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Abstract

The aim of thesis is to study the aspects of branes in supergravity and string theory.

We review the definition of energy in General Relativity, its extensions and Witten’s

proof of the positive energy theorem. We discuss the link between positive energy

and classical supergravity, and then review the construction of p-brane solutions

of supergravity, focusing on eleven-dimensional examples. We show that a certain

class of braneworld models – five-dimensional Hořava-Witten domain walls – are

stable by proving a generalised positive energy theorem. We also construct a set

of simple constraints that can be used to check brane world models in various

dimensions. We are particularly interested in understanding when such models can

be realised as smooth solutions, i.e. without singular sources, and we show how

previous no-go theorems can be evaded by considering more general geometry, such

as a non-compact transverse space.

We also consider the constraints on supersymmetric D-branes preserving N = 1

supersymmetry in compactifications of Type II string theory to four dimensions

with general fluxes included. We show that these constraints can be understood

in terms of generalised calibration conditions on the cycles wrapped by the branes

in the internal manifold. We then show that these conditions can be written in an

elegant geometrical language using pure spinors and generalised complex geometry,

which is useful framework in which to study compactifications with flux. Using this

language, we find that our constraints are the natural generalisation to manifolds

with flux of the more familiar results on D-branes wrapping cycles on Calabi-Yau

manifolds.
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Chapter 1

Introduction and Overview

The possibility of finding relevant four-dimensional physics from string theory was

revitalised when it was realised that Ramond-Ramond fields were supported by

extended objects known as Dp-branes1, where ‘D’ refers to the Dirichlet boundary

conditions of the open strings ending on p-dimensional spatial slice of the back-

ground spacetime [2]. An alternative to straightforward compactification became

available as the extended objects naturally carry Ramond-Ramond gauge fields

hence it was hoped that the standard model could be confined to four dimensions

on them in a natural way. Initial models of intersecting D-branes already showed

how one could find chiral fermions at intersections [3], with higher rank gauge

groups being found on stacks of branes. This gives a simple way to reproduce as-

pects of the Standard Model and there has been a great deal of subsequent activity

in this area [4].

While gauge fields are naturally localised on D-branes, gravity remains free to

propagate in the ambient spacetime, commonly known as the bulk, which makes re-

producing familiar four-dimensional General Relativity in intersecting brane models

difficult. A complementary approach is to discard the initial goal of reproducing

known particle physics and just try to find conventional four-dimensional gravity

from a more exotic theory, which is usually some phenomenologically motivated

toy model. The hope then is that this exotic theory can be successfully embedded

in string theory or supergravity, in such a way as to complement the intersecting

brane models, or more complicated compactifications [5, 6].

These exotic theories are usually minimal extensions of General Relativity to some

arbitrary number of extra dimensions, which are not necessarily Planck size (∼
1When it is not specifically useful to know the dimension of brane being discussed the label p

will be dropped.
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CHAPTER 1. INTRODUCTION AND OVERVIEW 8

10−35m). This is in contrast to the Kaluza-Klein supergravity programme [7], where

the compact dimensions are near Planck size. In fact, these ideas were not recent

[8, 9], but were brought to the fore by the work of Arkani-Hamed, Dimopoulos and

Dvali [10–12], and of Randall and Sundrum [13, 14]. In [10] a proposal was made

for a toy model with large extra dimensions (∼ 10−4m) which was intriguing as it

could be immediately tested by examining possible small distance modifications of

the inverse-square gravitational force law in desktop experiments. Strict bounds

now exist for such models [15–17]. One large extra dimension is immediately ruled

out as it would cause modifications at the scale of galaxies, however models with

two large sub-millimetre dimensions remain possible.

The large extra dimension models were initially proposed as a solution to the so-

called hierarchy problem, which in its simplest form states that it is aesthetically

un-pleasing to have large difference between two fundamental scales, the Planck

scale (∼ 1019 GeV) and the electroweak scale (∼ 103 GeV). The addition of n extra

dimensions of length scale L causes the effective four-dimensional Planck scale that

we appreciate to be much larger than the fundamental 4 + n:

M4 = M4+nL
n
2 . (1.1)

This appears to be an elegant solution to the problem. However, one quickly

realises that all we have done is introduce a new hierarchy in length scales between

our ultra-large extra dimensions and the n extra dimensions with L ∼ 10−4m.

The Randall-Sundrum (RS) models [13, 14] provide a different approach, consisting

of five-dimensional anti-de Sitter space AdS5 with gravity being localised on a

negative tension 3-brane. Localisation is caused by suppression of the graviton

wave-function away from the brane due to the appearance of an exponential warp

factor multiplying the worldvolume metric. In their first model with two branes

in AdS5 (known as RS1), the hierarchy problem is solved by exactly the opposite

effect – the positive exponential multiplies the fundamental Planck scale causing it

to appear greatly increased in the effective four-dimensional theory. This model was

superseded by RS2, which has only one brane, now with positive tension. Gravity

can still be localised, however we no longer have a solution to the hierarchy problem

[14].

The RS models appear at various stages in the work we shall describe later, so it

will be useful to introduce them in a little more detail here. The metric on AdS5
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in Poincaré coordinates is2

ds2 = e−2y/lηµνdxµdxν + dy2 , (1.2)

where µ, ν = 0, . . . , 3. We note that y → −∞ is the Minkowski boundary and

y → ∞ is the AdS horizon. This metric solves the five-dimensional cosmological

Einstein equations GAB = −ΛgAB, where Λ = − 6

l2
. If we cut this space at y = 0

and glue onto it a second copy of the y > 0 region we find

ds2 = e−2k|y|ηµνdxµdxν + dy2 , (1.3)

which now has an obvious Z2-symmetry about y = 0. This spacetime also has

the interpretation of AdS5 with singular brane located at y = 0 with tension λ =
�
−6Λ/kκ2

5
, as in RS2 [14]. In order to construct the RS1 model, we enforce

another Z2-symmetry at y = kl with tension −λ. One finds that the graviton

wave-function is localised here, along with the Planck scale being suppressed by

a factor e−2k. If we worry about the fact that the brane supporting the visible

universe has negative tension, then we simply swap to the positive tension brane

at the expense of solving the hierarchy problem. Requiring the Planck mass there

to match the familiar Planck mass means we must resort to the scaling arguments

of Arkani-Hamed et al’s models.

Models of the form described above are generically known as braneworlds, and

have attracted considerable attention from both the particle physics and cosmology

communities in recent years (see [18] for a recent review). This is primarily owing

to their seeming ability to predict anything of interest, conveniently at a scale that

will be probed at the next generation of experiments. Observations from the string

theory also suggest that warped RS braneworlds can easily arise from fundamental

objects in the theory, D3-branes, which have AdS5 × S5 geometry in the near

horizon limit. An F-theory construction has shown this in some form [19, 20] and

we shall present a detailed description of a more explicit supergravity realisation of

the second RS model later.

2Here we follow the conventions of [18].
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Overview

This thesis is divided into two parts, the first of which provides an introduction to

some topics which will be useful for the work presented in the second.

We begin in chapter 2 by reviewing the definition of energy in General Relativity.

We choose to concentrate on the Lagrangian pseudotensor approach of Abbott and

Deser [21], which can applied to spacetimes with general asymptotics and correctly

reproduces the results from the canonical Hamiltonian method of Arnowitt, Deser

and Misner [22, 23] for the asymptotically flat case. We shall then discuss how

this method is extended to non-trivial five-dimensional spacetimes, following Deser

and Soldate [55]. Having introduced the concept of energy in General Relativity,

we then discuss the proof of its positivity using the powerful spinor methods of

Witten and Nester [61, 62]. This leads us to consider N = 1 supergravity in four-

dimensions, which provides a physically intuitive way to understand the positive

energy proof.

In chapter 3 we review the main features of eleven-dimensional supergravity and

its solitonic solutions, the M2 and M5-branes. We do this by considering a general

gravity plus scalar plus form field Lagrangian. The solutions of this theory can de-

scribe the branes of the eleven-dimensional theory, and also those of both the Type

IIA and IIB theories in ten dimension. We then describe the conserved charges,

including the energy, of these extended objects and the relation to supersymmetry.

Part II of this thesis describes our original research. Chapters 4 and 5 are mainly

devoted to the study of the consistency and stability of braneworlds. These models

are generically inspired by domain wall solutions of five-dimensional gravity, how-

ever they have gravity localised on the four-dimensional worldvolume. In chapter

4 we are interested in Hořava-Witten spacetimes [94], which we define as singular

Z2-symmetric solutions to a bosonic theory arising from the Kaluza-Klein reduction

of supergravity in ten or eleven dimensions [97, 108]. In chapter 4 we discuss the

‘breathing mode’ reduction of type IIB supergravity on S5. This leads to a five-

dimensional theory with particularly interesting domain wall solutions, the singular

versions of which resemble the Randall-Sundrum models [13, 14]. We proceed to

define the generalised Abbott-Deser energy for these spacetimes, before discussing

their stability. We present a simple argument based on studying the zero-modes

associated with the domain wall’s motion which shows that much of the previous

work in this area has been overly restrictive. On identifying possibly dangerous

modes that were overlooked before, we proceed to show that they are in fact safe
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by proving stability using the spinorial method introduced in part I. We also briefly

consider asymmetric walls and conclude with a discussion of supersymmetry and

the higher dimensional origin of Z2-symmetric domain walls.

In chapter 5 we discuss a set of simple rules with which one can easily test the

consistency of phenomenologically motivated five-dimensional braneworld models

[24] i.e. those which do not arise from a consistent truncation of a compactified

supergravity theory. We present an extension of these rules to branes with more

general transverse spaces and show the relation to well-known no-go theorems for

smooth (non-singular) flat space and de Sitter compactifications [25–30]. We dis-

cuss examples in five and six dimensions, which illustrate positive features of these

sum rules and show how previous no-go theorems can be circumvented. We also

comment on the application to understanding smoothed p-brane solutions, where

the flat transverse space is replaced by a Ricci-flat space. We present a generalised

energy expression for such branes and comment on future directions for study.

Chapter 6 discusses the problem of finding supersymmetric compactifications of

ten-dimensional string theory on generalised flux backgrounds with branes present.

As this is somewhat removed from the other topics in the thesis, we shall give a brief

review of supersymmetry and compactification, generalised flux backgrounds, and

supersymmetric D-branes. We then describe the conditions on wrapped D-branes

in generalised compactifications to four dimensions preserving the minimal amount

of supersymmetry. We show that these conditions can be understood in terms of

appropriately defined generalised calibrations for these backgrounds, and discuss

the relation to generalised complex geometry.

We conclude with a review of our results and suggestions for future research. A

collection of useful formulae and a description of our conventions are presented in

the appendices.
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Chapter 2

Energy in (Super)Gravity

2.1 Conserved Charges in General Relativity

Our approach to proving the stability of the braneworld models discussed later will

be to first define the energy for these spacetimes and then then prove that this

energy is positive. If we have a good definition of energy, i.e. one that is gauge

invariant and conserved, then this will prove stability – if energy is positive and

conserved then there is no decay. In order to study the stability in this way, we

must have a good understanding of conserved charges in gravitational theories.

The concept, and problem, of charges in General Relativity has a long history (see,

for instance, [31–34]). The definition of energy in particular is a delicate issue and

remains an active area of research, having been reinvigorated by the AdS/CFT

correspondence in string theory through a reassessment of charges in anti-de Sitter

spacetime [35] and new classes of supergravity solutions [36, 37].

Local energy density is an ill-defined concept in General Relativity, as there is no

useful definition of local gravitational energy density. If we follow the example of

electromagnetism, we are led to the four-index Bel-Robinson tensor, constructed

from the Weyl tensor in analogy with the energy-momentum tensor of the elec-

tromagnetic field strength. Unfortunately this does not have the units of energy

density and so is therefore not very useful. What one can define is the total energy,

or mass, of an isolated system.

To define an isolated system we would like to have some idea of a background,

against which we can measure the fall-off of interesting quantities, such as curvature

perturbations. Obviously this concept does not sit well with the general relativity

in which there are no preferred frames. We can, however, use the asymptotic

13



CHAPTER 2. ENERGY IN (SUPER)GRAVITY 14

structure of a given spacetime. The simplest case is that of an asymptotically flat

spacetime, which will we define as follows [32]. We will denote our spacetime metric

by gµν (µ = 0, 1, 2, 3), with local coordinates labelled by xµ = x0, xi (i = 1, 2, 3).

We will define the ‘radial’ coordinate r =
√

xi · xi and use ηµν to denote the flat

Minkowski metric. If, for any coordinate system xµ, the metric components of the

given spacetime behave like gµν = ηµν + O(1/r) as r → ∞ along spacelike or null

directions, then that spacetime is asymptotically flat. The appropriate background

metric with which to compare the fall-off of interesting quantities is then simply

the Minkowski metric ηµν .

Following standard Noether’s theorem philosophy, we may then attempt to con-

struct charges associated with a set of symmetries. Unlike in field theory however,

we must do this on-shell, i.e. for the symmetries of a solution. In General Relativity

these symmetries are defined by a set of vector fields ξ satisfying Killing’s equation:

∇µξν +∇νξµ = 0 , (2.1)

Assuming that one such Killing vector is timelike, i.e. generates time translations,

we can define the Komar integral [38] for the total energy of a stationary, asymp-

totically flat spacetime. It will be useful to recall that a spacetime is said to be

stationary if there exists a timelike Killing vector, and static if there exists a fam-

ily of spacelike hypersurfaces (constant-time slices) to which this Killing vector is

orthogonal [32]. The Komar energy is given by

EKomar = − 1

8π

�

S

dΣµν�µνρσ∇ρξσ , (2.2)

where S is an arbitrary two-sphere and we define the volume element by

dΣµν ≡
1

2
√−g

�µνρσdxρ ∧ dxσ . (2.3)

Here g = −1 is the determinant of the background Minkowski metric and εµνρσ is

the four-dimensional volume form. This is related to the two-dimensional volume

form on S by �µνρσ = −6n[µν�ρσ]
1, where nµν is the normal bi-vector defined by the

orthogonal vectors nµ, ξν

nµν = 2ξ[µnν] . (2.4)

nµ is a unit normal to S and ξν is the unit norm Killing vector appearing in (2.1)

1Our conventions for differential forms are explained in the appendix.
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[32]. We shall not prove here that this provides a satisfactory definition of total

energy, but one can easily check it reproduces the desired result for Schwarzschild’s

solution, for example.

A seemingly different definition of energy for an asymptotically flat spacetime was

provided by Arnowitt, Deser and Misner (ADM) [22]. They introduced the canoni-

cal Hamiltonian formulation of General Relativity, from which a value for the total

energy is easily calculated. The ADM procedure is somewhat subtle and we shall

postpone its discussion until later. For now, let us note their result

EADM =

�
dSi

�
∂jhi

j
− ∂ihj

j

�
, (2.5)

where hij is the spatial component of the metric perturbation and dSi is now the

measure on an asymptotic spatial two-surface which is the boundary of a three-

dimensional spatial slice (See equation (A.16) for the definition of the volume ele-

ment on a submanifold). One can show that (2.1) and (2.5) agree for asymptotically

flat spacetimes, however it transpires that the Komar expression is somewhat am-

biguous and one often has to compare with some alternate definition. For instance,

if we were to calculate the angular momentum of the Kerr black hole using a Ko-

mar integral we would find an answer that differs by a factor of two from what is

believed to be the correct result [39].

In practice, taking the asymptotic limits associated with calculating total energy

can be tricky and a more formal approach has been developed to provide rigorous

results. This involves defining a spacetime to be asymptotically flat if it can be

conformally transformed to another spacetime which obeys certain rigorous condi-

tions of flatness. The Bondi energy is essentially an extension of the Komar energy

(2.2) to this conformal completion of an asymptotically flat spacetime, associated

to the generators of timelike translations of the extended symmetry group at null

infinity, the Bondi-Metzner-Sachs (BMS) group [32]. The Bondi energy is in fact

not conserved; there can be a flux of gravitational radiation at null infinity. One

can show that under certain assumptions (vanishing of the Bondi news tensor),

the Bondi energy and ADM energy are the same, after gravitational radiation is

accounted for [40].

In the next section we will review the Abbott-Deser (AD) construction of conserved

charges in cosmological Einstein theory [21], i.e. General Relativity with non-zero

cosmological constant Λ. We will then present the extension of this construction to

higher dimensions [55] in preparation for the discussion of charges for supergravity
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solutions in the next chapter. The final section describes Witten’s proof of the

positivity of energy in classical General Relativity and its relation to simple N = 1

supergravity.

A comprehensive review of many of the gravitational properties of string theory

and supergravity, covering some of the topics discussed here, is given in the recent

monograph [34].

2.2 Energy in Cosmological Einstein Theory

2.2.1 The Definition of Conserved Charges

The Abbott-Deser method allows the construction of conserved charges for space-

times with general asymptotic structures. The key to this is to correctly identify the

vacuum and its symmetries, which will generally not be that of flat spacetime. We

follow the conventions of [21, 32]
�
Rµν = Rα

µαν
∼ +∂αΓα

µν
, µ, ν = 0, 1, 2, 3

�
, with

mostly plus signature (− + ++), our other conventions are explained in the ap-

pendix.

We shall concentrate on solutions to the cosmological Einstein equations

Rµν −
1

2
gµνR + Λgµν = 0 . (2.6)

We define a vacuum or ‘background’ solution as some metric g
µν

which solves (2.6),

with examples being de Sitter (Λ > 0) or anti-de Sitter (Λ < 0) spacetime. Let us

now consider small fluctuations around background solutions, dividing the metric

as follows

gµν = g
µν

+ hµν , (2.7)

where hµν is a perturbation which vanishes at infinity. We will use (n) to denote

a perturbation of order n, with all background quantities being barred e.g. ∇µ

=

∇µ(0). From now on we raise and lower indices by g
µν

and it is worthwhile to note

that the inverse metric is given by

gµν = gµν − hµν + hµ

ρ
hρν + · · · . (2.8)

We now expand (2.6) keeping terms linear in hµν on the left-hand side and define

the gravitational energy-momentum pseudotensor τµν as terms of quadratic and
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higher order in perturbations, which we then move to the right-hand side,

G(1)

µν
− Λhµν = R(1)

µν
− 1

2
g

µν
gρσR(1)

ρσ
+

1

2
g

µν
hρσR(0)

ρσ
− 1

2
hµνg

ρσR(0)

ρσ
− Λhµν

= τµν − Λhµν , (2.9)

where we have used the fact that g
µν

solves (2.6). Noting that the Bianchi identity

holds to all orders, and in particular

∇µ �
G(1)

µν
− Λhµν

�
= 0 , (2.10)

and using (2.6), we can easily show the pseudotensor is conserved with respect to

the background covariant derivative:

∇µ

τµν = 0 . (2.11)

We could, if we wish, also include matter sources on the right-hand side without

effecting this definition. Recall now that we want to define conserved charges

associated to the symmetries of the background solutions and as such, we expect

there to be a set of background Killing vectors ξ
µ

obeying

∇µξν
+∇νξµ

= 0 . (2.12)

We can now construct the vector density
√−gξ

µ

τµν which is ordinarily conserved,

∇ν

�
ξ

µ
τµν

�
=

1√−g
∂ν

��
−gξ

µ
τµν

�
= 0 . (2.13)

If the perturbation falls off sufficiently quickly, we can construct the following set

of quantities, which we shall call the Noether, or Killing, charges:

Qµ(ξ) =

�

V

dV τµνξ
ν

, (2.14)

where dV =
√−gd3x is the volume element on the spatial slice V and we are

using natural units, such that 8πG = 1. Showing that Qµ(ξ) are conserved is then
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straightforward

∂

∂t
Qµ(ξ) =

�

V

dV ∂0{τµνξ
ν
}

= −
�

V

dV ∂i{τµνξ
ν
}

= 0 , (2.15)

where we have used (2.13) in the second line, leaving a total derivative, and the

third follows by Stokes’ theorem. If the Killing vector ξ
ν

is timelike, the quantity

Q0(ξ) is the Killing energy i.e. it is a Noether charge associated to an asymptotic

time translation symmetry. The appropriate fall-off conditions for perturbations

will be discussed in greater detail later for explicit examples.

We can now proceed to show that the volume integral may be written as an asymp-

totic flux integral over a spatial 2-surface. We begin by noting that the pseudotensor

τµν can be rewritten in terms of a superpotential2

τµν = ∇ρ∇σK
µρνσ + Xµν . (2.16)

The quantity Xµν can be written in terms of superpotential Kµρνσ which is defined

as

Kµρνσ =
1

2
[gµσHνρ + gνρHµσ − gµνHρσ − gρσHµν ] , (2.17)

where

Hµν = hµν − 1

2
gµνhρ

ρ
. (2.18)

The superpotential has the same symmetries as the Riemann tensor,

Kµρνσ = Kνσµρ = −Kρµνσ = −Kµρσν . (2.19)

The obvious definition of Xµν from the perturbative expansion of the Einstein

equations is

Xµν =
1

2

�
∇ρ , ∇ν�

Hµρ − ΛHµν , (2.20)

with Xµν symmetric in its two indices. We can then use the formula relating

the covariant derivative commutator to the curvature (A.3) and the background

2This ‘superpotential’ is not related to the supergravity superpotential used later. The name
is given as its derivative is related to a quantity of interest, in this case the pseudotensor τ

µν .
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Einstein equations to give

Xµν =
1

2
R

ν

λρσ
Kµλρσ . (2.21)

Using the Killing vector identity ξ
µ;νρ

= R
σ

µνρ
ξ

σ
, we see that the integrand of the

Killing energy (2.14) can be written as

τµνξ
ν

= ∇ρ

��
∇σK

µρνσ
�
ξ

ν
−Kµσνρ∇σξν

�
+

�
Kµρνσ∇σ∇ρ + Xµν

�
ξ

ν
. (2.22)

A little manipulation then shows that the last term can be removed, leaving a total

derivative. The anti-symmetry of the resulting expression then allows us to rewrite

the Killing charges as flux integrals over a spatial 2-surface. These are the AD

charges:

Qµ(ξ) =

�

V

dV τµνξ
ν

,

=

�
dSi

�
−g

�
∇σK

µiνσ −Kµjνi∇j

�
ξ

ν
, (2.23)

where once again i, j = 1, 2, 3 label spatial directions and dSi is the measure on the

two surface which is the boundary of the spatial slice V (see equation (A.16)). In

fact, one can manipulate this expression into a more transparent form [41]

Qµ(ξ) =

�
dSi

�
−g

�
ξ

ν
∇µ

hiν − ξ
ν
∇i

hµν + ξ
µ∇i

h− ξ
i∇µ

h + hµν∇i

ξ
ν

−hiν∇µ

ξ
ν

+ ξ
i∇νh

µν − ξ
µ∇νh

iν + h∇µ

ξ
i
�

. (2.24)

2.2.2 Some examples

As a consistency test of the Abbott-Deser (AD) energy (2.24), we can try to repro-

duce the standard result for asymptotically flat spacetime [22, 23]. In this case, the

perturbative expansion of the metric is

gµν = ηµν + hµν , (2.25)

where ηµν is the Minkowski metric and one can show that in order for the AD energy

to be well defined the perturbations must fall off asymptotically like hµν ∼ O(1/r)

as r → ∞, where once again r =
√

xi · xi. The exact behaviour of the various

components of hµν can be determined by studying the perturbed field equations,

or the constraints in the Hamiltonian formalism [22].
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Setting Λ = 0 and using the simple time-like Killing vector in flat spacetime ξ
µ

=

(−1, 0, 0, 0), we find that the general AD expression reduces to the well known

ADM energy formula

E(AD Λ=0) = EADM =

�
dSi

�
∂jhi

j
− ∂ihj

j

�
. (2.26)

We can use this result to calculate the mass of Schwarzschild’s solution. It is

convenient to write the metric in isotropic coordinates,

ds2 = −
�

1−M/2ρ

1 + M/2ρ

�2

dt2 +

�
1 +

M

2ρ

�4

dX
2

, (2.27)

where dX
2

is the line element on the 3-space in spherical coordinates, and M

is a constant. The ‘radius’ ρ is related to the regular Schwarzschild radius by

r = ρ(1 + M/2ρ)2. A straightforward application of (2.26) then gives EADM = M ,

identifying M as the mass, as expected.

Let us now apply the simplified form of the AD energy (2.24) to the general case

of non-vanishing cosmological constant (Λ �= 0), following [41]. The metric for

Schwarzschild-(anti)de Sitter in static coordinates is

ds2 = −H dt2 + H−1dr2 + r2dΩ2

2
, (2.28)

H = 1− M

r
− Λr2

3
.

Concentrating on the anti-de Sitter case (AdS), the background metric (M = 0)

has a simple timelike Killing vector ξ
µ

= (−1, 0, 0, 0) that is globally defined. The

energy integral is then easily evaluated to give

Q0(ξ) = E(r) = M

�
1− Λr

2

3

�

�
1− M

r
− Λr2

3

� , (2.29)

so that the asymptotic energy of Schwarzschild-AdS is E(r → ∞) = M . One

subtlety in this definition is that anti-de Sitter spacetime does not possess a global

Cauchy surface as spatial infinity is timelike [42]. This means that there could

be a flux of gravitational radiation, causing our energy defined above to be not

conserved, like the Bondi energy in asymptotically flat spacetimes. To resolve this

problem, one must fix appropriate boundary conditions to ensure there is no inflow

of radiation [21].

The de Sitter (dS) background is somewhat more subtle. Looking at the norm of
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the Killing vector

g
µν

ξ
µ

ξ
ν

= −
�

1− Λr2

3

�
, (2.30)

we see that it is only timelike for r < rH , rH =
�

3/Λ, i.e. inside the de Sitter

horizon. If we naively apply the energy expression (2.29), we find E(r → rH) = 0.

Abbott and Deser argued that in order to sensibly calculate the energy we must

consider the case where the Schwarzschild radius rS is much smaller than the de

Sitter horizon, allowing us to perform the integral in the region rS << r << rH .

This once again leads to the expected result ESdS = M .

2.2.3 Problems and Other Approaches

The Abbott-Deser (AD) approach provides us with an intuitive way to define

charges in the cosmological Einstein theory. In the flat spacetime limit it correctly

reproduces the result of Arnowitt, Deser and Misner (ADM), which was originally

derived using very different methods. It also gave the expected result for the mass

of the Schwarzschild-(anti)de Sitter black holes. Unfortunately, both de Sitter and

anti-de Sitter cases are problematic. Recall that in proving the conservation of the

AD charges we used the Stokes theorem to convert the expression into an asymp-

totic boundary integral, presuming that there were no internal boundaries. The de

Sitter horizon forced us to evaluate our energy integral at finite radius, and as a con-

sequence the Killing energy is no longer conserved3. The AD approach necessarily

involves fixing a background around which to study perturbations (2.7). This split

was long known to cause problems in the definition of angular-momentum, even in

asymptotically flat spacetimes. In this case the problem arises as the asymptotic

symmetry group is not Poincaré, as implied by assuming the background metric g
µν

is that of Minkowski spacetime, but is the infinite dimensional BMS group [32, 48].

In the case of anti-de Sitter spacetime, the asymptotic symmetry is correctly iden-

tified as the anti-de Sitter group SO(3, 2), however the subtleties arise due to the

lack of a global Cauchy surface and also in taking the asymptotic limit [46, 47].

Quite surprisingly, there are numerous approaches to the definition of charge in

anti-de Sitter. The original refinement of Ashtekar and Magnon [46] generalised

Penrose’s treatment of conformal infinity in Minkowski spacetime, leading to later

developments in charge definition by Wald and Zoupas [49]. Another approach,

developed by Katz et al [50, 51], uses Noether current techniques and a superpo-

tential, similar to the AD method we have described. Yet another approach uses

3This has studied by Shiromizu et al [43–45], who resolved the issue for certain restricted cases.
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counter-term subtraction [52, 53], inspired by the AdS/CFT correspondence. All of

these are based on using symmetries of the Lagrangian in various guises. A quite

different tact was advocated by Henneaux and Teitelboim [54], who studied the

Hamiltonian theory, following in the vein of the original work of ADM.

The state-of-art in this area has been recently reviewed by Ishibashi et al [35],

where the Henneaux-Teitelboim, Ashtekar-Magnon-Das and counterterm subtrac-

tion methods, and an extension of the Wald-Zoupas method, were all found to

agree. While this provides evidence for the equivalence of Lagrangian and Hamil-

tonian definitions, the relation to the original AD approach and that of Katz et al

remains unclear. In particular, these methods both employ a superpotential which

is related to a pseudotensor defined in the bulk. The other methods listed above are

all based on boundary techniques, where the quantities being studied are genuine

tensors, and at present it is unclear how to relate the two4.

2.3 Conserved Charges in Higher Dimensions

The work that we shall describe in chapters 4 and 5 of this thesis is concerned

with the energy and stability of extended objects in supergravity. Before we turn

to this, it will be useful to understand the simpler case of pure gravity in five

dimensional, Kaluza-Klein theory. In this section we will review the work of Deser

and Soldate [55], who generalised the AD charges to five-dimensional spacetimes

with one compactified direction. This introduces some techniques which will prove

crucial in defining the energy of the domain wall solutions we shall study later.

2.3.1 Definitions

In this section Greek indices run over all five dimensions (µ, ν = 0, . . . , 4), while

upper case Latin indices run over M, N = 1, 2, 3, 4 and lower case Latin indices

run over m, n = 1, 2, 3. We are interested in defining the energy of solutions to the

five-dimensional Einstein equations, and we choose to follow the approach of Deser

and Soldate, who generalised the Abbott-Deser pseudotensor definition of conserved

charges to five dimensions. We begin by splitting the five-dimensional metric into

the background and perturbation pieces which are taken to vanish asymptotically

gµν = g
µν

+hµν . We then define an energy-momentum pseudotensor τµν in terms of

the perturbations in the same way as described previously (section (2.2)). We can

4We thank A. Ishibashi for a discussion on this point.
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then define the usual Noether, or Killing, charges associated with the symmetries

of the background

Qµ(ξ) =

�

V

dV τµνξ
ν

, (2.31)

where ξ
ν

is a Killing vector and now V is a four-dimensional submanifold of the

spacetime.

Before proceeding to evaluate this integral in terms of perturbations hµν , it is

worthwhile to consider what type of solutions we would like to study. In particular,

it is only meaningful to compare energies among solutions which have the same

asymptotic structure i.e. the same background metric g
µν

. With our later example

of the Kaluza-Klein in mind, we shall choose to limit to the case of background

solutions with topology M1,3 × S1, where x4 ∈ 0, 2πR. Any solutions to the five-

dimensional Einstein equations that do not have this topology therefore fall outside

of our discussion.

One further assumption is that once again there is a simple timelike Killing vector

ξ
µ

= δµ

0
, and that there are no internal boundaries. We can then evaluate the

Noether charge associated with ξ, the Deser-Soldate (DS) energy:

E =

�
dx4

�
d3x τ 00

=

�
2πR

0

dx4

�
d2Si

�
∂jh

ij − ∂ihj

j
− ∂ih4

4

�
. (2.32)

Note that any terms with x4-derivatives are periodic in x4 and so vanish under the

integral over S1. We now define the radial coordinate over the remaining three

spatial directions ρ =
√

xi · xi. Looking at the DS energy we then notice that the

integral is only well defined if hMN ∼ 1/r, as opposed to 1/r2 as one might have

expected for a five-dimensional theory. If one wishes, it is possible to show that this

fall-off property is correct in a more concrete manner by carefully considering the

field equation for the perturbations, or equivalently the integrand of the four-volume

integral, with the appropriate Kaluza-Klein ansatz [55].

Consider now a class of compactifications of the form M1,3 × S1, with energies

E(h, g) given by (2.32). One way to find a possible preferred vacuum among this

class would be to look for a minimum energy configuration amongst E(h, g). To

do this it is useful to fix the S1 radius to be R in all compactifications, such that

geometric differences are entirely encoded in g
44

. This allows the DS energy to be
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written as

E(h, g) =

�
2πR

0

dx4

�
d2Si

�
g

44

�
∂jh

ij − ∂ihj

j
− g44∂ih44

�
. (2.33)

Deser and Soldate then note it is not possible to compare energies amongst different

compactifications as it would require h44 → constant, whereas we know that this

method of defining charges relies on studying perturbations that vanish asymp-

totically, i.e. hµν → 0 ∀ µ, ν. This is an obvious limitation of the Deser-Soldate

approach – we can not compare energies amongst spacetimes with different asymp-

totic behaviour. Of course, one can still compare energy among backgrounds with

the same asymptotics but differing by small amounts of matter T µν

mat.

2.3.2 An example - the Kaluza-Klein Monopole

When we constructed the Killing energy in section (2.2), we split the metric into

background plus perturbations (2.7) and stated that the background contribution

should satisfy the Einstein equations. The example that we shall now discuss, the

five-dimensional Kaluza-Klein monopole [56, 57], is interesting as upon making this

split the background metric is no longer a solution of the field equations. The

monopole metric was found by noticing that a solution to the five-dimensional

vacuum Einstein equations can be constructed by taking the direct product of

R (−dt2) with any four-dimensional gravitational instanton (i.e. a solution to the

four dimensional Euclidean vacuum Einstein equations) [56]. In this way one can

construct the Kaluza-Klein monopole from the Taub-NUT instanton [58]. The

metric is

ds2 = − dt2 + H−1
�
dx4 + Aφ dφ2

�
+ H

�
dr2 + r2dΩ2

2

�

H =

�
1 +

4m

r

�
Aφ = 4m(1− cos θ) , (2.34)

where θ is the azimuthal angle in the spherical metric dΩ2

2
and m is an as yet

unfixed parameter. This metric is ultrastatic, and therefore possess the simple

timelike Killing vector ξ
µ

= δµ

0
, and also has an additional rotational symmetry

in φ. A spacetime is ultrastatic if g00 = constant and it is static. Note that for

the solution to be non-singular, the parameter m appearing in Aφ must be fixed by

the radius R of the S1 direction x4 and so there is only one unique Kaluza-Klein

monopole for this choice of topology M1,3 × S1. The asymptotic limit is given

by H → 1, however the Kaluza-Klein vector component Aφ does not vanish and
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thus one sees that asymptotic metric g
µν

does not satisfy the background Einstein

equations Gµν(g) = 0 [57]. Crucially though, the 0-components of the Ricci tensor

vanish

R0µ(g) = 0 . (2.35)

Let us now turn to the definition of energy for this background. In order to con-

struct a Killing energy for the Kaluza-Klein monopole we need the exact form of

the pseudotensor appearing in the integral (2.31), and it will be useful for us to

reconsider its definition. Let us write the Einstein equations in the following form

Gµν ≡
√
−g Gµν = XµνρσRρσ

≡
√
−g

�
gµρgνσ − 1

2
gµνgρσ

�
Rρσ = T µν , (2.36)

where we now include contributions given by the matter energy-momentum tensor

Tµν and for convenience we have defined the contravariant combination of metric

factors Xµνρσ. We then make the standard split of the metric into background and

perturbation parts (2.7) and expand the above expression to give

Gµν ≡ Gµν

+ δXµνρσRρσ + Xµνρσ

δRρσ +O(h2, . . .) = δT µν , (2.37)

where

δRρσ ≡ ∇λδΓ
λ

ρσ
−∇ρδΓ

λ

λσ

≡ −1

2

�
∇λ∇λhρσ −∇λ∇ρh

λ

σ
−∇λ∇σh

λ

ρ
+∇ρ∇σh

�
. (2.38)

Following our construction of conserved charges in section (2.2), we would now

expect to expand the term δXµνρσ keeping only terms linear in h in our definition

of the energy-momentum pseudotensor τµν , and moving terms of O(h2) and higher

into the total source on the right-hand of the perturbed field equation. However,

Deser and Soldate note that this would not lead to a conserved quantity (as can

be easily checked), thus we must move δXµνρσ, and the background term Gµν , onto

the right-hand side of (2.37) to define the new total source T µν

T
:

Gµν

L
=

�
−gτµν ≡ −1

2

�
−g

�
∇λ∇λh

µν −∇λ∇µ

hν

λ
−∇λ∇ν

hµ

λ
+∇µ∇ν

h

−gµν

�
∇λ∇λh−∇ρ∇

λ

hρλ

� �
= T µν

T
. (2.39)

Returning to the question of conservation, we take the covariant divergence of this
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expression and find that it is still not zero,

∇νGµν

L
= R

µ

σ
∇ν

�
hνσ − 1

2
gνσh

�
+

1

2

�
∇ρR

µ

σ
+∇σR

µ

ρ
−∇µ

Rρσ

�
hρσ . (2.40)

The way around this problem is to use (2.35) and the simple form of the timelike

Killing vector ξ
µ

= δµ

0
, along with the fact that ∇0 = 0 in this background to show

that

∇ν

��
−gξ

µ
Gµν

L

�
= ∂ν

��
−gξ

µ
Gµν

L

�
= −∂νG0ν

L
= 0 . (2.41)

We may now define the conserved Killing energy (2.33) for the Kaluza-Klein monopole

background

EKKM =

�
dx4

�
d2Si

�
−g

�
∇KhiK −∇i

hj

j
−∇i

h4

4

�
, (2.42)

where again K, L = 1, 2, 3, 4 run over all spatial indices, whereas i, j = 1, 2, 3. To

evaluate this expression explicitly it is most convenient to use Cartesian coordinates,

such that the integrand can be rewritten as5

�
−g

�
∇KhiK −∇i

hj

j
−∇i

h4

4

�
= hik

k
− gi4

,k
hk

4
− 1

2
g ,i

KL
hKL − hK ,i

K
. (2.43)

The energy of the Kaluza-Klein monopole (2.34) is then found to be,

EKKM =

�
d3r∇2

�
2H + H−1

�
= m. (2.44)

In [57], the authors calculated this five-dimensional energy using various methods

and showed they all agreed if the Killing vector ξ is covariantly constant (i.e. if

the Komar energy vanishes). Moreover, they carried out the dimensional reduction

on the S1 direction and proved that the resulting four-dimensional theory produces

a canonical energy-momentum pseudotensor. It is interesting to note that the

compactified monopole solution to the resulting four-dimensional Einstein-Maxwell-

(dilatonic) scalar theory is singular, whereas the original five-dimensional solution

was not. This is indicator of the later result of Gibbons et al, which showed that

dilatonic singularities are artifacts of the dimensional reduction procedure [59].

5See appendix B of [55] for other relations that are useful in this calculation.
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2.4 The Positive Energy Theorem

After the concept of global energy was introduced in General Relativity, the obvious

next step was to show that it is positive for all reasonable solutions of the field

equations. The problem was posed by Arnowitt, Deser and Misner [22], however

a formal version of the statement took a considerable time to appear. Schoen and

Yau [60] provided a proof that, although rigorous, involved mathematically complex

analysis and lacked some physical intuition. This was superseded by Witten’s proof

using spinors [61], and its later refinements [62], which were inspired by work on

the positivity of the supergravity Hamiltonian [63, 64]. An interesting perspective

on the period between the rigorous proof and the later physical version is provided

by [65].

We shall now review the proof of positive energy for asymptotically flat spacetimes

in classical General Relativity, which will be of use for understanding the work

we describe later in this thesis. We will begin by proving the positivity of an

initially abstract quantity defined in terms of spinors, and then provide some more

physical understanding by considering how it arises in simple N = 1 supergravity,

the supersymmetric extension of General Relativity.

2.4.1 Spinorial Stability Analysis

It will be useful to briefly review our conventions for spinors here, following [66, 67]

(see also Appendix A). We use curved spacetime γ-matrices in a real representation

obeying {γα, γβ} = 2gαβ, which may be constructed from the usual γ-matrices with

flat spacetime indices using the vierbein eα

α
(gαβ = eα

α
e

β

β
ηαβ). We shall use α, β

to label flat indices and all indices run over four dimensions. We define γ5 =

γ0γ1γ2γ3 , {γ5, γα} = 0, with the Lorentz generators defined as σαβ = 1

4
[γα, γβ].

The covariant derivative on a spinor Ψ is ∇µψ = ∂µψ + 1

2
ω αβ

µ
σαβ ψ and we define

ψ = ψ†γ0.

We begin by defining the Witten-Nester (WN) four-momentum [61, 62]

Pλv
λ = −1

2

�

∂V

dSµνE
µν , (2.45)

where the integral is taken over the boundary of the spatial volume element V and

once again we set 8πG = 1. The Nester 2-form Eµν is defined as

Eµν = �µνρσ
�
ψ γ5γρ∇σψ −∇σψ γ5γρψ

�
, (2.46)
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where ψ denotes here a commuting Dirac spinor function which tends to a constant

asymptotic value ψ∞.

ψ(x)→ ψ∞ + O(1

r
) , as r →∞ . (2.47)

Assuming there are no internal boundaries or horizons, we can use Gauss’ law to

rewrite (2.45) as

Pλv
λ = −

�

V

dΣν∇µE
µν . (2.48)

Using the following useful formula,

2Gσ

λ
= 2Rσ

λ
− δσ

λ
R = 1

2
�σαδβRµν

αβ
�δµνλ

[∇µ,∇ν ] ψ = 1

2
Rαβ

µν
σαβψ , {γµ, σαβ} = −�µαβλ γλγ5

�µνρσ�ραβλ = −(3!) δ[µ

[α
δν

β
δσ]

λ]
,

we can calculate the divergence of the Nester tensor to find

∇µE
µν = −ψγλψ Gµ

λ
+ 2∇µψ {γν , σρµ}∇ρψ . (2.49)

Using Einstein’s equations, and defining the vector uλ = ψγλψ, we can now rewrite

our expression for the energy (2.48) as

EWN = −
�

V

dΣν∇µE
µν

=

�

V

dΣν T ν

λ
uλ − 4

�

V

dΣν∇µψ {γν , σρµ}∇ρψ (2.50)

From our earlier discussion of the ADM energy, we know that we should consider

the measure of this integral as being over a spacelike hypersurface. Choosing ν = 0,

we then have the 3-volume element on a constant time hypersurface dΣ0 = dV . We

shall use m, n = 1, 2, 3 to label coordinates on the spatial hypersurfaces under this

foliation. Concentrating on the second term in (2.50), we find it can be rewritten

as

�
dV ∇mψ {γ0, σnm}∇nψ = 2

�
dV ∇mψ† σnm∇nψ ,

= −
�

dV ∇mψ†∇mψ +

�
dV ∇mψ† γmγn∇nψ ,

having used ψ = ψ†γ0, (γ0)2 = −1 and 2σmn = γmγn − δmn. The WN energy is
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then written as

EWN = P0v
0 =

�
dV T 0

λ
uλ +

�
dV ∇mψ†∇mψ −

�
dV ∇mψ† γmγn∇nψ , (2.51)

Let us now consider the positivity of this expression. The first term is positive if

uλ is a future-pointing non-spacelike vector field, and T µν satisfies the dominant

energy condition, i.e.

Tµν uµvν ≥ 0 , (2.52)

for uµ, vν non-spacelike. The second term is manifestly positive, as it is a square,

however the sign of the third term is undetermined. The way around this problem

is simply to remove the troublesome term by imposing the ‘Witten condition’

γn∇nψ = 0 . (2.53)

It has been shown [68, 69] that solutions to this equation, which is essentially the

spatial Dirac equation, always exists on spatial hypersurfaces with the appropriate

boundary conditions defined by (2.47). With this in hand, one can show that the

WN energy is positive

EWN =

�
dV T 0

λ
uλ +

�
dV ∇mψ†∇nψ ≥ 0 , (2.54)

Furthermore, we can see that the inequality is saturated when T 0

λ
= 0 and∇nψ = 0.

As we initially considered arbitrary hypersurfaces Σ, we can promote the second

condition to ∇νψ = 0 i.e. on all possible hypersurfaces. Also, as we considered an

arbitrary commuting spinor parameter ψ, we in fact have a basis of such spinors

that are covariantly conserved. Using this in conjunction with the integrability

condition for covariant derivatives on spinors, one finds that EWN = 0 holds if

and only if the spacetime is flat (Rµναβ = 0), proving Minkowski spacetime is the

minimal energy solution to Einstein’s field equations. One can also make contact

with the more physical definition of energy by perturbatively expanding the spin

connections and vierbeins appearing in the Witten-Nester energy (2.54). Keeping

only first order terms and using that it is always possible to form a Killing vector

from a gamma matrix and two Killing spinors, one can show that (2.54) reduces to

the Noether energy, or the equivalently the ADM energy, that we discussed earlier.

The assumption of no horizons rules out arguably the most interesting solutions of

the field equations, black holes. The extension of the Witten proof in this case was

carried out by Gibbons et al [70], and required a subtle analysis of the boundary
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conditions on the spinor parameter. The apparent horizon of the black hole forms

an inner boundary H on the initial hypersurface Σ. Showing that the energy is

positive then requires proving the existence of spinors ψ behaving as in the original

proof outside the region H on Σ, with some appropriate boundary conditions on

H. The obvious choice is ψ|H = 0, however one can easily show that the Witten

condition (2.53) then implies that ψ must vanish everywhere. The key is to identify

an appropriate projection γ1γ0ψ = ψ on H, which halves the degrees of freedom.

One can then show that energy is positive and independent of data inside the region

H [70].

Gibbons et al also considered black-holes with Reissner-Nordstrom electric and

magnetic charges Q and B, respectively. The proof proceeds exactly as before,

only one must modify the covariant derivative to include a field strength term.

Eventually one finds the following inequality

ψ† �M − iγ0(Q− γ5B)
�
ψ > 0, (2.55)

which must hold for all ψ, thus the mass is bounded from below by the charges

M ≥
�

(Q2 + B2)
1

2

�
. (2.56)

This mass bound for Reissner-Nordstrom solutions is interesting as it resembles

the bounds one finds for the mass of solitons in supersymmetric field theories i.e.

supersymmetric version of the Bogomol’nyi bound on the mass of monopoles and

dyons. Witten and Olive showed that this bound can be linked to the topological

terms, the central charges, that are necessarily appear in supersymmetric theories

with solitons [71]. Their arguments were extended to N = 2 supergravity by

Gibbons and Hull who first derived the bound (2.56) for the solitons of this theory

[72]. This implies a strong connection between supersymmetry and positive energy,

which we shall consider further in the next section.

The spinorial techniques described above provide an elegant and relatively simple

way to prove that energy in classical General Relativity is positive. It is clear

that the crux of this proof lies in the ability to impose the Witten condition, thus

removing the negative term in the expression for energy. The existence proof for

solutions to (2.53) is complex, however we can gain some physical intuition by

considering the relation between classical supergravity and general relativity.
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2.4.2 Simple Supergravity and Positive Energy

D=4, N = 1 Supergravity

Witten’s original proof of positive energy was inspired by results in quantum super-

gravity, but in fact it was later shown that the same result can be derived from the

classical theory, and it is this approach that we shall now discuss. We will begin by

introducing the Deser-Zumino version of simple N = 1 supergravity [73]6. The field

content of this theory is the vierbein ea

µ
(gravity) plus the spin-3

2
Rarita-Schwinger

field, which is a Majorana fermion. In the first order formalism described here, the

connection ω is also an independent variable, which must be varied to produce its

own equation of motion. The Lagrangian for simple supergravity is [73]

L =
1

2
e R− i

2
e �λµνρψ

λ
γ5γµ∇νψρ , (2.57)

where e = det eµ

a
and R = eµ

a
eν

b
R ab

µν
. The action of the covariant derivative on

spinors is as defined in the section (2.4.1) (which is different from that used in [73]),

although ω now includes torsion induced by the gravitino. The equations of motion

for ψρ, ωµab and ea

µ
are

Rλ ≡ �λµνρ
�
γµ∇νψρ − 1

4
γτCµν

τψρ

�
= 0 , (2.58)

Cµν
τ =

i

2
ψ

µ
γτψν , (2.59)

Gτµ =
i

2
�λµνρ ψ

λ
γ5γ

τ∇µψρ . (2.60)

One also find non-trivial boundary terms, that we shall discuss later. Note that the

Einstein tensor is now non-symmetric due to the torsion, defined by

Cµν
µ = ∇µe

µ

ν −∇νe
µ

µ . (2.61)

Setting ψ = 0 reproduces the vacuum Einstein equations and one can easily check

that this is a consistent truncation of the field content. To reproduce the second

order results of Ferrara et al [74], one solves (2.59) for the connection ωµαβ to give

ωµαβ = ωµαβ(e) + i

4

�
ψ

α
γµψβ + ψ

µ
γαψβ − ψ

µ
γβψα

�
, (2.62)

ω
αβ

µ (e) = 1

2
e

ρ

µ

�
Ω

αβ

ρ − Ω
β α

ρ − Ωρ
αβ

�
, (2.63)

6For a review of this, along with the superspace approach of Ferrara et al [74], see [75].
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where ω
αβ

µ (e) is the torsion-free spin connection and Ω
αβ

ρ are the objects of an-

holonomity, defined by

Ω
ρ

αβ
= 2e µ

α
e ν

β
∂[µe

ρ

ν]
. (2.64)

The action for (2.57) is invariant, up to total derivative, under local supersymmetry

transformations with respect to an infinitesimal anti-commuting parameter �

δ�e
µ

µ = i�γµψµ , (2.65)

δ�ψµ = 2∇µ� , (2.66)

δ�ωµ
αβ = Bµ

αβ − 1

2
e

β

µBρ
αρ + 1

2
eα

µ
Bρ

βρ , (2.67)

where

Bα
λµ = i�γ5γα∇νψρ�

λµνρ . (2.68)

The product of two supersymmetry transformations affects a spacetime diffeomor-

phism, as can be seen by looking at the commutator

[δ�, δ�� ] = δG(Kµ) + δL(Kµωµαβ) + δ−Kµψµ , (2.69)

Kµ = 2i�� γµ� , (2.70)

where the δ terms on the right-hand side are coordinate transformations, local frame

rotations and supersymmetry transformations respectively. The supersymmetry

transformations form a representation of the supersymmetry algebra, the super-

Poincaré algebra, which closes on-shell.

The total derivative term that appears upon varying the action is given by

δ�S =

�
d4x∇µθ

µ

�
, (2.71)

where θµ

�
= i �µνρλ ψ

ν
γ5γρ∇λ�. Using Noether’s theorem we can derive the corre-

sponding conserved currents Jµ and supercharges Q

Jµ

�
=

δS

δ∇µΦ
δ�Φ− θµ

�
�µνρλ = −2i �µνρλ ψ

ν
γ5γρ∇λ� + · · · , (2.72)

Q · � =

�

Σ

dΣµJ
µ

�
, (2.73)

where Φ denote all fields in the theory and the ellipsis indicates torsion terms which

vanish on-shell. Supersymmetry transformations are generated by the supercharges

Q through δ� = �αQα, and so the Q’s also form a representation of the supersym-
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metry algebra

{Q, Q} = CγαPα , (2.74)

where C is the charge conjugation matrix in the chosen representation and Pα is

the four-momentum.

The Witten condition from Supergravity

In order to thoroughly understand the positivity of gravitational energy one should

formulate the Hamiltonian version of classical supergravity [76]. We shall not do this

here, but instead reproduce only the key features required in order to understand the

physical significance of the Witten condition, following the arguments of Horowitz

and Strominger [77] (See also [78]).

In the Hamiltonian approach, transformations are generated by Dirac brackets with

respect to the appropriate charge. The supersymmetry transformations (2.65)-

(2.67) are generated by the Dirac bracket with the supercharge Q, and similarly,

time translations are generated by Hamiltonian H. A fundamental property of

supersymmetric theories is that time translations are also generated by the square

of supersymmetry transformations, so that roughly H ∼ Q2. This relation was

first noted in the quantum supergravity by Deser and Teitelboim [63], and later

extended to the classical theory. In performing the Hamiltonian analysis, one must

make an appropriate gauge choice for the gravitino,

ψ0 = 0 (2.75)

γmψm = 0 (2.76)

which holds on the spatial hypersurface Σ that the Hamiltonian will be defined on.

On identifying ψm as the correct degrees of freedom for the gravitino, one can then

argue that if the Witten condition (2.76) were not imposed, the supersymmetry

transformation δ�ψ would transform positive energy components of gravitino into

positive and negative (unphysical) energy, components of the gravity sector [78].

Local supersymmetry combined with the Witten condition (2.76) then implies that

the parameter � is asymptotically covariantly constant

γm∇mε = 0 , (2.77)

This equation has four non-zero solutions �N which determine four supercharges

QN (N = 1, . . . , 4). Taking the Dirac bracket of two supercharges and comparing
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the result with the explicit form given above (2.69), one finds

�0

M
γµ�0

N
Pµ = 2

�
d3Σ (∇m�N)†∇m�M , (2.78)

where �0

N
is the asymptotic value of the N−th supersymmetry parameter. Recall

that Witten’s argument used commuting spinors, so in order to reproduce this we

must factor out the anticommuting component �,

�N(x) = θNαN(x) , (2.79)

where θN form a basis of the Grassmann algebra. One then integrates out over

the anticommuting variables and uses that α0

N
γυα0

M
should be timelike and future-

directed in order for P0 to be a sensible expression for energy. The resulting ex-

pression is

E = 2

�
d3Σ (∇mα)†∇mα, (2.80)

which is exactly Witten’s energy expression for vacuum solutions to the field equa-

tions.



Chapter 3

Supergravity and p-Branes

In this chapter we will provide a short introduction to p-brane solutions in super-

gravity. This is a vast subject unto itself and is the topic of many good review

articles; we shall mainly follow [79].

We begin by reviewing the main elements of eleven-dimensional supergravity, its

equations of motion and supersymmetry algebra. This is the highest dimension

in which one can formulate a theory of supergravity, and is the simplest of the

supergravity theories related to string theory (See [80, 81] and references therein).

Our main interest will be the extended objects which are solitonic solutions of these

theories, generically known as p-branes, where p labels the number of spatial dimen-

sions on the brane’s worldvolume. For instance, a domain wall in four dimensions

would be a 2-brane. We will study a general p-brane ansatz to the common sec-

tor of supergravity theories, i.e. D-dimensional gravity coupled to a scalar and a

n− 1-form gauge potential. We will see that two basic p-brane solutions exist; the

extremal branes, which can be supported electrically or magnetically by the gauge

field. As examples, we briefly describe the 2-brane and 5-brane solutions in eleven

dimensions. We then discuss the definition of energy, charges and the supersymme-

try of these branes and describe a more general class of solutions known as black

branes. This will allow us to understand the special role that the extremal branes

play.

35
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3.1 11D Supergravity and its solutions

3.1.1 Action, Symmetries and Field Equations

In this chapter we will adopt the conventions common in the literature, which differs

from that used earlier. In this section capital Latin indices M, N will run over eleven

dimensions, with underlined indices once again being used for flat, tangent space

indices. We define the eleven-dimensional vielbein eM

M
using gMN = eM

M
eN

N
ηMN ,

ηMN is the eleven-dimensional Minkowski metric.

The action of eleven-dimensional supergravity is [82]

S =

�
d11x

√−g
�
R +

1

192

�
ΨMΓMNPQRSΨN + 12Ψ

P

ΓQRΨS

� �
FPQRS + F̃PQRS

�

− 1

48
FMNPQFMNPQ − i

2
ΨMΓMNP DN

�
1

2
[ω + ω̃]

�
ΨP

�

+
2

(12)4

�
d11x�KLMNPQRSTUV FKLMNFPQRSATUV , (3.1)

where FMNPQ = 4∂[MANPQ], ANPQ is a 3-form anti-symmetric tensor gauge poten-

tial and Ψ are spin 3/2 fermions satisfying the Majorana condition Ψ = ΨT C−1,

with the charge conjugation matrix C being defined by C−1ΓAC = −ΓT

A
. The

covariant derivative is then defined as D(ω)M = ∂M − 1

4
ω AB

M
ΓAB and ω̃MAB =

ωMAB + i

4
ΨNΓMAB

NP ΨP , where ω is the sum of spin connection and contorsion

tensor. � is the eleven-dimensional anti-symmetric tensor, and the final piece of

(3.1) is a topological, Chern-Simons term.

Following the literature [7], in this chapter we will choose the eleven-dimensional

gamma matrices forming a pure imaginary representation of the Clifford algebra

{ΓA, ΓB} = −2ηAB . (3.2)

The action (3.1) is invariant under general coordinate transformations, SO(1, 10)

local Lorentz transformations, Abelian gauge transformations and N = 1 super-

symmetry with infinitesimal anti-commuting parameter ε, the latter defined by

δεe
A

M
= −iεΓAΨM , (3.3)

δεΨ = D̃Mε ≡ D(ω̃)Mε− i

144

�
ΓM

NPQR − 8ΓNPQδR

M

�
F̃NPQR ε , (3.4)

δεAMNP =
3

2
εΓ[MNΨP ] . (3.5)
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F̃ is the supercovariantised field strength defined by F̃NPQR = FNPQR−3Ψ[NΓPQΨR].

The supersymmetry transformations and explicit form of the action are fixed by

requiring that the appropriate equations of motion are reproduced. In particular,

we expect to have the following supercovariant field equation for ΨM ,

ΓMNP D̃NΨP = 0 . (3.6)

Comparing this with δΨS and requiring any extraneous terms to vanish fixes the

coefficient of the Chern-Simons term in (3.1). Specifically, requiring the vanishing

of all terms of the form εΨF 2 fixes the product of the Chern-Simons and δA co-

efficients, and then the δA coefficient is completely fixed by considering the terms

ε∂ΨF and εΨ∂F .

The supersymmetry transformations (3.3)–(3.5) form a representation of the eleven-

dimensional supersymmetry algebra,

{Q, Q} = C
�
ΓAPA + ΓABUAB + ΓABCDEVABCDE

�
, (3.7)

which is an extended version of the super-Poincaré algebra, where UAB and VABCDE

are 2-form and 5-form charges respectively, whose significance will become apparent

when we discuss solutions to this theory. For the moment, let us note that we will be

interested in solitonic solutions preserving some fraction of supersymmetry. These

can be found by consistently truncating to the bosonic sector and solving the field

equations there, which are given by

RMN(ω̃)− 1

2
gMNR(ω̃) =

1

3
F̃MPQRF̃ PQR

N
− 1

24
gMN F̃PQRSF̃ PQRS , (3.8)

D(ω̃)M F̃MNPQ = − 1

576
�NPQRSTUV WXY F̃RSTU F̃V WXY , (3.9)

plus the Bianchi identity

∂[M F̃NPQR] = 0 . (3.10)

3.1.2 p-brane Solutions

Having introduced eleven-dimensional supergravity in the previous section, we will

now discuss its solitonic solutions. We are going to do this by finding the general

p-brane solution to a D-dimensional theory of gravity, a scalar field φ and one

(n− 1)-form potential A[n−1] (n �= D/2) with field strength F[n] = A[n−1] [79]. The
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action for this theory is

SD =

�
dDx

√
−g

�
R− 1

2
(∂φ)2 − 1

2n!
eaφF 2

[n]

�
, (3.11)

where now M, N = 0, . . . D − 1 and the topological term has been dropped out as

we consider only one gauge field. The equations of motion derived from this action

are

RMN =
1

2(n− 1)!
eaφ

�
FMP2...PnFN

P2...Pn − n− 1

n(D − 2)
F 2gMN

�

+
1

2
∂Mφ∂Nφ (3.12)

∇M1

�
eaφFM1...Mn

�
= 0 , (3.13)

�φ =
a

2n!
eaφF 2 . (3.14)

In order to describe eleven-dimensional supergravity we set a = 0 = φ, which one

can easily check is a consistent truncation by looking at the field equations. We will

now make an ansatz for solutions preserving (Poincaré)d × SO(D − d) symmetry,

which is appropriate for p-branes. We split the spacetime indices into xM = xµ, ym,

where xµ (µ, ν = 0, . . . , p) are coordinates on the d = p + 1-dimensional Poincaré

invariant space, the worldvolume, and ym (m, n = d, . . . D−1) are coordinates on the

isotropic transverse space. The metric for a solution preserving these symmetries

is

ds2 = e2A(r)gµνdxµdxν + e2B(r)δmndymdyn, (3.15)

where δmn is the flat metric on the transverse space, and we have defined the radial

coordinate r =
√

ym · ym. The ansatz for the scalar field is simple φ = φ(r), however

the gauge field requires some more thought. In analogy with electrodynamics, we

expect the A[n−1] potential to support an extended object with p = (n− 2) spatial

dimensions, carrying the corresponding electric charge. In this case, our ansatz for

the gauge potential is

Aµ1...µn−1 = �µ1...µn−1e
C(r) , (3.16)

with field strength

Fmµ1...µn−1 = �µ1...µn−1∂meC(r) , (3.17)

Alternatively, we could have an object supported magnetically by the gauge po-

tential corresponding to the Hodge dual of original field strength F[n]. This dual

(D − n)-form field strength would support a (D − n− 2)-brane, and although the
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dual action for this field is not straightforward to construct, the ansatz for the field

strength supporting this magnetic brane is simple:

Fm1...md̃+1
= λ�m1...md̃l

yl

rd̃+2
, (3.18)

where λ is an integration constant that we associate to the magnetic charge and

we have defined d̃ = D − d − 2. We must then show that this ansatz solves the

equations of motion, fixing the form of the functions A(r), B(r) and C(r). The task

is greatly simplified if we state that we want our solution to obey

dA� + d̃B� = 0 , (3.19)

where � = ∂/∂r, which one can show is implied by preservation of some fraction of

supersymmetry. Introducing the definition

∆ = a2 − 2dd̃

(D − 2)
, (3.20)

and making some further educated guesses as to the form of the solution, one can

re-express the φ field equation as a pure Laplace equation in the transverse space:

∇2e
c∆
2a φ = 0 , (3.21)

where c = ±1, depending on whether we look for an electric/magnetic solution

respectively. This is easily solved to give,

e
c∆
2a φ ≡ H(r) = 1 +

k

rd̃
, (3.22)

where k is a constant, and we have fixed φ|r→∞. A little more manipulation of the

field equations then allows one to deduce the form of the function appearing in the

field strength ansatz (3.17) for the electric brane

eC(r) =
2√
∆

H(r)−1 , (3.23)

and fix the charge of the magnetic brane

λ =
2d̃√
∆

k . (3.24)

Combining the above results, we present the complete metric for the p-brane solu-
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tions of theory defined by (3.11):

ds2 = H(r)
−4d̃

∆(D−2) dxµdxνηµν + H(r)
4d

∆(D−2) dymdynδmn , (3.25)

eφ = H
2a
c∆ , H(r) = 1 +

k

rd̃
, (3.26)

with the corresponding choice of field strengths,

Fmµ1...µn−1 = �µ1...µn−1∂m

�
H−1

�
(electric) , (3.27)

Fm1...mn = −�m1...mnl∂lH (magnetic) . (3.28)

3.1.3 M2 and M5 branes

Let’s look at the soliton solutions of eleven-dimensional supergravity. As mentioned

above, we can consistently truncate the action (3.11) by setting a = 0 = φ, which

means that we then fix ∆ = 4. The electric M2 brane solution is [83, 84]

ds2

M2
=

�
1 +

k

r6

�− 2
3

dxµdxνηµν +

�
1 +

k

r6

� 1
3

dymdynδmn

Aµνλ = �µνλ

�
1 +

k

r6

�−1

, µ, ν = 0, . . . , 2 . (3.29)

The magnetic M5 brane solution is [85]

ds2

M5
=

�
1 +

k

r3

�− 1
3

dxµdxνηµν +

�
1 +

k

r3

� 2
3

dymdynδmn

Fmnpq = 3k �mnpqr

yr

r5
, µ, ν = 0, . . . , 5 . (3.30)

Both are asymptotically flat by construction, but various coordinate transfor-

mations display other interesting features of these solutions. Transforming r =

(r̃d̃− k)
1

6 , we find Schwarzschild-like coordinates. For the M2-brane one then finds

a degenerate horizon at r̃6 = k, where light-cones do not flip over (unlike the hori-

zon in Schwarzschild geometry), and a timelike singularity at r̃ = 0. So we see that

M2 is more like the Reissner-Nordstrom black hole of General Relativity rather

than the Schwarzschild black hole, as one would expect for a charged solution. For

the M5-brane, one also finds a degenerate horizon at r̃3 = k, only now there is no

singularity at r̃ = 0. We can see this by considering the interpolating coordinates,

defined by r̃ = k
1

d̃ (1− Rd)
−1

d̃ . In this frame the M5 is symmetric under R → −R,

allowing a maximal analytic extension to a smooth spacetime, exactly like that
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used for Reissner-Nordstrom solution.

In fact the interpolating coordinates have a further use. The limit R → 1 sends

both solutions to flat space. On the other hand, the near horizon R → 0 limit,

takes M2 to AdS4 × S7 and M5 to AdS7 × S4, both of which, along with the flat

space limits, are maximally supersymmetric solutions of the eleven-dimensional su-

pergravity. So we see that the M-brane solutions interpolate between the maximally

supersymmetric vacuum of the theory [59], and so we expect them to have some

interesting supersymmetry properties, which we will now discuss.

3.2 Charges and Supersymmetry

3.2.1 Energy for p-Branes

Defining mass or energy for p-branes requires a little thought. The extended nature

of these objects means that any integrated quantity will diverge due to the infinite

world-volume i.e. we no longer have some localised, point-like source as in the case

of a four-dimensional black hole. Instead, we will evaluate the energy density, with

the integral taken over the boundary of transverse space ∂MT with the appropriate

background metric being a transverse asymptotically flat spacetime [79, 86]. To

remove the problem of the divergent worldvolume integral we can impose that the

worldvolume directions are periodic, with p-volume Vp. We can then define the

average of some quantity A in the obvious way [86]:

<A>=
1

Vp

�
dpx A. (3.31)

The p-brane energy density, first given in [79], is an extension of the Deser-Soldate

energy for five-dimensional spacetimes (2.32) that was presented in section (2.3.1).

Understanding that we have an appropriately normalised integral, as in (3.31), we

can define the p-brane energy density by

Ep−brane =

�

∂MT

dD−d−1Σm(∂nhmn − ∂mha

a
) , (3.32)

where ΩD−d−1 is the volume of the transverse SD−d−1 unit sphere, i, j = 1, . . . , d−1

and early alphabet lower case indices run over all spatial directions a, b = i, j . . . m, n . . . D−
1 = 1, . . . D− 1. For compactness we do not write the explicit p-volume integral as

in (3.31). The integral (3.32) is easily evaluated for the general ansatz presented in



CHAPTER 3. SUPERGRAVITY AND P-BRANES 42

the previous section (3.25), for which we find the following expressions for metric

perturbations

hmn =
4kd

∆(D − 2)rd̃
δmn , hij = − 4kd̃

∆(D − 2)rd̃
δij , (3.33)

⇒ hb

b
=

8k(d + 1

2
d̃)

∆(D − 2)rd̃
, (3.34)

where we have used ∂nr = yn/r. Using that dD−d−1Σm = rd̃ymdΩD−d−1, we then

find

Ep−brane =
4kd̃ΩD−d−1

∆
, (3.35)

where ΩD−d−1 is the volume of the unit (D − d− 1)-sphere. To put this into some

perspective, we will now consider a more general class of solutions to the equations

of motion derived from (3.11): the black brane metrics.

3.2.2 Black Branes

The black brane metric, written in generalised Schwarzschild coordinates, is [87–89]

ds2 = −e2udt2 + e2adxidxjδij + e2vdr̃2 + e2B r̃2dΩ2

D−d−1

e2v =
K

“
2a2

∆d̃
−1

”

−
K+

, e2A = K
4d̃

∆(D−2)

− , e2u =
K+

K

“
1− 4d̃

∆(D−2)

”

−

e2B = K
2a2

∆d̃
− , e

c∆
2a φ = K−1

− , K± = 1−
�r±

r̃

�d̃

, (3.36)

and the general field strength parameter is now given by

λ =
2d̃√

∆(r+r−)d̃/2
. (3.37)

This solution to the field equations (3.12)-(3.14) represents a two-parameter family

that generalises the electric and magnetic branes discussed in the previous section.

This class of solutions have an outer event horizon at r = r+, which, like that in the

Schwarzschild solution, is non-singular. There is also an inner horizon at r = r−,

which coincides with a proper curvature singularity. In the extremal limit r+ = r−,

we recover the supersymmetric solutions of the previous section.

The parameterisation used above is useful as the DS energy density takes a simple,
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if somewhat lengthy form [89, 90],

EB.B. =
�
r̃d̃+1(d− 1)(e2A)� + r̃d̃+1(d̃− 1)(e2B)� − r̃d̃(d̃ + 1)

�
e2v − e2B

�� ���
r→∞

,

(3.38)

where � = ∂r̃. Comparing with the result for the extremal branes (3.35), one sees

that

EB.B. >
4kd̃ΩD−d−1

∆
= Ep−brane . (3.39)

Rewriting this expression using k =
√

∆λ/(2d̃), we find that the extremal brane

ansatz (3.25) saturates the inequality

E ≥ 2λΩD−d−1√
∆

. (3.40)

Recall that the parameter λ determines the charge of the solution we were consid-

ering (3.37), and so we see that the charge acts as lower bound on the energy, which

is saturated for extremal branes (c.f. the mass bound for the Reissner-Nordstrom

black hole (2.56)). This type of inequality is similar to the Bogomol’nyi bound

found on the energy of monopoles in Yang-Mills-Higgs theories, with the extremal

limit being equivalent to BPS condition i.e. the extremal branes (3.25) solutions are

the BPS states of our theory. To understand this point better, we need to reconsider

the supersymmetry of these solutions and the definition of their electric/magnetic

charges.

3.2.3 Supersymmetry of p-Branes

Let’s begin by considering the M2 brane (3.29) and the definition of its electric

charge. As this solution is singular, we expect it to produce a δ-function contribu-

tion in the field equation for A[3]. In analogy with a point particle source in regular

electromagnetism, we introduce the Nambu-Goto source action for the 2-brane [79],

IM2 = Qe

�

W3

d3ξ

�
−√γ +

1

3!
�µνρ∂µx

M∂νx
N∂ρx

RAMNR

�
, (3.41)

where γµν = ∂µxM∂νxNgMN (∂µ = ∂/∂ξµ) is the pullback of the eleven-dimensional

spacetime metric onto the three-dimensional worldvolume W3 of the 2-brane, which

has coordinates ξµ(µ = 0, 1, 2). This produces a δ-function current in the A[3]

field equation which, for brevity, we now write in form notation (See appendix for
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conventions),

d
�
∗F[4] +

1

2
A[3] ∧ F[4]

�
= ∗J[3] , (3.42)

where

JMNR = Qe

�

W3

d3ξδ3 (x− x(ξ))dxM ∧ dxN ∧ dxR . (3.43)

This leads to a generalised Page charge

U =

�

∂M8

�
∗F[4] +

1

2
A[3] ∧ F[4]

�

=

�

M8

∗J[4] =
1

3!

�
d8ΣMN J0MN , (3.44)

which then identifies U = Qe as the 2-brane electric charge. We can evaluate this

integral explicitly for the M2-brane (3.29), for which the A[3] ∧ F[4] term vanishes.

Choosing M8 to coincide with the M2 transverse space, we can use the explicit form

of F[4] to find

Qe =

�

∂M8

d7ΣmFm

012
= λΩ7 . (3.45)

Looking again at the ADM-mass formula for p-branes (3.35), with k =
√

∆λ/(2d̃),

and using that ∆ = 4 for the eleven-dimensional theory, we find by direct compar-

ison that the Bogomol’nyi bound (3.40) is indeed saturated for the M2-brane

EM2 = Qe = λΩ7 . (3.46)

One finds a similar result for the M5-brane, where now the magnetic charge defined

by the Bianchi identity (3.10) is given by

V =

�

∂M5

F[4]. (3.47)

Choosing the M5 transverse space to coincide with M5 and using the ansatz for the

field strength (3.30), we find

V =

�

∂M5

d7Σm�m

npqr
F npqr = λΩ4 . (3.48)

Once again one can easily see that this solution saturates the Bogomol’nyi bound

(3.40). These arguments certainly imply that the M2 and M5-brane solutions pre-

serve some supersymmetry, however one can go further. The M2 and M5 charges

U = Qe and V are in fact the magnitudes of the 2-form UAB and 5-form VABCDE

charges appearing in the eleven-dimensional supersymmetry algebra (3.7) [91, 92].
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For instance, the 2-form charge may be defined by

UAB = Qe

�

S2

dxA ∧ dxB , (3.49)

where the integral is over the spatial 2-cycle S2 of the M2 worldvolume. This ex-

pression will be used to re-express the anti-symmetric tensor charge UAB appearing

in the supersymmetry algebra in terms on the charge Qe.

Let us now say that the M2 spatial directions S2 coincide with x1, x2, then (ignoring

the 5-form charge) we find the supersymmetry algebra can be written as [79]

{Q, Q} = C
�
Γ0P0 + Γ12U12

�
. (3.50)

From our discussion of energy bounds and charges above we can now use that

P0 = EM2 = Qe and C = Γ0 , to find

{Q, Q} = 2EM2 P012 , P012 = 1

2

�
+ Γ012

�
. (3.51)

Using that (Γ012)2 = , where is the unit matrix, one sees P 012 is a projection

operator with trace trP 012 = 1

2
·32. This implies that half of the eigenvalues of P 012

are zero. Any supersymmetry transformations preserved by the M2-brane solution

must in turn satisfy the following relation

{Q, Q} � = 2EM2 P012 ε = 0 ⇒ 1

2

�
+ Γ012

�
ε = 0 , (3.52)

where now we see that since P 012 has half zero eigenvalues, the M2 brane solu-

tion preserves half of the supersymmetries of the background. We could have also

studied the background supersymmetry transformations (3.3)-(3.5) directly. For

bosonic solutions this means looking for background ‘Killing spinors’ i.e. spinors

which solve

δεΨ = D̃Mε = 0 . (3.53)

One can show that this results in the same projection condition in terms of P 012

as one finds by considering just the supersymmetry algebra, again implying that

half of the original 32 supersymmetries are preserved by the M2-brane. A similar

procedure shows the M5-brane is also half supersymmetric.

Having seen that the extremal branes of eleven-dimensional supergravity preserve

half the supersymmetry, we can step back and reconsider equation (3.50). We

know that the left-hand side of this expression must be positive definite and so
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if we don’t impose the extremal relation P0 = Qe, a little manipulation gives the

following bound

P0 = EM2 ≥ |Qe| , (3.54)

where we have used (3.49). This has the same form as the Bogomol’nyi bound we

found by a direct construction of Noether charges for branes (3.40), and which also

arises when one considers the positive energy theorem for charged black holes, as

we noted earlier (2.56). In fact, (3.54) is nothing more than the extension of the

supersymmetric bound of Gibbons and Hull [72] to solitons which are no longer

point-like.

To recap, we have seen that supersymmetric (extremal) branes saturate Bogo-

mol’nyi bounds linking mass and charge i.e. they are minimal energy solutions.

We could show this by considering the charges directly or, more fundamentally, by

showing that super-algebra itself implied that energy was minimised for solutions

preserving some fraction of the background supersymmetry:

E ≥ |Qe|
E = |Qe| ⇔ D̃Mε = 0 . (3.55)

A spinorial proof of positive energy for p-brane spacetimes of this form has also

been given [59, 93], extending the black hole version we discussed earlier.



Part II



Chapter 4

The Stability of Hořava-Witten

Spacetimes

4.1 Introduction

Hořava-Witten (HW) theory is an interesting alternative to standard compactifica-

tions for generating models of four-dimensional physics [94, 95]. The theory links

11-dimensional supergravity on the orbifold S1/Z2 with strongly coupled heterotic

E8 × E8 string theory, and upon further compactification to four dimensions on

a Calabi-Yau can provide phenomenologically interesting models. One distinctive

feature of such models is the prediction of an intermediate, five-dimensional, energy

regime when particles previously bound to the four-dimensional boundaries M4 can

probe into the fifth (bulk) dimension [96, 97]. The full eleven-dimensional picture

isn’t recovered until energies reach the string scale.

This rigorous string construction inspired many particle physics and cosmology

models suggesting intermediate scales that could be easily detected at the next

generation of experiments. Most notable were the large extra dimensions model

of Arkani-Hamed et al [10–12] and the Randall-Sundrum warped compactification

models [13, 14], with many more following quickly (see [98, 99] for recent reviews).

Many of such models are constructed with string theory as an inspiration, however

their mathematical consistency is often not so clear.

Let us clarify our terminology here. Models which include some number of extra

dimensions are now generically known as brane worlds, whether they have any

relation to the branes of string theory or not. We will be interested only in Hořava-

Witten spacetimes, which for our purposes we define as Z2-symmetric domain wall

48
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solutions, such as the ten-dimensional orbifold places in the original HW theory. A

distinguishing feature of such spacetimes is that they have topology M4×I, where I
is an interval. In the case where the interval is the orbifold I = S1/Z2, we have two

possible interpretations of the spacetime: the ‘upstairs’ picture with a Z2 identified

circle; or the ‘downstairs’ picture where we have the interval with boundary branes.

For consistency, these boundary branes, or orbifold planes, must have equal and

opposite tension, as one can easily see from their singular contributions to the field

equations (see (5.2.1) and [24]) and so these models have negative tension objects

present from the outset.

The appearance of negative tension branes seems troublesome. If we were to de-

scribe the low-energy excitations of these domain walls by some field theory, the

negative tension brane would give rise to a scalar field Goldstone mode with a wrong

sign kinetic term: the classic sign of an instability in the theory. However, it is often

the case that these HW spacetimes are supersymmetric by construction, and as we

discussed in part 1, supersymmetric objects have positive energy. There seems to be

a flagrant contradiction, but in fact it’s what the theory tells us. Consider the ten-

dimensional orbifold planes in the original HW model. The supersymmetry algebra

of eleven-dimensional supergravity contained topological extensions that are linked

with the M2 and M5-brane solutions, and in section (3.2.3) we saw that it was the

spatial charge components that were linked with these solutions e.g. U12 in the

M2-brane case. It turns out that if one were to consider the time component of the

2-form charge, the corresponding extended solution is a 9-brane – the HW orbifold

plane [100, 101]. In [94] , Hořava-Witten showed that the Z2 projection defining

the orbifold planes commutes with half of the supersymmetry transformations, and

that the condition of equal and opposite tension for the two planes was required

for consistency of the theory. Hence one finds that the spacetime M10 × S1/Z2

is supersymmetric and thus should be stable, as supersymmetric states minimise

energy, and therefore have no decay channels. On the other hand, the negative

tension brane could give rise to “ballooning” modes, i.e. one would expect that it

could lose energy by expanding, thus becoming unstable1. In this chapter we aim

to resolve this issue by providing a comprehensive analysis of the energy and the

fluctuations of HW braneworld solutions.
1Concerns to this effect were raised by Brandon Carter at Stephen Hawking’s 60th birthday

conference [102]
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4.2 Domain Wall Perturbations

We will begin with a general consideration of the possible fluctuations of domain

wall spacetimes. Much like our analysis of energy in chapter 2, let us identify a

five-dimensional background solution around which we will consider perturbations:

ds2

5
= e2A(y)ηµνdxµdxν + e−8A(y)dy2 , (4.1)

φ ∼ ln H(y) , H = k|y|+ c , (4.2)

where φ is the scalar field supporting the branes and c, k are constants. We note

that H is a linear harmonic function as expected for a domain wall, and that the

metric data A(y) is a function of H whose precise form we shall give later. The

indices µ = 0, 1, 2, 3 run over the worldvolume of the domain wall, with y labelling

the transverse, bulk direction. Capital Latin indices M, N run over all directions.

Choosing to parameterise the interval I as S1/Z2, the Z2 identification appears as

a symmetric kink in the harmonic function at the location of the branes. For clarity

we note that to complete the HW picture, we should consider the case with two

branes located at y = yi , (i = 1, 2), where the brane at y = 0 will have negative

tension H(y)�|y=0 < 0 and we can choose the positive tension brane to be at y = π.

For completeness, we note that when two branes are present the harmonic function

is simply written as

H = k (|y|+ |y − π|) + c , (4.3)

and that the functional dependence of A(y) on H remains unchanged. To simplify

the formula we will often write the harmonic function with only one brane.

There are two types of motion that these branes can perform. The first, which

we shall call the ‘centre-of-mass’ mode, corresponds to the branes keeping fixed

separation but moving in the interval. The second mode, commonly known as

the ‘radion’, corresponds to relative motion between the branes and we choose to

discuss it first.

Labelling the radion mode by r(xρ), we note that the motion can be understood

by the following perturbation of the background metric

ds2

5
= er(x

ρ
)+2A(y)g(4)

µν
dxµdxν + e−2r(x

ρ
)−8A(y)dy2 , (4.4)

φ ∼ ln H(y) + r(xρ) . (4.5)

One approach to understanding the physics of this fluctuation is to consider the
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effective field theory on the domain wall worldvolume. This brane world dimen-

sional reduction differs from the usual Kaluza-Klein procedure as the ‘compactified’

direction need not be near Planck size or even be compact. The low energy states,

including gravity, are localised on the worldvolume by virtue of the metric warp

factor e2A(y), which also ensures the that massive modes which appear in the mode

expansion in the fifth direction, the Kaluza-Klein tower, are exponentially sup-

pressed [13, 14].

Carrying out this reduction for our domain wall, it turns out that it is possible to

truncate the effective theory to just four-dimensional gravity coupled to the scalar

field describing the radion mode [104, 105], the equations of motion then being

R(4)

µν
= c�∂µr∂νr (4.6)

�(4)r = 0 (4.7)

where c� is a positive constant. An appropriate field redefinition brings this into

canonical form, and we then conclude that we should not expect any instability from

it. It has been shown that if the background ansatz is a solution to a supersymmetric

theory, then the effective field content in four dimensions can be completed to a

Wess-Zumino multiplet [104].

Let us try the same procedure with the centre-of-mass mode. If we shift the brane

positions by some amount s, then physically nothing as happened. This is just a

diffeomorphism with the parameter s being a modulus. However, if we now allow

the modulus to have dependence on the worldvolume coordinates s(xρ) then it

has the interpretation of a Goldstone mode, associated with the brane breaking

translational invariance in the bulk spacetime [103]. The Z2 symmetry in our

background solution then gets promoted to a local Z2 symmetry. This allows for

relative shifts of different points on the brane, with Z2 symmetry then acting point

by point. The centre-of-mass motion is described by the following ansatz

ds2

5
= e2A(y−s(x

ρ
))g(4)

µν
dxµdxν + e−8A(y−s(x

ρ
))dy2 , (4.8)

H = k|y − s(xρ)|+ c , (4.9)

This mode therefore describes a sort of shear or warping of the HW end branes,

which one can envisage as the twisting of a spring. In many studies of the cosmology

of braneworld models this mode is not discussed, although it appears that it could

allow the dangerous motion of the negative tension brane. The common assumption
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that is made is that the Z2 symmetry projects out this mode (see for example [106]),

forcing the branes to remain in fixed positions. However, as we have seen above,

this would only be the case for a global (s(xρ) = s) projection, which is a somewhat

arbitrary truncation of the theory. Applying the braneworld reduction techniques

to the centre-of-mass mode, one finds higher order couplings to five-dimensional

modes on the right-hand side of the effective equations of motion. This tells us

that we should consider the full five-dimensional theory plus boundaries in order

to correctly understand the centre-of-mass mode’s behaviour.

We shall finish this section with some comments. The original HW solution did not

possess any difficulties with centre-of-mass mode as it simply does not appear. The

bulk spacetime in this case is flat, and so shifting the brane positions has no effect.

We can also view this from the perspective of consistent truncations of field content.

Working in the upstairs picture, the radius R of the Z2-identified S1 is related to

the string coupling constant λ (i.e. the dilaton) of the ten-dimensional E8 × E8

string theory by R = λ2/3 [94]. This is the only scalar degree of freedom in the

ten-dimensional theory, as the N = 1 super-Maxwell multiplets contain no scalar

fields. However, the HW solution found after compactifying the eleven-dimensional

theory on a Calabi-Yau is a domain wall in five-dimensional curved space and the

Goldstone mode reappears [97].

One interesting point that arises from the brief Goldstone mode analysis above is

that both the radion (4.4,4.5) and centre-of-mass (4.8,4.9) motions can be identified

with fluctuations of the bulk geometry, despite the presence of singular branes.

For Z2-symmetric domain walls the Israel matching conditions become boundary

conditions on the bulk fields [107]. This allows us to describe the domain wall

dynamics entirely in terms of the bulk fields in the surrounding spacetime region,

which will prove crucial when we come to consider the energy and stability of these

fluctuations.

The model that we choose to focus on for studying the stability problem is not

the compactified version of the original HW theory, but rather a five-dimensional

model arising from a ‘breathing mode’ reduction of Type IIB supergravity. This

is particularly interesting as it gives rise to Z2-symmetric singular domain wall

solutions that display the gravity-trapping feature of the Randall-Sundrum model,

and we review its properties in the next section. The work described in sections

(4.2) and (4.3) of this chapter appeared in [1].
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4.3 Supersymmetric Domain Walls

4.3.1 Randall-Sundrum solution

In order to study the stability of Z2-symmetric HW domain walls, it is useful

to choose a particular model with certain generic features. The two Randall-

Sundrum (RS) models [13, 14] are of phenomenological interest as they admit four-

dimensional gravity at low-energies, but provide the intriguing possibility of experi-

mental detection of the extra (fifth) dimensions at an intermediate (say, a few TeV)

energy scales. The simplest RS model, which we previously called RS2, is a singu-

lar domain wall in five-dimensional anti-de Sitter space (AdS5) 2. In attempting to

embed this into the fundamental framework of string theory, it’s natural to look to

a theory admitting AdS5 as a vacuum. A good choice is ten-dimensional Type IIB

string theory, and in fact it will suffice to concentrate on its supergravity limit. A

simple application of the p-brane solution techniques described in chapter 3 shows

that one solution of Type IIB supergravity is a self-dual 3-brane solution; the D3-

brane. This solutions is similar in structure to the M5-brane of eleven-dimensional

supergravity (3.30); for instance, it admits a analytic continuation to a completely

smooth spacetime [59]. Writing the metric solution in interpolating coordinates,

one finds that the near-horizon geometry of the D3-brane is AdS5× S5, suggesting

that Type IIB compactified on S5 is the good guess for a theory in which to embed

the RS model.

We will now review the RS solution constructed in [109, 110]. The five-dimensional

theory is derived from the S5 dimensional reduction of Type IIB supergravity, where

the volume modulus of the S5 is promoted to the dynamical ‘breathing mode’. The

Type IIB field equations for gravity and the five-form F[5], and the Bianchi identity

are most conveniently written as [108]

R
ÂB̂

=
1

96
F

ÂĈD̂ÊĜ
F ĈD̂ÊĜ

B̂
, (4.10)

F[5] = ∗F[5] , (4.11)

dF[5] = 0 = d ∗ F[5] , (4.12)

and for our purposes it will suffice to consider only this sector of the theory. The

hatted capital indices run over all ten dimensions Â, B̂ = 0, . . . , 9. The ansatz for

2In this chapter we are not directly interested in the studying the hierarchy problem, which
was only addressed in the first Randall-Sundrum model, and so we shall not differentiate between
the two.
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the Kaluza-Klein S5 reduction is

ds2

10
= e2αφds2

5
+ e−

6αφ
5 ds2(S5) , (4.13)

F[5] = 4m e8αφ�[5] + 4m �[5](S
5) , (4.14)

where the �’s are the volume forms on the five-spaces, and we will now take un-

hatted capital Latin indices to run over the five dimensions in the line element ds2

5
,

M, N = 0, . . . , 4. The resulting five-dimensional equations of motion are

RMN =
1

2
∂Mφ∂Nφ +

8

3
m2 e8αφgMN −

1

3
R5 e

16α
5 φgMN , (4.15)

�φ = 64αm2 e8αφ − 16

5
αR5 e

16α
5 φ , (4.16)

where the constant m is Type IIB 5-form flux, R5 is the scalar curvature of the S5

and α =
√

15

12
. We stress again that φ is not the ten-dimensional dilaton, but the

breathing mode scalar representing the volume of the 5-sphere compactification.

A Lagrangian which one can vary to produce these equations of motion is [108]

L5 = LE.H. + Lφ =
√
−g

�
R− 1

2
(∂φ)2 − V (φ)

�
, (4.17)

where

V (φ) = 8m2e8αφ −R5e
16α
5 φ , (4.18)

That this gravity plus scalar theory is a consistent truncation of the dimensional

reduction of Type IIB is interesting because the scalar is massive. Traditional

Kaluza-Klein philosophy would say that if we include one massive scalar, we are

forced to include a whole tower of massive states [7]. The breathing mode scalar

φ evades this as it lies in a singlet of the SO(6) symmetry group of the S5. To

make contact with the more familiar Kaluza-Klein compactifications we note that

the usual AdS5 Freund-Rubin vacuum solution corresponds to the case where

∂V

∂φ
= 0 ⇔ e

24αφ

5 =
R5

20m2
= constant . (4.19)

As a consistent truncation of the compactified theory, we could expect the La-

grangian (4.17) to have a supersymmetric completion. The specific details of the

reduction and truncation from the full N = 8 theory are complicated and remain

unclear; but for now, let us just note that it is possible to rewrite the potential for
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this theory in terms of a superpotential [110]

V (φ) = W 2

,φ
− 2

3
W 2 , (4.20)

W (y, φ) =
√

2(2me4αφ − 5

�
R5

20
e

8
5αφ) , (4.21)

which fits perfectly with the general expression for potentials in N = 2 supergravity

[111]. We shall return to the question of supersymmetry later.

The domain wall solution to (4.17), which we take to be our basic example of a

HW domain wall, is given by

ds2

5
= (b1H

2/7 + b2H
5/7)1/2ηµνdxµdxν + (b1H

2/7 + b2H
5/7)−2dy2 , (4.22)

φ = −
√

15

7
ln(H) , H = k|y|+ c , (4.23)

with b1 = ±28m

3k
, b2 = ± 14

15k

√
5R5, and µ, ν = 0, . . . 3 running over the domain wall

worldvolume. Here k denotes the tension, and the second Z2-symmetric brane of

opposite tension is placed at y = π such that the topology of the full spacetime is

R4 × S1/Z2. Recall that the RS model was a gravity-trapping slice of AdS5. If we

want to have a limit where pure AdS5 is reached then we must choose b2 > 0 and

b1 < 0 [105, 110]. Also, in order for the metric to be real, we require

H(y)
3
7 >| b1

b2

| , (4.24)

which can be satisfied if the constant c is chosen appropriately. At this point one

could ask why we must have a singular domain wall, not just a smooth solution

to the field equations. The answer comes from the fact that supergravity domain

walls are well known to only have anti-de Sitter asymptotics on one side [112], so

in order to have a gravity trapping domain wall we must introduce the modulus in

the harmonic function (4.23).
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4.3.2 Brane Actions and Supersymmetry

The appearance of the |y|-term in the domain wall metric (4.23) means that we get

singular terms in the Einstein tensor and in the scalar field equation [113]:

Gµν =
3k

14
(2b1H

− 5
7 + 5b2H

− 2
7 )(g55)

− 1
2 gµν [δ(y)− δ(π − y)] + Reg (4.25)

Gyy = 0 + Reg (4.26)

�φ = −2
√

15k

7
(b1H

− 5
7 + b2H

− 2
7 )(g55)

− 1
2 [δ(y)− δ(π − y)] + Reg , (4.27)

where we use Reg to denote the regular non-singular terms solving the bulk field

equations (i.e. for y �= 0). One notices that singular terms appear only in 4

out of the 5 diagonal components of the Einstein tensor, and that there are two

contributions corresponding to b1 and b2. This suggests that we couple two 3-brane

source terms to our action. Rather than use the Nambu-Goto action as introduced

for the M2 brane in chapter 3, it will be convenient for the moment to use the

equivalent Howe-Tucker action [114], given by3

S3−brane = −T

�

M4

d4ξ
�1

2

√
−γγµν∂µX

M∂νX
NgMN(X)f(φ(X))−

√
−γ

+
1

4!
�µνρτ∂µX

M∂νX
N∂ρX

P ∂τX
QAMNPQ(X)

�
(4.28)

Here T denotes the tension, ξµ denote the worldvolume coordinates, XM(ξ) are

embedding functions and ∂ν ≡ ∂/∂ξν , γµν(ξ) is the worldvolume metric on the

brane and the function f(φ(X)) is as yet unspecified. The topological Wess-Zumino

term for the 4-form A[4](X) is required for consistency and represents the charge

of the brane. Without this it would not be possible to satisfy the ‘brane-wave’

equation i.e. the equation of motion resulting from δS/δX.

Let us pause our discussion of brane actions to consider where A[4] appears from.

The five-dimensional theory (4.17) arises from the dimensional reduction of the

gravity plus five-form F[5] sector of Type IIB, which is itself a consistent truncation

of the full ten-dimensional theory. The reduction of this field strength’s kinetic

term is trivial, and the resulting five-form in five dimensions has no continuous

degrees of freedom. However the flux parameter m, which appears in the reduction

ansatz, is linked to the potential for the breathing mode scalar φ and so the F[5] does

have some role to play [108]. Fields strengths of this form have become known as

3Note that we choose µ, ν, ... indices to denote worldvolume directions 0, 1, 2, 3 in anticipation
of the fact that we will choose the comoving gauge later.
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“theory-of-almost-nothing” fields. It now seems natural to identify F[5] = dA[4](X),

providing a bulk kinetic term for the field we introduced for consistency of the

brane. However, if we dualise the kinetic term for F[5] in the dimensionally reduced

action we would find only half of the potential V (φ) in the Lagrangian. The second

term in the potential V (φ) arises from the scalar curvature R5 of the S5 in the

compactification. For our purposes it will be useful to introduce a second “theory-

of-almost-nothing” field strength F̃[5] = dÃ[4] in five dimensions, dual to this term

of the potential. Recall that there are two singular sources in the field equations

(4.25)-(4.27), so we now choose one brane to couple to A[4] and the other to Ã[4].

In order to completely determine these couplings, we need to calculate the junction

conditions for our domain wall. Before we do so, note that as A[4] descends from the

Type IIB four-form in ten dimensions, the brane coupling to this field will have a

natural interpretation as being the dimensional reduction of the self-dual D3-brane

there. We shall leave the interpretation of the second component for the moment.

Israel Junction Conditions

Let us now explicitly calculate the Israel junction conditions coming from our total

five-dimensional action S5 = SE.H. + Sφ + S3−brane given by (4.17) and (4.28). We

will work in the comoving gauge Xµ = ξµ, X5 = (0, π), which means that there are

no conditions associated with the 55 and µ5 components of the Einstein equations

as T 55

brane
= 0 = T µ5

brane
. The singular contribution to the Einstein tensor is given by

Gµν = − T
√

g55

δ(y)gµνf
2(φ) + Reg , (4.29)

which we can trace-reverse to get

Rµν =
T

3
√

g55

δ(y)gµνf
2(φ) + Reg . (4.30)

As the non-trivial contributions come from the T µν

brane
, and we can derive the associ-

ated junction conditions by integrating the µν components of the Einstein equations

across the brane hypersurface, where the Reg terms do not contribute [23, 115]:

�
+�

−�

dy Gµν =

�
+�

−�

dy Tµν . (4.31)
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On taking the limit �→ 0 we find

[Kµν −Kgµν ]
+

− = tµν , (4.32)

where tµν is the integrated stress-energy tensor defined by the � → 0 limit of the

right-hand side of (4.31), Kµν is the extrinsic curvature of the brane defined by

Kµν = ∂µXM∂νXN∇MnN and nN is the normal to the brane. We can now use

several tricks to simplify this expression. In comoving frame ∂νXN = δN

ν
and for

a domain wall we can always go to the Gaussian normal coordinate system locally,

where gyy = 1, which means that K = ∇ana = 1

2
gµνgµν,y. Using this in conjunction

with our Z2 condition, we can evaluate (4.31) in trace-reversed form to find

gµν,y

��
y=0

= −T

3

√
g55 gµνf

2(φ)
��
y=0

, (4.33)

where the Z2 condition means that the total value of K is related to the value of

the fields on the brane, rather than its difference. A similar junction condition can

also be derived for the scalar field:

φ,y

��
y=0

= 2T
√

g55 f
∂f

∂φ

��
y=0

. (4.34)

In fact, a quicker way to this result is to realise that the only δ-function contribu-

tion to the Einstein tensor comes from the term 1

2
gµν,yy. One can easily see that

integrating this term alone across the brane hypersurface would give the same result

(4.33).

The Total Action

Using our previous results, we can now write down the complete action, where now

we have four brane sources in total. The sources coupled to A[4] will be taken to

be at XM

i
(i = 1, 2), with those coupled to Ã[4] located at X̃M

i
. The total action is
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then given by

S5 =

�
d5x
√
−g [R− 1

2
(∂φ)2 − 1

2 · 5!
e−8αφF 2

[5]
+

1

4 · 4!
e−

16
5 αφF̃ 2

[5]
]

−4m
2�

i=1

si

�
d5x

�
d4ξδ5(x−X(i))[

√
−γγµν∂µX

M

i
∂νX

N

i
gMNe2αφ − 2

√
−γ

+
2

4!
�µνρσ∂µX

M∂νX
N∂ρX

P ∂σX
QAMNPQ]

+
�

5R5

2�

i=1

si

�
d5x

�
d4ξδ5(x− X̃)[

√
−γγµν∂µX̃

M∂νX̃
NgMNe

4
5αφ − 2

√
−γ

+
2

4!
�µνρσ∂µX̃

M∂νX̃
N∂ρX̃

P ∂σX̃
QÃMNPQ], (4.35)

where s1 = 1, s2 = −1 give the opposing charges of the (left, right) branes of each

type. For clarity, we recall that M, N = µ, y = 0, . . . 3, 4. In the following, it will

suffice to take the two brane types on each side of the interval to be coincident,

i.e. XM

i
= X̃M

i
. Before doing so, it’s useful to note that the five-form equations of

motion are given by

∇y(e
−8αφF yµνρσ

[5]
) = 8m[δ(y)− δ(y − π)]

1√−g
�µνρσ, (4.36)

∇y(−
5

2
e−

16
5 αφF̃ yµνρσ

[5]
) = 2

�
5R5[δ(y)− δ(y − π)]

1√−g
�µνρσ , (4.37)

which have the following solutions

FMNPQT = 4me8αφθ(y)
√
−g �MNPQT , (4.38)

F̃MNPQT = −2

5

�
5R5e

16
5 αφθ(y)

√
−g �MNPQT , (4.39)

where

θ(y) =





+1 for 0 ≤ y < π

−1 for − π ≤ y < 0
(4.40)

and we impose the upstairs-picture identification y ∼ y + 2π.

Once again, we have used the brane worldvolume reparameterisation freedoms and

D = 5 general coordinate invariance to choose a comoving gauge. One might

assume that this would not be possible for the two brane system, however Gregory

et al [117] have shown that in this case the comoving gauge does not over-fix the

coordinate and reparameterisation gauge freedoms. Note that we are not fixing the
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physical positions of the branes, just the choice of coordinates by which we label

the two branes. They remain free to move in the five-dimensional spacetime, with

their motion now being encoded in bulk supergravity fields. A simple way to see

that the branes are not over constrained by the choice of comoving gauge is to note

that the brane-wave equation is not trivially satisfied.

Supersymmetry in Singular Spaces

Five-dimensional theories with singular branes have formulated in a supersymmetric

way by Bergshoeff, Kallosh and Van Proeyen (BKVP) [116]. There are several key

steps involved in ensuring that such a theory is well-defined. First, one must identify

the behaviour of the various fields under the Z2 projection. Just as for the domain

wall solution presented in the previous section, one finds that it is necessary to

introduce a five-form “theory-of-almost-nothing” field, which flips sign across the

location of the brane, exactly as was found in (4.38,4.39). The last step is to identify

the scalar function in the brane action f(φ) with the superpotential. An inspection

of the action (4.35) shows that the scalar function, there written as two components,

is indeed the superpotential that was tentatively identified earlier (4.21).

Let us make the correspondence to the BKVP [116] formalism explicit. In order to

simplify the formula, we’ll consider the theory containing only two brane sources.

The action is given by

S =

�
d5x
√
−g

�
R− 1

2
(∂φ)2 − V (φ, x)

�

+
1

6

�
d5x �MNPQRAMNPQ ∂Rm(x)

− 8m

�
d5x

2�

i=1

si

�
d4σδ5(x−Xi)

�√
−γ W̃ (φ(x)) +

1

4!
�µνρσAµνρσ(x)

�
.(4.41)

where γµν = ∂µxM∂νxNgMN (∂µ = ∂/∂ξµ) is now understood as the pullback of

the five-dimensional spacetime metric onto the worldvolume, x-denotes bulk five-

dimensional coordinates and ξ denotes worldvolume coordinates. s1,2 = ±1 as

before and now

V (φ, x) = 8m(x)2

�
W̃ (φ)2

,φ
− 2

3
W̃ (φ)2

�
, (4.42)

W̃ (φ(x)) =
W

2
√

2m
= e4αφ(x) − 5

2

�
R5

20 m2
e

8
5αφ(x) . (4.43)
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Written in comoving gauge, the important equations of motion become:

∂ym(y) = 2 m δ(y) (4.44)

FMNPQR ≡ 5∂[MANPQR] =
√
−g

V (x, φ)

2 m(x)
�MNPQR . (4.45)

4.4 Proving Stability for HW Spacetimes

Having defined the theory we wish to study, let us turn to the question of sta-

bility. Our analysis of the Goldstone modes showed that in order to understand

the dynamics of the system fully we should consider the full five-dimensional the-

ory, not the effective theory on the domain wall. We shall do this by proving a

positive energy theorem for this type of background, before looking at the more

intuitive Hamiltonian approach. Before doing so, we should properly define the

energy for these backgrounds. We shall begin by considering the smooth version of

the background, before discussing the contribution of the singularities later.

4.4.1 Energy Definition for Domain Walls

Following our discussion of conserved charges in chapter 2, we know that the defi-

nition of energy is a subtle business in General Relativity. In order to define energy

for our domain wall we first note that the background metric has a simple timelike

Killing vector ξ
M

, so we can apply the Abbott-Deser technique defined previously.

However, as we have a five-dimensional solution with a non-trivial scalar field we

shall have to use some other tricks too, as in the Kaluza-Klein monopole example

of section (2.3.2).

We begin in the usual way by making the background/perturbation split, now in

both the metric and scalar field

gMN = g
MN

+ hMN , (4.46)

φ = φ(0) + φ(1) , (4.47)

where, once again, the superscript denotes the order of perturbation and we use

g
MN

= g(0)

MN
, hMN = g(1)

MN
. We then expand the Einstein equations as in (2.9),
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where now we must also include the stress-energy tensor perturbations

τMN ≡ T (2+higher)

MN
−G(2+higher)

MN
(4.48)

= R(1)

MN
− 1

2
g(0)

MN
g(0)RSR(1)

RS
+

1

2
g(0)

MN
hRSR(0)

RS

−1

2
hMNg(0)RSR(0)

RS
− T (1)

MN
, (4.49)

where we have the usual contributions due to gravitational energy and we can

explicitly calculate T (1)

MN
to find

T (1)

MN
=

1

2
φ(0)

,M
φ(1)

,N
+

1

2
φ(0)

,N
φ(1)

,M
− 1

4
hMNφ(0),Lφ(0)

,L
+

1

4
g(0)

MN
hRLφ(0)

,R
φ(0)

,L
(4.50)

−1

2
g(0)

MN
φ(0),Lφ(1)

,L
− 1

2
gMN

∂V (φ, x)

∂φ
φ(1) − gMN

V (φ, x)

m(x)
m(x)(1) .

While the Bianchi identity holds to all orders

�
∇MGMN

�(n)

= 0, (4.51)

one finds that the perturbed Einstein tensor is not divergence free with respect to

the background in general, and will contribute to the covariant divergence of τMN :

∇M

G(1)

MN
= hMRR(0)

MN ;R
− 1

2
hMRg(0)

MN
g(0)LSR(0)

LS;R
+ g(0)MR(Γ(1)L

RM
Γ(0)

LN
+ Γ(1)L

RN
Γ(0)

LM
) ,

(4.52)

where we have defined

R(1)

MN
=

1

2
g(0)RS(hSM ;NR + hSN ;MR − hMN ;RS − hRS;MN) , (4.53)

Γ(1)R

MN
=

1

2
g(0)RS(hSM ;N + hSN ;M − hMN ;S) . (4.54)

We then find that τMN is not background covariantly conserved, but satisfies

∇MτMN ∝ φ(0),N × [linearised φ field equation] , (4.55)

where the [linearised φ field equation] is the perturbed version of the φ field equation

(4.104),

1

2
�(0)φ(1)− 1

2
hRLφ(0)

;RL
− 1

2
hRL

;Lφ(0)

,R
+

1

4
hR

R;

L

φ(0)

,L
− 1

2

∂2V (φ(0), x)

∂φ(0)2
φ(1) = 0 . (4.56)

One cannot now impose this linearised matter field equation as it would be in
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conflict with the fact that we are also imposing the full gravity plus matter field

equations. However, as in the Kaluza-Klein monopole example, we are saved by a

property of our solution (4.23). As our background satisfies

φ(0),Mξ
M

= 0 , (4.57)

we have that

(∇MτMN)ξ
N

= 0 , (4.58)

Using the background Killing’s equation

∇Mξ
N

+∇Nξ
M

= 0 , (4.59)

we can construct the ordinarily conserved vector density

∇M(
�
−gτMNξ

N
) = ∂M(

�
−gτMNξ

N
) = 0 . (4.60)

We can then define the AD energy for the domain wall as

EDW =

�

V

dV
�
−g τ 0Mξ

M
, (4.61)

where dV is a 4-spatial volume element. It is straightforward to show that this is

ordinarily conserved, and thus provides a good candidate for energy:

∂

∂t
EDW = −

�
dV ∂i[

�
−g(G(1)Mi − T (1)Mi)ξ

0
] (4.62)

= −[
�
−g(G(1)05 − T (1)05)ξ

0
]y=π

y=0
(4.63)

= 0 , (4.64)

where i, j are spatial indices. The last line follows because G(1)05 and T (1)05 are

continuous and odd under the Z2 symmetry and so vanish at the location of the

branes. The fact that they are continuous can be explained by observing that the

brane energy-momentum tensor is given by

T 05

brane
∝ γµν∂µX

0∂νX
5 , (4.65)

as can seen from (4.25) and (4.26) in section (4.3.2), and so in the comoving gauge

we have

T 05

brane
= 0. (4.66)
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This holds at every order in perturbation theory, and shows that there are no

singular contributions to the 05-component of the Einstein equations. Moreover

this shows that the bulk energy is conserved without any contribution from the

brane variables.

As discussed in the introduction, the brane dynamics can be entirely understood

in terms of bulk fields – the radion and centre-of-mass Goldstone modes. This

was stated more formally in terms of the junction conditions (4.32) which, for

Z2-symmetric domain walls, explicitly become boundary conditions on bulk fields

(4.33). Hence, if we can prove that the bulk energy is positive and conserved, then

we have shown the stability of this class of Z2-symmetric domain walls, which have

metrics of the form (4.23) and a superpotential relation as in (4.21).

Before we continue the proof of positivity , let us note that it can be manipulated

into a total derivative, allowing us to write a surface form for the energy [1, 41]

EDW =
1

2

�

∂V

dΣi(ξN
hiN ;0 − ξ

N
h0N ;i + ξ

0

h,i − ξ
i

h,0 + h0Nξ
N ;

i − hiNξ
N ;

0

+ ξ
i

h0N
;N − ξ

0

hiN

;N
+ hξ

i;0

+ ξ
0

φ(0),iφ(1) − ξ
i

φ(0),0φ(1)) , (4.67)

where the semicolons denote background covariant differentiation.

4.4.2 Positive Energy from Spinors

Our analysis tells us that for HW spacetimes it suffices to consider just the bulk

fields alone. As such, if we are able to show that the energy is positive at a given

time, it will remain so due to the bulk field equations alone, with no contribution

from the boundary Xµ variables. In this section we will prove a positive energy

theorem for the HW background (4.23) by using the spinorial methods introduced

in section (2.4). We saw there that this proof was more intuitive when we consider

how it arises in supergravity. It is therefore useful to note that we can propose the

form of the supersymmetry transformations for fermions for the supersymmetric

extension of the Lagrangian (4.17) [110, 119]4

δψM ≡ DM� = [∇M −
1

6
√

2
ΓMW (y, φ)]� + higher order in fermions (4.68)

δλ = (
1

2
ΓM∇Mφ +

1√
2
W,φ)� + higher order in fermions , (4.69)

4In this chapter we are return to using a real representation for the gamma matrices. We have
listed some useful formula in Appendix A for convenience.
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where W is the putative superpotential we introduced previously (4.21). From now

on we shall denote background quantities by (0), with the overline notation being

used for the Majorana conjugate on spinors.

The proof of positivity proceeds in generally the same manner as that for asymp-

totically flat spaces [61, 62], but extended to theories with scalar potentials [64, 120–

122]. While we have tentatively identified supersymmetry transformations for the

gravitino ψ and dilatino λ, Boucher [120] has shown that supersymmetry is not

actually required for proof of positive energy, but it acts as a guide to identify

quantities such as (4.68), (4.69) which will prove useful.

We begin by defining the Witten-Nester energy integral

EWN =

�

∂V

∗E , (4.70)

where the integral is taken over the boundary of the spatial volume element V , and

where ∗E is the Hodge dual of the Nester 2-form E = 1

2
EMNdxMdxN , defined by

EMN = η̄ ΓMNPDP η −DP η ΓMNP η , (4.71)

where we now use η to denote the commuting spinor function that asymptotically

tends to a background Killing spinor, i.e. it satisfies

D(0)

M
η = 0 (4.72)

1

2
ΓM∇Mφ(0)η +

1√
2
W (0)

,φ
η = 0 , (4.73)

as r → ∞, where r is the appropriately defined radial coordinate. The anti-

commuting supersymmetry parameter appearing in the fermion transformations

(4.68),(4.69) is given by η times an anticommuting constant.

We can rewrite the energy expression as a surface integral in usual way, where now

the spatial bulk volume V should be thought of as extending up to an infinitesimal

distance away from the brane hypersurfaces:

EWN =

�

V

dΣM

√
−g∇NEMN (4.74)

=

�

V

dΣM

√
−g [DNηΓMNPDP η + η̄ΓMNPDNDP η + h.c.] . (4.75)

We then choose to foliate our spacetime in terms of spatial slices at constant times
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and impose the Witten condition on the initial hypersurface

ΓkDkη = 0 . (4.76)

It is now straightforward to express the Witten-Nester energy in terms of δ̃ψi,

δ̃λ, where δ̃ has the same action as the supersymmetry transformations, with the

anticommuting spinor parameter � being replaced by the commuting η. A little

manipulation leads to

EWN = 2

�

V

dV
√
−g

�
(δ̃ψi)

†δ̃ψi +
1

2
(δ̃λ)†δ̃λ

�
≥ 0 . (4.77)

This expression is well defined if we impose the usual fall-off constraints on metric

perturbations, and also that the superpotential behaves as

W (φ) ∼
φ→φ(0)

1

2l
+ O(φ2) , (4.78)

where l is the AdS scale for our solution [122], and one can check this is true for

(4.21) [110]. By expanding (4.77) in fluctuations about the background we can

show that it correctly reproduces the surface integral form of AD energy given in

the previous section (4.67). Using the following expression for the vielbein and spin

connection

eP
a = e(0)P

a +
1

2
hP

a , (4.79)

ω(1)

Pab
=

1

2
(hPa;b − hPb;a) , (4.80)

one finds the Killing spinor equation can expanded to give

DP η =
1

4
ω(1)

Pab
Γabη − 1

6
√

2
ΓP W (0)

,φ
φ(1)η − 1

12
√

2
hPaΓ

aW (0)η + . . . (4.81)

This allows us to write (4.70) as

EWN =

�

∂V

[
1

4
η̄ΓMη(h;N − hP

N ;P )− 1

4
η̄ΓNη(h;M − hP

M ;P )

+
1

4
η̄ΓP η(hP

N ;M − hP

M ;N)

− 1

12
√

2
η̄(ΓMNh + ΓNP hP

M + ΓPMhP

N)W (φ)η

− 1

2
√

2
η̄ΓMNW,φφ

(1)η]dΣMN + h.c. . (4.82)
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We now relate Killing spinors to Killing vectors by

ξ(0)M = η̄ΓMη , (4.83)

and one can then easily see that (4.82) agrees with the AD energy defined previously

(4.67). Thus, we have proved the AD energy for HW spacetimes is positive, and

as it was also shown to be conserved, this implies that the spacetime is stable

despite the presence of the negative tension brane at y = 0. It’s interesting to note

that the analogous problem of four-dimensional negative mass Schwarzschild has

also recently shown to be stable, subject to linearised perturbations of finite total

energy [123].

Our analysis has shown that one can prove this completely in terms of bulk modes,

independent of all brane sources. A key point here was that the branes were Z2-

symmetric, allowing the construction of an AD energy that is conserved. It would

interesting to see what happens if we relax this assumption, and we shall return to

this point later.

As with the asymptotically flat case discussed in the introduction, the WN method

provides an elegant proof of positive energy for the HW spacetimes. In section

(2.4.2) we saw that supergravity provided some physical reason for the Witten

condition: it arose from a physical gauge choice for the gravitino (2.76), (2.77). We

see now how supersymmetry provides further insight into positivity, as we were able

to identify the appropriate quantities which allowed the WN energy to be written

as a sum of squares. In the case of a supersymmetric theory, it is the sum of squares

of the supersymmetry transformations [121].

4.4.3 Positivity at Quadratic Order

An alternative way to study stability and positive energy is to study the Hamilto-

nian for the given theory and then consider its perturbation. This is not as rigorous

as the spinorial proof as one has to deal with gauge invariance in the theory, how-

ever it is somewhat more physically intuitive and was the common way to tackle

this problem before the development of Witten’s proof [65]. We will now construct

the Hamiltonian version of our theory (4.17) and show that it is manifestly positive

at quadratic order in a particular gauge. One would imagine that any potential

instability would already manifest itself at this order, hence positivity provides a

strong sign that our theory is stable at all orders.

We will follow the canonical ADM approach [21, 22, 124], making an explicit (1+4)
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decomposition of the metric, and choosing spacetime to be foliated along constant

time slices Σ. For clarity we will briefly review the main features of this process

(see [32] for further details).

We will denote five-dimensional bulk coordinates by XM and coordinates on Σ by

xi. The projector onto Σ is defined as XM

i
= ∂XM/∂xi so that the spatial metric

on Σ is given by gij = XM

i
XN

j
gMN , and we define the normal to Σ by nMXM

i
,

normalised such that gMNnMnN = −1. The spacetime metric can then be written

as

ds2 = (NiN
i −N2)dt2 + 2Nidxidt + gijdxidxj , (4.84)

where N ≡ −nM
˙XM is the lapse function and N i ≡ X i

M
˙XM is the shift func-

tion. Indices must now be raised and lowered by the appropriate metric, so for

instance X i

M
= gMNgijXN

j
. A dot on top of a quantity denotes a time derivative,

while | denotes covariant differentiation with respect to the 4-dimensional metric

gij. The embedding of the 4-dimensional hypersurface in the 5-dimensional bulk

spacetime is characterised by the extrinsic curvature Kij, which for this specific

metric decomposition is given by

Kij =
1

2N
(−ġij + Ni|j + Nj|i) . (4.85)

It should be noted that this is not the same extrinsic curvature that appeared

previously in the Israel junction condition (4.32). The “momentum” conjugate to

the metric is defined as

πij ≡ δL
δġij

= −g
1
2
Σ
(Kij − gijK) , (4.86)

and the momentum P conjugate to the scalar field φ is

P ≡ δL
δφ̇

=
g

1
2
Σ

N
(φ̇−N iφ|i) . (4.87)

The determinant of the metric on Σ is denoted by g
1
2
Σ . In terms of the canonical

variables, we can rewrite the action as [124]

S =

�
dtd4x

�
πij ˙gij + Pφ̇−NiH

i −Ng−
1
2 H

�
. (4.88)
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We see that N and Ni act as Lagrange multipliers enforcing the constraints

H = πijπij −
1

3
π2 − g((4D)R− V (φ)) +

1

2
P 2 +

1

2
ggijφ|iφ|j = 0 (4.89)

H i = −2πij
|j + φ|iP = 0 . (4.90)

At background order, these constraints are automatically satisfied by the solution

(4.23), where the background Einstein equations are

(4D)R =
1

2
g(0)ijφ(0)

|i φ(0)

|j + V (φ) , (4.91)

and we have that

0 = P (0) = π(0)ij = N (0)i = φ̇(0) . (4.92)

We then impose the constraints at linear order:

−(4D)R(1) +
∂V

∂φ
φ(1) − 1

2
hijφ(0)

|i φ(0)

|j + g(0)ijφ(0)

|i φ(1)

|j = 0 (4.93)

2π(1)ij
|j = φ(0)|iP (1) , (4.94)

where
(4D)R(1) = hij

|ji − hi
i|j

j − hij(4D)R(0)

ij
. (4.95)

Written in the form above (4.88), we can easily read off the Hamiltonian

H =

�
d4x [NH + NiH

i] . (4.96)

We know that this procedure should give the ADM energy at first order in per-

turbations [22, 65], so in order to study positivity we should look at second order

expression. To second order in perturbations, subject to the constraints imposed

at linear order, we find the Hamiltonian is given by

H(2) =

�
d4x

�
N (0)g(0)− 1

2

�
π(1)ijπ(1)

ij
− 1

3
π(1)2 +

1

2
P (1)2

�

+N (0)g(0)
1
2

�
1

4
hij|khij|k +

1

4
hi

i|
j

hk
k|j −

1

2
hij

|jhik|
k

− 1

12
hijhij(V +

1

2
g(0)klφ(0)

,k
φ(0)

,l
)

�

+N (0)g(0)
1
2

�
1

2

∂2V

∂φ2
φ(1)2 +

1

2
(φ(1)|i − hijφ(0)

|j )(φ(1)

|i − hi

kφ(0)

|k )

��
.(4.97)
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One can easily check that this is conserved, subject to the linearised constraints.

In order to prove positivity of this expression we remove the terms of negative or

undetermined sign. Much like the spinorial version of the proof, we will employ

the standard technique of choosing a convenient gauge [65]. A simple counting

argument tells us we can make five gauge choices, which we choose to be

hij
|j = 0, (4.98)

P (1)2 =
2

3
π(1)2 + g(0) | ∂2V

∂φ2
| φ(1)2 . (4.99)

We then find that the Hamiltonian reduces to a sum of positive definite terms

plus a term of undetermined sign, which one can show is positive if the following

inequality holds

V +
1

2
g(0)ijφ(0)

|i φ(0)

|j ≤ 0 . (4.100)

For our background solution (4.23), this can be written as the following condition

on the metric data

3k2

196H
(16b2

1
H− 3

7 + 20b1b2 − 5b2

2
H

3
7 ) ≤ 0 . (4.101)

One can check that this is always satisfied if the metric is real, i.e. if (4.24) holds.

This means that the Hamiltonian is manifestly positive at second order in pertur-

bations, implying that energy is positive and that our HW domain wall is stable.

4.5 Asymmetric Domain Walls

In studying the energy of the HW domain wall we found that the Z2 projection

played a crucial role. Recall that it is exactly this projection that allowed us to

show that the energy was conserved by virtue of the bulk field equations alone,

i.e. without the source contributions from the branes. A natural question to ask is

what happens when we relax this assumption: is the energy defined as before still

conserved? Consider the action with sources given in (4.41). For the purposes of
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this discussion, the important field equations are

GMN = TMN

bulk
+ TMN

brane
(4.102)

=
1

2
φ,Mφ,N − 1

4
gMNφ,Rφ,R −

1

2
gMNV (φ, x)

+
T

2
√−g

�
d4σδ5(x−X)

√
−γγµνXM

,µ
XN

,ν
W (φ) , (4.103)

�φ =
∂V (φ, x)

∂φ
− T√−g

�
d4σδ5(x−X)

√
−γγµνXM

,µ
XN

,ν
gMN

∂W (φ)

∂φ
, (4.104)

0 = ∂µ(
√
−γγµνXN

,ν
W (φ)) +

√
−γγµνXM

,µ
XR

,ν
ΓN

MR
W (φ) (4.105)

−1

2

√
−γγµνXM

,µ
XR

,ν
gMR

∂W

∂φ
φ,N − 1

4!
�µνρσ∂µX

M∂νX
R∂ρX

S∂σX
T FN

MRST .

The final expression is the brane-wave equation, which arises from varying the

action with respect to the embedding functions X. One can easily check that

the energy-momentum tensor defined by (4.103) is covariantly conserved, despite

the presence of the brane source terms. In defining the bulk energy it was im-

portant that the vector density constructed from the linearised energy-momentum

pseudotensor was covariantly conserved (4.60). We shall try to use the same con-

struction for the asymmetric wall. The split into background and perturbations

proceeds as before, where now the pseudotensor is defined as

τMN = τMN

bulk
+ T (1) MN

brane

= τMN

bulk
+

T

2
√−g

�
d4ξδ5(x−X)δ(1)

�√
−γγµνXM

,µ
XN

,ν
W (φ)

�

−1

2
T (0) MN

brane
(4.106)

where τMN

bulk
is the bulk energy-momentum pseudotensor defined by (4.49) and the

last term comes from perturbing the bulk metric determinant factor in the brane

energy momentum tensor. We use δ(1)[. . .] to denote the first order perturbation of

the term in square brackets, whose explicit form is not needed for this calculation.

The source terms also modify the linearised Bianchi identity, which can expanded

to give

∇MG(1) MN = −1

2
hN

M ;R
∂Mφ∂Rφ +

1

4
h N ;M

M
(∂φ)2 +

1

2
h N ;M

M
V (φ, x)

+
1

4
h ;N

MR
∂Mφ∂Rφ− 1

4
hR

R;N
∂Nφ∂Mφ

−Γ(1) N

MR
T (0) MR

brane
− 1

2
hR

R;M
T (0) MN

brane
(4.107)
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Taking the covariant derivative of (4.106) we now find

∇MτMN ∝ φ(0),N × [linearised φ field equation]

+ [linearised brane wave equation] (4.108)

Now, constructing the vector density from τMN as before (4.60) we find that the

first term once again vanishes by virtue of φ(0),Mξ
M

= 0, however the last term

remains. We then find that

∇M(
�
−gτMNξ

N
) =

�
−g [linearised brane wave equation]N ξ

N
�= 0 . (4.109)

and the term in brackets is the linearised version of (4.105),

δ(1)
�
∂µ(
√
−γγµνXN

,ν
W (φ))

�
+ Γ(1) N

MR
W (φ)

√
−γγµνXM

,µ
XR

,ν
− ∂2W

∂φ(0)2

√
−γφ(1)∂Nφ(0)

+δ(1)
�
W (φ)

√
−γγµνXM

,µ
XR

,ν

�
Γ(0) N

MR
− ∂W

∂φ(0)

√
−γhMN∂Mφ(0) − ∂W

∂φ(0)

√
−γ∂Nφ(1)

+
1

2

∂W

∂φ(0)

√
−γhM

M
∂Nφ(0) +

1

4!
δ(1)

�
�µνρσ∂µX

M∂νX
R∂ρX

S∂σX
T FN

MRST

�
= 0(4.110)

This expression can be simplified by using the background equation of motion

(4.45), however it remains as an O(1) perturbed equation of motion. Following our

earlier discussion, it would be inconsistent to invoke a first order equation of motion

to show conservation at first order. As this term remains, it appears that the charge

defined using the AD formalism is no longer conserved. It is interesting to see that

it appears as a perturbed equation of motion, as is the case for the bulk fields.

However, the expression is not multiplied by an overall factor of a background field

which would have allowed the same Killing vector trick to work.

It is not clear whether this observation is physically interesting or an artifact of the

definitions and calculations used here. However, it would appear that the asymmet-

ric domain walls are considerably more complicated the Z2-symmetric HW domain

walls we have considered above, and one can certainly not draw any conclusion

about their stability from the analysis presented. Initial studies of asymmetric

brane worlds seem to suggest that even linear perturbation analysis breaks down,

and so much remains to be understood about these models [125, 126].
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4.6 Comments on Breathing Mode Reductions

Before concluding this chapter, we shall make some comments on the breathing

mode reduction [108] used to find a five-dimensional theory that has a HW domain

wall solution. As we stated previously, this five-dimensional theory is a consistent

truncation of the dimensional reduction of Type IIB supergravity. As such, we

should expect to be able to lift the domain wall solution up to ten dimensions and

identify it with some known solution. In [110], the authors initially identified the

lift with a stack of positive and negative tension D-branes. A deeper examination

of the singularity structure proved that in fact there was a greater contribution

than one could expect from the appropriate amount of D-branes, suggesting the

presence of some other objects [113].

We would like work out whether our theory (4.17) has a supersymmetric extension.

As a first step we can ask if it can be realised as the bosonic subsector of a well

defined five-dimensional supergravity. We have already mentioned that the bosonic

theory with singular source terms included fits the known prescription for super-

symmetry in singular spaces [116], however this did not include any fermions. In

fact this question has already been answered for smooth domain walls by Celi et al

[127]. They studied the conditions under which domain wall solutions to so-called

fake supergravities can be realised as solutions to N = 2 gauged supergravity in five

dimensions. A fake supergravity is a purely bosonic theory where one identifies a

putative superpotential from which one can derive the scalar potential, as we did in

(4.21). One then finds constraints on the scalar field φ supporting the domain wall.

For instance, if the domain wall is curved then φ must lie in a vector multiplet;

whereas for a flat domain wall, φ must lie in a hypermultiplet [127].

Of course our five-dimensional theory arises from the S5 compactification of Type

IIB and as such, we expect it to have N = 8 supersymmetry in five dimensions,

as spherical reductions preserve all supersymmetry [128]. The details of the full

nonlinear version of this reduction remain unclear. Nevertheless, we can choose to

focus on just an N = 2 sector and write down our theory there. For the breathing

mode reduction described above, this has been done by Liu and Sati [119].

Given this argument for believing that our five-dimensional is indeed supersymmet-

ric, we can now ask what the lift of our domain wall solution is. As we are mainly

interested in the supersymmetry of this solution, we won’t concern ourselves with

stacks of branes, but just try to work out what the type of branes we have in ten

dimensions. In the next section we will review the general ansatz for breathing
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mode reductions and domain wall solutions given in [108]. We then present a sim-

ple method to determine the dimensions of the branes from which a domain wall

solution has descended, focusing on ten and eleven-dimensional examples.

4.6.1 Domain Walls from Breathing Mode Reductions

Following [108]5, we shall consider a D-dimensional theory of gravity coupled to a

n-form field strength

e−1L = R̂− 1

2n!
F̂ 2

n
. (4.111)

Hatted quantities will always be D-dimensional. The reduction ansatz for the D-

dimensional metric is

dŝ2 = e2αφ ds2

x
+ e2βφ ds2

y
, (4.112)

β = −α(dx − 2)

dy

, (4.113)

where D = dx + dy, α and β are constants, and at this point we only assume that

the compactifying space is Einstein. In order for the breathing mode scalar field φ

to have a canonical kinetic term in dx dimensions, we require that

α2 =
dy

2(dx − 2)(dx + dy − 2)
, (4.114)

although we will just write α, rather than its numerical value. The generic ansatz

for the reduction of the n-form is

F̂n(x, y) = F (x) , (4.115)

which will be modified in the special cases of n = dx and n = dy. For the latter we

make the ansatz,

F̂n(x, y) = F (x) + m�dy , (4.116)

where �dy is the volume form on the compactifying space. In the case n = dx we

can dualise the resulting kinetic term for the field strength to give a cosmological

term, which is a precursor of the “theory-of-almost-nothing” field discussed above.

The reduction ansatz is then most easily written in this dual form, with

Fn = me2(n−1)αφ�dx . (4.117)

5In particular, see appendices A and B of [108]
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In the case where dx = n = dy, we simply take the ansatz to be the sum of these

two special cases, as in the example of the self-dual field strength in Type IIB

(4.14). Upon applying this ansatz, one finds that the resulting dx-dimensional field

equations can be derived from the following action

e−1 Lx = R− 1

2
(∂ϕ)2 + e2(α−β)ϕ Ry −

1

2
ζ m2 e2(dx−1)αϕ . (4.118)

Our HW domain wall (4.23) was a solution to a theory of the form [108]

e−1 L = R− 1

2
(∂ϕ)2 − V (ϕ) , (4.119)

with the potential V (ϕ) given by

V (ϕ) =
1

2
g2

1
ea1ϕ − 1

2
g2

2
ea2ϕ . (4.120)

Comparing this to the general form of the dimensionally reduced Lagrangian (4.118),

we find the following relations between the parameters of (4.120) and the Kaluza-

Klein parameters:

a1 = 2(dx − 1)α ,

a2 =
2(dy + dx − 2)α

dy

(4.121)

The general HW domain wall solution to this theory is given by (µ, ν = 0, . . . , dx−1)

ds2 = e2A dxµ dxµ + e2B dy2 (4.122)

e−
1
2 (a1+a2)ϕ = H = c + k|y| , (4.123)

e4A = e−B = b̃1 H
a2

a2+a1 + b̃2 H
a1

a2+a1 . , (4.124)

where b̃i = bi (a1 + a2)/(2k) and bi are defined by

b2

i
=

(D − 2)a2

i
g2

i

(D − 2)a2

i
− 2(D − 1)

. (4.125)

One can easily check that for the appropriate choice of a1, a2 this gives the domain

wall solution (4.23).
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4.6.2 Singular Sources for HW Domain Walls

Let us now consider the source terms supporting this singular solution. In [110, 113]

Duff et al identified these source terms by studying the singular contributions to

the stress-energy tensor. As we already know that we have a dx − 1-brane in dx

dimensions (i.e. a domain wall) we shall not take this approach, but rather study

the singular term in the field equation for the breathing mode scalar φ. Following

our discussion of brane charges in chapter 3, we expect the brane to contribute a

charge term,

�ϕ = V,ϕ +Qbrane, (4.126)

We can fix the specific form of Qbrane by matching to the singular terms of the

left-hand side using the scalar field junction conditions, just as we did for the

stress-energy tensor components in section 4.3.2. Using (4.123) and focusing now

only on the terms H,yy that we know produce δ-functions we find

�ϕ = Reg +
4k

(a1 + a2)

δ(y)
√

g55

�
b̃1 e

a1
2 φ + b̃2 e

a2
2 φ

�
(4.127)

As was noted earlier for the components of the stress-energy tensor, even for one

brane in dx dimensions there are two singular contributions implying that the do-

main wall descends from two branes in the D-dimensional theory. We can now

compare the right-hand side of (4.127) to the standard brane source terms. In

D = dx + dy, the simple Nambu-Goto action is given by6

Sbrane = −T

�
dDx̂ δ(x̂− X̂)

�
dpξ̂

�
−γ̂. (4.128)

where γ̂ is the determinant of the pull-back of the D-dimensional metric to the

worldvolume, and the other hatted quantities are the D-dimensional versions of

those appearing in (4.41). After dimensional reduction to a domain wall in dx this

becomes

Ssource = −T

�
ddxx δ(y)

�
dpξ

√
−γe(dx−1)αϕ+nyβϕ, (4.129)

where ny is the number of brane directions that lay in the transverse space ˆds2
y

in

D dimensions. Note that as we have chosen to consider a reduction to a domain

wall in the comoving gauge, the delta function has reduced to δ(y), where y is the

direction transverse to the dx − 1-dimensional worldvolume.

By comparing the conformal factors of ϕ in (4.127) and (4.129) and using the rela-

6We shall set all worldvolume fields to zero.
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tions in (4.121) we can determine the dimensions of the branes prior to dimensional

reduction. By branes here, we specifically mean objects contributing singular terms

to the field equation. We can now see that there are two branes with the following

dimensions:

brane1 : ny = 0⇒ d1 = dx − 1 , (4.130)

brane2 : ny = dy − 1⇒ d2 = dx − 1 + dy − 1 = D − 2 . (4.131)

This assumes that both branes appear separately as domain walls in dx, i.e. we do

not allow for lower dimensional defects, such as strings, on the domain worldvolume.

Let us now return to the five-dimensional domain wall we were interested in, given

by (4.23). For the appropriate choice of values above, we see that this argument

suggests our domain wall descended from a 3-brane and 7-brane in Type IIB. Of

course, the 3-brane was expected as one of the components of the dimensional

reduction was the self-dual five form field strength supporting this solution. In

[108] the domain wall metric was lifted back to ten dimensions and shown to be

equivalent to that of the D3-brane after a coordinate transformation. After a careful

consideration of the tension contributions from the D3-branes, it was later realised

that this was not the whole story [110, 113]. The second component in the singular

terms was then seen to come from the Z2 action on ten-dimensional flat space,

and it was suggested that this may have some relation to smeared 7-branes [19,

20, 113]. However, we know that we truncated to the gravity plus five-form sector

of Type IIB whereas D7-branes (and D-instantons) are supported by the axion-

dilaton sector. An alternative suggestion is that the smeared 7-brane is a purely

gravitational solution of the type identified in [129]. We still need to produce

the appropriate topological coupling found in five dimensions in order to solve the

brane-wave equation, however as this gravitational brane is not charged under any

field we must resort to another coupling. One possibility is the topological coupling

to the Â genus, however this is easily seen to be zero for this background [130, 131].

The correct identification of this extra source term in ten dimensions and of the

correct ansatz for dimensional reduction of fermions in the Z2-background remains

work in progress.

Before we conclude, we note that the same procedure can be applied to reductions of

eleven-dimensional supergravity on S4 and S7. The resulting domain wall solutions

can be lifted back to eleven dimensions to find the M2 and M5 branes respectively.

It is interesting to note that the second singular component in each case lifts to
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an 8-brane, however no such solution is known to exist there. We see then that

the Z2-symmetric domain walls supported by breathing mode scalars are quite

strange. One would have expected that solutions derived from eleven-dimensional

supergravity to lift back to the known supersymmetric solutions there –the HW

orbifold planes– however we see that is not the case.

4.7 Conclusions

We have shown that a class of domain walls in five dimensions, known as HW

domain walls, are stable despite the presence of a negative tension brane. The key

to the stability proof was that we were able to write the energy as a sum of squares

of putative supersymmetry transformations, which had been identified previously in

initial studies of the supersymmetry of the bulk solution. Although the precise form

of supersymmetry for these solutions remains unclear, we saw that the background

solution is as we expect for a BPS solution: it acts as a minimum energy state so

that the energy of perturbations is bounded from below.

A crucial point was that we were considering Z2-symmetric domain walls. This

allowed us to construct an energy entirely in terms of bulk quantities and we saw

explicitly how the Z2 projection forces the Israel junction conditions to become

boundary conditions on the bulk fields. The constrained nature of this spacetime

then meant that the proof of positive energy was completely unaffected by the

negative tension brane at one end of the interval. As soon as the Z2 condition is

dropped, we are no longer able to construct the conserved charges in the usual way.

In this case the topology changes to R1,3 × S1, and these perturbations are not

included in our analysis.

Returning to the question of supersymmetry we considered the higher dimensional

origin of our domain wall. We saw that one component could be understood as

a BPS solution of the supergravity theory: the D3-brane in the case of the five-

dimensional domain wall. The origin of the second component remains unclear.

Regardless of the issue of supersymmetry, our analysis of Z2-symmetric domain

walls has answered a key question that was often overlooked in brane world models.



Chapter 5

Consistency Conditions for Brane

Worlds

5.1 Introduction

The resurgence of interest in extra dimensions in particle physics and cosmology

spurred by the work of Randall and Sundrum, and Arkani-Hamed et al led to a

huge growth in the number of new models of physics being proposed. Almost every

one claimed to have verifiable signals in accelerators or other experiments. While

the focus was initially on models with one extra warped dimension, it soon became

apparent that these simple ideas could be extended to six-dimensional models, and

higher, without requiring a firm footing in string theory or supergravity. This slew

of phenomenologically motivated brane world models, with varying assumptions

and approximations, prompted Gibbons, Kallosh and Linde to define a set of simple

rules aimed at checking the consistency of five-dimensional models case by case [24].

In this chapter we shall review their work, before presenting a generalised version of

their consistency checks, applicable to higher dimensional models and other cases.

We apply our generalised sum rules to two models of particular value, and show

how they offer a more robust test of consistency than some other methods. This

leads us to consider the case of supergravity p-branes with more general geometries,

for which we propose a generalised form of the ADM energy.

79
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5.2 Brane World Sum Rules

In their original paper [24] Gibbons, Kallosh and Linde (GKL) used components

of Einstein’s equations to find simple constraints on brane world models. Their

aim was to derive a set of rules for such models that are relatively model inde-

pendent. They chose to concentrate on five-dimensional scenarios, similar to the

Randall-Sundrum models [13, 14]. We shall reproduce their arguments here, before

presenting some generalisations in the next section.

Consider D-dimensional geometries given by the following warped product metric:

ds2 = W 2(y) gµν(x) dxµdxν + gmn(y) dymdyn , (5.1)

where xµ are coordinates on the p + 1 ≡ d dimensional brane and ym are coor-

dinates in the D − d ≡ d̃ + 2 dimensional transverse space. We assume Poincaré

symmetry on the brane however unlike the standard treatment of p-brane solutions

in supergravity [79], we assume no symmetry in the transverse space.

It will be most convenient to use the trace-reversed D-dimensional Einstein’s equa-

tions, which are given by

(D)RAB = 8πGD

�
TAB −

1

D − 2
gABTC

C

�
, (5.2)

and we can decompose the D-dimensional Ricci tensor components as follows,

(D)Rµν = (d)Rµν −
gµν

d

1

W d−2(y)
∇2(W d(y)) (5.3)

(D)Rmn = (d̃+2)Rmn −
d

W (y)
∇m∇nW (y) , (5.4)

where ∇2 is the transverse space Laplacian defined by the covariant derivative with

respect to gmn. We will use the traced version of Ricci tensor components and in

order to keep the expression as compact as possible we will suppress the functional

dependence of W(y):

(D)Rµ

µ
= (d)RW−2 − 1

W d

�
1
√

g
∂m(
√

g)∂m(W d) + ∇̃2(W d)

�

= (d)RW−2 − 1

W

�
d∇̃2W +

d(d− 1)

W
(∂mW )2 +

d
√

g
∂m(
√

g)∂mW

�

(D)Rm

m
= (d̃+2)R− d

W

�
∇̃2W +

1
√

g
∂m(
√

g)∂mW

�
. (5.5)
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Here g = det(gµν), ∇̃2 = ∂m∂m and we have made use of the identity

∇2W =
1
√

g
∂m(
√

g gmn∂nW ) =
1
√

g
∂m

√
g∂mW + ∇̃2W . (5.6)

GKL chose to restrict themselves to studying singular domain wall (i.e. 3-brane)

solutions to some five-dimensional theory of gravity plus matter. The action for

this class of theories is

S = SE.H. + Smat −
�

α

�
dp+1x

�
− det gµν λα(Φ) , (5.7)

where SE.H. is the canonical Einstein-Hilbert term, Smat gives some five-dimensional

matter content and the explicit term is a collection of sources for the singular branes

located at positions y = yi with tensions λi.

GKL were interested in cases where the internal manifold, now just y, is closed,

i.e. compact without boundary. If we multiply the Ricci tensor components by

appropriate powers of the warp factor W and integrate over y, some terms will

drop out as total derivatives. This will allow us to find further constraints on the

theory that are otherwise not obvious.

Following GKL, we take the combination of Ricci tensor components

(D)Rµ

µ
× (1− n)W n +(D) Rµ

µ
× (n− 4)W n . (5.8)

Denoting ∂y by � and substituting (5.5), we then find the following expression

(W n)��

n
=

(1− n)W n

12

�
(5)Rµ

µ
−(4) RW−2

�
+

(n− 4)W n

12
(5)Rm

m
. (5.9)

If we now assume that the warp factor can be written as an exponential W (y) =

eA(y), as in the RS models [13, 14] for example, then the left-hand side of this

expression becomes a total derivative, which will vanish when integrated over a

closed manifold.

Using the trace reversed Einstein’s equations (5.2) we then have

�
A�enA

��
=

2πG5

3
W n (Tµ

µ + (2n− 4)Ty
y)− 1− n

12
W (n−2) (4)R . (5.10)

This is the five-dimensional ‘sum rule’ for a general brane world model. Assuming

that our internal direction is closed, we can integrate, dropping this total derivative,
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to find a constraint

�
enA

�
Tµ

µ + (2n− 4)T5
5
�

=
1− n

8πG5

Rg

�
e(n−2)A . (5.11)

One immediately sees that interesting information can be found regardless of the

exact form of TMN derived from the variation of Smat. For instance, choosing n = 1

we find a constraint on the components of TMN ,

�
eA

�
Tµ

µ − 2T5
5
�

= 0 . (5.12)

GKL note that this constraint was proposed in [132] as a condition for the vanishing

of the four-dimensional cosmological constant, i.e. for flat branes. However from

this simple expression we see that it is in fact independent of the curvature (4)R.

Also, even if the internal manifold is not closed, it is still interesting to see that

some combinations of stress-energy components give a total derivative.

5.2.1 Applications of the Sum Rules

Let us now fix the form of Smat. GKL choose a five-dimensional scalar field theory

with potential

Smat = −
�

d5x
√
−G

�
1

2
gXY ∂NΦ

X
∂NΦ

Y
+ V (Φ)

�
, (5.13)

where 4M3 = (8πG5)−1, and gXY is the metric on the scalar moduli space with

X, Y labelling the fields. For the domain wall we are interested in the fields Φ will

only have dependence on the internal direction y and the spacetime scalar product

with respect to gAB in the kinetic term will be denoted by Φ� ·Φ�. Including source

terms, the stress-energy components of use are

T µ

µ
= −4

�
1

2
Φ� · Φ� + V (Φ) +

�

i

λi(Φ)δ(y − yi)

�
, (5.14)

T 5

5
=

1

2
Φ� · Φ� − V (Φ) . (5.15)

The sum rules of interest to this theory are given by n = 0, 1, 4:

n=0 � �
Φ� · Φ� +

�

i

λi(Φ)δ(y − yi) + M3W−2(y) R

�
= 0 . (5.16)
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n=1 �
W (y)

�
3Φ� · Φ� + 2V (Φ) + 4

�

i

λi(Φ)δ(y − yi)

�
= 0 . (5.17)

n=4

�
W 4(y)

�
2V (Φ) +

�

i

λi(Φ)δ(y − yi)− 3M3W 2(y) R

�
= 0 . (5.18)

The first constraint is particularly interesting because the potential term, which

places a key role in most discussions of compactifications and brane world scenarios,

drops out. For instance, if we wish to model the current period of cosmic expansion

[133] with a de Sitter solution, we fix (4)R > 0. Looking at the n = 0 constraint,

we then find � �
Φ� · Φ� +

�

i

λi(Φ)δ(y − yi)

�
< 0 . (5.19)

Let us consider the first term in this expression. This is required to be positive

definite for all normal (i.e. non-tachyonic) matter. In certain gauged supergravities

one finds non-positive definite terms arising, however such scalars are compensator

fields arising from gauging a conformal symmetry, and as such are not in the physical

sector of the theory [134].

Knowing that the kinetic term must be positive definite, we then require that the

dominant brane contribution must be negative: i.e. at least one negative tension

brane must be present. Similarly, if we wish to model four-dimensional Minkowski

(flat) space-time (4)R = 0 we must also have negative tension branes present. It

is interesting to note that if we consider the case of smooth domain walls, that is

without any delta function support, we are led to impossible constraints for four

dimensional Minkowski or de Sitter:

�
Φ� · Φ� = 0 (R = 0) (5.20)

�
Φ� · Φ� < 0 (R > 0) . (5.21)

This is a simple proof of the no-go theorem for smooth Randall-Sundrum solutions

supported by scalar fields. Reinstating the delta function supports for two flat

branes and setting all scalar fields to zero, we quickly find the original Randall-

Sundrum tension matching condition from (5.16)

λ1 = −λ2 , (5.22)
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so the branes must have equal and opposite tension. If we now fix the form of the

warp factor to be e2A = e−2k|y| and fix the scalar potential such that it acts as a

cosmological constant Λ, we find the second Randall-Sundrum condition from the

n = 1 constraint (5.17):

Λ = kλ1 . (5.23)

The GKL constraints on four-dimensional models arising from compactifications or

brane world scenarios agree with earlier work [25–30], but are considerably simpler

in their derivation. They are particularly useful in that they are derived indepen-

dently of any supersymmetry in the theory, and therefore offer a simple alternative

to other approaches, for instance the renormalisation group flow methods developed

by Freedman et al [26].

5.3 Generalised Sum Rules

Following the construction of the five dimensional sum rules discussed in the previ-

ous section, we shall now present a generalisation to arbitrary dimensions. We begin

by making an ansatz for a useful linear combination of Ricci tensor components,

analogous to (5.8), for arbitrary worldvolume dimension d:

(D)Rµ

µ
× (1− n)W n +(D) Rm

m
× (n− d)W n . (5.24)

Evaluating this using (5.5) leads to a rather unpleasant expression, however by

using the identities

∇̃2(W n)

n
= W n−1∇̃2W + (n− 1)W n−2(∂mW )2 , (5.25)

W n−1∂mW =
∂m(W n)

n
, (5.26)

we find it can be brought into the following compact form

(1− n)W n
�
(D)Rµ

µ
−(d) RW−2

�
+ (n− d)W n

�
(D)Rm

m
+(d̃+2) R

�

= d(d− 1)

�
∇̃2(W n)

n
+

∂m(
√

g)

n
√

g
∂m(W n)

�
. (5.27)
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This is further simplified by noting that the right-hand side is nothing but the

covariant Laplacian (5.6). Hence we find the following convenient form

∇2(W n)

n
=

(1− n)W n

d(d− 1)

�
(D)Rµ

µ
−(d) RW−2

�
+

(n− d)W n

d(d− 1)

�
(D)Rm

m
+(d̃+2) R

�
.(5.28)

One can easily check that this reduces to the previous expression of GKL (5.9)

when D = 5 and d = 4. We can now use the trace-reversed Einstein’s equations

again to get

∇2(W n)

n
=

W n

d(d− 1)
8πGDT µ

µ

�
1− (d̃ + 1)(2n− d)

d + d̃

�
−W n−2

1− n

d(d− 1)
(d)R

+
W n

d(d− 1)
8πGDTm

m

�
(2n− d)(d− 1)

d + d̃

�
−W n

n− d

d(d− 1)
(d̃+2)R,(5.29)

where (d)R and (d̃+2)R are the worldvolume and internal space Ricci scalars respec-

tively. We shall refer to (5.29) as the generalised sum rules.

At this point it is worthwhile commenting on the overlap between our work and

that of other authors. After completing this work it was realised that an equivalent

form of (5.29) had been found previously by Leblond, Myers and Winters [135].

We shall not repeat their analysis here, but comment on differences with our work.

Having derived the general form of the sum rules, the authors of [135] chose to focus

on a specific six dimensional example, the AdS Soliton [136]. Being a codimension

two object, the integral of the transverse space curvature gave the Euler charac-

teristic for this space. While this is an example of some interest (in the AdS/CFT

correspondence for instance) it is worthwhile noting that it is singular, i.e. the delta

function sources remain. Indeed, Leblond et al produce an illuminating discussion

of delta function sources in curved spaces. They also choose to focus on compact

transverse spaces, allowing the removal of the total derivative term as before. We

shall not stipulate such a condition in our analysis.

The most common reference on constraints on compactifications in supergravity

is the Maldacena-Nunez no-go theorem [30]. Simply put, this states that it is

not possible to produce de Sitter or Randall-Sundrum type compactifications of

supergravity. We shall now briefly show how one can derive this theorem from the

generalised sum rules presented above. In fact, we shall see how this approach has

some shortcomings when compared with the GKL constraints.
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The metric ansatz of Maldacena-Nunez [30] is

ds2 = W 2(y)
�

gµν(x) dxµdxν + gmn(y) dymdyn

�
. (5.30)

In order to compare with the GKL-inspired generalised sum rules, we must confor-

mally rescale our original ansatz (5.1) gmn → W 2(y)gmn. The worldvolume Ricci

tensor component (5.3) then becomes

(D)Rµν = (d)Rµν − gµν

�
∇2W (y)

W (y)
+ (D − 3)

(∇W (y))2

W (y)2

�
, (5.31)

where we have made use of the fact that under this transformation the Laplacian

scales as

∇2W (y)→ ∇2W (y)

W 2(y)
+ d̃

W 3(y)

(∇W )2
. (5.32)

Tracing over gµν , we can we rewrite this expression in the form found in [30]:

1

(D − 2)W (y)(D−2)
∇2W (y)D−2 = R+W (y)2

�
−T µ

µ
+

d

D − 2
(T µ

µ
+ Tm

m
)

�
. (5.33)

We can now see that any no-go theorem derived from this expression will correspond

to one sum rule i.e. the one choice of n = d in (5.29). This initially appears to be

trivial. However, it corresponds to disregarding contributions from certain stress-

energy components. For example, the n = 0 rule in five dimensions (5.16) does

not contain a potential term and can provide a valuable constraint upon other

components of the theory. It is useful to remember at this stage that we are

dealing with Einstein’s equation, and therefore must insist upon the consistency

of all possible linear combinations of its components. In the next section we will

explicitly see how the extended sum rules can show constraints on the theory that

would be hidden if we relied only on the Maldacena-Nunez no-go theorem.

5.4 Applications of the Generalised Sum Rules

We shall now concentrate on two examples which can display the power of the gen-

eralised sum rules. We will begin by discussing the most straightforward extension

of the original GKL results to include a non-compact internal manifold. The exam-

ple we choose is a smooth domain wall solution to N = 2 five-dimensional gauged

supergravity with general matter content [137, 138]. In order to understand if the
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sum rules are of use in higher dimensions, our second example will focus on a six-

dimensional analogue of Melvin’s magnetic solution [140–142], where the spacetime

is of the form M1,3 ×M2. By allowing the internal manifolds to be noncompact,

we shall be able to study the behaviour of the warp factor in both examples. For

the domain wall this means we will be able to understand if the sign of the tension

plays any role in allowing a smooth solution.

5.4.1 Domain Walls Don’t Need Singular Sources

In their work on RG flow equations in five-dimensional gauged supergravity with

simple matter content [27], Kallosh and Linde showed that it was not possible

to have a smooth domain wall interpolating between two different infra-red critical

points. Phrased differently, this says that there are no domain wall solutions to these

theories in which the warp factor smoothly interpolates between two minima, as in

the Randall-Sundrum model. Behrndt and Dall’Agata found an explicit solution

circumventing this constraint by coupling five-dimensional supergravity to more

general forms of matter [137, 138]. In particular, they found that the introduction

of hypermultiplets plays a crucial role. The extra scalars then present modified the

isometry structure of the coset manifold, which in turn changed the critical point

structure, which then allowed the identification of a smooth domain wall solution

[137]. It is reasonable to assume that the more complicated field content of this

theory will allow the no-go theorem to be avoided, however the sum rules show that

the geometry also plays a crucial role1.

For our purposes it will suffice to consider just the bosonic sector of the general

matter coupled Lagrangian, given by 2:

Lbosonic = R− 1

4
FABFAB − 1

2
gXYDAq

XDAq
Y − g2 V(y, q).

For clarity we note that the covariant derivative on the scalar manifold is defined

as

DBq
X

= ∂Bq
X

+ g ABk
X
(q) , (5.34)

where k
X
(q) is the gauged isometry’s Killing vector and AB is a vector field. The

1Further work on the domain wall structure of such supergravity theories has followed [139].
2Our choice of signature is different to that used in [137] and we have dropped the topological

term.
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scalar potential V is defined by

V = −4P rP r +
3

4
k

X
k

Y
gXY (q) . (5.35)

where P r is the prepotential and gXY is the metric on the scalar manifold. The

stress-energy tensor derived from the Lagrangian (5.34) is

TAB = FACF C

B
+

δAyδBy

2
q� · q� − gAB

�
1

4
FCDFCD +

1

2
q� · q� + g2V

�
, (5.36)

where we have used FyA = 0 and also that the scalar field supporting the domain

wall will only have dependence on the transverse direction, so ∂Aq = ∂yq = q�. The

exact form of the metric solution for the domain wall will not be required.

To apply the sum rule arguments of the previous section, it will be useful to note

the following combination of TAB components

T µ

µ
= FµνF

µν − 4

�
1

4
FµνF

µν +
1

2
q� · q� + g2V

�
(5.37)

T y

y
=

1

2
q� · q� − g2V − 1

4
FµνF

µν . (5.38)

As we expect a domain wall solution to this theory to be BPS we can set (4)R = 0

and the general sum rule (5.10) becomes

�
A(y)�enA

��
=

2πG5

3
enA

�
(n− 4)q� · q� − n

4
g2V − (n− 2)

2
FµνF

µν

�
. (5.39)

We see that this expression has the same form as the GKL sum rule, as expected

– the n = 0 and n = 4 conditions have no contributions from the scalar potential

and kinetic terms respectively. However, we no longer assume that our space is

compact so the integral of the left-hand side does not vanish.

Let us first consider the n = 0 condition. Following standard no-go theorem tech-

niques [30] and using that the field strengths satisfy F 2 < 0, we find the sum rule

has a simple form

A�� = −4q� · q� − |F 2| ⇒ A�� < 0 . (5.40)

Integrating this expression we find A(y)�|+∞−∞ < 0, which for one symmetric domain

wall means A(y)� < 0. Recall that for a domain wall space-time, Israel junction

conditions imply that the tension is given by the change in extrinsic curvature across

the wall. Using Gaussian normal coordinates and the Z2-symmetry then means the

tension is entirely determined by the warp factor change across the domain wall.
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An inspection of the junction conditions shows this means the domain wall has

positive tension. We can now use this in conjunction with the other sum rules to

try to constrain the scalar potential. Looking at the n = d = 4 rule we find

−|A��|+ 4(A�)2 = −g2V + |F 2| ⇒ 4(A�)2 + g2V > 0 . (5.41)

One sees that this inequality is obviously satisfied if V > 0. However, it can also

be satisfied for V < 0 if |V| < 4(A�)2. It is now worth recalling the Strong Energy

Condition (SEC), which states that

�
TAB −

1

D − 2
gABTC

C

�
uAuB ≥ 0 , (5.42)

for non-spacelike vectors u. This can rewritten in terms of the trace-reversed stress-

energy tensor (5.2), and in a local frame amounts to stating that all matter is

attractive [25]. As stated in the original no-go theorem [25], the vector field A

will obey the SEC and so any violation must be generated by the scalar field. For

example, a positive scalar potential, such as a positive mass term (V(φ) = 1

2
m2φ2)

for a minimally coupled scalar φ field, will violate the SEC.

The Maldacena-Nunez no-go theorem assumes that the SEC holds for all fields,

and in particular it states that any scalar potentials must be negative. Behrndt

and Dall’Agata suggested that they were able to circumvent this no-go theorem by

having a scalar potential that could become positive at some point [137], violating

the SEC. However with a careful treatment of the brane world constraints for this

theory we have seen that this is not necessary. It is possible that a smooth domain

wall solution exists with V < 0. Our result shows an extra requirement - that

the domain wall must have positive tension, which, as we have seen previously

in (5.19), is not obvious. For instance, for singular domain wall spacetimes with

Minkowski or de Sitter worldvolumes, we specifically need negative tension branes.

Had we employed the Maldacena-Nunez no-go theorem without the assuming the

SEC holds, we would not have found a constraint independent of the scalar potential

and the behaviour of the warp factor would have been unclear. In fact by setting

FCD = 0, one can show that it is exactly the non-compact nature of the transverse

space that allows for the smooth domain wall solution, without requiring the scalar

potential to violate the SEC.
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5.4.2 Higher Dimensions and Melvin’s Solution

Having shown how the sum rules give constraints upon the geometry as well as

the field content of domain wall solutions, it is now natural to ask if this can be

extended to higher codimension spacetimes. In [135] Leblond et al have studied sin-

gular branes in six dimensions with compact internal spaces. They concluded that

negative source terms were not required if one has codimension two branes. In fact,

we have already shown that it is possible to remove source terms in codimension

one by having a transverse space with boundary.

We shall now use the sum rules to study smooth 3-brane solutions in six-dimensional

Einstein-Maxwell theory. Scalar fields will not play a role as we are no longer

considering domain wall solutions and we know the vector field obeys the SEC,

hence it will be the geometry of the two-dimensional transverse space and the warp

factor that are important.

The action for this theory is

S =

�
d6X

√
−g

�
1

2κ2

�
R̂− Λ

2

�
− 1

4
F ABF

AB

�
. (5.43)

Solutions to the equations of motion derived from this action have been constructed

analytically by Wiltshire and collaborators [141, 142], and are given by

ds2 = W 2(r) gµν(x) dxµdxν + dΩ2

(2)
, (5.44)

F =
B

κr4
dr ∧ dϕ , (5.45)

where r, ϕ are radial and angular coordinates, respectively, on the transverse 2-

space M with metric dΩ2

(2)
= gmndymdyn and κ is the six dimensional Newton’s

constant. While not essential for our considerations, the worldvolume is assumed

to be Einstein:

Rµν = λgµν , (5.46)

with λ now being the Gaussian curvature. The transverse space metric is defined

by a function of Λ, λ, B and r, the zeros of which determine the different geome-

tries. The only restrictions placed on the transverse space geometry is that it is

geodesically complete and we are free to consider spaces with boundary. In [141]

it was shown that if one were to consider this codimension two model with a two

dimensional worldvolume, Melvin’s solution [140] arises as one particular choice of

coefficients.
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The evaluation of the sum rule constraints is considerably simplified by the fact

that this model considers a monopole configuration for the gauge field i.e. the only

non-trivial component is Fmn, which is spacelike. Without loss of generality we will

take W (r) > 0.

The appropriate contractions of the stress-energy tensor derived from (5.43) are

T µ

µ
=

1

4π
FmnF

mn − Λ

2πG
(5.47)

Tm

m
=

1

8π
FmnF

mn − Λ

4πG
, (5.48)

which we can insert into the generalised sum rule (5.29) with D = 6 and d = 4 to

find

∇2W n(r)

n
=

1

6
W n(r)πG

�
(5n− 14)FmnF

mn +

�
n + 2

2

�
Λ

�

+

�
n− 1

12

�
W n−2(r) R +

�
4− n

12

�
W n(r)R̃ . (5.49)

Written in this form, we again see that particular choices of n will give constraints

between different components of the theory. We shall now consider various cases in

turn, and the simplest to begin with is a flat brane with vanishing bulk cosmological

constant.

Flat Brane R = 0 and Λ = 0

In this case we see that choosing n = 4 in (5.49) leaves a relation between only the

warp factor and F 2, which is positive definite as we know that the field strength is

spacelike. Multiplying (5.49) by W 4(r) and integrating by parts we find

�

M

∇m(W 4(r) ∇mW 4(r)) −
�

M

(∇W 4(r))2 > 0 , (5.50)

from which we find that

�

M

∇m(W 4(r) ∇mW 4(r)) > 0⇒
�

∂M

W 7(r) nm∇mW (r)) > 0 , (5.51)

where nm is the unit normal at the boundary (∂M) of the transverse space, which

we choose to be positive. As we have shown that ∇W (r) > 0, we can use this in

the n = 14/5 sum rule, in which the field strength term drops out, to show that

R̃ > 0, i.e. the transverse space must have positive curvature.
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Flat Brane R = 0 and Λ �= 0

Allowing the bulk cosmological constant to be non-zero introduces some extra

freedom into the sum rules. In particular, from the n = 4 sum rule we can now

derive two cases of interest:

a) ∇W (r) < 0 if 0 < GF 2 < Λ/2

b) ∇W (r) > 0 if GF 2 > Λ/2

From b) we can once again show that R̃ > 0 by using the n = −2 sum rule, however

little more can be found from a).

Flat Brane R = 0 and Compact Transverse Space

It is interesting to study the possibility of smooth solutions of this sort with a com-

pact transverse space. Leblond et al [135] have shown that negative tension source

terms are not required for flat branes with codimension two, unlike the domain

walls (codimension one) discussed by GKL. We shall now attempt to understand

whether such solutions can be extended to smooth branes.

As ∂M = 0, integration of the generalised sum rules (5.29) now leads to the

vanishing of the left-hand side, leaving constraints independent of the behaviour of

the warp factor. It will be useful to list the sum rules of interest to understand how

each component is constrained in turn:

n=4 �

M

W 4(r) G F 2 −
�

M

W 4(r)
Λ

2
= 0 → Λ > 0. (5.52)

n=1

�

M

6W (r) G F 2 =

�

M

W (r)(R̃− Λ) → R̃ > 0. (5.53)

n=14/5

�

M

6W (r)14/5 R̃−
�

M

16 W (r)14/5 Λ = 0 → R̃ = 4 Λ (5.54)

So we see that unlike the five dimensional Lagrangian considered in the previous

sections, this model does allow a consistent smooth brane solution with compact

transverse space. The only requirements being that both the bulk cosmological
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constant and the transverse space curvature are positive.

This model has provided us with some useful insights into the construction of

smooth brane solutions. It was particularly important that we had a monopole

compactification of the U(1) vector field, which meant that we only dealt with

positive definite field strength terms. Unfortunately as soon as we consider more

general scenarios we lose all ability to constrain the various terms. Indeed for

the case of curved branes we find that although there are still values of n that

lead to simpler sum rules, we cannot fix the signs of the worldvolume and internal

curvatures, even if we set Λ = 0. By fixing the values of each parameter in turn,

it is possible to show agreement with the analytic curved worldvolume solutions in

[142], but this is of little value.

Before concluding, we present a summary of our results in the following table,

D ∂M (4)R R̃ V(φ)/Λ ∂W (r)

5 �= 0 0 0 V(φ) > 0 > 0
6 �= 0 0 > 0 Λ = 0 > 0
6 �= 0 0 > 0 Λ > 2GF 2 > 0 > 0
6 �= 0 0 ? 2GF 2 > Λ < 0
6 = 0 0 R̃ = 4Λ > 0 ?

Table 5.1: Constraints on smooth 3-branes in five and six dimensions.

5.5 Comments on Generalised p-Branes

In chapter 3 we described a method to construct the one charge p-brane solutions

to various supergravity theories. Focusing on the solutions to eleven-dimensional

supergravity, we saw how the M2-brane had a timelike singularity which one could

introduce a delta-function source to support. The M5 brane was completely non-

singular and required no source terms. In ten dimensions one similarly finds that the

self-dual 3-brane solution is completely non-singular, with all other branes having

timelike or conical singularities. The common feature of all these branes is that

their transverse spaces are asymptotically flat, however, this is nothing more than

a simplifying assumption to aid in finding solutions. One can consider the more

general case, where it transpires that the spaces need only be Ricci flat, rather

than Riemann flat, in order to solve the equations of motion [79, 143–146]. Such

solutions are known as generalised p-branes. One can then ask whether the brane

solutions have their singularities resolved, or smoothed out, by the new geometry,
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in much the same way as we found that smooth domain wall solutions exist if the

transverse space is not compact.

Explicit examples of generalised p-branes have been constructed by many authors.

We shall choose to concentrate on a those given by Pope et al [147], which have the

following form of metric

ds2 = H(r)
−d̃

D−2 ηµν(x) dxµdxν + H(r)
d

D−2 gmn(y) dymdyn (5.55)

H(r) = 1 +
k

rd̃
, (5.56)

where xµ are coordinates on the p+1 ≡ d dimensional brane and ym are coordinates

in the D−p−1 = q dimensional Ricci-flat transverse space with metric gmn. It will

be more convenient to consider the following general metric ansatz for a p-brane

with a q-dimensional transverse space (c.f. (3.15))

dŝ2 = e2αϕds̃2

q
+ e2βϕds2

p+1
, (5.57)

where ds̃2

q
= g̃mn(y)dymdyn and ds2

p+1
= gµν(x)dxµdxν are generic metrics on the

q = D−p−1 and p+1 dimensional spaces respectively, and ϕ = ϕ(y). To distinguish

between the different parts of the geometry we will denote D-dimensional quantities

with hats and q-dimensional quantities with tildes. Defining ξ ≡ (q−2)α+(p+1)β,

we then note the Ricci tensor decomposition is given by 3

R̂µν = Rµν − βgµν e2(β−α)ϕ

�
∇2ϕ + ξ(∂ϕ)2

�
, (5.58)

R̂mn = R̃mn − ξ
�
∇m∂nϕ + αg̃mn(∂ϕ)2

�
− αg̃mn∇2ϕ

+
�
αξ + (αβ − β2)(p + 1)

�
∂mϕ∂nϕ , (5.59)

where Rµν and R̃mn are the Ricci tensor components on the p+1 and q-dimensional

manifolds respectively. Tracing these we find

R̂ = e−2αϕR + e−2βϕR̃ (5.60)

−e−2αϕ

�
e−ξϕ∇2eξϕ + (α(q − 1) + β(p + 1))∇2ϕ +

�
qα2 + (p + 1)β2

�
(∂ϕ)2

�
.

One can easily check the sum rule Ricci tensor components (5.3) and (5.4) are

3This choice of parameterisation was suggested by J. Kalkkinen, whom we thank for discussions
on this point.
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reproduced with the following choice:

α = 0 , β = 1, ϕ(y) = ln W (y) . (5.61)

Pope et al constructed various p-brane solutions with general Ricci flat transverse

spaces, all with metrics of the above form with ξ = 0. The key point is that these

spaces admit suitable harmonic forms leading to modified Bianchi identities, and

can smooth out any singularities in the full geometry if they are normalisable [147].

For example, consider the ten-dimensional Heterotic theory, whose bosonic field

equations can be derived from the following Lagrangian,

Lhet = R̂ ∗̂1− 1

2
∗̂dφ ∧ dφ− 1

2
e−φ∗̂F

(3)
∧ F

(3)
− 1

2
e−

1
2φ∗̂F

(2)
∧ F

(2)
. (5.62)

The field strengths are defined as

F
(3)

= dA
(2)

+
1

2
A

(1)
∧ A

(1)
, (5.63)

F
(2)

= dA
(1)

, (5.64)

with the Bianchi the identity for F
(3)

dF
(3)

=
1

2
F

(2)
∧ F

(2)
. (5.65)

The ansatz for the resolved 5-brane solution to this theory is,

dŝ2

10
= H−1/4 dxµ dxµ ηµν + H3/4ds2

4
,

e−φ ∗̂F(3) = d6x ∧ dH−1 , φ =
1

2
log H , F(2) = m L(2) , (5.66)

where L(2) is a normalisable two-form on the transverse Ricci-flat four-manifold,

which can be chosen to be self-dual or anti-self-dual. We could now study the

sum rules using the Ricci tensor components given above, however as we have the

exact solutions at our disposal we can begin by looking directly at the equations of

motion. On inserting the ansatz, we find the equations of motion reduce to

∇̂2H(y) = −1

4
m2 L2

(2)
. (5.67)

An inspection of the gravitino and dilatino supersymmetry transformations show
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the Ricci-flat four-manifold must also be Kähler with an appropriate orientation if

supersymmetry is to be preserved by this more general background. Two examples

of appropriate four-manifolds are the Eguchi-Hanson and Taub-NUT gravitational

instantons, both of which can be described by the Gibbons-Hawking metric [58, 147,

148]. In fact, for all generalised p-branes supported by some Ricci-flat transverse

one finds that the field equations reduced to the form (5.67) with an appropriate

n-form replacing L(2). For normalisable forms L(n) one finds the solutions become

completely smooth.

Unfortunately, when we apply the sum rules to such brane spacetimes we learn

little new. The more general geometry supporting the n-form L(n) allows the brane

singularity to be resolved. A straightforward integration of (5.67) tells us that

∂yH(y)|∞ < 0, fixing the overall sign of the non-constant term in H(y). The

significance of this is entirely dependent upon the particular example under question

and no general constraints can be found. However, it is clear that the modified

geometry of such generalised branes will effect the definition of conserved charges,

to which we now turn.

5.5.1 Energy for Generalised p-Branes

While the sum rules offer little insight into generalised branes, it will be interesting

to consider what can be said about their conserved charges. As such, we shall

now present a formal definition of ADM-like energy for the generalised branes with

metrics of the form (5.55). Following Deser et al [21, 41, 55], we assume the existence

of a simple timelike vector and then define the Killing energy for a p-brane as

E =
1

2κ2

�

∂MT

dD−d−1Σm(D
n

hmn −Dmha

a
) , (5.68)

where D is the covariant derivative with respect to the general background metric

and the h’s are asymptotic fluctuations about this background. The integral is

taken over the surface defined in the transverse space to the brane. Once again,

lower case Latin indices run over all spatial directions a, b = i, j . . . m, n, where i, j

run over spatial worldvolume directions. One can see that this is the covariantised

version of the usual p-brane energy integral (3.32) and agrees with the general

Deser-Tekin expression (2.24). One can easily show that this expression also gives

the correct expression for the Kaluza-Klein monopole that was discussed in chapter

2, agreeing with Deser-Soldate result (2.44).
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Let us now calculate the energy for the 5-brane examples, where we choose the

transverse four-manifold to be the Eguchi-Hanson instanton. The metric on the

four-manifold is given by

ds2

4
= W (r)−1dr2 +

1

4
r2W (r) (dψ + cos θdφ)2 +

1

4
r2dΩ2

2
,

W (r) = 1− a4

r4
, (5.69)

where dΩ2

2
= dθ2 + sin2 θdφ2, ψ has period 2π and the radial coordinate r lies in

a ≤ r ≤ ∞. This space is asymptotically locally Euclidean and the condition on ψ

means that the topology is R× S3/Z2.

The appropriate normalisable 2-form on the space is defined by

L(2) = r−3dr ∧ (dψ + cos θdφ) +
1

2
r−2 sin θdθ ∧ dφ . (5.70)

Assuming the “harmonic” function H only has dependence on r, the field equations

reduce to
�
r3WH ��� = −4m2

r5
, (5.71)

where � = ∂/∂r. This can be solved to give

H(r) = 1 +
m2

2a4r2
, (5.72)

after an appropriate choice of integration constants. For the purposes of calculating

the Killing energy, we see that the metric is locally flat and so we can identify the

perturbations just as in the original p-brane case (3.33)

hmn =
3m2

8a4r2
δmn + O(

1

r4
) , hij = − m2

8a4r2
δij . (5.73)

Substituting into the energy integral we then find

E =
m2

a4
Ω

S3/Z2
, (5.74)

where Ω
S3/Z2

is half the volume of the unit three-sphere. This result agrees with that

for a p-brane with an asymptotically flat transverse space up to the half volume

factor due the different asymptotic topology. Pope et al have shown that this

solution preserves supersymmetry and so we expect that the Bogomol’nyi bound

still holds with a suitable defined magnetic charge.
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The Eguchi-Hanson example is useful as it is possible to calculate the energy explic-

itly. It would be of interest to consider cases that are not asymptotically transverse

flat or locally flat. Unfortunately, such cases often lead to non-divergent integrals,

as in the example of the Heterotic 5-brane on the Taub-NUT instanton [147]. It

may be possible to circumvent this problem by using the methods of Barnich et

al [149], whereby one calculates the energy integral over a finite path in solution

space rather than asymptotically. The nature of these modified charges of gen-

eralised branes remains unclear and merits further investigation. In particular, it

would be interesting to construct the full set of charges for such branes and check

their “black brane” mechanics and Smarr relations [86].

5.6 Conclusions: What can Sum Rules tell us?

In their original work GKL [24] showed how simple manipulations of the Einstein

equations could provide constraints on components of five-dimensional brane world

models that would otherwise remain hidden without a detailed study of supersym-

metry. We have provided a natural extension of these arguments to compactifica-

tions of higher dimensional theories and to more general internal manifolds. We

showed how the evasion of previous no-go theorems for smooth Randall-Sundrum

domain walls in five dimensions did not rely on the scalar field potential violating

the Strong Energy Condition. We found that the potential could be negative if it

was sufficiently small and if the transverse direction was non-compact. This means

that the domain wall must have positive tension. This may initially seem like an

obvious statement, however in the supergravity literature much is made of the ne-

cessity of negative tension objects in realisations of Randall-Sundrum models. In

[150], Giddings et al showed that negative tension brane contributions were required

if one wanted to find a RS type solution to compactified type IIB theory. Using the

Maldacena-Nunez no-go theorem, they showed that a negative contribution was

needed on the right-hand side of the traced Einstein’s equations for consistency.

They noted that this could be generated by negative tension D3 brane sources, or

equivalently by D7 branes wrapped on appropriate four-cycles of the compactifying

manifold. We have seen in this chapter that it is often more useful to extend the

Maldacena-Nunez arguments to other constraints arising from the Einstein equa-

tions (the n �= d sum rules) and to consider non-compact transverse spaces. It

would interesting to reconsider the constraints of [150] for the non-compact Calabi-

Yau’s [151], which are known to localise gravity, as the generalised sum rules could
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offer new insights into these models. We leave this for future work.

As a next step in testing the generalised sum rules we considered the Einstein-

Maxwell theory in six dimensions. Although this had been used previously by other

authors in generalised sum rules, we saw there was more interesting information

to be found. From a simple analysis of the generalised sum rules we found that

one can have a smooth 3-brane solution with compact transverse space, unlike the

five-dimensional case. The requirements for this solution were that both the bulk

cosmological constant Λ and the transverse space curvature (2)R must be positive.

As originally discussed by Leblond et al [135], this latter constraint means that the

Euler characteristic for the internal manifold must positive.

The Melvin-type solutions in six dimensions were interesting as they appeared as

solitons supported magnetically by a vector potential (i.e. with no flux linking

their worldvolume). This was reminiscent of the p-brane solutions of supergravity

discussed in Chapter 3 and led us to consider generalised p-branes with non-flat

transverse space geometry. Many examples of such branes appear in the literature,

however we found that little could be learnt about their general features from

the sum rule arguments. One common feature of solutions found by Pope et al

was that the “harmonic” function should be asymptotically decreasing. We found

that it was interesting to reconsider the Killing energy for such generalised branes,

and provided the appropriate energy integral for this class of backgrounds (5.68).

Considering the example of the Heterotic 5-brane with an Eguchi-Hanson transverse

space, we saw how the modified geometry changed the result for the ADM energy.

It would be extremely interesting to extend this to other conserved charges for such

branes and consider even more general asymptotics. Also, we should consider the

thermodynamics and stability of these general backgrounds to further understand

how they relate to the familiar extremal branes. We leave this for future work.



Chapter 6

Branes on Generalised

Backgrounds

6.1 Introduction

We shall now depart from studying the braneworld models of the previous two

chapters and consider the formal question of finding the constraints placed on D-

branes and geometry in generalised supersymmetric flux compactifications of Type

II (i.e. N = 2, D = 10) supersymmetric string theories to four dimensions. Such

compactifications have received much attention recently, and may play an important

role in the search for more realistic models derived from string theory. Their study

has led to the development of significant links with Hitchin’s work on generalised

geometry - the study of manifolds deformed by fluxes - which has in turn provided

more fundamental insights into the physics of these models (see [5] for a review).

Before discussing this work in detail, we shall give a brief overview of the ideas

used in this chapter and our main results. One way to approach the problem

of finding constraints on the geometry in supersymmetric compactifications is to

the study the structure group on the compact six-dimensional manifold Y , i.e. the

group of transformations of the tangent bundle TY , and the corresponding invariant

tensors and spinors. We shall refer to such constraints as supersymmetry conditions.

As we shall review in the next section, some amount of preserved supersymmetry

implies that the structure group, which is SO(6) on an oriented six-dimensional

Riemannian manifold, is reduced to some subgroup. We shall see that choosing to

have the minimal amount of supersymmetry preserved in four dimensions, N = 2,

corresponds to the internal manifold Y having SU(3) structure. Compactifications

with flux hope to reach more phenomenologically interesting models by reducing

100
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this to N = 1 supersymmetry. It transpires that there is a natural extension of

these ideas to flux compactifications, whereby one studies the structure group of

the direct sum of the tangent and cotangent bundles TY ⊕ T �

Y
. We shall see how

supersymmetric vacua can be described in terms of two O(6,6) pure spinors Ψ±,

which can also be understood as formal sums of forms Ψ± =
�

k
Ψ±

(k)
, where k is

even for Ψ+ and odd for Ψ− [157, 158].

This formalism introduces a natural relation between flux compactifications and

generalised complex geometry [159–161]. The two pure spinors are associated to

generalised almost complex structures whose (generalised) integrability corresponds,

in turn, to non-closure of the pure spinors under the twisted derivative operator

dH = d + H∧, where H is a form-field on Y . In [158] it has been shown that the

supersymmetry conditions provide the integrability of the almost complex structure

associated to one pure spinor and that it defines a twisted generalised Calabi-Yau

(CY ) structure à la Hitchin [159] on the internal manifold. On the other hand, the

second pure spinor is not integrable (dHΨ �= 0) due to the presence of Ramond-

Ramond (RR) field-strengths which act as an obstruction to integrability. For

example, if we restrict ourselves to the case where the structure group is reduced

to SU(3), the internal manifold will be either symplectic (IIA) or complex (IIB)1.

In the more general SU(3) × SU(3) case, the manifold is a complex-symplectic

hybrid, even if IIA and IIB continue to “prefer” symplectic and complex manifolds

respectively [158]. Here we should understand that SU(3) × SU(3) ⊂ SU(3, 3) ⊂
O(6,6), where the structure is initially reduced to SU(3, 3) by the existence of

two invariant spinors, and then further reduced to SU(3)× SU(3) if the spinors are

‘compatible’ (in a sense we shall define later), or equivalently if a generalised metric

structure exists on TY ⊕ T �

Y
[161].

In the following sections we will see how it is possible to characterise the super-

symmetric D-brane configurations completely in terms of the two pure spinors for

a general class of N = 1 backgrounds. We will mainly focus on the case of branes

filling the flat four-dimensional space-time, however our results may be extended

to other cases, where branes appear as defects in four dimensions. The resulting

equations [see equations (6.78) and (6.79)] represent the generalisation to N = 1

flux backgrounds of the conditions obtained in [162, 163] for branes wrapped on

cycles of a Calabi-Yau threefold CY3. This can be seen from the form these con-

ditions take once we restrict to the SU(3) case [see equations (6.93) and (6.94)],

1Here we use the standard notation of IIA and IIB for the ten-dimensional N = 2 non-chiral
and chiral theories respectively.
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which can be considered as formally the closest to the CY case2. A supersymmetric

cycle is defined to be any cycle which can be wrapped by a Dp-brane satisfying the

supersymmetry conditions. We shall see how the supersymmetry conditions split

into two parts involving the two pure spinors Ψ± and are completely symmetric

under the exchange Ψ+ ↔ Ψ− as one goes from Type IIA backgrounds to Type IIB

and vice-versa. This symmetry can be seen as a generalisation of the usual mirror

symmetry between supersymmetric cycles on standard CY ’s.

The first supersymmetry condition for a space-time filling D-brane wrapping an

n-cycle on the compact manifold Y can be written in the form

�
P [(gmkık + dxm∧)Ψ] ∧ eF

�

(n)

= 0 , (6.1)

where F = f + P [B] (f is the world-volume field-strength on the D-brane), P [.]

indicates the pullback on the worldvolume of the brane and Ψ is equal to Ψ− in

IIB and Ψ+ in IIA. On the left-hand side of this expression it should be understood

that we only consider forms of rank equal to the dimension n of the wrapped cycle.

For each case, IIA and IIB, these pure spinors are exactly the integrable ones and

we will discuss how this condition means that supersymmetric cycles are gener-

alised complex submanifolds with respect to the appropriate integrable generalised

complex structure J , as defined in [160]. We then understand that branes satis-

fying (6.1) wrap an appropriate generalisation of a complex submanifold in Type

IIB and of coisotropic submanifolds in Type IIA, with this identification becom-

ing precise in the SU(3)-structure case. This result is analogous to that found in

[166], where D-branes on supersymmetric backgrounds with only nontrivial Neveu-

Schwarz (NS) fields are considered (for previous work on branes in the context of

generalised complex geometry see [167–171]).

The second supersymmetry condition is related to the stability of the D-brane and

can be written as

�
Im

�
iP [Ψ]

�
∧ eF

�

(n)

= 0 , (6.2)

where now Ψ is equal to Ψ+ in IIB and Ψ− in IIA (i.e. the non-integrable pure

spinor in each case).

The two conditions (6.1) and (6.2) imply that for a suitable choice of orientation

2Equivalent conditions have recently been presented for D-branes on IIB SU(3)-structure back-
grounds in [164], where several interesting applications to the warped Calabi-Yau subcase [165]
are also discussed.



CHAPTER 6. BRANES ON GENERALISED BACKGROUNDS 103

on the wrapped cycle, the D-brane configuration is supersymmetric. Note that as

we are considering backgrounds with nontrivial RR fluxes turned on, reversing the

orientation on the brane does not generally preserve supersymmetry.

The above two conditions can be rephrased in terms of a single condition which

also encodes the necessary orientation requirement. For a D-brane wrapping an

internal n-cycle, this is given by

�
Re

�
− iP [Ψ]

�
∧ eF

�

(n)

=
||Ψ||

8

�
− det(g + F)dσ1 ∧ . . . dσn , (6.3)

where again Ψ is equal to Ψ+ in IIB and Ψ− in IIA, and ||Ψ||2 = Tr(/Ψ/Ψ†). This

condition will be identified as a calibration condition with respect to an appropriate

generalised calibration ω =
�

k
ω(k), with ω(k) being a k form, which is twisted

closed by definition, i.e. dHω = 0, and must fulfil a condition of minimisation of

the D-brane energy density. More specifically, for any space-time filling D-brane

wrapping any internal cycle Σ and with any worldvolume field strength F (such

that dF = PΣ[H]), we must have

PΣ[ω] ∧ eF ≤ E(Σ,F) , (6.4)

where E represents the energy density [see equation (6.108)]. Once again, on the

left-hand side we mean that only forms of rank equal to the dimension of the

wrapped cycle are considered. An analogous definition of generalised calibration

has recently been used in [166] for the case with only nontrivial NS fields, and

our result represents an extension of that proposal in the presence of non-zero RR

fluxes.

The remainder of this chapter is organised as follows. In (6.2) we shall review su-

persymmetric constraints on compactifications with and without flux, introducing

the mathematical notation of generalised geometry used throughout the subsequent

sections. In section (6.3) we introduce the basic conditions defining the general class

of N = 1 backgrounds we are considering. In section (6.4) we derive the supersym-

metry conditions for supersymmetric D-branes using κ-symmetry and express them

in terms of the pure spinors Ψ± characterising our backgrounds. In sections (6.5),

(6.6) and (6.7) we clarify the meaning of the conditions for the internal supersym-

metric cycles, identifying them as generalised complex submanifolds calibrated with

respect to the appropriate definition of generalised calibration. Some basic prop-

erties of the almost complex structure and (3,0)-form constructed from an internal

spinor on a SU(3) structure manifold are presented in Appendix B.
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6.2 Supersymmetry and Compactification

Let us begin by reviewing some basic concepts about the reduction of Type II

string theory to four dimensions on manifolds without flux [153, 154]. We will fo-

cus mainly on the supersymmetry of such compactifications and study the problem

at the level of the low-energy effective theory, namely supergravity. We shall not

burden ourselves with the details of the reduction of the bosonic sectors of these

theories which follow the standard Kaluza-Klein law [7]. Instead, we shall concen-

trate on the fermions and their supersymmetry transformations, which will be of

most importance when we consider D-branes later. Focusing on the gravity sector,

we recall that that the Rarita-Schwinger field, here called the gravitino ψM , has a

supersymmetry transformation given by

δψM = ∇Mε = 0 , (6.5)

where ε is an infinitesimal anti-commuting parameter, ∇M is the usual covariant

derivative on spinors (A.2) and the indices run over M, N = 0, . . . , 9.

Consider a ten-dimensional solution of the form M = M4 × Y , where M4 is a

maximally symmetric four-dimensional spacetime and Y is a compact Riemannian

manifold. If we wish to have some fraction of supersymmetry preserved after com-

pactifying our theory on Y , the supersymmetry transformation (6.5) tells us that

we need one covariantly constant spinor for each unbroken supersymmetry. The

standard integrability condition on spinors (A.23)

[∇M ,∇N ]ε =
1

4
RMNPQΓPQε = 0 , (6.6)

then tells us that M4 must be flat Minkowski spacetime [153]. Looking at (6.5)

again, we see that ε must be independent of the coordinates on M4,which means

that the integrability condition (6.6) then implies that there must be a covariantly

constant spinor on Y , known as a Killing spinor. This has two consequences. The

first is the existence of a globally defined nowhere vanishing spinor on Y , imply-

ing that the structure group on Y is reduced. The second is that this spinor is

covariantly constant, which means that M4 is flat, as we have already seen, but

also that Y is Ricci-flat3. However, this second condition also places further con-

straints on the compactifying manifold Y . In order to have a better understanding

of these points, it will be worthwhile to review some details of the geometry of

3
Y is Ricci-flat, rather than flat, as we make no assumption of maximal symmetry.
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compactifications4.

Recall that the vielbeins eM

A
define a local orthonormal frame on a manifold M ,

with the set of all such frames over M being known as the frame bundle. The

frame bundle is the principle fibre bundle naturally associated the tangent bundle

TM over M [155]. The structure group can be understood as the group of trans-

formations required to sew together the frames over the entire manifold. On an

oriented Riemannian d-dimensional manifold M this group is SO(d). The manifold

M is said to have reduced structure if this structure group is not SO(d), but one

of its subgroups G ⊂ SO(d). If a manifold has a reduced structure group, one can

prove that there exists a globally defined tensor which is covariantly constant with

respect to the connection on the reduced structure bundle i.e. that there exists a

tensor which is invariant under G-transformations [156]. Conversely, one can use

the existence of a globally defined G-invariant tensor, or spinor, on M to prove that

its structure group is reduced. It is worth noting that this is not unfamiliar. Had

we not assumed that our manifold was Riemannian from the outset, the structure

group would have been GL(d, R), which is the generic structure group on a frame

bundle. By stating that the manifold possessed a metric which is covariantly con-

stant with respect to the metric connection on the frame bundle, i.e. by stating that

the manifold is Riemannian, we had reduced the structure group from GL(d, R) to

O(d). This is then further reduced to SO(d) if the manifold is orientable. Further-

more, one can prove that there exists a unique, torsion-free metric connection - the

familiar Levi-Civita connection - with the manifold then being defined to have O(d)

holonomy. Generally, if the connection on a principle bundle over M is torsion-free,

then the manifold is said to have G-holonomy, rather than G-structure.

We now appreciate that the existence of a covariantly constant spinor on Y implies

that it has reduced G-structure. For the compactification we consider here, G ⊂
SO(6) , where we have initially decomposed the ten-dimensional structure group as

SO(1, 9)→ SO(1, 3)× SO(6) , (6.7)

but it is not yet clear what the subgroup G of SO(6) is. In order to determine this,

we should provide some more details about the ten-dimensional theory in question.

The Type II theories have two real spinors, corresponding to the N = 2 super-

symmetry in ten dimensions. In Type IIA these spinors have opposite chirality

and are denoted by ε±, whereas in Type IIB they have same chirality which

4We refer the reader to [155, 156] for further definitions and proofs of the topics discussed here.
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we can choose to be positive. Ten-dimensional spinors transform in the 16 rep-

resentation of SO(6)5, which splits into (2,4) + (2,4) under the decomposition

SO(1, 9) → SO(1, 3) × SO(6). Concentrating now on Type IIA, we can write this

decomposition as

ε± = ξ± ⊗ η , (6.8)

where ξ± ∈ SO(1, 3). Here we have chosen the minimal case of one internal spinor

η ∈ G ⊂ SO(6), such that the two generic four-dimensional spinors ξ± give rise

to the eight supercharges of N = 2 supersymmetry in four dimensions. We know

from the supersymmetry transformation (6.5) that η must be covariantly constant,

and therefore it must lie in a singlet of the reduced structure group G. As the Lie

algebra of SO(6) is isomorphic to SU(4), we can choose to look for subgroups of

SU(4). An appropriate choice is SU(3), under which the 4 of SU(4) decomposes

to 3 + 1, thus allowing η ∈ 1. As stated above, one can prove that the existence

of a covariantly conserved spinor implies that the structure group is reduced from

SO(6) to SU(3), or a subgroup thereof. For example, if there were two independent

covariantly constant spinors one would have SU(2) structure.

On further study of the implications of SU(3) holonomy [153], one finds that it

is possible to construct a 2-form φ and (3, 0)-form Ω using the spinor η. One

can identify φ with the familiar fundamental form of complex geometry and from

it construct the corresponding almost complex structure J , which is a map from

from the tangent bundle onto itself, obeying J2 = − . One can prove that J is

integrable, thus providing a complex structure, and so one sees that the manifold

is complex. The second form Ω can then be shown to be holomorphic with respect

to the complex coordinates on the manifold, and the metric g can be shown to be

Hermitian i.e. g(u, v) = g(Ju, Jv) for all vector fields u, v on Y .

A complex manifold with a covariantly constant complex structure, as we have

here by construction, is known as a Kähler manifold6. Thus for our six-dimensional

internal manifold Y , the existence of a covariantly constant spinor η means that Y

is a complex, Ricci-flat Kähler manifold i.e. Y is a Calabi-Yau manifold [153].

As an aside, we note that the statement that the manifold is Kähler holds if the

reduced holonomy group is U(3) = SU(3) × U(1). However, one can prove that

the Ricci tensor of Kähler manifold defines the field strength of the U(1) part of

the spin connection. As this vanishes for a Ricci-flat manifold, the holonomy group

5More concretely, the spinors lie in representations of Spin(1, 9), the spin cover of ten-
dimensional Lorentz group, which can be decomposed into Spin(1, 3) × Spin(6), corresponding
to (6.7).

6For equivalent definitions of a Kähler manifold see [155] and proposition 4.4.2 of [156].
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U(3) is further reduced to SU(3). This can be rephrased formally in terms of the

vanishing of the first Chern class of Y . For thorough treatment of these results on

compactifications and the mathematics of reduced holonomy manifolds we refer the

reader to [153, 156].

We have seen that by requiring our compactification to preserve the minimal

amount of supersymmetry and to result in a maximally symmetric four-dimensional

manifold M4, the supersymmetry condition (6.5) forced M4 to be flat Minkowski

spacetime and the internal manifold Y to be Calabi-Yau. We understood this by

realising that the existence of a covariantly constant spinor on Y meant that the

holonomy group of Y was reduced from SO(6) to SU(3), which in turn implied that

Y was a Ricci-flat Kähler manifold.

In this chapter we aim to consider D-branes on manifolds with reduced struc-

ture groups, rather than holonomy groups, i.e. manifolds with torsion [5, 152, 154,

157, 158]. In particular, we shall study the geometry of supersymmetric D-branes

in a very general class of supergravity backgrounds preserving four-dimensional

Poincaré invariance and N = 1, rather than N = 2, supersymmetry. Such back-

grounds correspond to warped products of four-dimensional Minkowski space-time

and an internal six-dimensional manifold M with general fluxes turned on, which

we shall often refer to simply as generalised backgrounds. N = 1 supersymmetry

requires the existence of four supercharges, which correspond to four independent

ten-dimensional Killing spinors, whose most general form can be written in terms

of two internal six-dimensional Weyl spinors η(1)

+ and η(2)

+ , analogous to (6.8). The

flux on the internal manifold means that these spinors are no longer covariantly

constant with respect to the Levi-Civita connection, and as such the corresponding

forms constructed from the spinors are no longer closed. While not necessary for

the discussion we present here, it is worth noting that the non-closure of the com-

plex structure J and the holomorphic three-form Ω constructed from the spinors

provides an elegant description of how far a G-structure manifold is from being a

G-holonomy manifold in terms of intrinsic torsion classes [154, 156]. The analysis

is involved, but one finds general constraints on Type II flux compactifications pre-

serving N = 1 supersymmetry; the internal manifold is constrained to be complex

in IIB and symplectic (plus one complex case) in IIA (see [5], for instance, for

further details).

The spinors η(1)

+ and η(2)

+ both define an SU(3) structure, each with a corresponding

almost complex structure, which we by denote J1 and J2 respectively. If the spinors

are parallel (η(1)

+ ∝ η(2)

+ ), then we have the case of SU(3) structure, analogous to
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torsion-free Calabi-Yau case described above. If the spinors are nowhere parallel,

then then structure is further reduced to SU(2). However, one can also have the

more general case of the two spinors becoming parallel only in some patches, which

is complicated to describe.

There exists a unified language in which to treat these various cases, first suggested

by Hitchin [159] and developed by other authors [160, 161], in which one considers

the sum of the tangent and cotangent bundles over Y , TY ⊕T �

Y
, and then demands

that there is a SU(3) × SU(3) structure on the associated principle bundle over

it. The familiar concepts of complex geometry can be extended to this bundle,

defining generalised complex geometry. For instance, a generalised almost complex

structure J is defined as a map of TY ⊕ T �

Y
onto itself such that J 2 = − , and

obeys the Hermiticity condition J tδJ = δ, where δ =
�
0 1

1 0

�
is the natural metric

on TY ⊕ T �

Y

7.

Spinors lie in representations of the Spin(6,6) cover group, although often one refers

to the related representation of the Clifford algebra, denoted Clifford(6,6), which

can be defined in terms of matrices λm, ρn obeying the following algebra [157, 158]

{λm, λn} = 0 , {λm, ρn} = δm

n
, {ρm, ρn} = 0 , (6.9)

where δm

n
is the 6 + 6-dimensional metric on TY ⊕ T �

Y
, described above, and m, n =

1, . . . , 6. One can also find a representation of this algebra in terms of forms using

λm = dxm ∧ , ρn = ιn , (6.10)

where ιn ≡ ι∂n = dxa1∧ . . .∧dxap = pδ[a1
n dxa2∧ . . .∧dxap] is the familiar contraction

ιn : ΛpT � → Λp−1T �. A spinor is defined to be pure in six dimensions if there

exist six linear combinations of λm, ρn which annihilate it. Defining an appropriate

vacuum state, one can construct forms of all degrees from the complementary set of

matrices. A generic Clifford(6,6) spinor can then be understood as a formal sum of

forms, with positive and negative chirality spinors in Majorana-Weyl representation

of Clifford(6,6) corresponding to sum of forms of even and odd degree respectively

[160]. In fact, many of these results are extensions to TY ⊕ T �

Y
of well-known work

on spinors and forms on T �

Y
, reviewed in [173].

An important element of this construction is the Clifford map, relating Clifford(6,6)

7See, for instance, [5] for further details with applications to supersymmetric compactifications.
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spinors to Clifford(6) bispinors [157, 161]:

χ ≡
�

k

1

k!
χ(k)

m1...mk
dxm1 ∧ . . . ∧ dxmk ←→ /χ ≡

�

k

1

k!
χ(k)

m1...mk
γ̂m1...mk , (6.11)

where γ̂ are Clifford(6) gamma matrices satisfying the algebra {γ̂m, γ̂n} = gmn and

gmn is the metric on Y . For example, on a manifold with SU(3) structure we know

there is a nowhere vanishing spinor, from which we can construct two nowhere

vanishing bispinors in the following way

/Ψ+ = η+ ⊗ η†+ , /Ψ− = η+ ⊗ η†− . (6.12)

We can rewrite these in terms of the formal sums of forms

η+ ⊗ η†± =
1

4

�

k

1

k!
η†±γ̂m1...mkη+γ̂mk...m1 , (6.13)

using the Fierz identities. One can act on the left and right of a bispinor with the

six-dimensional gamma matrices

→
γm= (λm + gmnιn) ,

←
γm= ±(λm − gmnιn) , (6.14)

where we have dropped the ˆ ’s and the ± depends on the parity of the bispinor

upon which
←
γm acts. It also is useful to note the inverse relation

λmχ←→ 1

2
(
→
γm /χ± /χ

←
γm) , (6.15)

where once again the ± depends on the parity of the bispinor /χ. Using this, one

can check that the SU(3) spinors (6.12) are pure, with each being annihilated by

six Clifford(6,6) gamma matrices; three acting on the left and three on the right of

the bispinor [158],

(δ + iJ) n

m
γnη+ ⊗ η†± = 0 , η+ ⊗ η†±γn(δ + iJ) n

m
= 0 , (6.16)

where J is the almost complex structure on TY . Two pure spinors are said to be

compatible if they share three annihilators in six dimensions, which in this case are

provided by the three acting on the left. Furthermore, one can prove that there

is a one-to-one correspondence between a pure spinor and a generalised complex

structure associated J , where the later are constructed from the familiar spinors

defining the reduced structure in the usual way.
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In the next section we will see how the supersymmetry conditions for flux com-

pactifications with SU(3)× SU(3) can be written in a compact elegant form using

this pure spinor formalism.

6.3 Basic results on N = 1 vacua

We are interested in Type II warped backgrounds preserving four-dimensional

Poincaré invariance and N = 1 supersymmetry, with the most general fluxes and

fields turned on. The ansatz for the ten dimensional metric gMN is

ds2 = e2A(y)ηµνdxµdxν + gmn(y)dymdyn , (6.17)

where xµ, µ = 0, . . . , 3 label the four-dimensional flat space, ym, m = 1, . . . , 6,

the internal space, and M, N = 0, . . . , 9. Let us introduce the modified RR field

strengths

F(n+1) = dC(n) + H ∧ C(n−2) , (6.18)

where dC(n) are the standard RR field strengths8. In order to preserve four dimen-

sional Poincaré invariance we can write

F(n) = F̂(n) + V ol(4) ∧ F̃(n−4) . (6.19)

The relation F(n) = (−)
(n−1)(n−2)

2 �10 F(10−n) between the lower and higher rank

field strengths translates into a relation of the form F̃(n) = (−)
(n−1)(n−2)

2 �6 F̂(6−n)

between their internal components. The ten dimensional gamma matrices ΓM (un-

derlined indices correspond to flat indices) can be chosen in a real representation

and decomposed in the following way

Γµ = γµ ⊗ , Γm = γ(4) ⊗ γ̂m , (6.20)

where the four-dimensional gammas γµ are real and the six-dimensional ones γ̂m

are anti-symmetric and purely imaginary. The four- and six-dimensional chirality

operators are given respectively by

γ(4) = iγ0123 , γ̂(6) = −iγ̂123456 , (6.21)

8We will essentially follow the conventions of [157, 158], up to some differences consisting in a
sign for H in Type IIB and the sign change C(2n+1) → (−)n

C(2n+1) in Type IIA.
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so that the ten-dimensional chirality operator can be written as Γ(10) = Γ0···9 =

γ(4) ⊗ γ̂(6).

For Type IIA backgrounds the supersymmetry parameter is a ten-dimensional Ma-

jorana spinor ε that can be split into two Majorana-Weyl (MW) spinors of opposite

chirality:

ε = ε1 + ε2 , Γ(10)ε1 = ε1 , Γ(10)ε2 = −ε2 . (6.22)

Since we are interested only in four-dimensional N = 1 backgrounds, they must

have 4 independent Killing spinors that can be decomposed as

ε1(y) = ζ+ ⊗ η(1)

+ (y) + ζ− ⊗ η(1)

− (y) ,

ε2(y) = ζ+ ⊗ η(2)

− (y) + ζ− ⊗ η(2)

+ (y) , (6.23)

where ζ+ is a generic constant four-dimensional spinor of positive chirality, while

the η(a)

+ are two particular six-dimensional spinor fields of positive chirality that

characterise the solution and

ζ− = (ζ+)∗ , η(a)

− = (η(a)

+ )∗ . (6.24)

In Type IIB the two supersymmetry parameters ε1,2 are MW real spinors of positive

ten-dimensional chirality (Γ(10)ε1,2 = ε1,2). In this case

εa(y) = ζ+ ⊗ η(a)

+ (y) + ζ− ⊗ η(a)

− (y) , (6.25)

where again ζ− = (ζ+)∗ and η(a)

− = (η(a)

+ )∗. The existence of the internal spinors

η(1)

+ and η(2)

+ associated to these N = 1 backgrounds generally specifies an SU(3)×
SU(3)-structure on TY ⊕ T �

Y
, as we described previously.

As discussed in [158], in order to analyse the supersymmetry conditions for the

background, it is convenient to use the bispinor formalism. Using the Clifford map

(6.11), we can associate two pure spinors to our internal spinors η(1)

+ and η(2)

+

/Ψ+ = η(1)

+ ⊗ η(2)†
+ , /Ψ− = η(1)

+ ⊗ η(2)†
− (6.26)

corresponding to sums of forms of definite parity

Ψ+ =
�

k≥0

Ψ+

(2k)
, Ψ− =

�

k≥0

Ψ−
(2k+1)

, (6.27)
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Following [158], we also fix the norms of the two internal spinors to be

||η(1)||2 = |a|2 , ||η(2)||2 = |b|2 . (6.28)

In [158] it was first shown how the Killing equations, i.e. the supersymmetry

transformations, can be written in an elegant form in terms of the pure spinors Ψ±

using the Clifford map. This calculation is rather involved, but crucial, and so we

will take some time to review it in detail here.

Background supersymmetry conditions

Following [157, 158], we shall now show how the supersymmetry conditions for the

ten-dimensional Type II theories with SU(3) × SU(3) structure backgrounds can

be written as dΨ±, and in particular we adopt their conventions in the following

calculation. The result can be translated back to our convention by using the rules

specified in footnote 8 on page 110. We will use the democratic formalism of the

Type II theories [174], in which the gravitino ψM and dilatino λ supersymmetry

transformations can be written in the following way

δψM = ∇Mε +
1

4
HMΓ(10)ε +

1

16
eΦ

�

n

/F(2n) ΓMPn ε , (6.29)

δλ =

�
/∂Φ +

1

2
/HP

�
ε +

1

8
eΦ

�

n

(−1)2n(5− 2n) /F(2n)Pn ε , (6.30)

where the modified RR field strengths are now given by F(2n) = dC(2n−1) − H ∧
C(2n−3), with n = 0, . . . , 5 for IIA and n = 1/2, . . . , 9/2 for IIB, HM ≡ 1

2
HMNP ΓNP

and, for instance, /H = ΓMNP HMNP . Here the two Majorana-Weyl supersymmetry

parameters have been arranged in a doublet ε = (ε1, ε2). As this expression involves

both field strengths and their duals we must impose the self-duality relation, which

now takes the form

F(2n) = (−)Int[n] �10 F(10−2n) , (6.31)

where Int[n] denotes the integer part of n. For Type IIA we define P = Γ(10) and

Pn = Γn

(10)
σ1, while for Type IIB we define P = −σ3 , Pn = σ1 for n + 1/2 even

and Pn = iσ2 for n + 1/2 odd, where σi , i = 1, 2, 3 are the usual Pauli matrices.

For calculations it is convenient to consider the “modified dilatino” transformation,

in which the RR terms vanish, defined by

ΓMδψM − δλ =
�

/∇− /∂Φ +
1

4
/HP

�
ε . (6.32)
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It shall be sufficient to concentrate on the calculation of dΨ in the Type IIA case,

as the Type IIB case is completely analogous. The supersymmetry transformations

(6.29), (6.32) are then given by

δψM = ∇Mε +
1

4
HMΓ(10)ε +

1

16
eΦ

�

n

/F(2n) ΓMΓn

(10)
σ1 ε , (6.33)

ΓMδψM − δλ =
�

/∇− /∂Φ +
1

4
/HΓ(10)

�
ε . (6.34)

Using the four plus six dimensional decomposition of spinors, field strengths and

gamma matrices described above, we may rewrite these transformations as condi-

tions upon the internal spinors η(a)

± . For the external component of the gravitino

transformation δψµ one then finds

1

2
/∂Aη(1)

+ +
eΦ

16

�
/̂F

A1
+ i /̃F

A1

�
η(2)

− = 0 , (6.35)

1

2
/∂Aη(2)

− +
eΦ

16

�
/̂F

A2
+ i /̃F

A2

�
η(1)

+ = 0 , (6.36)

where FA1 = F(0) − F(2) + F(4) − F(6) and FA2 = F(0) + F(2) + F(4) + F(6). The

corresponding decomposition on the internal component δψm gives

∇mη(1)

+ +
1

4
Hmη(1)

+ +
eΦ

16

�
/̂F

A1
− i /̃F

A1

�
γ̂mη(2)

− = 0 , (6.37)

∇mη(2)

− − 1

4
Hmη(2)

− +
eΦ

16

�
/̂F

A2
− i /̃F

A2

�
γ̂mη(1)

+ = 0 , (6.38)

and for the modified dilatino transformation we find

�
/∇+

1

4
/H + 2/∂A− /∂Φ

�
η(1)

+ = 0 , (6.39)
�

/∇− 1

4
/H + 2/∂A− /∂Φ

�
η(2)

+ = 0 . (6.40)

Consider the exterior derivative of the Clifford(6,6) spinors Ψ± in terms of Clifford(6)

bispinors, given by

dΨ± = dxm ∧∇mΨ± = dxm ∧
�
(∇mη(1)

+ )⊗ η(2)†
± + η(1)

+ ⊗ (∇mη(2)

± )†
�

. (6.41)

We shall concentrate on dΨ−, with the aim of deriving the first supersymmetry

constraint for Type IIA. The second condition follows in a similar manner. Using

the definition of Clifford(6,6) spinor representations given in [157, 158], we can
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rewrite (6.41) as

2dΨ−=/∇η(1)

+ ⊗η(2)†
− −η(1)

+ ⊗( /∇η(2)

− )†+γ̂mη(1)

+ ⊗(∇mη(2)

− )†−∇mη(1)

+ ⊗η(2)†
− γ̂m . (6.42)

One can now use the decomposition of internal gravitino and modified dilatino

supersymmetry transformations to evaluate the right-hand side of this expression.

We form the following bispinors from the external gravitino transformation

1

2
/∂Aη(1)

− ⊗ η(2)†
+ − eΦ

16

�
/̂F

A1
− i /̃F

A1

�
η(2)

+ ⊗ η(2)†
+ = 0 , (6.43)

1

2
η(1)

− ⊗ η(2)†
+ /∂A− eΦ

16
η(1)

− ⊗ η(1)†
−

�
/̂F

A1
+ i /̃F

A1

�
= 0 . (6.44)

These two quantities can be added together with (6.42) to give,

2dΨ− =

�
/∂Φ− 1

4
/H − 2/∂A

�
η(1)

+ ⊗ η(2)†
− − η(1)

+ ⊗ η(2)†
−

�
/∂Φ− 1

4
/H − 2/∂A

�

− 1

4
γ̂mη(1)

+ ⊗ η(2)†
− Hm +

1

4
Hmη(1)

+ ⊗ η(2)†
− γ̂m − /∂Aη(1)

− ⊗ η(2)†
+ + η(1)

− ⊗ η(2)†
+ /∂A

− eΦ

16

�
γ̂mη(1)

+ ⊗ η(1)†
+ γ̂m + 2η(1)

− ⊗ η(1)†
−

�
( /̂F

A1
+ i /̃F

A1
)

+
eΦ

16
( /̂F

A1
− i /̃F

A1
)
�
γ̂mη(2)

− ⊗ η(2)†
− γ̂m + 2η(2)

+ ⊗ η(2)†
+

�
. (6.45)

Making some manipulations, using the fact that γ̂(6) /̂FA1
= −i /̃F

A1
and going back

to our preferred notation, the Clifford map (6.11) allows us to write this equation

in the form applicable to both Type IIA and IIB. The complete set of equations

for Ψ± resulting from this procedure are9

e−2A+Φ(d + H∧)
�
e2A−ΦΨ1

�
= dA ∧ Ψ̄1 +

eΦ

16

�
(|a|2 − |b|2)F̂ + i(|a|2 + |b|2)F̃

�
,

(d + H∧)
�
e2A−ΦΨ2

�
= 0 , (6.46)

where for Type IIA we have

Ψ1 = Ψ− , Ψ2 = Ψ+ and F = FA = F(0) + F(2) + F(4) + F(6) , (6.47)

9Note that, taking into account the different conventions, the first of (6.46) has some sign
differences with equations (3.2) and (3.3) of [158]. We thank the authors of [158] for private
communications confirming the sign mistakes appearing in equations (3.2) and (3.3) in the original
version of their paper.
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while for Type IIB

Ψ1 = Ψ+ , Ψ2 = Ψ− and F = FB = F(1) + F(3) + F(5) . (6.48)

The second condition means that the generalised almost complex structure associ-

ated to Ψ2 is integrable, while in the first the RR fields represent an obstruction

to the integrability of the generalised almost complex structure associated to Ψ1.

Using the gravitino Killing equations one can furthermore show that N = 1 super-

symmetry imposes the following constraint

d|a|2 = |b|2dA , d|b|2 = |a|2dA . (6.49)

As discussed in [158], it can be proven that equations (6.46) and (6.49) are com-

pletely equivalent to the full set of supersymmetric Killing equations and hence

can be considered as necessary and sufficient conditions to have a supersymmetric

background. Furthermore, one has to bear in mind that these equations only make

sense if not all of the RR field strengths are vanishing, and that in order to have

a complete supergravity solution one has to supplement these conditions with the

Bianchi identities and the equations of motion for the fluxes [175].

The supersymmetry conditions (6.46) and (6.49) are identical in form for Type IIA

and IIB and the two cases are exactly related by the exchange

Ψ+ ↔ Ψ− and FA ↔ FB . (6.50)

This relation can be seen as a generalised mirror symmetry for Type II backgrounds

with SU(3) × SU(3) structure and, as we will see, the conditions for having su-

persymmetric branes respect this symmetry, providing further evidence that it is a

fundamental feature. For further discussions on generalised mirror symmetry, see

e.g. [152, 176–180].

It will be useful at this point to make some contact with the common terminology

in the literature. A manifold is called generalised Calabi-Yau if there exists on it a

closed pure spinor dΨ = 0. The corresponding generalised almost complex structure

is then integrable. Similarly, the existence of a twisted closed pure spinor, with

closed H-field, dHΨ = (d + H∧)Ψ = 0 defines a “twisted” generalised Calabi-Yau.

While it is not necessary for our purposes, we note that the integrability of the

corresponding almost complex structure can be phrased in terms of an appropriate

Courant bracket on TY ⊕ T �

Y
, which is a “twisted” version of the usual Lie bracket
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[160].

Let us finally remember that these backgrounds contain as subcases the SU(3) and

SU(2) structure backgrounds. In the SU(3) case we have to require that the two η(a)

+

are linearly dependent, i.e. η(1)

+ = aη+ and η(2)

+ = bη+ for a given six-dimensional

spinor field η+, with η†+η+ = 1. On the other hand we have SU(2)-structure when

η(1)

+ and η(2)

+ are never parallel. We refer the reader to the detailed discussion of

these cases given in [158].

6.4 Supersymmetric D-branes on N = 1 vacua

Let us now turn to the main question of this chapter, namely: what are the con-

straints on supersymmetric D-branes in the general class of backgrounds we have

described in the previous section? In chapter 3 we saw how preserved supersym-

metry of the M2-brane enforced a projection condition upon the supersymmetry

parameter ε (3.52), which we derived by using the conserved charges for the M2-

brane and the eleven-dimensional supersymmetry algebra. In this section we shall

take a complementary approach in which the fraction of preserved supersymmetry

of a brane is determined from the worldvolume perspective. For clarity, let us now

review our conventions for the Dp-action and symmetries, before proceeding to

analyse the supersymmetry conditions for branes on our generalised backgrounds.

In general, a Dp-brane configuration of a Type II theory is defined by the embed-

ding ξα �→ XM = (xµ(ξ), ym(ξ)), α = 0, . . . , p of the Dp-brane worldvolume with

coordinates ξα into the ten-dimensional spacetime with coordinates XM , and by

the worldvolume two-form field strength f(2) = dA(1), where A(1) is the gauge field

living on the brane. We write the bosonic part of standard Dp-brane in standard

Dirac-Born-Infield plus Chern-Simons form [181–183]

S(B)

Dp
= −τDp

�
dp+1ξe−Φ

�
− det(g + F) + τDp

� �

n

P [C(n)]e
F , (6.51)

where τ−1

Dp
is the brane tension. Here Fαβ = P [B]αβ + fαβ and gαβ = P [G]αβ,

P [B]αβ are the pull-backs of the background spacetime metric Gmn and Neveu-

Schwarz two-form gauge potential BMN , respectively, on the worldvolume.

The total Dp-brane action may be written in superspace formalism, however this

is somewhat complicated. In order to understand the physical couplings, it will

suffice for our purposes to write the fermionic terms up to quadratic order, following
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[184, 185]:

S(F )

Dp
=

τDp

2

�
dp+1ξe−Φ

�
− det(g + F) θ̄(1− ΓDp)

�
(M̃−1)αβΓβDα −∆

�
θ . (6.52)

where the pull-back of a gamma matrix is defined by Γα = ΓMeM

M
∂αXM and under-

lined indices run over flat tangent space directions. It is convenient to once again

use a double spinor convention for both Type IIB and Type IIA , where in the IIA

case the two spinors of opposite chirality are organised in a two component vector.

We have also introduced

M̃αβ = gαβ + Γ̃(10)Fαβ , (6.53)

where

IIA : Γ̃(10) = Γ(10) , IIB : Γ̃(10) = Γ(10) ⊗ σ3 . (6.54)

The other operators appearing in (6.52) are given defined the pullbacks of the

gravitino (6.30) and dilatino (6.30) supersymmetry transformations:

δεψm = Dmε , δελ = ∆ε . (6.55)

The complete bosonic plus fermionic action is invariant under worldvolume dif-

feomorphisms and global supersymmetry, which takes the following form on the

worldvolume

δεθ = ε , (6.56)

δεy
m = −1

2
θ̄Γmε , (6.57)

δεAα =
1

2
θ̄Γ̃(10)Γαε− 1

2
Bαmθ̄Γmε . (6.58)

It also possess an additional local fermionic symmetry, κ-symmetry, which up to

quadratic order in fermions is given by

δκθ̄ = κ̄( + ΓDp) , (6.59)

δκy
m = −1

2
δκθ̄Γ

mθ , (6.60)

δκAα =
1

2
δκθ̄Γ̃(10)Γαθ − 1

2
Bαmδκθ̄Γ

mθ , (6.61)

with transformation parameter κ. In fact, for all brane solutions one finds such an

additional symmetry of the actions [181, 182], taking the following generic form on
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a spacetime spinor θ

δκθ = ( + Γ)κ , (6.62)

where Γ is a Hermitian, traceless operator, with Γ2 = , and therefore eigenval-

ues split equally between ±1. Thus 1

2
( + Γ) is a projection operator with the

same properties as that found from the spacetime supersymmetry algebra (3.52) in

chapter 3 i.e. half its eigenvalues are zero.

Using the κ-symmetry transformation (6.59), one can show that a Dp-brane pre-

serves a given supersymmetry ε of the background if it satisfies the condition [183]10

δκθ + δεθ = 0 ⇒ ε̄ΓDp = ε̄ , (6.63)

where ΓDp is the same worldvolume chiral operator entering the κ-symmetry trans-

formations (6.59)[183]. Using the explicit form of the κ-operators in our notation11,

we find this condition reduces to

Γ̂Dpε2 = ε1 , (6.64)

where

Γ̂Dp =
1�

− det(P [G] + F)

�

2l+s=p+1

�α1...α2lβ1...βs

l!s!2l
Fα1α2 · · · Fα2l−1α2l

Γβ1...βs , (6.65)

and Γ̂−1

Dp
(F) = (−)Int[

p+3
2 ]Γ̂Dp(−F).

Let us now consider the implications of the Dp-brane supersymmetry condition

(6.64) in our general class of backgrounds. We begin by restricting our attention to

Dp-branes filling the time plus q flat directions (with no worldvolume flux in these

directions), and wrapping an internal (p − q)-cycle in the compact manifold Y .

Using (6.20) we can decompose the above operators into four- and six-dimensional

components as follows

Γ̂Dp = γ0...qγ
p−q

(4)
⊗ γ̂�

(p−q)
, (6.66)

10See [162] for an earlier discussion of the M2-brane supersymmetry on CY3.
11Here we use the κ-symmetry operators constructed from T-duality in [184], which are identical

to those given in [182] up to some different overall signs. Their explicit form in double spinor
notation in both IIA and IIB can be found in [185].
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where

γ̂�
(r)

=
1�

det(P [g] + F)

�

2l+s=r

�α1...α2lβ1...βs

l!s!2l
Fα1α2 · · · Fα2l−1α2l

γ̂β1...βs , (6.67)

is a unitary operator acting on the internal spinors.

By considering general Dp-branes in both Type IIA/IIB backgrounds and using

(6.23), (6.65) and (6.66), it is possible to see that the supersymmetry condition

(6.63) can be split into the four-dimensional condition

γ0...qζ+ = α−1ζ(−)q+1 , (6.68)

and the internal six-dimensional one

γ̂�
(p−q)

η(2)

(−)p+1 = αη(1)

(−)q+1 . (6.69)

By consistency with the complex conjugate of these expressions and the fact that

γ2

0...q
= −(−)

q(q+1)
2 , it can be seen that the case q = 0, i.e. the case where we

have an effective four-dimensional particle, can never be supersymmetric, while for

q = 1, 2, 3 one has the condition that α = eiϕ, i.e. α is a pure phase. More explicitly

ϕ = 0 or π for q = 1 (effective string), ϕ is arbitrary for q = 2 (domain-wall) and

ϕ = −π/2 for q = 3 (space-time filling branes). From the unitarity of the operator

γ̂�
(r)

, it also follows that we must have the following constraints on the internal

spinors

||η(1)||2 = ||η(2)||2 , (6.70)

and from (6.49) we then see that once the condition (6.70) is fulfilled at one point

for our backgrounds, it is automatically valid at all points.

For the purposes of this work we are interested in spacetime filling branes and hence

from this point on we shall consider only these cases. Supersymmetry conditions

for the other cases listed above are easily found by reinstating ϕ-dependence in

the appropriate way. In the case of four-dimensional space-time filling branes, the

four-dimensional condition is automatically satisfied once we set ϕ = −π/2, leaving

the following internal conditions

�
iγ̂�

(2k)
η(2)

+ = η(1)

+ , in IIB ,

iγ̂�
(2k+1)

η(2)

+ = η(1)

− , in IIA .
(6.71)
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We would now like to write the supersymmetry conditions (6.71) in terms of the

geometrical objects Ψ+ and Ψ− introduced in section 6.3. In order to do this, it is

useful to decompose the spinorial quantities entering (6.71) in the basis defined by

η(1)

+ , η(1)

− , γ̂mη(1)

+ and γ̂mη(1)

− . (6.72)

By decomposing the supersymmetry conditions (6.71) in this basis, one obtains a

set of equations written in a more geometric fashion in terms of the pull-back to the

worldvolume of Ψ+ and Ψ−. Explicitly, for even 2k-cycles we have the conditions

�
P [Ψ+] ∧ eF

�

(2k)

=
i|a|2

8

�
det(P [g] + F)dσ1 ∧ . . . ∧ dσ2k ,

�
P [dxm ∧Ψ− + gmnınΨ−] ∧ eF

�

(2k)

= 0 , (6.73)

while for odd (2k + 1)-cycles we have

�
P [Ψ−] ∧ eF

�

(2k+1)

=
i|a|2

8

�
det(P [g] + F)dσ1 ∧ . . . ∧ dσ2k+1 ,

�
P [dxm ∧Ψ+ + gmnınΨ+] ∧ eF

�

(2k+1)

= 0 . (6.74)

Note that these equations are identical if we interchange

Ψ+ ↔ Ψ− . (6.75)

They then respect the generalised mirror symmetry (6.50) that relates the Type

IIA and IIB N = 1 supersymmetric backgrounds we are considering.

In the following section we will discuss the geometrical interpretation of the su-

persymmetry conditions (6.73) and (6.74). As a preliminary step, it is useful to

observe that they are not independent. Indeed, we obtained these conditions by

expanding (6.71) in the basis (6.72). Using the unitarity of γ̂�(F), it is easy to see

that the first equations of (6.73) and (6.74) imply the second ones. Vice-versa, the

second conditions determine the first up to an overall arbitrary (in general, point

dependent) phase. Moreover, once again using the unitarity of γ̂�(F), the first con-

ditions can be furthermore restricted in such a way that we can characterise the

supersymmetry cycles in the following way:

�
Im

�
iP [Ψ+]

�
∧ eF

�

(2k)

= 0 ,
�

P [dxm ∧Ψ− + gmnınΨ−] ∧ eF
�

(2k)

= 0 , (6.76)



CHAPTER 6. BRANES ON GENERALISED BACKGROUNDS 121

for even 2k-cycles, while

�
Im

�
iP [Ψ−]

�
∧ eF

�

(2k+1)

= 0 ,
�

P [dxm ∧Ψ+ + gmnınΨ+] ∧ eF
�

(2k+1)

= 0 , (6.77)

for odd (2k + 1)-cycles.

Note that these conditions do not strictly speaking imply that the wrapped brane is

supersymmetric but in general it is supersymmetric for one choice of orientation. If

the RR fields were turned off, the orientation would be arbitrary because a change

of orientation would amount to considering an anti D-brane instead of a D-brane or

vice-versa, and these feel the background fields in the same way. However, we are

considering the case with nontrivial RR fields. D-branes and anti D-branes then

react to the background in a different way and the orientation cannot be ignored,

meaning that the conditions given in (6.76) and(6.77) are in fact necessary and

sufficient only for the brane to admit at least an orientation making it supersym-

metric.

The above conditions can be substituted by the following single condition that

encodes also the necessary orientation requirement:

�
Re

�
− iP [Ψ+]

�
∧ eF

�

(2k)

=
|a|2
8

�
det(P [g] + F)dσ1 ∧ . . . ∧ dσ2k, (6.78)

for even 2k-cycles, while for odd (2k + 1)-cycles

�
Re

�
− iP [Ψ−]

�
∧ eF

�

(2k+1)

=
|a|2
8

�
det(P [g] + F)dσ1∧ . . . ∧dσ2k+1. (6.79)

Note that since we are assuming that the internal spinors have the same norm, in

the above expressions we can write |a|2 in terms of any of the two pure spinors as

follows

|a|4 = ||Ψ||2 = Tr(/Ψ/Ψ†) = 8
�

k

|Ψ(k)|2 . (6.80)

We will see in section 6.7 that we can interpret the equations (6.78) and (6.79),

and then also (6.76) and (6.77) plus an appropriate choice of the orientation, as

generalised calibration conditions.
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6.5 The geometry of the supersymmetric D-branes

We shall now discuss the geometrical meaning of the second conditions of (6.76) and

(6.77). As we will see, supersymmetric branes wrapping even cycles in Type IIB

and odd cycles in Type IIA must correspond to a correctly generalised definition

of holomorphic and coisotropic branes respectively. For the cases we are interested

in we can adapt the discussion presented in [166, 168] for backgrounds with only

nontrivial NS fields.

Let us first recall that, for the general r-cycle, the second conditions of (6.76) and

(6.77) come from the requirement that γ̂�
(r)

(F)η(2)

+ must be parallel to η(1)

(−)r . It is

then possible to see [166] that this condition is equivalent to

J1|Σ = (−)rRJ2R
−1|Σ , (6.81)

where J1 and J2 are the almost complex structures associated to the six-dimensional

spinors η(1)

+ and η(2)

+ respectively (see Appendix B for the explicit construction in

the SU(3) structure case). J |Σ denotes the restriction of a complex structure to the

D-brane worldvolume wrapping a cycle Σ of the internal manifold Y . The action

of the rotation matrix R on TM |Σ = TΣ⊕NΣ is defined as follows. If p|| and p⊥ are

the projectors on the tangent and normal bundle of the brane respectively, then R

acts as a reflection in the normal directions (Rp⊥ = p⊥R = −p⊥) while the action

of R along TΣ is defined by

pT

|| (g −F)p|| = p||(g + F)p||R , (6.82)

where F is now naturally thought of as a section of Λ2T �

M
|Σ such that pT

⊥F =

Fp⊥ = 0. The pure spinors Ψ+ and Ψ− are associated to generalised almost

complex structures J+ and J− on TM ⊕ T �

M
. One can prove that these can be

written in terms of J1 and J2 as follows [160, 166, 168]:

J± =
1

2

�
J1 ∓ J2 (J1 ± J2)g−1

g(J1 ± J2) g(J1 ∓ J2)g−1

�
. (6.83)

One can then see that (6.81) is equivalent to the following condition for J± restricted

on TM ⊕ T �

M
|Σ

J(−)r+1 = R−1J(−)r+1R , (6.84)
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where R acts in the following way on TM ⊕ T �

M
|Σ

R =
1

2

�
r 0

Fr + rTF −rT

�
, (6.85)

with r = p|| − p⊥.

The D-brane worldvolume wrapping the internal cycle Σ, fully specified by the

couple (Σ,F) where F is such that dF = PΣ[H], can be seen as a generalised

submanifold as defined by Gualtieri in [160]. Gualtieri also defines a generalised

tangent bundle τF
Σ

associated to the brane. The key point is that the elements

X ∈ TM ⊕ T �

M
|Σ belonging to τF

Σ
can be characterised by the condition [168]

RX = X . (6.86)

The subsequent step is to remember that, given an (integrable) generalised com-

plex structure J on M , Gualtieri defines a generalised complex submanifold as a

generalised submanifold (Σ,F) with generalised tangent bundle τF
Σ

stable under J
i.e. it is mapped to itself under that action of J .

From (6.84) and (6.86) we arrive at the conclusion that the second conditions in

(6.76) and (6.77) are each equivalent to the following requirement:

Supersymmetric D-branes wrapping even-cycles in Type IIB and odd-cycles in Type

IIA must be generalised complex submanifolds with respect to the (integrable) gen-

eralised complex structures J− and J+ respectively.

These generalised complex submanifolds can be seen as the most natural general-

isation of complex (holomorphic) cycles with F of kind (1, 1) in Type IIB and of

coisotropic cycles in Type IIA [160, 186].

6.6 D-branes on SU(3)-structure manifolds

In this section we pause the discussion of SU(3) × SU(3) structure manifolds to

comment on the SU(3) structure subcase. We recall that this is obtained when we

can write η(1)

+ = aη+ and η(2)

+ = bη+ (η†+η+ = 1), remembering that in order to have

supersymmetric branes we have to fulfil the necessary condition |a| = |b|. In this

case, the pure spinors Ψ± can be defined in terms of the almost complex structure
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J and the (3, 0)-form Ω associated to η+ as explained in appendix B,

Jmn = − i

|a|2η†+γ̂mnη+ , Ωmnp = − i

a2
η†−γ̂mnpη+ . (6.87)

Using the Fierz decomposition it is possible to show that

η± ⊗ η†± =
1

8
/e∓iJ , η+ ⊗ η†− = − i

8
/Ω . (6.88)

We immediately see that in the SU(3)-structure case Ψ+ and Ψ− reduce to

Ψ+ =
ab̄

8
e−iJ , Ψ− = −iab

8
Ω . (6.89)

Since we must require that |a| = |b|, we can pose

a

b
≡ eiφ ,

a

b∗
≡ eiτ , (6.90)

and the supersymmetry conditions for the wrapped branes now read

�
Im

�
ieiφP [e−iJ ]

�
∧ eF

�

(2k)

= 0 ,
�

P [dxm ∧ Ω + gmnınΩ] ∧ eF
�

(2k)

= 0 , (6.91)

for even 2k-cycles, and

�
Im

�
eiτP [Ω]

�
∧ eF

�

(2k+1)

= 0 ,
�

P [dxm ∧ eiJ + gmnıne
iJ ] ∧ eF

�

(2k+1)

= 0 , (6.92)

for odd (2k + 1)-cycles. Again, these conditions really imply that it is possible

to choose an orientation on the D-brane in order for it to be supersymmetric and

generally reversing the orientation does not preserve supersymmetry. As in the

general case, they can be substituted by the following equivalent conditions which

also provide the necessary requirement on the orientation

�
Re

�
− ieiφP [e−iJ ]

�
∧ eF

�

(2k)

=
�

det(P [g] + F)dσ1 ∧ . . . ∧ dσ2k , (6.93)

for even 2k-cycles, and

�
Re

�
− eiτP [Ω]

�
∧ eF

�

(2k+1)

=
�

det(P [g] + F)dσ1 ∧ . . . ∧ dσ2k+1 , (6.94)
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for odd (2k+1)-cycles. Note that in the SU(3)-case Type IIB and IIA backgrounds

have complex and symplectic internal manifolds respectively. The above conditions

have the same form as those derived in [163] for branes with nontrivial worldvolume

fluxes on spaces with no fluxes, and can be seen as their natural generalisation (see

also the discussion in [164] for the Type IIB case). In particular, from the discussion

of the previous section, the second conditions in (6.91) and (6.92) now require that

supersymmetric branes are complex branes with (1, 1) field strength F in Type IIB

and coisotropic branes of the kind discussed in [186] in Type IIA (see section 7.2

of [160]). Also, the above conditions are obviously exchanged by the generalised

mirror symmetry, that in this case takes the form

eiφe−iJ ↔ −ieiτΩ . (6.95)

6.7 Generalised calibrations for N = 1 vacua

We shall now proceed to discuss the meaning of the supersymmetry conditions

in the general SU(3) × SU(3) case. We will see how the conditions in the form

(6.78) and (6.79) can be interpreted as generalised calibration conditions. Then the

first of each pair of conditions (6.76) and (6.77) encodes the necessary requirement

related to the stability of the supersymmetric D-brane that must be added to the

geometrical characterisation given in section 6.5.

Calibrations were originally introduced in [187] as a means to construct volume

minimising submanifolds of Riemannian manifolds. They are constructed using

closed forms and therefore have close ties with manifolds of reduced holonomy which

naturally possess such forms, as we discussed in section (6.2). A nice review of these

points is given in [156], which we shall follow to introduce the basic definition of a

calibrated submanifold.

Let (M, g) be an oriented Riemannian manifold possessing a closed p-form ω. An

oriented tangent p-plane V on M is a p-dimensional vector subspace TxM of a

tangent space to M at a point x ∈M . The restriction of g to V , denoted g|V , can

be combined with the orientation on V to give a natural volume form volV on V .

The p-form ω is said to be a calibrating form, or calibration, if for every oriented

tangent p-plane V on M one has that ω|V ≤ volV . A given oriented submanifold

Σ is defined to be a calibrated submanifold if ω|Σ = volTxΣ for all x ∈ Σ. One can

easily show that a calibrated submanifold is volume-minimising within its homology

class, however we shall postpone this proof until we discuss the more general case
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in which we are interested.

The relation of calibrations to supersymmetric brane solutions was developed in a

series of papers [162, 188–191]. By studying the supersymmetry conditions derived

from κ-symmetry arguments, it was shown that supersymmetric instantonic branes

wrap volume-minimising submanifolds [162], with such submanifolds then being

called supersymmetric cycles. The relation between such supersymmetric cycles

in string theory models and the mathematical theory of calibrations was put on a

firmer footing in subsequent works [188–191].

A more intuitive picture is provided by recalling the Bogomol’nyi bound for a

supersymmetric object, such as the M2 brane bound (3.54) discussed in chapter 3.

In a background with all fields but the metric set to zero, the energy density of a

brane with static worldvolume is given entirely in terms of the Nambu-Goto piece

of the Dirac-Born-Infield action. Considering the supersymmetry algebra with a

central extension, as is appropriate for a general (non-dyonic) p-brane solution,

and contracting with background Killing spinors, the familiar Bogomol’nyi bound

for a supersymmetric brane can be understood as a calibration bound, with the

calibration form being constructed as a spinor bilinear of the central charge term

in the algebra [173, 192, 193, 195]. This bound is then easily seen to imply that

supersymmetric branes in this class of backgrounds are volume minimising. Once

again, we shall provide further details of these points when we discuss the case we

are particularly interested in.

Let us first of all introduce the appropriate definition of generalised calibration

for the general class of N = 1 manifolds we are considering, starting from the

supersymmetry conditions for four-dimensional space-time filling branes derived

in the previous sections. We will see how it is possible to naturally introduce

a generalised calibration that minimises the energy density and with respect to

which supersymmetric cycles are calibrated. The notion of generalised calibration

was first introduced in [192, 193] to describe supersymmetric branes on backgrounds

with fluxes, and studied in several subsequent papers (see for example [194, 195]).

The idea is that the calibration should minimise the brane energy density, which

does not necessarily coincide with the volume wrapped by the brane. It has been

shown in [166] how, in the case of pure NS supersymmetric backgrounds, it is

possible to introduce another notion of generalised calibration which naturally takes

into account the role of the worldvolume field strength f . We will now see how an

analogous definition of generalised calibration can also be used for general N = 1

backgrounds with nontrivial RR fluxes.
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We define a generalised calibration as a sum of forms of different degree ω =
�

k
ω(k)

such that dHω = (d + H∧)ω = 0 and

PΣ[ω] ∧ eF ≤ E(Σ,F) , (6.96)

for any D-brane (Σ,F) characterised by the wrapped cycle Σ and the worldvolume

field strength F and with energy density E 12. In (6.96) and all other expressions

in this section involving sums of forms of different degree on the cycle wrapped by

the brane, we understand that only forms of rank equal to the dimension of the

cycle are selected. Furthermore, the inequalities between these forms refer to the

associated scalar components in the one-dimensional base given by the standard

(oriented) volume form.

A D-brane (Σ,F) is then calibrated in a generalised sense by ω =
�

k
ω(k), if it

satisfies the condition

PΣ[ω] ∧ eF = E(Σ,F) . (6.97)

Since the generalised calibration ω is dH-closed, one can immediately prove that

the saturation of the calibration bound is a minimal energy condition. Let E(Σ,F)

be the four-dimensional energy density of a calibrated wrapped D-brane (Σ,F).

Consider a continuous deformation to a different brane configuration (Σ�,F �) such

that we can take a chain B and a field-strength F̂ on it (with dF̂ = PB[H]), such

that ∂B = Σ−Σ� and the restriction of F̂ to Σ and Σ� gives F and F � respectively.

We then have

E(Σ,F) =

�
E(Σ,F) =

�

Σ

P [ω] ∧ eF (6.98)

=

�

B
P [dHω] ∧ eF̂ +

�

Σ�
P [ω] ∧ eF

�
(6.99)

=

�

Σ�
P [ω] ∧ eF

� ≤
�
E(Σ�,F �) = E(Σ�,F �) . (6.100)

A calibration condition can then be seen as a stability condition for a D-brane

under continuous deformations, i.e. a D-brane wrapping a supersymmetric cycle is

the lowest energy object in its homology class.

We will now see how the supersymmetry conditions in (6.78) and (6.79) can be

12This definition is completely equivalent to the definition used in [166] where a generalised
calibration ω̃ is closed, i.e. dω̃ = 0, and satisfies the relation PΣ[ω] ∧ e

f ≤ E(Σ,F). The two
generalised calibrations are obviously related by ω̃ = ω ∧ e

B . We prefer our choice as it involves
the worldvolume field-strength f only through the gauge invariant combination F .
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rephrased as generalised calibration conditions. In order to prove this, we have

to construct the generalised calibration appropriate to our case. Let us start by

recalling that we are restricting to the case in which η(1) and η(2) have the same

norm. Then the standard Cauchy-Schwarz inequality

||iγ̂�
(r)

(F)η(2)

+ + η(1)

(−)r || ≤ ||iγ̂�
(r)

(F)η(2)

+ ||+ ||η(1)

(−)r || , (6.101)

implies that we have the following completely general inequalities

Re
�
iη(1)†

+ γ̂�
(2k)

(F)η(2)

+

�
≤ |a|2 , Re

�
iη(1)†
− γ̂�

(2k+1)
(F)η(2)

+

�
≤ |a|2 , (6.102)

which, remembering the supersymmetry conditions (6.71), are clearly saturated

when we are considering supersymmetric cycles. Using expression (6.67) for γ̂�
(r)

it

is not difficult to see that from these relations we obtain the conditions

�
Re

�
− iP [Ψ+]

�
∧ eF

�

(2k)

≤ |a|2
8

�
det(P [g] + F)dσ1∧ . . . ∧dσ2k , (6.103)

�
Re

�
− iP [Ψ−]

�
∧ eF

�

(2k+1)

≤ |a|2
8

�
det(P [g] + F)dσ1∧ . . . ∧dσ2k+1 .(6.104)

Once we impose that the D-branes must wrap generalised complex submanifolds

in M , one sees that requiring these inequalities in (6.103) and (6.104) to be sat-

urated is equivalent to requiring that the D-branes we are considering satisfy the

supersymmetry conditions (6.78) and (6.79).

We would now like to use these inequalities to construct a generalised calibration

for this space-time filling branes. Given the RR field-strength ansatz specified in

(6.19), we can analogously decompose the RR potentials in the following way

C(n) = Ĉ(n) + dx0 ∧ . . . ∧ dx3 ∧ e4AC̃(n−4) , (6.105)

and then express the internal RR field strengths in terms of the internal RR po-

tentials

F̂(k+1) = dĈ(k) + H ∧ Ĉ(k−2) , (6.106)

F̃(k+1) = dC̃(k) + H ∧ C̃(k−2) + 4dA ∧ C̃(k) . (6.107)

Our space-time filling branes couple only to the “tilded” RR fields. Since we are

considering static configurations, we can extract from the Dirac-Born-Infield plus

Chern-Simons action the following effective energy density for a space-time filling
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brane wrapping an internal n-cycle [192]

E = e4A

�
e−Φ

�
det(P [g] + F)dσ1 ∧ . . . ∧ dσn −

� �

k

P [C̃(k)] ∧ eF
�

(n)

�
, (6.108)

where for simplicity we have omitted the overall factor given by the D-brane tension.

We can now write the inequalities (6.103) and (6.104) in terms of a lower bound on

the energy density

P [ω] ∧ eF ≤ E , (6.109)

where we have used the sum of forms of different degrees ω =
�

k
ω(k) given by

ωIIA = e4A

�
Re

�−8i

|a|2 e−ΦΨ−
�
−

�

k

C̃(2k+1)

�
, (6.110)

ωIIB = e4A

�
Re

�−8i

|a|2 e−ΦΨ+

�
−

�

k

C̃(2k)

�
. (6.111)

Note that in the left-hand side of (6.109) one can completely factorise the contri-

butions of the background quantities through the pullback on the cycle of ω and

B, and the contribution from the worldvolume field-strength f .

It is clear from (6.109) that the ω’s defined in (6.110) and (6.111) represent a good

candidate for generalised calibrations as described at the beginning of this section.

To prove that this is indeed the case, it remains to show that the ω’s in (6.110) and

(6.111) are dH-closed. In order to do this, it will be enough to use the equations

(6.46) and (6.49), which characterise our N = 1 backgrounds.

Let us impose the vanishing of the dH-differential of the ω’s defined in (6.110) and

(6.111). This gives the following condition to have properly defined calibrations

dHωIIA = 0 ⇔
�
d + (H + 4dA) ∧

�� 1

|a|2 e−ΦRe
�
iΨ−

��
=−1

8

�

k=0,1,2,3

F̃(2k), (6.112)

dHωIIB = 0 ⇔
�
d + (H + 4dA) ∧

�� 1

|a|2 e−ΦRe
�
iΨ+

��
=−1

8

�

k=0,1,2

F̃(2k+1).(6.113)

One immediately sees that the background supersymmetry conditions (6.46) and

(6.49) imply that the above requirements are indeed satisfied. This concludes our

proof that our N = 1 backgrounds are generalised complex manifolds with gener-

alised calibrations defined in (6.110) and (6.111), such that supersymmetric four-

dimensional spacetime filling branes wrap generalised complex submanifolds that
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are also generalised calibrated.

One can get more intuition on the structure of the above generalised calibrations

by considering the SU(3)-structure subcase. The generalised calibrations then take

the form

ωIIA = e4A

�
Re

�
− eiτe−ΦΩ

�
−

�

k

C̃(2k+1)

�
, (6.114)

ωIIB = e4A

�
Re

�
− ieiφe−Φe−iJ

�
−

�

k

C̃(2k)

�
. (6.115)

We then explicitly see how these calibrations generalise the usual calibrations in

Calabi-Yau spaces through crucial modifications introduced by the nontrivial dila-

ton, warp-factor and fluxes.

Note also that the generalised calibrations (6.110) and (6.111) are naturally related

by the mirror symmetry (6.50) if we exchange
�

k
C̃(2k) and

�
k
C̃(2k+1). These sums

can be seen as H-twisted potentials of the sums of internal field strengths F̃A and

F̃B as defined in (6.47) and (6.48). If we think in terms of untwisted quantities we

then get a mirror symmetry for the potentials of the form

�

k

C̃(2k) ∧ eB ↔
�

k

C̃(2k+1) ∧ eB , (6.116)

which clearly recalls the form of the transformation rules of the RR-potentials under

T-duality.

Let us observe that the generalised calibration ω defined above is a sum of forms

which are not generally globally defined, since they are not invariant under the RR

gauge transformations. Indeed, consider the gauge transformation

�

n

δC̃(n) = e−4AdHλ , (6.117)

preserving the decomposition (6.105), where λ is a sum of even (odd) forms for

Type IIA (IIB). Then ω transforms as ω → ω − dHλ, since it is related to the

D-brane energy density which naturally depends on the RR gauge potentials. As

an alternative, we could also introduce an equivalent globally defined generalised

calibration ω̂ =
�

n
ω̂(n) which is more in the spirit of that adopted in [192, 193].

First, in our class of backgrounds, ω̂ is no longer dH closed, but must satisfy the
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condition

dH ω̂ = e4A
�

k

F̃(k) . (6.118)

Secondly, the energy density minimisation condition (6.109) is replaced by the con-

dition

PΣ[ω̂] ∧ eF ≤ e4A−Φ
�

det(P [g] + F)dσ1 ∧ . . . dσn , (6.119)

for any D-brane (Σ,F) wrapping an internal n-dimensional cycle. It is clear from

our previous discussion that such an alternative generalised calibration is given by

ω̂ = −8e4A−Φ

|a|2 Re(iΨ) , (6.120)

where Ψ = Ψ+ for Type IIB and Ψ = Ψ− for Type IIA. We obviously have that

ω = ω̂−e4A
�

n
C̃(n) and the alternative generalised calibration ω̂ can be essentially

identified with the imaginary part of the non-integrable pure spinor characterising

the N = 1 background considered.

As we are assuming |a| = |b|, the condition (6.118) is equivalent to the imaginary

part of the first background supersymmetry condition of (6.46), thus giving a phys-

ical interpretation for it. It is interesting to note that an analogous conclusion can

be reached for the remaining equations in (6.46). Indeed, we have seen in section

(6.4) how we could also consider supersymmetric branes filling only two or three flat

space-time directions, giving rise to an effective string or domain wall respectively

with appropriately chosen phases α in (6.68). One can then repeat the arguments

of this section for these cases, with the generalised calibrations now given by

ω(string) =
8e2A−Φ

|a|2 Re(Ψ1) , ω(DW ) =
8e3A−Φ

|a|2 Re(eiϕΨ2) , (6.121)

where Ψ1 = Ψ+ (Ψ−) and Ψ2 = Ψ− (Ψ+) for Type IIB (IIA), and ϕ is an arbitrary

(constant) phase. The generalised calibrations ω(string) and ω(DW ) now satisfy the

condition (6.119) with e4A substituted by e2A and e3A respectively. Furthermore,

they must now be dH-closed, since the coupling to the background RR-fields van-

ishes for these configurations . It is easy to see that the condition dHω(string) = 0 is

equivalent to the real part of the first of (6.46) (with |a| = |b|), while dHω(DW ) = 0

for any ϕ is equivalent to the second of (6.46) . We then see how, in the subcase

where the two internal spinors have the same norm, the background supersymme-
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try conditions (6.46) have a physical interpretation as conditions for the existence

of generalised calibrations for the allowed supersymmetric D-brane configurations.

This correspondence between background supersymmetry conditions and gener-

alised calibrations has been extensively discussed in [194] and we see here how it

works perfectly in the cases we have considered.

6.8 Conclusions

In this chapter we have studied the conditions for having supersymmetric D-branes

in Type II backgrounds with general NS and RR fields preserving four-dimensional

Poincaré invariance and N = 1 supersymmetry, focusing on D-branes filling the

four flat directions. It transpired that the supersymmetry conditions for D-branes

obtained from κ-symmetry arguments can be elegantly expressed in terms of the two

pure spinors that define the SU(3)×SU(3)-structure on the internal six-dimensional

manifold. We have shown that the supersymmetry conditions give two important

pieces of information about the supersymmetric D-branes, involving the two pure

spinors separately. These conditions were related to the geometry and the stability

of the branes, just as in previous cases in the absence of fluxes.

Firstly, the we found that the D-brane must wrap a generalised complex subman-

ifold defined with respect to the integrable generalised complex structure of the

internal manifold. This can be introduced thanks to the integrability of one of

the two pure spinors coming from the requirement of N = 1 supersymmetry. The

SU(3) structure subcase provides a clear example where this condition means that

the brane must wrap a holomorphic cycle with (1, 1) field strength F in Type IIB

and a coisotropic cycle of the kind discussed in [160, 186] in Type IIA. In the more

general SU(3) × SU(3) case the equivalent Type IIA/IIB identifications become

slightly mixed.

Secondly, we found that on the wrapped internal n-cycle one must furthermore

impose a condition of the form {Im(P [iΨ]) ∧ F}(n) = 0, where Ψ is the non-

integrable pure spinor. This condition is related to the stability of the D-brane.

Note that it is the non-integrable pure spinor that now plays the relevant role

and the fact that it should be connected to some dynamical information for the

D-branes can be linked to the role of the nontrivial RR-fields as obstructions to

the integrability of the pure spinor. A supersymmetric D-brane configuration must

then satisfy the above two conditions, plus an appropriate choice of its orientation

which is in general not arbitrary due to presence of nontrivial background RR fields.
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The above requirements that characterise supersymmetric D-branes are equiva-

lent to the condition that the D-brane must be calibrated in a generalised sense

with respect to an appropriate definition of generalised calibration. This encodes a

requirement of minimisation of the energy density of the brane, rather than volume-

minimisation, and involves the non-integrable pure spinor. The non-integrability

of this pure spinor is due to the non-vanishing RR-fields, which also couple to D-

branes and so must enter the associated generalised calibrations. One then sees

that the non-integrability of the pure spinor is exactly what is needed to compen-

sate for the presence of the RR terms in the generalised calibration in order for

the calibration to be well defined. This strict relation between the non-integrable

pure spinor and a generalised calibration can be made even more explicit by using

the equivalent alternative definition of generalised calibration given in (6.118) and

(6.119). Furthermore, as we discussed at the end of section 6.7, by considering

D-branes filling only two or three flat directions, the conditions for the existence

of well defined calibrations associated to supersymmetric D-branes are completely

equivalent to the background supersymmetry conditions (6.46), thus giving a clear

physical interpretation for them.

To conclude, it is intriguing to see how the two pure spinors can be fruitfully

used in the description of the geometrical and stability features of supersymmet-

ric D-branes. In both Type IIA and IIB, a supersymmetric D-brane must wrap

a generalised complex submanifold with respect to the integrable pure spinor and

be calibrated in a generalised sense with respect to the non-integrable pure spinor.

Also, we have seen how all the results discussed in this chapter confirm the in-

terpretation of the symmetry (6.50) relating Type IIA and IIB backgrounds as a

generalised mirror symmetry, exchanging also odd and even dimensional supersym-

metric cycles and the corresponding generalised calibrations. These results may

hide some deeper insight into the understanding of string theory on general back-

grounds with fluxes and its relation to generalised geometry.



Chapter 7

Conclusions and Future Directions

In this thesis we have discussed several aspects of branes in supergravity, rang-

ing from issues of consistency in phenomenologically motivated five-dimensional

braneworld models, to the rigorous constraints placed on D-branes in general flux

compactifications. We shall now conclude with a review of our main results and

some suggestions for future work.

In chapter 4 we studied the problem of the stability of Hořava-Witten spacetimes,

which we identified as generic domain solutions of the form M4 × I, where I is an

interval. We were particularly interested in the case where the interval I could be

understood as an orbifold S1/Z2, as in the much studied Randall-Sundrum models.

A key feature required for the consistency of such models is the appearance of

negative tension branes and we showed that, despite receiving much attention, it

was not clear whether such spacetimes were in fact stable.

To tackle the issue of stability, we chose to concentrate on a class of five-dimensional

models of gravity coupled to a scalar field with a double exponential potential. This

potential could be written in terms of a superpotential using standard tools from

supergravity, allowing us to define a consistent action for both the bulk fields and

the brane sources supporting our Z2-symmetric domain wall solution. A careful

treatment of the definition of energy for this class of spacetimes proved that the

Z2-symmetry was crucial here. In particular, the Israel junction conditions for our

domain walls simplified significantly, reducing to boundary conditions for the bulk

fields ((4.33), (4.34)). This meant that if we were able to prove the stability of the

bulk theory alone, it would be sufficient to show that the entire bulk plus brane

system was stable.

The proof of stability followed using the standard spinorial techniques of the pos-

itive energy theorem in general relativity and classical supergravity. A key point

134
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was the identification of the superpotential for our bulk theory, which allowed us

to assume the form of the supersymmetry transformations for the gravitino and

dilatino [110]. Regardless of whether this supersymmetric completion could be re-

alised, this identification meant we could rewrite our spinorial energy expression in

terms of a sum of squares of exactly these supersymmetry transformations (4.77),

thus proving the positivity of energy. We were also able to show that the spinorial

energy expression agreed perturbatively with the conserved energy which we had

constructed previously using the Abbott-Deser pseudotensor technique. The spino-

rial proof of positive energy then implied that this class of Z2-symmetric spacetimes

was stable. Thus we have seen how the background domain wall solution behaves

as one would expect for a supersymmetric solution, acting as a ground state which

bounds the energy of perturbations from below.

While our proof of positive energy was successful, it also raised several questions.

An obvious next step was to ask what happens when we relax the Z2-symmetry.

An analysis of this question showed that we quickly run into difficulties. The Z2-

symmetry was crucial in allowing us to prove positive energy at the level of the

background solution. In fact, when considering non-symmetric domain walls we

do not have a definition of energy that is conserved by virtue of the background

equations of motion alone. In this case, the Israel junction conditions no longer

simplify and one must solve the equations order by order in perturbations. This

would suggest that, as it stands, our approach is not valid for studying perturbations

of these more general spacetimes, and hence we are unable to draw any conclusions

about their stability. One possible area for development would be to consider

singular braneworld models with higher codimension. Using our methods, it should

be possible to prove the stability of the symmetric models without resorting to a

perturbative analysis.

A second question of considerable interest relates to the supersymmetry of our

five-dimensional theory and its singular domain wall solutions. We know that the

bulk theory is derived from a consistent truncation of an S5 dimensional reduction

of Type IIB supergravity in ten dimensions, and thus should lie in a subsector

of a theory with N = 8 supersymmetry. The complete nonlinear ansatz for this

reduction is not known, however the appropriate N = 2 subsector has been con-

structed [119], and one can show that the supersymmetry transformations that we

putatively identified for the gravitino and dilatino agree with the reduction of the

Type IIB fermionic terms in this subsector.

With this in hand, one is naturally led to lift the singular domain wall solution
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back to ten dimensions to understand its relation to the known supersymmetric

p-brane solutions [108, 110, 113]. One finds that there is a coupling in the brane

source which is indicative of a D3-brane in ten dimensions, as one would expect

due to the five-form field strength being non-zero in the original reduction for the

ansatz for the bulk fields. However there is also a second contribution in the brane

source term [113]. A simple counting argument for the conformal factors in the

source term shows that this object should have an eight-dimensional worldvolume,

suggesting a D7-brane. The utility of D7-branes in constructing compactifications

to warped five-dimensional models has been suggested before [19, 20], however in

the breathing mode reduction we considered, the axion and dilaton fields, which

source the D7-brane, were not present. As this is a consistent truncation of the

field equations in ten dimensions one should not expect it to cause any difficulty,

therefore we are left with the problem of identifying what creates the second term

in the brane source. One may attempt to identify this eight-dimensional object,

previously called the ‘turtle’ [113], with one of the exotic gravitational solutions

found in [129], however this does not correctly reproduce the couplings we see in

the lifted brane source term.

Alternatively, one can search for a ten-dimensional projection operator that re-

duces to the Z2 action on the domain wall after compactification, analogous to the

original Hořava-Witten scenario in eleven-dimensional supergravity. In that case,

the boundary brane projection operators commuted with half the supersymmetry

transformations, implying that the solution preserved half the supersymmetry. It

had been proposed in [119] that such a projection for the Type IIB case necessarily

includes an orientation flip on the S5 directions, and therefore in the five-form flux

parameter, thus causing a disparity in the supersymmetry transformation at the

position of the domain wall. Work in this direction in ongoing, but initial attempts

suggest that it is not possible to construct a projection operator in ten dimensions

that commutes with the supersymmetry transformations1. As such, the supersym-

metry and ten-dimensional origin of the class of singular domain wall solutions we

have studied remains unclear.

We also noted that the argument used to determine the dimensions of the branes

from which a singular domain wall descends in a breathing mode reduction could be

extended to other parent theories. For instance, one can apply this simple technique

to domain walls which are solutions to the bosonic theories arising from S4 and S7

1This work is in progress with J. Kalkkinen, J. L. Lehners and K. S. Stelle, whom we thank
for useful discussions on these points.
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compactifications of eleven-dimensional supergravity. In doing so, one finds that

the domain walls lift back to M2 and M5-brane sources respectively, however once

again there is a second contribution in each case. This corresponds to an object with

a nine-dimensional worldvolume, an 8-brane, which is not a known supersymmetric

solution of eleven-dimensional supergravity. The interpretation of this result, and

the original question of determining what supersymmetry, if any, is preserved for

this class of singular domain walls, is work in progress.

In chapter 5 we considered the generalisation of braneworld sum rules [24], which

provide a straightforward scheme to test the consistency of five-dimensional braneworld

models of gravity. By making use of convenient combinations of components of

Einstein’s equations, one can determine constraints on the various components of

a given model. We extended these rules to incorporate more general spacetimes

(5.29), including non-compact internal spaces, and we were able to provide further

insights into models that had been studied previously. For instance, we were able

to reconsider gravity-trapping domain wall models in five dimensions, such as the

second (one brane) Randall-Sundrum model. Using the generalised sum rules, we

were able to show that if the internal space is non-compact, the Strong Energy

principle need not be violated for these solutions to exist (5.41), which, to our

knowledge, had not been appreciated before.

Unfortunately, the generalised sum rules offered little insight into supergravity

p-brane solutions with more general, Ricci-flat transverse space geometries [147].

However, our investigation of these solutions led us to propose a generalised version

of the ADM energy for such branes. Our expression agreed with previous formulae

in the flat transverse space limit, and we were able to evaluate this energy explicitly

for the case of a Heterotic 5-brane on an Eguchi-Hanson instanton. As the topology

of the transverse space is R×S3/Z2 in this example, we found the result to be half

the energy of a regular p-brane, as expected. It would be interesting to apply our

improved ADM energy integral to more general p-brane spacetimes and to construct

the complete set of charges for them. This should offer further insights into their

supersymmetry and “black brane” mechanics [86, 147], and also their relation to

the more familiar p-brane solutions, such as those reviewed in chapter 3. We leave

this for future work.

Chapter 6 was dedicated to the constraints on supersymmetric D-branes in gen-

eral flux compactifications of Type II string theories. We were particularly inter-

ested in compactifications to four-dimensional Minkowski space preserving N = 1

supersymmetry, rather than the more familiar N = 2 supersymmetry of Calabi-
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Yau compactifications. Such scenarios are realised by turning on general Neveu-

Schwarz and Ramond-Ramond fields, and including a warp factor multiplying the

four-dimensional metric component [5]. Recent developments in this area have

shown how such compactifications have an elegant description in terms of reduced

SU(3) × SU(3) structure on the formal sum of the tangent and cotangent bun-

dles TY ⊕ T �

Y
[157–161]. We reviewed this prescription and the main definitions of

the associated generalised geometry, along with the definition of pure Clifford(6,6)

spinors on this bundle. This proved useful in allowing us to rewrite the background

conditions for preserved N = 1 supersymmetry in a very compact manner (6.46).

We then considered D-branes filling the four flat spacetime directions and wrapping

cycles in the internal manifold in these backgrounds. Using standard κ-symmetry

techniques we determined the conditions for preserved supersymmetry from the

D-brane worldvolume perspective, and showed that these too could be rewritten in

an elegant form in terms of the two pure spinors associated to the SU(3) × SU(3)

structure on TY ⊕ T �

Y
((6.78), (6.79)).

The first condition implied that the D-brane must wrap a generalised complex sub-

manifold of the internal manifold and was given by the integrable pure spinor, i.e.

the pure spinor which was twisted closed dHΨ = 0. This provides a generalisa-

tion of the well-known results on branes wrapping cycles of Calabi-Yau manifolds

[162, 163], where now our condition includes the effects of both Neveu-Schwarz and

Ramond-Ramond fields. The second condition was related to the stability of the

D-brane and was given in terms of the non-integrable pure spinor (dHΨ �= 0), with

the Ramond-Ramond fields forming the obstruction to this spinor being twisted

closed.

We were able to incorporate both supersymmetry conditions, plus the necessary

requirement of choice of orientation, into a single expression involving the non-

integrable pure spinor in each case. This was shown to be equivalent to requiring

that a D-brane should be generalised calibrated with respect to an appropriate

definition of calibration on the generalised background. This statement was then

shown to imply that supersymmetric D-branes on these backgrounds are energy

density minimising within their homology class. This is nothing more than the

familiar Bogomol’nyi bound for supersymmetric solitons.

That this calibration condition is given in terms of the non-integrable pure spinor

is understood by considering the energy density of a D-brane with static worldvol-

ume (6.108), which includes couplings to Ramond-Ramond fields. It is exactly the

Ramond-Ramond fields that act as an obstruction to integrability for one of the
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pure spinors in Type IIA and IIB, and so we see that it is natural that calibration

condition should be phrased in terms of this pure spinor in each case. In fact, it

is precisely the non-integrability of the pure spinor that is needed to account for

the Ramond-Ramond terms in generalised calibration ((6.110),(6.111)) in order to

make the calibration well defined (6.96). The final step in ensuring that we had a

good definition for our calibration forms was to prove that they are closed with re-

spect to the twisted derivative operator. This followed directly from the background

supersymmetry conditions written in terms of the pure spinors ((6.112),(6.113)).

One appealing feature of our formulation of the supersymmetry conditions for D-

branes on generalised backgrounds is the symmetry of the equations under the

exchange of the pure spinors Ψ+ ↔ Ψ− and Ramond-Ramond fields FA ↔ FB

(6.50). This symmetry has been proposed in the literature as a generalised form of

the usual mirror symmetry on Calabi-Yau manifolds [152, 154, 176–180], interchang-

ing Type IIA and IIB backgrounds. We have seen that supersymmetric D-branes

also respect this symmetry, which now exchanges odd and even dimensional super-

symmetric cycles in the generalised backgrounds and the corresponding generalised

calibrations. This provides further strength to the argument that generalised mir-

ror symmetry is a fundamental property of Type II string theories compactified on

manifolds with flux.

The are several interesting directions for the future development of this work. In

[196, 197] a proposal was made relating calibrations on Calabi-Yau manifolds to the

superpotential of the low energy effective theories generated by compactifying M-

theory or Type IIA, with branes wrapping internal cycles. It would be interesting to

extend our analysis of D-branes in general compactifications to instantonic branes.

This would allow us to compare the superpotentials defined from our calibrations

with those found by dimensional reduction of the gravitino supersymmetry trans-

formations of Type II theories in [152]. It would be interesting to consider whether

these superpotential corrections have an effect on moduli stabilisation in the low

energy theory. Also, the form of the potentials generated will have implications

for cosmological scenarios, such as those of Kachru et al [198, 199]. To understand

these points we should construct explicit examples of instantonic D3-branes and

determine whether they possessed the correct number of fermionic zero-modes to

produce superpotential corrections [200]. Initial investigations have appeared in

the literature [201–203], however these issues deserve to be reassessed for D-branes

on more general SU(3) × SU(3) backgrounds preserving N = 1 supersymmetry in

four dimensions, as described by our results.



Acknowledgements

I thank all the friends I have made in the physics community over the last 5 years,

and my friends from elsewhere who have abided me during that time.

At various stages I have enjoyed the hospitality of CERN, the Newton Institute

and the Institute for Theoretical Physics at K.U. Leuven. I gratefully acknowledge

the support of PPARC and the Leverhulme Trust.

I would like to thank the Theoretical Physics group at Imperial College, in partic-

ular Rachel Bean, Aidan Burch, Pedro Gandra, Dan Hook and Marko Ivin. Over

the last 3 years I have worked with Jean-Luc Lehners, to whom I extend my sincere

thanks as a friend and collaborator. Special thanks go to Pete Dodd for a careful

reading of this manuscript and for being a great friend.

I especially thank Stephon Alexander, Tim Evans, Hugh Jones, Joao Magueijo

and Ray Rivers for support at various stages. I thank Brandon Carter, Gary Gib-

bons, Jonathan Halliwell, Akihiro Ishibashi, Chris Pope, Paul Townsend, Arkady

Tseytlin, Antoine Van Proeyen and in particular Jussi Kalkkinen and Mohab Abou-

Zeid for useful comments and discussions, and Luca Martucci for initiating our

fruitful collaboration.

I thank my friends and colleagues in Leuven, and especially Caroline Vandenplas

for her patience and love.

Throughout my time as research student I have enjoyed the unwavering support,

guidance and patience of Kelly Stelle, whom I thank for countless conversations

that have shaped and deepened my understanding of theoretical physics.

Finally, I extend my deepest thanks to my parents, Geoffrey and Elizabeth Smyth.

Their moral support, encouragement, love and patience is endless, and I cannot

thank them enough. I dedicate this thesis to them.

140



Appendix A

Conventions

We will mainly follow Wald [32] for metric, curvature and stress-energy tensor

conventions. The D-dimensional metric will be mostly plus throughout (− + + +

. . . +), and for compactness we shall use lower case latin indices a, b = 0, . . . , D−1.

The vielbein are defined by gab = ea

a
eb

b
ηab, where underlined indices run over flat

tangent space directions. Covariant derivatives are defined by

∇ae
a

b
= ∂ae

a

b
+ ω ab

a
ebb − Γc

ab
ea

c
= 0 , (A.1)

∇aψ = ∂aψ + 1

2
ω bc

a
σbc ψ . (A.2)

The Riemann tensor is defined by

[∇a,∇c]Vb = Racb
dVd , (A.3)

for an arbitrary vector field Vb. We choose Racb
d = +∂cΓd

ab
− · · · , such that the

Ricci tensor is

Rab = ∂cΓ
c

ab
− ∂aΓ

c

cb
+ Γc

ab
Γd

cd
− Γd

ac
Γc

bd
. (A.4)

The Einstein-Hilbert term in the action is defined in natural units with a plus sign

SEH = +
� √−gR, where g denotes the metric determinant, R the Ricci scalar and

we use 8πG4 = 1 in four dimensions. The stress-energy tensor is then defined as

minus the variation of the matter action:

Tab = − 1√−g

δSmatter

δgab
. (A.5)
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We use weight one for (anti)symmeterisation

A[ab] = 1

2
(Aab − Aba) , A(ab) = 1

2
(Aab + Aba) (A.6)

We use the standard notation for differential forms, the wedge product and the

exterior derivative on a D-dimensional manifold (See [204])

α =
1

p!
αa1...apdxa1 ∧ . . . ∧ dxap , α ∈ ∧p , (A.7)

α ∧ β = (−1)pqβ ∧ α , α ∈ ∧p , β ∈ ∧q , (A.8)

dα ≡ 1

p!
∂[bαa1...ap]

dxb ∧ dxa1 ∧ . . . ∧ dxap . (A.9)

The epsilon symbol is defined by

εa1...aD ≡ (+1,−1, 0) , (A.10)

for (odd, even, no) permutations of the order of the indices. We can also define the

symbol with upper indices by

εa1...aD ≡ (−1)tεa1...aD , (A.11)

where t is the number of timelike coordinates. We define the epsilon tensors by

�a1...aD =
√

gεa1...aD , �a1...aD =
1
√

g
εa1...aD , (A.12)

and note the following useful identity

�a1...ar,ar+1...ap�
a1...ar,br+1...bp = (−1)tr!(n− r)!δbr+1...bp

ar+1...ap
, (A.13)

We define the Hodge dual by

∗(dxa1 ∧ . . . ∧ dxap) ≡ 1

(D − p)!
�b1...bD−p

a1...apdxb1 ∧ . . . ∧ dxbD−p . (A.14)

Taking p = 0 in this formula we find

∗1 = � =
1

n!
�b1...bDdxb1 ∧ . . . ∧ dxbD =

�
|g|dx1 ∧ . . . ∧ dxD. (A.15)

which gives a natural definition of the volume element
�
|g|dnx for a D-dimensional

manifold. The volume element on a (D-n)-dimensional submanifold is then defined
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by

dD−nΣb1...bn ≡
1

(D − n)!
�
|g|

�b1...bna1...aD−ndxa1 ∧ . . . ∧ dxaD−n . (A.16)

For a more discussion of integration and submanifolds were refer the reader to [32].

For spinors and gamma matrices we follow the conventions of [67] (another useful

reference is [34]). The D-dimensional Gamma matrices satisfy {Γa, Γb} = 2gab.

Using the anti-symmeterisation defined above we note

Γa1...an ≡ Γ[a1Γ[a2 · · ·Γan] (A.17)

ΓaΓb = Γab + ηab , (A.18)

ΓaΓbΓc = Γabc + ηabΓc − ηacΓb + ηbcΓa , (A.19)

ΓabcΓd = Γabc
d + 3Γ[abδc]

d. (A.20)

It is worthwhile to note the following contractions

ΓabcΓc = (D − 2)Γab , ΓcaΓc = −(D − 1)Γa . (A.21)

Repeated use of these identities leads to the formula

ΓabcΓdeRbcde = 4ΓbGb
a , (A.22)

where now we have converted to gamma matrices with curved space indices using

the vielbein. Using the integrability condition

[∇c,∇d] η =
1

4
RcdabΓ

abη , (A.23)

for a spinor η, one finds the following combination of the above equations

ηΓabc∇b∇cη =
1

2
T abηΓbη , (A.24)

where T ab is the energy-momentum tensor, η = η†C and C is the charge conjugation

matrix.

A useful expression for gamma matrices acting on scalar fields is

ΓbΓaΓcφ,bφ,c = 2φ,aΓcφ,c − Γaφ,cφ,c . (A.25)
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Basic definitions for SU(3)

structure manifolds

In this section we will review some basic facts about an SU(3)-structure manifold

M , that is characterised by the existence of a globally defined spinor η+, such that

||η||2 = |a|2 (for a nice review on this subject see for example [154]). This spinor

allows one to introduce an associated almost complex structures with respect to

which the six-dimensional metric gmn is Hermitian, where now m, n = 1, . . . , 6. For

our purposes the most useful choice is given by

Jmn = − i

|a|2η†+γ̂mnη+ . (B.1)

Using the Fierz identities, it is possible to show that

Jm
pJp

n = −δn

m
, Jm

pJn
qgpq = gmn , (B.2)

the second of which is the Hermiticity condition. This almost complex structure

allows one to introduce the projector on holomorphic indices

Pm
n =

1

2
(δn

m
− iJm

n) , (B.3)

and the associated anti-holomorphic projector P̄m
n = (Pm

n)∗. One can then split

r-forms in (p, q)-forms, with p + q = r, in the standard way.

The following relations hold

η†+γ̂mγ̂nη+ = 2|a|2P̄m
n , η†−γ̂mγ̂nη− = 2|a|2Pm

n . (B.4)
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Then γ̂mη+ = Pm
nγ̂nη+ (it is of the kind (1, 0) in the index m), and the base (6.72)

is indeed eight dimensional. The general six-dimensional Dirac spinor χ can then

be decomposed as

χ = λ1η+ + λ2η− + ξm

1
γ̂mη+ + ξm

2
γ̂mη− , (B.5)

where ξm

1
is a (1, 0)-vector (Pm

nξm

1
= ξn

1
) and ξm

2
is a (0, 1)-vector (P̄m

nξm

1
= ξn

1
).

Then,

λ1 =
1

|a|2η†+χ , λ2 =
1

|a|2η†−χ ,

ξm

1
=

1

2|a|2η†+γ̂mχ , ξm

2
=

1

2|a|2η†−γ̂mχ . (B.6)

Analogously to the CY3 case, we can also introduce a (3, 0) form Ω defined by

Ωmnp = − i

a2
η†−γ̂mnpη+ . (B.7)

By applying Fierz identities it is possible to see that

1

3!
J ∧ J ∧ J =

i

8
Ω ∧ Ω̄ , J ∧ Ω = 0 , (B.8)

as for Calabi-Yau manifolds. The existence of a globally defined non-degenerate

(real) J and a globally defined non-degenerate (complex) Ω satisfying the conditions

(B.8) actually characterises SU(3)-structure manifolds. In our case we are consid-

ering the more general case of internal manifolds M with SU(3)×SU(3)-structure

group for TM ⊕ T �

M
. This contains as subcases the SU(3)-structure manifolds case

and the even more restricted manifolds with SU(2)-structure, that contain two

different independent SU(3) structures and requires the vanishing of the Euler

characteristic χ of M .
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