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The discretized closed Friedmann—Lemaitre—Robertson—Walker (FLRW) universe with positive
cosmological constant is investigated by Regge calculus. According to the Collins—Williams
formalism, a hyperspherical Cauchy surface is replaced with regular 4-polytopes. Numerical
solutions to the Regge equations approximate well to the continuum solution during the era
of small edge length. Unlike the expanding polyhedral universe in three dimensions, the 4-
polytopal universes repeat expansions and contractions. To go beyond the approximation using
regular 4-polytopes we introduce pseudo-regular 4-polytopes by averaging the dihedral angles of
the tessellated regular 600-cell. The degree of precision of the tessellation is called the frequency.
Regge equations for the pseudo-regular 4-polytope have simple and unique expressions for any
frequency. In the infinite frequency limit, the pseudo-regular 4-polytope model approaches the
continuum FLRW universe.

Subject Index B33, B38, E00, EO1

1. Introduction

Regge calculus was proposed in 1961 to formulate Einstein’s general relativity on piecewise linear
manifolds [1,2]. It is a coordinate-free discrete formulation of gravity, providing a framework in both
classical and quantum studies of gravity [3]. Since Regge calculus is a highly abstract and abstruse the-
oretical formalism based on simplicial decomposition of space-time, further theoretical studies from
various viewpoints are to be welcomed. In particular, exact results such as the Friedmann—Lemaitre—
Robertson—Walker (FLRW) universe and Schwarzschild space-time in the continuum theory are
considered to play the role of a touchstone in Regge calculus. Thorough investigations on these
systems are indispensable in making Regge calculus practical for use.

Regge calculus has been applied to the four-dimensional closed FLRW universe by Collins and
Williams [4]. They considered regular polytopes (4-polytopes or polychora) as the Cauchy surfaces of
the discrete FLRW universe and used, instead of simplices, truncated world-tubes evolving from one
Cauchy surface to the next as the building blocks of piecewise linear space-time. Their method, called
the Collins—Williams (CW) formalism, is based on the 3 4+ 1 decomposition of space-time similar
to the well-known Arnowitt—Deser—Misner (ADM) formalism [5—7]. Recently, Liu and Williams
have extensively studied the discrete FLRW universe [8—10]. They found that a universe with regular
4-polytopes such as the Cauchy surfaces can reproduce the continuum FLRW universe to a certain
degree of precision. Their solutions agree well with the continuum when the size of the universe is
small, whereas the deviations from the exact results become large for a large universe.
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Table 1. Solutions of the Friedmann equations.

3 3 3
A >0 a:\/;cosh (\/gt) az\/;exp (\/gt) az\/;smh< %t)
A=0 no solution a = const. a=t
A <O no solution no solution a=,/ —% sin ( —%t)

Inaprevious paper [11], we investigated the three-dimensional closed FLRW universe with positive
cosmological constant by the CW formalism. The main interest there was to elucidate how Regge
calculus reproduces the FLRW universe in the continuum limit. In three dimensions, a spherical
Cauchy surface is replaced with polyhedra. We described the five types of regular polyhedra on
an equal footing by using Schlifli symbols [12]. The polyhedral universe behaves as the analytic
solution of the continuum theory when the size of the universe is small, while it expands to infinity
in a finite time. We further proposed a geodesic dome model to go beyond the regular polyhedra.
The Regge calculus for the geodesic domes, however, becomes more and more complicated as we
better and better approximate the sphere. To avoid the cumbersome tasks in carrying out Regge
calculus for the geodesic dome models we introduced pseudo-regular polyhedra characterized by
fractional Schléfli symbols. Regge equations for the pseudo-regular polyhedron model turned out
to approximate the corresponding geodesic dome universe well. It is worth investigating whether a
similar approach can be extended to higher dimensions.

In this paper we investigate the FLRW universe of four-dimensional Einstein gravity with a positive
cosmological constant within the framework of the CW formalism. We consider all six types of regular
4-polytopes as the Cauchy surface in a unified way in terms of the Schlidfli symbol and compare
the behaviors of the solutions with the analytic result of the continuum theory. We further propose
a generalization of the Regge equations by introducing pseudo-regular polytopes, which makes the
numerical analysis much easier than the conventional Regge calculus.

This paper is organized as follows: in the next section we set up the regular 4-polytopal universe in
the CW formalism and introduce Regge action. Derivation of the Regge equations is given in Sect.
3. In the continuum time limit the Regge equations are reduced to differential equations. Applying
the Wick rotation, we arrive at the Regge calculus analog of the Friedmann equations, describing
the evolution of the 4-polytopal universe. This is done in Sect. 4. In Sect. 5 we solve the differential
Regge equations numerically and compare the scale factors of the 4-polytopal universes with the
continuum solution. In Sect. 6 we consider subdivision of cells of the regular 4-polytopes and propose
a pseudo-regular 4-polytopal universe with a non-integer Schlifli symbol that approaches a smooth
three-dimensional sphere in the continuum limit. Sect. 7 is devoted to summary and discussions. In
Appendix 7, the radius of the circumsphere of a regular polytope in any dimensions is considered.

2. Regge action for a regular 4-polytopal universe

We begin with a brief description of the continuum FLRW universe. The continuum action is given
by

_ ! 4
= [ d'x/=g®-2A). (1)
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In four dimensions, the Einstein equations have an evolving universe as a solution for the ansatz

ds® = —di* + a(t)? [ + 12 (d6* + sin? Od(pz)] , )

1 — kr?
where a (¢) is the so-called scale factor in cosmology. It is subject to the Friedmann equations

A A
P ==d*—k = di=—a (3)
3 3

The curvature parameter £ = 1,0, —1 corresponds to space being spherical, Euclidean, or hyperbolic,
respectively. The relations between the solutions and curvature parameter are summarized in Table 1
with the proviso that the behaviors of the universes are restricted to expanding at the beginning for
the initial condition a(0) = min a(¢). Of these, our concern is the spherical universe with three-
dimensional spheres as the Cauchy surfaces. All the time dependence of the universe is in the scale
factor a(t), which expresses the curvature radius of the Cauchy surface. In Regge calculus we will
replace the three-dimensional sphere with a regular 4-polytope.

Before entering into details of the 4-polytopal universe, let us briefly summarize the essence of
Regge calculus: in Regge calculus, an analog of the Einstein—Hilbert action is given by the Regge
action [13]

1
SRegge:g Z eidi — A Z Vil “4)

ie{hinges} ie{blocks}

where A4; is the volume of a hinge, ¢; the deficit angle around the hinge 4;, and V; the volume
of a building block of the piecewise linear manifold. In four dimensions the hinges are the lattice
planes, or equivalently the faces of the 4-simplices, and A4; is nothing but the face area. Regge’s
original derivation is concerned with a simplicial lattice, so that it describes the gravity as simplicial
geometry. In fact, this formalism can easily be generalized to arbitrary lattice geometries. We can
fully triangulate the non-simplicial flat blocks by adding extra hinges with vanishing deficit angles
without affecting the Regge action.

The fundamental variables in Regge calculus are the edge lengths /;. Varying the Regge action with
respect to /;, we obtain the Regge equations

04; avi
Yo s —-A Y =0 (5)
e al; _ al;
ie{hinges} J ie{blocks} J
Note that there is no need to carry out the variation of the deficit angles owing to the Schlifli identity
[14,15]

38,‘
Ai— =0. 6
> Aigg (©)

iefhinges} J

We now turn to 4-polytopal universes. Following the CW formalism, we replace the hyperspherical
Cauchy surface by a regular 4-polytope. It would be helpful to begin with a description of regular
4-polytopes [12]. As regular polyhedra in three dimensions, a regular 4-polytope can be obtained
by gluing three-dimensional cells of congruent regular polyhedra. Any regular 4-polytope can be
specified by the Schlifli symbol {p, ¢, 7}, where {p, ¢} stands for the Schlidfli symbol of a cell and r
the number of cells having an edge of a cell in common. It is known that there are only six types
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Table 2. The six regular polytopes in four dimensions.

5-cell 8-cell 16-cell 24-cell 120-cell 600-cell
N; 5 8 16 24 120 600
N, 10 24 32 96 720 1200
Ni 10 32 24 96 1200 720
Ny 5 16 8 24 600 120
{p,q,r} {3,3,3} {4,3,3} {3,3,4} {3,4,3} {5,3,3} {3,3,5}

of regular 4-polytopes: 5-cell, 8-cell, 16-cell, 24-cell, 120-cell, and 600-cell, as listed in Table 2.
Incidentally, this can be extended inductively to polytopes in arbitrary dimensions. In general, a
D-polytope can be denoted by a set of D — 1 parameters {p2,- -+ ,pp}.

Let us denote the numbers of vertices, edges, faces, and cells of a regular 4-polytope {p, g, 7} by
No, N1, N», and N3, respectively. They satisfy ns (¢,7) No = no (p,q) N3, ¥rN1 = n1 (p,q) N3, and
2N, = ny (p,q) N3, where ng (p,q), n1 (p,q), and n> (p, q) are the numbers of vertices, edges, and
faces of a regular polyhedron {p, g}, respectively. These completely determine the ratios Ny 1 2/N3
as

No  no(p.q)  pQ2q+2r—gqr)

v = 5 (7)
N3 m(q,r) r(2p+29—pg)
N mp.q) _ 2pq (8)
N3 r rp+29 —pq)’
Mm@ _ 2q ©)
N3 2 2p+2q —pq’
and have a consistency with Schléfli’s formula
No— N1 +N, — N3 =0. (10)
Furthermore, it is known that N3 is given by Coxeter’s formula [12,16]
32h
Ny = o - (1
pn2(p,q) [12 —p—2q—r+4 <1; + ;)}

where 4, is a positive integer known as the Petrie number. It is related to the largest root of the
quartic equation
g T T T T
Xt — (c052 = + cos> = + cos? —) x> +cos? —cos? = =0 (12)
'z q r p r
T

by x = cos . Equations (7)—(9) and (11) determine Ny 2 3. As we shall see, the ratios in Egs.

.
(7)—(9) are sufficient in writing the Regge equations. In Table 2 we summarize the properties of

regular 4-ploytopes for the reader’s reference.

As depicted in Fig. 1, the fundamental building blocks of space-time in the Regge calculus are
world-tubes of four-dimensional frustums with the regular polyhedra {p, ¢} as the upper and lower
cells, and with ny (p,q) lateral cells which are three-dimensional frustums with p-sided regular
polygons as the upper and lower faces. In Fig. 1 the lateral cells are the three-dimensional frustums
ABC-ATBTC', ABD-ATB'D', ACD-ATC'D', and BCD-BTC'D'.
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Fig. 1. The ith frustum as the fundamental building block of a 4-polytopal universe for p = ¢ = 3. A cell of
regular tetrahedron ABCD with edge length /; at time ¢; evolves into a cell ATBTC'D' with edge length [, at

lit1.

Following the regular polyhedron models [11], we assume that the lower and upper cells of a
block separately lie in a time-slice and every strut between them has equal length. The whole space-
time is then obtained by gluing such frustums cell-by-cell without a break. There are two types
of fundamental variables: the lengths of the edges, /;, and those of the struts, m;. Since the hinges
are two-dimensional faces in four dimensions, there are only two types of hinges. One is a face
of a regular polyhedron in a time-slice, like AABC in Fig. 1. We call it simply a “polygon” and
denote by Afp) the area of the polygon on the ith Cauchy surface at time ¢#;. The other type of hinge
is an isosceles trapezoidal face of lateral cells between the consecutive Cauchy surfaces, such as
OABB'TA® in Fig. 1. We call them “trapezoid” and denote by 4" the area of the trapezoid between
the Cauchy surfaces at #; and #;11.

With these in mind, the Regge action (4) can be written as

1
Skesge = 7 2 (MdP e + NoaPe® — N3 A7), (13)

8

1

fp) stand for the deficit angles around the trapezoid and polygon, respectively, and V;

is the world-volume of the ith frustum. The sum on the right-hand side is taken over the time-slices.

where sl.(t) and ¢

As we show in the next section, the deficit angles, areas, and volume are given in terms of the lengths
of the edges and struts.

3. Regge equations

The Regge equations can be obtained by varying the action (13) with respect to the fundamental
variables m; and /;. Note that two adjacent trapezoids A,(t) and Ag?l have the edge /; in common, as
do V; and V;_;. Then, Eq. (5) can be written as

®
04; . _r@r+2q—pg Vi

1

(14)

om; 2pq om;’
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u, u;
~71BD
A c(/l) )
Aj Cci
C
(a) (b) (c)

) (0} ® O]
C

Fig. 2. (a) Two lateral cells c,; and c¢; meeting at the trapezoidal hinge 4;”, (b) dihedral angle between c,;

and cgg, and (c) deficit angle around the hinge h,(-t) made by r frustums (V})y, - - -, (V;), having h;t) as a lateral

face in common. Though (a) assumes an evolution of a regular tetrahedron, any polyhedron can be used.

(® () (p)
04;" o M o _ 1 o) rCPt29-pg) (% aVH). (15)

ol T T ST T ey 204 FYAEY?

In the context of the ADM formalism, Eq. (14) corresponds to the Hamiltonian constraint and Eq.
(15) to the evolution equation.

The deficit angles, areas of the hinges, and volume of the frustum can be expressed in terms of /
and m. For the sake of lucidness in defining lengths and angles, we temporally assume the metric in
each building block to be flat Euclidean so that the geometric objects such as lengths and angles are
obvious. The equations of motion in Lorentzian geometry can be achieved by Wick rotation.

We first focus our attention on a trapezoidal hinge hl@ = BB'D'D of the ith frustum, the shaded
area of Fig. 2(a). One sees that the two lateral cells c% = ABD-ATB'D" and c(cll) = BCD-B'C'D?
have the hinge hl(t) in common as a face. We can find a unit normal vector ua to the cell cI(AB.. It is

—_—> —> —> L. . 0
orthogonal to vectors BA, BD, and BB Similarly, we denote by ¢ a unit normal to the cell Coj-
Then the dihedral angle 6; between the two lateral cells is defined by

0; = arccos up - uc. (16)
(See Fig. 2b.) This is explicitly written as

4(sin®Z —2cos? Z ) m? + 812 cos 2=
p q) " i q

0; = arccos
4m? sin> T — 517

, (17)

where §/; = [;11 — [;. The deficit angle si(t) around the hinge hl@ can be found by noting the fact that
there are r frustums that have the trapezoid in common, as illustrated in Fig. 2(c). We thus obtain

e =21 — r6;. (18)

We next pick up a pair of polygonal hinges hl(p) = ABD and hgl = A"B'D" in the ith frustum
as depicted in Fig. 3(a). They are the upper and lower faces of the lateral cell C,(AB' defined above. The
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(a) (b)

Fig. 3. (a) Two polygonal hinges h(p) and hfi) | in the ith frustum, (b) dihedral angles ¢, and ¢, 71> and (c) deficit

angle ¢

lateral cell ¢! A ) and the base cell c(Cbl.) = ABCD meet at the hinge hfp) We denote the dihedral angle
between them by ¢T Similarly, we write the dihedral angle between c(l) and c(ct?+1 = ATBTC'D?!
(b)

by ¢l t1- Since ¢, and cCl 'y are parallel to each other, the dihedral angles satisfy

ol + ot = (19)

(See Fig. 3b.) The dihedral angle qﬁi¢ can be obtained by the way just explained for 6;, as

8l;i_1cosZcosZ
P14 . (20)

\/<sin2 L _ cos? E) (4m . sin? = — §/2 1)
P q i— i—

qbl.L = arccos

h {P)

To find the deficit angle around the hinge 4, A

, we must take account of four frustums that have #,
in common: two adjacent V; in the future side and two adjacent V;_1 in the past side, as schematically

illustrated in Fig. 3(c). Then, the deficit angle 8(p ) can be written as

e =27 —2 (o] +9}) =260}, (21)

where we have introduced 8(]5¢ qﬁl - ¢l-¢.
The areas of the hinges and the volume of the frustum can also be expressed in terms of / and m.
The areas of a trapezoid Al@ and a polygon AI(P) can be written as

1
4Y = —(l,+1+1),/m ——312, (22)

AP = 12 cot = (23)
P

The volume of the ith frustum is given by

pqcot2 Z cos—(l+1 + 1) + 12 sin®> =
Vi = : Ui +1) m? — 4 512, (24)
24 (2p + 29 — pq) /sin? ]—7 — cos? % 4 (sin2 % — cos? %)
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Inserting these expressions into the Regge equations (14) and (15), we obtain a set of recurrence
relations:

2 2\ g2
(IFy1 + 1) cot® Feos T (25)
24 ,
4m,-2 — 5112 \/4m12 (sin2 117 — cos? %) — sin’ %511'2

am? — 812l + \[am?_| — 812 el

sl.(t) rA

2, -0 P? -1 T
gl L0 L L O 4 orcot —liel.(p)
4m? — 817 4m? | — 81| p

2 T
rA cot” = cos =
p q

q q

. T T . T
) |:(ll-2+1 + 21l + 317) \/4m12 (sm2 i cos? —) — sin® =8/
p q

24 (sin2 L _cos?Z

+ (3l,~2 + 2Ll + liz_l) 4m? (sin2 T _ cos? z) — sin? z<31i2_1
p q q
4 A 44
N (I — 1) sin® 7 B (1 =4 y)sin® 7 ] 26)
4m? (sin® Z — cos2 Z ) — sin® Z§/2 4m? | (sin? Z — cos2 Z ) — sin? Z§1%
i p q g i—1 p q g =1

These are non-linear recurrence relations for the edge and strut lengths /; and m;. Evolution of the
polytopal universe can be investigated by taking the continuum time limit as in Refs. [4,8—10].

4. Continuum time limit

We are interested in the evolution of a model universe with a regular polytope as the Cauchy surfaces.
In continuum theory, Cauchy surfaces are defined as slices of space-time by constant times. In the
FLRW universe, the time axis is taken to be orthogonal to the Cauchy surfaces. This seems to
correspond to choosing the time axis to be orthogonal to the Cauchy cells. One can identify the
distance between the centers of circumspheres of the two Cauchy cells in Fig. 1 with the Euclidean
time interval 6¢4; = t;41 — ;. This works for Cauchy cells of regular polyhedrons [8,9]. Later in
this paper we consider Cauchy surfaces that are not necessarily regular polytopes. For general
polytopal substitutions for 3-spheres as Cauchy surfaces, however, distances between two temporally
consecutive Cauchy cells vary cell by cell. One cannot identify the temporal distances with a common
time interval §¢;, as noted in Ref. [11] for polyhedral universe.

We avoid the subtleties in identifying the time coordinate by supposing a fictitious point material
in a state of rest spatially at each vertex of the polytopal Cauchy surface. Taking #; as the proper time
of a clock standing by the fictitious material particle, we can identify strut length m; with the time
interval

m; = 8t;. (27)
The time axis is not defined to be orthogonal to the polytopal Cauchy surfaces. The orthogonality of

the temporal axis with the spatial ones is restored in the continuum limit. We further choose all the
time intervals 8¢ to be equal and then take the continuum time limit §¢#; — df. The edge lengths can
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be regarded as a smooth function of time /; — /(¢), and

81 .
8l = —68t; — ldt, (28)
8ty
where [ = dl/dr. 1t is straightforward to take the continuum time limit for Egs. (25) and (26). We

find

t 2cot2 & z
g® rA [* cot 5 C0s 5

4—1.2_E 27 27 12 a2 T
4<sm » —cos 5)—1 sin”

) (29)

. d 1 ;
4 — 128(0 + = <—8(t)) + 27l cot Z(Pi’

dt \ /4 _ ]2 P

2w T
rA cot®—cos = T T N
= - r 9 [312\/4 (sm2 — —cos2 = | —2sin? —

T 12 sin2 T — cos2 I
sin ? CcoS 7 P q q

dt .
\/4 (sin2 % — cos? %) — [2 sin?

d PBlsin®
d ] (30)
T
q
where ¢® and ¢V are, respectively, the continuum time limits of Egs. (18) and (20)
2w 2 12 2n
4<s1n ” 2 cos q) + [“ cos 4

e® =27 — rarccos — 3
4sin” 7 -2

; €2))

) d [cos T cos &
¥ = — arccos L el . (32)

Cdt .
\/(sinz L _ cos? E) <4 sin? L — 12)
P q P

Since we have fixed the strut lengths by Eq. (27), they disappear from the Regge equations. Fur-

thermore, substituting Eqs. (29) and (32) into the evolution equation (30), it can be simplified
as

) A 2 1. 1 licos? ~
1:——1(1——.”) 1— -+ = Lo . (33)
3 4 sin > 4 24(Sin2%—COSZ %) —lzsin2%

One can easily verify that this is consistent with the Hamiltonian constraint (29). In other words, the
Hamiltonian constraint (29) can be obtained as the first integral of the evolution equation (33) for
the initial conditions

12 6 m
1(0) =1y = J(271—r90)cot3tan;, 1(0) =0, (34)

where 6y = 2 arcsin [cos(r/q)/ sin(;r/p)] stands for a dihedral angle of the regular polyhedron
{p, q}. The cosmological constant must be positive for regular 4-polytopes, as we see from Eq. (34).
This implies that the space-time is de Sitter-like. The 4-polytopal universe cannot expand from or
contract to a point but has minimum edge length /o, as does the continuum solution, as we shall see
below.
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So far we have worked with piecewise linear space-time with Euclidean signature. To argue the
evolution of space-time we move to the Minkowskian signature by Wick rotation. This can be done
simply by letting 2,1 - —I%,—] in Egs. (29) and (33). We thus obtain
4 (sin2 T _2cos? l) —2cos

p q

q
27 — rarccos

.2l i
4 sin p—l-l

A 4+ 2
= ’1_2[2 . + — cot? ~cos T, 35)
2T 2 24in2 & P q
4(sm 5, — cos q>+l sin® 7
LA j2 1, 1 Ilcos®>
l=ZI14+—==) |1+ -3 E . (36)
3 4 sin ;’—7 4 24 <Sin2 T _ cos? 1) + 2sin>
p q q

From the evolution equation (36) we see that the acceleration lis always positive. Hence the polytopal
universe, as the continuum solution, exhibits accelerated expansion or decelerated contraction with
the minimum edge length (34). The universe, however, reaches a maximum size in a finite period of
time as we shall see in the next section.

As a consistency check, let us consider the case of a vanishing cosmological constant before turning
to a detailed exposition of the behavior of the polytopal universe described by the evolution equation
(36). In the absence of a cosmological constant, the Hamiltonian constraint (35) becomes

8 (sin2 ;7’ sin? % — cos? l)

5 = const. > 0. 37)

2
cos 7” + cos =*F
There is no convex regular 4-polytope that has a Schlifli symbol satisfying this inequality. In the
case of 2 = 0, it admits {p,q,r} = {4,3,4}, which gives a flat Cauchy surface corresponding to
the Minkowski metric. Moreover, in the case of /2 > 0, a Schlifli symbol satisfying this inequality
stands for a regular lattice of open Cauchy surface of constant negative curvature. These results are

consistent with solutions of the Friedmann equations (see Table 1).

5. Numerical solution

In this section, we solve the Hamiltonian constraint (35) numerically and examine the behaviors of
the regular 4-polytopal universes. It is convenient to use the continuum time limit of the dihedral
angle (17). Let us denote it by 9:

4 (sin2 % — 2cos? %) —[2cos 2z

q
6 = arccos PP . (38)
P
Then / and / can be expressed as

. 4 (0052 % — sin? 117 sin? %)
= , 39
sin? % — cos? . 39

12 0
> = = 27 — r0) tan? T cot —. (40)

rA p 2
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3 T T
5-cell ——
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120-cell ——
9 600-cell — |

dihedral angle 0

VAt

Fig. 4. Plots of the dihedral angles of the regular 4-polytope models. Each plot ends at t = 7,,,,./2.

The first of these can be obtained directly from Eq. (38). The second can be derived from the
Hamiltonian constraint (35) by replacing 12 with Eq. (38). Since [ > 0, the dihedral angle varies in
the range 0, < 6 < 6y, where 6, = (¢ — 2)7r/q. The velocity i diverges for 6 = 6,, while the edge
length / approaches a finite value / = [, ; -, where

127 (2 2
bgr = | — (— N 1) fan - tan . 41)
A \g r qg P

This is contrasted with the polyhedral universe [11], where both / and / diverge at a finite time.
To see these in more detail we eliminate the edge length from Eqgs. (39) and (40) to obtain

. 2sin 2 csc 2 2rA (Sin2 02—0 — sin? %) (Sin2 92—0 — sin? g)
0= + 2 2 (27'[ —1"9) sin 6 7 . (42)
2m —r (6 —sinb) 3 sin2 % _ sin2 %

where the upper (lower) sign corresponds to an expanding (contracting) universe. Integrating Eq.
(42) numerically for the initial condition

6 (0) = 6, (43)

we obtain numerical solutions for the dihedral angle. In Fig. 4 we give the plots of dihedral angles
for the six types of regular 4-polytopes. They are monotone decreasing functions of time for 0 <
t < 1y4,/2 and approach 0, as t — 1, 4,/2, where 1, 4, 1s defined by

. 29 _gin2 %
5 % i 2w —r (0 — sinf) 3 (sm ) )
T = .
pq.r ) 6o . .20 . . .
By 2sin 3 csc 3 2rA 2o —rf) <sm2 92—0 — sin? 7‘1> (sm2 92—0 — sin? %) sin 0

(44)

As noted above, the edge length becomes the maximum value [ = 1,,, at t = 1,,4,/2. After
reaching /, ; -, one of the most reasonable and easiest way is that the edge length begins to decrease.
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The differential equation for the dihedral angle (42) changes its sign to positive at the terminal time
Tp,q.r/2, then the universe begins to contract. It continues until the edge length reaches the initial
minimum value / = [y at f = 7}, 4. The universe begins to expand again, repeating expansion and
contraction with a period 7, ;. On the condition (34), the velocity i diverges at the time 7, 4 /2. The
edge length / varies in the range /o </ < [, ; ,. Therefore there is no smooth continuation to the scale
factor for t > 1,4, /2. If we employ another initial condition for the evolution equation, positions
of spikes are shifted, but do not disappear. Thus the spikes surely come in the time evolution of the
scale factor.

For comparison with the continuum theory, we introduce an analog of the scale factor a(¢). Here,
we simply define the scale factor of the polytopal universe ar as the radius of the circumsphere of
the regular polytope

2T e T
» R0 sin” 7 — cos? 7
AR = 2 | sin? Zsin? Z — cos?
p r

kLS
q

3 cot% Q2mr —rbh) (sin2 T — sin? %") 6 )
= sin —.
rA (sin2 %0 — sin? %") <sin2 T _ sin? 92—°> 2

7

In Fig. 5 we give the plots of the scale factors of the regular 4-polytopal universes as functions of time.
The broken curve corresponds to the continuum solution. One can see that the regular 4-polytopal
solutions approximate the continuum solution for ~/At¢ < 1. In particular, the more vertices the
polytope contains, the better approximation is achieved.

That the numerical solutions reproduce the behavior of the continuum solution well for v Az < 1
can be understood by noting the fact that the scale factor (45) approximately satisfies the Friedmann
equations (3) when both ~/A/ and [ are small. In fact, the Hamiltonian constraint (35) and the

evolution equation (36) can be approximated as
A 2_j— A 2
3 30

ey (46)
=S

The deviations from the continuum solution, however, get large with time. In particular, the polytopal
universes repeat expansion and contraction. This is a unique characteristic of the polytope models.
It cannot be seen in the FLRW universe or polyhedral universes.

6. Non-integer Schlifli symbols and pseudo-regular 4-polytopal universes

In the previous section, we investigated the behaviors of the regular 4-polytopal universes. We have
shown that the universes repeat expansion and contraction periodically. This property cannot be seen
in an FLRW universe of the continuum general relativity. In the rest of this paper we are concerned
with the issue of whether the model recovers the FLRW universe in the continuum limit, or not. A
straightforward way to implement the continuum limit is to introduce an extension of the geodesic
domes we have considered for polyhedron models [11].

To better approximate a sphere beyond regular polyhedra we considered geodesic domes in Ref.
[11]. We now extend them to 4-polytopes. To define a four-dimensional geodesic dome, geodesic
4-dome in brief, we divide each cell of a regular polytope into smaller polyhedra. By projecting
the vertices of the subdivided cells on to the circumsphere of the original regular polytope we can
define a geodesic 4-dome, a polytope having the points projected on to the circumsphere as the
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Fig. 5. Plots of the scale factors of the regular 4-polytope models.

vertices. The method of subdivision is rather arbitrary and depends on the regular polyhedron to be
subdivided. In Ref. [7], Brewin proposed a subdivision of a tetrahedron into tetrahedra that are not
regular. Here we require that the subdivision of a regular polyhedron should yield regular polyhedra
of equal edge length. In fact, a cube can be subdivided into v? smaller cubes of edge of a one-vth
edge length, where v is a positive integer called “frequency”. Similarly, a regular tetrahedron and
octahedron can be subdivided into smaller regular tetrahedra and octahedra, as illustrated in Fig. 6
for a regular tetrahedron. We can then construct geodesic 4-domes by applying these subdivisions to
regular polytopes except for 120-cell. Since a dodecahedron has no subdivision into smaller regular
polyhedra, we will not consider geodesic 4-domes for 120-cell.

Regge calculus for the geodesic 4-domes becomes cumbersome as the frequency v increases, as
we have shown in Ref. [11] in three dimensions. We can avoid this by regarding the geodesic 4-
domes as pseudo-regular 4-polytopes described by a non-integer Schlifli symbol. In what follows
we consider as the polytopal universe pseudo-regular 4-polytopes corresponding to 600-cell-based
geodesic 4-domes. We first define the Schléfli symbol characterizing pseudo-regular 4-polytopes.

For our purpose we summarize the numbers of cells, faces, edges, and vertices of the geodesic
4-dome in Table 3. At a frequency v each cell of a 600-cell can be subdivided into 1/3v(v? + 2)
tetrahedra and 1/6v(v> — 1) octahedra as depicted in Fig. 6. The geodesic 4-dome is then obtained by
projecting the 600-cell tessellated by the 300(v? 4 1) tiles on to the circumsphere. It has three types
of triangular faces: one is a common face of two tetrahedra, another shared by two octahedra, and
the other connecting a tetrahedron with an octahedron. Let us call them “Tetra-Tetra connectors”,
“Octa-Octa connectors”, and “Tetra-Octa connectors”, respectively. Furthermore, there are two types
of edges. One is shared by five cells. They are coming from the edges of the original regular 600-
cell. The other type of edges is shared by four cells. They correspond to newly generated edges by
subdividing tetrahedral cells. Let us call the former type of edges “five-way connectors” and the
latter “four-way connectors”, respectively.
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Fig. 6. Subdivision of a regular tetrahedron in the case of v = 3.

Table 3. Numbers of cells, faces, edges, and vertices of a four-dimensional geodesic dome.

Frequency v
Tetrahedra 200v (12 +2)
N Octahedra 100v (v2 — 1)
Total 300v (v +1)
Tetra-Tetra connectors 600v (v + 1)
N, Octa-Octa connectors 600v (v —1)
Tetra-Octa connectors ~ 400v (2v? — 3v + 1)
Total 400v (2v2 + 1)
Five-way connectors 720v
N Four-way connectors 600v (v2 - 1)
Total 1200 (50 4+ 1)
N, 20v (50 + 1)

A naive way to define the Schlifli symbol {p, g, 7} for the pseudo-regular polytope is taking the
average number of edges of a face as p, of faces around a vertex in a cell as ¢, and of cells around

an edge as r. This leads to

12(2v? +1) 10(2v2 +1)

b b = 3,
4.1} v 45

47
S5v2 41 “7)

Pseudo-regular polytopes corresponding to the fractional Schldfli symbol (47), however, do not
approach the three-dimensional sphere S° in the infinite frequency limit. This can be seen by

14/20

120z Jequisidag g| uo Jasn Mayjoljqigiesiusz-AS3d Ad 52z 1 L£9/1L03€80/8/ L 20Z/el0e/deid/woo dno-ojwepeoe//:sdiy wolj pepeojumod



PTEP 2021, 083E01 R. Tsuda and T. Fujiwara

noting the fact that a deficit angle ¢ around an edge of a regular polytope is given by ¢ =
2w —2rarcsin [cos(ir/q)/ sin(rr /p)]. When applied to the pseudo-regular polytope, the deficit angle
should satisfy ¢ — 0 forv — oo or {p,q,r} — {3,24/7,4}. It is obvious that this is not the case.
Such a discrepancy happens since the subdivision of a cell involves two types of polyhedra: tetrahedra
and octahedra. If we considered an 8-cell-based geodesic 4-dome, we could obtain a pseudo-regular
polytope characterized by a fractional Schlédfli symbol having a limit {p,q,7} — {4,3,4}.

What we have shown is that the idea of averaging the Schldfli symbols does not work except for
an 8-cell-based geodesic 4-dome. We must employ another method of averaging to define Schléfli
symbols that not only have a smooth continuum limit but also preserve the geometrical characteristics
of polytopes.

To achieve this goal we introduce a set of angles ¥, %3, and ¥4, where ¢, is an interior angle of a
face of a regular polytope {p, ¢, r}, U3 a dihedral angle of two adjacent faces, and ¥4 a hyperdihedral
angle between two neighboring cells. They can be written in terms of p, ¢, and  as

-2 4
) = p—zr = 2 arcsin (cos —), (48)
V4 p
cos X
U3 = 2arcsin | — g , (49)
sin Z
2
sin % cos &
¥4 = 2 arcsin . (50)
sin’ % — cos? %

These can be solved with respect to the Schlédfli symbol as

b4
p2) = —, (51)
arccos (sin 72)
T
q(02,93) = 5 SN (52)
arccos (cos 72 sin 73)
F14
r(93,04) = (53)

arccos <cos % sin %)

We are now able to extend the Schléfli symbol to an arbitrary pseudo-regular polytope by substi-
tuting in Eqs. (51)—(53) the angles 1, 3 4 with averaged ones of tessellated parent regular polytopes.
With the help of Table 3, it is straightforward to obtain the averaged angles of tessellated 600-cell as

T
2 1
(v — 1) 7 + 3arccos 3
9y = o , (55)
(21)2 —3v+ 1) 7 + 3v arccos <—3‘[++1>
Ve = 22 +1 (0

The pseudo-regular 4-polytope with the Schlifli symbol (Eqs. 51-56) has a smooth S° limit for
v — oo since {p,q,r} — {3,7/ arccos(\/g/4), 4} and, hence, the deficit angle around an edge of a
pseudo-regular 4-polytope satisfies ¢ = 2w — 2r arcsin[cos(rz/q)/ sin( /p)] — 0.
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Fig.7. Plots of the scale factors of the pseudo-regular 4-polytope models for v < 5.
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Fig. 8. Plot of the scale factor of the pseudo-regular 4-polytope model for v = 100. The broken curve
corresponds to the continuum FLRW universe.

Assuming that the expression for the scale factor (45) can be applied to the pseudo-regular
4-polytopal universe with the non-integer Schléfli symbol defined by Egs. (51)—(56), we can imme-
diately obtain numerical solutions for an arbitrary frequency v. In Fig. 7 we give plots of the scale
factors forv < 5and 0 <t < 71, 4,/2. It can easily be seen that the pseudo-regular 4-polytope model
approaches the FLRW universe as the frequency increases. The universe oscillates periodically for
finite frequencies but the maximum scale factor and the period of oscillation grow with v. The scale
factor for v = 100 is shown in Fig. 8. That the Regge equations for the pseudo-regular 4-polytope
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reproduce the Friedmann equations (3) in the infinite frequency limit can be directly seen by substi-
tuting the scale factor (45) for the Hamiltonian constraint (35) and the evolution equation (36), and
then taking the limit {p,q,r} — {3, 7/ arccos(\/6/4), 6}.

7. Summary and discussions

We have investigated a four-dimensional closed FLRW universe with a positive cosmological constant
using the CW formalism in Regge calculus. The main objective of this work is to extend the approach
developed in Ref. [11] for three-dimensional models to four dimensions. In particular, generalization
of the method of pseudo-regular polyhedra and fractional Schlifli symbol is our prime concern.

The three-dimensional hyperspherical Cauchy surfaces of the continuum FLRW universe are
replaced with regular 4-polytopes instead of regular polyhedra in three-dimensional models. In four
dimensions, the curvature reveals itself as deficit angles around hinges of two-dimensional faces.
This makes the task in carrying out Regge calculus a bit cumbersome. We can handle the matter for
all six types of regular 4-polytopes in a unified way in terms of the Schléfli symbol. We have seen
that discretized universe changes the behavior according to the space-time dimensions. In the case
of polyhedral universe, the scale factor becomes infinite in a finite time. This is because the dihedral
angle corresponding to Eq. (38) approaches zero in a finite time as the universe expands to infinity.
In four dimensions the polytopal universe stops expanding with a finite edge length in a finite time
and then begins to contract to the scale where the universe starts expansion again. We thus arrive at
a picture of an oscillating universe.

To go beyond the regular polytopes we have introduced pseudo-regular polytopes and a non-integer
Schlifli symbol as a substitute of geodesic 4-domes. The fractional Schlifli symbol introduced in
Ref. [11] for the pseudo-regular polyhedra is defined by averaging the data such as the number of
faces that have a vertex in common. When applied to pseudo-regular polytopes, the fractional Schléfli
symbol does not recover a smooth three-dimensional sphere in the infinite frequency limit. To get
rid of this difficulty we have employed averaged dihedral angles to define the Schléfli symbol by
using Egs. (51)—(53). It is neither integral nor fractional. We have shown that the continuum FLRW
universe can be reproduced in the infinite frequency limit of the oscillating polytopal universe.

Our concern in this work is restricted to the vacuum solution of Einstein gravity with a positive
cosmological constant. Furthermore, we have assumed compact hyperspherical Cauchy surfaces
corresponding to positive curvature parameter. Inclusion of non-hyperspherical Cauchy surfaces as
well as gravitating matter would certainly be interesting. We can also apply the approach of pseudo-
regular polytopes to a higher-dimensional FLRW universe. In D(> 4) dimensions there are only
three types of regular polytopes: D-simplex, D-cube, and D-orthoplex, as mentioned in Appendix
7. We expect that this makes the Regge calculus of polytopal universes in five or more dimensions
easier.
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Appendix A. Circumradius of a regular D-polytope

For a regular 4-polytope {p, g, r}, the Schlédfli symbol can be written in terms of dihedral angles as
Egs. (51)—~(53). For a regular D-polytope {p2, - - - ,pp}, if we introduce 9 = ¥; = 0 and denote by
¥ a dihedral angle of an i-dimensional face for i > 2, we can express the relation between Schlifli
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symbol and dihedral angles generally, as

v

pi= (1)

arccos (cos % sin %)

As can be seen from Eq. (.1), the Schlifli symbol can be extended fori = 0, 1 as pg = p1 = 2. Then,
a regular D-polytope can be associated with a set of D + 1 parameters {po, p1,--- ,pp}.

Let us denote half the length of a line segment by R, and the radius of the circumsphere of a
D-polytope by Rp. Using an extended Schlafli symbol {pg,p1,- - - ,pp}, we can write the first four
of the circumradii as

;| sin? 17711
Ri=5 |2 (2)
N\ Po
! sinzg1
ko= 2 sin? Z sin? Z° (3)
A\ Po P2
sin? Z sin? ~
[ P P3
B=2 ez (sin2 : (4)
\ sin plo (sm ;’2 cos? p%)
2 = (¢in2 & _ co2 &
] sin” (sm g — €08 p4)
R4_§ 2 r 2w .2 2 ’ (5)
in“ Z (sin in- L — z
\ S s <s pp Sy — COS p3)

where / is the edge length of the regular polytopes.
From Egs. (.2)—(.5), the recurrence relations for the circumradii can be guessed. In the expression
of R;, letting

sin? - — sin? = sin? X
pi—1 pi-1 Pi+1
cos? X — cos? X sin? I
Pi—1 Pi—1 Pi+1 ( 6)
2 7 207 2 2 ? .
in- -2~ — sin“ %2 (1-— Z L
S Di— S Pi-2 cse Pi cos Pi+1 )
2 2 7 21 2
—_ 9 —_— J— —_ —_—
cos” cos” (1 cse” . cos Pi+1)

then we obtain the expression of R; 1. For the reader’s reference we give the next three circumradii:

2 2 2 2 rr)
Sln — Sln — SlIl —COS” —
Re = 1 r1 ( 3 rs P4 (7)
ST 2 sin? l(smz l(sinz I _cos? l)—cosz Z gin? l) ’ '
P0 12 P4 s 73 s
2 2 2T 2 rr) 2 2 n)
Sln — Sln — | SIn~ — —C0S“ — ] —CO0S~ — Sln —
Re =1L P ( P ( ps P6 ps " b6 (8)
-2 271(‘271( 2 2w 271) 27‘[('27‘[ 271))’ :
Sln 70 sin 2 sin 74 SlIl 76 COS s COoSs 73 sin s COS 76
27 27 27 o2 2n> 2n<~27r 27r))
Sln — Sln —{Ssmn- — Sln —CO0S“ — )—CO0S~ — (| SIn”~ — —CO0S“~ —
Ry = L\/ P ( P3< pso p7 76 P4 6 77 (9)
2x (2w (2w (G2m 2w\ 2T 2L> 2n( PEASE 2L>)' )
Sln 70 (Sln 2 (Sln 4 (Sln 76 COoSs P7) COoSs 75 Sln 7 COS 73 S s Sln 7 COS 76

It is well known that in five or higher dimensions there are only three types of regular polytopes:
regular simplex, hypercube, and orthoplex. Hereafter we restrict our investigation to these regular
polytopes. We summarize the Schléfli symbols and circumradii of the polytopes in Table 1. As can

18/20

120z Jequisidag g| uo Jasn Mayjoljqigiesiusz-AS3d Ad 52z 1 L£9/1L03€80/8/ L 20Z/el0e/deid/woo dno-ojwepeoe//:sdiy wolj pepeojumod



PTEP 2021, 083E01 R. Tsuda and T. Fujiwara

Table 1. The Schléfli symbols and the circumradii of regular simplices, hypercubes, and orthoplices. / is an
edge length of the polytopes.

Regular simplex Hypercube Orthoplex
{p2} {3} {4} {4}
{pZ’p3} {3’3} {473} {3’4}
{pZap39p4} {3’ 3’3} {4’ 3’3} {35354}
{pZ’p3>"' ’pD—lspD} {3,3’ 3333} {4939 5353} {353’ 5334}

b NG N
Rp vV iom! 51 5!

be seen from this table, the circumradii are written as simple functions in terms of dimension D.
Therefore the recurrence relations (.6) can easily be inspected numerically. In fact, we have put it
into practice and confirmed the correctness for D < 50.

As can also be seen from Table 1, D-simplex, D-cube, and D-orthoplex have the Schlifli symbol

p3 = -+ = pp—1 = 3incommon. Thus in five or higher dimensions a general form of the circumradii
of the D-polytopes might be given as a function of a set of three parameters {D, p», pp}. Substituting
po=p1 =2and p3 = --- = pp_1 = 3 into the functions generated by the recurrence relations (.6)

and the initial condition (.2), and comparing the expressions, we can guess the general form of the
circumradius of a regular D-polytope;

2
] (D —2)cos =t —
RD:E 2 D-3 2 2 DpD3 2 2 2 D=3567-).
JT — T JT — JT JT JT
cosp—2 — =5~ cos <p—2 —5> — =5~ Cos <p—2+p—D> +Cos5

(.10)

Assigning {p>,pp} = {3,3},{4,3},{3,4} to Eq. (.10), the circumradii of D-simplex, D-cube, and
D-orthoplex are reproduced, respectively.

Note added in proof

At the end of this paper, we give a short account of the relation between Schlifli symbol and dihedral
angles (.1). We consider an arbitrary regular n-polytope {po,p1,p2, - ,pn} and denote it by I1,, ,
where pg and p; are introduced in Appendix 7. I1,, has regular (n — 1)-polytopes {po,p1," - ,Pn—1}
as (n — 1)-dimensional faces. Similarly each k-dimensional face ITj; has regular polytopes I1;_; for
n>k>1.

Let us choose a set of faces g, 1y, - - - , [, satisfying 1y C I1; C --- C II,, and denote by O
the center of circumsphere of the I[1; (n > k > 0). Furthermore, we define the angles

Yn = £0320,04-1, Yu—1 =20,30,-10,-2, x = 20,-30,0,->. (1D
As can be seen from Fig. A1, these satisfy

T
tan y = siny, tan Y1, tany, =sinytan —, O, =1 — 2y, (.12)
Pn

and from which we obtain Eq. (.1).
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