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PARAMETRIZATICON OF THE LCNGITUDINAL AND TRANSVERSE

DEVELOPMENT OF THE HADRONIC CASCADE IN AN ABSORBING MEDIUM

This note is a status report of our simulation work on the response
of the CDF calorimeter (electramagnetict+hadronic) as a jet detector.

We aimed first of all at sﬁﬁulating the development of a hadronic
cascade in an cmogeneous medium by representing it both longitudinally
and transversally with a distribution function, giving the energy depos-
ited in the medium. The distribution function can be used to get quick
informations on the hadronic cascade without the need of following in
detail all particles ih the cascade. ' The characteristics and the limits
of validity of this ftmqtion are discussed in camparison with the exist-
ing experimental data and coamputer simulations. |

In section 1 and 2 we describe the longitudinal and transverse
parametrization respectively, in section 3 some remarks are given on the
use of the parametrization function in computer simulations. In section
4 we report scme results from a preliminary study of high Py jets in the
CDF calorimeter.

1. Parametrization in the Longitudinal Direction

A longitudinal parametrization of a hadronic cascade has been re-
cently published (1). In ref.(l) the developing cascade is described

by an energy distribution function, which is given as a sum of two terms.

The first one takes into account the e.m. contribution (mainly photons from



7 *decay) and the second one the contribution of the hadrons. The
function is supposed to describe the shape of the cascade starting with
the primary interation taken as the origin. No energy deposition be-

fore the origin is taken into account. The function is as follows:
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where z is the longitudinal coordinate along the cascade and the other
parameters are defined as follows:
s = distance fram the origin in radiation length = z/X,

t

distance from the origin in absorption length = z/K

a, b, ¢, d = shape parameters to be fitted to ‘the data

w, l-w = relative weights._of the e.m. and hadronic contribution
respectively

K = normalization constant
The shape parameters have been fitted in ref. (1) allow:ing for a log-
arithmic energy dependence (a=ajt+a,fnE ,5=bl+b22nE. .etc). The fit to.

same experimental data at Eyl5 GeV gives the following values:

a= .62+.31 fnE

b=.22

c = a (imposed)

d = .91-.024 £nE
w = .46

where E is the energy of the incident hadron in GeV.

We shall need in the following an expression for the constant K,

which can be cbtained by imposing the normalization condition:
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the integrals can be putin the form:
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such that we obtain for K the expression:

E/FCJL) . (2.)

< =
% ey (=) K S

The energy dependence of K for iron (Xa=l.76cm;,<=l7.lcm) is shown in
. Fig.l. |

. In Fig.2a the parametrization function is campared with WAl iron
calorimeter data (ref.l). In Fig.2b the function is cawpared with the
experimental data from Barish et al.(2). As a matterv of fact, from a
detailed camparison of the available data with the prediction of the
parametrization function, we find an incréasing discrepancy as the energy
of the incident hadron decreases (see for instance the 5 GeV points in
Fig.2b). We remark that below 3.5 GeV the parametrization is bound to
fail, since the exponent a~l becames negative. Since we are interested
in covering the energy range down to 2-3 GeV (see in Fig.3 the pion
energy spectrum from high p,. jets in pp collision), we felt that this
difficulty had to be cured. For this purpose we have studied the had-
ronic cascades in the range 3%¢E,$50 GeV using both the available data

and the predictions by a well tested Montecarlo (3). We find that the
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main discrepancy is due to the fact that formula (1) does not repro-
duce the rapid absorption of the cascades at 2z%»25 cm, which is indicated
by the available data at E£10 GeV and also clearly predicted by the
Montecarlo. We have introduced a correction in formula (1) to account
to a rough approximation for this effect. The corrected formula to be

used for BL10 GeV is as follows:

0%6-E _ 4 [4—4— -3’(.4-p) tjé
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the normalization constant H is different from expression (2). By eval- 4

uating the integral of formula (3) one obtains:
H =K (4— - Py/S

(see in Fig.l the energy behavior of H).

Function (3) diffaré from formula (1) in two ways. The energy
dependence of the a~1 exponent is changed from logarithmic into linear.
The singularity at 3.5 GeV is thus removed (see Fig.4). A term linearly
dependent on z has been added in the exponent of the hadronic .p'art. The
energy dependence of this texrm (.3(1-p)) is shown in Fig.4. It has the
effect of making the tail éf the cascade to drop quickly with energy.

The above corrections are such that function (3) departs gradually
fram function (1) below E=10 GeV (see Fig.5), and reprcduces better the
strong absorption of the low energy cascades that is seen in the data.

The rather unphysical quick change of the normalization factor at
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10 GeV (see Fig.l) has no influence on the practical use of the model.

2. DParametrization in the Transverse Directicn

It has been shown experimentally (4) that the transverse diffusion
of a hadronic cascade has a conical shape, the transverse widi:h of the
cascade being appﬁ:ox:i.mately linear versus depth in the absorbing medium.
This result for 10 GeV pions is shown in Fig.6, where the FWEM of ‘the
transverse distribution is plotted versus the depth in iron. The depend-
ence is invariant for different absorbing media, provided that the dis-
tance from the vertex is expressed in gr/cm?.

In our transverse parametrization we adopt this linear law, assum-
ing it to be true at ail energies. As a further sj.rrplifj.cation we assume
that the transverse distribution can be described by a single exponential
(actually a better fit would be obtained with two exponentials(5)).

We thus describe the ti‘ansverse distribution with the following

expression: y
e e 9% dE i,y
dxcz ‘3(")2) 4z

being

94(€z) = (<) + RCE)T

. and. where x is the transverse radial coordinate.

In order to study the energy dependece of the coefficients &f and /5
we report in Fig.7 the data of ref. (4) at 10 GeV and the data of ref. (6)
at 50 and 140 GeV. The data of ref. (6) have been elaborated in order to

cbtain the exponential length starting from the experimental distributions



in thé &ms@se strip counters.
One sees that g(E,z) is approximately energy independent.
A global fit to all data gives:
X =.82 and [ =.07
the line in Fig.7 corresponds to these values of « and /3 The prediction
by Montecarlo simulation at 3,5 and 10 GeV are also shown in Fig.7 and
they are found to be represented fairly well by the fitted line.

3. The Use of the Parametrization Function in a Simulating Program

In principle by expression (4) one can get @Jid{ly the amount of
energy released by a showering hadron in an arbitrary volume of the
cialorimeter. In practice this task would require an integration of
expression (4) that could be hard to do depending‘on the volume shape.
In‘ front of this difficulty we have found the following way out. We have
evaluated the density of energy deposition at regular steps of length 4z;
at each step the corresponding energy is spread out in a plane normal to
the shower axis according to the transverse distribution.

Of course the planes where the shower energy is considered to be
released will in general not coincide with the real sensitive planes of
the calorimeters. That is not a problem since at this stage we only
want to sample the total energy released within a given volume. How-
ever, if one wanted to evaluate the amount of energy released in the real
sensitive planes (in order to study light collection problems, counter
miformity or other detector performances), one could need to know the
energy released in the real sensitive planes. In view of such possible

future needs, we have also developed an algorithm that solves this problem.



Attention has been paid in choosing the proper length Az of the
longitudinal step, since an energy dependent systematic error can‘be-
mtrodﬁced if showers of different length were sampled by steps of fixed
length. Let us consider the sum that approximates the total energy in

our sampling procedure:
= ()
K> ( dEY Az 5
(‘z.( dZ { '

Expression (5) gives exactly the hadron energy at the limit z-=» 0. We
plot in Fig.8 the éxpression (5) divided by E versus Az, for different
hadron energies. One sees that a step of 1-2 cm would be a safe choice,
resulting in systematic errors of a few percents. Such small steps,
however, wouid imply very lengthy computations. Also, one could use
larger steps, e.g. 4z = 10 am, and then apply an energy dependent corr-
ection factor based on the curves of Fig.8. BAnother possibility could
be to use an energy dependent step. Experience gained in practice will
tell us which is the most practical way to follow.

4. Preliminary Study of Jets in the CDF Calorimeters

In this section we describe a first attempt of using the distribution
function to evaluate the diffusion of high Py jets into the CDF calori- °
meters. We have used a sample of pp events a£ \[—é = Z%V, where the elas-
tic g scattering produces two high p, Jjets (pt>/50 GeV/c) and two target
jets due to fragmentation of the spectator quarks. The particles are
followed in their trajectories through the solenoidal CDF magnetic field

(15 KGauss), and the impact points of all particles into the calorimeters



are memorized. 2An approximation is made by attributing the full photon
energy to the e.m. cell that is hit (no leakage between towers), with
a fluctuation of 9/E = .lS/ff. On the other hand, the hadrons divide
their energy between the cells of the hadronic and e.m. calorimeters,
a‘cco:.;d.in‘g to distribution function.

We have sampled longitudinally the distribution function in steps
1l and 5 cm wide in the e.m. and hadronic calorimeter respectively. ﬁadron
with energy less than 1 GeV were ignored. The cascade origin was gener-—
ated according the exponential distribution e-z/ ’<, where A is assumed
equal to be 18 cm both for lead and for iron. The hadron energy was
let to fluctuate with a gaussiar_l distribution (G/E = .65/\/_E') . We have
fluctuated also the cascade length and width according to a gaussian
distribution of the parameters x,, and g(z).
| ~ In Fig.9a) and b) we show as an example the mmber of photons and
hadrons hitting the calorimeter cells in a particular event. In Fig.l10a)
and b) the energy response of the e.m. and hadronic calorimeters for the
same event is reported. The energy of two jets was 57 and 78 Gev respeét—
ively.

Many events of this type have been generated, and all results look
plausible. We are now proceeding to txy to reconstruct the jets, and
we anticipate for the longer term future the generation and reconstruction

of more camplex physical events.
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Energy dependence of the normalization constants H(E<10 GeV)
and K(E>10 GeV) of the longitudinal distribution functions
(1) and (3) respectively (see text).

a) Measured (data points of ref(l)) and camputed longitudinal
enerqgy distribution of hadron cascade in iron.

b) Measured (data points of ref(2)) and computed longitudinal
energy distribution of hadron cascade in iron.

Energy distribution of secondaries in jets with p 50 GeV/c,
according to FFF (smooth curve drown through the spectrum).

Energy dependent shape parameters in the parametrization
function. '

Distribution function (1), (full line), and (3), (dashed line),
in the low energy range.

Width dependence of the hadronic cascade on the distance from
vertex for 10 GeV. pions. (Ref(4)).

Width dependence of the hadronic cascade on the distance from
vertex. Experimental data fram ref(6) and ref(4). Camputed
widths using the Montecarlo simulation of ref(3).

The ratio of the expression (5) divided the hadron energy E
versus the step length Az at different hadron energies.

a) Photon number in e.m. calorimeter. The marked celis indicate
the jet direction.
b) Hadron number in hadronic calorimeter with energy E>1l GeV.

a) Energy collected in the e.m. calorimeter.
b) Energy collected in the hadronic calorimeter.
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