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Abstract. We study monopole solutions of the quantum exact low-energy effective
N = 2 super Yang-Mills theories of Seiberg and Witten. We review the known facts
about the the motion in moduli space for gauge group SU(2) and derive, using the
known effective action, some analoguous effects for gauge group SU(3).

Introduction

Supersymmetric theories with N = 2 supersymmetry serve as a wonderful toy model,
since due to supersymmetry they have a very restricted behavior (compared to N = 1 or
non-supersymmetric theories) but they have a running coupling and thus interesting quantum
features (unlike N = 4).

Duality is a kind of symmetry between electric and magnetic degrees of freedom, dating
back to the idea of pointlike magnetic charges. The dual of an electron is a monopole—in usual
theories a finite energy configurations with a nonzero magnetic charge. If duality holds, physics
should be completely democratic in treating electrons and monopoles. So to each theory where
the electron couples locally to the photon and the monopole is a finite energy configuration,
there should be a dual theory with the roles of the electron and monopole reversed (i.e. in the
dual theory the monopole couples locally to a dual photon and the electron is a field excitation).

Classical Monopoles

The classical supersymmetric Yang-Mills-Higgs theory with a general gauge group describes
the behavior of a scalar field (Higgs field) and spinor fields coupled to a generalized electric and
magnetic field (Yang-Mills field), both in the adjoint representation. We shall concentrate only
on the bosonic terms, and set all spinors to zero. The action for the Yang-Mills field, the kinetic
term for the Higgs field and the coupling of the Higgs field to the Yang-Mills field are as in the
nonsupersymmetric case. The fact that the action is obtained from a N = 2 supersymmetric
action imposes a precise form of the potential for the Higgs field V = [φ, φ̄]2.

Monopoles are configurations with finite energy, so they must approach at infinity the
vacuum with zero potential. The Hamiltonian of these theories can be always split in two parts:
a positive definite term and a surface term (at spatial infinity).

Thus the energy has a lower bound given by the surface term. This is identified with the
bound given in central charge of a N = 2 superalgebra, which is Z = nmτa + nea (τ is the
complex coupling) [Witten, Olive, 1978]. Using the surface integrals we define magnetic and
electric quantum numbers nmaD =

∫

d~S ~BφD, nea =
∫

d~S~Πφ, with ~Π the conjugate momentum
of the potential ~A and a, aD the limiting values of the scalar φ resp. the dual scalar φD = τφ.
In order to have nonzero quantum numbers we must have nonzero values of the scalar field φ
at infinity, thus breaking the symmetry from SU(2) to U(1). Note that the expectation value
of φ is not gauge invariant, for a gauge invariant description we must use φ2.

The bound is saturated if a first order equation (called BPS equation) [Bogomol’nyi, 1976,
Prasad, Sommerfield, 1975] is satisfied ~B + i ~E +

√
2eiα~∇φ = 0, where α is a phase related to

the central charge phase α + arg Z = π/2. A solution to this equation is also a solution to the
equations of motion. However, this equation is too complex to be solved analytically in the
generic case.
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The t’Hooft Polyakov Monopole

The BPS equation can be solved for the SU(2) case under certain assumptions, giving the
t’Hooft-Polyakov monopole [t’ Hooft, 1974, Polyakov, 1974]. One imposes a so-called radial
ansatz, ie. one requires the solution to be invariant under diagonal subgroup of the product of
the rotational and gauge SO(3)’s combined with a parity transformation. This leaves us with
only two functions which must be determine. The fields are expressed in terms of these functions
as φA = K(r)r̂A and AA

i = A(r)ǫAimr̂m, where r̂ is a unit radial vector. The solution to the
BPS equations is then K = v/ coth[v(r + δ)], A = 1/r − v/ sinh[v(r + δ)] with two constants.
The integration constant v is determined by the vaccuum expectation value of φ, the integration
constant δ is set to zero by requiring finiteness (this will be different in the quantum case). The
magnetic quantum number of the t’Hooft-Polyakov monopole is +1. The electric field can be
added in the form AA

0 = b(r)r̂A, which changes the scalar field to Re eiαK = v/ coth[v(r + δ)].
The magnetic and electric fields split in two components, one parallel to the direction of the
Higgs field called abelian and the perpendicular component, which is called nonabelian. The
long-range behavior is in the abelian field, which is 1/r2.

Quantum Effective Action

General N = 2 supersymmetric theories describing the Yang-Mills and the Higgs field have
their action determined by a single holomorphic function F , called prepotential.

In their work [Seiberg, Witten, 1994] Seiberg and Witten found the full quantum effective
action for the SU(2) case. In their derivation they used the fact that the prepotential F is
a holomorphic function and imposed duality. Furhermore they used the beta function of the
classical theory to determine the one-loop corrections to the dual field and then considered mon-
odromies. This is sufficient to determine the prepotential. Actually they gave the prepotential
in an indirect form, not as a function of the scalar field. Instead they found the description of
the theory in terms of a complex moduli u. The field and dual field (which is the derivative of
the prepotential) are given by elliptic integrals of this moduli

φ =
4

πq
E(q) φD = −i

4

πq
(E(q′) − K(q′)) τ = i

K(q′)
K(q)

(1)

with q2 = 2/(u+ 1), q2 + q′2 = 1 and τ the complex coupling ∂φD/∂φ. The moduli space is the
complex plane with two symmetric punctures at u = ±Λ and the metric ds2 = Im τdφdφ̄, Λ is a
length scale dependent on the renormalization scheme used. The point φ2 = 0 where classically
the full SU(2) symmetry is present, has “split” into two punctures but itself has disappeared
from moduli space. In the quantum case, these points are connected with a monopole or dyon
becoming massless and a break down of the low energy effective description via F .

Quantum Corrected SU(2) Monopoles

Quantum corrected monopoles, ie. monopoles in the full quantum theory, satisfy the same
BPS equations as the classical monopoles. Another requirement arises—the imaginary part of
the matrix of second derivatives of the prepotential ∂2F

∂φA∂φB must be positive definite. This
determines a region in moduli space, where the BPS equations need not hold. The border of
this region is called the curve of marginal stability, since upon crossing certain states in the
spectrum become marginally stable and decay [Ferrari, 1994, Bilal, 1994]. In terms of the fields
it is given by the equation ImφD/φ = 0.

If one assumes that the spatial dependence of the monopole arises only from the spatial
dependence of the moduli, one can analyse the motion in moduli space.

The Bianchi identity and the Gauss law imply a second order differential equation which
is satisfied both by the scalar and its dual

Re eiα∇2φ = 0 Re eiα∇2φD = 0.
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This, together with the asymptotic behavior implies that

Re eiα(nmφD + neφ) = 0.

Thus we can define a local central charge Z(r) which has the “algebraic” central charge as its
limit, and which has a constant phase [Chalmers et al., 1996]. These relations also imply that
the magnetic field and the momentum are not independent ne

~B − 4πnm
~Π = 0. Combining this

with the explicit form of the conjugate momentum and the electromagnetic fields in the radial
ansatz gives an implicit relation for the undetermined function b. Inserting in the BPS equation
one ends up with a differential equation for the moduli

du

dr
=

π

2

(

A2 − 2
A

r

)√
u + 1

e−iα

K(q)

i

Im τ

(

ne

nm
+ τ̄

)

. (2)

Since the right hand side is known only as a function of u and cannot be integrated easily,
this equation must be solved numerically. The factor (A2 − 2A/r) is a known function and
expresses a reparametrisation. The parameter δ enters in the differential equation only through
this reparametrisation. Thus the shape of the solution does not depend on δ but the exact
parametrisation does.

We can get rid of the term (A2 − 2A/r) by changing the parametrisation t(r) such that
dt/dr = (A2 − 2A/r). In terms of the central charge we find after this reparametrisation that

dZ

dt
=

ie−iα

nmIm τ
|nmτ + ne|2 (3)

and since the reparametrisation factor is negative and the phase constant, the absolute value
of the central charge decreases. In fact the reparametrisation factor can change its sign, for δ
smaller than a certain critical value depending on the asymptotic u(∞). This corresponds to
bouncing solutions, solutions that change their direction at a certain point, go back along the
same curve towards infinity.

In fact one can write the equation for the absolute value of the central charge as d|Z|/dt =
−1/(

√
2nm)∂|Z| · ∂|Z|, which is an attractor equation as in [Ferrara, Kallosh, 1996, Denef,

1999,2000] and can be derived as the zero gravity limit in the attractor formalism.
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Figure 1. Solutions in moduli space (a) and in terms of the central charge (b). The dashed
line C is the curve of marginal stability. The dash-dotted line in the Z-plane plot is a branch
cut.

In fig. (1) some typical solutions are shown, together with the curve of marginal stability
for the quantum numbers nm = 1, ne = 0. There are two types of behavior, depending on
whether the curve of marginal stability is hit at Z = 0 (Z-poles) or not (X-poles).
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Classical SU(3) Monopoles

The group SU(3) is the next simplest case we can study. The Cartan subalgebra is two
dimensional, whereas in SU(2) it is one dimensional. We can choose the expectation value of
the scalar field to lie in the Cartan subalgebra. The direction is given by a vector ~h, which
determines the symmetry breaking. If it is orthogonal to a root of the algebra, the symmetry
breaking is nonabelian SU(3) → SU(2) × U(1). Otherwise the symmetry breaking is maximal
SU(3) → U(1) × U(1). The magnetic charge ~g is now a dual root, ~g = ~β/β2 [Goddard et al.,
1977]. We can expand it in terms of the dual simple roots, the coefficients (if the symmetry
breaking is maximal) are topological invariants called magnetic numbers. For SU(2) there was
no need to work explicitly with roots, dual roots etc. since there is only one root and only one
direction in the Cartan subalgebra.

An easy way to find monopoles in SU(3) is to use the SU(2) t’Hooft-Polyakov monopoles
[Lee et al., 1996]. Each root has a SU(2) subgroup associated with it, so we can use embed
the t’Hooft-Polyakov monopole in this subgroup. However, since the asymptotic value of the
field need not lie in this SU(2), there will be an additional constant component of the field to
compensate this. It can be chosen to lie in the Cartan subalgebra, orthogonal to the chosen
SU(2). So for each root we can rewrite a BPS solution (the functions A, b and K are as for
SU(2))

Ai =
3

∑

s=1

ǫsimr̂mA(r)ts(β) A0 =
3

∑

s=1

b(r)r̂sts(β)

φ =
3

∑

i=1

K(r)r̂sts(β) + (~h − (~h · ~β) ~β∗) ~H, (4)

where t(β) are the generators of SU(2)β and ~H generate the Cartan subalgebra.

Since SU(3) has three roots, there are three distinct monopoles (for each ~h) with magnetic
numbers (1, 0), (0, 1) and a composite monopole with (1, 1). As in the SU(2) case, the vacuum
expectation value ~h itself is not gauge invariant. For a gauge invariant description we should
use the gauge invariant quantities u = trφ2, v = trφ3. In terms of these it is easy to see that the
condition for nonmaximal symmetry breaking is 4u3 − 27v2 = 0, where the gauge bosons of the
unbroken SU(2) have zero mass. Of course u = v = 0 corresponds to the full SU(3) symmetry.

SU(3) Effective Action

The quantum action for SU(3) was studied in [Argyres, Faraggi, 1994, Klemm et al., 1994].
The effective action depends now on two complex moduli u, v. The singular curve splits into
two curves 4u3 − (v ±Λ3) = 0. As for SU(2) these are curves on which the mass of a dyon goes
to zero. But, due to the higher dimension of moduli space, there are more singular points than
that. The intersection of the two curves is an example, here a pair of dyons becomes massless.
These dyons are mutually local, ie. they satisfy the condition ~nm

(1) ~ne
(2) − ~ne

(1) ~nm
(2) ∈ Z and

the low energy effective action can be described by a U(1)×U(1) theory. There are also points
were mutually nonlocal particles become massless [Argyres, Dougals, 1995], the low energy
description in terms of a local effectieve field theory of such a system is not known. Altogether,
there are six different monopoles/dyons which become massless at certain points in moduli
space, whereas there are only two in SU(2).

The scalar expectation value is written < φ >= diag(φ1, φ2−φ1,−φ2) and the duals defined
by φDi = ∂F/∂φi. Then the explicit dependence on the moduli was found, but a closed form
is possible only in certain coordinate patches of the moduli space. For SU(2) the fields φ, φD

were elliptic integrals, which are special cases of hypergeometric functions, that have well known
analytic continuations. Here, the fields are given in terms of Appell functions, ie. generalized
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hypergeometric functions of two variable. More precisely, in terms of F4

F4(a, b, c, c′;x, y) =
∑

n,m≥0

(a)n+m(b)n+m

(1)n(1)m(c)n(c′)m
xnym

where (a)n is the Pochhammer symbol (a)n = Γ(a + n)/Γ(a). These functions converge only
for |√x| + |√y| < 1 and, unfortunately, not much seems to be known about their analytic
continuations. The explicit formulas of φi and φDi are given in [Klemm, Theisen, 1995] (they
are quite lengthy), together with the generalization of the coupling τ which, since it is the second
derivative of G is now a 2 × 2 matrix, τij. Only certain combinations of u, v and the scale Λ
enter in the functions, so it is possible eg. to convert the Appell functions to hypergeometric
functions for u = 0, v = 0 or to use the integral representation when on the singular curve.

Quantum Corrected SU(3) Monopoles

The central charge is a direct generalization of SU(2) Z = nmiφDi+neiφi and can be written
also as a surface integral. By an analagous argument one can show that it has a constant phase.
By a similar derivation as before we can find the differential equation for the central charge

dZ

dr
=

1

2
√

2
ie−iα

(

A2 − 2
A

r

) |∑i,j nminei + nmiτijnmj|2
∑

ij nmiIm(τij)nmj
. (5)

So as before, the central charge has a constant phase and a decreasing absolut value. The
reparametrisation is the same as for SU(2), including the parameter δ which can, for certain
values, change the direction of the solution. The modulis satisfy the differential equations

du

dr
=

(

nm1
∂u
∂φ1

+ nm2
∂u
∂φ2

)

ie−iα

2
√

2

(

A2 − 2A
r

)

∑

i,j
nminei+nmiτ̄ijnmmj

∑

i,j
nmiIm τijnmj

dv

dr
=

(

nm1
∂v
∂φ1

+ nm2
∂v
∂φ2

)

ie−iα

2
√

2

(

A2 − 2A
r

)

∑

i,j
nminei+nmiτ̄ijnmmj

∑

i,j
nmiIm τijnmj

(6)

As before these equations should be solved numerically. The equations are direct general-
izations of the SU(2).

The curve of marginal stability generalizes to a curve in the (u, v) plane, which is given by
three equations.

We shall point out some aspects, analoguous to SU(2), for v = 0. In this case all Appell
functions reduce to hypergeometric functions. Furthermore the scalar fields and their duals are
pairwise equal, ie. φ1 = φ2, φD1 = φD2. The conditions for the curve of marginal stability
reduce to a single one, which is the same as for SU(2). It can be easily found, that there are
three monopoles/dyons which become massless at |u| = (27/4)1/3Λ2, with quantum numbers
(nm1, nm2, ne1, ne2) resp. (1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0). For the dyon solutions to equations
(6) which lie in v = 0. Thus the moduli motion of the dyon (1, 1, 0, 0) in the v = 0 plane is
analoguous to the motion of the monopole (1, 0) in SU(2). Since the curve of marginal stability
is the same, the division into Z-poles and X-poles is exactly the same. The only difference lies
in the different shape of the curve of marginal stability. As can be seen from fig. 2 for SU(3)
this is not a closed curve, and has in fact three branches.

Conclusions

We have presented the most important well known features of quantum corrected SU(2)
monopoles and their generalization to SU(3). We found differential equations for the actual
space dependence of the moduli in SU(3), which will be studied more in the future, and showed
some aspects for the restriction to v = 0. Most features can be generalized directly from
SU(2) to SU(3), although the generalization is not always straightforward but must be checked
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Figure 2. The curve of marginal stability and the branch cuts for SU(3) in v = 0 plane. The
solid lines are the actual curve, the dashed lines are the branch cuts.

separately. Due to the higher dimension of the SU(3) subalgebra, new effects show up in SU(3).
On the other hand the expressions are more complicated, (in fact it is even a problem to find a
closed form) and are more difficult to handle numerically.
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Chalmers, G.,Roček, M., von Unge, R. Monopoles in Quantum Corrected N=2 Super Yang-Mills Theory,

hep-th/9612195.
Denef, F., Supergravity flows and D-brane stability, JHEP 0008 (2000) 050, hep-th/0005049.
Denef, F., Attractors at weak gravity, Nucl. Phys. B547 (1999) 201, hep-th/9812049.
Ferrara, S., Kallosh, R., Supersymmetry and Attractors, Phys. Rev. D54 (1996) 1514, hep-th/9602136.
Ferrari, F., Bilal, A., The Strong Coupling Spectrum of the Seiberg-Witten Theory, Nucl. Phys. B469

(1996) 387, hep-th/9602082.
Goddard, P., Nuyts, J., Olive, D.I., Gauge Theories and Magnetic Charge., Nucl. Phys. B125 (1977) 1.
t’Hooft, G., Nucl. Phys. 79 (1974) 276.
Klemm, A., Theisen, S., Nonperturbative Effective Actions of N=2 Supersymmetric Gauge Theories,

Int.J.Mod.Phys. A11:1929–1974, 1996, hep-th/9505150.
Klemm, A., Lerche, W., Yankielowicz, S., Simple Singularities and N=2 Supersymmetric Yang-Mills

Theory, Phys.Lett. B344:169–175, 1995, hep-th/9411048.
Lee, K., Weinberg, E.J., Yi, P., Massive and Massless Monopoles with Nonabelian Magnetic Charge,

Phys.Rev. D54: 6351–6371, 1996, hep-th/9605229.
Polyakov, A., JETP Lett. 20 (1974) 194.
Prasad, M. K., Sommerfield, C., Phys. Rev. Lett. B35 (1975) 760.
Seiberg, N. and Witten, E., Monopoles, Duality and Chiral Symmetry Breaking in N=2 Supersymmetric

QCD, Nucl. Phys. B431 (1994) 484, hep-th/9408099.
Witten, E.,Olive, D., Supersymmetry Algebras that Include Topological Charges, Phys. Lett. B78 (1978)

97.

23


