources that may be produced by ~v-ray
emission from unknown pulsars. Recovering their timing solutions will help reveal their properties and may allow
them to be added to PTAs. The same issue arises when attempting to recover a strict periodicity for repeating fast
radio bursts (FRBs). Such a detection would be a major breakthrough, providing us with the FRB source’s age,
magnetic field, and binary orbit. The problem of recovering a timing solution from sparse time-of-arrival data is
currently unsolvable for pulsars in unknown binary systems, and incredibly hard even for isolated pulsars. In this
paper, we frame the timing recovery problem as the problem of finding a short vector in a lattice and obtain the
solution using off-the-shelf lattice reduction and sieving techniques. As a proof of concept, we solve PSR JO318
+0253, a millisecond v-ray pulsar discovered by FAST in a ~-ray-directed search, in a few CPU minutes. We
discuss the assumptions of the standard lattice techniques and quantify their performance and limitations.

Unified Astronomy Thesaurus concepts: Pulsars (1306); Astronomy data analysis (1858); Gamma-ray astronomy

(628); Computational methods (1965)

1. Introduction

The pulsar search problem, recovering the timing para-
meters of a previously unknown pulsar, is central to pulsar
astronomy. Timing pulsars allows us to learn about their ages,
magnetic fields, and formation scenarios (D. R. Lorimer &
M. Kramer 2004). After obtaining an initial timing solution,
precision pulsar timing allows the use of pulsars as tools to
study GR (I. H. Stairs 2003), galactic and globular cluster
dynamics (B. J. Prager et al. 2017), and the gravitational wave
background (J. Antoniadis et al. 2022). When the observa-
tions are grouped together and the effective rotational period
can be measured on short timescales (for example, radio
observations of pulsars), solving the timing problem to
phase connect all observations is not computationally
demanding (though it is sometimes nontrivial; C. Phillips &
S. Ransom 2022).

Periodicity searches become extremely challenging when the
data consist of a small set of sparsely spaced times of arrival
(TOAs) or phase measurements, as the number of distinct
possible timing parameter values rapidly increases with the
observation’s duration. Although solving this problem has been
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important for several decades, it has not yet been solved.
However, fruitful efforts have been made using semi-coherent
techniques, which can, to some extent, also tackle the fully
coherent search problem (W. B. Atwood et al. 2006; H. J. Ple-
tsch & C. J. Clark 2014; L. Nieder et al. 2020a, 2020b). As a
result, more than a thousand Fermi-LAT unassociated point
sources might be pulsars (S. Abdollahi et al. 2022; J. Ballet
et al. 2023), where studies based on machine learning have
predicted 100-700 of them may be pulsars (S. Germani et al.
2021; J. Coronado-Blazquez 2022; D. V. Malyshev &
A. Bhat 2023; K. R. Zhu et al. 2024).

With existing techniques, obtaining a timing solution for a
single millisecond pulsar (MSP) for a Fermi-LAT unassociated
source is an extremely demanding computational task despite
using substantial computational resources. Semi-coherent algo-
rithms are often used, and they require substantial computational
resources and compromise on sensitivity (W. B. Atwood et al.
2006; H. J. Pletsch & C. J. Clark 2014; L. Nieder et al.
2020a, 2020b). This scheme is highly suboptimal when applied
to solving for MSPs in binary systems (most MSPs are formed
through a “recycling” process, where the pulsar’s high rotational
frequency originates from matter being accreted from a
companion in a binary system; D. R. Lorimer 2008).

Extensive distributed volunteer community efforts (e.g.,
Einstein@Home; B. Allen et al. 2013) have been made to
bypass this algorithmic difficulty, and many unassociated Fermi-
LAT point sources have been blindly followed up using state-of-
the-art radio facilities (e.g., D. A. Frail et al. 2018; S. Bruzewski
et al. 2023; C. J. Clark et al. 2023). Other techniques, such as
cross-matching Fermi-LAT sources with optical sources


https://orcid.org/0000-0001-6698-3693
https://orcid.org/0000-0001-6698-3693
https://orcid.org/0000-0001-6698-3693
https://orcid.org/0000-0002-8912-0732
https://orcid.org/0000-0002-8912-0732
https://orcid.org/0000-0002-8912-0732
https://orcid.org/0000-0001-5162-9501
https://orcid.org/0000-0001-5162-9501
https://orcid.org/0000-0001-5162-9501
mailto:dotan.gazith@weizmann.ac.il
mailto:barak.zackay@weizmann.ac.il
mailto:aaron.b.pearlman@physics.mcgill.ca
http://astrothesaurus.org/uat/1306
http://astrothesaurus.org/uat/1858
http://astrothesaurus.org/uat/628
http://astrothesaurus.org/uat/628
http://astrothesaurus.org/uat/1965
https://doi.org/10.3847/1538-4357/ad9449
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad9449&domain=pdf&date_stamp=2025-01-16
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad9449&domain=pdf&date_stamp=2025-01-16
http://creativecommons.org/licenses/by/4.0/

THE ASTROPHYSICAL JOURNAL, 979:48 (10pp), 2025 January 20

exhibiting periodic modulation, have enabled the recovery of
several of the timing parameters (e.g., precise position, proper
motion, and orbital period), reducing the computational load by
more than 8 orders of magnitude and making the recovery effort
feasible with current algorithms (L. Nieder et al. 2020b).

Another outstanding example of the need for an algorithmic
solution to the pulsar search problem is the effort to search for a
strict periodicity in the arrival times of repeating fast radio
bursts (FRBs). FRBs are a class of extragalactic astrophysical
sources, characterized by extremely luminous radio bursts
(J. M. Cordes & S. Chatterjee 2019; E. Petroff et al. 2019;
M. Bailes 2022), with durations ranging from nanoseconds to
milliseconds (W. A. Majid et al. 2021; K. Nimmo et al. 2022;
M. P. Snelders et al. 2023). These radio bursts have a wide range
of applications, including cosmological studies (e.g., see
A. Walters et al. 2018; J. P. Macquart et al. 2020), understanding
the FRB emission engine (e.g., see The CHIME/FRB Colla-
boration et al. 2020; A. B. Pearlman et al. 2024), and
distinguishing between different source types (e.g., see F. Kirs-
ten et al. 2022; M. Bhardwaj et al. 2024). Some FRBs have been
observed to emit multiple bursts and are referred to as repeating
FRBs (e.g., see The CHIME/FRB Collaboration et al. 2019;
E. Fonseca et al. 2020; The CHIME/FRB Collaboration et al.
2023). It is still unclear if all FRBs repeat and what the burst
emission statistics are (J. M. Cordes & S. Chatterjee 2019).

An important hint as to why this search is expected to be
computationally hard is the discovery of many-day periodicity
in the activity of some repeating FRBs, hinting at a binary
origin (The CHIME/FRB Collaboration et al. 2020). The
discovery of a subsecond periodicity in the so-far nonrepeating
FRB 20191221A suggests that some FRB sources may be
powered by rotating neutron stars with periodic radio
emission (The CHIME/FRB Collaboration et al. 2022).
However, a timing solution from a repeating FRB still remains
elusive, despite substantial search efforts and the detection of
hundreds of bursts from several sources (D. Li et al. 2021; J.-
R. Niu et al. 2022; H. Xu et al. 2022; C. Du et al. 2024).

A leading candidate for the FRB engine is a highly
magnetized neutron star (E. Platts et al. 2019), based on the
short duration of the observed radio emission and the similar
phenomenological characteristics shared with pulsars (A. B. Pea-
rlman et al. 2018). Nearly all phenomena (including giant pulses)
related to neutron stars have temporal properties that reveal the
neutron star rotation (M. B. Mickaliger et al. 2012). If repeating
FRBs also share this property, it is, in principle, possible to to
obtain a timing model using the arrival times of the radio bursts,
where the arrival times of the bursts would cluster in rotational
phase, similar to giant pulses from the Crab pulsar (M. B. Mick-
aliger et al. 2012).

Pulsar timing models can be incredibly precise and sensitive
to many significant digits in the rotation frequency, frequency
derivatives, sky position, and Keplerian (and post-Keplerian)
orbital parameters. Measuring all the above parameters for a
repeating FRB would allow us to study their astrophysical
formation scenario through measurements of their age, surface
magnetic field, orbital period, eccentricity, and binary mass
function. Since FRBs are very extreme systems, orders of
magnitude brighter than other known Galactic pulsars
(J. M. Cordes & S. Chatterjee 2019), their formation scenario
may reveal rare, yet important, phenomena related to the
formation of compact objects and perhaps even their influence
on their surroundings.
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1.1. The Pulsar Search Problem and Existing Solutions

The observed arrival times of the bursts, 7, can be modeled
as

fobs = fem + Atorb + Atprop, (D

where t.,, is the emission time of the burst, Aty is the delay
due to the orbital motion of the source, and A, is the delay
due to the propagation in the solar system (geometric and
relativistic corrections). A perfectly periodic source satisfies

tem mod Bt = ¢;- 2)
Equivalently, we can write
frot fem = K + (b, 3)

where fi, is the source’s rotational frequency and K is an
integer. A source whose rotation rate is changing linearly with
time satisfies

2
.1
frot Tem +f1‘*0t ? =K+ ¢ 4

To characterize the computational hardness of finding the
timing solution, we can estimate the number of “independent”
timing models that we would need to enumerate in a brute-
force search for the timing model by

A= ]VrotNgeomNorm (5)

where Noc = Ny X Ny, and Ny = %and Nji= éif_, where yand

07 are the typical measurement errors in the timing model.
Similarly (but perhaps with more complications), Ngeom is the
characteristic number of options for “independent” sky
positions (and proper motion and parallax), and N,y is the
number of independent orbital configurations.

When trying to find a timing solution for an MSP using
Fermi-LAT data, the typical numbers are as follows:

1. Hundreds of arrival times, spread over 15yr, with
significant association probabilities (=0.2).

2. The pulsar’s spin frequency and its derivatives are
unknown (N, € [1013, 1018]).

3. The pulsar’s position is known only to ~0.1°. The
precision required for a phase-connected timing solution
is ~107>-1 arcseconds, depending on the rotation
frequency and duty cycle. In some cases, proper motion
and parallax may also be required, yielding Noeom € [10°,
10'?] options.

4. The binary orbit is unknown (i.e., there are five missing
Keplerian parameters), resulting in N,y € [10'°, 10%]
different options.

Similar numbers are encountered when searching for periodi-
cities from repeating FRBs. The “brute-force” method for
searching a timing model is to take a group of bursts, try all
combinations of parameters, compute for all arrival times their
corresponding rotational phase, and perform a statistical test to
detect deviations from a uniform distribution. For short
observation durations (minutes—hours), such an enumeration
is feasible, and indeed, for RRATs (a special class of
neutron stars, emitting pulses irregularly), this can successfully
produce short-duration timing models that are phase-connected
between observations using heuristic software and manual
procedures (M. A. McLaughlin et al. 2009). However, this
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approach does not scale for long observing durations (several
years) and/or when including a binary orbit (with a binary
period shorter than the observation duration). The number of
options required for a complete enumeration easily exceeds
10%° for recovering a timing solution involving a binary orbit.
Since this is unfeasible for the foreseeable future, any viable
path includes an algorithmic method that is drastically different
from brute-force enumeration.

The current state-of-the-art algorithms used for solving the
pulsar search problem are the semi-coherent enumeration
algorithms (H. J. Pletsch & C. J. Clark 2014; L. Nieder et al.
2020a). These algorithms utilize a special detection statistic
that reduces the number of trials by reducing the coherence
time, trading off the overall search sensitivity for a much
reduced computational complexity. Currently, these algorithms
use one of the largest computing networks on the planet,
Einstein@Home (B. Allen et al. 2013), which spends up to
1000 core years per target. Even with the best computing
resources, using state-of-the-art methods, the pulsar search
problem could be solved blindly only when restricted to
isolated pulsars and with reduced sensitivity (due to a relatively
short coherence time used to reduce the computational load).

1.2. Our Contributions

In a series of papers, we cast the pulsar search problem into
the problem of finding a short vector in a lattice and show the
remarkable utility of lattice reduction and sieving for solving the
pulsar search problem. A proof of concept for an algebraic
algorithm that solves the pulsar search problem (in contrast to
the enumeration techniques currently employed) is presented in
this paper. The algorithm exactly converts the astrophysical
question into the problem of finding the shortest (nontrivial)
vector in a lattice. This class of algorithms has been extensively
developed with cryptanalysis applications in mind. As far as we
know, this is the first application of these algorithms, in high
dimension and of cryptographic hardness, outside of crypto-
graphy and number theory, although it was used as a speed-up
tool in satellite navigation systems (P. J. Teunissen 1993).

In this paper, we first show how the pulsar detection problem on
sparse data could be written as finding a short vector in a lattice.
This problem, although NP-hard (S. Khot 2004), is surprisingly
solvable for lattices with very high dimension, due to there being a
large body of algorithms, such as the lattice reduction algorithms,
LLL (A. K. Lenstra et al. 1982), BKZ (C. Schnorr & M. Euch-
ner 1994; N. Gama et al. 2010), and Gaussian Sieve
algorithms (P. Q. Nguyen & T. Vidick 2008; A. Becker et al.
2015), with the most advanced algorithms combining both
concepts (L. Ducas 2018; M. R. Albrecht et al. 2019).

We then find the shortest vector in the resulting lattices using
state-of-the-art off-the-shelf shortest vector problem (SVP)
solvers (M. R. Albrecht et al. 2019; The FPLLL development
team 2024). We demonstrate the algorithm’s applicability to
realistic situations using simulations and gamma-ray photon
arrival times from Fermi-LAT. Empirically and heuristically,
we describe the conditions for the algorithm’s success.

1.3. Review of Existing Solutions to the Shortest Vector
Problem

A lattice L is the set of all linear combinations with integer
coefficients of a basis of vectors (row vectors of matrix L,
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where the vectors may contain any real values):
velL—<dxecZ'st.v=xL, (6)

where n is the number of basis vectors and is called the lattice
dimension. The SVP refers to the following problem:

_min IvIi%, (N
0=vel
Lattice Sieving methods generate a set V of many vectors of
typical length I, and then pairs of vectors (vi, v, € V) are
iteratively used to compute w = v; — v,. If w is shorter than
either v; or v,, then it replaces them in V. This process is done
iteratively until convergence. If the set V has more than ~2%-2'"
vectors,’ then the typical lengths of vectors in the set V shrink
more and more until the shortest vector in the lattice is found.
Lattice reduction techniques are seeking a factorization of
the lattice

L' = QRU, (8)

such that Q is orthonormal, U is unimodular (a matrix with
determinant 1 and integer coefficients), and R is upper
triangular. The reduction process gradually updates U by
finding ways to make the matrix R more favorable for
enumeration algorithms that seek to solve RX = Viger, sSuch
as Babai’s nearest plane algorithm (L. Babai 1986) whose error
is proportional to 3",|R;;|>. This is accomplished by maximizing
the bottom values on the diagonal of R. Reduction algorithms
usually achieve a matrix, R, with

R(,i)
R(j, )
. . b \1/b
where b is the block size of BKZ and ¢, ~ (—) . The

2me

complexity of BKZ is superexponential in b. The larger the b,
the more convenient the enumeration. This can be intuitively
understood as meaning that the greater b is, the closer the
values in R’s diagonal are, which leads to easier enumeration,
but this reduction is harder to achieve. The greatest advantage
of lattice reduction techniques is their ability to find very short
vectors,8 if such exist, even if the dimension is large.

The current state-of-the-art algorithm for solving the SVP
(M. R. Albrecht et al. 2019) combines both approaches,
maintaining a database of short vectors on gradually increasing
sublattices  (using Babai’s nearest plane algorithm
(L. Babai 1986), utilizing a reduced basis), repeatedly keeping
them short (using a sieve), and exploiting the database’s size
for an eventual sieve to solve a few extra dimensions for free
(L. Ducas 2018).

81 ©)

2. Pulsar Detection as Short Vector in a Lattice—The Basic
Construction

We first introduce the basic timing model used in our
framework:

=K+ ¢+ )P, (10)

n/2
7" The exact limit is (%) / , as proven by P. Q. Nguyen & T. Vidick (2008).

8 Very short as compared to the expected shortest vector in a random lattice,

with each reduction algorithm supplying some guarantees that are typically
surpassed in practice.
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where 7; is the ith TOA, P is the pulsar’s rotational period, K;
is an integer number of pulsar rotations since the r=0
reference time, and ¢; is the pulse phase at which this photon
arrived (in the interval [-0.5, 0.5]). Assuming a Gaussian
pulse profile with standard deviation o (where o is propor-
tional to the “duty cycle”), ¢~ N(0, o). By rearranging
Equation (10), we obtain

fti —Ki—¢=¢, (11)

where f= 1/P is the rotational frequency of the pulsar. Since we
assume the pulse profile is of Gaussian shape, according to
the Neyman—Pearson lemma (J. Neyman & E. S. Pearson 1933),
the strongest statistical test to decide between the null
hypothesis, uniform phase residuals, and the alternative
Gaussian pulse profile is

T=> el (12)

For specific values of f, ¢, and K; to indicate a potential
detection, they should first be better than the alternative
values. So, even before considering the significance, we need
to find the best values for the parameters, which requires
minimizing 7. To prevent undesired solutions of extremely
high frequencies (for example, due to the clock frequency of
the detector), we also enforce a Gaussian prior on the
parameters:

v|-L|=1,
fi)rior
Vigl=1. 13)

When adding them to the test statistic, we will ensure each

of those priors contributes o, the same as any other
coordinate:
2
T=% e+ afi + (0P (14)
prior

The lattice structure arises from the restriction that the K;
values are integers, while f and ¢ are unknown and of some
precision. The equation needs to be strictly linear in the
unknowns and all unknown coefficients must be strictly
integers, as required by the lattice solver that we use (G6K;
M. R. Albrecht et al. 2019). For this purpose, Equation (11)
can be re-expressed as

otk — 12 a, =
A PP A P

Here, dy is the measurement resolution of f in the integer
solution, which we choose following

o
dr < ) 16
/ (max,- ti — mini [i) ( )

to ensure the rounding resolution is much smaller than the
expected parameter’s precision in order to avoid rounding
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errors. Writing the lattice basis vectors as rows of the following
matrix, we can write:”

1 O o0 .. 0 0 O
0 1 0 0 0 0
0 0 1 .. 0 0 O
Ly = : : | A7)
o o0 o0 .. 1 0O
dft() dfl1 dfl2 dfln 7, 0
d¢ d¢ d¢ d¢ 0 7]@

where we introduced 7, 7, to account for the priors in
Equation (14), and a choice for them that will give the same
expected loss in every coordinate is

dy

77; =0,

fpri or

Using this lattice basis definition, the vectors in the lattice will
have the components of our test statistic from Equation (14) as
their entries, and its length that we minimize when searching
for the shortest vector corresponds to the test statistic,
incorporating the phase residuals and priors.

N, = ody, (18)

3. Extending the Lattice-based Solution to Other Unknowns

We have described the technique for using the lattice
framework to find simple, perfectly periodic solutions.
However, the full advantage of using the lattice approach is
incorporating many other timing parameters into the model
without significantly increasing the computational complexity.
The most prominent of these are the pulsar spin-down
parameters (f, f, ...), the barycentric-correction parameters,
and some of the Keplerian orbit parameters.

3.1. Spin-down Parameters

The spin frequency of rotating neutron stars can change due
to processes such as magnetic breaking and accretion. We can
calculate the rotational phase of each TOA, ¢, using

" Fdr, (19)

Lref

o+ K+ ¢ =

where K; are integers, f.¢ is the reference time, and f(¢) is the
instantaneous rotation frequency. Expanding f(¢) as a Taylor
series and integrating, the arrival times satisfy the following
equation:

f(k 1)
Ki+ e =0+ ft + Z k. (20)
k=2

Similarly to Equation (15), we can equivalently write

mn (k D

K+ ¢ = ¢+[ }dftJrZ
=2 df<k

dpntk, (21

® The G6K lattice solver (M. R. Albrecht et al. 2019) also requires that the

input matrix’s entries are integers, so we multiply the elements by a large
number and round. This number is chosen to be much larger than the largest
expected §0j)u[101’1 coefficient divided by the phase residual’s resolution,
typically >> p
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This form of the equation can be naturally encapsulated by
adding a few additional vectors to the lattice:

1n><n ®n><(m+1) ]

(22)
S(m+l)><n 77(m+ Dx(@m+1)

Lspinfdown = (

where I, is the identity matrix, 0,,1) 1S @ zero matrix,
Sin+1)=xn 1S @ matrix containing the spin-down vectors, and
Nom+1)x(n+1) 18 @ diagonal matrix. S, 1)x, has the form

d@ d@
dft() dfl‘nfl
ld w (t)? ld o (ty—1)?
S(m+1)><n = 2 f 0 2 / "l - (@3
Ldf(m—l) (to)™ L(l’f(”’*‘) (D™
m! - m! -

and the elements of 1yt 1)xont1) are given by
o
LD=—, 24
n(lL, 1) a) (24)

dfw
(k) *

max

nk+1,k+1)=0c—— 25)

3.2. Accounting for an Unknown Position

The Fermi satellite follows Earth’s orbital motion, which, if
uncorrected, will leave a 500-second differential residual in the
photon arrival times. The main component of the time

correction is to project the satellite’s position vector relative
to the solar system’s barycenter along the direction of the
source.'” Since the required tlme resolution for efficient MSP
recovery is on the order of 10™*s, the sky position needs to be

known to a precision that is better than 107 rad ~10 mas. The
localization precision of sources in the 4FGL catalog is roughly
0.1°. Thus, for pulsar searches, there are 10° different trial
positions that are possible in a blind search.

Moreover, the proper motion of the pulsar can also
substantially affect the timing solution (especially for MSPs)
because the resolution required by the proper motion is on the
order of lm—‘r15 A pulsar that is located at a distance of 1 kpc,

with a tangential velocity of 100kms™', will have a proper
motion on the order of 10 mas yrfl, which will introduce
substantial timing residuals. To solve for the pulsar’s precise
position with the lattice, we notice that the space of all possible
corrections is linear (although the coordinate transformation
between this space and the commonly used coordinates is not
completely linear). We collectively denote all of the positional
parameters as 1, and their collective phase delay (time delay
times frequency) as F'(10). We can then write

ft;=Kj + F(t;, ¥)

=K+ F (15, ) + (b — lbo) (], ). (26)

dyp

O There are also general relativistic propagation effects and motions due to
other planetary bodies in the solar system that need to be corrected. This can be
accounted for, e.g., using the barycentering routines available in the PINT
software package (J. Luo et al. 2021).
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This linearized model for the timing solution could be added to
the lattice via the same procedure described for spin-down
parameters. In general, this approximation corresponds to
trying to reconstruct a three-parameter function with nonlinear
constraint (a unit vector pointing at the pulsar’s direction) using
two unconstrained parameters. We might naively expect the
approximation error to grow as

d°F

(Y — Yoh—— dindd,,
and result in an intolerable error (barycentric corrections that
are nonphysical) for relatively small position offsets. However,
the Fermi satellite’s motion around the solar system’s
barycenter is nearly planar, and if we look in ecliptic
coordinates, we need only two weakly constrained parameters
to linearly combine (Xgermi(#;), Yrermi(%;)). This means that even
large offsets will still yield a barycentric correction corresp-
onding to some pulsar position. Also, the mixing between the
barycentric correction and the first frequency derivative is
negligible for reasonable search parameters.'' Therefore, there
is no need for external enumeration of the exact position of the
pulsar, and our linear approximation is sufficient.

50 (W — Po)m (27)

3.3. Adding a Circular Orbit into the Lattice

Many of the pulsars that we aim to detect (for example, most
MSPs) are in binary systems. Therefore, we construct a feasible
algorithm for blind detection for such systems.

This issue was not addressed in the previous blind pulsar
search surveys because brute-force enumeration of all of the
orbital parameters, along with the spin frequency, spin
frequency derivatives, sky position, and proper motion, is
unfeasible. Brute-force enumeration of all of these parameters
can easily accumulate to more than 10°° independent options in
the parameter space.

In Section 7, we demonstrate that, with the lattice-based
solution, we can solve for position and spin-down in ~100 core
seconds, which, even with the simple, brute-force approach,
calls us to reconsider the binary search problem.

The lattice-based solution efficiently solves linear integer
least-squares problems. Therefore, to solve for the orbit, we
must also linearize the phase space of all circular orbits as
much as possible. The orbital reference phase and semimajor
axis are trivially linearizable:

Vi,otb = Sin(Qorbt)
V2,0rb = cos(Qorpt). (28)

The orbital frequency, (2., is more challenging, as periods
that differ by an integer number of orbits during the observation
duration are approximately orthogonal. Therefore, we must
divide the parameter space into a union of many different linear
spaces, covering all of the options for Q. For a circular orbit
with an orbital period of 10 hours, a semimajor axis of 1 light
second, an observation duration of 10 years, and a target timing
precision of 0.1 ms, this amounts to i— ~ 10% different

period trials. Since each trial requires solvmg the SVP problem
(at least 1-100 CPU seconds, depending on dimensions; see
L. Ducas et al. 2021), this will be extremely demanding, with

"= Li(2ra0tY) ~ 3 107 ( - 2)(5—(‘)
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an estimated cost of hundreds of core years. We can reduce this
number of trials by adding the following vectors to the lattice:

V3orb =1 sin(Qorpt)
Viorb = I cos(Qorp?). (29)

These vectors were obtained by taking the derivative of the
orbital time delay with respect to ),y. Incorporating these
vectors significantly reduces the number of required orbital
period trials. For example, for the aforementioned parameters,
the number of orbital period trials decreases from approxi-

a T

mately 10® to approximately ~ 10°. We can add more

oP Ry,
derivatives to the lattice, reducing the required enumeration.

Unlike adding the first derivatives, when we add the second
derivatives, the sensitivity can be compromised because not
every point in the lattice is physical, and this can artificially
increase the look-elsewhere effect. This is because the
coefficients of the second derivative vectors are fully
determined, in a nonlinear way, from the coefficients of the
first. For example, the ratio between the coefficients of v oy,
and v, o, 1s the same as between the coefficients of v o, and
V4.0rbs DECAUSE V4 orp 1S @ second derivative vector, with respect
to the phase and orbital frequency.

Note that the spin-down vectors (corresponding to (f",
f(z),...)) are correct when using the source time, which is
inaccessible to us (we know only the observed time). This
introduces a coupling between the spin-down parameters and
the orbital parameters. Fortunately, the two vectors correcting
these coefficients are the same as those compensating for
orbital period change and small eccentricity changes.

An in-depth discussion on partitioning the enumeration
space (including a full Keplerian orbit) into a set of linear
spaces will be described in future work. In this paper, we
discuss the case of a pulsar in a circular orbit.

4. Information Limit—Performance under the Null
Hypothesis H,

Understanding the expected performance without a signal is
important when using this lattice-based solution as a detection
tool. Therefore, we compute the expected length of the shortest
nontrivial vector in a lattice constructed with random TOAs. A
useful tool to analyze our lattice setup is the Gaussian heuristic
(GH), which states that the probability of finding lattice sites in
some volume is proportional to the volume, and the expected
length (per coordinate) of the shortest vector in a lattice is

1/n
A = M’ 30)

2me
where n is the lattice dimension and vol(£) is the lattice
volume, calculated as

vol(£) = v/det LI . 31)

But, because the original lattice’s volume is wholly controlled
by dy, dp..., the arbitrarily small numbers intended to make the
timing vectors quasi-continuous, the GH is unsuitable for
analyzing it.

Note that, once we set the coefficients for the unit vectors (or
the number of integer revolutions for each TOA), we only need
to perform a simple linear fit with respect to the timing vectors
to find the smallest phase residuals. However, we can reverse
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the order, orthogonalize the unit vectors with respect to the
timing vectors, and then perform the integer search. We will
refer to this reverse order search as searching in the sublattice
orthogonal to the timing vectors, and it is suitable for analysis
using the GH.'> We use the following lattice:

L — (Inxn ®n><m)’ (32)

Vm Xn nm Xm
where

T
Vm><n = (d]V] dmvm),

and
M xmiy = 6ijdiOexp/ 00

where v; are the orthonormalized timing vectors and d; are small
factors used to make the timing model vectors V; arbitrarily
small. oy, is the expected length of a random vector (which we
will now solve for self-consistently), and o; is the range that we
search for in v; (similarly to f . for the periodicity vector).
Following these definitions, we can calculate the lattice volume
(see Appendix for a detailed calculation):

vol(£) = [ T/

i \/1 + (O'exp/o'i)2 '

Next, after substituting Equation (33) into Equation (30), we
obtain

(33)

1/n

Oexp = NI = H Texp/ 01 /N 2me. (34)

Solving for 0.y, generally involves solving a high-degree
polynomial and requires a numerical treatment. But, in the
typical case, we search for solutions with large ranges for the
timing vectors (relative to a single phase cycle), allowing us to
simplify the calculation:

—1/n
Oexp A a;';{)”(H a,-) /2me, (35)

i

After solving Equation (35) for oy, we obtain:

i

_
Oexp = (H U,-) /\/ZWe#. (36)

Knowing how to compute the minimum length of a spurious
signal precisely, we can estimate the false-alarm probability
(FAP) of a candidate signal with o.,,q by computing the
expected number of lattice sites with 0 < 0¢4nq using the GH.
The estimated FAP is given by

FAP = (Ucand/gexp )n . (37)

5. Complexity Analysis

Following the same logic, we can compute the complexity
(and the amount of data) needed to solve a timing problem with

2 1n solutions spanned by the orthogonal sublattice, some of the phase
residuals might be larger than half a revolution, |g;| > 0.5.
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Table 1
Complexity of the Lattice Sieve for Different Pulse Widths and Corresponding
Association Probabilities

o p(at oy = 0) C(A) C(A = 10%%) n(A = 10?%)
0.2 0.5 A8 10%%° 207
0.16 0.7 A0 102 111
0.11 0.85 A027 1073 69
0.06 0.95 A%7 10*7 42

Note. o is the pulse width, p is the association probability of the TOAs, and o,
is the intrinsic pulse width; they are related by 02 = p - 62, + (1 — p) - %

a given entropy (number of “independent” options):

1
vol(L)

T 21+ e/ (38)
i Oexp

O¢
In the case where the correct solution is not the shortest vector,
Oexp < O, 39)

we might still be able to find it by generating Ncandigates Short
vectors, while keeping the condition

o
(—) g Ncandidates~ (40)

Oexp

For the lattice sieve, we use Neangiqaes ~ 202" and the time
complexity'? is C(n) ~2°%", as measured by L. Ducas et al.
(2021) for n ~ 100.

In Table 1, we provide the time complexity of our method
for different pulse widths and their corresponding association
probabilities. We find that o < 0.11 is easily attainable, while
p=0.5 is still unfeasible in this framework, even with an
intrinsically infinitely narrow pulse.

6. Injection Recovery—Performance under the Alternative
Hypothesis H;

As in any detection problem, we need to analyze our
algorithm in the presence of a signal, and in this case, we are
presented with a challenge. Since we use the G6K lattice
solver, which is designed to solve the SVP and not the shortest
nontrivial vector problem by enumeration, the solver may not
always find the shortest nontrivial vector. Therefore, we
performed a basic injection-recovery analysis of an isolated
MSP with a characteristic age of 100 Myr and a position known
to a precision of 1° (Ay~ 10°%).

We performed this analysis in both an FRB-like and a Fermi-
LAT-like scenario. In the FRB-like scenario, we sieve in the
sublattice that contains all noncontinuous vectors (not dst, d¢,
etc...) and compare its shortest nontrivial vector against the
injected one. The results, shown in Figure 1, demonstrate that
the Hy limit can be reached but not surpassed.

In the Fermi-LAT-like scenario, we use only photons with
high association probabilities in the lattice and later verify the
solutions using photons with lower association probabilities.
Therefore, we sieve to generate many candidate solutions (in
the same sublattice as in the FRB scenario). If the injected

13 Time complexity refers to the number of basic computer operations
required.
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signal is one of the candidates, we regard it as a successful
recovery. The results from this analysis (see Figure 1) show
that it is possible to significantly surpass the H limit because
we allow multiple trials.

7. Results on Real Data

Here, we present the application of this method to
4FGL J0318.24-0254, a Fermi-LAT source also known as
PSR J0318+4-0253, discovered using the FAST radio
telescope (P. Wang et al. 2021). 4FGL J0318.2+0254 is an
isolated MSP with a sufficient number of high-probability
photons and a narrow enough pulse. We used the Fermi-LAT
data from 2008 July 31 to 2023 September 28 and selected
photons arriving within 3° of the source’s position in 4FGL-
DR4 (J. Ballet et al. 2023). We assigned association prob-
abilities to the photons using the standard fermitools
procedure (Fermi Science Support Development Team 2019).
We divided the photons into two sets based on their association
probabilities: the 70 highest-probability photons and the rest
with a lower limit of p > 0.2, which we now refer to as the
lattice set and verify set, respectively. We construct the lattice
using the lattice set of high-probability photons, searching for
f~100Hz and 7~ 100 Myr, assuming the position reported in
4FGL-DR4 (with errors equal to the 95% confidence interval
uncertainties) and a proper motion on the order of 10 mas yr—".
We reduced the lattice and generated ~6.5 x 10* short
candidates. From these candidates, we selected the ones with
high enough f and used them to fold the verify set, calculating
the H-test statistic (P. Bickel et al. 2008) for each candidate.
The results from this analysis are shown in Figure 2. Using the
H-test scores of the verify set of photons, we identified the
correct solutions. The phase-folded histogram from one of
these correct solutions is shown in Figure 3.'*

8. The Norm Problem—Adapting to Bad Photons and
Double Pulse Profiles

The most severe conceptual problem in our setup is the fact
that we are using the L, norm to decide between the different
possible solutions.

The L, norm corresponds to the assumption of a perfect
Gaussian pulse profile, which does not hold for a vast majority
of known ~-ray pulsars that tend to have a double pulse profile.
This is also a bad norm to use when background photons are
present, which is the typical case for sources in Fermi-LAT.

A better choice of a test statistic to rank the different lattice
vectors is the H-test (P. Bickel et al. 2008). The H-test corrects
for both a somewhat more general pulse shape and for the fact
that different TOAs have different association probabilities
with the source (at least in the Fermi-LAT case).

Moreover, it is useful to output many vectors from the lattice
sieve and rank them according to the more sensitive H-test,
thereby picking up the correct solution even if the L, norm
ranks the correct solution only in the M™ place. Sieving
algorithms are usually using a large number of vectors, and this
approach is beneficial to increase the sensitivity of the search.

Additionally, the requirement for a large number (N > 60) of
photons with high association probability (p > 0.85) limits the
applicability of the method to a few dozen sources (out of the
thousands of unassociated sources). In a follow-up paper, we

14 A notebook that roughly follows this procedure is available at https://
github.com/Zackay-Lab /pulsar-lattice-example.
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Figure 1. The probability for recovery as a function of the injected signal’s width o. Top: Fermi-LAT-like simulation with an additional verification step. Bottom:
FRB-like simulation with no additional verification step. Recovery probability was calculated based on 50 injections per o for different numbers of TOAs over 10 yr.
The simulation consisted of an isolated MSP (f € [100, 1000] Hz and 7 = 100 Myr). The expected information limit, o.x, from Section 4, is indicated using the shaded
vertical stripes. The information limits appear as a stripe, rather than a single line, because the entropy depends on the specific simulated sky position. A sharp
transition from constant to no recovery at and after oexp is seen in both the FRB-like and Fermi-LAT-like simulations. An important distinction between the two
simulations is that we check whether the solution is in the short vectors set in the Fermi-LAT-like simulation, while we check whether the solution is the shortest in the

short vectors set in the FRB-like simulation.
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Figure 2. The H-test statistic histogram for significant and insignificant

candidates (which we will call solutions and candidates,

respectively)

generated using the lattice sieving. The H-test is calculated over the verify
set of photons, and the significance threshold for the p-value is set at 107", The
green line corresponds to the distribution of an exponential random variable
with parameter A = 1/0.4, as expected from the simulation by O. De Jager &

1. Biisching (2010).
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Figure 3. Weighted histograms of one of the solution’s phase fold for the
lattice-set and verify-set photons.

will present an algorithmic improvement that will more
effectively recover the correct solution in the situation of only
moderate association probabilities (p ~ 0.5).
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9. Conclusions

In this paper, we have shown that the timing solutions of
pulsars can be recovered using lattice algorithms, a set of
advanced tools developed for cryptanalysis. We have also
demonstrated that a lattice-based approach can be used to solve
a timing model that is a linear combination of known vectors.
Additionally, we showed that lattice algorithms can solve
problems that were previously impossible to solve, in a matter
of seconds.

We discussed the computational complexity of the lattice
algorithm technique and showed that it is substantially smaller
than full enumeration of the parameter space. The results
strongly depend on the duty cycle (or the equivalent width, for
more complex pulse shapes) and the association probabilities of
the arrival times.

As a proof of concept, we recovered the timing solution of a
real pulsar using Fermi-LAT data and our lattice algorithm
implementation. In the next papers in this series, we will show
how to linearize a Keplerian orbit and present a novel algorithm
that is more computationally efficient, allowing us to solve
lattice problems in which half of the TOAs are random or cases
where the pulsar has a double pulse profile. We will then apply
our methods to all relevant Fermi-LAT unassociated sources.
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Appendix
Lattice Volume Calculation

According to the Gaussian heuristic (GH), the expected
length of the shortest vector in a lattice is (per coordinate)
1/n
N = YO (A1)
27e
where n is the lattice dimension and vol(£) is the lattice
volume, calculated as

vol(£) = Jdet LI . (A2)

In our setup, we are interested in the sublattice consisting of the
unit vectors of the different TOAs, projected orthogonally to
the quasi-continuous timing model vectors, the phase residuals
lattice. We use the following lattice:

L — (Ian ®n><m)’ (A3)

Vinxn Mo
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where
Vion = (divi dwVn): Vi - v, = b,
and
(nmxm)i,j = 6i,jdi0'exp/0'i7

where V; are the orthonormal timing vectors, d; are small
constants, o; are the extent of the timing vectors we wish to
search over, and o, is the length per coordinate of the shortest
random vector we are trying to estimate. We wish to project out
the (Vi 77,-) directions, and for that, it would be useful to define
the unscaled versions of V and #:

UTr = (171 ﬁ'm); Y = 6i,‘/'0'exp/0'i- (A4)

This can be done by using the projection operator:

Py = hmenin — (U =) (U DU E)T)il(U ).
(AS5)
The projected sublattice can then be written as
Wysinim = DixnsmPv, (A6)
and the matrix we are interested in its determinant is
1" = LyscnsmPv Py iy mscn
= LixntmPv it msxn
=Lixn — Ul Ly + ZET)71U. (A7)

Now, to calculate the determinant, we use the Weinstein—
Aronszajn identity:

detIINI” = detl,xn — UT (yxm + X7 'U (A8)
=detlyxm — Upxm + 2X1UUT (A9)
=detl,ym — Upyxm + 2271 (A10)

If X is diagonal, this reduces to

2
detIITIT = L, All
1:[ 1+ 32 (AL
and the volume is
vol(£) =[] Zi (A12)

i \ll—l—Z,-z‘
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