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Abstract. This work presents the calculation of the ground state binding energy of some
light closed shell nuclei such as 4He, 12C, 16O, 28Si, 32S, 40Ca and 56Ni. We use our
channel-dependent effective two-body interactions data that are produced through the lowest
order constrained variational (LOCV) method for asymmetric nuclear matter with the charge-
dependent Av18 bare NN potential up to Jmax = 2 and Jmax = 5. The local density
approximation approach in the harmonic oscillator basis and Brody-Moshinsky coefficients are
used to produce the relative and center of mass dependent effective two-body potentials. We
show that the ground state energies of the closed shell nuclei with Av18 (Jmax = 2) gives more
binding with respect to Reid68 bare NN potential as well as ∆ − Reid68. However, there is
not much difference between the Av18 (Jmax = 5) and Reid68Day which has been defined up
to Jmax=5. We conclude that the contributions of higher partial waves (J > 2) are not very
important and two-body kinetic energy in J=1 channel is twice as that of J=0 which is not
the case for the two-body potential energy. Finally, our work results are compared with other
theoretical approaches and experimental data.

1. Introduction
A very good progress has been made in the development of many-body techniques for the few-
body nucleon systems, especially A=3-12 nuclei [1-15]. But the A > 12 light nuclei nucleus
have been described by the variational or the cluster Monte Carlo (VMC, CMC) techniques by
using the Jastrow trial variational wave-function [3-11]. The 16O and 40Ca nuclei have been
also studied by the coupled-cluster method (CCM) and the no-core shell model (NCSM) [12-15]
with different interactions.

The properties of closed shell nuclei were calculated by us, using the basic local density
Brueckner G matrix idea [16-21]. The channel-dependent effective two-body interactions (CDEI)
were generated through the lowest constrained variational (LOCV) asymmetrical nuclear matter
code, at different densities with the Reid type bare nucleon-nucleon interactions. Then, this
dependence was converted to the local one by using the local density approximation in the
harmonic oscillator basis. The result was encouraging, both with respect to the available
experimental data and the different model dependent theoretical predictions [20, 21].

But a reliable many-body technique and a true nucleon-nucleon potential is needed to predict
results close the empirical ones. It was demonstrated in several of our previous works, that in
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the frame-work of the LOCV method [22, 23, 24], the many-body calculations for the nuclear
matter with phenomenological potentials such as the Reid68 [25, 26, 27], give substantially too
much binding and large saturation density than the empirical one. During the last three decades,
situation has been the same for other techniques and potentials [16-19, 28-32]. But the inclusion
of the three-body force and the ∆ isobar degrees of freedom (∆-Reid68) [16-19, 22-27] have
improved the behavior of Coester line to the right direction [16-19].

In this article we intend to extend our recent works [20, 21, 33] to the operator type
interactions i.e. the Av18, and calculate the properties closed shell nuclei such as the 4He,
12C, 16O, 28Si, 32S, 40Ca and 56Ni, in the harmonic oscillator basis by using the local density
approximation. Section 2 is devoted to the evaluation of matrix elements and the binding
energies of different closed shell nuclei by using the local density approximation. Finally, in
section 3 we present the results and discussions.

2. The closed shell nuclei binding energy
We assume [20, 21, 33], the [(0s 1

2
)4], [4He+(0p 3

2
)8], [12C+(0p 1

2
)4], [16O+(0d 5

2
)12], [28Si+(1s 1

2
)4],

[32S + (0d 3
2
)8] and [40Ca + (0f 7

2
)16] configurations for different closed shell nuclei,i.e., 4He,

12C, 16O, 28Si, 32S, 40Ca and 56Ni with atomic number A, respectively and the origin of the
coordinate is fixed at the center of mass of these nuclei. Note that our formalism is exact for
L-S closed shell nuclei such as 4He, 16O and 40Ca. The intrinsic Hamiltonian is,

H0 = H− P2

2M
, (1)

where P =
∑

i pi and M = Am are the nucleus total momentum and mass, respectively and∑A
i=1 ri = 0. Then the expectation value of H0 in the harmonic oscillator basis can be written

as:

EB.E.
Total =< H0 >=

∑
i

< i, h̄ω| p2

2m
|i, h̄ω > +

1
2

∑
ij

< ij, h̄ω|V(r1, r2)|ij, h̄ω >a −TA
C.M., (2)

where TA
C.M. = 3

4 h̄ω and the Dirac ket |i, h̄ω > stands for |ni, li, si, τi,mτi ; h̄ω > i.e. the harmonic
oscillator wave functions, the angular, the spin, the isospin and the isospin projection parts of
the single particle states, respectively. In general, V(r1, r2) is a non-local effective two-nucleon
potential.

As we mentioned before, h̄ω or γ =
√

mω
h̄ is the harmonic oscillator parameter and will be

fixed variationally. The matrix elements of one-body kinetic energy per nucleon (the first term)
has the familiar form of,

T1 =
1

2A

A∑
i=1

(2ni + li +
3
2
)h̄ω, (3)

while the second term can be approximated and written as the sum of two-body kinetic and
potential energies per nucleon:

E2 = T2 + V2 =
1

2A

∑
ij

< ij, h̄ω|V(r12, R12)|ij, h̄ω >a=

1
2A

∑
ij

< ij, h̄ω| − h̄2

2m
[F (r12, R12), [∇2

12, F (r12, R12)]]|ij, h̄ω >a

+
1

2A

∑
ij

< ij, h̄ω|F (r12, R12)V (12)F (r12, R12)|ij, h̄ω >a (4)
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In the two-body energy, we assume α = lJSTMT , [j]=2j+1 etc. and the first and the
second curly brackets to be the Wigner 6-j and 9-j symbols, respectively, and < n1l1, n2l2, λ |
nl, NL, λ > are the familiar Brody-Moshinsky Brackets [43], i.e.,

E2 =
1

2A

∑
1,2,k,α,α′

[j1][j2][j][λ]2[S][J ]| < mτ1mτ2 |T,MT > |2(1− (−1)l+S+T )

{
L l λ
S j J

}2


l1
1
2 j1

l2
1
2 j2

λ S j


2

× < n1l1, n2l2, λ | nl, NL, λ >2

< nα, NL | Vk
α′(
√

2r, ρ(
R√
2
;R)){|α′ >< α′|} | nα,NL >.

Now, we are in a position to calculate the various closed shell nuclei binding energies per
nucleon as follows:

EB.E.
A =

1
A

EB.E.
Total = [T1 + T2 + V2 − TC.M.]. (5)

3. Results and Discussion
The channel break down of two-body kinetic and potential energies and one-body coulomb
energy with respect to the two-nucleon channel J values (as well as their variation), using the
LOCV effective two-body potential with different Jmax value for 40Ca, are given in table 1. The
table shows the calculations in which the CDEI,s of LOCV calculation with Jmax = 5 have been
used in all of the available channels ( for Reid68Day and Av18 potentials). In general, the main
contribution comes from J ≤ 1 for two-body kinetic energy and J ≤ 2 for two-body potential
energy and the other channels have a very small effect on the two-body energies of 40Ca. It is
interesting that the two-body kinetic energy of J = 1 channel has the same size as the J = 0
one.

In the table 2 we have compared our calculated binding energy and RMS radius for 4He,
12C, 16O and 40Ca with different approaches, namely, the coupled cluster of Kümmel [35] and
Hagen [15], Green function and cluster (variational) Monte Carlo of Pieper et al. [3-11] , CBF-
FHNC of Fabrocini et al. [36, 37], Brueckner-Hartree-Fock of Coraggio et al. [38] with N3LO
and Av18 interactions, random phase approximation of Barbieri et al. [42] with Av18 potential,
Fermionic molecular dynamics of Roth et al. [41] and no-core shell model (NCSM) of Navrátil
et al. [12, 13, 14] with V

′
8 or CD-Bonne potential. The CCM of Kümmel et al. [35] (Hagen et

al. [15]) calculation is with Reid68 (Vweak k) potential while the other methods have used Uv14

or Av18 plus three-nucleon interaction (TNI). We have not included neither the TNI nor the
dispersion-Pauli effects in our calculation. The contribution of TNI is less than an MeV binding
in light nuclei. On the other hand, in heavier nuclei we have the dispersion effect which can
reduce the binding up to 2 − 3MeV , for example in nuclear matter. This can be estimated by
comparing the results of BHF [40] on 4He and 16O and those tabulated from the experiment,i.e.,
for 4He we have −7.08MeV (experiment) and −6.85MeV (BHF) which gives −0.23 for TNI
effect and for 16O we have −8.55MeV (experiment) and −9.53MeV (BHF) which gives +0.98
for dispersion effect. We should point out here that some techniques, such as BHF, have used
low k parts of Av18 and obviously they should get more binding than ours. So by comparison
we can conclude that in general we get reasonable result especially for 40Ca with respect to
both experimental data and others theoretical calculations. However, we have restricted our
configuration space to those given in the beginning of section 2. We hope we can improve our
calculations by increasing the above configuration space in the future works.
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[14] Navrátil P and Erich Ormand W 2003 Phys.Rev.C 68 034305
[15] Hagen G, Dean D J, Hjorth-Jensen M, Papenbrock T and Schwenk A 2007 Phys.Rev.C 76 044305
[16] Negele J W 1970 Phys.Rev.C 1 1260
[17] Day B D 1987 Rev.Mod.Phys. 50 495
[18] Clark J W 1979 Prog.Part.Nucl.Phys. 2 89
[19] Pandharipande V R and Wiringa R B 1979 Rev.Mod.Phys. 51 821
[20] Modarres M and Rasekhinejad N 2005 Phys.Rev.C 72 014301
[21] Modarres M and Rasekhinejad N 2005 Phys.Rev.C 72 064306 .
[22] Owen J C,Bishop R F and Irvine J M 1976 Ann.Phys.(N.Y.) 102 170
[23] Modarres M and Irvine J M 1979 J.Phys.G 5 511
[24] Modarres M and Bordbar G H 1998 Phys.Rev.C 58 2781
[25] Reid R V 1969 Ann.Phys.(N.Y.) 50 411
[26] Day B D 1981 Phys.Rev.C 24 1203
[27] Green A M, Niskanan J A and Sainio M E 1978 J.Phys.G 41085
[28] Friedman B and Pandharipande V R 1981 Nucl.Phys.A 361 502
[29] Wiringa R B, Ficks V and Fabrocini A 1988 Phys.Rev.C 381010
[30] Lagaris I E and Pandharipande V R 1981 Nucl. Phys.A 359 331
[31] Wiringa R B, Smith R A and Ainsworth T L 1984 Phys.Rev.C 29 1207
[32] Wiringa R B, Stoks V and Schiavilla R 1995 Phys.Rev.C 51 38
[33] Modarres M, Rasekhinejad N and Mariji H 2010 J. Mod. Phys. E, to be published
[34] Modarres M 1984 J.Phys.G 10 251
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Table 1. The channel break down (in terms of J) of two-body kinetic (T2), potential (V2) and
one-body Coulomb (Vc) energies for 40Ca with Reid68Day and Av18 (Jmax = 5, i.e. there is no
approximation for effective interaction in the J > 2 channels) potentials.

Reid68Day Av18 (Jmax = 5)

J T2 V2 Vc T2 V2 Vc

0 5.8731 -20.5891 0.5776 4.9670 -19.7915 0.5776
1 12.1302 -19.2464 0.3727 9.7487 -16.9190 0.3727
2 0.1254 -7.3597 0.8705 0.1615 -7.6191 0.8705
3 0.0671 -0.3273 0.0708 0.0941 0.3373 0.0708
4-5 0.0012 -1.3095 0.1084 0.0005 -0.1635 0.1084

0-5 18.20 -48.83 2.00 14.85 -43.87 2.00

Table 2. The comparison of ground state binding energies per nucleon (MeV) and RMS radius
(fm) of 4He, 12C, 16O and 40Ca nuclei with different models and experimental data. Note that
some of the methods have included the TNI contributions (the star after the value of RMS redius
means ”charge radius”).

4He 12C 16O 40Ca

BE
A < r > BE

A < r > BE
A < r > BE

A < r >

CCM − FBHF3,[35] -5.75 1.63∗ — — -5.36 2.57∗ -5.64 3.17∗

CCM ,[15] -7.3 2.1 — — -8.8 1.7 -12.5 1.7
CMC,[3-11] -7.6 — — — -7.7 — — —
GFMC,[3-11] -7.07 — -7.7 — — — — —
CBF − FHNC,[36] — — — — -5.15 2.32 -7.87 2.87
CBF − FHNC,[37] — — — — -5.11 2.93∗ -6.50 3.66∗

BHF ,[39] — — — — -7.52 2.65∗ -9.19 3.44∗

BHF ,[40] -6.85 1.69∗ — — -8.26 2.59∗ -9.53 3.22∗

FMD,[41] -6.99 1.51∗ — — -7.40 2.25∗ -8.19 2.89∗

HF, RPA(A)−MBPT ,[42] -8.90 — — — -9.75 — -10.10 —
HF, RPA(B)−MBPT ,[42] -7.90 — — — -8.75 — -9.30 —
NCSM ,[12-14] -7.18 1.44 -7.5 2.2 — — — —
LOCV ,[20, 21] -4.19 1.77 -2.78 2.41 -5.28 2.46 -7.30 3.04
LOCV ,[20, 21] -3.21 1.77 -0.44 2.41 -4.49 2.68 -6.97 2.94
LOCV, [present(Jmax = 2)] -4.60 1.75 -3.03 2.37 -5.66 2.38 -7.67 2.94
LOCV, [present(Jmax = 5)] -3.53 1.75 -1.6 2.37 -4.19 2.38 -5.84 2.94
Experimental -7.08 1.63 -7.68 2.41 -7.98 2.65 -8.55 3.39
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