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Abstract. This work presents the calculation of the ground state binding energy of some
light closed shell nuclei such as *He, 2C, 0, 288, 328, “°Cqa and %S Ni. We use our
channel-dependent effective two-body interactions data that are produced through the lowest
order constrained variational (LOCV) method for asymmetric nuclear matter with the charge-
dependent Avig bare NN potential up to Jmez = 2 and Jmaez = 5. The local density
approximation approach in the harmonic oscillator basis and Brody-Moshinsky coefficients are
used to produce the relative and center of mass dependent effective two-body potentials. We
show that the ground state energies of the closed shell nuclei with Avig (Jmaz = 2) gives more
binding with respect to Reid68 bare NN potential as well as A — Reid68. However, there is
not much difference between the Avig (Jmaz = 5) and Reid68Day which has been defined up
to Jmax=>5. We conclude that the contributions of higher partial waves (J > 2) are not very
important and two-body kinetic energy in J=1 channel is twice as that of J=0 which is not
the case for the two-body potential energy. Finally, our work results are compared with other
theoretical approaches and experimental data.

1. Introduction

A very good progress has been made in the development of many-body techniques for the few-
body nucleon systems, especially A=3-12 nuclei [1-15]. But the A > 12 light nuclei nucleus
have been described by the variational or the cluster Monte Carlo (VMC, CMC) techniques by
using the Jastrow trial variational wave-function [3-11]. The 0 and %°Ca nuclei have been
also studied by the coupled-cluster method (CCM) and the no-core shell model (NCSM) [12-15]
with different interactions.

The properties of closed shell nuclei were calculated by us, using the basic local density
Brueckner G matrix idea [16-21]. The channel-dependent effective two-body interactions (CDEI)
were generated through the lowest constrained variational (LOCV) asymmetrical nuclear matter
code, at different densities with the Reid type bare nucleon-nucleon interactions. Then, this
dependence was converted to the local one by using the local density approximation in the
harmonic oscillator basis. The result was encouraging, both with respect to the available
experimental data and the different model dependent theoretical predictions [20, 21].

But a reliable many-body technique and a true nucleon-nucleon potential is needed to predict
results close the empirical ones. It was demonstrated in several of our previous works, that in
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the frame-work of the LOCV method [22, 23, 24], the many-body calculations for the nuclear
matter with phenomenological potentials such as the Reid68 [25, 26, 27|, give substantially too
much binding and large saturation density than the empirical one. During the last three decades,
situation has been the same for other techniques and potentials [16-19, 28-32]. But the inclusion
of the three-body force and the A isobar degrees of freedom (A-Reid68) [16-19, 22-27] have
improved the behavior of Coester line to the right direction [16-19].

In this article we intend to extend our recent works [20, 21, 33] to the operator type
interactions i.e. the Auvig, and calculate the properties closed shell nuclei such as the *He,
20,160, 2884, 328, 40Cq and *Ni, in the harmonic oscillator basis by using the local density
approximation. Section 2 is devoted to the evaluation of matrix elements and the binding
energies of different closed shell nuclei by using the local density approximation. Finally, in
section 3 we present the results and discussions.

2. The closed shell nuclei binding energy
We assume [20, 21, 33, the [(035)4], [4He—|—(0p%)8], [12C'+(0p%)4], [160+(0dg)12], [2852'4—(15%)4],

325 + (Odg 8] and [*°Ca + (0 f% )16] configurations for different closed shell nuclei,i.e., *He,

2,160, 2884, 328 10Cq and Ni with atomic number A, respectively and the origin of the
coordinate is fixed at the center of mass of these nuclei. Note that our formalism is exact for
L-S closed shell nuclei such as *He, 10 and °Ca. The intrinsic Hamiltonian is,
'P2
Ho=H— — 1

0 2./\/1’ ( )
where P = >, p; and M = Am are the nucleus total momentum and mass, respectively and
Zle r;i = 0. Then the expectation value of Hy in the harmonic oscillator basis can be written
as:

2
. . 1 N 5
EBE —<Hy>=Y < z,hw\—;;n]z,hw >+5 > < i hwlV(re,ra)lij e > “TA,. (2

where TéM_ = %hw and the Dirac ket |i, hw > stands for |n;, l;, si, 75, m+,; hw > i.e. the harmonic
oscillator wave functions, the angular, the spin, the isospin and the isospin projection parts of
the single particle states, respectively. In general, V(ry,r2) is a non-local effective two-nucleon
potential.

As we mentioned before, iw or v = /" is the harmonic oscillator parameter and will be

fixed variationally. The matrix elements of one-body kinetic energy per nucleon (the first term)
has the familiar form of,

1 & 3
T = A ;(2711 +1; + 5)71&), (3)

while the second term can be approximated and written as the sum of two-body kinetic and
potential energies per nucleon:

1
By =Ty + Vo= > < if, hw|V(r1a, Ri2)|if, hw >,=
ij

1 y h? g
oA Y <ij hw| — o F (112, Ra2), [Via, F(r12, Ri2)])|ij, hw >q
i
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In the two-body energy, we assume o = [JSTMrp, [j]=2j+1 etc. and the first and the
second curly brackets to be the Wigner 6-j and 9-j symbols, respectively, and < nily,nalo, A |
nl, NL, X\ > are the familiar Brody-Moshinsky Brackets [43], i.e.,

B = > UGS < meryme, | T, My > (1 - (=1)75FT)
24 1,2,k,a,0/

. 2
2o (i 5 5
{g l ?} {lz % jg} x < nily,ngla, X | nl, NL, A >2
J XS

R
< na, NL | V¥ (V2r, p(\ﬁ;R))ﬂo/ >< |} | na, NL >.

Now, we are in a position to calculate the various closed shell nuclei binding energies per

nucleon as follows: .

EB-E. v

Efste = [Ty + Ty + Vo — Tea ) (5)

3. Results and Discussion

The channel break down of two-body kinetic and potential energies and one-body coulomb
energy with respect to the two-nucleon channel J values (as well as their variation), using the
LOCYV effective two-body potential with different .J,,q, value for 4°Ca, are given in table 1. The
table shows the calculations in which the CDEILs of LOCV calculation with J,,,; = 5 have been
used in all of the available channels ( for Reid68Day and Avig potentials). In general, the main
contribution comes from J < 1 for two-body kinetic energy and J < 2 for two-body potential
energy and the other channels have a very small effect on the two-body energies of 4°Ca. It is
interesting that the two-body kinetic energy of J = 1 channel has the same size as the J = 0
one.

In the table 2 we have compared our calculated binding energy and RMS radius for *He,
12¢ 160 and 4°Ca with different approaches, namely, the coupled cluster of Kiimmel [35] and
Hagen [15], Green function and cluster (variational) Monte Carlo of Pieper et al. [3-11] , CBF-
FHNC of Fabrocini et al. [36, 37], Brueckner-Hartree-Fock of Coraggio et al. [38] with N3LO
and Awvig interactions, random phase approximation of Barbieri et al. [42] with Avig potential,
Fermionic molecular dynamics of Roth et al. [41] and no-core shell model (NCSM) of Navratil
et al. [12, 13, 14] with Vg or CD-Bonne potential. The CCM of Kiimmel et al. [35] (Hagen et
al. [15]) calculation is with Reid68 (Vieak k) potential while the other methods have used Uviy
or Avig plus three-nucleon interaction (TNI). We have not included neither the TNI nor the
dispersion-Pauli effects in our calculation. The contribution of TNI is less than an MeV binding
in light nuclei. On the other hand, in heavier nuclei we have the dispersion effect which can
reduce the binding up to 2 — 3MeV, for example in nuclear matter. This can be estimated by
comparing the results of BHF [40] on *He and 90 and those tabulated from the experiment,i.e.,
for *He we have —7.08MeV (experiment) and —6.85MeV (BHF) which gives —0.23 for TNI
effect and for 0O we have —8.55MeV (experiment) and —9.53MeV (BHF) which gives +0.98
for dispersion effect. We should point out here that some techniques, such as BHF, have used
low k parts of Avig and obviously they should get more binding than ours. So by comparison
we can conclude that in general we get reasonable result especially for “°Ca with respect to
both experimental data and others theoretical calculations. However, we have restricted our
configuration space to those given in the beginning of section 2. We hope we can improve our
calculations by increasing the above configuration space in the future works.
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Table 1. The channel break down (in terms of J) of two-body kinetic (T3), potential (V2) and
one-body Coulomb (V) energies for *°Ca with Reid68 Day and Avig (Jmaz = 5, i.e. there is no
approximation for effective interaction in the J > 2 channels) potentials.

Reid68Day Avig (Jmaz = D)
J T Vs Ve Ty Va Ve
0 5.8731 -20.5891 0.5776 4.9670 -19.7915 0.5776
1 12.1302 -19.2464 0.3727 9.7487 -16.9190 0.3727
2 0.1254 -7.3597 0.8705 0.1615 -7.6191 0.8705
3 0.0671 -0.3273 0.0708 0.0941 0.3373 0.0708
4-5 0.0012 -1.3095 0.1084 0.0005 -0.1635 0.1084
0-5 18.20 -48.83 2.00 14.85 -43.87 2.00

Table 2. The comparison of ground state binding energies per nucleon (MeV) and RMS radius
(fm) of *He, 12C, 150 and 4°Ca nuclei with different models and experimental data. Note that
some of the methods have included the TNI contributions (the star after the value of RMS redius
means ”charge radius”).

4H8 120 160 4OCCL

BE <r> BE <p> BE <> BE <>
CCM — FBHF3,[35] -5.75 1.63* — — -5.36 2.57* -5.64 3.17*
CCM,[15] 73 2.1 — — 88 1.7  -125 1.7
CMC,[3-11] 76— — — a1 — — —
GFMC,[3-11] 707 — T — — — —
CBF — FHNC’,[36] — — — — -5.15 2.32 -7.87 2.87
CBF — FHNC’,[?)?] — — — — -5.11 2.93* -6.50 3.66*
BHF[39] — — — — 752 265  -9.19  3.44*
BHF,[40] -6.85 1.69* — — -8.26 2.59* -9.53 3.22*
FMD,[41] -6.99 1.51* — — 740 2.25%  -819  2.89*
HF, RPA(A) — MBPT,[42] -8.90 — — — -9.75 — -10.10 —
HF,RPA(B) — MBPT,[42) -790 — —  — 875 — 930 —
NCSM,[12-14] 718 144 75 2.2 — — — —
LOCYV ,[20, 21] 419 177 -2.78 241 528 246 -7.30 3.04
LOCYV ,[20, 21] 321 1.77  -0.44 241 -449 268 -6.97 2.94

LOCYV, [present(Jmae = 2)]  -4.60 1.75 -3.03 237 -5.66 238 -7.67 294
LOCYV, [present(Jmae =5)]  -3.53  1.75  -1.6 237 -419 238 -584 294
Experimental 708 1.63 -7.68 241 -7.98 265 -855  3.39






