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The NANOGrav collaboration for the pulsar timing array (PTA) observation recently announced evidence 
of an isotropic stochastic process, which may be the first detection of the stochastic gravitational-wave 
(GW) background. We discuss the possibility that the signal is caused by the second-order GWs associated 
with the formation of solar-mass primordial black holes (PBHs). This possibility can be tested by future 
interferometer-type GW observations targeting the stochastic GWs from merger events of solar-mass 
PBHs as well as by updates of PTA observations.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Gravitational-wave (GW) astronomy started with the successful 
observations of GWs from merger events of binary black holes by 
LIGO/Virgo collaborations [1]. GWs are also a valuable probe for 
the early Universe cosmology and particle physics. In particular, 
interests in primordial black holes (PBHs) [2–4] were reactivated 
after the first detection of GWs [5–7]. In the PBH scenario, GWs 
can be emitted not only from the merger of binary PBHs but 
also from the enhanced curvature perturbations that form PBHs 
[8–10]. This is due to the scalar-tensor mode couplings appear-
ing at the second-order of the cosmological perturbation theory 
[11–16]. It is interesting that we can indirectly probe physics of in-
flation by probing the primordial scalar (curvature/density) pertur-
bations inferred from the second-order GWs and PBH abundances 
[17–22].

Recently, the North American Nanohertz Observatory for Grav-
itational Waves (NANOGrav) released its 12.5-year pulsar tim-
ing array (PTA) data [23]. They search for an isotropic stochastic 
GW background by analyzing the cross-power spectrum of pulsar 
timing residuals. They reported evidence of a stochastic process, 
parametrized as a power-law, whose amplitude and slope are com-
mon among pulsars. The significance of the quadrupole nature 
in the overlap reduction function is not conclusive, whereas the 
monopole and dipole are relatively disfavored. This implies that 
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the NANOGrav collaboration might have detected an astrophysical 
or cosmological stochastic GW background.

It should be noted that the NANOGrav 12.5-yr signal strength is 
greater than the upper bound derived in their previous 11-yr re-
sult [24] as well as that in Parkes PTA (PPTA) [25] (see Ref. [26] for 
the NANOGrav 11-yr constraints on PBHs and also Ref. [27] related 
particularly to European PTA (EPTA) constraints [28]). This appar-
ent tension is explained primarily by the different choices of the 
Bayesian priors [23,29], so all analyses can be correct given their 
assumptions including the priors. Specifically, the most relevant 
prior is on the amplitude of the red noise component associated 
with each pulsar. Previous PTA analyses used the uniform prior 
in the linear scale, whereas the NANOGrav 12.5-yr analyses used 
the uniform prior in the log scale. The effect of the difference is 
studied in detail in Ref. [29], and they found that the injected GW 
signal in their simulations tends to be absorbed by the red noise 
component more easily in the case of the (linearly) uniform prior. 
Moreover, the 95% confidence-level upper bound on the amplitude 
of the GW becomes smaller than the injected GW signal in about 
50% of their simulations. This implies that the previous analyses 
are conservative for GW detection, but it can be regarded as ag-
gressive in terms of upper limits. In this way, the putative GW 
signal and existing constraints can be consistent with each other 
once we take into account the differences of the priors on the pul-
sar red noise. To claim the detection of the GW signals, however, 
it is also crucial to establish the quadrupole (Hellings-Downs [30]) 
nature of the GWs.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Assuming the observed stochastic process is due to the detec-
tion of stochastic GW background, the NANOGrav paper [23] stud-
ied the possibility that the GWs are produced from supermassive 
black hole merger events (e.g., see Ref. [31]). Other possibilities 
for the sources of GWs include cosmic strings [32–34], the PBH 
formation [35,36], and a phase transition of a dark (hidden) sec-
tor [37,38].

In this paper, we discuss the possibility that the putative GW 
signal is the second-order GWs induced by the curvature per-
turbations that produced solar-mass PBHs. The main difference 
from Refs. [35,36] is the mass range of the dominant PBH com-
ponent. Ref. [35] concluded that the solar-mass PBHs abundance 
must be negligible and also that the supermassive black holes 
may be responsible for the NANOGrav signal. Ref. [36] consid-
ered a wide spectrum of the curvature perturbations and studied 
the possibility that the dark matter abundance is explained by 
O(10−14) solar mass PBHs and a subdominant abundance of the 
solar-mass PBHs explain the NANOGrav signal. Further compar-
isons with Refs. [35,36] are made in Section 5. We compare the 
second-order GWs and the NANOGrav result in Section 2 and inter-
pret it in terms of PBH parameters in Section 3. Then, we discuss 
future tests of the scenario by measuring the stochastic GW back-
ground from mergers of solar-mass PBHs in Section 4. After the 
discussion in Section 5, we conclude in Section 6. We adopt the 
natural unit h̄ = c = 8πG = 1.

2. NANOGrav signals and second-order GWs

NANOGrav measures the strain of the GWs which is assumed to 
be of the power-law type in the relevant range of the analysis,

h( f ) = AGWB

(
f

fyr

)α

, (1)

where f is the frequency, fyr = 3.1 × 10−8 Hz, AGWB is the ampli-
tude, and α is the slope. More directly, they measure the timing-
residual cross-power spectral density, whose slope is parametrized 
as −γ = 2α − 3. They report preferred ranges of the parameter 
space spanned by AGWB and γ .

These parameters are related to the energy-density fraction pa-
rameter �GW( f ) = ρGW( f )/ρtotal in the following way, where ρtotal

is the total energy density of the Universe and the GW energy den-
sity is given by ρGW = ∫

d ln f ρGW( f ): [24]

�GW( f ) = 2π2 f 2
yr

3H2
0

A2
GWB

(
f

fyr

)5−γ

, (2)

where H0 ≡ 100h km/s/Mpc is the current Hubble parameter.
In this paper, we discuss the possibility to explain the puta-

tive signal by the secondary, curvature-induced GWs produced at 
the formation of O(1)M� PBHs. For such PBHs, it turns out that 
f � fyr does not contribute significantly, and so we consider the 
frequency range 2.5 × 10−9 Hz ≤ f ≤ 1.2 × 10−8 Hz [23,32], which 
corresponds to the orange contour of figure 1 of Ref. [23].

The current strength of the second-order, curvature-induced 
GWs is given by �GW( f ) = D�GW,c( f ), where D = (g∗(T )/g∗,0)

(g∗,s,0/g∗,s(T ))4/3�r is the dilution factor after the matter-radi-
ation equality time with �r being the radiation fraction,1 and 
�GW,c( f ) is the asymptotic value of �GW( f ) well after the pro-
duction of the GWs but before the equality time. This is given by

1 For simplicity, we assume the Standard Model degrees of freedom and that 
neutrinos are massless. g∗(T ) and g∗,s(T ) are the effective relativistic degrees of 
freedom for the energy density and the entropy density, respectively [39]. These 
are evaluated at the horizon entry of the corresponding mode, while the quantities 
with the subscript 0 are evaluated at the present time.
2

�GW,c( f ) = 1

12

(
2π f

aH

)2 ∞∫
0

dt

1∫
−1

ds

[
t(t + 2)(s2 − 1)

(t + s + 1)(t − s + 1)

]2

× I2(t, s,kηc)Pζ (π(t + s + 1) f )

×Pζ (π(t − s + 1) f ) , (3)

where aH is the conformal Hubble parameter evaluated at the con-
formal time ηc, Pζ (k) is the dimensionless power spectrum of the 
primordial curvature perturbations, and I2(t, s,kηc) is the oscilla-
tion average of the kernel function, whose analytic formula has 
been derived in Refs. [40,41]. For the recent discussions on gauge 
(in)dependence, see Refs. [42–50].

For the primordial curvature perturbations, we assume that 
there is a smooth local peak on top of the quasi-scale-invariant 
power spectrum measured at the cosmic-microwave-background 
(CMB) scale. Such a peak can be approximated by the log-normal 
power spectrum

Pζ (k) = As√
2πσ 2

exp

(
− (ln k/k∗)2

2σ 2

)
, (4)

where k = 2π f is the wave number, As is the amplitude, σ 2 is 
the variance, and ln k∗ is the average. (One can match the po-
sition of the peak, its height, and its width by the Taylor series 
expansion. Note that the tail parts do not need to be precisely ap-
proximated as the log-normal function.) We take σ = 1 throughout 
the paper as a simple representative value. An O(1) value of σ can 
be expected, e.g., if one assumes that the local feature of Pζ (k)

originates from a local feature of the inflaton potential, which can 
be, e.g., a locally flat part (an approximate inflection point) [51], a 
bump, or a dip [52] in the single-field case, corresponding to some 
physical phenomenon occurring in O(1) e-folding time of the Hub-
ble expansion.2 We treat As and k∗ as free parameters. These can 
be translated to the GW parameters AGWB and γ and to the PBH 
parameters fPBH and MPBH, which are defined below. In the case 
of the log-normal power spectrum, the full (approximate) analytic 
formula of �GW,c( f ) is available [57] although we compute it nu-
merically with the aid of extrapolation into the IR tail using the 
formula of Ref. [59].

An example of the spectrum of the second-order GWs is shown 
as the thick black line in Fig. 1. Also shown are power-law lines 
whose amplitude and slope correspond to points on the contours 
of the NANOGrav favored region on the (AGWB, γ )-plane (the green 
contours in Fig. 2). The blue and cyan lines correspond to points 
on the upper half of 1σ and 2σ contours, while the orange and 
yellow lines correspond to points on the lower half of 1σ and 2σ
contours, respectively. The shaded regions are the constraints from 
the previous PTA observations: EPTA [28], NANOGrav 11-yr [24], 
and PPTA [25]. The pink line at the bottom right is the prospective 
constraint of SKA [60].

In the figure, there seems an apparent tension between the 
NANOGrav 12.5-yr result and the existing PTA constraints. As men-
tioned in the introduction, this does not necessarily mean contra-
diction, but it reflects the intrinsic uncertainties of Bayesian analy-
ses. The uniform prior on the red noise for each pulsar (adopted in 
the existing constraints) tends to pre-assign and overestimate the 
power in red noise components [29], and the reweighting of the 
samples of the previous data in accordance with the log-uniform 
prior indeed weaken the previous constraints [23,29]. An ongoing 

2 There are many models that produce such a locally enhanced peak of Pζ (k). For 
constructions in the supergravity or string(-inspired) models, see, e.g., Refs. [53–56]
and references therein. Also, the effects of changing σ on the second-order GWs 
and on PBHs are studied, e.g., in Ref. [57] and Ref. [58], respectively.
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Fig. 1. Example of the spectrum of the second-order GWs induced by the curva-
ture perturbations that produced PBHs of MPBH = 1M� and fPBH = 1 × 10−4 (thick 
black line). The power-law lines in the interval 2.5 × 10−9 Hz ≤ f ≤ 1.2 × 10−8 Hz
are also shown that correspond to a rough visual guide of the NANOGrav signal 
range. The amplitudes and slopes of blue (cyan) and orange (yellow) lines are on the 
upper and lower 1σ (2σ ) contours of the NANOGrav signal, respectively. The previ-
ous PTA constraints are shown by shaded regions: EPTA [28], NANOGrav 11-yr [24], 
and PPTA [25]. The pink line at the bottom right is the prospective constraint of 
SKA [60].

joint investigation among the PTA datasets implies a similar ten-
dency to the results of Ref. [23] also for data other than those 
of NANOGrav 11-yr [23] (namely, EPTA and PPTA). Therefore, we 
do not worry too much about the apparent tension between these 
preexisting PTA constraints and our explanation for the NANOGrav 
12.5-yr hint of the GWs in the following analyses.

3. Implications for the PBH mass and its abundance

The relations between the second-order GWs and the properties 
of PBHs are as follows. The GWs are induced by the enhanced cur-
vature perturbations, which also produce PBHs. The energy density 
fraction β of the PBHs at the formation time, which also has the 
meaning of the formation probability of a PBH in a given Hubble 
patch, is calculated in the Press-Schechter formalism [61]3 as

β =
∞∫

δc

dδ
1√

2πσ 2
2

exp

(
− δ2

2σ 2
2

)
� 1

2
Erfc

⎛
⎜⎝ δc√

2σ 2
2

⎞
⎟⎠ , (5)

where we have assumed that the primordial curvature perturba-
tions have the Gaussian statistics, δc is the critical value of the 
coarse-grained density perturbations that produces a PBH [67–73], 
for which we take δc = 0.42 [73,74],4 Erfc is the complementary 
error function, and the variance σ 2

2 of the coarse-grained density 
perturbations is defined as

σ 2
2 (k) = 16

81

∞∫
−∞

d ln x w2(x)x4Pζ (xk), (6)

where w(x) is the window function, which we take as the mod-
ified Gaussian function w(x) = exp(−x2/4). This window function 

3 For simplicity, we adopt the Press-Schechter formalism in this paper. However, 
we would like the readers to refer to Refs. [62–66] for more rigorous treatments.

4 For the modified Gaussian window function, it is stated that δc = 0.18 in Table 
1 of Ref. [75] without a detailed derivation. This may apparently be at odds with 
a naive expectation that δc should be higher than in the case of other window 
functions for the window-function dependence to be suppressed since the modified 
Gaussian window function enhances the value of σ 2

2 . For this reason, we take δc =
0.42 as the value used more frequently in the literature.
3

was introduced in Ref. [75] and used as one of the two benchmark 
choices for the window function in Ref. [58]. Note that the choice 
of the window function significantly affects the abundance of the 
PBHs [76] (see also Ref. [77]) unless compensating parameters for 
the critical collapse are taken [58]. We will come back to this point 
in the discussion section.

The present energy density fraction of PBHs relative to cold 
dark matter is denoted by fPBH = ρPBH/ρCDM. This is related to 
β as follows,

fPBH =
∫

d ln M
�m

�CDM

g∗(T )

g∗(Teq)

g∗,s(Teq)

g∗,s(T )

T

Teq
εβ, (7)

where the subscript m and eq denote the non-relativistic mat-
ter and the equality time, the temperature T is evaluated at the 
horizon entry of the corresponding mode k, and ε denotes the 
fraction of the horizon mass that goes into the PBH, which we take 
ε = 3−3/2 [4]. More detailed explanation for PBH formation and 
parameter dependencies can be found, e.g., in Refs. [78,79] and in 
reviews [80–85].

We relate k and the horizon mass in the standard way, i.e., 
using the Friedmann equation. Note, however, that there is a dis-
crepancy between the average PBH mass MPBH and a naive horizon 
mass corresponding to k∗ because of two reasons: the peak posi-
tion of σ 2

2 (k) is smaller than k∗ , and each PBH mass is ε times 
smaller than the corresponding horizon mass. These shifts of peak 
positions were discussed, e.g., in Ref. [86] and recently emphasized 
again [58].

Concretely, the relation among the wave number k∗ , the corre-
sponding frequency f∗ = k∗/(2π), the corresponding horizon mass 
M , and the average PBH mass MPBH is as follows:

MPBH

1.0M�
� M

0.31M�

�
(

k∗
3.3 × 106 Mpc−1

)−2

�
(

f∗
5.0 × 10−9 Hz

)−2

. (8)

We vary the scalar amplitude in the range 0.015 ≤ As ≤ 0.040
and the average PBH mass in the range 0.2 ≤ MPBH/M� ≤ 5. The 
resultant �GWh2 is fitted by a power-law line in the aforemen-
tioned range 2.5 × 10−9 Hz ≤ f ≤ 1.2 × 10−8 Hz to extract the 
amplitude of the GW strain AGWB and the slope γ . Note that 
AGWB ∝ As, but it also depends on k* (or MPBH) since the pivot 
scale is fixed to fyr (see eq. (1)). The result is shown in Fig. 2. 
From the figure, we see that a large fraction of the scanned pa-
rameter space can explain the NANOGrav signal.

The scanned parameter range for As corresponds to that of the 
PBH abundance fPBH as shown in Fig. 3. The upper and lower ends 
correspond to MPBH = 0.2M� and 5M� , respectively.

Combining the information in Figs. 2 and 3, one can map 
the NANOGrav contours onto the PBH parameter space (MPBH, 
fPBH), which are shown as the green contours in Fig. 4. The 
non-smoothness of the contours largely originates from the non-
smoothness of the original NANOGrav contours. The uncertainty of 
extracting the data from the original contours is magnified in this 
figure compared to Fig. 2. Therefore, the 1σ and 2σ boundary has 
an uncertainty of very roughly an order of magnitude.

Fig. 4 shows that the PBH mass should be around a solar mass 
to explain the NANOGrav signal. Also, it shows that fPBH close to 
unity is disfavored, but fPBH ∼ 0.1 is within the 2σ contour de-
pending on the value of MPBH.

A part of such regions is excluded by existing constraints shown 
by shaded regions at the top of the figure. These include the mi-
crolensing constraints by EROS/MACHO collaborations [87,88], the 
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Fig. 2. Parameter scan in the range 0.015 ≤ As ≤ 0.040 and 0.2 ≤ MPBH/M� ≤ 5
shown as the red shaded region. A larger As corresponds to a larger AGWB, and 
a larger MPBH corresponds to a larger γ . The thin red lines correspond to fPBH =
10−1, 10−4, 10−7, and 10−10 from top to bottom. The 1σ and 2σ NANOGrav con-
tours are also shown.

Fig. 3. Relation between the scalar amplitude As and the PBH abundance fPBH for 
MPBH/M� = 0.2 (top, solid), 1 (middle, dashed), and 5 (bottom, dotted).

Fig. 4. NANOGrav contours (green) on the plane of the average PBH mass MPBH and 
the PBH abundance fPBH. The dark shaded regions at the top are constraints from 
EROS-2 [87] and MACHO [88] (brown), caustic crossing [89] (purple), Advanced LIGO 
O2 (subsolar mass range) [90] (gray), Advanced LIGO non-detection of the stochastic 
GW background [91,92] (cyan), and the E-mode polarization of the CMB due to the 
disk-shaped gas accretion [93] (blue).

caustic crossing constraint [89], Advanced LIGO constraints on the 
subsolar mass range (individual events [90] and superposition of 
events [91,92]), and the constraints due to photo-emission dur-
ing gas accretion onto PBHs [93–95]. There are many subdominant 
4

Fig. 5. GW spectrum from the superposition of binary PBH merger events (thin 
black) with MPBH = 1M� and fPBH = 10−2 (solid), 10−3 (dashed), 10−4 (dot-
ted), and 10−5 (dot-dashed). Future prospects of various GW observations are 
also shown: SKA [60], LISA [102], TianQin [103,104], BBO [105], DECIGO [106], 
AION [107], AEDGE [108], Advanced LIGO Hanford and Livingston [109] combined 
with Advanced Virgo [110] as well as LIGO India [111,112] and KAGRA [113,114]
(HLVIK), and Einstein Telescope [115] and two third-generation Cosmic Explor-
ers [116] (ET+2CE). The shaded red region is the Advanced LIGO O2 constraint [117]. 
Sensitivity curves have been read from Refs. [32,107,118,119]. The top side of 
the figure is the upper bound �GWh2 < 1.8 × 10−6 from the (non-)adiabatic Neff
bound of big-bang nucleosynthesis [41]. The existing PTA constraints and NANOGrav 
power-law guides are also shown as in Fig. 1.

but independent and complementary constraints around this mass 
range (see Ref. [84]). There is also the LIGO/Virgo constraints on 
supersolar mass range [96,97]. Ref. [97] implies a substantial de-
pendence on the width of the mass function, so we do not include 
it in Fig. 4.

4. Testing the scenario with the GWs from mergers

The solar-mass PBH possibility for NANOGrav can be tested by 
the detection of stochastic GW background from the superposition 
of binary solar-mass PBH merger events. The GW spectrum is ob-
tained as

�
merger
GW ( f ) = f

3H2
0

fcut
f −1∫
0

dz
R(z)

(1 + z)H(z)

dEGW

d fs
, (9)

where fcut (=O(1/MPBH)) is the UV cutoff frequency at the source 
frame (i.e., without the redshift factor) (see Refs. [98,99] for the 
IR “cutoff” frequency), fs is the frequency at the source frame, z
is the redshift, R is the comoving merger rate, and EGW is the 
energy of the GWs at the source frame. The expressions of fcut, R , 
and dEGW/d fs are found in Appendices B and C of Ref. [86]. See 
also Refs. [7,83,91,100,101] for more details. The frequency fcut is 
just the maximal cutoff appearing around the end of the merger 
process.

The result is shown in Fig. 5 as the black lines where MPBH =
1M� and fPBH = 10−2 (solid), 10−3 (dashed), 10−4 (dotted), and 
10−5 (dot-dashed). Various prospective constraints (see the cap-
tion)5 as well as the lines in Fig. 1 are also shown. We do not show 
the MPBH dependence in the figure, but the spectra shift to the 
left as MPBH increases. Eq. (8) clearly shows that the characteristic 
frequency f∗ of the second-order GWs scales as M−1/2

PBH , whereas 
the counterpart for the GWs from mergers scales as fcut ∼ M−1

PBH

5 Though not shown in the figure, see also the following references for related 
experiments: ALIA [120], ELGAR [121], MAGIS [122,123], MIGA [124], Taiji [125], 
and ZAIGA [126].
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(see the text below eq. (9)) as demonstrated in Ref. [86]. Note 
that the thick black line corresponds to the second-order GWs 
for MPBH = 1M� and fPBH = 10−4, but the fPBH dependence is 
weak (see Fig. 3). The top end of the figure is the upper bound 
�GWh2 < 1.8 × 10−6 [41] from the fact that the GWs contribute to 
the effective number of neutrinos Neff and affect the big-bang nu-
cleosynthesis. We can see from the figure that a large part of the 
parameter space can be probed by the future GW observations.

5. Discussion

Our results depend on various assumptions. Some of them have 
been already stated, but we emphasize them again. First, we do 
not consider the effect of the critical collapse [82,127–129] since 
it occurs only when the spherical symmetry is precisely respected. 
It is clear that the rare high-peak has approximately the spher-
ical shape [130], but the spherical symmetry must be realized to 
high precision for the critical collapse to happen [67]. On the other 
hand, Refs. [35,36] include the effect of the critical collapse. It will 
be interesting to compare our results with an analysis including 
the critical collapse effect using a consistent parameter set [58]. In 
our preliminary study, we found a qualitatively similar feature that 
fPBH tends to become larger than those reported in Refs. [35,36].

Second, we have chosen the modified Gaussian window func-
tion, whose width is twice as large as the standard Gaussian win-
dow function. This boosts the value of fPBH for a given value of 
As. This may be the largest difference compared to Refs. [35,36] in 
which much smaller fPBH’s were reported.

Third, we have not taken into account the nonlinear relation 
between the primordial curvature perturbations and the density 
perturbations (see Refs. [62,131]). This inevitably leads to non-
Gaussianity of the density perturbations [131]. Also, the inclusion 
of the intrinsic non-Gaussianity of the primordial curvature per-
turbations significantly affects fPBH [132,133]. It also affects the 
second-order GWs [134–138].

Fourth, we have not included the transfer function of the cur-
vature perturbations in the definition of σ 2

2 . This is preferred in 
Ref. [75]. If we include the transfer function, however, σ 2

2 will re-
duce by “several” percent. This reduces fPBH non-negligibly.

It is also worth mentioning that we have not taken into ac-
count the softening of the equation-of-state during the phase tran-
sition/crossover of quantum chromodynamics (QCD). See Refs. [36,
139,140] for its enhancement effect on the PBH abundance fPBH
for a given scalar amplitude As. Depending on the boost factor, 
this may realize a better fit for the NANOGrav signal simultane-
ously with stronger and more easily detectable GWs from mergers 
of the solar-mass binary PBHs. The softening also slightly affects 
the spectrum of the second-order GWs [141].

We discussed a possible detection of the PBHs with the masses 
of O(1)M� only by a future interferometer-type GW observa-
tions in Section 4. Complementarily, however, we can also measure 
such PBHs by the future optical/IR telescopes through microlens-
ing events, e.g., Subaru HSC towards M31 for 10 year observa-
tions [142] or by the future precise CMB observations of E- and 
B-mode polarization due to photon emission from an accretion 
disk around a PBH, e.g., by LiteBIRD [143] or CMB-S4 [144].

6. Conclusion

In this paper, we have interpreted the recently reported NANO-
Grav 12.5-yr excess of the timing-residual cross-power spectral 
density in the low-frequency part as a stochastic GW background. 
We conclude that, under our assumptions, the second-order GWs 
induced by the curvature perturbations that produced a substan-
tial amount of O(1) solar-mass PBHs can explain the NANOGrav 
stochastic GW signal. In particular, the abundance of the PBHs can 
5

be sufficiently large so that future GW observations can test this 
possibility by measuring the stochastic GW background produced 
by mergers of the solar-mass PBHs. This is nontrivial since the suit-
able scalar amplitude As could a priori produce too many PBHs 
that are excluded by existing observational constraints or too few 
PBHs that do not lead to the detectable stochastic GW background 
from merger events. Similarly, for a given fPBH, the second-order 
GWs could be too strong or weak. Since the relation between As
and fPBH depends crucially on the ambiguity for the choice of the 
windows function as discussed in the previous section, a further 
study to refine the PBH formation criterion is necessary.

Note added

Taking into account the uncertainties of PBH abundance calcu-
lations, i.e., the different choices of the window function, the value 
of δc (see footnote 4), etc., our results are largely consistent with 
those of Ref. [36] [145]. The difference from Ref. [35] is also dis-
cussed in the note added in Ref. [35]. In our paper, we do not 
claim that O(30)M� PBHs responsible for the LIGO/Virgo events 
can explain the NANOGrav signal.
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