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Abstract

The aim of thesis is to study the aspects of branes in supergravity and string theory.
We review the definition of energy in General Relativity, its extensions and Witten’s
proof of the positive energy theorem. We discuss the link between positive energy
and classical supergravity, and then review the construction of p-brane solutions
of supergravity, focusing on eleven-dimensional examples. We show that a certain
class of braneworld models — five-dimensional Horava-Witten domain walls — are
stable by proving a generalised positive energy theorem. We also construct a set
of simple constraints that can be used to check brane world models in various
dimensions. We are particularly interested in understanding when such models can
be realised as smooth solutions, i.e. without singular sources, and we show how
previous no-go theorems can be evaded by considering more general geometry, such

as a non-compact transverse space.

We also consider the constraints on supersymmetric D-branes preserving N = 1
supersymmetry in compactifications of Type II string theory to four dimensions
with general fluxes included. We show that these constraints can be understood
in terms of generalised calibration conditions on the cycles wrapped by the branes
in the internal manifold. We then show that these conditions can be written in an
elegant geometrical language using pure spinors and generalised complex geometry,
which is useful framework in which to study compactifications with flux. Using this
language, we find that our constraints are the natural generalisation to manifolds
with flux of the more familiar results on D-branes wrapping cycles on Calabi-Yau

manifolds.
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Chapter 1
Introduction and Overview

The possibility of finding relevant four-dimensional physics from string theory was
revitalised when it was realised that Ramond-Ramond fields were supported by
extended objects known as Dp-branes', where ‘D’ refers to the Dirichlet boundary
conditions of the open strings ending on p-dimensional spatial slice of the back-
ground spacetime [2]. An alternative to straightforward compactification became
available as the extended objects naturally carry Ramond-Ramond gauge fields
hence it was hoped that the standard model could be confined to four dimensions
on them in a natural way. Initial models of intersecting D-branes already showed
how one could find chiral fermions at intersections [3], with higher rank gauge
groups being found on stacks of branes. This gives a simple way to reproduce as-
pects of the Standard Model and there has been a great deal of subsequent activity
in this area [4].

While gauge fields are naturally localised on D-branes, gravity remains free to
propagate in the ambient spacetime, commonly known as the bulk, which makes re-
producing familiar four-dimensional General Relativity in intersecting brane models
difficult. A complementary approach is to discard the initial goal of reproducing
known particle physics and just try to find conventional four-dimensional gravity
from a more exotic theory, which is usually some phenomenologically motivated
toy model. The hope then is that this exotic theory can be successfully embedded
in string theory or supergravity, in such a way as to complement the intersecting

brane models, or more complicated compactifications [5, 6].

These exotic theories are usually minimal extensions of General Relativity to some

arbitrary number of extra dimensions, which are not necessarily Planck size (~

"When it is not specifically useful to know the dimension of brane being discussed the label p
will be dropped.
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10735m). This is in contrast to the Kaluza-Klein supergravity programme [7], where
the compact dimensions are near Planck size. In fact, these ideas were not recent
8,9], but were brought to the fore by the work of Arkani-Hamed, Dimopoulos and
Dvali [10-12], and of Randall and Sundrum [13,14]. In [10] a proposal was made
for a toy model with large extra dimensions (~ 10~%m) which was intriguing as it
could be immediately tested by examining possible small distance modifications of
the inverse-square gravitational force law in desktop experiments. Strict bounds
now exist for such models [15-17]. One large extra dimension is immediately ruled
out as it would cause modifications at the scale of galaxies, however models with

two large sub-millimetre dimensions remain possible.

The large extra dimension models were initially proposed as a solution to the so-
called hierarchy problem, which in its simplest form states that it is aesthetically
un-pleasing to have large difference between two fundamental scales, the Planck
scale (~ 10" GeV) and the electroweak scale (~ 10® GeV). The addition of n extra
dimensions of length scale L causes the effective four-dimensional Planck scale that

we appreciate to be much larger than the fundamental 4 + n:
My = My, L> . (1.1)

This appears to be an elegant solution to the problem. However, one quickly
realises that all we have done is introduce a new hierarchy in length scales between
our ultra-large extra dimensions and the n extra dimensions with L ~ 10~*m.
The Randall-Sundrum (RS) models [13, 14] provide a different approach, consisting
of five-dimensional anti-de Sitter space AdS; with gravity being localised on a
negative tension 3-brane. Localisation is caused by suppression of the graviton
wave-function away from the brane due to the appearance of an exponential warp
factor multiplying the worldvolume metric. In their first model with two branes
in AdSs (known as RS1), the hierarchy problem is solved by exactly the opposite
effect — the positive exponential multiplies the fundamental Planck scale causing it
to appear greatly increased in the effective four-dimensional theory. This model was
superseded by RS2, which has only one brane, now with positive tension. Gravity
can still be localised, however we no longer have a solution to the hierarchy problem
[14].

The RS models appear at various stages in the work we shall describe later, so it

will be useful to introduce them in a little more detail here. The metric on AdSs
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in Poincaré coordinates is?

ds* = e /'y, dr"da” + dy* (1.2)

where p,v = 0,...,3. We note that y — —oo is the Minkowski boundary and
y — oo is the AdS horizon. This metric solves the five-dimensional cosmological
Einstein equations G g = —Agap, where A = —l%. If we cut this space at y = 0

and glue onto it a second copy of the y > 0 region we find
ds* = e Wy, dotda” + dy? | (1.3)

which now has an obvious Zs-symmetry about y = 0. This spacetime also has
the interpretation of AdSs with singular brane located at y = 0 with tension A =
\/—GT/lm%, as in RS2 [14]. In order to construct the RS1 model, we enforce
another Zo-symmetry at y = kl with tension —A. One finds that the graviton
wave-function is localised here, along with the Planck scale being suppressed by

a factor e2F,

If we worry about the fact that the brane supporting the visible
universe has negative tension, then we simply swap to the positive tension brane
at the expense of solving the hierarchy problem. Requiring the Planck mass there
to match the familiar Planck mass means we must resort to the scaling arguments

of Arkani-Hamed et al’s models.

Models of the form described above are generically known as braneworlds, and
have attracted considerable attention from both the particle physics and cosmology
communities in recent years (see [18] for a recent review). This is primarily owing
to their seeming ability to predict anything of interest, conveniently at a scale that
will be probed at the next generation of experiments. Observations from the string
theory also suggest that warped RS braneworlds can easily arise from fundamental
objects in the theory, D3-branes, which have AdSs; x S® geometry in the near
horizon limit. An F-theory construction has shown this in some form [19,20] and
we shall present a detailed description of a more explicit supergravity realisation of
the second RS model later.

2Here we follow the conventions of [18].
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Overview

This thesis is divided into two parts, the first of which provides an introduction to
some topics which will be useful for the work presented in the second.

We begin in chapter 2 by reviewing the definition of energy in General Relativity.
We choose to concentrate on the Lagrangian pseudotensor approach of Abbott and
Deser [21], which can applied to spacetimes with general asymptotics and correctly
reproduces the results from the canonical Hamiltonian method of Arnowitt, Deser
and Misner [22,23] for the asymptotically flat case. We shall then discuss how
this method is extended to non-trivial five-dimensional spacetimes, following Deser
and Soldate [55]. Having introduced the concept of energy in General Relativity,
we then discuss the proof of its positivity using the powerful spinor methods of
Witten and Nester [61,62]. This leads us to consider N' = 1 supergravity in four-
dimensions, which provides a physically intuitive way to understand the positive
energy proof.

In chapter 3 we review the main features of eleven-dimensional supergravity and
its solitonic solutions, the M2 and Mb5-branes. We do this by considering a general
gravity plus scalar plus form field Lagrangian. The solutions of this theory can de-
scribe the branes of the eleven-dimensional theory, and also those of both the Type
ITA and IIB theories in ten dimension. We then describe the conserved charges,

including the energy, of these extended objects and the relation to supersymmetry.

Part II of this thesis describes our original research. Chapters 4 and 5 are mainly
devoted to the study of the consistency and stability of braneworlds. These models
are generically inspired by domain wall solutions of five-dimensional gravity, how-
ever they have gravity localised on the four-dimensional worldvolume. In chapter
4 we are interested in Hofava-Witten spacetimes [94], which we define as singular
Zo-symmetric solutions to a bosonic theory arising from the Kaluza-Klein reduction
of supergravity in ten or eleven dimensions [97,108]. In chapter 4 we discuss the
‘breathing mode’ reduction of type IIB supergravity on S°. This leads to a five-
dimensional theory with particularly interesting domain wall solutions, the singular
versions of which resemble the Randall-Sundrum models [13,14]. We proceed to
define the generalised Abbott-Deser energy for these spacetimes, before discussing
their stability. We present a simple argument based on studying the zero-modes
associated with the domain wall’s motion which shows that much of the previous
work in this area has been overly restrictive. On identifying possibly dangerous

modes that were overlooked before, we proceed to show that they are in fact safe
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by proving stability using the spinorial method introduced in part I. We also briefly
consider asymmetric walls and conclude with a discussion of supersymmetry and

the higher dimensional origin of Zs-symmetric domain walls.

In chapter 5 we discuss a set of simple rules with which one can easily test the
consistency of phenomenologically motivated five-dimensional braneworld models
[24] i.e. those which do not arise from a consistent truncation of a compactified
supergravity theory. We present an extension of these rules to branes with more
general transverse spaces and show the relation to well-known no-go theorems for
smooth (non-singular) flat space and de Sitter compactifications [25-30]. We dis-
cuss examples in five and six dimensions, which illustrate positive features of these
sum rules and show how previous no-go theorems can be circumvented. We also
comment on the application to understanding smoothed p-brane solutions, where
the flat transverse space is replaced by a Ricci-flat space. We present a generalised

energy expression for such branes and comment on future directions for study.

Chapter 6 discusses the problem of finding supersymmetric compactifications of
ten-dimensional string theory on generalised flux backgrounds with branes present.
As this is somewhat removed from the other topics in the thesis, we shall give a brief
review of supersymmetry and compactification, generalised flux backgrounds, and
supersymmetric D-branes. We then describe the conditions on wrapped D-branes
in generalised compactifications to four dimensions preserving the minimal amount
of supersymmetry. We show that these conditions can be understood in terms of
appropriately defined generalised calibrations for these backgrounds, and discuss
the relation to generalised complex geometry.

We conclude with a review of our results and suggestions for future research. A
collection of useful formulae and a description of our conventions are presented in

the appendices.



Part 1




Chapter 2

Energy in (Super)Gravity

2.1 Conserved Charges in General Relativity

Our approach to proving the stability of the braneworld models discussed later will
be to first define the energy for these spacetimes and then then prove that this
energy is positive. If we have a good definition of energy, i.e. one that is gauge
invariant and conserved, then this will prove stability — if energy is positive and
conserved then there is no decay. In order to study the stability in this way, we

must have a good understanding of conserved charges in gravitational theories.

The concept, and problem, of charges in General Relativity has a long history (see,
for instance, [31-34]). The definition of energy in particular is a delicate issue and
remains an active area of research, having been reinvigorated by the AdS/CFT
correspondence in string theory through a reassessment of charges in anti-de Sitter
spacetime [35] and new classes of supergravity solutions [36, 37].

Local energy density is an ill-defined concept in General Relativity, as there is no
useful definition of local gravitational energy density. If we follow the example of
electromagnetism, we are led to the four-index Bel-Robinson tensor, constructed
from the Weyl tensor in analogy with the energy-momentum tensor of the elec-
tromagnetic field strength. Unfortunately this does not have the units of energy
density and so is therefore not very useful. What one can define is the total energy,
or mass, of an isolated system.

To define an isolated system we would like to have some idea of a background,
against which we can measure the fall-off of interesting quantities, such as curvature
perturbations. Obviously this concept does not sit well with the general relativity

in which there are no preferred frames. We can, however, use the asymptotic

13
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structure of a given spacetime. The simplest case is that of an asymptotically flat
spacetime, which will we define as follows [32]. We will denote our spacetime metric
by g (1 = 0,1,2,3), with local coordinates labelled by a# = 2° 2" (i = 1,2,3).
We will define the ‘radial’ coordinate r = V27 - 2% and use Nu to denote the flat
Minkowski metric. If, for any coordinate system z#, the metric components of the
given spacetime behave like g, = 1,, + O(1/r) as r — oo along spacelike or null
directions, then that spacetime is asymptotically flat. The appropriate background
metric with which to compare the fall-off of interesting quantities is then simply

the Minkowski metric 7,

Following standard Noether’s theorem philosophy, we may then attempt to con-
struct charges associated with a set of symmetries. Unlike in field theory however,
we must do this on-shell, i.e. for the symmetries of a solution. In General Relativity

these symmetries are defined by a set of vector fields ¢ satisfying Killing’s equation:
V& +V,6, =0, (2.1)

Assuming that one such Killing vector is timelike, i.e. generates time translations,
we can define the Komar integral [38] for the total energy of a stationary, asymp-
totically flat spacetime. It will be useful to recall that a spacetime is said to be
stationary if there exists a timelike Killing vector, and static if there exists a fam-
ily of spacelike hypersurfaces (constant-time slices) to which this Killing vector is

orthogonal [32]. The Komar energy is given by

1 v o
EKomar = _8_7T/Sdzu EM,/pgvpf ’ (22)

where S is an arbitrary two-sphere and we define the volume element by

1
¥, = ﬁe,ﬂ,padmp Adx? . (2.3)
Here g = —1 is the determinant of the background Minkowski metric and €, is

the four-dimensional volume form. This is related to the two-dimensional volume
form on S by €0 = —6n[u,,epg}1, where n,,, is the normal bi-vector defined by the
orthogonal vectors n,, &,

Ny = 2810 - (2.4)

n, is a unit normal to S and &, is the unit norm Killing vector appearing in (2.1)

1Our conventions for differential forms are explained in the appendix.
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[32]. We shall not prove here that this provides a satisfactory definition of total
energy, but one can easily check it reproduces the desired result for Schwarzschild’s
solution, for example.

A seemingly different definition of energy for an asymptotically flat spacetime was
provided by Arnowitt, Deser and Misner (ADM) [22]. They introduced the canoni-
cal Hamiltonian formulation of General Relativity, from which a value for the total
energy is easily calculated. The ADM procedure is somewhat subtle and we shall

postpone its discussion until later. For now, let us note their result
Expn = 75 45, [091, — h ] | (2.5)

where h;; is the spatial component of the metric perturbation and dS; is now the
measure on an asymptotic spatial two-surface which is the boundary of a three-
dimensional spatial slice (See equation (A.16) for the definition of the volume ele-
ment on a submanifold). One can show that (2.1) and (2.5) agree for asymptotically
flat spacetimes, however it transpires that the Komar expression is somewhat am-
biguous and one often has to compare with some alternate definition. For instance,
if we were to calculate the angular momentum of the Kerr black hole using a Ko-
mar integral we would find an answer that differs by a factor of two from what is
believed to be the correct result [39].

In practice, taking the asymptotic limits associated with calculating total energy
can be tricky and a more formal approach has been developed to provide rigorous
results. This involves defining a spacetime to be asymptotically flat if it can be
conformally transformed to another spacetime which obeys certain rigorous condi-
tions of flatness. The Bondi energy is essentially an extension of the Komar energy
(2.2) to this conformal completion of an asymptotically flat spacetime, associated
to the generators of timelike translations of the extended symmetry group at null
infinity, the Bondi-Metzner-Sachs (BMS) group [32]. The Bondi energy is in fact
not conserved; there can be a flux of gravitational radiation at null infinity. One
can show that under certain assumptions (vanishing of the Bondi news tensor),
the Bondi energy and ADM energy are the same, after gravitational radiation is
accounted for [40].

In the next section we will review the Abbott-Deser (AD) construction of conserved
charges in cosmological Einstein theory [21], i.e. General Relativity with non-zero
cosmological constant A. We will then present the extension of this construction to

higher dimensions [55] in preparation for the discussion of charges for supergravity
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solutions in the next chapter. The final section describes Witten’s proof of the
positivity of energy in classical General Relativity and its relation to simple N' = 1
supergravity.

A comprehensive review of many of the gravitational properties of string theory
and supergravity, covering some of the topics discussed here, is given in the recent

monograph [34].

2.2 Energy in Cosmological Einstein Theory

2.2.1 The Definition of Conserved Charges

The Abbott-Deser method allows the construction of conserved charges for space-
times with general asymptotic structures. The key to this is to correctly identify the
vacuum and its symmetries, which will generally not be that of flat spacetime. We
follow the conventions of [21,32] (R;w = R, ~ +0.1%, . p,v =0, 1,2,3), with

mostly plus signature (— 4+ ++4), our other conventions are explained in the ap-

pendix.

We shall concentrate on solutions to the cosmological Einstein equations
1
R, — §gw,R +Ag, =0. (2.6)

We define a vacuum or ‘background’ solution as some metric g, which solves (2.6),
with examples being de Sitter (A > 0) or anti-de Sitter (A < 0) spacetime. Let us
now consider small fluctuations around background solutions, dividing the metric

as follows

g,lLl/ - guy + h’/},l/ 9 (27)

where h,, is a perturbation which vanishes at infinity. We will use (™) to denote
a perturbation of order n, with all background quantities being barred e.g. V"' =
V#0) From now on we raise and lower indices by 9, and it is worthwhile to note

that the inverse metric is given by
g =g" = M+ R 4 (2.8)

We now expand (2.6) keeping terms linear in h,, on the left-hand side and define

the gravitational energy-momentum pseudotensor 7, as terms of quadratic and
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higher order in perturbations, which we then move to the right-hand side,

1 1 1
Gl = My = R = S9,," Bo) + 50, W Ry = Shu@' R — Ahy,

uy 5 o
= 7w —Ah (2.9)

2]

where we have used the fact that g, solves (2.6). Noting that the Bianchi identity

holds to all orders, and in particular
V' (GY) = Ahy) =0, (2.10)

and using (2.6), we can easily show the pseudotensor is conserved with respect to

the background covariant derivative:
SH
Vir,=0. (2.11)

We could, if we wish, also include matter sources on the right-hand side without
effecting this definition. Recall now that we want to define conserved charges
associated to the symmetries of the background solutions and as such, we expect

there to be a set of background Killing vectors £ obeying
V.6, +V,E,=0. (2.12)

We can now construct the vector density \/—gé“rw which is ordinarily conserved,

1

Ve @) = =0 (Vo) =0 (2.15)

If the perturbation falls off sufficiently quickly, we can construct the following set

of quantities, which we shall call the Noether, or Killing, charges:
Q"(€) = / AV e, | (2.14)
v

where dV = /—gd®z is the volume element on the spatial slice V and we are

using natural units, such that 87G = 1. Showing that Q" (&) are conserved is then
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straightforward

5@ = [ avare)

= —/ dvai{TWEu}
1%
=0, (2.15)

where we have used (2.13) in the second line, leaving a total derivative, and the
third follows by Stokes’ theorem. If the Killing vector &, is timelike, the quantity
Q°(€) is the Killing energy i.e. it is a Noether charge associated to an asymptotic
time translation symmetry. The appropriate fall-off conditions for perturbations

will be discussed in greater detail later for explicit examples.

We can now proceed to show that the volume integral may be written as an asymp-
totic flux integral over a spatial 2-surface. We begin by noting that the pseudotensor

TH” can be rewritten in terms of a superpotential®
T =V VK" + X" (2.16)

The quantity X*” can be written in terms of superpotential K#**? which is defined

as

1
K7 = g HY GO HA — g H g (2.17)
where
v v 1— v
M — piv §gu h, . (2.18)

The superpotential has the same symmetries as the Riemann tensor,
KHPPo = VIR = — [(PHYO = — HPOY (2.19)

The obvious definition of X* from the perturbative expansion of the Einstein
equations is

XW:%[},?@HW—AHW, (2.20)

with X* symmetric in its two indices. We can then use the formula relating

the covariant derivative commutator to the curvature (A.3) and the background

2This ‘superpotential’ is not related to the supergravity superpotential used later. The name
is given as its derivative is related to a quantity of interest, in this case the pseudotensor 7+".
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FEinstein equations to give

v

1—
X — 0 G (2.21)

Using the Killing vector identity _Myp = Ruv: &, we see that the integrand of the
Killing energy (2.14) can be written as

™E, =V, [(ng“pw) £, - Kuovﬁafu} + [Kupwvavp + XW} & (222)

A little manipulation then shows that the last term can be removed, leaving a total
derivative. The anti-symmetry of the resulting expression then allows us to rewrite
the Killing charges as flux integrals over a spatial 2-surface. These are the AD

charges:
@@ - [avo,,
v
= % dS; /=g [V K" — KMV ] €, , (2.23)

where once again i, j = 1,2, 3 label spatial directions and d.5; is the measure on the
two surface which is the boundary of the spatial slice V' (see equation (A.16)). In

fact, one can manipulate this expression into a more transparent form [41]

@@ = fasv/g [ETH LTI L ETI-ET 4w,

—hVE, + EV R — LR + BVE | L (2.24)

2.2.2 Some examples

As a consistency test of the Abbott-Deser (AD) energy (2.24), we can try to repro-
duce the standard result for asymptotically flat spacetime [22,23]. In this case, the

perturbative expansion of the metric is

Guv = Nuv + h;uz ) (225)

where 7, is the Minkowski metric and one can show that in order for the AD energy
to be well defined the perturbations must fall off asymptotically like h,, ~ O(1/r)
as r — 00, where once again r = V' - z7. The exact behaviour of the various
components of h,, can be determined by studying the perturbed field equations,

or the constraints in the Hamiltonian formalism [22].
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Setting A = 0 and using the simple time-like Killing vector in flat spacetime & =
(—=1,0,0,0), we find that the general AD expression reduces to the well known
ADM energy formula

Eap a=0) = Eapm = fdsi [7h; — o'W )] . (2.26)

We can use this result to calculate the mass of Schwarzschild’s solution. It is

convenient to write the metric in isotropic coordinates,

1—M/2p\? M\*
1t = - (ﬁ) e (”%) ax (227)

where dX is the line element on the 3-space in spherical coordinates, and M
is a constant. The ‘radius’ p is related to the regular Schwarzschild radius by
r = p(1+ M/2p)?. A straightforward application of (2.26) then gives Fapy = M,
identifying M as the mass, as expected.

Let us now apply the simplified form of the AD energy (2.24) to the general case
of non-vanishing cosmological constant (A # 0), following [41]. The metric for

Schwarzschild-(anti)de Sitter in static coordinates is

ds* = — Hdt* + H 'dr®* +r%d; (2.28)
M Ar?

H = 1-—-———.
r 3

Concentrating on the anti-de Sitter case (AdS), the background metric (M = 0)
has a simple timelike Killing vector € = (—1,0,0,0) that is globally defined. The

energy integral is then easily evaluated to give

(- %)

(1=3F-%)

Q"€ = E(r) = M (2.29)

so that the asymptotic energy of Schwarzschild-AdS is F(r — oo) = M. One
subtlety in this definition is that anti-de Sitter spacetime does not possess a global
Cauchy surface as spatial infinity is timelike [42]. This means that there could
be a flux of gravitational radiation, causing our energy defined above to be not
conserved, like the Bondi energy in asymptotically flat spacetimes. To resolve this
problem, one must fix appropriate boundary conditions to ensure there is no inflow

of radiation [21].
The de Sitter (dS) background is somewhat more subtle. Looking at the norm of
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the Killing vector

_ =p=v AT2
g/u/é-ué- - - (1 - 7) y (230)
we see that it is only timelike for r < rgy , rg = /3/A, i.e. inside the de Sitter
horizon. If we naively apply the energy expression (2.29), we find E(r — rg) = 0.
Abbott and Deser argued that in order to sensibly calculate the energy we must
consider the case where the Schwarzschild radius rg is much smaller than the de

Sitter horizon, allowing us to perform the integral in the region rg << r << rgy.

This once again leads to the expected result Egqs = M.

2.2.3 Problems and Other Approaches

The Abbott-Deser (AD) approach provides us with an intuitive way to define
charges in the cosmological Einstein theory. In the flat spacetime limit it correctly
reproduces the result of Arnowitt, Deser and Misner (ADM), which was originally
derived using very different methods. It also gave the expected result for the mass
of the Schwarzschild-(anti)de Sitter black holes. Unfortunately, both de Sitter and
anti-de Sitter cases are problematic. Recall that in proving the conservation of the
AD charges we used the Stokes theorem to convert the expression into an asymp-
totic boundary integral, presuming that there were no internal boundaries. The de
Sitter horizon forced us to evaluate our energy integral at finite radius, and as a con-
sequence the Killing energy is no longer conserved®. The AD approach necessarily
involves fixing a background around which to study perturbations (2.7). This split
was long known to cause problems in the definition of angular-momentum, even in
asymptotically flat spacetimes. In this case the problem arises as the asymptotic
symmetry group is not Poincaré, as implied by assuming the background metric g,

is that of Minkowski spacetime, but is the infinite dimensional BMS group [32, 48].

In the case of anti-de Sitter spacetime, the asymptotic symmetry is correctly iden-
tified as the anti-de Sitter group SO(3,2), however the subtleties arise due to the
lack of a global Cauchy surface and also in taking the asymptotic limit [46,47].
Quite surprisingly, there are numerous approaches to the definition of charge in
anti-de Sitter. The original refinement of Ashtekar and Magnon [46] generalised
Penrose’s treatment of conformal infinity in Minkowski spacetime, leading to later
developments in charge definition by Wald and Zoupas [49]. Another approach,
developed by Katz et al [50,51], uses Noether current techniques and a superpo-

tential, similar to the AD method we have described. Yet another approach uses

3This has studied by Shiromizu et al [43-45], who resolved the issue for certain restricted cases.
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counter-term subtraction [52, 53], inspired by the AdS/CFT correspondence. All of
these are based on using symmetries of the Lagrangian in various guises. A quite
different tact was advocated by Henneaux and Teitelboim [54], who studied the
Hamiltonian theory, following in the vein of the original work of ADM.

The state-of-art in this area has been recently reviewed by Ishibashi et al [35],
where the Henneaux-Teitelboim, Ashtekar-Magnon-Das and counterterm subtrac-
tion methods, and an extension of the Wald-Zoupas method, were all found to
agree. While this provides evidence for the equivalence of Lagrangian and Hamil-
tonian definitions, the relation to the original AD approach and that of Katz et al
remains unclear. In particular, these methods both employ a superpotential which
is related to a pseudotensor defined in the bulk. The other methods listed above are
all based on boundary techniques, where the quantities being studied are genuine

tensors, and at present it is unclear how to relate the two?.

2.3 Conserved Charges in Higher Dimensions

The work that we shall describe in chapters 4 and 5 of this thesis is concerned
with the energy and stability of extended objects in supergravity. Before we turn
to this, it will be useful to understand the simpler case of pure gravity in five
dimensional, Kaluza-Klein theory. In this section we will review the work of Deser
and Soldate [55], who generalised the AD charges to five-dimensional spacetimes
with one compactified direction. This introduces some techniques which will prove

crucial in defining the energy of the domain wall solutions we shall study later.

2.3.1 Definitions

In this section Greek indices run over all five dimensions (u,v = 0,...,4), while
upper case Latin indices run over M, N = 1,2,3,4 and lower case Latin indices
run over m,n = 1,2, 3. We are interested in defining the energy of solutions to the
five-dimensional Einstein equations, and we choose to follow the approach of Deser
and Soldate, who generalised the Abbott-Deser pseudotensor definition of conserved
charges to five dimensions. We begin by splitting the five-dimensional metric into
the background and perturbation pieces which are taken to vanish asymptotically
9w = Gy + Ny We then define an energy-momentum pseudotensor 7, in terms of

the perturbations in the same way as described previously (section (2.2)). We can

4We thank A. Ishibashi for a discussion on this point.
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then define the usual Noether, or Killing, charges associated with the symmetries

of the background
@@ - [avor,, (231)
v

where £, is a Killing vector and now V is a four-dimensional submanifold of the
spacetime.

Before proceeding to evaluate this integral in terms of perturbations h,,, it is
worthwhile to consider what type of solutions we would like to study. In particular,
it is only meaningful to compare energies among solutions which have the same
asymptotic structure i.e. the same background metric g,,,. With our later example
of the Kaluza-Klein in mind, we shall choose to limit to the case of background
solutions with topology Mj 3 x S, where z* € 0,27 R. Any solutions to the five-
dimensional Einstein equations that do not have this topology therefore fall outside

of our discussion.

One further assumption is that once again there is a simple timelike Killing vector
€' = 6%, and that there are no internal boundaries. We can then evaluate the
Noether charge associated with &, the Deser-Soldate (DS) energy:

E = /dx4/d3x700

2TR ) )
— / da? / d*S; (9;h7 — "W, — 'hY,) . (2.32)
0

Note that any terms with z*-derivatives are periodic in 2* and so vanish under the
integral over S'. We now define the radial coordinate over the remaining three
spatial directions p = vz - 2. Looking at the DS energy we then notice that the
integral is only well defined if hy;n ~ 1/r, as opposed to 1/r* as one might have
expected for a five-dimensional theory. If one wishes, it is possible to show that this
fall-off property is correct in a more concrete manner by carefully considering the
field equation for the perturbations, or equivalently the integrand of the four-volume
integral, with the appropriate Kaluza-Klein ansatz [55].

Consider now a class of compactifications of the form M;3 x S!, with energies
E(h,q) given by (2.32). One way to find a possible preferred vacuum among this
class would be to look for a minimum energy configuration amongst E(h,g). To
do this it is useful to fix the S! radius to be R in all compactifications, such that

geometric differences are entirely encoded in g,,. This allows the DS energy to be
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written as
27 R - o )
E(h,g) = / dm4/d25“/§44 (@h” —8lhjj —§4481h44) . (2.33)
0

Deser and Soldate then note it is not possible to compare energies amongst different
compactifications as it would require hyy — constant, whereas we know that this
method of defining charges relies on studying perturbations that vanish asymp-
totically, i.e. h,, — 0V p,v. This is an obvious limitation of the Deser-Soldate
approach — we can not compare energies amongst spacetimes with different asymp-
totic behaviour. Of course, one can still compare energy among backgrounds with

the same asymptotics but differing by small amounts of matter T/ .

2.3.2 An example - the Kaluza-Klein Monopole

When we constructed the Killing energy in section (2.2), we split the metric into
background plus perturbations (2.7) and stated that the background contribution
should satisfy the Einstein equations. The example that we shall now discuss, the
five-dimensional Kaluza-Klein monopole [56, 57], is interesting as upon making this
split the background metric is no longer a solution of the field equations. The
monopole metric was found by noticing that a solution to the five-dimensional
vacuum Einstein equations can be constructed by taking the direct product of
R (—dt?) with any four-dimensional gravitational instanton (i.e. a solution to the
four dimensional Euclidean vacuum Einstein equations) [56]. In this way one can
construct the Kaluza-Klein monopole from the Taub-NUT instanton [58]. The

metric is

ds*> = —dt®+H ' (dz* + Ay d¢®) + H (dr® + r*dQ3)
4
H = (1 + Tm) Ay =4m(1 —cos ) , (2.34)

where 0 is the azimuthal angle in the spherical metric dQ3 and m is an as yet
unfixed parameter. This metric is ultrastatic, and therefore possess the simple
timelike Killing vector E” = 0", and also has an additional rotational symmetry
in ¢. A spacetime is ultrastatic if go9 = constant and it is static. Note that for
the solution to be non-singular, the parameter m appearing in A4 must be fixed by
the radius R of the S! direction 2% and so there is only one unique Kaluza-Klein
monopole for this choice of topology M3 x S'. The asymptotic limit is given

by H — 1, however the Kaluza-Klein vector component A, does not vanish and
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thus one sees that asymptotic metric g, does not satisty the background Einstein
equations G,,,(g) = 0 [57]. Crucially though, the 0-components of the Ricci tensor
vanish

Rou(3) =0 . (2.35)

Let us now turn to the definition of energy for this background. In order to con-
struct a Killing energy for the Kaluza-Klein monopole we need the exact form of
the pseudotensor appearing in the integral (2.31), and it will be useful for us to

reconsider its definition. Let us write the Einstein equations in the following form

guv = \/—_g GH = XHvpo Rpo’
1
= Vg (g“pg”” - 59“”9”") Rye =T, (2.36)

where we now include contributions given by the matter energy-momentum tensor
T, and for convenience we have defined the contravariant combination of metric
factors X#*?. We then make the standard split of the metric into background and

perturbation parts (2.7) and expand the above expression to give
G = G 40X R, + X 6R,, + O3, ) = 6T (2.37)
where

6R,, = VoI, — V0%,

Il
|
|
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V' Vahpe — VAV V.V A+vVh). (2.38)

Following our construction of conserved charges in section (2.2), we would now
expect to expand the term dX#"?? keeping only terms linear in h in our definition
of the energy-momentum pseudotensor 7#, and moving terms of O(h?) and higher
into the total source on the right-hand of the perturbed field equation. However,
Deser and Soldate note that this would not lead to a conserved quantity (as can
be easily checked), thus we must move 0X**?  and the background term G*”, onto
the right-hand side of (2.37) to define the new total source T%":

1 e - v &
[ = g = =5V VU = VR = VR T

—g" (VAVML — vpvkhp)) ] - T%W : (2‘39)

Returning to the question of conservation, we take the covariant divergence of this
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expression and find that it is still not zero,

1

(VR + VR, -V Rye) b7 (2.40)

—u = 1
V.G =R"'V, (h“" — 5@”%) +
The way around this problem is to use (2.35) and the simple form of the timelike
Killing vector £ = 6" , along with the fact that Vi, = 0 in this background to show
that

Vo (VR =0 (Vomer) = o =0 @

We may now define the conserved Killing energy (2.33) for the Kaluza-Klein monopole
background

Exxm = /d$4/d25m/ -9 (thiK —vihjj —vih44) : (2.42)

where again K, L = 1,2,3,4 run over all spatial indices, whereas i,j = 1,2,3. To
evaluate this expression explicitly it is most convenient to use Cartesian coordinates,

such that the integrand can be rewritten as®

N X NI VIR vi j —i 1 i
= (thzK —VW, -V h44> — Wt =g = S =T (2.43)

The energy of the Kaluza-Klein monopole (2.34) is then found to be,
Exikn = / &PV (2H+H™) = m. (2.44)

In [57], the authors calculated this five-dimensional energy using various methods
and showed they all agreed if the Killing vector € is covariantly constant (i.e. if
the Komar energy vanishes). Moreover, they carried out the dimensional reduction
on the S direction and proved that the resulting four-dimensional theory produces
a canonical energy-momentum pseudotensor. It is interesting to note that the
compactified monopole solution to the resulting four-dimensional Einstein-Maxwell-
(dilatonic) scalar theory is singular, whereas the original five-dimensional solution
was not. This is indicator of the later result of Gibbons et al, which showed that

dilatonic singularities are artifacts of the dimensional reduction procedure [59].

®See appendix B of [55] for other relations that are useful in this calculation.
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2.4 The Positive Energy Theorem

After the concept of global energy was introduced in General Relativity, the obvious
next step was to show that it is positive for all reasonable solutions of the field
equations. The problem was posed by Arnowitt, Deser and Misner [22], however
a formal version of the statement took a considerable time to appear. Schoen and
Yau [60] provided a proof that, although rigorous, involved mathematically complex
analysis and lacked some physical intuition. This was superseded by Witten’s proof
using spinors [61], and its later refinements [62], which were inspired by work on
the positivity of the supergravity Hamiltonian [63,64]. An interesting perspective
on the period between the rigorous proof and the later physical version is provided
by [65].

We shall now review the proof of positive energy for asymptotically flat spacetimes
in classical General Relativity, which will be of use for understanding the work
we describe later in this thesis. We will begin by proving the positivity of an
initially abstract quantity defined in terms of spinors, and then provide some more
physical understanding by considering how it arises in simple N/ = 1 supergravity,

the supersymmetric extension of General Relativity.

2.4.1 Spinorial Stability Analysis

It will be useful to briefly review our conventions for spinors here, following [66, 67]
(see also Appendix A). We use curved spacetime y-matrices in a real representation
obeying {Ya,V8} = 2gas, which may be constructed from the usual y-matrices with
flat spacetime indices using the vierbein e (g, = egegnﬂ). We shall use o, 3
to label flat indices and all indices run over four dimensions. We define 7° =
YOyty?y3  {75,4*} = 0, with the Lorentz generators defined as 0as = $[Va, 5]
The covariant derivative on a spinor ¥ is V¢ = 9,9 + %wﬂo‘ﬁaag 1 and we define
¢ =iy,

We begin by defining the Witten-Nester (WN) four-momentum [61, 62]

1
P = -5 / dS,., E* (2.45)
ov

where the integral is taken over the boundary of the spatial volume element V' and

once again we set 817G = 1. The Nester 2-form E*” is defined as

BEW = etvre (%VBvacrw - VUE/YS/pr) ) (246)
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where ¢ denotes here a commuting Dirac spinor function which tends to a constant

asymptotic value 1.
Y(x) = oo + O(2) , asrT — o0 (2.47)

Assuming there are no internal boundaries or horizons, we can use Gauss’ law to

rewrite (2.45) as
Pt = / 45,V B . (2.48)
v

Using the following useful formula,

2G%, = 2R%, — 6\ R = 3"’ R"

[v/m VV] %ZJ = %Raﬁuy anﬁqyb ’ {’Yua Uozﬁ} = —€uap 7)\75
N CO AU

af3 E5pv

we can calculate the divergence of the Nester tensor to find
VB = =™ G¥ + 2V, 0 {7, 0"}V ) (2.49)

Using Einstein’s equations, and defining the vector u* = ¢y, we can now rewrite

our expression for the energy (2.48) as

Fyy = — / A,V , B
\4

- / dy, T5u* — 4 / DI VIRTE LLe L A VR (2.50)
4 14

From our earlier discussion of the ADM energy, we know that we should consider
the measure of this integral as being over a spacelike hypersurface. Choosing v = 0,
we then have the 3-volume element on a constant time hypersurface d¥g = dV. We
shall use m,n = 1,2, 3 to label coordinates on the spatial hypersurfaces under this
foliation. Concentrating on the second term in (2.50), we find it can be rewritten

as

/ AV Vb {7°, "IV tp = 2 / A VARTLIC L VST
=— / AAVARTIR VRTINS / AV VAT VST

having used ¢ = ¢T7°, (7°)2 = —1 and 20™" = ™4™ — §™". The WN energy is
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then written as
Ewn = P = / dV TSu + / dV V"tV i — / dV Vot y™"V 00 | (2.51)

Let us now consider the positivity of this expression. The first term is positive if
u? is a future-pointing non-spacelike vector field, and 7" satisfies the dominant
energy condition, i.e.

T, u'v” >0, (2.52)

for u*, v¥ non-spacelike. The second term is manifestly positive, as it is a square,
however the sign of the third term is undetermined. The way around this problem

is simply to remove the troublesome term by imposing the ‘Witten condition’
Y'Vath =0 . (2.53)

It has been shown [68,69] that solutions to this equation, which is essentially the
spatial Dirac equation, always exists on spatial hypersurfaces with the appropriate
boundary conditions defined by (2.47). With this in hand, one can show that the
WN energy is positive

Bwn = /dVTﬁqu/dv V' Vo >0, (2.54)

Furthermore, we can see that the inequality is saturated when 79 = 0 and V¢ = 0.
As we initially considered arbitrary hypersurfaces >, we can promote the second
condition to V, = 0 i.e. on all possible hypersurfaces. Also, as we considered an
arbitrary commuting spinor parameter ¢, we in fact have a basis of such spinors
that are covariantly conserved. Using this in conjunction with the integrability
condition for covariant derivatives on spinors, one finds that Fwy = 0 holds if
and only if the spacetime is flat (R,..s = 0), proving Minkowski spacetime is the
minimal energy solution to Einstein’s field equations. One can also make contact
with the more physical definition of energy by perturbatively expanding the spin
connections and vierbeins appearing in the Witten-Nester energy (2.54). Keeping
only first order terms and using that it is always possible to form a Killing vector
from a gamma matrix and two Killing spinors, one can show that (2.54) reduces to
the Noether energy, or the equivalently the ADM energy, that we discussed earlier.
The assumption of no horizons rules out arguably the most interesting solutions of
the field equations, black holes. The extension of the Witten proof in this case was

carried out by Gibbons et al [70], and required a subtle analysis of the boundary
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conditions on the spinor parameter. The apparent horizon of the black hole forms
an inner boundary H on the initial hypersurface 3. Showing that the energy is
positive then requires proving the existence of spinors ¢ behaving as in the original
proof outside the region H on ¥, with some appropriate boundary conditions on
H. The obvious choice is ¥|g = 0, however one can easily show that the Witten
condition (2.53) then implies that 1) must vanish everywhere. The key is to identify
an appropriate projection v'y%) = 1) on H, which halves the degrees of freedom.
One can then show that energy is positive and independent of data inside the region
H [70].

Gibbons et al also considered black-holes with Reissner-Nordstrom electric and
magnetic charges () and B, respectively. The proof proceeds exactly as before,
only one must modify the covariant derivative to include a field strength term.

Eventually one finds the following inequality

P (M —in"(Q = 7°B)) ¢ >0, (2.55)

which must hold for all v, thus the mass is bounded from below by the charges
1
M > ((Q2 + B2)2) : (2.56)

This mass bound for Reissner-Nordstrom solutions is interesting as it resembles
the bounds one finds for the mass of solitons in supersymmetric field theories i.e.
supersymmetric version of the Bogomol’nyi bound on the mass of monopoles and
dyons. Witten and Olive showed that this bound can be linked to the topological
terms, the central charges, that are necessarily appear in supersymmetric theories
with solitons [71]. Their arguments were extended to N' = 2 supergravity by
Gibbons and Hull who first derived the bound (2.56) for the solitons of this theory
[72]. This implies a strong connection between supersymmetry and positive energy,

which we shall consider further in the next section.

The spinorial techniques described above provide an elegant and relatively simple
way to prove that energy in classical General Relativity is positive. It is clear
that the crux of this proof lies in the ability to impose the Witten condition, thus
removing the negative term in the expression for energy. The existence proof for
solutions to (2.53) is complex, however we can gain some physical intuition by

considering the relation between classical supergravity and general relativity.
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2.4.2 Simple Supergravity and Positive Energy
D=4, N =1 Supergravity

Witten’s original proof of positive energy was inspired by results in quantum super-
gravity, but in fact it was later shown that the same result can be derived from the
classical theory, and it is this approach that we shall now discuss. We will begin by
introducing the Deser-Zumino version of simple N = 1 supergravity [73]°. The field
content of this theory is the vierbein e, (gravity) plus the spin-% Rarita-Schwinger
field, which is a Majorana fermion. In the first order formalism described here, the
connection w is also an independent variable, which must be varied to produce its

own equation of motion. The Lagrangian for simple supergravity is [73]
1 (A
L= §6R — ee T e PRV T/ I (2.57)

where e = dete”, and R = e“ae”bRW“b. The action of the covariant derivative on
spinors is as defined in the section (2.4.1) (which is different from that used in [73]),
although w now includes torsion induced by the gravitino. The equations of motion

for ¢, wyap and e, are

R = e (v, V0, — 17:C1,) =0, (2.58)
7 —
C,u,VT - 5 ¢M77¢V 9 (259)
7 _
G™ = 5 P\ A5V 1, (2.60)

One also find non-trivial boundary terms, that we shall discuss later. Note that the

Einstein tensor is now non-symmetric due to the torsion, defined by
C = Ve — Vel . (2.61)

Setting 1 = 0 reproduces the vacuum Einstein equations and one can easily check
that this is a consistent truncation of the field content. To reproduce the second

order results of Ferrara et al [74], one solves (2.59) for the connection w,,qs to give

Wpas = Wuas(e) + § (Eg%ﬂ% + Eu’@@bﬁ - Eu7é¢2> , (2.62)

af ap B o «
(o) = geﬁu( R Qﬁi) : (2.63)

6For a review of this, along with the superspace approach of Ferrara et al [74], see [75].
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where wzﬁ(e) is the torsion-free spin connection and Qafﬁg are the objects of an-
holonomity, defined by
P v P
Q5 =2e'es Ope,) - (2.64)

The action for (2.57) is invariant, up to total derivative, under local supersymmetry

transformations with respect to an infinitesimal anti-commuting parameter e

deety = ity (2.65)
Sty = 2V ¢ (2.66)
56(")11% = Bu% - %e%BB% + %eguBB@ g (2.67)
where
BM = Z'E%’@Vﬂ/)pﬁ)‘wp . (2.68)

The product of two supersymmetry transformations affects a spacetime diffeomor-

phism, as can be seen by looking at the commutator

[657 (561] = (5@(Ku) + (SL(KHW#CLQ) + 5_[(#77[;# , (269)
K" = 2 y*e (2.70)

where the 0 terms on the right-hand side are coordinate transformations, local frame
rotations and supersymmetry transformations respectively. The supersymmetry
transformations form a representation of the supersymmetry algebra, the super-

Poincaré algebra, which closes on-shell.

The total derivative term that appears upon varying the action is given by
6.8 = / d'zV 0" (2.71)

where 04 = i ¢HvPA @V%%V,\e. Using Noether’s theorem we can derive the corre-

sponding conserved currents J* and supercharges ()

05

Jep’ = méeé — 9?6MVP)\ = -2 EMVp)\ EV”YS’Y,DVAG + e ) (272)
Q-c— / s, Jb (2.73)
P

where ® denote all fields in the theory and the ellipsis indicates torsion terms which
vanish on-shell. Supersymmetry transformations are generated by the supercharges

@ through ., = €“Q,, and so the @)’s also form a representation of the supersym-
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metry algebra

{Q,Q} = CraP™ | (2.74)

where C' is the charge conjugation matrix in the chosen representation and P® is

the four-momentum.

The Witten condition from Supergravity

In order to thoroughly understand the positivity of gravitational energy one should
formulate the Hamiltonian version of classical supergravity [76]. We shall not do this
here, but instead reproduce only the key features required in order to understand the
physical significance of the Witten condition, following the arguments of Horowitz
and Strominger [77] (See also [78]).

In the Hamiltonian approach, transformations are generated by Dirac brackets with
respect to the appropriate charge. The supersymmetry transformations (2.65)-
(2.67) are generated by the Dirac bracket with the supercharge @), and similarly,
time translations are generated by Hamiltonian H. A fundamental property of
supersymmetric theories is that time translations are also generated by the square
of supersymmetry transformations, so that roughly H ~ 2. This relation was
first noted in the quantum supergravity by Deser and Teitelboim [63], and later
extended to the classical theory. In performing the Hamiltonian analysis, one must

make an appropriate gauge choice for the gravitino,

Yo =0 (2.75)
Y =0 (2.76)

which holds on the spatial hypersurface > that the Hamiltonian will be defined on.
On identifying 1, as the correct degrees of freedom for the gravitino, one can then
argue that if the Witten condition (2.76) were not imposed, the supersymmetry
transformation 6.7 would transform positive energy components of gravitino into
positive and negative (unphysical) energy, components of the gravity sector [78].
Local supersymmetry combined with the Witten condition (2.76) then implies that

the parameter € is asymptotically covariantly constant
Y" Ve =0, (2.77)

This equation has four non-zero solutions €y which determine four supercharges

Qn (N =1,...,4). Taking the Dirac bracket of two supercharges and comparing
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the result with the explicit form given above (2.69), one finds
AP =2 [ &S (Vmey)!
MY ENL = (V™en)' Ve (2.78)

where €% is the asymptotic value of the N—th supersymmetry parameter. Recall
that Witten’s argument used commuting spinors, so in order to reproduce this we

must factor out the anticommuting component e,

en(z) = Oyan(z) , (2.79)

where 6y form a basis of the Grassmann algebra. One then integrates out over
the anticommuting variables and uses that a%,a9, should be timelike and future-
directed in order for P, to be a sensible expression for energy. The resulting ex-
pression is

E=2 / P2 (V") Vo, (2.80)

which is exactly Witten’s energy expression for vacuum solutions to the field equa-

tions.



Chapter 3
Supergravity and p-Branes

In this chapter we will provide a short introduction to p-brane solutions in super-
gravity. This is a vast subject unto itself and is the topic of many good review
articles; we shall mainly follow [79].

We begin by reviewing the main elements of eleven-dimensional supergravity, its
equations of motion and supersymmetry algebra. This is the highest dimension
in which one can formulate a theory of supergravity, and is the simplest of the
supergravity theories related to string theory (See [80,81] and references therein).
Our main interest will be the extended objects which are solitonic solutions of these
theories, generically known as p-branes, where p labels the number of spatial dimen-
sions on the brane’s worldvolume. For instance, a domain wall in four dimensions
would be a 2-brane. We will study a general p-brane ansatz to the common sec-
tor of supergravity theories, i.e. D-dimensional gravity coupled to a scalar and a
n — 1-form gauge potential. We will see that two basic p-brane solutions exist; the
extremal branes, which can be supported electrically or magnetically by the gauge
field. As examples, we briefly describe the 2-brane and 5-brane solutions in eleven
dimensions. We then discuss the definition of energy, charges and the supersymme-
try of these branes and describe a more general class of solutions known as black

branes. This will allow us to understand the special role that the extremal branes

play.

35
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3.1 11D Supergravity and its solutions

3.1.1 Action, Symmetries and Field Equations

In this chapter we will adopt the conventions common in the literature, which differs
from that used earlier. In this section capital Latin indices M, N will run over eleven
dimensions, with underlined indices once again being used for flat, tangent space
indices. We define the eleven-dimensional vielbein eMM using gy = eMMeMNnM,

Ny 18 the eleven-dimensional Minkowski metric.

The action of eleven-dimensional supergravity is [82]

1 _ )
S = / d'e =g [R+ o (Tam N PRS- 125 TS (Fpgrs + Frons )

1 1— 1 -
_ @FMNPQFMNPQ _ §\I/MFMNPDN <§[W + w]) \I/p]

1 ﬁ / AV geKLMNPQRSTUY [\ B e Aoy (3.1)
where Fyynpg = 40 Anpq), Anpg is a 3-form anti-symmetric tensor gauge poten-
tial and W are spin 3/2 fermions satisfying the Majorana condition ¥ = W7C~1,
with the charge conjugation matrix C' being defined by C~'T4C' = —Fg. The
covariant derivative is then defined as D(w)y = Oy — iwﬂffBF ap and @yap =
WMAB + EENF M A73N Py p, where w is the sum of spin connection and contorsion
tensor. € is the eleven-dimensional anti-symmetric tensor, and the final piece of
(3.1) is a topological, Chern-Simons term.

Following the literature [7], in this chapter we will choose the eleven-dimensional

gamma matrices forming a pure imaginary representation of the Clifford algebra
{Ta T} = —2n4p . (3.2)

The action (3.1) is invariant under general coordinate transformations, SO(1, 10)
local Lorentz transformations, Abelian gauge transformations and N = 1 super-

symmetry with infinitesimal anti-commuting parameter €, the latter defined by

S.e2, = —iEl AW, (3.3)
55\11 = DM€ = D((Z))Mé — Till (FMNPQR — 8FNPQ(5RM> ﬁNPQR g, (34)
3

55AMNP = EgF[MN\I]P] . (35)
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Fis the supercovariantised field strength defined by F NPQr = Fnpg R—3§[ NLpQYR).
The supersymmetry transformations and explicit form of the action are fixed by
requiring that the appropriate equations of motion are reproduced. In particular,

we expect to have the following supercovariant field equation for W,,,
TMNPDNWp =0 . (3.6)

Comparing this with d¢.S and requiring any extraneous terms to vanish fixes the
coefficient of the Chern-Simons term in (3.1). Specifically, requiring the vanishing
of all terms of the form gWF? fixes the product of the Chern-Simons and A co-
efficients, and then the d A coefficient is completely fixed by considering the terms
EOVF and eVOF.

The supersymmetry transformations (3.3)—(3.5) form a representation of the eleven-

dimensional supersymmetry algebra,

{Q> Q} =C (FAPA + FAfBUAiB + FABCDEVABCDE) ) (3-7)

which is an extended version of the super-Poincaré algebra, where Uyp and Vapepe
are 2-form and 5-form charges respectively, whose significance will become apparent
when we discuss solutions to this theory. For the moment, let us note that we will be
interested in solitonic solutions preserving some fraction of supersymmetry. These
can be found by consistently truncating to the bosonic sector and solving the field

equations there, which are given by

- 1 . 1~ - 1 - -
Ryn (@) — igMNR(W) = §FMPQRFJ€QR - ﬁgMNFPQRsFPQRS , (3.8)
B 1 . .
D(C:))MFMNPQ - = ENPQRSTUVWXYFRSTUFVWXY ’ (39)

plus the Bianchi identity
O Fnpor =0 . (3.10)

3.1.2 p-brane Solutions

Having introduced eleven-dimensional supergravity in the previous section, we will
now discuss its solitonic solutions. We are going to do this by finding the general
p-brane solution to a D-dimensional theory of gravity, a scalar field ¢ and one
(n — 1)-form potential Aj,_y) (n # D/2) with field strength F},) = Aj,—1) [79]. The
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action for this theory is

Sp = / dPr/=g <R - %(&p) - %e“d’FﬁL]) | (3.11)

where now M, N =0,...D — 1 and the topological term has been dropped out as

we consider only one gauge field. The equations of motion derived from this action

are
1 n—1
Ryn = m (FMPQ PnFN P ( 9MN>
1
+50u00N0 (3.12)
Vi, (e FM-M) = (3.13)
O¢ = — e ®F? . (3.14)

2n!

In order to describe eleven-dimensional supergravity we set a = 0 = ¢, which one
can easily check is a consistent truncation by looking at the field equations. We will
now make an ansatz for solutions preserving (Poincaré); x SO(D — d) symmetry,
which is appropriate for p-branes. We split the spacetime indices into zM = z#, y™,
where z# (u,v = 0,...,p) are coordinates on the d = p + 1-dimensional Poincaré
invariant space, the worldvolume, and y™ (m,n = d, ... D—1) are coordinates on the
isotropic transverse space. The metric for a solution preserving these symmetries
is

ds® = eQA(r)ngx“dx” + e2BMg, . dy™dy™, (3.15)

where 0,,, is the flat metric on the transverse space, and we have defined the radial
coordinate r = /y™ - y™. The ansatz for the scalar field is simple ¢ = ¢(r), however
the gauge field requires some more thought. In analogy with electrodynamics, we
expect the Ap,_q) potential to support an extended object with p = (n — 2) spatial
dimensions, carrying the corresponding electric charge. In this case, our ansatz for
the gauge potential is

A

Hlefin—1 — eﬂlm,unfleC(r) ) (3.16)

with field strength

lellmﬂn—l = 6#1‘..un_18m€C(r) 9 (317)

Alternatively, we could have an object supported magnetically by the gauge po-
tential corresponding to the Hodge dual of original field strength Fj,. This dual
(D — n)-form field strength would support a (D — n — 2)-brane, and although the



CHAPTER 3. SUPERGRAVITY AND P-BRANES 39

dual action for this field is not straightforward to construct, the ansatz for the field

strength supporting this magnetic brane is simple:

yl

7 )
pd+2

(3.18)

le...m‘iJrl = )\€m1...md~l

where A is an integration constant that we associate to the magnetic charge and
we have defined d = D —d — 2. We must then show that this ansatz solves the
equations of motion, fixing the form of the functions A(r), B(r) and C'(r). The task

is greatly simplified if we state that we want our solution to obey
dA"+dB' =0, (3.19)

where ' = 0/0,., which one can show is implied by preservation of some fraction of

supersymmetry. Introducing the definition

o, 2dd
A=a EDR (3.20)

and making some further educated guesses as to the form of the solution, one can

re-express the ¢ field equation as a pure Laplace equation in the transverse space:
V2esn? =0 (3.21)

where ¢ = £1, depending on whether we look for an electric/magnetic solution

respectively. This is easily solved to give,

. k
el = H(r) =1+ = , (3.22)
T

where k is a constant, and we have fixed ¢}, _.o. A little more manipulation of the
field equations then allows one to deduce the form of the function appearing in the

field strength ansatz (3.17) for the electric brane
C(r) 2 -1
e = —H(r)" ", (3.23)

and fix the charge of the magnetic brane

2d
\ = ﬁk . (3.24)

Combining the above results, we present the complete metric for the p-brane solu-
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tions of theory defined by (3.11):

ds* = H(T)A(_;z) dztdx"n,, + H(T)Méd—?) dy"dy" O, (3.25)

e’ = Hea | H(r)=1+ (3.26)

T3
rd

with the corresponding choice of field strengths,

Foiopin oy = €ptorpin—10m (H’l) (electric) | (3.27)
Foim, = —€my..m O H  (magnetic) . (3.28)

3.1.3 M2 and M5 branes

Let’s look at the soliton solutions of eleven-dimensional supergravity. As mentioned
above, we can consistently truncate the action (3.11) by setting a = 0 = ¢, which
means that we then fix A = 4. The electric M2 brane solution is [83, 84]

2 k _% [T B Y k % m . j, n
ds , = <1 + —) dx"dx" 1, + (1 + E) dy" dy" 6mn
e\ L
Apx = € (1 + —6) , v =0,...,2. (3.29)
r

The magnetic M5 brane solution is [85]

3 L\ 3
ds ( ) dxtdz”n,, + (1 + ﬁ) dy™dy" 6,mn
y"
"5

Fonpg = 3k €mnpgr—= v =0,...,5. (3.30)
Both are asymptotically flat by construction, but various coordinate transfor-
mations display other interesting features of these solutions. Transforming r =
(fd — k)%, we find Schwarzschild-like coordinates. For the M2-brane one then finds
a degenerate horizon at 7® = k, where light-cones do not flip over (unlike the hori-
zon in Schwarzschild geometry), and a timelike singularity at 7 = 0. So we see that
M2 is more like the Reissner-Nordstrom black hole of General Relativity rather
than the Schwarzschild black hole, as one would expect for a charged solution. For
the Mb5-brane, one also finds a degenerate horizon at 72 = k, only now there is no
singularity at r = 0. We can see this by considering the interpolating coordinates,
defined by 7 = kd(1 — R%)"d. In this frame the M5 is symmetric under R — —R,

allowing a maximal analytic extension to a smooth spacetime, exactly like that
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used for Reissner-Nordstrom solution.

In fact the interpolating coordinates have a further use. The limit R — 1 sends
both solutions to flat space. On the other hand, the near horizon R — 0 limit,
takes M2 to AdS, x S™ and M5 to AdS; x S*, both of which, along with the flat
space limits, are maximally supersymmetric solutions of the eleven-dimensional su-
pergravity. So we see that the M-brane solutions interpolate between the maximally
supersymmetric vacuum of the theory [59], and so we expect them to have some

interesting supersymmetry properties, which we will now discuss.

3.2 Charges and Supersymmetry

3.2.1 Energy for p-Branes

Defining mass or energy for p-branes requires a little thought. The extended nature
of these objects means that any integrated quantity will diverge due to the infinite
world-volume i.e. we no longer have some localised, point-like source as in the case
of a four-dimensional black hole. Instead, we will evaluate the energy density, with
the integral taken over the boundary of transverse space d Mt with the appropriate
background metric being a transverse asymptotically flat spacetime [79,86]. To
remove the problem of the divergent worldvolume integral we can impose that the
worldvolume directions are periodic, with p-volume V,,. We can then define the

average of some quantity A in the obvious way [86]:
1
<A>= —/dpa: A. (3.31)
Vo

The p-brane energy density, first given in [79], is an extension of the Deser-Soldate
energy for five-dimensional spacetimes (2.32) that was presented in section (2.3.1).
Understanding that we have an appropriately normalised integral, as in (3.31), we

can define the p-brane energy density by
Ep—brane = / dD_d_lZm(énhmn - 8mhg) ) (332)
OMT

where Qp_q_1 is the volume of the transverse S?~¢~! unit sphere, i, = 1,...,d—1

and early alphabet lower case indices run over all spatial directions a,b =14,5...m,n...

1=1,...D—1. For compactness we do not write the explicit p-volume integral as

in (3.31). The integral (3.32) is easily evaluated for the general ansatz presented in
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the previous section (3.25), for which we find the following expressions for metric

perturbations
Akd 4Akd
L I (3.33)
A(D — 2)rd A(D —2)rd
8k(d + 1d
A(D —2)rd

where we have used 0"r = y"/r. Using that dP~4-15m = pdymd(P=d-1 e then

find ~
AkdQ2p_q—
Ep—brane = % ) (335)

where Qp_4_1 is the volume of the unit (D — d — 1)-sphere. To put this into some
perspective, we will now consider a more general class of solutions to the equations

of motion derived from (3.11): the black brane metrics.

3.2.2 Black Branes

The black brane metric, written in generalised Schwarzschild coordinates, is [87-89]

ds? = —e®dt* + e dx'da’§;; + e*°di* + e*Pi?d03,_,

(ZAL;_Q 4d
o2 — K* ’ Q2A — B e — K+d~
K+ KEI_A(D—Q))
i cA Ti J
P — KA Rkl K —1— (—) , (3.36)
7

and the general field strength parameter is now given by

2d
A= W : (3.37)
This solution to the field equations (3.12)-(3.14) represents a two-parameter family
that generalises the electric and magnetic branes discussed in the previous section.
This class of solutions have an outer event horizon at » = r,, which, like that in the
Schwarzschild solution, is non-singular. There is also an inner horizon at r = r_,
which coincides with a proper curvature singularity. In the extremal limit r, =r_,

we recover the supersymmetric solutions of the previous section.

The parameterisation used above is useful as the DS energy density takes a simple,
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if somewhat lengthy form [89,90],

Bup, = [F1(d = 1)) +#91(d = 1)) = #(d + 1) (¢ — )]

Y
T—00

(3.38)
where ' = 0;. Comparing with the result for the extremal branes (3.35), one sees
that -

AkdQp g
Egp > % = Lp—_brane - (339>

Rewriting this expression using k& = v/A\/(2d), we find that the extremal brane
ansatz (3.25) saturates the inequality

o o (3.40)

VA

Recall that the parameter A determines the charge of the solution we were consid-
ering (3.37), and so we see that the charge acts as lower bound on the energy, which
is saturated for extremal branes (c.f. the mass bound for the Reissner-Nordstrom
black hole (2.56)). This type of inequality is similar to the Bogomol'nyi bound
found on the energy of monopoles in Yang-Mills-Higgs theories, with the extremal
limit being equivalent to BPS condition i.e. the extremal branes (3.25) solutions are
the BPS states of our theory. To understand this point better, we need to reconsider
the supersymmetry of these solutions and the definition of their electric/magnetic

charges.

3.2.3 Supersymmetry of p-Branes

Let’s begin by considering the M2 brane (3.29) and the definition of its electric
charge. As this solution is singular, we expect it to produce a Jd-function contribu-
tion in the field equation for Ap). In analogy with a point particle source in regular

electromagnetism, we introduce the Nambu-Goto source action for the 2-brane [79],

1
Lo = Qe/ d3§ [_ﬁJr geuupaﬂxManNapxRAMNR ) (3'41)
W3 :

where 7, = 9,2M0,2N gy (0, = 0/0€") is the pullback of the eleven-dimensional
spacetime metric onto the three-dimensional worldvolume W3 of the 2-brane, which
has coordinates &*(u = 0,1,2). This produces a d-function current in the A

field equation which, for brevity, we now write in form notation (See appendix for
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conventions),
d (*F[4] + %A[g} A F[4]) = *J[g} , (3.42)
where
JMNE — ), / d366° (x — z(&))da™ A da™ A dx® (3.43)
W3

This leads to a generalised Page charge

U :/ (*Flay + 3Am) A F)
OMsg

1
= / *Jg) = 3! d*Spn JMNY (3.44)
Mg °

which then identifies U = (). as the 2-brane electric charge. We can evaluate this
integral explicitly for the M2-brane (3.29), for which the A A Fly term vanishes.
Choosing Mg to coincide with the M2 transverse space, we can use the explicit form
of Fy to find

Qe = / d7EmF7812 = >\Q7 . (345)
OMg

Looking again at the ADM-mass formula for p-branes (3.35), with k = v/A)/(2d),
and using that A = 4 for the eleven-dimensional theory, we find by direct compar-

ison that the Bogomol’'nyi bound (3.40) is indeed saturated for the M2-brane
Eyg = Qe = N7 . (3.46)

One finds a similar result for the M5-brane, where now the magnetic charge defined
by the Bianchi identity (3.10) is given by

V= / Fuy. (3.47)
OMs

Choosing the M5 transverse space to coincide with M5 and using the ansatz for the
field strength (3.30), we find

V= / A" €™ FPT = Ay (3.48)
OMs

Once again one can easily see that this solution saturates the Bogomol'nyi bound
(3.40). These arguments certainly imply that the M2 and M5-brane solutions pre-
serve some supersymmetry, however one can go further. The M2 and M5 charges
U = Q. and V are in fact the magnitudes of the 2-form Usp and 5-form Vigepe

charges appearing in the eleven-dimensional supersymmetry algebra (3.7) [91, 92].
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For instance, the 2-form charge may be defined by

U2 = Q, / da* A da® (3.49)
Sa

where the integral is over the spatial 2-cycle Sy of the M2 worldvolume. This ex-
pression will be used to re-express the anti-symmetric tensor charge U4? appearing

in the supersymmetry algebra in terms on the charge Q..

Let us now say that the M2 spatial directions Sy coincide with x', 22, then (ignoring

the 5-form charge) we find the supersymmetry algebra can be written as [79]
{Q.Q} =C (TR +T'"U1s) . (3.50)

From our discussion of energy bounds and charges above we can now use that
pOZEMQZQe andC:FO,toﬁnd

{Q,Q} =2Ev2 Pz, Poa =5 (1+17°%) . (3.51)

Using that (I'°'2)2 = 1, where 1 is the unit matrix, one sees P°'? is a projection
operator with trace trP?? = 1.32. This implies that half of the eigenvalues of P!
are zero. Any supersymmetry transformations preserved by the M2-brane solution

must in turn satisfy the following relation
{Q,Q}e=2E\p Ppae =0 = $(1+T)e=0, (3.52)

where now we see that since P°'? has half zero eigenvalues, the M2 brane solu-
tion preserves half of the supersymmetries of the background. We could have also
studied the background supersymmetry transformations (3.3)-(3.5) directly. For
bosonic solutions this means looking for background ‘Killing spinors’ i.e. spinors
which solve

6.V =Dye=0. (3.53)

One can show that this results in the same projection condition in terms of P%2
as one finds by considering just the supersymmetry algebra, again implying that
half of the original 32 supersymmetries are preserved by the M2-brane. A similar
procedure shows the M5-brane is also half supersymmetric.

Having seen that the extremal branes of eleven-dimensional supergravity preserve
half the supersymmetry, we can step back and reconsider equation (3.50). We

know that the left-hand side of this expression must be positive definite and so
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if we don’t impose the extremal relation Fy = )., a little manipulation gives the
following bound
Py = Bz > Q] (3.54)

where we have used (3.49). This has the same form as the Bogomol'nyi bound we
found by a direct construction of Noether charges for branes (3.40), and which also
arises when one considers the positive energy theorem for charged black holes, as
we noted earlier (2.56). In fact, (3.54) is nothing more than the extension of the
supersymmetric bound of Gibbons and Hull [72] to solitons which are no longer
point-like.

To recap, we have seen that supersymmetric (extremal) branes saturate Bogo-
mol'nyi bounds linking mass and charge i.e. they are minimal energy solutions.
We could show this by considering the charges directly or, more fundamentally, by
showing that super-algebra itself implied that energy was minimised for solutions

preserving some fraction of the background supersymmetry:

E > |Q]
E=1|Qc < Dye=0. (3.55)

A spinorial proof of positive energy for p-brane spacetimes of this form has also

been given [59, 93], extending the black hole version we discussed earlier.
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Chapter 4

The Stability of Horava-Witten

Spacetimes

4.1 Introduction

Hofava-Witten (HW) theory is an interesting alternative to standard compactifica-
tions for generating models of four-dimensional physics [94,95]. The theory links
11-dimensional supergravity on the orbifold S*/Z, with strongly coupled heterotic
Eg x FEg string theory, and upon further compactification to four dimensions on
a Calabi-Yau can provide phenomenologically interesting models. One distinctive
feature of such models is the prediction of an intermediate, five-dimensional, energy
regime when particles previously bound to the four-dimensional boundaries M, can
probe into the fifth (bulk) dimension [96,97]. The full eleven-dimensional picture

isn’t recovered until energies reach the string scale.

This rigorous string construction inspired many particle physics and cosmology
models suggesting intermediate scales that could be easily detected at the next
generation of experiments. Most notable were the large extra dimensions model
of Arkani-Hamed et al [10-12] and the Randall-Sundrum warped compactification
models [13, 14], with many more following quickly (see [98,99] for recent reviews).
Many of such models are constructed with string theory as an inspiration, however
their mathematical consistency is often not so clear.

Let us clarify our terminology here. Models which include some number of extra
dimensions are now generically known as brane worlds, whether they have any
relation to the branes of string theory or not. We will be interested only in Horava-

Witten spacetimes, which for our purposes we define as Zo-symmetric domain wall

48
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solutions, such as the ten-dimensional orbifold places in the original HW theory. A
distinguishing feature of such spacetimes is that they have topology My xZ, where 7
is an interval. In the case where the interval is the orbifold Z = S'/Z,, we have two
possible interpretations of the spacetime: the ‘upstairs’ picture with a Z, identified
circle; or the ‘downstairs’ picture where we have the interval with boundary branes.
For consistency, these boundary branes, or orbifold planes, must have equal and
opposite tension, as one can easily see from their singular contributions to the field
equations (see (5.2.1) and [24]) and so these models have negative tension objects

present from the outset.

The appearance of negative tension branes seems troublesome. If we were to de-
scribe the low-energy excitations of these domain walls by some field theory, the
negative tension brane would give rise to a scalar field Goldstone mode with a wrong
sign kinetic term: the classic sign of an instability in the theory. However, it is often
the case that these HW spacetimes are supersymmetric by construction, and as we
discussed in part 1, supersymmetric objects have positive energy. There seems to be
a flagrant contradiction, but in fact it’s what the theory tells us. Consider the ten-
dimensional orbifold planes in the original HW model. The supersymmetry algebra
of eleven-dimensional supergravity contained topological extensions that are linked
with the M2 and M5-brane solutions, and in section (3.2.3) we saw that it was the
spatial charge components that were linked with these solutions e.g. Uiy in the
M2-brane case. It turns out that if one were to consider the time component of the
2-form charge, the corresponding extended solution is a 9-brane — the HW orbifold
plane [100,101]. In [94] , Horava-Witten showed that the Z, projection defining
the orbifold planes commutes with half of the supersymmetry transformations, and
that the condition of equal and opposite tension for the two planes was required
for consistency of the theory. Hence one finds that the spacetime My x S'/Z,
is supersymmetric and thus should be stable, as supersymmetric states minimise
energy, and therefore have no decay channels. On the other hand, the negative
tension brane could give rise to “ballooning” modes, i.e. one would expect that it
could lose energy by expanding, thus becoming unstable!. In this chapter we aim
to resolve this issue by providing a comprehensive analysis of the energy and the

fluctuations of HW braneworld solutions.

1Concerns to this effect were raised by Brandon Carter at Stephen Hawking’s 60" birthday
conference [102]
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4.2 Domain Wall Perturbations

We will begin with a general consideration of the possible fluctuations of domain
wall spacetimes. Much like our analysis of energy in chapter 2, let us identify a

five-dimensional background solution around which we will consider perturbations:

dst = Wy, datdz” + e 34 W ay? | (4.1)
¢~IHy) , H=klyl+c, (4.2)

where ¢ is the scalar field supporting the branes and ¢, k are constants. We note
that H is a linear harmonic function as expected for a domain wall, and that the
metric data A(y) is a function of H whose precise form we shall give later. The
indices = 0, 1,2, 3 run over the worldvolume of the domain wall, with y labelling
the transverse, bulk direction. Capital Latin indices M, N run over all directions.
Choosing to parameterise the interval Z as S'/Z,, the Z, identification appears as
a symmetric kink in the harmonic function at the location of the branes. For clarity
we note that to complete the HW picture, we should consider the case with two
branes located at y = y; , (i = 1,2), where the brane at y = 0 will have negative
tension H(y)'|,—0 < 0 and we can choose the positive tension brane to be at y = 7.
For completeness, we note that when two branes are present the harmonic function
is simply written as

H=k(lyl+ly—=|)+c, (4.3)

and that the functional dependence of A(y) on H remains unchanged. To simplify

the formula we will often write the harmonic function with only one brane.

There are two types of motion that these branes can perform. The first, which
we shall call the ‘centre-of-mass’ mode, corresponds to the branes keeping fixed
separation but moving in the interval. The second mode, commonly known as
the ‘radion’, corresponds to relative motion between the branes and we choose to

discuss it first.

Labelling the radion mode by r(z”), we note that the motion can be understood

by the following perturbation of the background metric

dss = e""IT2AW o) gty 4 o2 TBAW gyy2 (4.4)
¢ ~InH(y)+r(z’). (4.5)

One approach to understanding the physics of this fluctuation is to consider the
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effective field theory on the domain wall worldvolume. This brane world dimen-
sional reduction differs from the usual Kaluza-Klein procedure as the ‘compactified’
direction need not be near Planck size or even be compact. The low energy states,
including gravity, are localised on the worldvolume by virtue of the metric warp

2A(y

factor €24 which also ensures the that massive modes which appear in the mode

expansion in the fifth direction, the Kaluza-Klein tower, are exponentially sup-
pressed [13, 14].

Carrying out this reduction for our domain wall, it turns out that it is possible to
truncate the effective theory to just four-dimensional gravity coupled to the scalar

field describing the radion mode [104, 105], the equations of motion then being

R() = d0,ro,r (4.6)
OWr =0 (4.7)

where ¢’ is a positive constant. An appropriate field redefinition brings this into
canonical form, and we then conclude that we should not expect any instability from
it. It has been shown that if the background ansatz is a solution to a supersymmetric
theory, then the effective field content in four dimensions can be completed to a
Wess-Zumino multiplet [104].

Let us try the same procedure with the centre-of-mass mode. If we shift the brane
positions by some amount s, then physically nothing as happened. This is just a
diffeomorphism with the parameter s being a modulus. However, if we now allow
the modulus to have dependence on the worldvolume coordinates s(z”) then it
has the interpretation of a Goldstone mode, associated with the brane breaking
translational invariance in the bulk spacetime [103]. The Z; symmetry in our
background solution then gets promoted to a local Zs symmetry. This allows for
relative shifts of different points on the brane, with Z, symmetry then acting point

by point. The centre-of-mass motion is described by the following ansatz

ds? = 2Av=s") gfﬁ)daz“d:c” + e 8@ g2 (4.8)
H = kly —s(a”)| + ¢, (4.9)

This mode therefore describes a sort of shear or warping of the HW end branes,
which one can envisage as the twisting of a spring. In many studies of the cosmology
of braneworld models this mode is not discussed, although it appears that it could

allow the dangerous motion of the negative tension brane. The common assumption
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that is made is that the Zy symmetry projects out this mode (see for example [106]),
forcing the branes to remain in fixed positions. However, as we have seen above,
this would only be the case for a global (s(2”) = s) projection, which is a somewhat
arbitrary truncation of the theory. Applying the braneworld reduction techniques
to the centre-of-mass mode, one finds higher order couplings to five-dimensional
modes on the right-hand side of the effective equations of motion. This tells us
that we should consider the full five-dimensional theory plus boundaries in order

to correctly understand the centre-of-mass mode’s behaviour.

We shall finish this section with some comments. The original HW solution did not
possess any difficulties with centre-of-mass mode as it simply does not appear. The
bulk spacetime in this case is flat, and so shifting the brane positions has no effect.
We can also view this from the perspective of consistent truncations of field content.
Working in the upstairs picture, the radius R of the Zy-identified S* is related to
the string coupling constant A (i.e. the dilaton) of the ten-dimensional Eg x Fjg
string theory by R = A?/3 [94]. This is the only scalar degree of freedom in the
ten-dimensional theory, as the N' = 1 super-Maxwell multiplets contain no scalar
fields. However, the HW solution found after compactifying the eleven-dimensional
theory on a Calabi-Yau is a domain wall in five-dimensional curved space and the

Goldstone mode reappears [97].

One interesting point that arises from the brief Goldstone mode analysis above is
that both the radion (4.4,4.5) and centre-of-mass (4.8,4.9) motions can be identified
with fluctuations of the bulk geometry, despite the presence of singular branes.
For Zs-symmetric domain walls the Israel matching conditions become boundary
conditions on the bulk fields [107]. This allows us to describe the domain wall
dynamics entirely in terms of the bulk fields in the surrounding spacetime region,
which will prove crucial when we come to consider the energy and stability of these

fluctuations.

The model that we choose to focus on for studying the stability problem is not
the compactified version of the original HW theory, but rather a five-dimensional
model arising from a ‘breathing mode’ reduction of Type IIB supergravity. This
is particularly interesting as it gives rise to Zo-symmetric singular domain wall
solutions that display the gravity-trapping feature of the Randall-Sundrum model,
and we review its properties in the next section. The work described in sections
(4.2) and (4.3) of this chapter appeared in [1].
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4.3 Supersymmetric Domain Walls

4.3.1 Randall-Sundrum solution

In order to study the stability of Zs-symmetric HW domain walls, it is useful
to choose a particular model with certain generic features. The two Randall-
Sundrum (RS) models [13, 14] are of phenomenological interest as they admit four-
dimensional gravity at low-energies, but provide the intriguing possibility of experi-
mental detection of the extra (fifth) dimensions at an intermediate (say, a few TeV)
energy scales. The simplest RS model, which we previously called RS2, is a singu-
lar domain wall in five-dimensional anti-de Sitter space (AdSs) 2. In attempting to
embed this into the fundamental framework of string theory, it’s natural to look to
a theory admitting AdSs5 as a vacuum. A good choice is ten-dimensional Type 11B
string theory, and in fact it will suffice to concentrate on its supergravity limit. A
simple application of the p-brane solution techniques described in chapter 3 shows
that one solution of Type IIB supergravity is a self-dual 3-brane solution; the D3-
brane. This solutions is similar in structure to the M5-brane of eleven-dimensional
supergravity (3.30); for instance, it admits a analytic continuation to a completely
smooth spacetime [59]. Writing the metric solution in interpolating coordinates,
one finds that the near-horizon geometry of the D3-brane is AdSs x S°, suggesting
that Type IIB compactified on S® is the good guess for a theory in which to embed
the RS model.

We will now review the RS solution constructed in [109, 110]. The five-dimensional
theory is derived from the S° dimensional reduction of Type IIB supergravity, where
the volume modulus of the S® is promoted to the dynamical ‘breathing mode’. The
Type IIB field equations for gravity and the five-form FJ5, and the Bianchi identity

are most conveniently written as [108]

1 A A A A
dF[5} =0=d=x F[5] , (4.12)

and for our purposes it will suffice to consider only this sector of the theory. The

hatted capital indices run over all ten dimensions fl, B = 0,...,9. The ansatz for

2In this chapter we are not directly interested in the studying the hierarchy problem, which
was only addressed in the first Randall-Sundrum model, and so we shall not differentiate between
the two.
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the Kaluza-Klein S® reduction is

ds3, = e**?ds? + e_%ds2(55) , (4.13)
Fi5) = 4m 68a¢6[5] +4m 6[5](55) , (4.14)

where the €’s are the volume forms on the five-spaces, and we will now take un-

hatted capital Latin indices to run over the five dimensions in the line element dsZ,

M, N =0,...,4. The resulting five-dimensional equations of motion are
1 8 1 o
RMN = §8M¢>8N¢ + §m2 68a¢gMN — §R5 e%dngN s (415)
]_6 16
O¢ = 64am? e3¢ — gaR5 e's? (4.16)

where the constant m is Type IIB 5-form flux, Rs is the scalar curvature of the S°
and a = % We stress again that ¢ is not the ten-dimensional dilaton, but the

breathing mode scalar representing the volume of the 5-sphere compactification.

A Lagrangian which one can vary to produce these equations of motion is [108]

L5 = Lon + Ly =g |R— 5067 - V(5)| . (1.17)

where

V(¢) = 8m?e®*® — Rye 59 (4.18)

That this gravity plus scalar theory is a consistent truncation of the dimensional
reduction of Type IIB is interesting because the scalar is massive. Traditional
Kaluza-Klein philosophy would say that if we include one massive scalar, we are
forced to include a whole tower of massive states [7]. The breathing mode scalar
¢ evades this as it lies in a singlet of the SO(6) symmetry group of the S®. To
make contact with the more familiar Kaluza-Klein compactifications we note that

the usual AdS5 Freund-Rubin vacuum solution corresponds to the case where

oWy
8_¢_ = e

5
= = constant, . 4.19

20m? (4.19)
As a consistent truncation of the compactified theory, we could expect the La-
grangian (4.17) to have a supersymmetric completion. The specific details of the
reduction and truncation from the full ' = 8 theory are complicated and remain

unclear; but for now, let us just note that it is possible to rewrite the potential for
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this theory in terms of a superpotential [110]

V(p) = W3 — §W2 : (4.20)

W(y, ¢) = V2(2me**? — 5 %egad’) , (4.21)

which fits perfectly with the general expression for potentials in N/ = 2 supergravity
[111]. We shall return to the question of supersymmetry later.

The domain wall solution to (4.17), which we take to be our basic example of a

HW domain wall, is given by

ds? = (byH*™ + by HY )2, da da” + (b HY T 4 by H ") 2dy? | (4.22)

o= YPw) . H=Hyle. (423)

with b, = :tzg—gl , by = i%\/5_]%g,, and p,v = 0,...3 running over the domain wall
worldvolume. Here k denotes the tension, and the second Zs-symmetric brane of
opposite tension is placed at y = 7w such that the topology of the full spacetime is
Ry x S'/Z,. Recall that the RS model was a gravity-trapping slice of AdSs. If we
want to have a limit where pure AdSj5 is reached then we must choose by, > 0 and

by < 0 [105,110]. Also, in order for the metric to be real, we require

H(y)" >| b (4.24)
by

which can be satisfied if the constant ¢ is chosen appropriately. At this point one
could ask why we must have a singular domain wall, not just a smooth solution
to the field equations. The answer comes from the fact that supergravity domain
walls are well known to only have anti-de Sitter asymptotics on one side [112], so
in order to have a gravity trapping domain wall we must introduce the modulus in

the harmonic function (4.23).
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4.3.2 Brane Actions and Supersymmetry

The appearance of the |y|-term in the domain wall metric (4.23) means that we get

singular terms in the Einstein tensor and in the scalar field equation [113]:

3k 5 2 1
Gu = ﬁ(%lH’? + 5boH ™ 7)(g55) 29w [0(y) — 0(m — y)] + Reg (4.25)

Gyy = 0+ Reg (4.26)

2v/15k
7

O¢ = — (biH™7 + by H™7)(gs5)"2[0(y) — (x — y)] + Reg , (4.27)

where we use Reg to denote the regular non-singular terms solving the bulk field
equations (i.e. for y # 0). One notices that singular terms appear only in 4
out of the 5 diagonal components of the Einstein tensor, and that there are two
contributions corresponding to b; and by. This suggests that we couple two 3-brane
source terms to our action. Rather than use the Nambu-Goto action as introduced
for the M2 brane in chapter 3, it will be convenient for the moment to use the

equivalent Howe-Tucker action [114], given by?

St = =T [ @[5V 00, X g (X)FO(X)) = V7

+ %eWﬂTaMXMaVXNapXPaTXQAMNPQ(X)} (4.28)
Here T' denotes the tension, £* denote the worldvolume coordinates, X (¢) are
embedding functions and 0, = 0/09¢", v,,(§) is the worldvolume metric on the
brane and the function f(¢(X)) is as yet unspecified. The topological Wess-Zumino
term for the 4-form Ay (X) is required for consistency and represents the charge
of the brane. Without this it would not be possible to satisfy the ‘brane-wave’

equation i.e. the equation of motion resulting from 65/ .X.

Let us pause our discussion of brane actions to consider where Ay appears from.
The five-dimensional theory (4.17) arises from the dimensional reduction of the
gravity plus five-form Fs5 sector of Type IIB, which is itself a consistent truncation
of the full ten-dimensional theory. The reduction of this field strength’s kinetic
term is trivial, and the resulting five-form in five dimensions has no continuous
degrees of freedom. However the flux parameter m, which appears in the reduction
ansatz, is linked to the potential for the breathing mode scalar ¢ and so the Fs5 does

have some role to play [108]. Fields strengths of this form have become known as

3Note that we choose j, v, ... indices to denote worldvolume directions 0,1, 2, 3 in anticipation
of the fact that we will choose the comoving gauge later.
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“theory-of-almost-nothing” fields. It now seems natural to identify Fi5 = d Ay (X),
providing a bulk kinetic term for the field we introduced for consistency of the
brane. However, if we dualise the kinetic term for Fj5 in the dimensionally reduced
action we would find only half of the potential V' (¢) in the Lagrangian. The second
term in the potential V(¢) arises from the scalar curvature Rj of the S° in the
compactification. For our purposes it will be useful to introduce a second “theory-
of-almost-nothing” field strength F[g,] = d}im in five dimensions, dual to this term
of the potential. Recall that there are two singular sources in the field equations
(4.25)-(4.27), so we now choose one brane to couple to Ay and the other to Ay.
In order to completely determine these couplings, we need to calculate the junction
conditions for our domain wall. Before we do so, note that as Ay, descends from the
Type IIB four-form in ten dimensions, the brane coupling to this field will have a
natural interpretation as being the dimensional reduction of the self-dual D3-brane

there. We shall leave the interpretation of the second component for the moment.

Israel Junction Conditions

Let us now explicitly calculate the Israel junction conditions coming from our total
five-dimensional action S5 = Sgn. + Sp + S5_pbrane given by (4.17) and (4.28). We
will work in the comoving gauge X#* = £, X® = (0, 1), which means that there are
no conditions associated with the 55 and ub components of the Einstein equations

as TP  =0=T"

e brame- L he singular contribution to the Einstein tensor is given by

T 2
G = —E&y)gwf (¢) + Reg , (4.29)

which we can trace-reverse to get

RMV 5<y>glwf2(¢> + Reg . (430)

B T
3v/9s5

As the non-trivial contributions come from the T} = and we can derive the associ-
ated junction conditions by integrating the yuv components of the Einstein equations

across the brane hypersurface, where the Reg terms do not contribute [23, 115]:

+e +e€
/ dyGW:/ dyT,, . (4.31)

€ €
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On taking the limit € — 0 we find
Ky — KQW]J: =t (4.32)

where ?,, is the integrated stress-energy tensor defined by the ¢ — 0 limit of the
right-hand side of (4.31), K, is the extrinsic curvature of the brane defined by
K, = 8MXM8,,XNVMnN and npy is the normal to the brane. We can now use
several tricks to simplify this expression. In comoving frame 9, X" = ¢ and for
a domain wall we can always go to the Gaussian normal coordinate system locally,
where g,, = 1, which means that K = Vn, = %g“”gumy. Using this in conjunction

with our Z, condition, we can evaluate (4.31) in trace-reversed form to find

T
Guvy y=0 = _g\/ﬁguuf2<¢)}y:0 ) (433)

where the Z, condition means that the total value of K is related to the value of
the fields on the brane, rather than its difference. A similar junction condition can

also be derived for the scalar field:

9
Sul,_o = 2T/955 f %\yo . (4.34)

In fact, a quicker way to this result is to realise that the only d-function contribu-
tion to the Einstein tensor comes from the term %g;w,yy- One can easily see that

integrating this term alone across the brane hypersurface would give the same result
(4.33).

The Total Action

Using our previous results, we can now write down the complete action, where now
we have four brane sources in total. The sources coupled to A will be taken to
be at XM (i = 1,2), with those coupled to Ay located at X. The total action is
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then given by

1 ~
6_8a¢F[25] + I 6_%Q¢F[%}]

1 1
5 = [ Pov=glR- 5007 - 5 i

2
—4m Z Si / d°x / d*¢6° (x — X)) V=" 0, XM 0, XN grune*™® — 2¢/—~
i=1

2
+ae’””“GMXM&,XN@,XP&,XQAMNPQ]

2
+V/5R5 Y s; / d°x / A8 (z — X) V=" 0,XM0, XN grines™® — 2y/—
=1

2 - - - -
—|—Z6“”’”8“XM8,,XN8PXP80XQAMNPQ], (4.35)

where s; = 1, s = —1 give the opposing charges of the (left, right) branes of each
type. For clarity, we recall that M, N = p,y = 0,...3,4. In the following, it will
suffice to take the two brane types on each side of the interval to be coincident,
i.e. XM = XM Before doing so, it’s useful to note that the five-form equations of

motion are given by

Y, (e~ 3 FUPT) — 8onl5(y) — 8(y — 7)) —

v \/__ge’“""", (4.36)

5 16 ~ LU OO 1 Voo
Vy(—5e P EYT) = 20/5R5[6(y) — 0y — 7r)]\/T—ge’“‘ 7L (437)

which have the following solutions

Funpor = 4me**0(y)v/=g eunrer , (4.38)
~ 2
Funpor = — 5R5e%a¢€(y)\/—g EMNPQT (4.39)

where

+1 for0<y<m
0ly) = (4.40)
—1 for —1<y<0

and we impose the upstairs-picture identification y ~ y + 2.

Once again, we have used the brane worldvolume reparameterisation freedoms and
D = 5 general coordinate invariance to choose a comoving gauge. One might
assume that this would not be possible for the two brane system, however Gregory
et al [117] have shown that in this case the comoving gauge does not over-fix the

coordinate and reparameterisation gauge freedoms. Note that we are not fixing the
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physical positions of the branes, just the choice of coordinates by which we label
the two branes. They remain free to move in the five-dimensional spacetime, with
their motion now being encoded in bulk supergravity fields. A simple way to see
that the branes are not over constrained by the choice of comoving gauge is to note

that the brane-wave equation is not trivially satisfied.

Supersymmetry in Singular Spaces

Five-dimensional theories with singular branes have formulated in a supersymmetric
way by Bergshoeff, Kallosh and Van Proeyen (BKVP) [116]. There are several key
steps involved in ensuring that such a theory is well-defined. First, one must identify
the behaviour of the various fields under the Zy projection. Just as for the domain
wall solution presented in the previous section, one finds that it is necessary to
introduce a five-form “theory-of-almost-nothing” field, which flips sign across the
location of the brane, exactly as was found in (4.38,4.39). The last step is to identify
the scalar function in the brane action f(¢) with the superpotential. An inspection
of the action (4.35) shows that the scalar function, there written as two components,
is indeed the superpotential that was tentatively identified earlier (4.21).

Let us make the correspondence to the BKVP [116] formalism explicit. In order to
simplify the formula, we’ll consider the theory containing only two brane sources.

The action is given by

5= [@oy=a (r- 007 - Vi)
1

+ 6/d5x GMNPQRAMNPQ aRm(a:)

~sm [ Z sf (= X) (VW60 + 1 Apl) ) (41

where v, = 9,2M0,2Ngyn (0, = 0/0&") is now understood as the pullback of
the five-dimensional spacetime metric onto the worldvolume, x-denotes bulk five-
dimensional coordinates and ¢ denotes worldvolume coordinates. s;o = +1 as

before and now

V(6.2) = smlo? (100~ 3007 (4.42)
W(aﬁ(w)):z\%m eledle) 2 % 2 (4.43)
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Written in comoving gauge, the important equations of motion become:

Iym(y) = 2m i(y) (4.44)

Vi,
Fyunpor = 50 Anpor) = V9 i (m(;b)) EMNPOR - (4.45)

4.4 Proving Stability for HW Spacetimes

Having defined the theory we wish to study, let us turn to the question of sta-
bility. Our analysis of the Goldstone modes showed that in order to understand
the dynamics of the system fully we should consider the full five-dimensional the-
ory, not the effective theory on the domain wall. We shall do this by proving a
positive energy theorem for this type of background, before looking at the more
intuitive Hamiltonian approach. Before doing so, we should properly define the
energy for these backgrounds. We shall begin by considering the smooth version of

the background, before discussing the contribution of the singularities later.

4.4.1 Energy Definition for Domain Walls

Following our discussion of conserved charges in chapter 2, we know that the defi-
nition of energy is a subtle business in General Relativity. In order to define energy
for our domain wall we first note that the background metric has a simple timelike
Killing vector EM, so we can apply the Abbott-Deser technique defined previously.
However, as we have a five-dimensional solution with a non-trivial scalar field we
shall have to use some other tricks too, as in the Kaluza-Klein monopole example
of section (2.3.2).

We begin in the usual way by making the background/perturbation split, now in
both the metric and scalar field

IgMN = Gyun T hun , (4.46)
6 = 60+, (147

where, once again, the superscript denotes the order of perturbation and we use

Jun = 95\%\, , hyun = 91(\})1\7 We then expand the Einstein equations as in (2.9),
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where now we must also include the stress-energy tensor perturbations

TN = Tﬁ]—l\-{higher) i Gg\g]—;{higher) (448)
1 L (0 1 0
= Ryjy — 59hng " Rigg + 500nh"™ Rigy

1
—§hMNg<0>RSR§;’; — T (4.49)

where we have the usual contributions due to gravitational energy and we can

explicitly calculate T]%\, to find

1

1 1 1
Tiy = 5600 + 50065 — 2hane 460 + gl h o Re  (4.50)
_1 (0) ¢(O),L¢(1) 1 3V(¢, l‘) V(¢7 I)

_Z VAR (1) 1)
29MN L 29MN 90 ¢ gMN m(2) m(z)" .

While the Bianchi identity holds to all orders
[V GMN™ =0, (4.51)

one finds that the perturbed Einstein tensor is not divergence free with respect to

the background in general, and will contribute to the covariant divergence of 7y :

=M ~(1 0 1 0 0 1)L(0 1)L~ (0
VGl = WMRY g = 50 g O R+ g MR+ TRV TR

(4.52)
where we have defined
1

Rijy = §g(O)RS(hSM;NR + hsn.ymr — harnirs — hrsun) (4.53)
1

F%z\;z = 59(0)RS(hSM;N + hsn,m — huvnss) - (4.54)

We then find that 73,y is not background covariantly conserved, but satisfies
V™ o N x [linearised ¢ field equation] (4.55)

where the [linearised ¢ field equation] is the perturbed version of the ¢ field equation
(4.104),
1

20O g0
50

1
2

0 182‘/((;5(0)’ x)

1 1 L
hRL(b;(]%)L - §hRL;L¢,(]%) + ZhRR; ¢,L 9 a¢(0)2 ¢(1) =0. (456)

One cannot now impose this linearised matter field equation as it would be in
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conflict with the fact that we are also imposing the full gravity plus matter field
equations. However, as in the Kaluza-Klein monopole example, we are saved by a

property of our solution (4.23). As our background satisfies
¢(0)’MEM =0, (4.57)

we have that
(Vaur"™M)éy =0, (4.58)

Using the background Killing’s equation
Vauéy +Vnéy =0, (4.59)
we can construct the ordinarily conserved vector density
Var(v/=g7""€y) = 0 (v/=g7"VEy) =0 . (4.60)
We can then define the AD energy for the domain wall as

EDW:/dV\/—gTOMZM, (4.61)
14

where dV is a 4-spatial volume element. It is straightforward to show that this is

ordinarily conserved, and thus provides a good candidate for energy:

o Eow = — [ VO /GG - T (4.62)
= —[VTHE — T (4.63)
=0, (4.64)

where i, j are spatial indices. The last line follows because G(M% and TM% are
continuous and odd under the Z; symmetry and so vanish at the location of the
branes. The fact that they are continuous can be explained by observing that the
brane energy-momentum tensor is given by

T05

brane

oc Y 9,X°0,X° (4.65)

as can seen from (4.25) and (4.26) in section (4.3.2), and so in the comoving gauge

we have
T05

brane

= 0. (4.66)
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This holds at every order in perturbation theory, and shows that there are no
singular contributions to the 05-component of the Einstein equations. Moreover
this shows that the bulk energy is conserved without any contribution from the

brane variables.

As discussed in the introduction, the brane dynamics can be entirely understood
in terms of bulk fields — the radion and centre-of-mass Goldstone modes. This
was stated more formally in terms of the junction conditions (4.32) which, for
Zo-symmetric domain walls, explicitly become boundary conditions on bulk fields
(4.33). Hence, if we can prove that the bulk energy is positive and conserved, then
we have shown the stability of this class of Zy-symmetric domain walls, which have
metrics of the form (4.23) and a superpotential relation as in (4.21).

Before we continue the proof of positivity , let us note that it can be manipulated

into a total derivative, allowing us to write a surface form for the energy [1,41]

= 7

1 e = owd  0uq S
Epw = 3 / A8y (€™ — EyhONT 4 €0 — € R0 + hOVEN — WVE,
ov

+ TRy — RNy + hE T+ E M — 0% | (4.67)

)

where the semicolons denote background covariant differentiation.

4.4.2 Positive Energy from Spinors

Our analysis tells us that for HW spacetimes it suffices to consider just the bulk
fields alone. As such, if we are able to show that the energy is positive at a given
time, it will remain so due to the bulk field equations alone, with no contribution
from the boundary X*# variables. In this section we will prove a positive energy
theorem for the HW background (4.23) by using the spinorial methods introduced
in section (2.4). We saw there that this proof was more intuitive when we consider
how it arises in supergravity. It is therefore useful to note that we can propose the
form of the supersymmetry transformations for fermions for the supersymmetric

extension of the Lagrangian (4.17) [110,119]*

1
oy = Dye= [V — —=LyW(y, ¢)|e + higher order in fermions (4.68)

6v/2

1 1
oA = (§FMVM¢ + EW¢)E + higher order in fermions , (4.69)

4In this chapter we are return to using a real representation for the gamma matrices. We have
listed some useful formula in Appendix A for convenience.
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where W is the putative superpotential we introduced previously (4.21). From now
on we shall denote background quantities by (¥, with the overline notation being

used for the Majorana conjugate on spinors.

The proof of positivity proceeds in generally the same manner as that for asymp-
totically flat spaces [61, 62], but extended to theories with scalar potentials [64, 120
122]. While we have tentatively identified supersymmetry transformations for the
gravitino ¢ and dilatino A, Boucher [120] has shown that supersymmetry is not
actually required for proof of positive energy, but it acts as a guide to identify

quantities such as (4.68), (4.69) which will prove useful.
We begin by defining the Witten-Nester energy integral

EWN:i/ VB (4.70)
oV

where the integral is taken over the boundary of the spatial volume element V', and
where *E' is the Hodge dual of the Nester 2-form F = %EMNdxM dzV, defined by

EMN — gTMNPD Ly — Dpp MNPy (4.71)

where we now use 7 to denote the commuting spinor function that asymptotically

tends to a background Killing spinor, i.e. it satisfies

P = 0 (4.72)
1

— 1
ierM&O)nJrﬁWﬁ)n = 0, (4.73)

as r — 00, where r is the appropriately defined radial coordinate. The anti-
commuting supersymmetry parameter appearing in the fermion transformations

(4.68),(4.69) is given by 1 times an anticommuting constant.

We can rewrite the energy expression as a surface integral in usual way, where now
the spatial bulk volume V' should be thought of as extending up to an infinitesimal

distance away from the brane hypersurfaces:

Bwn = / d¥yv/—g VnEMY (4.74)
Vv

- / d¥ /=g [DnnUMNEDpn 4+ qTMNYPDyDen + hee] . (4.75)
\%

We then choose to foliate our spacetime in terms of spatial slices at constant times
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and impose the Witten condition on the initial hypersurface
"Dy =0 . (4.76)

It is now straightforward to express the Witten-Nester energy in terms of 51/11-,
o\, where ¢ has the same action as the supersymmetry transformations, with the
anticommuting spinor parameter € being replaced by the commuting n. A little

manipulation leads to
Ewn =2 / dV/—g {(m) o + (SA)TS)\ >0. (4.77)

This expression is well defined if we impose the usual fall-off constraints on metric

perturbations, and also that the superpotential behaves as

1

W<¢) ¢:¢(0) ﬂ

O(¢*) , (4.78)

where [ is the AdS scale for our solution [122], and one can check this is true for
(4.21) [110]. By expanding (4.77) in fluctuations about the background we can
show that it correctly reproduces the surface integral form of AD energy given in
the previous section (4.67). Using the following expression for the vielbein and spin

connection

1
e, = OF + EhPa , (4.79)

1
wggb = §(hPa;b — hpa) (4.80)
one finds the Killing spinor equation can expanded to give

hpa LW O (4.81)

0) (1)
— T W _

This allows us to write (4.70) as

1
Dpn = _ngbrab

1
4 12¢/2

1 . ) 1_ . )
Ewx = / [ZﬁFMU(h’N — hp™iT) — ZUFNH(’”L’M — hp™)
oV
1 . .
+ZﬁFPn(hPN,M _ hPM,N)

12\/_ AN h + TNPRpM 1 TPM R MY ()

1
nrMNTY dX N + hec. . 4.82
Wk 60 n]dS N (4.82)
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We now relate Killing spinors to Killing vectors by
§OM — iy (4.83)

and one can then easily see that (4.82) agrees with the AD energy defined previously
(4.67). Thus, we have proved the AD energy for HW spacetimes is positive, and
as it was also shown to be conserved, this implies that the spacetime is stable
despite the presence of the negative tension brane at y = 0. It’s interesting to note
that the analogous problem of four-dimensional negative mass Schwarzschild has
also recently shown to be stable, subject to linearised perturbations of finite total

energy [123].

Our analysis has shown that one can prove this completely in terms of bulk modes,
independent of all brane sources. A key point here was that the branes were Zo-
symmetric, allowing the construction of an AD energy that is conserved. It would
interesting to see what happens if we relax this assumption, and we shall return to

this point later.
As with the asymptotically flat case discussed in the introduction, the WN method

provides an elegant proof of positive energy for the HW spacetimes. In section
(2.4.2) we saw that supergravity provided some physical reason for the Witten
condition: it arose from a physical gauge choice for the gravitino (2.76), (2.77). We
see now how supersymmetry provides further insight into positivity, as we were able
to identify the appropriate quantities which allowed the WN energy to be written
as a sum of squares. In the case of a supersymmetric theory, it is the sum of squares

of the supersymmetry transformations [121].

4.4.3 Positivity at Quadratic Order

An alternative way to study stability and positive energy is to study the Hamilto-
nian for the given theory and then consider its perturbation. This is not as rigorous
as the spinorial proof as one has to deal with gauge invariance in the theory, how-
ever it is somewhat more physically intuitive and was the common way to tackle
this problem before the development of Witten’s proof [65]. We will now construct
the Hamiltonian version of our theory (4.17) and show that it is manifestly positive
at quadratic order in a particular gauge. One would imagine that any potential
instability would already manifest itself at this order, hence positivity provides a

strong sign that our theory is stable at all orders.

We will follow the canonical ADM approach [21, 22, 124], making an explicit (1+4)
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decomposition of the metric, and choosing spacetime to be foliated along constant
time slices . For clarity we will briefly review the main features of this process
(see [32] for further details).

We will denote five-dimensional bulk coordinates by X* and coordinates on X by
x'. The projector onto ¥ is defined as XM = XM /0z so that the spatial metric

on X is given by g;; = XZ-MX]NgMN, and we define the normal to ¥ by ny XM,

normalised such that gy;ynn® = —1. The spacetime metric can then be written
as

ds® = (N;N' — N?)dt* + 2N;da'dt + g;;dx'da’ | (4.84)
where N = —ny XM is the lapse function and N = X1, XM is the shift func-

tion. Indices must now be raised and lowered by the appropriate metric, so for
instance X}, = gynvg? X . A dot on top of a quantity denotes a time derivative,
while | denotes covariant differentiation with respect to the 4-dimensional metric
gij- The embedding of the 4-dimensional hypersurface in the 5-dimensional bulk
spacetime is characterised by the extrinsic curvature Kj;;, which for this specific
metric decomposition is given by

1 )
(—gi5 + Ny + Njja) - (4.85)

Ki =35

It should be noted that this is not the same extrinsic curvature that appeared
previously in the Israel junction condition (4.32). The “momentum” conjugate to

the metric is defined as

o
5gz]

7Tij

92(KY — g"K) | (4.86)

Mro|=

and the momentum P conjugate to the scalar field ¢ is

_OL gt
P=5—¢—N(¢—N¢|i)- (4.87)

1
The determinant of the metric on ¥ is denoted by ¢2. In terms of the canonical

variables, we can rewrite the action as [124]

S = / dtd'z (#’f g+ Po— N;H' — Ng’%H) . (4.88)
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We see that N and N; act as Lagrange multipliers enforcing the constraints

1 1 1 ..
H = 7m; = on® —g(“PR=V(9) + 5P + 599" dpd; =0 (4.89)

H = 21, +¢'P=0. (4.90)

At background order, these constraints are automatically satisfied by the solution

(4.23), where the background Einstein equations are
UDR = =g +V(e) (4.91)

and we have that
0=PO =70 = NOI = 4O (4.92)

We then impose the constraints at linear order:

ov L, ;
_@D) () 3 “L oM §h qu‘(?)qs‘( g J¢(0)¢|;) =0 (4.93)
= ¢Oli p®) (4.94)
where
(4D) 1) _ B\ — hiyy! — hij(4D)Rg?) . (4.95)

Written in the form above (4.88), we can easily read off the Hamiltonian
H = / d'z [NH + N;H'] . (4.96)

We know that this procedure should give the ADM energy at first order in per-
turbations [22,65], so in order to study positivity we should look at second order
expression. To second order in perturbations, subject to the constraints imposed

at linear order, we find the Hamiltonian is given by

1 .. 1
— S hhy(V + §g<°>’“¢f£)¢f?)>]

Z
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One can easily check that this is conserved, subject to the linearised constraints.
In order to prove positivity of this expression we remove the terms of negative or
undetermined sign. Much like the spinorial version of the proof, we will employ
the standard technique of choosing a convenient gauge [65]. A simple counting

argument tells us we can make five gauge choices, which we choose to be

hil; =0, (4.98)
2 o*V
pL2 _ §7T(1)2 +¢O | o | o2 . (4.99)

We then find that the Hamiltonian reduces to a sum of positive definite terms
plus a term of undetermined sign, which one can show is positive if the following
inequality holds
1 ij +(0) (0
v+ §g(°> ToPo? <0 (4.100)

For our background solution (4.23), this can be written as the following condition

on the metric data

3k?
196 H

(1662H 7 + 20b1by — 562H7) < 0 . (4.101)

One can check that this is always satisfied if the metric is real, i.e. if (4.24) holds.
This means that the Hamiltonian is manifestly positive at second order in pertur-

bations, implying that energy is positive and that our HW domain wall is stable.

4.5 Asymmetric Domain Walls

In studying the energy of the HW domain wall we found that the Z, projection
played a crucial role. Recall that it is exactly this projection that allowed us to
show that the energy was conserved by virtue of the bulk field equations alone,
i.e. without the source contributions from the branes. A natural question to ask is
what happens when we relax this assumption: is the energy defined as before still

conserved? Consider the action with sources given in (4.41). For the purposes of
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this discussion, the important field equations are

GMN = pMI Tg){j,je (4.102)
= SOMON — 1MV ORG p — gV (6, 2)
+% d'od®(rx — X)\/—_wwxff XSW (), (4.103)
IV (¢, z) oW (¢)

O¢ = (4.104)

96 \/—/d4055 = XV XX gun 50
(\/__ P XNW () + V= 'YWX,],\;[X,]EFJ\N/[RW<¢) (4.105)

ow 1
——\/ ’)/‘UVXMXRQMR —e“””"@uXMa,,XRapXS&,XTFNMRST .

0¢ 4!
The final expression is the brane-wave equation, which arises from varying the
action with respect to the embedding functions X. One can easily check that
the energy-momentum tensor defined by (4.103) is covariantly conserved, despite
the presence of the brane source terms. In defining the bulk energy it was im-
portant that the vector density constructed from the linearised energy-momentum
pseudotensor was covariantly conserved (4.60). We shall try to use the same con-
struction for the asymmetric wall. The split into background and perturbations

proceeds as before, where now the pseudotensor is defined as

MN

TMN = My T MN

brane

MN
= Thuk + 57—

5= [ e = X0 [V X (o)]

I 0 MmN

—-T (4.106)

2 brane

where M is the bulk energy-momentum pseudotensor defined by (4.49) and the

last term comes from perturbing the bulk metric determinant factor in the brane
energy momentum tensor. We use §V[.. ] to denote the first order perturbation of
the term in square brackets, whose explicit form is not needed for this calculation.
The source terms also modify the linearised Bianchi identity, which can expanded

to give

1 1 , 1 )
VGO MY = o p0M 90"+ Jhyy M (06) + Shay MV (6, )
1. . 1
+ 3Pk 0M90"6 — SN0V 60N 6
() Nop© MR _ lhR | T MN (4.107)

brane brane
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Taking the covariant derivative of (4.106) we now find

VY o« ¢ 5 linearised ¢ field equation]

+ [linearised brane wave equation] (4.108)

Now, constructing the vector density from 7y, as before (4.60) we find that the
first term once again vanishes by virtue of ¢(®M¢, = 0, however the last term

remains. We then find that

Vu(v/—gmMYEy) = /7 [linearised brane wave equation]” &5 # 0 . (4.109)

and the term in brackets is the linearised version of (4.105),
\/_ ,ul/XNW F 1) N \/_ ,uuxMxR 82W \/_ (1)8N (0)
|: ( Yy ( ))} + MR ((b) - o T a¢(0)2 _7¢ (b
_ a_W Al

SV YhALON ol + 5 ) [e‘“’””a XM8 X"0,X%0,X FNMRST} = ((4.110)

+5 [W((b)\/—_w“”X,MX,’ﬂ NV

LLow
3060

This expression can be simplified by using the background equation of motion
(4.45), however it remains as an O(1) perturbed equation of motion. Following our
earlier discussion, it would be inconsistent to invoke a first order equation of motion
to show conservation at first order. As this term remains, it appears that the charge
defined using the AD formalism is no longer conserved. It is interesting to see that
it appears as a perturbed equation of motion, as is the case for the bulk fields.
However, the expression is not multiplied by an overall factor of a background field

which would have allowed the same Killing vector trick to work.

It is not clear whether this observation is physically interesting or an artifact of the
definitions and calculations used here. However, it would appear that the asymmet-
ric domain walls are considerably more complicated the Zs-symmetric HW domain
walls we have considered above, and one can certainly not draw any conclusion
about their stability from the analysis presented. Initial studies of asymmetric
brane worlds seem to suggest that even linear perturbation analysis breaks down,

and so much remains to be understood about these models [125, 126].
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4.6 Comments on Breathing Mode Reductions

Before concluding this chapter, we shall make some comments on the breathing
mode reduction [108] used to find a five-dimensional theory that has a HW domain
wall solution. As we stated previously, this five-dimensional theory is a consistent
truncation of the dimensional reduction of Type IIB supergravity. As such, we
should expect to be able to lift the domain wall solution up to ten dimensions and
identify it with some known solution. In [110], the authors initially identified the
lift with a stack of positive and negative tension D-branes. A deeper examination
of the singularity structure proved that in fact there was a greater contribution
than one could expect from the appropriate amount of D-branes, suggesting the

presence of some other objects [113].

We would like work out whether our theory (4.17) has a supersymmetric extension.
As a first step we can ask if it can be realised as the bosonic subsector of a well
defined five-dimensional supergravity. We have already mentioned that the bosonic
theory with singular source terms included fits the known prescription for super-
symmetry in singular spaces [116], however this did not include any fermions. In
fact this question has already been answered for smooth domain walls by Celi et al
[127]. They studied the conditions under which domain wall solutions to so-called
fake supergravities can be realised as solutions to N/ = 2 gauged supergravity in five
dimensions. A fake supergravity is a purely bosonic theory where one identifies a
putative superpotential from which one can derive the scalar potential, as we did in
(4.21). One then finds constraints on the scalar field ¢ supporting the domain wall.
For instance, if the domain wall is curved then ¢ must lie in a vector multiplet;

whereas for a flat domain wall, ¢ must lie in a hypermultiplet [127].

Of course our five-dimensional theory arises from the S° compactification of Type
IIB and as such, we expect it to have N/ = 8 supersymmetry in five dimensions,
as spherical reductions preserve all supersymmetry [128]. The details of the full
nonlinear version of this reduction remain unclear. Nevertheless, we can choose to
focus on just an N = 2 sector and write down our theory there. For the breathing

mode reduction described above, this has been done by Liu and Sati [119].

Given this argument for believing that our five-dimensional is indeed supersymmet-
ric, we can now ask what the lift of our domain wall solution is. As we are mainly
interested in the supersymmetry of this solution, we won’t concern ourselves with
stacks of branes, but just try to work out what the type of branes we have in ten

dimensions. In the next section we will review the general ansatz for breathing
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mode reductions and domain wall solutions given in [108]. We then present a sim-
ple method to determine the dimensions of the branes from which a domain wall

solution has descended, focusing on ten and eleven-dimensional examples.

4.6.1 Domain Walls from Breathing Mode Reductions

Following [108]°, we shall consider a D-dimensional theory of gravity coupled to a
n-form field strength
~ 1 -
e ' L=R—-——F?. (4.111)

2n! "
Hatted quantities will always be D-dimensional. The reduction ansatz for the D-

dimensional metric is

ds? = €29 ds? + &7 dsz : (4.112)
dy — 2
3= —% , (4.113)
y

where D = d, + d,, o and 3 are constants, and at this point we only assume that
the compactifying space is Einstein. In order for the breathing mode scalar field ¢
to have a canonical kinetic term in d, dimensions, we require that

2 dy

T od, —2)(dy +dy —2) (4.114)

although we will just write «, rather than its numerical value. The generic ansatz

for the reduction of the n-form is

~

Fo(z,y) = F(x) , (4.115)

which will be modified in the special cases of n = d, and n = d,,. For the latter we

make the ansatz,

Fu(z,y) = F(x) +meq, | (4.116)
where ¢4, is the volume form on the compactifying space. In the case n = d, we
can dualise the resulting kinetic term for the field strength to give a cosmological

term, which is a precursor of the “theory-of-almost-nothing” field discussed above.

The reduction ansatz is then most easily written in this dual form, with

2(n—1)ag

F, =me €d, - (4.117)

°In particular, see appendices A and B of [108]
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In the case where d, = n = d,,, we simply take the ansatz to be the sum of these
two special cases, as in the example of the self-dual field strength in Type 1IB
(4.14). Upon applying this ansatz, one finds that the resulting d,-dimensional field

equations can be derived from the following action
-1 1 2 | _2(a—p) Lo 9 2de1)a
e £x:R—§(8<p) +e “”Ry—§gme v eg (4.118)
Our HW domain wall (4.23) was a solution to a theory of the form [108]
-1 1 2
e £:R—§(8g0) Vi), (4.119)
with the potential V' (¢) given by

1 1
V(p) = 591€m? — 5957 . (4.120)

Comparing this to the general form of the dimensionally reduced Lagrangian (4.118),
we find the following relations between the parameters of (4.120) and the Kaluza-

Klein parameters:

a; = 2(d1—1)a,

2(d, + dy — 2
a = (y+d Ja (4.121)
Y

The general HW domain wall solution to this theory is given by (u,v =0, ..., d,—1)

ds? = e*da"dr, + B dy? (4.122)
eTzlatale — H — oy klyl, (4.123)
¢ = B b Hutn 4 by Hara, (4.124)

where b; = b, (a1 + a2)/(2k) and b; are defined by

i Ty (4.125)

One can easily check that for the appropriate choice of ay, as this gives the domain
wall solution (4.23).
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4.6.2 Singular Sources for HW Domain Walls

Let us now consider the source terms supporting this singular solution. In [110, 113]
Duff et al identified these source terms by studying the singular contributions to
the stress-energy tensor. As we already know that we have a d, — 1-brane in d,
dimensions (i.e. a domain wall) we shall not take this approach, but rather study
the singular term in the field equation for the breathing mode scalar ¢. Following
our discussion of brane charges in chapter 3, we expect the brane to contribute a
charge term,

O = Vig + Qurane. (4.126)

We can fix the specific form of Qp.ane by matching to the singular terms of the
left-hand side using the scalar field junction conditions, just as we did for the
stress-energy tensor components in section 4.3.2. Using (4.123) and focusing now

only on the terms H,,, that we know produce J-functions we find

4k 5(3/) P! T 92
Up = Reg + <b e2? + by 67¢> 4.127

(a1 + az) \/gss ' ( )
As was noted earlier for the components of the stress-energy tensor, even for one
brane in d, dimensions there are two singular contributions implying that the do-
main wall descends from two branes in the D-dimensional theory. We can now
compare the right-hand side of (4.127) to the standard brane source terms. In

D = d, + d,, the simple Nambu-Goto action is given by®

Sbrane = _T/dei' 5(52' - X) /dpé \V —’A)/ (4128)

where % is the determinant of the pull-back of the D-dimensional metric to the
worldvolume, and the other hatted quantities are the D-dimensional versions of
those appearing in (4.41). After dimensional reduction to a domain wall in d, this

becomes

Ssource = _T‘/ddmaj 6<y)/dp§ V _'}/e(dz_l)a@—i_nyﬁ@, (4129)

where n,, is the number of brane directions that lay in the transverse space dfsf/ in
D dimensions. Note that as we have chosen to consider a reduction to a domain
wall in the comoving gauge, the delta function has reduced to §(y), where y is the

direction transverse to the d, — 1-dimensional worldvolume.

By comparing the conformal factors of ¢ in (4.127) and (4.129) and using the rela-

6We shall set all worldvolume fields to zero.
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tions in (4.121) we can determine the dimensions of the branes prior to dimensional
reduction. By branes here, we specifically mean objects contributing singular terms

to the field equation. We can now see that there are two branes with the following

dimensions:
braney : n, = 0=>d=d,—1, (4.130)
branes : ny, = dy—1=dy=d,—1+d,—1=D—-2. (4.131)

This assumes that both branes appear separately as domain walls in d,, i.e. we do

not allow for lower dimensional defects, such as strings, on the domain worldvolume.

Let us now return to the five-dimensional domain wall we were interested in, given
by (4.23). For the appropriate choice of values above, we see that this argument
suggests our domain wall descended from a 3-brane and 7-brane in Type II1B. Of
course, the 3-brane was expected as one of the components of the dimensional
reduction was the self-dual five form field strength supporting this solution. In
[108] the domain wall metric was lifted back to ten dimensions and shown to be
equivalent to that of the D3-brane after a coordinate transformation. After a careful
consideration of the tension contributions from the D3-branes, it was later realised
that this was not the whole story [110, 113]. The second component in the singular
terms was then seen to come from the Z, action on ten-dimensional flat space,
and it was suggested that this may have some relation to smeared 7-branes [19,
20, 113]. However, we know that we truncated to the gravity plus five-form sector
of Type IIB whereas D7-branes (and D-instantons) are supported by the axion-
dilaton sector. An alternative suggestion is that the smeared 7-brane is a purely
gravitational solution of the type identified in [129]. We still need to produce
the appropriate topological coupling found in five dimensions in order to solve the
brane-wave equation, however as this gravitational brane is not charged under any
field we must resort to another coupling. One possibility is the topological coupling
to the A genus, however this is easily seen to be zero for this background [130, 131].
The correct identification of this extra source term in ten dimensions and of the
correct ansatz for dimensional reduction of fermions in the Zs-background remains

work in progress.

Before we conclude, we note that the same procedure can be applied to reductions of
eleven-dimensional supergravity on S* and S7. The resulting domain wall solutions
can be lifted back to eleven dimensions to find the M2 and M5 branes respectively.

It is interesting to note that the second singular component in each case lifts to



CHAPTER 4. THE STABILITY OF HORAVA-WITTEN SPACETIMES 78

an 8-brane, however no such solution is known to exist there. We see then that
the Zo-symmetric domain walls supported by breathing mode scalars are quite
strange. One would have expected that solutions derived from eleven-dimensional
supergravity to lift back to the known supersymmetric solutions there —the HW

orbifold planes— however we see that is not the case.

4.7 Conclusions

We have shown that a class of domain walls in five dimensions, known as HW
domain walls, are stable despite the presence of a negative tension brane. The key
to the stability proof was that we were able to write the energy as a sum of squares
of putative supersymmetry transformations, which had been identified previously in
initial studies of the supersymmetry of the bulk solution. Although the precise form
of supersymmetry for these solutions remains unclear, we saw that the background
solution is as we expect for a BPS solution: it acts as a minimum energy state so

that the energy of perturbations is bounded from below.

A crucial point was that we were considering Z,-symmetric domain walls. This
allowed us to construct an energy entirely in terms of bulk quantities and we saw
explicitly how the Z, projection forces the Israel junction conditions to become
boundary conditions on the bulk fields. The constrained nature of this spacetime
then meant that the proof of positive energy was completely unaffected by the
negative tension brane at one end of the interval. As soon as the Z, condition is
dropped, we are no longer able to construct the conserved charges in the usual way.
In this case the topology changes to R;3 x S', and these perturbations are not

included in our analysis.

Returning to the question of supersymmetry we considered the higher dimensional
origin of our domain wall. We saw that one component could be understood as
a BPS solution of the supergravity theory: the D3-brane in the case of the five-
dimensional domain wall. The origin of the second component remains unclear.
Regardless of the issue of supersymmetry, our analysis of Zs-symmetric domain

walls has answered a key question that was often overlooked in brane world models.



Chapter 5

Consistency Conditions for Brane
Worlds

5.1 Introduction

The resurgence of interest in extra dimensions in particle physics and cosmology
spurred by the work of Randall and Sundrum, and Arkani-Hamed et al led to a
huge growth in the number of new models of physics being proposed. Almost every
one claimed to have verifiable signals in accelerators or other experiments. While
the focus was initially on models with one extra warped dimension, it soon became
apparent that these simple ideas could be extended to six-dimensional models, and
higher, without requiring a firm footing in string theory or supergravity. This slew
of phenomenologically motivated brane world models, with varying assumptions
and approximations, prompted Gibbons, Kallosh and Linde to define a set of simple
rules aimed at checking the consistency of five-dimensional models case by case [24].
In this chapter we shall review their work, before presenting a generalised version of
their consistency checks, applicable to higher dimensional models and other cases.
We apply our generalised sum rules to two models of particular value, and show
how they offer a more robust test of consistency than some other methods. This
leads us to consider the case of supergravity p-branes with more general geometries,

for which we propose a generalised form of the ADM energy.

79
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5.2 Brane World Sum Rules

In their original paper [24] Gibbons, Kallosh and Linde (GKL) used components
of Einstein’s equations to find simple constraints on brane world models. Their
aim was to derive a set of rules for such models that are relatively model inde-
pendent. They chose to concentrate on five-dimensional scenarios, similar to the
Randall-Sundrum models [13, 14]. We shall reproduce their arguments here, before

presenting some generalisations in the next section.

Consider D-dimensional geometries given by the following warped product metric:
ds® = W*(y) gu (z) dz"dz” + gumn(y) dy™dy™ | (5.1)

where x* are coordinates on the p + 1 = d dimensional brane and y™ are coor-
dinates in the D — d = d + 2 dimensional transverse space. We assume Poincaré
symmetry on the brane however unlike the standard treatment of p-brane solutions
in supergravity [79], we assume no symmetry in the transverse space.

It will be most convenient to use the trace-reversed D-dimensional Einstein’s equa-

tions, which are given by

1
D -2

(D)RAB = 87TGD TAB — gABTCC s (52)

and we can decompose the D-dimensional Ricci tensor components as follows,

1

Guv
(D)Ruu = (d)Ruu - %Wd_—Q(y)Vz(Wd(y)) (5-3)
DR = (d+2) Ry — %vanW(y) , (5.4)
Y

where V? is the transverse space Laplacian defined by the covariant derivative with
respect to g, We will use the traced version of Ricci tensor components and in
order to keep the expression as compact as possible we will suppress the functional

dependence of W(y):
1 1 -
D) pn — @DRY—2 _ m(pyd 2(py7d

_ 1 ~ d(d—1) d
— (d) 2 _ - 2 S 2 el m
RW™ — (dV Wt =5 (0aW)" + \/gam(@)ﬁ W)

; d (= 1
BDIpm = @WHDR_ (V2W + —0n, amw) . 5.5
i NG (v9) (5.5)
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Here g = det(g,,,), V? = 9,,0™ and we have made use of the identity

1 1 .
VW = —0,,(\/g §""0,W) = —0,\/gO"W + VW . 5.6
7 (V9 ) 7 V9 (5.6)
GKL chose to restrict themselves to studying singular domain wall (i.e. 3-brane)
solutions to some five-dimensional theory of gravity plus matter. The action for

this class of theories is
S = Spu. + Smat — Y / A"\ /= det g Aa(®) | (5.7)

where Sg . is the canonical Einstein-Hilbert term, Sp,.; gives some five-dimensional
matter content and the explicit term is a collection of sources for the singular branes
located at positions y = y; with tensions A;.

GKL were interested in cases where the internal manifold, now just y, is closed,
i.e. compact without boundary. If we multiply the Ricci tensor components by
appropriate powers of the warp factor W and integrate over y, some terms will
drop out as total derivatives. This will allow us to find further constraints on the

theory that are otherwise not obvious.

Following GKL, we take the combination of Ricci tensor components
D n D n
PIRE % (1 —n)W™ +P) R x (n— )W (5.8)

Denoting 0, by " and substituting (5.5), we then find the following expression

(wm)” _ (I —n)W" [(5)R“ @) RW_Z} 4 (n —4)wr (5)
n 12 "

= R™. (5.9)

If we now assume that the warp factor can be written as an exponential W (y) =
eA®  as in the RS models [13,14] for example, then the left-hand side of this
expression becomes a total derivative, which will vanish when integrated over a

closed manifold.

Using the trace reversed Einstein’s equations (5.2) we then have

/_27TG5 1—n

(Ale™) = W (Ty" + (2n = OT,") = — w2 @R (5.10)

This is the five-dimensional ‘sum rule’ for a general brane world model. Assuming

that our internal direction is closed, we can integrate, dropping this total derivative,
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to find a constraint

1—
f e (T, + (2n — 4)T5°) = - GZRQ f en=24 (5.11)

One immediately sees that interesting information can be found regardless of the
exact form of T,y derived from the variation of Sy,,.. For instance, choosing n = 1

we find a constraint on the components of Ty,
jéeA (T, —2T5°) = 0. (5.12)

GKL note that this constraint was proposed in [132] as a condition for the vanishing
of the four-dimensional cosmological constant, i.e. for flat branes. However from
this simple expression we see that it is in fact independent of the curvature Y R.
Also, even if the internal manifold is not closed, it is still interesting to see that

some combinations of stress-energy components give a total derivative.

5.2.1 Applications of the Sum Rules

Let us now fix the form of S,,;. GKL choose a five-dimensional scalar field theory

with potential
— (1
Smat = —/d5$ _G (igxyaNq)XaNq)y + V<CI))) ) (513)

where 4M? = (87G5)!, and g, is the metric on the scalar moduli space with
X,Y labelling the fields. For the domain wall we are interested in the fields ® will
only have dependence on the internal direction y and the spacetime scalar product
with respect to gap in the kinetic term will be denoted by &' - ®’. Including source

terms, the stress-energy components of use are

T = —4 (%cp’ LD+ V(D) + Z Ai(®)S(y — yi)> : (5.14)

1
> = 5<I>’-<1>’—V(<1>). (5.15)

The sum rules of interest to this theory are given by n = 0,1, 4:
n=0

7{ (@’ SO+ Z (@) (y — i) + MPW 2 (y) R) =0. (5.16)
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n=1

f W(y) (3@/ O 2V (@) + 4 A (@)S(y — yi)> —0. (5.17)

jf W(y) (21/(@) + Z N(D)8(y — y;) — 3MPW2(y) R) =0. (5.18)

The first constraint is particularly interesting because the potential term, which
places a key role in most discussions of compactifications and brane world scenarios,
drops out. For instance, if we wish to model the current period of cosmic expansion
[133] with a de Sitter solution, we fix @R > 0. Looking at the n = 0 constraint,
we then find

j{ <<I>’ -+ Z \i(D)o(y — yﬁ) <0. (5.19)

Let us consider the first term in this expression. This is required to be positive
definite for all normal (i.e. non-tachyonic) matter. In certain gauged supergravities
one finds non-positive definite terms arising, however such scalars are compensator
fields arising from gauging a conformal symmetry, and as such are not in the physical
sector of the theory [134].

Knowing that the kinetic term must be positive definite, we then require that the
dominant brane contribution must be negative: i.e. at least one negative tension
brane must be present. Similarly, if we wish to model four-dimensional Minkowski
(flat) space-time W R = 0 we must also have negative tension branes present. It
is interesting to note that if we consider the case of smooth domain walls, that is
without any delta function support, we are led to impossible constraints for four

dimensional Minkowski or de Sitter:
74@/ B = 0 (R=0) (5.20)
f@’ - < 0 (R>0). (5.21)

This is a simple proof of the no-go theorem for smooth Randall-Sundrum solutions
supported by scalar fields. Reinstating the delta function supports for two flat
branes and setting all scalar fields to zero, we quickly find the original Randall-

Sundrum tension matching condition from (5.16)

A= Ao, (5.22)
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so the branes must have equal and opposite tension. If we now fix the form of the

A = e=2lyl and fix the scalar potential such that it acts as a

warp factor to be €2
cosmological constant A, we find the second Randall-Sundrum condition from the
n =1 constraint (5.17):

A=k . (5.23)

The GKL constraints on four-dimensional models arising from compactifications or
brane world scenarios agree with earlier work [25-30], but are considerably simpler
in their derivation. They are particularly useful in that they are derived indepen-
dently of any supersymmetry in the theory, and therefore offer a simple alternative
to other approaches, for instance the renormalisation group flow methods developed
by Freedman et al [26].

5.3 Generalised Sum Rules

Following the construction of the five dimensional sum rules discussed in the previ-
ous section, we shall now present a generalisation to arbitrary dimensions. We begin
by making an ansatz for a useful linear combination of Ricci tensor components,

analogous to (5.8), for arbitrary worldvolume dimension d:
D n D m n
PIRE x (1= n)W™ +P) R x (n — d)W™ . (5.24)

Evaluating this using (5.5) leads to a rather unpleasant expression, however by

using the identities

2 n ~
VEWR) i+ (n— W20, W) (5.25)
n

we find it can be brought into the following compact form

(1— )W [PV RE —@ RW2] 4 (n — dyW™ [P R 4@+ R]

=d(d—1) (62?”) + 8’;(\/?) am(W")> . (5.27)
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This is further simplified by noting that the right-hand side is nothing but the
covariant Laplacian (5.6). Hence we find the following convenient form
V(W™ (1 —n)Wn n—d)Wwn

n T aao) BRI (d(d — 1)

[(D) R 4@+ R] (5.28)

One can easily check that this reduces to the previous expression of GKL (5.9)
when D = 5 and d = 4. We can now use the trace-reversed Einstein’s equations

again to get

viwnry o wn . (d+1)(2n — d) no 1=71
+ d<d_1>87rGDTm[ = Wd(d—l) R, (5.29)

where @ R and @2 R are the worldvolume and internal space Ricci scalars respec-

tively. We shall refer to (5.29) as the generalised sum rules.

At this point it is worthwhile commenting on the overlap between our work and
that of other authors. After completing this work it was realised that an equivalent
form of (5.29) had been found previously by Leblond, Myers and Winters [135].
We shall not repeat their analysis here, but comment on differences with our work.
Having derived the general form of the sum rules, the authors of [135] chose to focus
on a specific six dimensional example, the AdS Soliton [136]. Being a codimension
two object, the integral of the transverse space curvature gave the FEuler charac-
teristic for this space. While this is an example of some interest (in the AdS/CFT
correspondence for instance) it is worthwhile noting that it is singular, i.e. the delta
function sources remain. Indeed, Leblond et al produce an illuminating discussion
of delta function sources in curved spaces. They also choose to focus on compact
transverse spaces, allowing the removal of the total derivative term as before. We

shall not stipulate such a condition in our analysis.

The most common reference on constraints on compactifications in supergravity
is the Maldacena-Nunez no-go theorem [30]. Simply put, this states that it is
not possible to produce de Sitter or Randall-Sundrum type compactifications of
supergravity. We shall now briefly show how one can derive this theorem from the
generalised sum rules presented above. In fact, we shall see how this approach has

some shortcomings when compared with the GKL constraints.
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The metric ansatz of Maldacena-Nunez [30] is
ds® = WQ(y)<gW(:U) dztdz” + gmn(y) dymdy”) . (5.30)

In order to compare with the GKL-inspired generalised sum rules, we must confor-
mally rescale our original ansatz (5.1) ¢mn — W?2(y)gmn. The worldvolume Ricci

tensor component (5.3) then becomes

VW (y)

POp — dp _
= =0 (S

- 0-5 W)

P (5.31)

where we have made use of the fact that under this transformation the Laplacian

scales as

VW (y) | 5 W3(y)

VW) = Ty 4wy

(5.32)

Tracing over g,,, we can we rewrite this expression in the form found in [30]:

1
(D =2)W (y)"

_ d m
5 VW ()" = R+W(y)* (—T;; + 55T+ Tm)) . (5.33)

We can now see that any no-go theorem derived from this expression will correspond
to one sum rule i.e. the one choice of n = d in (5.29). This initially appears to be
trivial. However, it corresponds to disregarding contributions from certain stress-
energy components. For example, the n = 0 rule in five dimensions (5.16) does
not contain a potential term and can provide a valuable constraint upon other
components of the theory. It is useful to remember at this stage that we are
dealing with Einstein’s equation, and therefore must insist upon the consistency
of all possible linear combinations of its components. In the next section we will
explicitly see how the extended sum rules can show constraints on the theory that

would be hidden if we relied only on the Maldacena-Nunez no-go theorem.

5.4 Applications of the Generalised Sum Rules

We shall now concentrate on two examples which can display the power of the gen-
eralised sum rules. We will begin by discussing the most straightforward extension
of the original GKL results to include a non-compact internal manifold. The exam-
ple we choose is a smooth domain wall solution to N = 2 five-dimensional gauged

supergravity with general matter content [137,138]. In order to understand if the
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sum rules are of use in higher dimensions, our second example will focus on a six-
dimensional analogue of Melvin’s magnetic solution [140-142], where the spacetime
is of the form M, 3 x M,. By allowing the internal manifolds to be noncompact,
we shall be able to study the behaviour of the warp factor in both examples. For
the domain wall this means we will be able to understand if the sign of the tension

plays any role in allowing a smooth solution.

5.4.1 Domain Walls Don’t Need Singular Sources

In their work on RG flow equations in five-dimensional gauged supergravity with
simple matter content [27], Kallosh and Linde showed that it was not possible
to have a smooth domain wall interpolating between two different infra-red critical
points. Phrased differently, this says that there are no domain wall solutions to these
theories in which the warp factor smoothly interpolates between two minima, as in
the Randall-Sundrum model. Behrndt and Dall’Agata found an explicit solution
circumventing this constraint by coupling five-dimensional supergravity to more
general forms of matter [137,138]. In particular, they found that the introduction
of hypermultiplets plays a crucial role. The extra scalars then present modified the
isometry structure of the coset manifold, which in turn changed the critical point
structure, which then allowed the identification of a smooth domain wall solution
[137]. It is reasonable to assume that the more complicated field content of this
theory will allow the no-go theorem to be avoided, however the sum rules show that

the geometry also plays a crucial rolel.

For our purposes it will suffice to consider just the bosonic sector of the general

matter coupled Lagrangian, given by 2:

1 1
Lyosonic = R — ZFABFAB — égxypAqXDAqy — ¢*V(y,q).

For clarity we note that the covariant derivative on the scalar manifold is defined

as
DBCIX = anX + QAB/‘CX(C]) ) (5.34)

where k™ (¢) is the gauged isometry’s Killing vector and Ap is a vector field. The

'Further work on the domain wall structure of such supergravity theories has followed [139)].
2Qur choice of signature is different to that used in [137] and we have dropped the topological
term.
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scalar potential V is defined by

3
V= —4P"P" + Zk‘xkygxy(q) . (5.35)

where P" is the prepotential and g,, is the metric on the scalar manifold. The

stress-energy tensor derived from the Lagrangian (5.34) is

0440 1 1
Tap = FacFi* + %q’ ¢ —gan (ZFCDFCD + §q/ ¢ + ng) , (5.36)
where we have used F} 4 = 0 and also that the scalar field supporting the domain
wall will only have dependence on the transverse direction, so daq = 9,9 = ¢'. The
exact form of the metric solution for the domain wall will not be required.
To apply the sum rule arguments of the previous section, it will be useful to note

the following combination of Typ components

1 1
T = F, " —4 (ZLFWFW + §q’ ¢+ g2V) (5.37)
Yy 1 ! / 2 1 uv
Ty:§q ¢ —g V_ZF’“’F : (5.38)

As we expect a domain wall solution to this theory to be BPS we can set (YR =0

and the general sum rule (5.10) becomes

27TG5
3

(n—2)

e ((n —4)q - ¢ - %QQV - TFWF“”) - (5.39)

(Ay)'e) =

We see that this expression has the same form as the GKL sum rule, as expected
—the n = 0 and n = 4 conditions have no contributions from the scalar potential
and kinetic terms respectively. However, we no longer assume that our space is

compact so the integral of the left-hand side does not vanish.

Let us first consider the n = 0 condition. Following standard no-go theorem tech-
niques [30] and using that the field strengths satisfy F? < 0, we find the sum rule
has a simple form

A'=—-4¢ ¢ —|F?| = A"<0. (5.40)

Integrating this expression we find A(y)’|132 < 0, which for one symmetric domain
wall means A(y)’ < 0. Recall that for a domain wall space-time, Israel junction
conditions imply that the tension is given by the change in extrinsic curvature across
the wall. Using Gaussian normal coordinates and the Z,-symmetry then means the

tension is entirely determined by the warp factor change across the domain wall.
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An inspection of the junction conditions shows this means the domain wall has
positive tension. We can now use this in conjunction with the other sum rules to

try to constrain the scalar potential. Looking at the n = d = 4 rule we find
— A"+ 4(A)? = =PV +|[F?| = 4A)+4V>0. (5.41)

One sees that this inequality is obviously satisfied if VV > 0. However, it can also
be satisfied for V < 0 if |[V]| < 4(A4’)%. It is now worth recalling the Strong Energy
Condition (SEC), which states that

1
Tun — 7<) uw?u® > 42
(AB D _9JAB C)uu >0, (5.42)

for non-spacelike vectors u. This can rewritten in terms of the trace-reversed stress-
energy tensor (5.2), and in a local frame amounts to stating that all matter is
attractive [25]. As stated in the original no-go theorem [25], the vector field A
will obey the SEC and so any violation must be generated by the scalar field. For
example, a positive scalar potential, such as a positive mass term (V(¢) = %ngbQ)

for a minimally coupled scalar ¢ field, will violate the SEC.
The Maldacena-Nunez no-go theorem assumes that the SEC holds for all fields,

and in particular it states that any scalar potentials must be negative. Behrndt
and Dall’Agata suggested that they were able to circumvent this no-go theorem by
having a scalar potential that could become positive at some point [137], violating
the SEC. However with a careful treatment of the brane world constraints for this
theory we have seen that this is not necessary. It is possible that a smooth domain
wall solution exists with 1V < 0. Our result shows an extra requirement - that
the domain wall must have positive tension, which, as we have seen previously
in (5.19), is not obvious. For instance, for singular domain wall spacetimes with
Minkowski or de Sitter worldvolumes, we specifically need negative tension branes.
Had we employed the Maldacena-Nunez no-go theorem without the assuming the
SEC holds, we would not have found a constraint independent of the scalar potential
and the behaviour of the warp factor would have been unclear. In fact by setting
Feop = 0, one can show that it is exactly the non-compact nature of the transverse
space that allows for the smooth domain wall solution, without requiring the scalar
potential to violate the SEC.
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5.4.2 Higher Dimensions and Melvin’s Solution

Having shown how the sum rules give constraints upon the geometry as well as
the field content of domain wall solutions, it is now natural to ask if this can be
extended to higher codimension spacetimes. In [135] Leblond et al have studied sin-
gular branes in six dimensions with compact internal spaces. They concluded that
negative source terms were not required if one has codimension two branes. In fact,
we have already shown that it is possible to remove source terms in codimension
one by having a transverse space with boundary.

We shall now use the sum rules to study smooth 3-brane solutions in six-dimensional
Einstein-Maxwell theory. Scalar fields will not play a role as we are no longer
considering domain wall solutions and we know the vector field obeys the SEC,
hence it will be the geometry of the two-dimensional transverse space and the warp

factor that are important.

The action for this theory is
1 LA 1
S = /dGX\/_—g {ﬁ (R - 5) - ZFABFAB} . (5.43)

Solutions to the equations of motion derived from this action have been constructed

analytically by Wiltshire and collaborators [141, 142], and are given by

ds* = W23(r) gu(z) datdz” + dQ%Q) : (5.44)
B

where r,p are radial and angular coordinates, respectively, on the transverse 2-
space M with metric dQ%Q) = gmndy™dy" and k is the six dimensional Newton’s
constant. While not essential for our considerations, the worldvolume is assumed
to be Einstein:

Ry = Aguw (5.46)

with A\ now being the Gaussian curvature. The transverse space metric is defined
by a function of A, A\, B and r, the zeros of which determine the different geome-
tries. The only restrictions placed on the transverse space geometry is that it is
geodesically complete and we are free to consider spaces with boundary. In [141]
it was shown that if one were to consider this codimension two model with a two
dimensional worldvolume, Melvin’s solution [140] arises as one particular choice of

coefficients.
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The evaluation of the sum rule constraints is considerably simplified by the fact
that this model considers a monopole configuration for the gauge field i.e. the only
non-trivial component is F,,,,, which is spacelike. Without loss of generality we will

take W(r) > 0.

The appropriate contractions of the stress-energy tensor derived from (5.43) are

1 A
™ = —F F™ - — A4
K 4= ™" 2rG (5.47)
1 A
" = —F ™ — —— | 4
m Y e (5-48)

which we can insert into the generalised sum rule (5.29) with D = 6 and d = 4 to
find

w = %W”(T)WG [(5n—14)anan+ <”;2) A}
<n1_21> Wr2(r) R + (41_2”) W™(r\R .  (5.49)

Written in this form, we again see that particular choices of n will give constraints
between different components of the theory. We shall now consider various cases in
turn, and the simplest to begin with is a flat brane with vanishing bulk cosmological

constant.

Flat Brane R =0and A =0

In this case we see that choosing n = 4 in (5.49) leaves a relation between only the
warp factor and F?, which is positive definite as we know that the field strength is

spacelike. Multiplying (5.49) by W*(r) and integrating by parts we find

/M Vo (WHr) V™"W4(r)) — / (VW4(r))* > 0, (5.50)

M

from which we find that

/ Vo (WA(r) V*"W4(r)) > 0 = W(r) n, V"W (r)) >0, (5.51)
M oM

where n,, is the unit normal at the boundary (0M) of the transverse space, which
we choose to be positive. As we have shown that VW (r) > 0, we can use this in
the n = 14/5 sum rule, in which the field strength term drops out, to show that

R > 0, i.e. the transverse space must have positive curvature.
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Flat Brane R =0 and A # 0

Allowing the bulk cosmological constant to be non-zero introduces some extra
freedom into the sum rules. In particular, from the n = 4 sum rule we can now

derive two cases of interest:

a) VW(r) <0 if 0<GF?*<A/2
b) VW (r) >0 if GF?>>A/2

From b) we can once again show that R > 0 by using the n = —2 sum rule, however

little more can be found from a).

Flat Brane R = 0 and Compact Transverse Space

It is interesting to study the possibility of smooth solutions of this sort with a com-
pact transverse space. Leblond et al [135] have shown that negative tension source
terms are not required for flat branes with codimension two, unlike the domain
walls (codimension one) discussed by GKL. We shall now attempt to understand
whether such solutions can be extended to smooth branes.

As OM = 0, integration of the generalised sum rules (5.29) now leads to the
vanishing of the left-hand side, leaving constraints independent of the behaviour of
the warp factor. It will be useful to list the sum rules of interest to understand how

each component is constrained in turn:

n—4

/ W4(r) GF2—/ W4(T)% =0 — A > 0. (5.52)
n=1

/6W(r)GF2 = /W(r)(R—A) — R > 0. (5.53)
n=14/5

/ 6W (r)"4/° R—/ 6W(E)*»A=0 — R =4A  (554)
M M

So we see that unlike the five dimensional Lagrangian considered in the previous
sections, this model does allow a consistent smooth brane solution with compact

transverse space. The only requirements being that both the bulk cosmological
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constant and the transverse space curvature are positive.

This model has provided us with some useful insights into the construction of
smooth brane solutions. It was particularly important that we had a monopole
compactification of the U(1) vector field, which meant that we only dealt with
positive definite field strength terms. Unfortunately as soon as we consider more
general scenarios we lose all ability to constrain the various terms. Indeed for
the case of curved branes we find that although there are still values of n that
lead to simpler sum rules, we cannot fix the signs of the worldvolume and internal
curvatures, even if we set A = 0. By fixing the values of each parameter in turn,
it is possible to show agreement with the analytic curved worldvolume solutions in
[142], but this is of little value.

Before concluding, we present a summary of our results in the following table,

 D[OM|DR]| R | V(@)/A [oW(r) ]
5140 0 0 V(o) > 0 >0
6 £0]| 0 >0 A=0 >0
6 | #0] 0 >0 |A>2GF?*>0| >0
6 | A0 | O ? 2GF? > A <0
6 | =0 0 | R=4A >0 ?

Table 5.1: Constraints on smooth 3-branes in five and six dimensions.

5.5 Comments on Generalised p-Branes

In chapter 3 we described a method to construct the one charge p-brane solutions
to various supergravity theories. Focusing on the solutions to eleven-dimensional
supergravity, we saw how the M2-brane had a timelike singularity which one could
introduce a delta-function source to support. The M5 brane was completely non-
singular and required no source terms. In ten dimensions one similarly finds that the
self-dual 3-brane solution is completely non-singular, with all other branes having
timelike or conical singularities. The common feature of all these branes is that
their transverse spaces are asymptotically flat, however, this is nothing more than
a simplifying assumption to aid in finding solutions. One can consider the more
general case, where it transpires that the spaces need only be Ricci flat, rather
than Riemann flat, in order to solve the equations of motion [79,143-146]. Such
solutions are known as generalised p-branes. One can then ask whether the brane

solutions have their singularities resolved, or smoothed out, by the new geometry,



CHAPTER 5. CONSISTENCY CONDITIONS FOR BRANE WORLDS 94

in much the same way as we found that smooth domain wall solutions exist if the

transverse space is not compact.

Explicit examples of generalised p-branes have been constructed by many authors.
We shall choose to concentrate on a those given by Pope et al [147], which have the

following form of metric

ds* = H(r)D;—d_?nW(x) dx“dx”+H(r)ﬁgmn(y) dy™ dy" (5.55)

H(r) = 1+%, (5.56)

where z# are coordinates on the p4+1 = d dimensional brane and y™ are coordinates
in the D —p—1 = ¢ dimensional Ricci-flat transverse space with metric g,,,. It will
be more convenient to consider the following general metric ansatz for a p-brane

with a g-dimensional transverse space (c.f. (3.15))
ds§* = €*%ds, + e*ds. | (5.57)

where d3? = Gmn(y)dy™dy™ and ds’ | = g, (z)dz"dz" are generic metrics on the
q = D—p—1 and p+1 dimensional spaces respectively, and ¢ = ¢(y). To distinguish
between the different parts of the geometry we will denote D-dimensional quantities
with hats and ¢-dimensional quantities with tildes. Defining £ = (¢—2)a+(p+1)0,

we then note the Ricci tensor decomposition is given by 3

By = By — Bg 270 (V2 +£(09)°) | (5.58)
+(a€+ (@B = )P+ 1)) I . (5.59)

where R, and Rmn are the Ricci tensor components on the p+1 and ¢-dimensional

manifolds respectively. Tracing these we find

A

R = eangaR_'_ e*QﬂS@R (560)
209 (e—swv%éw +(alg—1) +B(p+1))Vip+ |ga® + (p+ 1)52] (8%0)2>-

One can easily check the sum rule Ricci tensor components (5.3) and (5.4) are

3This choice of parameterisation was suggested by J. Kalkkinen, whom we thank for discussions
on this point.
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reproduced with the following choice:
a=0, B=1, ¢y)=mW(y). (5.61)

Pope et al constructed various p-brane solutions with general Ricci flat transverse
spaces, all with metrics of the above form with & = 0. The key point is that these
spaces admit suitable harmonic forms leading to modified Bianchi identities, and
can smooth out any singularities in the full geometry if they are normalisable [147].
For example, consider the ten-dimensional Heterotic theory, whose bosonic field

equations can be derived from the following Lagrangian,

o 1. I 4. L 1y,
Lhet = R*1 — §*dgz5 Adp — 3¢ ¢*F(3) NF ) — 3¢ 2‘f’>|<F(2) NF, . (5.62)

The field strengths are defined as

1
F, = dA, + §A(1> NA (5.63)
o = dA, (5.64)
with the Bianchi the identity for F
1
dF , = §F(2> ANFE,. (5.65)

The ansatz for the resolved 5-brane solution to this theory is,

sl = H™V*da* dat n,, + HY'ds],
. 1
e ?kFm = dzANdH™',  ¢= slogH,  Foy=mLg, (560)
where L) is a normalisable two-form on the transverse Ricci-flat four-manifold,
which can be chosen to be self-dual or anti-self-dual. We could now study the
sum rules using the Ricci tensor components given above, however as we have the

exact solutions at our disposal we can begin by looking directly at the equations of

motion. On inserting the ansatz, we find the equations of motion reduce to
&2 L 50y

An inspection of the gravitino and dilatino supersymmetry transformations show
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the Ricci-flat four-manifold must also be Kahler with an appropriate orientation if
supersymmetry is to be preserved by this more general background. Two examples
of appropriate four-manifolds are the Eguchi-Hanson and Taub-NUT gravitational
instantons, both of which can be described by the Gibbons-Hawking metric [58, 147,
148]. In fact, for all generalised p-branes supported by some Ricci-flat transverse
one finds that the field equations reduced to the form (5.67) with an appropriate
n-form replacing L(). For normalisable forms L,y one finds the solutions become

completely smooth.

Unfortunately, when we apply the sum rules to such brane spacetimes we learn
little new. The more general geometry supporting the n-form L, allows the brane
singularity to be resolved. A straightforward integration of (5.67) tells us that
0,H(y)|oo < 0, fixing the overall sign of the non-constant term in H(y). The
significance of this is entirely dependent upon the particular example under question
and no general constraints can be found. However, it is clear that the modified
geometry of such generalised branes will effect the definition of conserved charges,

to which we now turn.

5.5.1 Energy for Generalised p-Branes

While the sum rules offer little insight into generalised branes, it will be interesting
to consider what can be said about their conserved charges. As such, we shall
now present a formal definition of ADM-like energy for the generalised branes with
metrics of the form (5.55). Following Deser et al [21,41, 55], we assume the existence

of a simple timelike vector and then define the Killing energy for a p-brane as

£ = % » AP~ (D" By — D2 | (5.68)
where D is the covariant derivative with respect to the general background metric
and the h’s are asymptotic fluctuations about this background. The integral is
taken over the surface defined in the transverse space to the brane. Once again,
lower case Latin indices run over all spatial directions a,b =1,7...m,n, where i, j
run over spatial worldvolume directions. One can see that this is the covariantised
version of the usual p-brane energy integral (3.32) and agrees with the general
Deser-Tekin expression (2.24). One can easily show that this expression also gives
the correct expression for the Kaluza-Klein monopole that was discussed in chapter

2, agreeing with Deser-Soldate result (2.44).
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Let us now calculate the energy for the 5-brane examples, where we choose the
transverse four-manifold to be the Eguchi-Hanson instanton. The metric on the

four-manifold is given by

1 1
ds? = W(r)tdr* + ZTQW(T) (dip + cos 0dg)” + Z’ngg ,
4

W) =1-2 (5.69)

rd’

where dQ2 = df? + sin? 0d¢?, ¢ has period 27 and the radial coordinate 7 lies in
a < r < oo. This space is asymptotically locally Euclidean and the condition on v

means that the topology is R x S3/Z,.

The appropriate normalisable 2-form on the space is defined by
1
Ly = r3dr A (dyp + cos 0de) + 57“_2 sin 0dO A do . (5.70)

Assuming the “harmonic” function H only has dependence on r, the field equations

reduce to )
(rPWH') = —4T—”Z : (5.71)
where ' = 9/0r. This can be solved to give
m2
H(r)=1+ oyl (5.72)

after an appropriate choice of integration constants. For the purposes of calculating
the Killing energy, we see that the metric is locally flat and so we can identify the

perturbations just as in the original p-brane case (3.33)

3m? 1 m?
Substituting into the energy integral we then find
m2
E = FQSS/% , (5.74)

where ng% is half the volume of the unit three-sphere. This result agrees with that
for a p-brane with an asymptotically flat transverse space up to the half volume
factor due the different asymptotic topology. Pope et al have shown that this
solution preserves supersymmetry and so we expect that the Bogomol'nyi bound

still holds with a suitable defined magnetic charge.
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The Eguchi-Hanson example is useful as it is possible to calculate the energy explic-
itly. It would be of interest to consider cases that are not asymptotically transverse
flat or locally flat. Unfortunately, such cases often lead to non-divergent integrals,
as in the example of the Heterotic 5-brane on the Taub-NUT instanton [147]. It
may be possible to circumvent this problem by using the methods of Barnich et
al [149], whereby one calculates the energy integral over a finite path in solution
space rather than asymptotically. The nature of these modified charges of gen-
eralised branes remains unclear and merits further investigation. In particular, it
would be interesting to construct the full set of charges for such branes and check

their “black brane” mechanics and Smarr relations [86].

5.6 Conclusions: What can Sum Rules tell us?

In their original work GKL [24] showed how simple manipulations of the Einstein
equations could provide constraints on components of five-dimensional brane world
models that would otherwise remain hidden without a detailed study of supersym-
metry. We have provided a natural extension of these arguments to compactifica-
tions of higher dimensional theories and to more general internal manifolds. We
showed how the evasion of previous no-go theorems for smooth Randall-Sundrum
domain walls in five dimensions did not rely on the scalar field potential violating
the Strong Energy Condition. We found that the potential could be negative if it
was sufficiently small and if the transverse direction was non-compact. This means
that the domain wall must have positive tension. This may initially seem like an
obvious statement, however in the supergravity literature much is made of the ne-
cessity of negative tension objects in realisations of Randall-Sundrum models. In
[150], Giddings et al showed that negative tension brane contributions were required
if one wanted to find a RS type solution to compactified type IIB theory. Using the
Maldacena-Nunez no-go theorem, they showed that a negative contribution was
needed on the right-hand side of the traced Einstein’s equations for consistency.
They noted that this could be generated by negative tension D3 brane sources, or
equivalently by D7 branes wrapped on appropriate four-cycles of the compactifying
manifold. We have seen in this chapter that it is often more useful to extend the
Maldacena-Nunez arguments to other constraints arising from the Einstein equa-
tions (the n # d sum rules) and to consider non-compact transverse spaces. It
would interesting to reconsider the constraints of [150] for the non-compact Calabi-

Yau’s [151], which are known to localise gravity, as the generalised sum rules could
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offer new insights into these models. We leave this for future work.

As a next step in testing the generalised sum rules we considered the Einstein-
Maxwell theory in six dimensions. Although this had been used previously by other
authors in generalised sum rules, we saw there was more interesting information
to be found. From a simple analysis of the generalised sum rules we found that
one can have a smooth 3-brane solution with compact transverse space, unlike the
five-dimensional case. The requirements for this solution were that both the bulk
cosmological constant A and the transverse space curvature ¥ R must be positive.
As originally discussed by Leblond et al [135], this latter constraint means that the

Euler characteristic for the internal manifold must positive.

The Melvin-type solutions in six dimensions were interesting as they appeared as
solitons supported magnetically by a vector potential (i.e. with no flux linking
their worldvolume). This was reminiscent of the p-brane solutions of supergravity
discussed in Chapter 3 and led us to consider generalised p-branes with non-flat
transverse space geometry. Many examples of such branes appear in the literature,
however we found that little could be learnt about their general features from
the sum rule arguments. One common feature of solutions found by Pope et al
was that the “harmonic” function should be asymptotically decreasing. We found
that it was interesting to reconsider the Killing energy for such generalised branes,
and provided the appropriate energy integral for this class of backgrounds (5.68).
Considering the example of the Heterotic 5-brane with an Eguchi-Hanson transverse
space, we saw how the modified geometry changed the result for the ADM energy.
It would be extremely interesting to extend this to other conserved charges for such
branes and consider even more general asymptotics. Also, we should consider the
thermodynamics and stability of these general backgrounds to further understand

how they relate to the familiar extremal branes. We leave this for future work.



Chapter 6

Branes on Generalised

Backgrounds

6.1 Introduction

We shall now depart from studying the braneworld models of the previous two
chapters and consider the formal question of finding the constraints placed on D-
branes and geometry in generalised supersymmetric flux compactifications of Type
IT (i.e. N =2,D = 10) supersymmetric string theories to four dimensions. Such
compactifications have received much attention recently, and may play an important
role in the search for more realistic models derived from string theory. Their study
has led to the development of significant links with Hitchin’s work on generalised
geometry - the study of manifolds deformed by fluxes - which has in turn provided

more fundamental insights into the physics of these models (see [5] for a review).

Before discussing this work in detail, we shall give a brief overview of the ideas
used in this chapter and our main results. One way to approach the problem
of finding constraints on the geometry in supersymmetric compactifications is to
the study the structure group on the compact six-dimensional manifold Y, i.e. the
group of transformations of the tangent bundle 7y, and the corresponding invariant
tensors and spinors. We shall refer to such constraints as supersymmetry conditions.
As we shall review in the next section, some amount of preserved supersymmetry
implies that the structure group, which is SO(6) on an oriented six-dimensional
Riemannian manifold, is reduced to some subgroup. We shall see that choosing to
have the minimal amount of supersymmetry preserved in four dimensions, N' = 2,
corresponds to the internal manifold Y having SU(3) structure. Compactifications

with flux hope to reach more phenomenologically interesting models by reducing

100
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this to N' = 1 supersymmetry. It transpires that there is a natural extension of
these ideas to flux compactifications, whereby one studies the structure group of
the direct sum of the tangent and cotangent bundles 7Ty @ Ty. We shall see how
supersymmetric vacua can be described in terms of two O(6,6) pure spinors U=,
which can also be understood as formal sums of forms ¥* = >~ \I/(ik), where £ is
even for U and odd for U~ [157, 158].

This formalism introduces a natural relation between flux compactifications and
generalised complex geometry [159-161]. The two pure spinors are associated to
generalised almost complex structures whose (generalised) integrability corresponds,
in turn, to non-closure of the pure spinors under the twisted derivative operator
dy = d+ HA, where H is a form-field on Y. In [158] it has been shown that the
supersymmetry conditions provide the integrability of the almost complex structure
associated to one pure spinor and that it defines a twisted generalised Calabi-Yau
(CY) structure a la Hitchin [159] on the internal manifold. On the other hand, the
second pure spinor is not integrable (dy¥ # 0) due to the presence of Ramond-
Ramond (RR) field-strengths which act as an obstruction to integrability. For
example, if we restrict ourselves to the case where the structure group is reduced
to SU(3), the internal manifold will be either symplectic (ITA) or complex (IIB)!.
In the more general SU(3) x SU(3) case, the manifold is a complex-symplectic
hybrid, even if ITA and IIB continue to “prefer” symplectic and complex manifolds
respectively [158]. Here we should understand that SU(3) x SU(3) C SU(3,3) C
O(6,6), where the structure is initially reduced to SU(3,3) by the existence of
two invariant spinors, and then further reduced to SU(3) x SU(3) if the spinors are
‘compatible’ (in a sense we shall define later), or equivalently if a generalised metric

structure exists on Ty @ Ty [161].

In the following sections we will see how it is possible to characterise the super-
symmetric D-brane configurations completely in terms of the two pure spinors for
a general class of N'= 1 backgrounds. We will mainly focus on the case of branes
filling the flat four-dimensional space-time, however our results may be extended
to other cases, where branes appear as defects in four dimensions. The resulting
equations [see equations (6.78) and (6.79)] represent the generalisation to N' = 1
flux backgrounds of the conditions obtained in [162,163] for branes wrapped on
cycles of a Calabi-Yau threefold C'Y3;. This can be seen from the form these con-
ditions take once we restrict to the SU(3) case [see equations (6.93) and (6.94)],

Here we use the standard notation of IIA and IIB for the ten-dimensional N' = 2 non-chiral
and chiral theories respectively.
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which can be considered as formally the closest to the CY case?. A supersymmetric
cycle is defined to be any cycle which can be wrapped by a Dp-brane satisfying the
supersymmetry conditions. We shall see how the supersymmetry conditions split
into two parts involving the two pure spinors ¥* and are completely symmetric
under the exchange ¥ « U™ as one goes from Type IIA backgrounds to Type IIB
and vice-versa. This symmetry can be seen as a generalisation of the usual mirror

symmetry between supersymmetric cycles on standard C'Y’s.

The first supersymmetry condition for a space-time filling D-brane wrapping an

n-cycle on the compact manifold Y can be written in the form

{P[(gmk@k + dz™A)P] A ef}(n) =0, (6.1)
where F = f + P[B] (f is the world-volume field-strength on the D-brane), P[]
indicates the pullback on the worldvolume of the brane and V¥ is equal to ¥~ in
IIB and ¥ in ITA. On the left-hand side of this expression it should be understood
that we only consider forms of rank equal to the dimension n of the wrapped cycle.
For each case, ITA and IIB, these pure spinors are exactly the integrable ones and
we will discuss how this condition means that supersymmetric cycles are gener-
alised complex submanifolds with respect to the appropriate integrable generalised
complex structure 7, as defined in [160]. We then understand that branes satis-
fying (6.1) wrap an appropriate generalisation of a complex submanifold in Type
IIB and of coisotropic submanifolds in Type IIA, with this identification becom-
ing precise in the SU(3)-structure case. This result is analogous to that found in
[166], where D-branes on supersymmetric backgrounds with only nontrivial Neveu-
Schwarz (NS) fields are considered (for previous work on branes in the context of
generalised complex geometry see [167-171]).
The second supersymmetry condition is related to the stability of the D-brane and

can be written as
{Im (iP[)) Aef}( =0, (6.2)

where now V¥ is equal to ¥ in IIB and ¥~ in ITA (i.e. the non-integrable pure

spinor in each case).

The two conditions (6.1) and (6.2) imply that for a suitable choice of orientation

2Equivalent conditions have recently been presented for D-branes on IIB SU (3)-structure back-
grounds in [164], where several interesting applications to the warped Calabi-Yau subcase [165]
are also discussed.
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on the wrapped cycle, the D-brane configuration is supersymmetric. Note that as
we are considering backgrounds with nontrivial RR fluxes turned on, reversing the

orientation on the brane does not generally preserve supersymmetry.

The above two conditions can be rephrased in terms of a single condition which
also encodes the necessary orientation requirement. For a D-brane wrapping an

internal n-cycle, this is given by

{Re( —iP[]) A ef}(n) - ”%”\/— det(g + F)do' A ...do" . (6.3)

where again ¥ is equal to ¥* in IIB and ¥~ in IIA, and ||¥]|?> = Tr(¥¥"). This
condition will be identified as a calibration condition with respect to an appropriate
generalised calibration w = ), wr), wWith w) being a & form, which is twisted
closed by definition, i.e. dgw = 0, and must fulfil a condition of minimisation of
the D-brane energy density. More specifically, for any space-time filling D-brane
wrapping any internal cycle ¥ and with any worldvolume field strength F (such
that dF = Py[H]), we must have

Pslwlne” < &%, F), (6.4)

where £ represents the energy density [see equation (6.108)]. Once again, on the
left-hand side we mean that only forms of rank equal to the dimension of the
wrapped cycle are considered. An analogous definition of generalised calibration
has recently been used in [166] for the case with only nontrivial NS fields, and
our result represents an extension of that proposal in the presence of non-zero RR
fluxes.

The remainder of this chapter is organised as follows. In (6.2) we shall review su-
persymmetric constraints on compactifications with and without flux, introducing
the mathematical notation of generalised geometry used throughout the subsequent
sections. In section (6.3) we introduce the basic conditions defining the general class
of N =1 backgrounds we are considering. In section (6.4) we derive the supersym-
metry conditions for supersymmetric D-branes using x-symmetry and express them
in terms of the pure spinors ¥* characterising our backgrounds. In sections (6.5),
(6.6) and (6.7) we clarify the meaning of the conditions for the internal supersym-
metric cycles, identifying them as generalised complex submanifolds calibrated with
respect to the appropriate definition of generalised calibration. Some basic prop-
erties of the almost complex structure and (3,0)-form constructed from an internal

spinor on a SU(3) structure manifold are presented in Appendix B.
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6.2 Supersymmetry and Compactification

Let us begin by reviewing some basic concepts about the reduction of Type II
string theory to four dimensions on manifolds without flux [153,154]. We will fo-
cus mainly on the supersymmetry of such compactifications and study the problem
at the level of the low-energy effective theory, namely supergravity. We shall not
burden ourselves with the details of the reduction of the bosonic sectors of these
theories which follow the standard Kaluza-Klein law [7]. Instead, we shall concen-
trate on the fermions and their supersymmetry transformations, which will be of
most importance when we consider D-branes later. Focusing on the gravity sector,
we recall that that the Rarita-Schwinger field, here called the gravitino 1), has a

supersymmetry transformation given by
(SiﬁM = ng =0 s (65)

where ¢ is an infinitesimal anti-commuting parameter, Vj; is the usual covariant

derivative on spinors (A.2) and the indices run over M, N =0,...,9.

Consider a ten-dimensional solution of the form M = M, x Y, where M, is a
maximally symmetric four-dimensional spacetime and Y is a compact Riemannian
manifold. If we wish to have some fraction of supersymmetry preserved after com-
pactifying our theory on Y, the supersymmetry transformation (6.5) tells us that
we need one covariantly constant spinor for each unbroken supersymmetry. The
standard integrability condition on spinors (A.23)

1

[VM, VN]EE = 1

RMNPQFPQE =0 s (66)

then tells us that M, must be flat Minkowski spacetime [153]. Looking at (6.5)
again, we see that ¢ must be independent of the coordinates on M,,which means
that the integrability condition (6.6) then implies that there must be a covariantly
constant spinor on Y, known as a Killing spinor. This has two consequences. The
first is the existence of a globally defined nowhere vanishing spinor on Y, imply-
ing that the structure group on Y is reduced. The second is that this spinor is
covariantly constant, which means that M, is flat, as we have already seen, but
also that Y is Ricci-flat3. However, this second condition also places further con-
straints on the compactifying manifold Y. In order to have a better understanding

of these points, it will be worthwhile to review some details of the geometry of

3Y is Ricci-flat, rather than flat, as we make no assumption of maximal symmetry.
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compactifications?.

Recall that the vielbeins e’ define a local orthonormal frame on a manifold M,
with the set of all such frames over M being known as the frame bundle. The
frame bundle is the principle fibre bundle naturally associated the tangent bundle
Ty over M [155]. The structure group can be understood as the group of trans-
formations required to sew together the frames over the entire manifold. On an
oriented Riemannian d-dimensional manifold M this group is SO(d). The manifold
M is said to have reduced structure if this structure group is not SO(d), but one
of its subgroups G C SO(d). If a manifold has a reduced structure group, one can
prove that there exists a globally defined tensor which is covariantly constant with
respect to the connection on the reduced structure bundle i.e. that there exists a
tensor which is invariant under G-transformations [156]. Conversely, one can use
the existence of a globally defined G-invariant tensor, or spinor, on M to prove that
its structure group is reduced. It is worth noting that this is not unfamiliar. Had
we not assumed that our manifold was Riemannian from the outset, the structure
group would have been GL(d,R), which is the generic structure group on a frame
bundle. By stating that the manifold possessed a metric which is covariantly con-
stant with respect to the metric connection on the frame bundle, i.e. by stating that
the manifold is Riemannian, we had reduced the structure group from GL(d, R) to
O(d). This is then further reduced to SO(d) if the manifold is orientable. Further-
more, one can prove that there exists a unique, torsion-free metric connection - the
familiar Levi-Civita connection - with the manifold then being defined to have O(d)
holonomy. Generally, if the connection on a principle bundle over M is torsion-free,
then the manifold is said to have G-holonomy, rather than G-structure.

We now appreciate that the existence of a covariantly constant spinor on Y implies
that it has reduced G-structure. For the compactification we consider here, G C

SO(6) , where we have initially decomposed the ten-dimensional structure group as
SO(1,9) — SO(1,3) x SO(6) , (6.7)

but it is not yet clear what the subgroup G of SO(6) is. In order to determine this,
we should provide some more details about the ten-dimensional theory in question.
The Type II theories have two real spinors, corresponding to the AN/ = 2 super-
symmetry in ten dimensions. In Type ITA these spinors have opposite chirality

and are denoted by %, whereas in Type IIB they have same chirality which

4We refer the reader to [155, 156] for further definitions and proofs of the topics discussed here.
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we can choose to be positive. Ten-dimensional spinors transform in the 16 rep-
resentation of SO(6), which splits into (2,4) + (2,4) under the decomposition
SO(1,9) — SO(1,3) x SO(6). Concentrating now on Type IIA, we can write this
decomposition as

ef=¢"en, (6.8)

where £+ € SO(1,3). Here we have chosen the minimal case of one internal spinor
n € G C SO(6), such that the two generic four-dimensional spinors £+ give rise
to the eight supercharges of N' = 2 supersymmetry in four dimensions. We know
from the supersymmetry transformation (6.5) that 7 must be covariantly constant,
and therefore it must lie in a singlet of the reduced structure group G. As the Lie
algebra of SO(6) is isomorphic to SU(4), we can choose to look for subgroups of
SU(4). An appropriate choice is SU(3), under which the 4 of SU(4) decomposes
to 3 + 1, thus allowing n € 1. As stated above, one can prove that the existence
of a covariantly conserved spinor implies that the structure group is reduced from
SO(6) to SU(3), or a subgroup thereof. For example, if there were two independent

covariantly constant spinors one would have SU(2) structure.

On further study of the implications of SU(3) holonomy [153], one finds that it
is possible to construct a 2-form ¢ and (3,0)-form Q using the spinor 7. One
can identify ¢ with the familiar fundamental form of complex geometry and from
it construct the corresponding almost complex structure J, which is a map from
from the tangent bundle onto itself, obeying J> = —1. One can prove that J is
integrable, thus providing a complex structure, and so one sees that the manifold
is complex. The second form €2 can then be shown to be holomorphic with respect
to the complex coordinates on the manifold, and the metric g can be shown to be

Hermitian i.e. g(u,v) = g(Ju, Jv) for all vector fields u,v on Y.

A complex manifold with a covariantly constant complex structure, as we have
here by construction, is known as a Kéahler manifold®. Thus for our six-dimensional
internal manifold Y, the existence of a covariantly constant spinor 1 means that Y
is a complex, Ricci-flat Kdhler manifold i.e. Y is a Calabi-Yau manifold [153].

As an aside, we note that the statement that the manifold is Kéhler holds if the
reduced holonomy group is U(3) = SU(3) x U(1). However, one can prove that
the Ricci tensor of Kéhler manifold defines the field strength of the U(1) part of

the spin connection. As this vanishes for a Ricci-flat manifold, the holonomy group

®More concretely, the spinors lie in representations of Spin(1,9), the spin cover of ten-
dimensional Lorentz group, which can be decomposed into Spin(1,3) x Spin(6), corresponding
to (6.7).

6For equivalent definitions of a Kiihler manifold see [155] and proposition 4.4.2 of [156].
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U(3) is further reduced to SU(3). This can be rephrased formally in terms of the
vanishing of the first Chern class of Y. For thorough treatment of these results on

compactifications and the mathematics of reduced holonomy manifolds we refer the
reader to [153, 156].

We have seen that by requiring our compactification to preserve the minimal
amount of supersymmetry and to result in a maximally symmetric four-dimensional
manifold My, the supersymmetry condition (6.5) forced My to be flat Minkowski
spacetime and the internal manifold Y to be Calabi-Yau. We understood this by
realising that the existence of a covariantly constant spinor on Y meant that the
holonomy group of Y was reduced from SO(6) to SU(3), which in turn implied that

Y was a Ricci-flat Kahler manifold.

In this chapter we aim to consider D-branes on manifolds with reduced struc-
ture groups, rather than holonomy groups, i.e. manifolds with torsion [5,152, 154,
157,158]. In particular, we shall study the geometry of supersymmetric D-branes
in a very general class of supergravity backgrounds preserving four-dimensional
Poincaré invariance and N’ = 1, rather than N' = 2, supersymmetry. Such back-
grounds correspond to warped products of four-dimensional Minkowski space-time
and an internal six-dimensional manifold M with general fluxes turned on, which
we shall often refer to simply as generalised backgrounds. N = 1 supersymmetry
requires the existence of four supercharges, which correspond to four independent
ten-dimensional Killing spinors, whose most general form can be written in terms
of two internal six-dimensional Weyl spinors 775:) and nf), analogous to (6.8). The
flux on the internal manifold means that these spinors are no longer covariantly
constant with respect to the Levi-Civita connection, and as such the corresponding
forms constructed from the spinors are no longer closed. While not necessary for
the discussion we present here, it is worth noting that the non-closure of the com-
plex structure J and the holomorphic three-form 2 constructed from the spinors
provides an elegant description of how far a G-structure manifold is from being a
G-holonomy manifold in terms of intrinsic torsion classes [154,156]. The analysis
is involved, but one finds general constraints on Type II flux compactifications pre-
serving N/ = 1 supersymmetry; the internal manifold is constrained to be complex
in IIB and symplectic (plus one complex case) in ITA (see [5], for instance, for
further details).

The spinors nsrl) and nf) both define an SU(3) structure, each with a corresponding
almost complex structure, which we by denote J; and J; respectively. If the spinors

are parallel (775:) x nf)), then we have the case of SU(3) structure, analogous to
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torsion-free Calabi-Yau case described above. If the spinors are nowhere parallel,
then then structure is further reduced to SU(2). However, one can also have the
more general case of the two spinors becoming parallel only in some patches, which
is complicated to describe.

There exists a unified language in which to treat these various cases, first suggested
by Hitchin [159] and developed by other authors [160, 161], in which one considers
the sum of the tangent and cotangent bundles over Y, Ty @ T}, and then demands
that there is a SU(3) x SU(3) structure on the associated principle bundle over
it. The familiar concepts of complex geometry can be extended to this bundle,
defining generalised complexr geometry. For instance, a generalised almost complex
structure J is defined as a map of Ty @ Ty onto itself such that J? = —1, and
obeys the Hermiticity condition J!07 = §, where 6 = (? [1)) is the natural metric
on Ty & T3

Spinors lie in representations of the Spin(6,6) cover group, although often one refers
to the related representation of the Clifford algebra, denoted Clifford(6,6), which
can be defined in terms of matrices \™, p,, obeying the following algebra [157, 158]

{)‘m’ An} =0 ) {)‘mv pn} = 51? ) {pm7pn} =0, (69)

where 0, is the 6 + 6-dimensional metric on Ty @ Ty, described above, and m,n =
1,...,6. One can also find a representation of this algebra in terms of forms using

A" =dx™ A , Pn = ln , (6.10)
where ¢, = 19, = dz™ A.. . ANdx™ = pélzaldx” A...Adx®) is the familiar contraction
ln @ APT* — AP~IT* A spinor is defined to be pure in six dimensions if there
exist six linear combinations of \™, p,, which annihilate it. Defining an appropriate
vacuum state, one can construct forms of all degrees from the complementary set of
matrices. A generic Clifford(6,6) spinor can then be understood as a formal sum of
forms, with positive and negative chirality spinors in Majorana-Weyl representation
of Clifford(6,6) corresponding to sum of forms of even and odd degree respectively
[160]. In fact, many of these results are extensions to 7y @& Ty of well-known work

on spinors and forms on 7%, reviewed in [173].

An important element of this construction is the Clifford map, relating Clifford(6,6)

"See, for instance, [5] for further details with applications to supersymmetric compactifications.
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spinors to Clifford(6) bispinors [157, 161]:
V5 ™ A A s (2 DD A (6

where 4 are Clifford(6) gamma matrices satisfying the algebra {4™,4"} = ¢™" and
Gmn 18 the metric on Y. For example, on a manifold with SU(3) structure we know
there is a nowhere vanishing spinor, from which we can construct two nowhere

vanishing bispinors in the following way

¥r=n.on. , Y =n.0n . (6.12)

We can rewrite these in terms of the formal sums of forms
Ny ®77:rt Z k‘n Aml my +,Ymk.‘.m1 7 (613)

using the Fierz identities. One can act on the left and right of a bispinor with the

six-dimensional gamma matrices

— «—

= A"+ 9g™",) , =N = ¢"",) (6.14)

where we have dropped the "’s and the + depends on the parity of the bispinor

upon which 7™ acts. It also is useful to note the inverse relation

ATX S (7 A (6.15)

where once again the + depends on the parity of the bispinor ¥. Using this, one
can check that the SU(3) spinors (6.12) are pure, with each being annihilated by
six Clifford(6,6) gamma matrices; three acting on the left and three on the right of
the bispinor [158],

G +id) e @0k =0 e @iy, +iJ),r =0, (6.16)

where J is the almost complex structure on 7y. Two pure spinors are said to be
compatible if they share three annihilators in six dimensions, which in this case are
provided by the three acting on the left. Furthermore, one can prove that there
is a one-to-one correspondence between a pure spinor and a generalised complex
structure associated J, where the later are constructed from the familiar spinors

defining the reduced structure in the usual way.
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In the next section we will see how the supersymmetry conditions for flux com-
pactifications with SU(3) x SU(3) can be written in a compact elegant form using

this pure spinor formalism.

6.3 Basic results on N =1 vacua

We are interested in Type II warped backgrounds preserving four-dimensional
Poincaré invariance and N' = 1 supersymmetry, with the most general fluxes and

fields turned on. The ansatz for the ten dimensional metric gy;y is
ds* = 2 Wy, dat dz” 4 g (y)dy™dy" (6.17)

where z#, 4 = 0,...,3 label the four-dimensional flat space, y™, m = 1,...,6,
the internal space, and M, N = 0,...,9. Let us introduce the modified RR field
strengths

F(n+1) = dC(n) + HA C(n,g) , (6.18)

where dC(,,) are the standard RR field strengths®. In order to preserve four dimen-

sional Poincaré invariance we can write

F(n) = ﬁ(n) + VOl(4) VAN ﬁ(n_4) . (6.19)

The relation Fi,,) = (—)w *10 Fli0-n) between the lower and higher rank
field strengths translates into a relation of the form F(n) = (—)W *6 F(G—n)
between their internal components. The ten dimensional gamma matrices 'y, (un-
derlined indices correspond to flat indices) can be chosen in a real representation

and decomposed in the following way
Ly=7m®l 5 I = Y1) ® Ym (6.20)

where the four-dimensional gammas 7, are real and the six-dimensional ones ¥,
are anti-symmetric and purely imaginary. The four- and six-dimensional chirality

operators are given respectively by

Ty =B e =~ (6.21)

8We will essentially follow the conventions of [157, 158], up to some differences consisting in a
sign for H in Type IIB and the sign change C2,,41) — (—)"C(an+1) in Type IIA.
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so that the ten-dimensional chirality operator can be written as I'(jg) = o9 —
Y4) @ V6)-

For Type ITA backgrounds the supersymmetry parameter is a ten-dimensional Ma-
jorana spinor ¢ that can be split into two Majorana-Weyl (MW) spinors of opposite

chirality:
E=¢€1 1+ &9 , F(lo)sl =& , F(10)52 = —&9 . (6.22)

Since we are interested only in four-dimensional AN/ = 1 backgrounds, they must

have 4 independent Killing spinors that can be decomposed as

a(y) = G o)+ ey,
ey) = G @) + ¢ onPy), (6.23)

where (, is a generic constant four-dimensional spinor of positive chirality, while
the nSf) are two particular six-dimensional spinor fields of positive chirality that

characterise the solution and

=) . =) (6.24)

In Type IIB the two supersymmetry parameters €, o are MW real spinors of positive

ten-dimensional chirality (I'1g)e1,2 = €1,2). In this case

ca(y) = G @1 (y) + ¢ @' (y) | (6.25)

where again (. = ((;)* and ' = ( Era))*

'r]il) and nf) associated to these N' = 1 backgrounds generally specifies an SU(3) x

. The existence of the internal spinors

SU (3)-structure on Ty @ Ty, as we described previously.

As discussed in [158], in order to analyse the supersymmetry conditions for the

background, it is convenient to use the bispinor formalism. Using the Clifford map

(6.11), we can associate two pure spinors to our internal spinors n(j) and nf)

1 2 — 1 2
pr=nPen? g =nVep?r (6.26)

corresponding to sums of forms of definite parity

AED DL/ SR D D) e (6.27)

k>0 k>0
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Following [158], we also fix the norms of the two internal spinors to be
N2 =1al> (@)= (6.28)

In [158] it was first shown how the Killing equations, i.e. the supersymmetry
transformations, can be written in an elegant form in terms of the pure spinors W=
using the Clifford map. This calculation is rather involved, but crucial, and so we

will take some time to review it in detail here.

Background supersymmetry conditions

Following [157, 158], we shall now show how the supersymmetry conditions for the
ten-dimensional Type II theories with SU(3) x SU(3) structure backgrounds can
be written as d¥*, and in particular we adopt their conventions in the following
calculation. The result can be translated back to our convention by using the rules
specified in footnote 8 on page 110. We will use the democratic formalism of the
Type II theories [174], in which the gravitino ,; and dilatino A supersymmetry

transformations can be written in the following way

1

O = Ve + L HyToje + —e‘l’ Z Foomy CuPae, (6.29)
1 1 .

S\ = (@@ + §H73> £+ ée‘l’ > (=15 = 2n) Fion) Puc (6.30)

n

where the modified RR field strengths are now given by Fa,) = dC,—1) — H A
Cin-3), with n =0,...,5 for IIA and n = 1/2,...,9/2 for IIB, Hy, = %HMNPFNP
and, for instance, H = FM NP v p. Here the two Majorana-Weyl supersymmetry
parameters have been arranged in a doublet € = (g1, 2). As this expression involves
both field strengths and their duals we must impose the self-duality relation, which
now takes the form

Flon) = (—)Int[n] *10 Fl10-2n) (6.31)

where Int[n] denotes the integer part of n. For Type IIA we define P = I'(1py and
P, = F’("”lo)al, while for Type IIB we define P = —¢® , P, = o! for n + 1/2 even
and P, = io? for n + 1/2 odd, where ¢ , ¢ = 1,2,3 are the usual Pauli matrices.
For calculations it is convenient to consider the “modified dilatino” transformation,
in which the RR terms vanish, defined by

T gty — 6N = (V — P+ iﬁm) €. (6.32)
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It shall be sufficient to concentrate on the calculation of dW in the Type ITA case,
as the Type IIB case is completely analogous. The supersymmetry transformations
(6.29), (6.32) are then given by

1
51/JM—VM€+4HMF(1Q€+—€ Zan)FMF 10) g1 €, (633)
Mg — oA = (¥ - po + ZHF(10)> c. (6.34)

Using the four plus six dimensional decomposition of spinors, field strengths and

gamma matrices described above, we may rewrite these transformations as condi-

(a)

tions upon the internal spinors ny’. For the external component of the gravitino

transformation ¢, one then finds

1 e® /. o~

500 + = (g +iF ) n® =0, (6.35)
Loan® 4+ € (7 7 - 6.36
5@ n- +E<FA2+ZFA2>77+ = U, ( )

where Fa1 = Floy — Fo) + Fluy — Fig) and Fay = Fo) + Fo) + F4)y + Fl). The

corresponding decomposition on the internal component d1),, gives

1 RN

Vol + JHun'! + 2 16 (Fm iF 1) ™ =0, (6.37)
1 RN

Vi)™ — 4Hm77( )= (FAz ZFA2> G =0, (6.38)

and for the modified dilatino transformation we find

(7 3+ 204 p2) ) 0, (6:39)
(- 3 +204 - 90) 2 0. (6.40)

Consider the exterior derivative of the Clifford(6,6) spinors ¥* in terms of Clifford(6)

bispinors, given by
dU* = da™ AV, UF = da™ A (ani)) @ 4+ ng) ® (an(f))T . (6.41)

We shall concentrate on d¥U~, with the aim of deriving the first supersymmetry
constraint for Type ITA. The second condition follows in a similar manner. Using

the definition of Clifford(6,6) spinor representations given in [157,158], we can
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rewrite (6.41) as
240 =YV @0 - & (¥ +4m 0 @ (V@) = V,unVen® T3 (6.42)

One can now use the decomposition of internal gravitino and modified dilatino
supersymmetry transformations to evaluate the right-hand side of this expression.

We form the following bispinors from the external gravitino transformation

1
5@An‘_” @ - = (17” o —iF Al) @ @t =0, (6.43)
1 'ID

These two quantities can be added together with (6.42) to give,

24V~ = (@@_ - Q@A) W @@t — b g n® (@cp H—Z@A)
-~ iv Y @0 H,, + leHm D on®m — 90 @+ @ nPTpA
— i (370 @ 0" + 200 @ 1 1”) (Fay +iF 41)
= i) (72 o5+ 22 o) (6.49

Making some manipulations, using the fact that 1(6)}?” AL = —iﬁ’ 4, and going back
to our preferred notation, the Clifford map (6.11) allows us to write this equation
in the form applicable to both Type IIA and IIB. The complete set of equations

for U+ resulting from this procedure are?

o .
e 2 (d+ HA) [0 = dA AT, + i—6 [(laf?> = [6]*)F +i(|a]* + [b]*)F] ,
(d+ HAN) [ 7*T0,] =0, (6.46)
where for Type ITA we have

U, =9 \112:\1’+ and F:FA:F(0)+F(2)—|—F(4)+F(6), (647)

9Note that, taking into account the different conventions, the first of (6.46) has some sign
differences with equations (3.2) and (3.3) of [158]. We thank the authors of [158] for private
communications confirming the sign mistakes appearing in equations (3.2) and (3.3) in the original
version of their paper.
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while for Type IIB
\111:\11+ , Uy =V~ and FZFB:F(1)+F(3)+F(5) . (648)

The second condition means that the generalised almost complex structure associ-
ated to Uy is integrable, while in the first the RR fields represent an obstruction
to the integrability of the generalised almost complex structure associated to ;.
Using the gravitino Killing equations one can furthermore show that A/ = 1 super-

symmetry imposes the following constraint
dla|* = |b]*dA d|b]* = |a]*dA . (6.49)

As discussed in [158], it can be proven that equations (6.46) and (6.49) are com-
pletely equivalent to the full set of supersymmetric Killing equations and hence
can be considered as necessary and sufficient conditions to have a supersymmetric
background. Furthermore, one has to bear in mind that these equations only make
sense if not all of the RR field strengths are vanishing, and that in order to have
a complete supergravity solution one has to supplement these conditions with the

Bianchi identities and the equations of motion for the fluxes [175].

The supersymmetry conditions (6.46) and (6.49) are identical in form for Type ITA

and IIB and the two cases are exactly related by the exchange
Ut U~ and Fy« Fg. (6.50)

This relation can be seen as a generalised mirror symmetry for Type II backgrounds
with SU(3) x SU(3) structure and, as we will see, the conditions for having su-
persymmetric branes respect this symmetry, providing further evidence that it is a
fundamental feature. For further discussions on generalised mirror symmetry, see
e.g. [152,176-180].

It will be useful at this point to make some contact with the common terminology
in the literature. A manifold is called generalised Calabi-Yau if there exists on it a
closed pure spinor d¥ = 0. The corresponding generalised almost complex structure
is then integrable. Similarly, the existence of a twisted closed pure spinor, with
closed H-field, dgV = (d + HA)¥ = 0 defines a “twisted” generalised Calabi-Yau.
While it is not necessary for our purposes, we note that the integrability of the
corresponding almost complex structure can be phrased in terms of an appropriate

Courant bracket on Ty @ Ty, which is a “twisted” version of the usual Lie bracket
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[160].
Let us finally remember that these backgrounds contain as subcases the SU(3) and

SU(2) structure backgrounds. In the SU(3) case we have to require that the two nf)

are linearly dependent, i.e. 7753) = an, and nf) = bn, for a given six-dimensional
spinor field n,;, with n177+ = 1. On the other hand we have SU(2)-structure when
n(j) and 775_2) are never parallel. We refer the reader to the detailed discussion of

these cases given in [158].

6.4 Supersymmetric D-branes on A/ =1 vacua

Let us now turn to the main question of this chapter, namely: what are the con-
straints on supersymmetric D-branes in the general class of backgrounds we have
described in the previous section? In chapter 3 we saw how preserved supersym-
metry of the M2-brane enforced a projection condition upon the supersymmetry
parameter € (3.52), which we derived by using the conserved charges for the M2-
brane and the eleven-dimensional supersymmetry algebra. In this section we shall
take a complementary approach in which the fraction of preserved supersymmetry
of a brane is determined from the worldvolume perspective. For clarity, let us now
review our conventions for the Dp-action and symmetries, before proceeding to

analyse the supersymmetry conditions for branes on our generalised backgrounds.

In general, a Dp-brane configuration of a Type II theory is defined by the embed-
ding &> — XM = (2#(£),y™(€)), « = 0,...,p of the Dp-brane worldvolume with
coordinates £ into the ten-dimensional spacetime with coordinates X, and by
the worldvolume two-form field strength f(o) = dA(;), where A is the gauge field
living on the brane. We write the bosonic part of standard Dp-brane in standard
Dirac-Born-Infield plus Chern-Simons form [181-183]

ng) = —TDp/derlfe_@\/—det(g—l—f)+TDP/ZP[C’(H)](3?, (6.51)

where 7'5; is the brane tension. Here F,3 = P[Blag + fap and gag = P[Glag,
P[B]|.p are the pull-backs of the background spacetime metric G,,, and Neveu-
Schwarz two-form gauge potential Bjy, respectively, on the worldvolume.

The total Dp-brane action may be written in superspace formalism, however this
is somewhat complicated. In order to understand the physical couplings, it will

suffice for our purposes to write the fermionic terms up to quadratic order, following
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184, 185]:
(F) _ TDp ptle —@ ] “r—1\af
Sy = T/d Ee®\/—det(g+ F)O(1 — Tp,) [(M~")*TsD, — Al6 . (6.52)

where the pull-back of a gamma matrix is defined by I'y, =T’ Me%&xX M and under-
lined indices run over flat tangent space directions. It is convenient to once again
use a double spinor convention for both Type IIB and Type IIA |, where in the ITA
case the two spinors of opposite chirality are organised in a two component vector.

We have also introduced
Maﬁ = GJop + f‘(10)]:.045 ) (653)

where

ITA F(lO) = F(lO) s IIB : f(l()) = F(lg) X o3 . (654)

The other operators appearing in (6.52) are given defined the pullbacks of the

gravitino (6.30) and dilatino (6.30) supersymmetry transformations:
O0chm = Dme ;0N =Ac. (6.55)

The complete bosonic plus fermionic action is invariant under worldvolume dif-
feomorphisms and global supersymmetry, which takes the following form on the

worldvolume

0.0 = ¢, (6.56)
1-
by = =50 (6.57)
s 1 -
55Aa = §9F(10)Fa€ — éBamQFme . (658)

It also possess an additional local fermionic symmetry, sk-symmetry, which up to

quadratic order in fermions is given by

6.0 = k(1 +Tp,) , (6.59)
1 -
Oxy™ = 50010, (6.60)
R 1 _
OxAa = 50a0T (10)Tab = 5 Bamds0I™0 (6.61)

with transformation parameter . In fact, for all brane solutions one finds such an

additional symmetry of the actions [181, 182], taking the following generic form on
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a spacetime spinor 6
0.0 =(1+TD)k, (6.62)

where I' is a Hermitian, traceless operator, with I'> = 1, and therefore eigenval-
ues split equally between £1. Thus %(]l + I') is a projection operator with the
same properties as that found from the spacetime supersymmetry algebra (3.52) in
chapter 3 i.e. half its eigenvalues are zero.

Using the xk-symmetry transformation (6.59), one can show that a Dp-brane pre-

serves a given supersymmetry ¢ of the background if it satisfies the condition [183]°
00 +0.0=0 = ¢él'p,=¢, (6.63)

where I'p,, is the same worldvolume chiral operator entering the x-symmetry trans-
formations (6.59)[183]. Using the explicit form of the k-operators in our notation'!,

we find this condition reduces to
Tppes =1, (6.64)

where
012101 Bs

. 1
top = V/—det(P[G] + F) 2 [1s12]

2l+s=p+1

Famz o "7:0421711121F[51--ﬂs ’ (6'65)

and I',(F) = (=)™ ), (—F).

Let us now consider the implications of the Dp-brane supersymmetry condition
(6.64) in our general class of backgrounds. We begin by restricting our attention to
Dp-branes filling the time plus ¢ flat directions (with no worldvolume flux in these
directions), and wrapping an internal (p — ¢)-cycle in the compact manifold Y.
Using (6.20) we can decompose the above operators into four- and six-dimensional

components as follows

!/

po - 7M7€)4_)q ® Vip—q) » (6.66)

10See [162] for an earlier discussion of the M2-brane supersymmetry on C'Y3.

"Here we use the k-symmetry operators constructed from T-duality in [184], which are identical
to those given in [182] up to some different overall signs. Their explicit form in double spinor
notation in both ITA and IIB can be found in [185].
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where

1 €010 B
~/ _
Vi) /det(P[g] I ]:) 21+Zsr 15121

is a unitary operator acting on the internal spinors.

fmaz T fazlﬂﬂézlﬁ/ﬁlnﬂs ) (667)

By considering general Dp-branes in both Type ITA/IIB backgrounds and using
(6.23), (6.65) and (6.66), it is possible to see that the supersymmetry condition

(6.63) can be split into the four-dimensional condition

Y0..46+ = Oé*lC(f)qul ; (6.68)

and the internal six-dimensional one

:)/Epfq)néi))p-‘rl - Oén((i))q-kl . (669)

By consistency with the complex conjugate of these expressions and the fact that

a(g+1)
Toog = —(=) 2

have an effective four-dimensional particle, can never be supersymmetric, while for

, it can be seen that the case ¢ = 0, i.e. the case where we

g = 1,2, 3 one has the condition that o = €%, i.e. a is a pure phase. More explicitly
¢ =0 or 7 for ¢ = 1 (effective string), ¢ is arbitrary for ¢ = 2 (domain-wall) and
¢ = —m/2 for ¢ = 3 (space-time filling branes). From the unitarity of the operator
%7‘)’ it also follows that we must have the following constraints on the internal

spinors

112 = @11 (6.70)

and from (6.49) we then see that once the condition (6.70) is fulfilled at one point

for our backgrounds, it is automatically valid at all points.

For the purposes of this work we are interested in spacetime filling branes and hence
from this point on we shall consider only these cases. Supersymmetry conditions
for the other cases listed above are easily found by reinstating (-dependence in
the appropriate way. In the case of four-dimensional space-time filling branes, the
four-dimensional condition is automatically satisfied once we set p = —7/2, leaving

the following internal conditions

o @) () ,
{W%)m =+ » B, (6.71)

. 2 :
wg%ﬂ)ni) = 77(,) , in ITA .
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We would now like to write the supersymmetry conditions (6.71) in terms of the

geometrical objects ¥* and WU~ introduced in section 6.3. In order to do this, it is

useful to decompose the spinorial quantities entering (6.71) in the basis defined by
1 1 NG .~

nY o Y A and 4™ (6.72)

By decomposing the supersymmetry conditions (6.71) in this basis, one obtains a

set of equations written in a more geometric fashion in terms of the pull-back to the

worldvolume of W and W~. Explicitly, for even 2k-cycles we have the conditions

o _i|a|2\/— 1 2k
{P[\If |Ae }(%)_ 3 det(Plg] + F)do" N ... Ndo™" |
m — mn — F _
{P[dm AT 4 g™, U] Ae }(%)_0, (6.73)

while for odd (2k + 1)-cycles we have

: 2
{P[\If‘] A ef} = %\/det(P[g] + F)do* A ... Ndo®* T

(2k+1)
{P[dxm ATY + g™, U A ef} =0. (6.74)
(2k-+1)

Note that these equations are identical if we interchange
U e U | (6.75)

They then respect the generalised mirror symmetry (6.50) that relates the Type

ITA and IIB V = 1 supersymmetric backgrounds we are considering.

In the following section we will discuss the geometrical interpretation of the su-
persymmetry conditions (6.73) and (6.74). As a preliminary step, it is useful to
observe that they are not independent. Indeed, we obtained these conditions by
expanding (6.71) in the basis (6.72). Using the unitarity of 4/(F), it is easy to see
that the first equations of (6.73) and (6.74) imply the second ones. Vice-versa, the
second conditions determine the first up to an overall arbitrary (in general, point
dependent) phase. Moreover, once again using the unitarity of 4'(F), the first con-
ditions can be furthermore restricted in such a way that we can characterise the
supersymmetry cycles in the following way:

{1m (iP[w*]) A ef}(%) —0,

{P[d:cm AT 4 g™, U] A ef}( =0, (6.76)
2k
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for even 2k-cycles, while
. _ F .
{Im (iP[¥7]) Ae }(2k+1) =0,
{P[dxm AT 4 g™, U] A ef} ~0, (6.77)

(2k+1)

for odd (2k + 1)-cycles.
Note that these conditions do not strictly speaking imply that the wrapped brane is

supersymmetric but in general it is supersymmetric for one choice of orientation. If
the RR fields were turned off, the orientation would be arbitrary because a change
of orientation would amount to considering an anti D-brane instead of a D-brane or
vice-versa, and these feel the background fields in the same way. However, we are
considering the case with nontrivial RR fields. D-branes and anti D-branes then
react to the background in a different way and the orientation cannot be ignored,
meaning that the conditions given in (6.76) and(6.77) are in fact necessary and
sufficient only for the brane to admit at least an orientation making it supersym-

metric.

The above conditions can be substituted by the following single condition that

encodes also the necessary orientation requirement:

{Re(—z‘P[\If*])/\ef} :%\/det(P[g}—|—]—")dal/\.../\da2k, (6.78)

(2K)

for even 2k-cycles, while for odd (2k + 1)-cycles

{Re(—iP[w ) ne”}

2
| = %\/det(P[g] + F)do' A ... Ado® . (6.79)

(2k+1

Note that since we are assuming that the internal spinors have the same norm, in
the above expressions we can write |a|? in terms of any of the two pure spinors as

follows
la* = |[¥|* = Te(PPT) =8 " [Wpl* . (6.80)
k

We will see in section 6.7 that we can interpret the equations (6.78) and (6.79),
and then also (6.76) and (6.77) plus an appropriate choice of the orientation, as

generalised calibration conditions.
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6.5 The geometry of the supersymmetric D-branes

We shall now discuss the geometrical meaning of the second conditions of (6.76) and
(6.77). As we will see, supersymmetric branes wrapping even cycles in Type 1B
and odd cycles in Type IIA must correspond to a correctly generalised definition
of holomorphic and coisotropic branes respectively. For the cases we are interested
in we can adapt the discussion presented in [166,168] for backgrounds with only
nontrivial NS fields.

Let us first recall that, for the general r-cycle, the second conditions of (6.76) and
(6.77) come from the requirement that 4, (F )nf) must be parallel to n((l_))r. It is

then possible to see [166] that this condition is equivalent to
Jily = (=)"RLR |y, (6.81)

where J; and J, are the almost complex structures associated to the six-dimensional
spinors nﬁrl) and n(f) respectively (see Appendix B for the explicit construction in
the SU(3) structure case). J|y denotes the restriction of a complex structure to the
D-brane worldvolume wrapping a cycle ¥ of the internal manifold Y. The action
of the rotation matrix R on Thy|s = Ts @ Ny is defined as follows. If p) and p, are
the projectors on the tangent and normal bundle of the brane respectively, then R
acts as a reflection in the normal directions (Rp, = p; R = —p, ) while the action

of R along T is defined by

pilg = Fpy = pilg + Flp R (6.82)

where F is now naturally thought of as a section of A?Tj|s such that plF =
Fp, = 0. The pure spinors ¥* and ¥~ are associated to generalised almost
complex structures J; and J_ on T3y @ T3;. One can prove that these can be
written in terms of J; and Jy as follows [160, 166, 168|:

Jr =

1 ( LTS (Lt D)yt > . (6.83)
g

2\ g(h£1) g(Ji Fl)g™!

One can then see that (6.81) is equivalent to the following condition for 7, restricted

on TM D TX/[|2

Ty =R TR, (6.84)
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where R acts in the following way on Ty & T3]

1 T 0
R—- , (6.85)
2\ Fr++TF —T

with r = p —p..

The D-brane worldvolume wrapping the internal cycle X, fully specified by the
couple (X, F) where F is such that dF = Py[H], can be seen as a generalised
submanifold as defined by Gualtieri in [160]. Gualtieri also defines a generalised
tangent bundle 7 associated to the brane. The key point is that the elements

X € Ty & Ty |y belonging to & can be characterised by the condition [168]
RX =X . (6.86)

The subsequent step is to remember that, given an (integrable) generalised com-
plex structure J on M, Gualtieri defines a generalised complex submanifold as a
generalised submanifold (¥, F) with generalised tangent bundle 7 stable under J
i.e. it is mapped to itself under that action of 7.

From (6.84) and (6.86) we arrive at the conclusion that the second conditions in

(6.76) and (6.77) are each equivalent to the following requirement:
Supersymmetric D-branes wrapping even-cycles in Type 1IB and odd-cycles in Type

ITA must be generalised complex submanifolds with respect to the (integrable) gen-

eralised complex structures J_ and J. respectively.

These generalised complex submanifolds can be seen as the most natural general-
isation of complex (holomorphic) cycles with F of kind (1,1) in Type IIB and of
coisotropic cycles in Type ITA [160, 186].

6.6 D-branes on SU(3)-structure manifolds

In this section we pause the discussion of SU(3) x SU(3) structure manifolds to
comment on the SU(3) structure subcase. We recall that this is obtained when we
can write nsrl) = an, and nf) = b, (nimr = 1), remembering that in order to have
supersymmetric branes we have to fulfil the necessary condition |a| = |b|. In this

case, the pure spinors U* can be defined in terms of the almost complex structure
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J and the (3,0)-form  associated to 7, as explained in appendix B,

1 R ) R
Ton = —Wnifymnmr , anp = —?nifymnp?pr . (6.87)

Using the Fierz decomposition it is possible to show that
i _ 1 g i ¢
ne@ne = geft e @nl=—of (6.88)

We immediately see that in the SU(3)-structure case U and ¥~ reduce to

ab _, wab
Ut =—e " U =——0 . 6.89
g° 8 (6.89)
Since we must require that |a| = |b|, we can pose
% = | l;i* =", (6.90)

and the supersymmetry conditions for the wrapped branes now read

Im (iei® Ple=1) A .7-'} —0
{ m (ie'Ple™"']) Ae o ,
{P[dmm A+ g™ 1,0 A ef}( - 0, (6.91)
2
for even 2k-cycles, and
Im (¢ P[Q]) A e” } —0
{ m (T PA) A (2k+1) ’
{P[d:cm Ae 4+ gt A ef} =0, (6.92)
(2k+1)

for odd (2k 4 1)-cycles. Again, these conditions really imply that it is possible
to choose an orientation on the D-brane in order for it to be supersymmetric and
generally reversing the orientation does not preserve supersymmetry. As in the
general case, they can be substituted by the following equivalent conditions which

also provide the necessary requirement on the orientation

= Vdet(Plg] + F)do* A...Ado®* | (6.93)

{Re( — i Ple™]) A ef}

(2k

for even 2k-cycles, and

{Re(—eiTp[Q])Aef}( = VAP + F)do A Ado™ (694

2k+1
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for odd (2k+1)-cycles. Note that in the SU(3)-case Type IIB and ITA backgrounds
have complex and symplectic internal manifolds respectively. The above conditions
have the same form as those derived in [163] for branes with nontrivial worldvolume
fluxes on spaces with no fluxes, and can be seen as their natural generalisation (see
also the discussion in [164] for the Type IIB case). In particular, from the discussion
of the previous section, the second conditions in (6.91) and (6.92) now require that
supersymmetric branes are complex branes with (1, 1) field strength F in Type 11B
and coisotropic branes of the kind discussed in [186] in Type ITA (see section 7.2
of [160]). Also, the above conditions are obviously exchanged by the generalised

mirror symmetry, that in this case takes the form

e - —ie'™Q) . (6.95)

6.7 Generalised calibrations for ' = 1 vacua

We shall now proceed to discuss the meaning of the supersymmetry conditions
in the general SU(3) x SU(3) case. We will see how the conditions in the form
(6.78) and (6.79) can be interpreted as generalised calibration conditions. Then the
first of each pair of conditions (6.76) and (6.77) encodes the necessary requirement
related to the stability of the supersymmetric D-brane that must be added to the

geometrical characterisation given in section 6.5.

Calibrations were originally introduced in [187] as a means to construct volume
minimising submanifolds of Riemannian manifolds. They are constructed using
closed forms and therefore have close ties with manifolds of reduced holonomy which
naturally possess such forms, as we discussed in section (6.2). A nice review of these
points is given in [156], which we shall follow to introduce the basic definition of a

calibrated submanifold.

Let (M, g) be an oriented Riemannian manifold possessing a closed p-form w. An
oriented tangent p-plane V on M is a p-dimensional vector subspace T, M of a
tangent space to M at a point & € M. The restriction of g to V', denoted g|y, can

be combined with the orientation on V' to give a natural volume form wvoly on V.

The p-form w is said to be a calibrating form, or calibration, if for every oriented
tangent p-plane V on M one has that w|y < voly. A given oriented submanifold
¥ is defined to be a calibrated submanifold if w|s, = volr, s, for all z € ¥. One can
easily show that a calibrated submanifold is volume-minimising within its homology

class, however we shall postpone this proof until we discuss the more general case



CHAPTER 6. BRANES ON GENERALISED BACKGROUNDS 126

in which we are interested.

The relation of calibrations to supersymmetric brane solutions was developed in a
series of papers [162, 188-191]. By studying the supersymmetry conditions derived
from k-symmetry arguments, it was shown that supersymmetric instantonic branes
wrap volume-minimising submanifolds [162], with such submanifolds then being
called supersymmetric cycles. The relation between such supersymmetric cycles
in string theory models and the mathematical theory of calibrations was put on a

firmer footing in subsequent works [188-191].

A more intuitive picture is provided by recalling the Bogomol’nyi bound for a
supersymmetric object, such as the M2 brane bound (3.54) discussed in chapter 3.
In a background with all fields but the metric set to zero, the energy density of a
brane with static worldvolume is given entirely in terms of the Nambu-Goto piece
of the Dirac-Born-Infield action. Considering the supersymmetry algebra with a
central extension, as is appropriate for a general (non-dyonic) p-brane solution,
and contracting with background Killing spinors, the familiar Bogomol’nyi bound
for a supersymmetric brane can be understood as a calibration bound, with the
calibration form being constructed as a spinor bilinear of the central charge term
in the algebra [173,192,193,195]. This bound is then easily seen to imply that
supersymmetric branes in this class of backgrounds are volume minimising. Once
again, we shall provide further details of these points when we discuss the case we

are particularly interested in.

Let us first of all introduce the appropriate definition of generalised calibration
for the general class of A/ = 1 manifolds we are considering, starting from the
supersymmetry conditions for four-dimensional space-time filling branes derived
in the previous sections. We will see how it is possible to naturally introduce
a generalised calibration that minimises the energy density and with respect to
which supersymmetric cycles are calibrated. The notion of generalised calibration
was first introduced in [192, 193] to describe supersymmetric branes on backgrounds
with fluxes, and studied in several subsequent papers (see for example [194,195]).
The idea is that the calibration should minimise the brane energy density, which
does not necessarily coincide with the volume wrapped by the brane. It has been
shown in [166] how, in the case of pure NS supersymmetric backgrounds, it is
possible to introduce another notion of generalised calibration which naturally takes
into account the role of the worldvolume field strength f. We will now see how an
analogous definition of generalised calibration can also be used for general N' = 1

backgrounds with nontrivial RR fluxes.
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We define a generalised calibration as a sum of forms of different degree w =3, wiy
such that dgw = (d+ HA)w = 0 and

Pelwlne” <&(%,F), (6.96)

for any D-brane (X, F) characterised by the wrapped cycle 3 and the worldvolume
field strength F and with energy density £ '2. In (6.96) and all other expressions
in this section involving sums of forms of different degree on the cycle wrapped by
the brane, we understand that only forms of rank equal to the dimension of the
cycle are selected. Furthermore, the inequalities between these forms refer to the
associated scalar components in the one-dimensional base given by the standard

(oriented) volume form.

A D-brane (X, F) is then calibrated in a generalised sense by w = >, w, if it

satisfies the condition
Pelwlnef = E(%,F) . (6.97)

Since the generalised calibration w is dgy-closed, one can immediately prove that
the saturation of the calibration bound is a minimal energy condition. Let E(3, F)
be the four-dimensional energy density of a calibrated wrapped D-brane (3, F).
Consider a continuous deformation to a different brane configuration (X', ) such
that we can take a chain B and a field-strength F on it (with dF = Pg[H]), such
that OB = X — 5 and the restriction of F to ¥ and ¥’ gives F and F’ respectively.
We then have

ﬂaﬂ:/&&ﬂ:/PMAJ (6.98)
:/H@MAJ+/pMAJ’ (6.99)
:/ﬁpppuf}g/f@ﬁfﬁ:EQIfﬁ. (6.100)

A calibration condition can then be seen as a stability condition for a D-brane
under continuous deformations, i.e. a D-brane wrapping a supersymmetric cycle is

the lowest energy object in its homology class.

We will now see how the supersymmetry conditions in (6.78) and (6.79) can be

12This definition is completely equivalent to the definition used in [166] where a generalised
calibration @ is closed, i.e. d& = 0, and satisfies the relation Pg[w] A ef < £(X,F). The two
generalised calibrations are obviously related by @ = w A e®. We prefer our choice as it involves
the worldvolume field-strength f only through the gauge invariant combination F.
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rephrased as generalised calibration conditions. In order to prove this, we have
to construct the generalised calibration appropriate to our case. Let us start by
recalling that we are restricting to the case in which n¥ and n® have the same

norm. Then the standard Cauchy-Schwarz inequality
146 (FIn 0 1| < 1A (E2 N+ g 1 (6.101)
implies that we have the following completely general inequalities
Re [ 5y (Fn?] <l . Relinf™ o (Fn] <lal*,  (6.102)

which, remembering the supersymmetry conditions (6.71), are clearly saturated
when we are considering supersymmetric cycles. Using expression (6.67) for %T) it

is not difficult to see that from these relations we obtain the conditions

{Re(—z‘P[W])AeF} g%\/det(P[g]—I—}")dal/\.../\dagk, (6.103)

(2K)

{Re( —iP[U7]) A ef} < %\/det(P[g] + F)do* A ... Ado® T (6.104)

(2k+1)

Once we impose that the D-branes must wrap generalised complex submanifolds
in M, one sees that requiring these inequalities in (6.103) and (6.104) to be sat-
urated is equivalent to requiring that the D-branes we are considering satisfy the
supersymmetry conditions (6.78) and (6.79).

We would now like to use these inequalities to construct a generalised calibration
for this space-time filling branes. Given the RR field-strength ansatz specified in

(6.19), we can analogously decompose the RR potentials in the following way
Ciny = é(n) +da® AL AN deP A e4Aé(n_4) : (6.105)

and then express the internal RR field strengths in terms of the internal RR po-

tentials

F(k+1) = dé’(k) + H A é(k_g) , (6.106)
F(k+1) = dé(k) + HA C’(k,g) + 4dA A é(k) . (6.107)

Our space-time filling branes couple only to the “tilded” RR fields. Since we are
considering static configurations, we can extract from the Dirac-Born-Infield plus

Chern-Simons action the following effective energy density for a space-time filling
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brane wrapping an internal n-cycle [192]

= 4A{e_q’\/Wdal A...Ndo" — (Zp[é(k)] A 67:) } ,(6.108)

(n)
where for simplicity we have omitted the overall factor given by the D-brane tension.

We can now write the inequalities (6.103) and (6.104) in terms of a lower bound on

the energy density
Plwlne” <€, (6.109)

where we have used the sum of forms of different degrees w = ), wu given by

Wira = [Re (We—‘i’xp ) ZC%H} , (6.110)

wip = e [Re <_—8ieq’\1'+) — Zé’(gk)] . (6.111)
!

Note that in the left-hand side of (6.109) one can completely factorise the contri-
butions of the background quantities through the pullback on the cycle of w and
B, and the contribution from the worldvolume field-strength f.

It is clear from (6.109) that the w’s defined in (6.110) and (6.111) represent a good
candidate for generalised calibrations as described at the beginning of this section.
To prove that this is indeed the case, it remains to show that the w’s in (6.110) and
(6.111) are dy-closed. In order to do this, it will be enough to use the equations
(6.46) and (6.49), which characterise our N” = 1 backgrounds.

Let us impose the vanishing of the dg-differential of the w’s defined in (6.110) and
(6.111). This gives the following condition to have properly defined calibrations

dpwiia = 0 & [d+ (H +4dA) A [| 1|2 “*Re (0] —é S Fw, (6.112)

k=0,1,2,3

1 1 8
duwirp = 0 & [d+ (H + 4dA) A [?e—me (zqﬁ)] =2 S o). (6.113)

[al k=0,1,2

One immediately sees that the background supersymmetry conditions (6.46) and
(6.49) imply that the above requirements are indeed satisfied. This concludes our
proof that our N/ = 1 backgrounds are generalised complex manifolds with gener-
alised calibrations defined in (6.110) and (6.111), such that supersymmetric four-

dimensional spacetime filling branes wrap generalised complex submanifolds that
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are also generalised calibrated.

One can get more intuition on the structure of the above generalised calibrations
by considering the SU (3)-structure subcase. The generalised calibrations then take

the form
wira = et [Re ( - e”e“I’Q) - Z é(zk:-i-l)] ; (6.114)
k

wrip = e*t [Re ( - ’ieiqsef%fiJ) - Z CNY(2k)] . (6.115)
%

We then explicitly see how these calibrations generalise the usual calibrations in
Calabi-Yau spaces through crucial modifications introduced by the nontrivial dila-

ton, warp-factor and fluxes.

Note also that the generalised calibrations (6.110) and (6.111) are naturally related
by the mirror symmetry (6.50) if we exchange ), é(gk) and ), CN’(zkH). These sums
can be seen as H-twisted potentials of the sums of internal field strengths Fy and
Fp as defined in (6.47) and (6.48). If we think in terms of untwisted quantities we

then get a mirror symmetry for the potentials of the form
Z G(Qk) NeP o Z é(2k+1) neP (6.116)
k k

which clearly recalls the form of the transformation rules of the RR-potentials under
T-duality.

Let us observe that the generalised calibration w defined above is a sum of forms
which are not generally globally defined, since they are not invariant under the RR

gauge transformations. Indeed, consider the gauge transformation

> 6Cm) = e *dy, (6.117)

preserving the decomposition (6.105), where A is a sum of even (odd) forms for
Type ITA (IIB). Then w transforms as w — w — dyA, since it is related to the
D-brane energy density which naturally depends on the RR gauge potentials. As
an alternative, we could also introduce an equivalent globally defined generalised
calibration @ = ) @,y which is more in the spirit of that adopted in [192,193].

First, in our class of backgrounds, @ is no longer dy closed, but must satisfy the
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condition
dy@ = e** > " Fyy . (6.118)

Secondly, the energy density minimisation condition (6.109) is replaced by the con-

dition
Pgl@] Ae” < e /det(Plg] + F)do* A ...do™ , (6.119)

for any D-brane (X, F) wrapping an internal n-dimensional cycle. It is clear from
our previous discussion that such an alternative generalised calibration is given by

8€4A—<I>

where U = U™ for Type IIB and ¥ = U~ for Type ITA. We obviously have that
w=o—e> C’(n) and the alternative generalised calibration w can be essentially
identified with the imaginary part of the non-integrable pure spinor characterising
the N = 1 background considered.

As we are assuming |a| = |b], the condition (6.118) is equivalent to the imaginary
part of the first background supersymmetry condition of (6.46), thus giving a phys-
ical interpretation for it. It is interesting to note that an analogous conclusion can
be reached for the remaining equations in (6.46). Indeed, we have seen in section
(6.4) how we could also consider supersymmetric branes filling only two or three flat
space-time directions, giving rise to an effective string or domain wall respectively
with appropriately chosen phases « in (6.68). One can then repeat the arguments

of this section for these cases, with the generalised calibrations now given by

8€2A—‘I>

(string) __ (DW) _
W ST = al? Re(¥y) |, w =

863A—<1>

|a|? Re (e"W,) | (6.121)

where Wy = UF (U~) and Uy = U~ (UT) for Type IIB (ITA), and ¢ is an arbitrary
(constant) phase. The generalised calibrations w9 and w®") now satisfy the
condition (6.119) with e** substituted by e*4 and €34 respectively. Furthermore,
they must now be dg-closed, since the coupling to the background RR-fields van-
ishes for these configurations . It is easy to see that the condition dyw®"9) = 0 is
equivalent to the real part of the first of (6.46) (with |a| = |b|), while dyw®") =0
for any ¢ is equivalent to the second of (6.46) . We then see how, in the subcase

where the two internal spinors have the same norm, the background supersymme-



CHAPTER 6. BRANES ON GENERALISED BACKGROUNDS 132

try conditions (6.46) have a physical interpretation as conditions for the existence
of generalised calibrations for the allowed supersymmetric D-brane configurations.
This correspondence between background supersymmetry conditions and gener-
alised calibrations has been extensively discussed in [194] and we see here how it

works perfectly in the cases we have considered.

6.8 Conclusions

In this chapter we have studied the conditions for having supersymmetric D-branes
in Type II backgrounds with general NS and RR fields preserving four-dimensional
Poincaré invariance and A/ = 1 supersymmetry, focusing on D-branes filling the
four flat directions. It transpired that the supersymmetry conditions for D-branes
obtained from k-symmetry arguments can be elegantly expressed in terms of the two
pure spinors that define the SU(3) x SU (3)-structure on the internal six-dimensional
manifold. We have shown that the supersymmetry conditions give two important
pieces of information about the supersymmetric D-branes, involving the two pure
spinors separately. These conditions were related to the geometry and the stability

of the branes, just as in previous cases in the absence of fluxes.

Firstly, the we found that the D-brane must wrap a generalised complex subman-
ifold defined with respect to the integrable generalised complex structure of the
internal manifold. This can be introduced thanks to the integrability of one of
the two pure spinors coming from the requirement of ' = 1 supersymmetry. The
SU (3) structure subcase provides a clear example where this condition means that
the brane must wrap a holomorphic cycle with (1,1) field strength F in Type I1I1B
and a coisotropic cycle of the kind discussed in [160, 186] in Type ITA. In the more
general SU(3) x SU(3) case the equivalent Type IIA/IIB identifications become
slightly mixed.

Secondly, we found that on the wrapped internal n-cycle one must furthermore
impose a condition of the form {Im(P[i¥]) A F}y = 0, where ¥ is the non-
integrable pure spinor. This condition is related to the stability of the D-brane.
Note that it is the non-integrable pure spinor that now plays the relevant role
and the fact that it should be connected to some dynamical information for the
D-branes can be linked to the role of the nontrivial RR-fields as obstructions to
the integrability of the pure spinor. A supersymmetric D-brane configuration must
then satisfy the above two conditions, plus an appropriate choice of its orientation

which is in general not arbitrary due to presence of nontrivial background RR fields.
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The above requirements that characterise supersymmetric D-branes are equiva-
lent to the condition that the D-brane must be calibrated in a generalised sense
with respect to an appropriate definition of generalised calibration. This encodes a
requirement of minimisation of the energy density of the brane, rather than volume-
minimisation, and involves the non-integrable pure spinor. The non-integrability
of this pure spinor is due to the non-vanishing RR-fields, which also couple to D-
branes and so must enter the associated generalised calibrations. One then sees
that the non-integrability of the pure spinor is exactly what is needed to compen-
sate for the presence of the RR terms in the generalised calibration in order for
the calibration to be well defined. This strict relation between the non-integrable
pure spinor and a generalised calibration can be made even more explicit by using
the equivalent alternative definition of generalised calibration given in (6.118) and
(6.119). Furthermore, as we discussed at the end of section 6.7, by considering
D-branes filling only two or three flat directions, the conditions for the existence
of well defined calibrations associated to supersymmetric D-branes are completely
equivalent to the background supersymmetry conditions (6.46), thus giving a clear
physical interpretation for them.

To conclude, it is intriguing to see how the two pure spinors can be fruitfully
used in the description of the geometrical and stability features of supersymmet-
ric D-branes. In both Type ITA and IIB, a supersymmetric D-brane must wrap
a generalised complex submanifold with respect to the integrable pure spinor and
be calibrated in a generalised sense with respect to the non-integrable pure spinor.
Also, we have seen how all the results discussed in this chapter confirm the in-
terpretation of the symmetry (6.50) relating Type ITA and IIB backgrounds as a
generalised mirror symmetry, exchanging also odd and even dimensional supersym-
metric cycles and the corresponding generalised calibrations. These results may
hide some deeper insight into the understanding of string theory on general back-

grounds with fluxes and its relation to generalised geometry.



Chapter 7
Conclusions and Future Directions

In this thesis we have discussed several aspects of branes in supergravity, rang-
ing from issues of consistency in phenomenologically motivated five-dimensional
braneworld models, to the rigorous constraints placed on D-branes in general flux
compactifications. We shall now conclude with a review of our main results and

some suggestions for future work.

In chapter 4 we studied the problem of the stability of Hotava-Witten spacetimes,
which we identified as generic domain solutions of the form My x Z, where Z is an
interval. We were particularly interested in the case where the interval Z could be
understood as an orbifold S'/Z,, as in the much studied Randall-Sundrum models.
A key feature required for the consistency of such models is the appearance of
negative tension branes and we showed that, despite receiving much attention, it
was not clear whether such spacetimes were in fact stable.

To tackle the issue of stability, we chose to concentrate on a class of five-dimensional
models of gravity coupled to a scalar field with a double exponential potential. This
potential could be written in terms of a superpotential using standard tools from
supergravity, allowing us to define a consistent action for both the bulk fields and
the brane sources supporting our Zs-symmetric domain wall solution. A careful
treatment of the definition of energy for this class of spacetimes proved that the
Zo-symmetry was crucial here. In particular, the Israel junction conditions for our
domain walls simplified significantly, reducing to boundary conditions for the bulk
fields ((4.33), (4.34)). This meant that if we were able to prove the stability of the
bulk theory alone, it would be sufficient to show that the entire bulk plus brane
system was stable.

The proof of stability followed using the standard spinorial techniques of the pos-

itive energy theorem in general relativity and classical supergravity. A key point

134
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was the identification of the superpotential for our bulk theory, which allowed us
to assume the form of the supersymmetry transformations for the gravitino and
dilatino [110]. Regardless of whether this supersymmetric completion could be re-
alised, this identification meant we could rewrite our spinorial energy expression in
terms of a sum of squares of exactly these supersymmetry transformations (4.77),
thus proving the positivity of energy. We were also able to show that the spinorial
energy expression agreed perturbatively with the conserved energy which we had
constructed previously using the Abbott-Deser pseudotensor technique. The spino-
rial proof of positive energy then implied that this class of Z,-symmetric spacetimes
was stable. Thus we have seen how the background domain wall solution behaves
as one would expect for a supersymmetric solution, acting as a ground state which

bounds the energy of perturbations from below.

While our proof of positive energy was successful, it also raised several questions.
An obvious next step was to ask what happens when we relax the Z,-symmetry.
An analysis of this question showed that we quickly run into difficulties. The Zo-
symmetry was crucial in allowing us to prove positive energy at the level of the
background solution. In fact, when considering non-symmetric domain walls we
do not have a definition of energy that is conserved by virtue of the background
equations of motion alone. In this case, the Israel junction conditions no longer
simplify and one must solve the equations order by order in perturbations. This
would suggest that, as it stands, our approach is not valid for studying perturbations
of these more general spacetimes, and hence we are unable to draw any conclusions
about their stability. One possible area for development would be to consider
singular braneworld models with higher codimension. Using our methods, it should
be possible to prove the stability of the symmetric models without resorting to a
perturbative analysis.

A second question of considerable interest relates to the supersymmetry of our
five-dimensional theory and its singular domain wall solutions. We know that the
bulk theory is derived from a consistent truncation of an S® dimensional reduction
of Type IIB supergravity in ten dimensions, and thus should lie in a subsector
of a theory with N' = 8 supersymmetry. The complete nonlinear ansatz for this
reduction is not known, however the appropriate A" = 2 subsector has been con-
structed [119], and one can show that the supersymmetry transformations that we
putatively identified for the gravitino and dilatino agree with the reduction of the

Type IIB fermionic terms in this subsector.

With this in hand, one is naturally led to lift the singular domain wall solution
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back to ten dimensions to understand its relation to the known supersymmetric
p-brane solutions [108,110,113]. One finds that there is a coupling in the brane
source which is indicative of a D3-brane in ten dimensions, as one would expect
due to the five-form field strength being non-zero in the original reduction for the
ansatz for the bulk fields. However there is also a second contribution in the brane
source term [113]. A simple counting argument for the conformal factors in the
source term shows that this object should have an eight-dimensional worldvolume,
suggesting a D7-brane. The utility of D7-branes in constructing compactifications
to warped five-dimensional models has been suggested before [19,20], however in
the breathing mode reduction we considered, the axion and dilaton fields, which
source the D7-brane, were not present. As this is a consistent truncation of the
field equations in ten dimensions one should not expect it to cause any difficulty,
therefore we are left with the problem of identifying what creates the second term
in the brane source. One may attempt to identify this eight-dimensional object,
previously called the ‘turtle’ [113], with one of the exotic gravitational solutions
found in [129], however this does not correctly reproduce the couplings we see in

the lifted brane source term.

Alternatively, one can search for a ten-dimensional projection operator that re-
duces to the Z, action on the domain wall after compactification, analogous to the
original Horava-Witten scenario in eleven-dimensional supergravity. In that case,
the boundary brane projection operators commuted with half the supersymmetry
transformations, implying that the solution preserved half the supersymmetry. It
had been proposed in [119] that such a projection for the Type IIB case necessarily
includes an orientation flip on the S° directions, and therefore in the five-form flux
parameter, thus causing a disparity in the supersymmetry transformation at the
position of the domain wall. Work in this direction in ongoing, but initial attempts
suggest that it is not possible to construct a projection operator in ten dimensions
that commutes with the supersymmetry transformations'. As such, the supersym-
metry and ten-dimensional origin of the class of singular domain wall solutions we
have studied remains unclear.

We also noted that the argument used to determine the dimensions of the branes
from which a singular domain wall descends in a breathing mode reduction could be
extended to other parent theories. For instance, one can apply this simple technique

to domain walls which are solutions to the bosonic theories arising from S* and S7

!This work is in progress with J. Kalkkinen, J. L. Lehners and K. S. Stelle, whom we thank
for useful discussions on these points.
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compactifications of eleven-dimensional supergravity. In doing so, one finds that
the domain walls lift back to M2 and M 5-brane sources respectively, however once
again there is a second contribution in each case. This corresponds to an object with
a nine-dimensional worldvolume, an 8-brane, which is not a known supersymmetric
solution of eleven-dimensional supergravity. The interpretation of this result, and
the original question of determining what supersymmetry, if any, is preserved for
this class of singular domain walls, is work in progress.

In chapter 5 we considered the generalisation of braneworld sum rules [24], which
provide a straightforward scheme to test the consistency of five-dimensional braneworld
models of gravity. By making use of convenient combinations of components of
Einstein’s equations, one can determine constraints on the various components of
a given model. We extended these rules to incorporate more general spacetimes
(5.29), including non-compact internal spaces, and we were able to provide further
insights into models that had been studied previously. For instance, we were able
to reconsider gravity-trapping domain wall models in five dimensions, such as the
second (one brane) Randall-Sundrum model. Using the generalised sum rules, we
were able to show that if the internal space is non-compact, the Strong Energy
principle need not be violated for these solutions to exist (5.41), which, to our

knowledge, had not been appreciated before.

Unfortunately, the generalised sum rules offered little insight into supergravity
p-brane solutions with more general, Ricci-flat transverse space geometries [147].
However, our investigation of these solutions led us to propose a generalised version
of the ADM energy for such branes. Our expression agreed with previous formulae
in the flat transverse space limit, and we were able to evaluate this energy explicitly
for the case of a Heterotic 5-brane on an Eguchi-Hanson instanton. As the topology
of the transverse space is R x S3/Z, in this example, we found the result to be half
the energy of a regular p-brane, as expected. It would be interesting to apply our
improved ADM energy integral to more general p-brane spacetimes and to construct
the complete set of charges for them. This should offer further insights into their
supersymmetry and “black brane” mechanics [86,147], and also their relation to
the more familiar p-brane solutions, such as those reviewed in chapter 3. We leave
this for future work.

Chapter 6 was dedicated to the constraints on supersymmetric D-branes in gen-
eral flux compactifications of Type II string theories. We were particularly inter-
ested in compactifications to four-dimensional Minkowski space preserving N' = 1

supersymmetry, rather than the more familiar A/ = 2 supersymmetry of Calabi-
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Yau compactifications. Such scenarios are realised by turning on general Neveu-
Schwarz and Ramond-Ramond fields, and including a warp factor multiplying the
four-dimensional metric component [5]. Recent developments in this area have
shown how such compactifications have an elegant description in terms of reduced
SU(3) x SU(3) structure on the formal sum of the tangent and cotangent bun-
dles Ty @ Ty [157-161]. We reviewed this prescription and the main definitions of
the associated generalised geometry, along with the definition of pure Clifford(6,6)
spinors on this bundle. This proved useful in allowing us to rewrite the background
conditions for preserved N/ = 1 supersymmetry in a very compact manner (6.46).
We then considered D-branes filling the four flat spacetime directions and wrapping
cycles in the internal manifold in these backgrounds. Using standard s-symmetry
techniques we determined the conditions for preserved supersymmetry from the
D-brane worldvolume perspective, and showed that these too could be rewritten in
an elegant form in terms of the two pure spinors associated to the SU(3) x SU(3)
structure on Ty & T} ((6.78), (6.79)).

The first condition implied that the D-brane must wrap a generalised complex sub-
manifold of the internal manifold and was given by the integrable pure spinor, i.e.
the pure spinor which was twisted closed dgW = 0. This provides a generalisa-
tion of the well-known results on branes wrapping cycles of Calabi-Yau manifolds
[162, 163], where now our condition includes the effects of both Neveu-Schwarz and
Ramond-Ramond fields. The second condition was related to the stability of the
D-brane and was given in terms of the non-integrable pure spinor (dgV # 0), with
the Ramond-Ramond fields forming the obstruction to this spinor being twisted

closed.

We were able to incorporate both supersymmetry conditions, plus the necessary
requirement of choice of orientation, into a single expression involving the non-
integrable pure spinor in each case. This was shown to be equivalent to requiring
that a D-brane should be generalised calibrated with respect to an appropriate
definition of calibration on the generalised background. This statement was then
shown to imply that supersymmetric D-branes on these backgrounds are energy
density minimising within their homology class. This is nothing more than the
familiar Bogomol’'nyi bound for supersymmetric solitons.

That this calibration condition is given in terms of the non-integrable pure spinor
is understood by considering the energy density of a D-brane with static worldvol-
ume (6.108), which includes couplings to Ramond-Ramond fields. It is exactly the

Ramond-Ramond fields that act as an obstruction to integrability for one of the
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pure spinors in Type ITA and IIB, and so we see that it is natural that calibration
condition should be phrased in terms of this pure spinor in each case. In fact, it
is precisely the non-integrability of the pure spinor that is needed to account for
the Ramond-Ramond terms in generalised calibration ((6.110),(6.111)) in order to
make the calibration well defined (6.96). The final step in ensuring that we had a
good definition for our calibration forms was to prove that they are closed with re-
spect to the twisted derivative operator. This followed directly from the background

supersymmetry conditions written in terms of the pure spinors ((6.112),(6.113)).

One appealing feature of our formulation of the supersymmetry conditions for D-
branes on generalised backgrounds is the symmetry of the equations under the
exchange of the pure spinors ¥+ < ¥~ and Ramond-Ramond fields Fy < Fjp
(6.50). This symmetry has been proposed in the literature as a generalised form of
the usual mirror symmetry on Calabi-Yau manifolds [152, 154, 176-180], interchang-
ing Type IIA and IIB backgrounds. We have seen that supersymmetric D-branes
also respect this symmetry, which now exchanges odd and even dimensional super-
symmetric cycles in the generalised backgrounds and the corresponding generalised
calibrations. This provides further strength to the argument that generalised mir-
ror symmetry is a fundamental property of Type II string theories compactified on

manifolds with flux.

The are several interesting directions for the future development of this work. In
[196, 197] a proposal was made relating calibrations on Calabi-Yau manifolds to the
superpotential of the low energy effective theories generated by compactifying M-
theory or Type ITA, with branes wrapping internal cycles. It would be interesting to
extend our analysis of D-branes in general compactifications to instantonic branes.
This would allow us to compare the superpotentials defined from our calibrations
with those found by dimensional reduction of the gravitino supersymmetry trans-
formations of Type II theories in [152]. It would be interesting to consider whether
these superpotential corrections have an effect on moduli stabilisation in the low
energy theory. Also, the form of the potentials generated will have implications
for cosmological scenarios, such as those of Kachru et al [198,199]. To understand
these points we should construct explicit examples of instantonic D3-branes and
determine whether they possessed the correct number of fermionic zero-modes to
produce superpotential corrections [200]. Initial investigations have appeared in
the literature [201-203], however these issues deserve to be reassessed for D-branes
on more general SU(3) x SU(3) backgrounds preserving N/ = 1 supersymmetry in

four dimensions, as described by our results.
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Appendix A

Conventions

We will mainly follow Wald [32] for metric, curvature and stress-energy tensor
conventions. The D-dimensional metric will be mostly plus throughout (— + + +
...4+), and for compactness we shall use lower case latin indices a,b =0,..., D — 1.
The vielbein are defined by g, = eﬁaebbn@, where underlined indices run over flat
tangent space directions. Covariant derivatives are defined by

Vaey = aty +w e — Lot =0, (A1)

a

Vath = 9t + 2w, Xop 1 . (A.2)

The Riemann tensor is defined by

[Va, VelVs = Raay™Va (A.3)
for an arbitrary vector field V,. We choose Rua® = +8J‘Zb — «++, such that the
Ricci tensor is

Ry = 0.6, — 0,16, + T, I, — T4 1%, . (A.4)

The Einstein-Hilbert term in the action is defined in natural units with a plus sign
Sen = + f v—gR, where g denotes the metric determinant, R the Ricci scalar and
we use 871Gy = 1 in four dimensions. The stress-energy tensor is then defined as

minus the variation of the matter action:

1 5Smatter

Tab = -
V=g 069

(A.5)
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We use weight one for (anti)symmeterisation

A[ab} - % (Aab - Aba) ) A(ab) - % (Aab + Aba) (A6)

We use the standard notation for differential forms, the wedge product and the

exterior derivative on a D-dimensional manifold (See [204])

1
o= —'Oéal_“apdl'al Ao Ndx , a e NP, (A.7)
p!
aNf= (DA , ae N [eN, (A.8)
1
do = —lﬁ[baal,__a ]dxb ANdx™ N ... Ndx™ . (A.9)
b: ?

The epsilon symbol is defined by
€ay.ap = (+1,—1,0) , (A.10)

for (odd, even, no) permutations of the order of the indices. We can also define the

symbol with upper indices by
e = (—1)eq; ap » (A.11)

where t is the number of timelike coordinates. We define the epsilon tensors by

€ar.ap = V9€ay.ap €T = %6“1“'@ , (A.12)
and note the following useful identity
€aromararsroap €t TP = (= 1)l (0 — )10l (A.13)
We define the Hodge dual by
*(dz™ AL A\ dx) = ﬁebl,_@p‘”'“%dxbl A Ndabrr (A.14)
Taking p = 0 in this formula we find
x] =€ = %eblmeda:bl A...Adxbr = \/del AL ANdaP. (A.15)

which gives a natural definition of the volume element +/|g|d"z for a D-dimensional

manifold. The volume element on a (D-n)-dimensional submanifold is then defined



APPENDIX A. CONVENTIONS 143

by
1

Ybyoby = ——————=C6b,..bnar...ap_, 0T
' (D —n)ly/Jg] "

For a more discussion of integration and submanifolds were refer the reader to [32].

dP “A LA dxtPn (A.16)

For spinors and gamma matrices we follow the conventions of [67] (another useful
reference is [34]). The D-dimensional Gamma matrices satisfy {o, Iy} = 2¢asp.

Using the anti-symmeterisation defined above we note

[ai-an  — plaples . pan

rert — by
repbre — abe y pabpe _ pacpb 4 pbepa
pebep, — [ebe, 4 3rlabgd

It is worthwhile to note the following contractions
rr,=(D-2r* | TI“r,=—(D-1I*. (A.21)
Repeated use of these identities leads to the formula
LT Ry ge = AT°GH™ (A.22)

where now we have converted to gamma matrices with curved space indices using

the vielbein. Using the integrability condition

1
Ve, Vil n = ZRcdabFabn ) (A.23)

for a spinor 7, one finds the following combination of the above equations
—1abc 1 ab—
nl**VyVen = §T nlyn (A.24)

where T% is the energy-momentum tensor, 7 = n'C and C is the charge conjugation

matrix.

A useful expression for gamma matrices acting on scalar fields is

T 4 = 20°Th . — [ °p,. . (A.25)
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Basic definitions for SU(3)

structure manifolds

In this section we will review some basic facts about an SU(3)-structure manifold
M, that is characterised by the existence of a globally defined spinor 7., such that
|n]|> = |a|* (for a nice review on this subject see for example [154]). This spinor
allows one to introduce an associated almost complex structures with respect to
which the six-dimensional metric g,,, is Hermitian, where now m,n =1,...,6. For

our purposes the most useful choice is given by

i .

Using the Fierz identities, it is possible to show that

Jmpjpn = —0, ) Jmpjnquq = Gmn (B2)

m

the second of which is the Hermiticity condition. This almost complex structure

allows one to introduce the projector on holomorphic indices

and the associated anti-holomorphic projector P,," = (P,,")*. One can then split

r-forms in (p, q)-forms, with p + ¢ = r, in the standard way.

The following relations hold

LA™ Ay = 2la*P™, LA = 2aPP™, . (B.4)
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Then Ymny = P Jnn+ (it is of the kind (1, 0) in the index m), and the base (6.72)
is indeed eight dimensional. The general six-dimensional Dirac spinor x can then

be decomposed as

X = A+ Ao+ &M mns + & mn- (B.5)
where £ is a (1,0)-vector (P, = &) and &7 is a (0, 1)-vector (P, &y = 7).
Then,

1 1
_ T _ T
)\1 |CL|277+X ) )\2 |a‘27]—X ’

A (B.6)

1
m o _ t 2m m
61 2|a‘277+7 X ) 52 2’&‘2

Analogously to the C'Y; case, we can also introduce a (3,0) form 2 defined by

i
Qunp = —;niymnpm_ ) (B.7)
By applying Fierz identities it is possible to see that

1 ] _
§JAJAJ:%QAQ . JAQ=0, (B.8)

as for Calabi-Yau manifolds. The existence of a globally defined non-degenerate
(real) J and a globally defined non-degenerate (complex) 2 satisfying the conditions
(B.8) actually characterises SU (3)-structure manifolds. In our case we are consid-
ering the more general case of internal manifolds M with SU(3) x SU(3)-structure
group for Tys & T},;. This contains as subcases the SU(3)-structure manifolds case
and the even more restricted manifolds with SU(2)-structure, that contain two
different independent SU(3) structures and requires the vanishing of the Euler

characteristic x of M.
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