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Abstract
In this thesis we study a mixed-action Lattice QCD setup, which combines

Nf = 2 + 1 O(a)-improved Wilson fermions and Nf = 2 + 1 + 1 Wilson twisted
mass (Wtm) fermions at maximal twist in the valence. We take advantage of
automatic O(a) improvement in the valence sector to extract charm physics results
without improvement coefficients.

Our results include the determination of the charm quark mass, as well as of
the decay constants of the D and Ds mesons, relevant for electroweak leptonic
decays. Quarkonium states are also studied. We carry out an analysis that focuses
on controlling the statistical and systematic errors. Systematic effects are considered
in the framework of Bayesian statistics. Different model parameterizations are taken
into consideration to perform a model average. Our final results are among the most
precise in the literature for computations employing Wilson-like fermions and will
contribute significantly to the current world averages.



Resumen
En esta tesis estudiamos una configuración de acción mixta, que combina Nf =

2+ 1 fermiones Wilson mejorados a O(a) y Nf = 2+ 1+ 1 fermiones Wilson twisted
mass (Wtm) a twist máximo. Aprovechamos el mejorado a O(a) automático en
el sector de valencia para extraer resultados de física de charm sin coeficientes de
mejora.

Nuestros resultados incluyen la determinación de la masa del quark charm, así
como también las constantes de desintegración de los mesones D y Ds, relevantes
para las desintegraciones electrodébiles leptónicas. También estudiamos estados de
quarkonio. Consideramos efectos sistemáticos en un contexto de estadística Bayesiana.
Se consideran diferentes parametrizaciones para efectuar una media de modelos.
Nuestro resultados finales están entre los resultados más precisos de la literatura con
cálculos que emplean fermiones Wilson-like y contribuirán significativamente a las
medias mundiales actuales.
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1 I N T R O D U C T I O N

Quantum Field Theory (QFT) is the theoretical framework that describes fundamen-
tal forces and particles in terms of fields and symmetries by integrating naturally
the principles from Special Relativity and Quantum Mechanics. QFT has proven to
be extremely successful, although some aspects of it are yet to be explored, since, for
example, a fully consistent QFT formulation for gravitational interactions has not
been achieved yet. It can, however, describe electroweak and strong interactions, and
it has led to numerous results that are in agreement with experimental observations.

The most succesful model for particle physics, based on QFT, is the Standard
Model of Particle Physics (SM), a renormalizable theory described by the symmetry
group SU(3)c × SU(2)L × U(1)Y . It allows to explain the dynamics of the gauge
fields, which describe the fundamental forces, and their interactions with the fermionic
fields, which represent the matter content of the model and are categorized into
quarks and leptons. The Standard Model contains 12 fermion fields in total: 6 quarks
and 6 leptons, that are organized among 3 families, and 12 bosonic gauge fields as
well: the photon, the Z boson, the W± bosons, and eight gluons. The latter are said
to be the mediators of strong interactions, which, together with the quark fields,
are described by the framework of Quantum Chromodynamics (QCD), the SU(3)c
subgroup of the SM. This particular piece of the model will be of special interest in
this Thesis.

QCD is an asymptotically free theory, which means that gauge interactions
become weaker at high energies, whereas they become strongly coupled in the low-
energy regime, i.e. , below energies of the order of the proton mass. In this regime,
therefore, perturbative calculations break down and can no longer be relied upon.
Furthermore, QCD exhibits non-perturbative phenomena such as confinement or
spontaneous chiral symmetry breaking, having important implications such as the
fact that quarks are not observed free in Nature, as they remain bound into mesons
and baryons.

Beyond the fermions and gauge bonsons, the SM also includes a scalar field
that generates the mass of the particles: the so-called Higgs field. According to the
model, this field is coupled to the fermionic fields through Yukawa couplings, and
when the Electroweak Spontaneous Symmetry Breaking mechanism takes place, a
mass is generated for these fermions. After spontaneous symmetry breaking, mass
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2 chapter 1. introduction

eigenstates for the quark fields are no longer eigenstates of the weak interactions. It
leads to a constrained structure in the weak flavor-changing interactions for quarks.
The Cabibbo–Kobayashi–Maskawa (CKM) matrix parametrizes the mixing in those
interactions. The matrix presents a hierarchical structure, where off-diagonal matrix
elements are suppressed. In addition, the Jarlskog invariant, which is related to CP
violation in the Standard Model is far from being "of natural size". These issues may
be addressed as a result of new Physics beyond the Standard Model.

The fact that the CKM matrix is a unitary matrix constrains the matrix elements
that are represented by unitarity triangles. Therefore, inconsistencies in the CKM
matrix can lead to New Physics beyond the Standard Model. Electroweak hadron
decays provide a way to study Flavor Physics in the hadronic sector. These processes
are used to measure CKM matrix elements and other observables regarding flavor
physics.

The study of these phenomena requires the introduction of a non-perturbative
framework for Quantum Field Theories. Lattice Field Theory is a non-pertubative
regularization that allows to perform those computations. The idea was introduced
by K. Wilson [1] and it is based on the space-time discretization and regularization
of the fields on a lattice. This formalism opens the door to numerical simulations.
However, Lattice QCD simulations are a multiscale problem, where energy scales
vary from pion masses to B meson masses 140 MeV . Λ . 5 GeV. Effective field
theories such as Heavy Quark Effective Theory (HQET) or Chiral Perturbation
Theory (χPT) are additional tools that combined to Lattice QCD provide physical
results for non-perturbative observables.

We focus on the study of charm physics. We determine decay constants fD(s)
,

which play a role in leptonic decays of D and Ds mesons. Those decay constants
parametrize the decay rates Γ(D(s) → lν). Experimental measurements of the decay
rates combined with lattice results allow the determination of the module of CKM
matrix elements Vc,d and Vc,s

Γ(D(s) → lν) =
G2
F

8π fD(s)
m2
lMD(s)

1− m2
l

M2
D(s)

2 ∣∣∣Vc,d(s)∣∣∣2 . (1.1)

We introduce a mixed-action setup that focuses on the computation of heavy
quark physics, while controlling the systematics. Our setup uses CLS ensembles [2]
with open boundary conditions in the time direction, which allows to reach smaller
lattice spacings while keeping autocorrelations under control. Computations with
finer values of the lattice spacing are essential to study heavy quark physics. We use a
Wilson twisted mass action in the valence sector to compute O(a)-improved quantities
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without the need to include improvement coefficients, and therefore systematic effects
are simplified.

We developed a Julia package called juobs for the computation of QCD observables
based on the ADerrors library [3]. ADerrors simplifies the error propagation of
complex functions, while keeping track of all the covariances and autocorrelations.

The Thesis is organized as follows: we introduce Lattice Field Theory in Chapter 2.
We review some general contents and describe the regularizations that are used in our
setup. In Chapter 3, we describe our mixed-action setup with Nf = 2+ 1 dynamical
quarks and Nf = 2 + 1 + 1 quarks in the valence sector. General aspects about
algorithms and computation of physical observables on the lattice are summarized in
Chapter 4. We provide results for the leptonic decay constants and the charm quark
mass in different renormalization schemes in Chapter 5. In this chapter, we describe
the strategy followed to obtain continuum-limit results and the error estimation.



2 L AT T I C E R E G U L A R I Z AT I O N

Lattice field theory is a general non-pertubative tool, which allows to address
computations of physical quantities in a given gauge theory. In this chapter, we
describe the theoretical aspects of the lattice regularization applied to Quantum
Chromodynamics (QCD) as proposed by K. Wilson [1].

In order to define a quantum field theory, a regularization procedure is required.
Lattice field theory defines the fields on a discrete space-time lattice, which provides
an ultraviolet cutoff that does not rely on perturbation theory. The fields are defined
on a finite lattice in a 4-dimensional asymmetrical hypercubical lattice of volume
V4 = TL3, where T and L are the lengths in the the time and spatial directions
respectively. Each position of space-time lattice can be expressed in terms of a vector
of integers n ∈ Z4 as follows

x = (x0,x1,x2,x3) = a(n0,n1,n2,n3), n0 ∈ [0,T/a) , ni ∈ [0,L/a) , (2.1)

where a is the lattice spacing, that acts as an ultraviolet cutoff ΛUV = a−1. In
sections 2.1 and 2.2 we describe the regularization of gauge and fermion fields on
the lattice in the Euclidean space. We introduce two different regularizations for the
fermion fields that will be relevant for our current setup.

In order to quantize the classical theory, we use the path integral formalism. In
this framework, all the physical observables are computed in terms of Green functions.
In Section 2.3, we describe how the path integral is regularized in Euclidean space.
In the Euclidean space each field configuration in the path integral is weighted by a
Boltzmann factor e−SE provided that SE > 0, and therefore correlation functions can
be computed using statistical mechanics methods such as Monte Carlo integration.
Monte Carlo methods provide a numerical solution to the problem. A more detailed
discussion about Monte Carlo simulations can be found in section 4.1. In section
2.4, we describe how to determine hadronic physical observables from Euclidean
correlation functions, in particular two-point functions.

In section 2.5, we discuss the formulation of LQCD as an effective theory of
continuum QCD and we sketch out how to define O(a)-improved renormalized
observables, i.e. , observables that do not depend linearly on the ultraviolet cutoff.
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2.1 gauge action 5

2.1 gauge action

In order to regularize a gauge theory, one should study gauge invariance in detail.
Since fields at different points in the lattice transform differently under the gauge
group, we need to introduce parallel transporters for the fields such that gauge
invariance is preserved. This parallel transporters are the so-called Wilson lines and
they allow to move the fields around, while preserving gauge invariance.

For a non-Abelian SU(N) gauge group with generators λa

2 , we have that a field,
transforming in the fundamental representation, transforms under the group as

φ(x)→ eiα
a(x)λ

a

2 φ(x), (2.2)

where αa(x) are the parameters that define the gauge transformation. So, if we try
to compare the value of the field at two different points we find that it depends on
the choice of local phases. We need a bi-local field U(x, y), called Wilson line, which
transforms as

U(x, y)→ eiα
a(x)λ

a

2 U(x, y)e−iα
b(y)λ

b

2 . (2.3)

The key point is that now, we can construct expressions such as

U(x, y)φ(x)− φ(y)→ eiα
a(y)λ

a

2 [U(x, y)φ(x)− φ(y)], (2.4)

and therefore by taking two points infinitesimally closed y = x+ δx, we can turn
this difference into a derivative. It allows to define a covariant derivative

Dµφ(x) ≡ lim
δxµ→0

U(x,x+ δxµ)φ(x+ δxµ)− φ(x)
δxµ

, (2.5)

which transforms as a conventional covariant derivative Dµφ(x)→ eiα
a(x)λ

a

2 Dµφ(x).
Wilson lines can be expressed in terms of the gauge field Aaµ, along a curve C

between points x and y

U(x, y) = P exp
(
ig
∫
C
Aaµ(z)

λa

2 dzµ
)

, (2.6)

where P is the path-ordering operator. By applying the fundamental theorem of
calculus is easy to check that Wilson lines transform as desired under gauge group
transformations.

Once we have defined a Wilson lines for a SU(N) gauge group and we have
shown the relation between the Wilson line U and the gauge fields Aaµ, we can look
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at the discretization process of a gauge theory. On a lattice, we can define a Wilson
link between two nearest-neighbour sites n and n+ µ̂ as

Uµ(n) = P exp
(
ia
∫
n→n+µ̂

Aaµ(n)
λa

2

)
. (2.7)

To construct the pure gauge action we need a gauge invariant object constructed out
of Wilson links. From the transformation property of Wilson links we know that any
closed loop of links will be gauge invariant. The first non-trivial Wilson loop that we
can construct on a lattice is the so-called plaquette, obtained by moving arround an
elementary square on the lattice, viz.

Uµν(n) = U †ν(n)U
†
µ(n+ ν̂)Uν(n+ µ̂)Uµ(n). (2.8)

If the plaquette is expanded for small values of the lattice spacing a, it is found
to be related to the field strength1 Fµν as

Uµν(n) = eia
2Fµν(n)+O(a3), (2.9)

The plaquette action [1] provides a simple regularization of the pure gauge action

SG[U ] =
β

2N
∑
n,µν

Re(tr(1−Uµν(n))) a→0→ a4

2g2
∑
n,µν

tr
(
F2
µν(n)

)
+O(a6)

a=0
=

1
2g2

∫
d4x tr

(
F2
µν(x)

)
, β ≡ 2N

g2 .
(2.10)

Nevertheless, other choices for the simplest Yang-Mills action are possible which
keep the correct continuum limit such as the Lüscher-Weisz action [4].

In addition, a covariant derivative on a lattice can be defined from the expression
(Eq. 2.5) using a forward derivative prescription

∇µφ(n) =
1
a
(Uµ(n)φ(n+ µ̂)− φ(n)) . (2.11)

Note that this expression is not unique and one could have used another prescription
for the derivative, in the form of a backward derivative.

∇∗µφ(n) =
1
a

(
φ(n)−U †µ(n− µ̂)φ(n− µ̂)

)
. (2.12)

1 The field strength tensor is an element of the Lie algebra, so it can be decomposed as Fµν(x) =∑
a
λa

2 F
a
µν(x).
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In the continuum the forward and backward convariant derivatives are related to the
convariant derivative Dµ such that

∇µφ(n)
a→0→ Dµφ(n+ aµ̂/2),

∇∗µφ(n)
a→0→ Dµφ(n− aµ̂/2).

(2.13)

A symmetric convariant derivative can be introduced such that

1
2(∇µ +∇

∗
µ)φ(n)

a→0→ Dµφ(n). (2.14)

In a similar way, ordinary lattice derivatives can be defined as follows

∂µφ(n) =
1
a
(φ(n+ µ̂)− φ(n)) ,

∂∗µφ(n) =
1
a
(φ(n)− φ(n− µ̂)) .

(2.15)

2.2 fermion action

In order to formulate QCD on a lattice, we need to properly formulate fermion fields
on a discretized space-time. At first, we can focus on regularizing a free fermion
theory. Then, we can charge those fermions under some symmetry group and promote
it to a gauge symmetry as usual. Thus, the symmetry can be promoted replacing
derivatives by covariant derivatives, which are described in terms of Wilson links Eq.
(2.11).

2.2.1 Naive regularization

As first approximation, a free fermion action in the Euclidean space can be naively
discretized as

SF [ψ, ψ̄] = a4∑
n
ψ̄(n)

[1
2γµ(∂µ + ∂∗µ) +M

]
ψ(n)

= a4 ∑
n,m,α,β

ψ̄α(n)Kα,β(n,m)ψβ(m),

Kα,β(n,m) ≡
∑
µ

1
2a(γµ)αβ [δm,n+µ̂ − δm,n−µ̂] +Mδm,nδα,β,

(2.16)

where the symmetrized derivative has been taken.
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The path integral can be easily integrated to obtain the generating functional
Z[η, η̄]

Z[η, η̄] = detK exp
a−4 ∑

n,m
η̄(n)K−1(n,m)η(m)

 , (2.17)

and therefore the fermion propagator in this notation is defined by

S(n,m) = 〈ψ(n)ψ̄(m)〉 = K−1(n,m). (2.18)

The operator K(n,m) is easily inverted after applying a Fourier transform to mo-
mentum space

K(k,−p) =
∑
n,m

eia(k·m−p·n)K(n,m)⇒ S(k) =
M − i∑µ γµ sin(akµ)/a
M2 +

∑
µ sin2(akµ)/a2 . (2.19)

Notice that translational invariance implies that one can just work at p = k on the
r.h.s of the equation.

The fermion propagator converges properly to the continuum limit in the center
of the Brillouin zone

S(k) =
−iγµkµ +M

k2 +M2 +O(a2), (2.20)

and it has a pole at k4 = i
√
~k2 +M2 as we expect from the continuum theory.

However, other 15 poles appear in the corners of the Brilloiun zone. Thus, 15
unphysical particles called doublers appear on the lattice that do not decouple in
the continuum limit. The Nielsen-Ninomiya no-go theorem for chiral fermions [5]
states those unphysical states can not be removed without spoiling properties of the
theory such as, the chiral symmetry.

2.2.2 Wilson fermions

For that reason, a different way to discretize fermions on the lattice is needed. The
simplest one is the so-called Wilson fermion regularization [6]. It consists of adding
an irrelevant term, which vanishes when a→ 0, to the naive action regularization.
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This term can be understood as a momentum-dependent mass term, which rises the
masses of the doublers to values of the order of the cutoff.

S
(W )
F = a4∑

n
ψ̄
[1
2γµ(∂µ + ∂∗µ) +M − a

2∂µ∂
∗
µ

]
ψ(n)

= a4 ∑
n,m,α,β

ψ̄α(n)K
W
α,β(n,m)ψβ(m),

KW
α,β(n,m) ≡

∑
µ

1
2a [(γµ − 1)αβδm,n+µ̂ − (γµ + 1)αβδm,n−µ̂]

+(M + 4a−1)δm,nδα,β.

(2.21)

This action leads to the following propagator

S(k) =
M(k)− i∑µ γµ sin(akµ)/a
M2(k) +

∑
µ sin2(akµ)/a2 , (2.22)

with
M(k) ≡M +

2
a

∑
µ

sin2(akµ/2), (2.23)

which has just one particle pole within the first Brillouin zone.
The full fermion action of Wilson fermions in presence of a gauge field is accom-

plished by substituting the derivatives for covariant derivatives

SF [ψ, ψ̄,U ] = a4∑
n
ψ̄(n) [DW +M ]ψ(n),

DW =
1
2
[
γµ(∇µ +∇∗µ)− a∇µ∇∗µ

]
.

(2.24)

The main shortcoming of the Wilson regularization is that it breaks axial symme-
try in the chiral limit explicitly, which will introduce complications in the quantum
theory. New operators that do not preserve axial symmetry will appear in the
renormalization process. In Section 2.5 we describe those terms and we discuss the
construction of the effective theory.

2.2.3 Twisted mass fermions

As we have seen before, the Wilson fermion regularization introduces several complica-
tions. The Wilson term breaks explicitly the axial symmetry in the chiral limit. As a
result of this explicit symmetry breaking new operators, which respect the symmetry
of the regularized theory, arise. Physically, quark masses are no longer renormalized
multiplicatively. On the other hand, the Wilson-Dirac operator is not protected
against eigenvalues below the quark mass. It has been shown that configurations
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with low-energy eigenvalues introduce instabilities in the simulations [7]. In this
section, we summarize some aspects of the twisted mass regularization [8] (see [9]
for a detailed review). We will review the construction for two degenerate flavor for
simplicity reasons. The results can be generalized for any multiplet.

As we have seen before, the standard Wilson action in Euclidean space is given by
Eq. (2.24). More generally, the theory can be regularized substituting the standard
Wilson operator DW for the twisted Wilson operator that depends on a twist angle
ω which parametrizes a family of regularizations, which have the same continuum
limit.

DWtm =
1
2
[
γµ(∇µ +∇∗µ)− aeiωγ5τ3∇µ∇∗µ

]
. (2.25)

The choice ω = 0 corresponds to the standard Wilson regularization and ω = π/2
corresponds to the so-called full or maximal twist case. It is easy to see that a
twisted basis {χ, χ̄} can be defined performing a chiral rotation which mixes isospin
components as

ψ = exp (−iωγ5τ3/2)χ, ψ̄ = χ̄ exp (−iωγ5τ3/2) . (2.26)

Thus, in the twisted basis the fermion action may be described by

SF [χ, χ̄,U ] = a4∑
x
χ̄(x)(DW +m0 + iµ0γ5τ3)χ(x), (2.27)

where the bare untwisted mass m0 and the bare twisted mass µ0 fulfill

m0 = M cosω , µ0 = M sinω, (2.28)

and M =
√
m2

0 + µ2
0 is the so-called polar mass. As we have mentioned before, the

Wilson term breaks axial symmetry explicitly even in the massless limit. Considering
a degenerate doublet, the theory is symmetric under the global group SU(2)V ⊗
SU(2)A. For ω = 0, the Wilson term spoils the axial symmetry and the symmetry
group reduces to SU(2)V . Twisted mass regularization at ω = π/2 breaks down the
group into SU(2)V → [U(1)A]1 ⊗ [U(1)A]2 ⊗ [U(1)V ]3.

[U(1)A]a :

 ψ(x)→ exp
(
iαaAγ5

τa

2

)
ψ(x), a = 1, 2

ψ̄(x)→ ψ̄(x) exp
(
iαaAγ5

τa

2

)
, a = 1, 2

(2.29)

and

[U(1)V ]3 :


ψ(x)→ exp

(
iα3
V
τ3

2

)
ψ(x)

ψ̄(x)→ ψ̄(x) exp
(
−iα3

V
τ3

2

) (2.30)
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Therefore, using Wilson twisted mass (Wtm) at full twist axial symmetries are not
completely broken. As a consequence, the symmetry protects the mass term from
additive renormalization in contrast with Wilson fermions.

The continuum action at maximal twist is symmetric under the discrete symmetry
R1,2

5

R1,2
5 :

{
χ̄→ iχ̄γ5τ1,2

χ→ iγ5τ1,2χ
(2.31)

that will be important for the Symanzik’s O(a)-improvement program in Section
2.5. Correlation functions that are even under the discrete transformation R1,2

5
are automatically O(a)- improved. As will be explained later, the twisted mass
regularization can be extended to non-degenerate fermions, maintaining the benefits
of this regularization.

2.3 path integral regularization

In the path integral formalism, all physical observables are computed in terms
of expectation values of operators. The expectation value of a general multilocal
operator O(x1, . . . ,xn) reads

〈O(x1, . . . ,xn)〉 =
1
Z

∫
D[ψ, ψ̄,U ]O(x1, . . . ,xn)e−S[ψ,ψ̄,U ], (2.32)

where the integration measure D[ψ, ψ̄,U ] is the product over all gluonic and fermionic
configurations. The Euclidean partition function Z =

∫
D[ψ, ψ̄,U ] e−S[ψ,ψ̄,U ] guar-

antees that the expression has the correct normalization. In Euclidean space, the
expression is analogous to statistical mechanics where the Boltzmann factor is given
by the action e−S[ψ,ψ̄,U ].

In order to simplify the expression, the fermion contribution can be integrated
out so the path integral is defined in terms of the Wilson links. We split the
action into two contributions: the pure gauge action and the fermionic action
S[ψ, ψ̄,U ] = SG[U ] + SF [ψ, ψ̄,U ]. So, the expectation is written as

〈O(x1, . . . ,xn)〉 =
1
Z

∫
D[U ] e−SG[U ]ZF [U ]

[
1

ZF [U ]

∫
D[ψ, ψ̄] e−SF [ψ,ψ̄,U ]O(x1, . . . ,xn)

]

=
1
Z

∫
D[U ] e−SG[U ]ZF [U ] 〈O(x1, . . . ,xn)〉F ,

(2.33)
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where ZF contains the fermionic contribution to the partition function. The Berezin
integration over the fermion fields leads to a fermion determinant

ZF [U ] =
∫
D[ψ, ψ̄] e−SF [ψ,ψ̄,U ] =

∏
f

det(Df ), (2.34)

where Df is the Dirac operator that defines the fermion action for each flavor2. The
fermion determinant can be expressed as a effective fermion action Seff

〈O(x1, . . . ,xn)〉 =
1
Z

∫
D[U ] 〈O(x1, . . . ,xn)〉F e

−SG[U ]−Seff [U ], (2.35)

Z =
∫
D[U ] e−SG[U ]−Seff [U ], (2.36)

Seff [U ] = −
∑
f

ln det(Df ), (2.37)

O(x1, . . . ,xn) may, in general contain both gluon and quark fields the latter of which
give rise to propagators in 〈O(x1, . . . ,xn)〉F via Wick contractions. We express the
fermion determinant for a degenerate doublet using the two fermion regularizations
introduced in the previous section. The fermionic effective action for Wilson fermions
reads

SWeff [U ] = − ln(detDm)
2 = − ln det(D†mDm), (2.38)

where the operator Dm is the standard Wilson-Dirac operator with the mass term
Dm = DW +m. We use γ5-hermicity3 of the Wilson-Dirac operator to simplify the
fermion determinant, whereas for a doublet of twisted mass fermions we get

Stm
eff [U ] = − ln det ((Dm + iγ5µ0)(Dm − iγ5µ0)) = − ln det(D†mDm + µ2

0). (2.39)

Notice that the transformations Eq. (2.26) leave the integration measurement
invariant since the transformation matrices belong to the special unitary group.
Therefore, the fermion determinant can be computed by integrating over the fermion
fields in the twisted basis {χ, χ̄}.

Once the path integral is expressed in terms of the gauge links, a prescription
for the gauge field is required to give the path integral formulation a meaning on a
lattice. For a compact Lie group the path integral can be defined as∫

DU =
∏
x,µ

∫
dUµ(x), (2.40)

2 The fermion action is defined as SF =
∑
f

∫
d4x ψ̄f (x)Dfψf (x).

3 D†
W = γ5DW γ5.
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where dU is a volume element in group space for a given link. We want the partition
function Z to be gauge invariant. The measure that is invariant under Eq. (2.3) is
known as Haar measure

dU = ν
√

det g
∏
a

dαa, (2.41)

where g is the metric associated to the compact Lie group, αa are the coordinates on
the group, and ν is some normalization factor such that

∫
DU = 1. Gauge fixing is

not needed in the lattice regularization, since there is a finite number of space-time
points and therefore the volume of the gauge group is finite and the Haar measure
can be normalized properly.

If the Euclidean the exponential factor is positive definite. Hence, one can
interpret it as a probability distribution function. Nevertheless, Wilson fermions
contain low-energy modes that spoils this property. Generally, the path integral
can be estimated using Monte Carlo integration in the Euclidean space. The field
configurations are generated given the following distribution

P [U ] ∼
∏
f

det(Df ) e
−SG[U ] = e−SG[U ]−Seff [U ]. (2.42)

An algorithm that generates configurations is needed. The algorithm samples the full
parameter space following the probability distribution function. Unlike the gauge
action SG, the fermionic effective action Seff is non-local, so the algorithm has to be
efficient dealing with non-local couplings between links. The algorithm also need to
address the low-energy modes that lead to exceptional configurations. The details of
configuration generation are explained in Section 4.1.

2.4 euclidean correlation functions

In order to extract physical observables, we compute Euclidean correlation functions.
In this section we will show the relation between Euclidean correlation functions
and hadronic matrix elements. We will focus on two-point correlation functions. We
consider a lattice with time extension T and spatial volume L3, with some open
conditions on the Euclidean time direction and periodic boundary conditions on the
spatial volume. We consider a local fermionic operator of the form

Oq,ri (x) = ψ̄q(x)Γiψr(x), (2.43)
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where Γi is a spin matrix, and spin and color indices are traced over. A general
on-shell two point function can be constructed with those fermionic operators on the
lattice

〈Or,qj (x)Oq,ri (y)〉 = 1
Z
〈Φf |e−(T−x0)HOr,qj (~x)e−(x0−y0)HOq,ri (~y)e−y0H |Φi〉 , (2.44)

where the states |Φi〉 and |Φf 〉 denote the initial and final boundary states respectively.
The partition function Z for large lattice time extensions T becomes

Z =
∑
~p,n

1
2En(~p)L3 〈Φf |~p,n〉 e−TEn(~p) 〈~p,n|Φi〉

T→∞→ 〈Φf |0〉 〈0|Φi〉 e−TE0 . (2.45)

The states4 |~p,n〉 represent a complete basis of the Fock space that are eigenstates of
the Hamiltonian H |~p,n〉 = En(~p) |~p,n〉. By assuming that the local operators are
on the bulk, y0 � 1 and T − x0 � 1, the expression can be simplified to the leading
contribution

〈Or,qj (x)Oq, ri (y)〉 ≈ 1
Z

∑
~p,n

1
2En(~p)L3 〈0|O

r,q
j (~x)|~p,n〉×

〈~p,n|Oq,ri (~y)|0〉 e−(x0−y0)En(~p)−(T−x0+y0)E0 .
(2.46)

After applying spatial translation to the local operators we get

〈Or,qj (x)Oq,ri (y)〉 ≈
∑
~p,n

ei~p(~x−~y)

2En(~p)L3 〈0|O
r,q
j |~p,n〉 〈~p,n|O

q,r
i |0〉 e−(x0−y0)(En(~p)−E0).

(2.47)
Then, it is easy to see that the spatial volume average projects the states onto
zero-momentum states.

1
L3

∑
~x,~y
〈Or,qj (x)Oq,ri (y)〉 ≈

∑
~p,n

δ~p,0
2En(~p)

〈0|Or,qj |~p,n〉 〈~p,n|O
q,r
i |0〉 e−(x0−y0)Ẽn(~p)

=
∑
n

1
2En(~0)

〈0|Or,qj |~0,n〉 〈~0,n|Oq,ri |0〉 e−(x0−y0)Ẽn(~0),

(2.48)

4 The states are normalized with the standard relativistic normalization 〈~q,m|~p,n〉 =
2En(~p)L3δn,mδ(~p− ~q)
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where the subtracted energy is defined such that Ẽn(~p) ≡ En(~p) − E0. Using
relativistic normalization of one-particle states

1
L3

∑
~x,~y
〈Or,qj (x)Oq,ri (y)〉 ≈ L3∑

n
〈0|Or,qj |φn〉 〈φn|O

q,r
i |0〉 e−(x0−y0)Ẽn(~0). (2.49)

The spectral decomposition of two-point correlation function can be used to determine
different hadronic matrix elements and masses. We now introduce the notation for
the correlation functions that we will use in Chapter 4 in order to sketch out how to
extract those quantities.

f q,rX,Y (x0, y0) =
a6

L3
∑
~x,~y
〈Xq,r(x)Y r,q(y)〉 = a6L3∑

n
〈0|Xq,r|n〉 〈n|Y r,q|0〉 e−(x0−y0)Ẽn(~0),

(2.50)
where the superscripts denotes flavor. X and Y represent different Dirac bilinears
(see Appendix A). Hence, by studying the correlators at large time extensions
(x0 − y0) → ∞, we get the ground state contribution from which we can extract
spectral quantities. For instance, pion states can be studied by computing light-light
correlators.

f l,lP ,P (x0, y0) ≈ a6L3 〈0|P l,l|π〉 〈π|P l,l|0〉 e−(x0−y0)Mπ , (2.51)
f l,lA0,P (x0,y0)√
f l,lP ,P (T−y0,y0)

≈ a3L3/2
∣∣∣〈0|Al,l0 |π〉

∣∣∣ e−(x0−T/2)Mπ . (2.52)

A detailed discussion on observables computation will be presented in Chapter 4,
where we explain how to determine each fermionic observable that take part in the
analysis through two-point correlators f q,rX,Y (x0, y0).

2.5 renomalization and symanzik’s O(a)-
improvement

To renormalize the theory we have to take into consideration the symmetries of the
action. Since operators will mix with each other in the renormalization process,
unless symmetry prevents them to.



16 chapter 2. lattice regularization

Counterterms with dimension 4 or less will contribute to the renormalization of
the action.

LR = Lbare +Lct, (2.53)
Lct =

∑
i ciOikak−4, dim(Ok) = k. (2.54)

In lattice simulations where continuum extrapolation is of crucial relevance to
relate numerical simulations with experimental results. In practice, the continuum
limit is taken performing lattice simulations at different values of the lattice spacing a,
and then the limit is obtained by fitting the points and extrapolating to the continuum.
The crucial tool under this procedure is Symanzik effective theory [10, 11], which
describes the cutoff dependence of correlation functions. It provides a well-defined
process both to parametrize the dependence on the lattice spacing, and to subtract
the leading cutoff effects, resulting in better continuum extrapolations for physical
quantities.

These counterterms can be chosen to cancel the linear contributions of the cutoff.
Operators of dimension d ≥ 5, called irrelevant operators, can be included in the
effective theory. Although they do not contribute to the renormalized theory when
the cutoff is removed, they can modify the dependence of the ultraviolet cutoff on
some quantities.

The lattice field theory can be described by an effective theory, which at first
order becomes the continuum QCD theory. The form of the effective theory is fixed
by the symmetries of the lattice theory. Thus, in the effective theory the action is
expanded in a power series in the lattice spacing a up to logarithmic corrections

Seff = S0 + aS1 + a2S2 + . . . , (2.55)

where S0 is the action of continuum QCD and Si are the terms given by actions
of dimension d ≥ 5. Higher-dimension terms provide cutoff contributions to the
action and they vanish in the continuum limit, where the regulator is removed. Each
contribution to the action Sk is parametrized with different coefficients ci such that

Sk =
∫

d4x
∑
i

ciOik(x), dim(Ok) = 4 + k. (2.56)

Similarly, cutoff effects also affect multilocal operators. A generic local operator
made of some quark and gluon fields on the lattice is represented in the effective
theory by an effective field of the form

Oeff(x) = O0(x) + aO1(x) + a2O2(x) + . . . , (2.57)
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where the fields Oi have the appropriate dimension and the same quantum numbers
as the lattice field.

In the effective theory up to O(a), the correlation function will be described by

〈Oeff(x1) . . .Oeff(xn)〉 = 〈O0(x1) . . .O0(xn)〉0 − a 〈O0(x1) . . .O0(xn)S1〉0

+a
n∑
i

〈O0(x1) . . .O1(xi) . . .O0(xn)〉0 +O(a2),
(2.58)

where vacuum expectation values are taken in the continuum theory.

Wilson fermions

Since axial symmetry in the chiral limit protects mass terms from additive renormal-
ization, this symmetry breaking will introduce a new counterterm when renormalizing
the theory [12]

Lc.t =
c(g2

0)

a
ψ̄ψ ≡ mcr(g

2
0, a)ψ̄ψ, (2.59)

which introduces a critical mass, i.e. a linearly divergent term in the cutoff that has
to be tuned to renormalize the theory.

mR = Zm(g
2
0, a)(m−mcr(g

2
0, a)). (2.60)

This phenomenon is analogous to what happens on scalar theories, which do not
have any symmetry which protects the mass term. As a consequence of that, the
mass term is no longer multiplicatively renormalized: a linear divergence arises from
relevant operators that mix with the mass term.

For Wilson fermions, there are three dimension-5 operators which respect the
symmetries of the regularized theory, which are

O1
1 = iψ̄σµνFµνψ, (2.61)

O2
1 = mqtr{FµνFµν}, (2.62)
O3

1 = m2
qψ̄ψ. (2.63)

Effects of operators O2 and O3 can be reabsorbed in the definitions of coupling
constant and renormalized masses, respectively. One can define the renormalized
O(a) improved masses and coupling constant tanking into account the counterterms

g2
R = Zgg

2
0(1 + bgamq), (2.64)

mR = Zmmq(1 + bmamq), (2.65)
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where bg and bm are improvement coefficients and mq is defined

mq = m0 −mcr. (2.66)

There is just one additional term to the action, the so-called Clover term [13]

S1 =
i

4

∫
d4x cswψ̄(x)σµνFµν(x)ψ(x), (2.67)

where csw is the Sheikholeslami-Wohlert coefficient.

Wilson twisted mass fermions

A technical complication is that improvement coefficients are not known a priori
and they must be tuned using either perturbation theory or lattice simulations. In
practice, O(a) improved Wilson fermions require several improvement coefficients
and as we will see twisted mass regularization [14, 15] provides a way to extract
some correlation functions automatically improved even if the theory is not O(a)
improved. On account of this, Wilson twisted mass (Wtm) requires the computation
of less (or none at all) improvement coefficients in order to ensure an O(a2) scaling
of physical quantities towards the continuum.

At full twist axial and vector symmetries are not completely broken as explained
above. The charged axial symmetry in the chiral limit [U(1)A]1,2 prevents the twisted
mass term to mix under renormalization with other relevant operators, and therefore
the twisted mass renormalizes multiplicatively

µR = Zµµ0. (2.68)

As a consequence, the symmetry protects the mass term from additive renormalization
in contrast with Wilson fermions. However, the determination of mcr is still required
to renormalize the action. Maximal twist is obtained when the renormalized mass
is completely given by the twisted mass term, i.e. , the renormalized twist angle
is ωR = π/2. It implies that the renormalized untwisted mass vanishes mR =
Zm(m0 −mcr) = 0.

tanωR =
µR
mR

. (2.69)

On the other hand, the isospin symmetry and parity are broken by the Wilson term.
Hence, the neutral and charged pions are no longer degenerate in the effective theory.
However, the mass splitting is given by O(a2) terms.
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For Wilson twisted mass fermions at full twist, there are two dimension-5 operators
that contribute to the effective action

O1
1 = iχ̄σµνFµνχ, (2.70)
O2

1 = µ2
0χ̄χ. (2.71)

The operator O2 can be reabsorbed in the definition of the renormalized untwisted
mass, whereas O1 provides the standard Clover term. The continuum action is even
under the symmetry R1,2

5 Eq. (2.31), whereas dimension-5 operators that contribute
to the action are odd under that symmetry

S0 → S0, S1 → −S1. (2.72)

For operators with definite R1,2
5 -parity one finds that the associated dimension-5

operators has the opposite R1,2
5 -parity.

O0 → ±O0 ⇒ O1 → ∓O1. (2.73)

Recalling Eq. (2.58), it is easy to show that any even operator under the transforma-
tion R1,2

5 is automatically O(a)-improved since the expected values on the r.h.s are
taken with respect to the continuum action. Thus, correlators f q,rX,Y (x0, y0) that are
even under the transformation R1,2

5 are automatically O(a)-improved∑
~x,~y
〈Xq,r(x)Y r,q(y)〉 =

∑
~x,~y
〈Xq,r(x)Y r,q(y)〉0 +O(a2). (2.74)
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We present our setup that focuses on controlling the systematic effects for heavy
quark physics. We use a mixed-action setup that combines Wilson twisted mass and
Wilson fermions on the valence and sea sectors respectively.

We use CLS Nf = 2 + 1 ensembles [2] with open boundary conditions in the
time direction and periodic boundary conditions in the spatial directions. In section
3.1, we provide details about the sea sector. We use a subset of ensembles listed in
Table 3.1 that remains in a chiral trajectory trMsea. In section 3.3, we explain in
more detail the importance of the chiral trajectory.

We employ Wilson twisted mass valence sector with Nf = 2 + 1 + 1. We set the
valence sector to maximal twist in the light sector, which guarantees automatic O(a)
improvement for the desired observables up to residual sea quark mass effects. In
section 3.2, we explain the valence regularization.

In section 3.4, we detailed the matching process between the valence and sea
sectors in a way that the valence is set at maximal twist. The matching between
both sectors is necessary to recover physical results in the continuum limit. We
explain the matching for the light and strange dynamical fermions. On the other
hand, the charm quark is not present the sea sector. We review different ways to
match the charm quark using physical observables.

In section 3.5, we summarize the scale setting procedure [16] performed in our
mixed-action setup [17].

3.1 sea sector

The plaquette action is already O(a)-improved, since there are no dimension-5
operators that may contribute to the gauge action. Nevertheless, the O(a2) effects
can be reduced by taking into account dimension-6 operators. There are 3 pure

20
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Id β a[fm] L/a T/a Mπ[MeV] MK [MeV] MπL

H101 3.40 0.087 32 96 420 420 5.8
H102 3.40 0.087 32 96 350 440 4.9
H400 3.46 0.077 32 96 420 420 5.2
N202 3.55 0.065 48 128 420 420 6.5
N203 3.55 0.065 48 128 340 440 5.4
N200 3.55 0.065 48 128 280 460 4.4
N300 3.70 0.050 48 128 420 420 5.1
J303 3.70 0.050 64 196 260 470 4.1

Table 3.1: List of CLS Nf = 2 + 1 ensembles [2] used in the present study. The values of
the inverse bare coupling, β = 6/g2

0, correspond to the following approximate values of the
lattice spacing [16]. In the fourth and fifth columns, L/a and T/a, refer to the spatial
and temporal extent of the lattice. Approximate values of the pion and kaon masses are
provided.

gauge dimension-6 operators that can be included. By imposing the equations of
motion this leads to the following action

SG =
1
g2

0

∑
µν

c0∑
p

Re(tr(1−Uµν(p))) + c1
∑
r

Re(tr(1−Uµν(r)))
 , (3.1)

where Uµν(p) are the plaquettes and Uµν(r) are planar rectangles. The gauge action
used in CLS ensembles is the so-called Lüscher-Weisz action [4], where the values of
the coefficients c0 and c1 are computed at tree-level

c0 =
5
3, c1 = − 1

12. (3.2)

The sea sector contains Nf = 2 + 1 dynamical quarks regularized with a non-
pertubatively O(a) improved action. We use the standard fermion action introduced
in Subsection 2.2.2. The fermionic action contains a dimension-5 operator Eq.
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(2.67) that allows to remove O(a) effects according to Symanzik’s O(a)-improvement
program. To summarize, the fermionic sea action is described by

SF = a4∑
x
ψ̄(x)

[1
2γµ(∇µ +∇

∗
µ) + M− a

2∇µ∇
∗
µ +

ia

4 cswσµνFµν

]
ψ(x), (3.3)

where the coefficient csw is determined non-pertubatively [18].

CLS ensembles [2] use open boundary conditions in the Euclidean time direction
over the gauge fields. It has been shown that periodic boundary conditions leads to
an increase of the autocorrelations towards the continuum known as critical slowing
down [19]. It leads to computationally expensive Monte Carlo simulations to achieve
the same target precision. The critical slowing down is related to the existence
of disconnected topological sectors [20, 21]. Periodic boundary conditions lead to
a disconnected configuration field space towards the continuum. Therefore, the
algorithm may not sample different topological sectors.

Open boundary conditions prevent the topological freezing [22, 23] by letting the
topological charge to flow through the boundaries. Nevertheless, quark fields are
defined with Dirichlet (Schrödinger functional) boundary conditions over Euclidean
time. Periodic boundary conditions are imposed over the spatial volume for all the
fields.

3.2 valence sector

The valence sector contains Nf = 2 + 1 + 1 quark flavors regularized with a Wilson
twisted mass action including a clover term [8]. Even though Wilson twisted mass
fermions at full twist are automatic O(a)-improved, the clover term can be added to
the action, which will tweak O(a2) effects. In addition to this, it has been observed
that the clover term reduces isospin breaking effects [24,25], induced by the regulator.
Notice that the valence sector in the chiral limit is equivalent to massless limit with
Wilson fermions in the sea. This will allow to recover the renormalization constants
from the sea as long as a massless renormalization scheme is used.

We thus use a valence action of the form

SF = a4∑
x
χ̄(x)

[1
2γµ(∇µ +∇

∗
µ)−

a

2∇µ∇
∗
µ +

ia

4 cswσµνFµν +m0 + iγ5µ
]
χ(x),

(3.4)
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where the mass matrix m0 is fixed to the critical mass m0 = mcr1 and the twisted
mass matrix is

µ = diag(µu,µd,µs,µc) = diag (+|µl|,−|µl|,−|µs|,+|µc|) . (3.5)

The fermion fields [χ, χ̄] are expressed in the twisted mass basis. The physical basis
is recovered by the following transformation

ψ = e−i
π
2
T
2 γ5χ, ψ̄ = χ̄e−i

π
2
T
2 γ5 , T = diag(+1,−1,−1,+1). (3.6)

Since the heavy doublet is non-degenerate, the twisted valence sector involves a
non-traceless component in the chiral rotation, which could contribute to the axial
anomaly if this action were used in the sea. This is however not a problem when it
is only used in the valence sector, as in this work.

Vector and axial symmetries are broken explicitly in the four flavor theory with
non-degenerate quarks. The vector and axial Ward identities can be computed in
the twisted basis. For non-diagonal operators, the PCAC and PCVC relations (see
Appendix A) are expressed as

∂µA
qr
µ = (mq +mr)P

qr + i(µq + µr)S
qr, (q 6= r), (3.7)

∂µV
qr
µ = (mq −mr)S

qr + i(µq − µr)P qr, (q 6= r). (3.8)

The exact vector symmetry for massless fermions guarantee that a point-split
current exist Ṽ qr

µ (x) such that the Ward identity Eq. (3.8) remains exact on the
lattice.

Ṽ qr
µ (x) =

1
2
[
χ̄q(x)(γµ − 1)Uµ(x)χr(x+ aµ̂) + χ̄q(x+ aµ̂)(γµ + 1)U †µ(x)χr(x)

]
,

〈∂∗µṼ qr
µ (x)O(0)〉 = i(µq − µr) 〈P qr(x)O(0)〉 .

(3.9)
The conservation of the Ward identity in the lattice implies that the current Ṽ qr

µ renor-
malizes with a trivial factor ZṼ = 1, as in the continuum. Therefore, renormalization
constants fulfill

Zµ = Z−1
P , (3.10)

where Zµ and ZP are the renormalization constants for the twisted mass and the
pseudoscalar density respectively.

Applying Symanzik’s O(a)-improvement program to our mixed action setup [26],
we recover automatic O(a)-improvement for on-shell quantities at maximal twist
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m0 = mcr, whereas valence quark masses get an O(a)-contribution from the sea
quark masses even at full twist

µRq = Zµ(g̃
2
0, aµ) (1 + ab̄µtrMsea) µq, (3.11)

where g̃2
0 is the improved coupling defined as

g̃2
0 =

(
1 + a

bg
3 trMsea

)
g2

0. (3.12)

The effects of this contribution are expected to be of order b̄µ = O(g4
0) in perturbation

theory and therefore the term is expected to be negligible for lattice spacings
a . 0.086 fm and light/strange quark masses in Msea.

The valence sector can be regularized with Osterwalder-Seiler fermions [15,27] in
a similar way. This framework allows to simplify computation and renormalization
of complex composite operators.

3.3 chiral trajectory

We perform our computations on a set of CLS ensembles with different values of
the lattice spacing in the range 0.05 fm . a . 0.087 fm and pion masses that vary
in the range 260 MeV .Mπ . 420 MeV. In order to extract physical results at the
physical point, we choose a chiral trajectory where the trace of the bare mass matrix
is kept constant trMsea = const. The main advantage of this trajectory is that the
improved coupling Eq. (3.12) is constant at fixed value of the bare coupling g2

0, and
therefore so is the renormalized coupling g2

R = Zgg
2
0 up to O(a2) effects. In practice,

the condition is not easy to satisfy since it contains the subtracted masses. It has
been reported [16] that deviations from the renormalized chiral trajectory are not
negligible, meaning that simulations are not on a line of constant physics.

Actually, we redefine the chiral trajectory in terms of the pseudoscalar meson
masses, that coincide with the renormalized values of the quark masses in chiral
perturbation theory at leading order. This choice turns out to be more beneficial, since
pseudoscalar masses do not rely on renormalization constants or O(a)-improvement
coefficients. We choose a line of constant physics, where the quantity φ4 is kept
constant

φ4 = 8t0
(
M2
K +

1
2M

2
π

)
∝ trMR

sea, (3.13)
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where t0 is the gradient flow reference scale (see Subsection 4.3.1). Deviations
from the renormalized chiral trajectory can be corrected at the level of analysis by
performing a Taylor expansion on the quark masses [16]. The values of φ4 for each
ensemble are shifted to compensate the mistuning.

For a general observable F = f(Pi) that depends on several primary observables
Pi, the Taylor expansion at linear order reads

F ′(m′l, m′s) = F (ml, ms) + 2∆ml
dF (ml, ms)

dml
+ ∆ms

dF (ml, ms)

dms
, (3.14)

where the total derivative with respect to the quark masses takes the form

dF
dmf

=
∑
i

∂F

∂P i

[〈
∂Pi
∂mf

〉
−
〈(
Pi − P i

)( ∂S

∂mf
− ∂S

∂mf

)〉]
. (3.15)

We choose a line towards the renormalized chiral trajectory such that ∆ml = ∆ms.
This fixes all the remaining degrees of freedom in the procedure.

The derivative receives contributions from the valence and sea quarks respectively.
The first term in the r.h.s. of the equation is related to the valence contribution and
in a unitary setup it corresponds to derivative of a two-point function with respect to
the sea mass. In practice, this term implies the computation of additional inversions
of the Dirac operator for each two-point function.

∂

∂mf
〈q̄r(x)ΓXqs(x)q̄s(y)ΓY qr(y)〉

= −δf ,str
[
ΓX(D+ms)

−2(x, y)ΓY (D+mr)
−1(y,x)

]
−δf ,rtr

[
ΓX(D+ms)

−1(x, y)ΓY (D+mr)
−2(y,x)

]
.

(3.16)

The sea contribution requires the computation of the derivative of the action with
respect to the sea quark masses, which is given by the trace of the propagator

∂S

∂mf
= −tr

[
(D+mf )

−1
]

. (3.17)

The strategy to compute shifted observables is the following:

1. We compute φ4 in the unitary Wilson setup.

2. We determine the value of the mass shift ∆m = ∆ml = ∆ms such that φ4 is
shifted to some physical value φphys

4 .
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3. We compute the desired observables in our mixed-action setup for each ensem-
ble.

4. We shift the observables to the renormalized chiral trajectory, where mf →
mf + ∆m.

Notice that valence observables computed in out mixed-action setup do not
depend explicitly on the sea masses mf . Therefore, the first term on the r.h.s. of Eq.
(3.15) does not contribute to the final result.

3.4 matching

In order to obtain controlled results for the valence sector, we need to ensure that
physical obervables computed in the valence and sea sectors coincide up to cutoff
effects, i.e. coincide in the continuum limit. Therefore, a well-defined matching
procedure is required at finite lattice spacing.

In general, once the lattice spacing is fixed, typically in terms of some reference
scale, e.g. , t0, two matching conditions are needed for the light and strange quark
masses. Naively, the matching condition is to impose that the renormalized quarks
masses are the same for the valence and sea sectors mR

q

∣∣∣
sea

= µRq
∣∣∣
val

. Nevertheless,
other choices are possible, e.g. , imposing that pion and kaon masses are the same in
the two sectors. We studied both matching conditions in our setup, and we performed
consistency checks for both matching conditions [28]. We chose the matching through
meson masses as our preferred matching condition because it does not require O(a)
counterterms.

We will describe the matching procedure through pseudoscalar meson masses. In
order to perform this matching, the mass matrix m0 is tuned to its critical value
m0 = mcr1 and the bare twisted masses µl and µs to some values that satisfy the
matching condition

φ2|sea = φ2|val , φ4|sea = φ4|val , (3.18)

where the variables φ2 and φ4 are the following mass combinations:

φ2 = 8t0M2
π , φ4 = 8t0

(
M2
K +

1
2M

2
π

)
. (3.19)
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We use PCAC masses in our Wtm valence sector to fix the renormalized twist
angle at maximal twist (ωR = π/2). PCAC masses are defined by the Ward identities
in Eq. (3.7). We compute the PCAC mass for the light sector as follows

mll ≡
mu +md

2 =
〈∂µAudµ (x)P ud(y)〉
2 〈P ud(x)P ud(y)〉 , (3.20)

where the expression is simplified in our valence setup provided that µu = −µd. The
PCAC mass mll is a measure of the bare quark mass. Therefore, the point with a
vanishing value of the PCAC mass correspond to the maximal twist case.

The strategy requires the computation of two-point functions on a three dimen-
sional grid of parameters (m, µl, µs) for each ensemble. We perform combined
interpolations to a target point that fulfills the matching conditions and ensures that
the setup is at maximal twist.

From the definition of polar mass Eq. (2.28), we compute the renormalized quark
mass MR

q

∣∣∣
val

and then perform a Taylor expansion assuming that m is close to its
critical value neglecting any

MR
q

∣∣∣
val

=
√
(Zµµq)2 + (Zm(m−mcr))2 ' Zµµq +

Z2
M

2Zµµq
(m−mcr)

2. (3.21)

We take advantage of chiral perturbation theory at tree level to parametrize the
meson masses in terms of the bare parameters.

M2
π

∣∣∣
val
' 2B MR

l

∣∣∣
val
' 2BZµµl +B

Z2
m

Zµµl
(m−mcr)

2, (3.22)

M2
K

∣∣∣
val
' B

(
MR
l

∣∣∣
val

+ MR
s

∣∣∣
val

)
' BZµ(µl + µs) +B

Z2
m

2Zµ

(
(m−mcr)2

µl
+

(m−mcr)2

µs

)
.

(3.23)

Assuming that the values of the twisted mass µl are constant when varying the
values of m close to its critical value. We perform a combined fit over the PCAC
mass mll|val (Eq. 3.20) and the variables (φ2,φ4) with the following functional form

mll|val (µl, m) = c10 + c11µl + c12m ≡ 0, (3.24)
φ2|val (µl, m) = c20 + c21µl + c22m+ c23m

2 ≡ φ2|sea , (3.25)
φ4|val (µl, µs, m) = c30 + c31µl + c32µs + c33m+ c34m

2 ≡ φ4|sea . (3.26)
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The values φ2|sea and φ4|sea correspond the values of φ2 and φ4 on the renormalized
chiral trajectory.

3.4.1 Charm sector

The matching procedure for the charm sector requires a different strategy, since in
our setup the charm is not a dynamical fermion. In order to establish a connection
with physics, we require that some charm observable Oc is equal to its physical value
on each ensemble. The matching condition ensures the correct limit once chiral and
continuum extrapolations are performed.

We studied three different matching conditions based on a spin-flavor-averaged
and flavor-averaged mass combinations of mesons masses and on the connected
contribution of the ηc mass.

M f
c =

1
3 (2MD +MDs) , (3.27)

M s−f
c =

1
12 (2MD +MDs + 6MD∗ + 3MD∗s ) , (3.28)

Mη
c = M

η
(conn)
c

. (3.29)

The matching can be performed by introducing the three matching conditions φic in
terms the reference scale t0 and then interpolate them to their physical values for
each ensemble.

φc,1 =
√

8t0M f
c ≡

√
8tphys

0 (M f
c)

phys,

φc,2 =
√

8t0M s−f
c ≡

√
8tphys

0 (M s−f
c )phys,

φc,3 =
√

8t0Mη
c ≡

√
8tphys

0 Mphys
ηc .

(3.30)

However, this method includes some complications. The meson masses in each
ensembles are not computed at the physical value of φ2 and contains O(a2) effects
but they are matched to their physical value. Moreover, it introduces the dependence
on the the physical scale tphys

0 for charmed observables at finite lattice spacing. For
these reasons, we prefer to perform the charm quark matching in the continuum
and chiral extrapolation. We parametrize the dependence of a given observable
Oc(a2, φ2, φc) on the charm quark mass and perform a combined fit to its physical
value Oc(0, φ2|phys , φc|phys). In our study, we use the three matching conditions
φc,i. In chapter 5, we will describe the functional forms for the chiral and continuum
extrapolations.
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3.5 scale setting
In this section we review the scale setting procedure in our setup. We follow the
strategy proposed by [16] to determine the physical value of the reference scale tphys

0 .
We have reproduced the results for the scale setting in our setup [17, 29], where
different matching conditions in the light sector are imposed.

The physical value of t0 cannot be measured by experiments, although it can be
determined in lattice simulations. The physical values of the pion and kaon decay
constants and masses are used as input for the determination of the reference scale.
The linear combination of decay constants

fπK =
2
3

(
fK +

1
2fπ

)
, (3.31)

is advantageous following the chiral trajectory trM = const.. It shows a mild depen-
dence in the meson masses through chiral logarithms at NLO in chiral perturbation
theory. The physical point (φphys

2 ,φphys
4 ) depends on the physical value of the ref-

erence scale and it is determined using a iterative algorithm that stops when the
algorithm provide compatible values of tphys

0 within errors. The procedure starts
with an initial value of tphys,k

0 , which defines physical point at the k-th iteration
(φphys,k

2 ,φphys,k
4 ). The algorithm consist in:

1. The values of φphys,k
2 and φphys,k

4 are computed using the physical values of the
pion and kaon mass

φphys,k
4 = 8tphys,k

0 ((M2
K)

phys +
1
2(M

2
π)

phys),

φphys,k
2 = 8tphys,k

0 (M2
π)

phys.
(3.32)

2. The values of fπK are computed for each ensemble. Then, the observables are
shifted to the new value φphys,k

4 that defines the chiral trajectory (see Section
3.3).

3. A functional form for
√

8t0fπK(a,φ2) is chosen to extrapolate the results in
the continuum limit and physical point.

4. The extrapolated value of fπK defines the value (k+ 1)-th iteration√
8tphys,k+1

0 fphys
πK ≡

√
8t0fπK

(
0, φphys,k

2
)

. (3.33)
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We quote the results from [17] that combines the results from the unitary Wilson
setup and our mixed-action setup with two different matching conditions.

tphys
0 = 0.02140(26)(27) fm2, φphys

4 = 1.114(14)(14). (3.34)
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O B S E RVA B L E S

In this chapter we review the main algorithms that are involved in our work. In
section 4.1, we briefly review how the Hybrid Monte Carlo [30] algorithm works on
Lattice QCD simulations. In section 4.2, we explain how the two-point functions
are computed in the simulation. We also review the Distance Preconditioning [31]
technique that is of crucial relevance to obtain heavy propagators precisely.

In section 4.3, we detail the methods to determine the physical observables that
will be used in our study. We describe the computation of fermionic observables
such that: meson masses, quark masses, and pseudoscalar decay constants. We also
introduce the reference scale t0 [32] that will be used to extract results in physical
units.

4.1 monte carlo algorithm
Computation of observables in Lattice QCD is performed by determining expectation
values using the Lagrangian formalism. Lattice QCD relies on Markov Chain Monte
Carlo action methods to estimate a path integral. In Euclidean space, the action
can be interpreted as a probability distribution function P (U) = e−SG[U ]−Seff [U ] (see
Section 2.3). Therefore, the result of the integral can be approximated by sampling
the configuration space numerically,

〈O〉 = 1
Z

∫
D[U ]O[U ]P (U) = 1

N

N∑
i=1
O[Ui] +O

(
1√
N

)
, (4.1)

where O[Ui] are generated given the probability distribution function P (U). The
statistical error is expected to decrease with the square root of the number of samples
N , as indicated.

4.1.1 Hybrid Monte Carlo

The simulation with dynamical fermions increases the difficulty of the sampling. The
fermion determinant (Eq. (2.34)) is a non-local term on the gauge links. Therefore,

31
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sampling Wilson links locally becomes costly and proportional to the volume squared.
The Hybrid Monte Carlo (HMC) algorithm [30] updates the Wilson links globally.
HMC algorithm takes advantage of the Hamiltonian formalism to generate a proposal
with high acceptance rate. This is performed by augmenting the field space with
the canonical conjugate fields πµ(x). Then, the equations of motion are solved
according to the Hamilton-Jacobi equation at a given Monte Carlo time τ . In this
new formalism the probability of each trajectory is given by the Hamiltonian. We
extend the partition function Z with the conjugate fields πµ(x)

Z =
∫
DUDπ e−H [π,U ],

H =
∑
x

1
2tr{π†µ(x)πµ(x)}+ SG[U ] + Seff [U ],

(4.2)

where the fields πµ(x) are element of the Lie algebra. Notice that expectation values
of observables remain unchanged because integration over the conjugate fields leads
to a normalization factor

〈O(x1, . . . ,xn)〉 =
1
Z

∫
DUDπO(x1, . . . ,xn)e−H [π,U ]

=
1
Z

∫
DU O(x1, . . . ,xn)e−SG[U ]−Seff [U ],

(4.3)

where Z is the usual partition function defined in Eq. (2.36).
The equations of motion of the fields with respect to the Monte Carlo time τ are

the following

dUµ(x)
dτ = πµ(x)Uµ(x), (4.4)

dπµ(x)
dτ = −Fµ(x) = −

dS
dUµ

, (4.5)

where the derivative of a scalar function with respect to a group element is defined
in [33].

dS
dUµ

=
dS(eωU)

dω

∣∣∣∣∣
ω=0

, ω ∈ su(N). (4.6)

The integration of the equations of motion provides a proposal for the configuration
with a high acceptance ratio. The algorithm consists in:

1. generate canonical momentum variables πµ(x) according to a standard normal
distribution

πµ(x) ∼ N (0, 1). (4.7)
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2. integrate the Hamilton equations numerically to compute the updated canonical
variables (π,U) → (π′,U ′). Numerical integration is carried out through a
discretization with a determined number of integration steps such that the
trajectory length is fixed.

3. the proposal is accepted according to the following acceptance probability:

Pacc = min(1, e−(H(π′,U ′)−H(π,U))). (4.8)

The configuration is stored if Pacc > r, where r is a random uniformly dis-
tributed random variable and 0 ≤ r < 1.

Since the Hamiltonian is conserved the acceptance ratio will be Pacc = 1 if the
equations are exactly solved. In practice, the acceptance ratio is high because the
Hamiltonian is conserved up to integration errors. It is important to mention that a
reversible solver for the equations of motions is required since molecular dynamics
are time reversible.

Modern HMC simulations include several performance improvements. Efficiency
can be improved using a multiple time-step integrator [34] and an improved integrators
such as the one proposed by Omelyan, Mryglod and Folk [35]. Other improvements
related with the fermion determinant can be implemented, as discussed below.

4.1.2 Reweighting

As a consequence of the chiral symmetry breaking in the lattice, the Wilson-Dirac
operator is not protected against zero eigenvalues. These zero modes may lead to
some instabilities [7] in the Hybrid Monte Carlo. In order to avoid this problem, the
computation of the fermion determinant is factorized by separating the low-energy
modes.

In CLS configurations [2], the light quark determinant is shifted with a twisted
mass term [36] that provides an infrared cutoff similarly to the determinant for
twisted mass fermions Eq. (2.39). On the other hand, the strange quark determinant
is computed using a rational approximation [37,38].

For the light and strange quarks, the contributions are factorized in terms of the
reweighting factors Wl and Ws respectively.

det(D†lDl) = det(D̃†l D̃l)Wl, (4.9)

det(Ds) =
P1(D†sDs,n)
P2(D

†
sDs,n)

Ws, (4.10)
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where D̃l is a Dirac operator with a twisted mass term and P1,2(D†sDs,n) are
polynomials of degree n such that P1(D

†
sDs,n)

P2(D
†
sDs,n)

≈ det
(√

D†sDs

)
.

Therefore, in order to recover physical results with respect to the actual action,
expectation values of operators are redefined as follows

〈O〉rew =
〈OWlWs〉
〈WlWs〉

. (4.11)

There are different parameterizations for the twisted mass reweighting. We
present the current parametrization in CLS ensembles [2].

det(D̃†D̃) =
det(D†D+ µ2)2

det(D†D+ 2µ2)
, Wl = det(D†D)

det(D†D+ 2µ2)

det(D†D+ µ2)2 . (4.12)

The reweighting can be complemented using the Hasenbusch factorization [39, 40] to
improve the computation of the determinants. The even-odd preconditioning [41] for
the Dirac operator can be added as well.

4.2 inversions

In order to measure fermionic observables, inversions of the Dirac operator resulting
from Wick contractions are required. In this section, we sketch out how the inversions
are computed without going through the algorithmic details. We define a general
two-point function f q,r(x0, y0) and work out the Wick contractions:

f q,r(x0, y0) =
1
L3

∑
~x,~y

〈
ψ̄q(x)ΓAψr(x)ψ̄r(y)ΓBψq(y)

〉
,

f q,r(x0, y0) = −
1
L3

∑
~x,~y

〈
tr{ΓAD−1

r (x, y)ΓBD−1
q (y,x)}

〉
,

(4.13)

where the indices q, r denote flavor, ΓA,B are some spin matrices, and color and spin
indices are traced over. The computation of correlators requires the inversion of
Dirac operators. The all-to-all computations of those inversions,

Dq(x, y)ψr(y) = δx,y δq,r, (4.14)
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can be computationally too expensive for practical lattices. The stochastic procedure
allows to estimate the inversions given a set of stochastic sources. A set of stochastic
fermionic fields [η]i (i = 1, . . . ,Nη) are introduced such that they fulfill:

〈ηi(x)〉η = 0,
〈
ηj(y)

†ηi(x)
〉
η
= δx,y δi,j . (4.15)

The expectation value 〈·〉η is defined with a given noise distribution for the stochastic
sources. Some common choices for that are Gaussian, Z2 or U(1) distributions. We
define two derived stochastic quantities by inverting the Dirac operators Dq and Dr

with a given stochastic source.

ζqi (x) =
∑
y
D−1
q (x, y)ηi(y),

ξri (x) =
∑
y
D−1
r (x, y)γ5Γ†Aηi(y).

(4.16)

Notice that for the pion case, only one inversion is required for that since both
stochastic vectors are identical. Therefore, Eq. (4.15) guarantees that the correlator
f q,r(x0, y0) can be computed as follows

f q,r(x0, y0) = −
1
L3

∑
~x

〈〈(
Γ†Bγ5ξ

r
i (x)

)†
ζqi (x)

〉
η

〉
. (4.17)

Solving the Dirac equations for a sufficiently large set of stochastic sources gives
a precise estimate of the solution. In practice, the correlator f q,r(x0, y0) can be
estimated as

f q,r(x0, y0) ≈ −
1
L3

1
Nη

Nη∑
i=1

∑
~x

〈(
Γ†Bγ5ξ

r
i (x)

)†
ζqi (x)

〉
. (4.18)

Moreover, we take advantage of spin dilution [42,43] in order to get variance reduction
for charm-like observables. Stochastic sources are projected into spin subspace
ηai (x) = P aηi(x).

ζq,ai (x) =
∑
y
D−1
q (x, y)ηai (y),

ξr,ai (x) =
∑
y
D−1
r (x, y)γ5Γ†Aη

a
i (y),

f q,r(x0, y0) ≈ −
1
L3

1
Nη

Nη∑
i=1

∑
a

∑
~x

〈(
Γ†Bγ5ξ

r,a
i (x)

)†
ζq,ai (x)

〉
.

(4.19)
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Notice that ξr,ai (x) can be rewritten in terms of a linear combinations of the projec-
tions for each gamma structure ΓA. Therefore, by inverting the full set of projections
ηai (x) the full set of independent gamma structures can be computed by performing
Wick contractions, at the price of four inversions for each propagator.

4.2.1 Distance preconditioning

Numerical inversions of the Dirac operator may introduce technical difficulties when
inverting heavy masses. Numerical algorithms find a solution to the inhomogeneous
Dirac operator (Eq. (3.4)) such that it fulfills the condition∣∣∣(Dq[U ](x, y))Snq (x)− η(y)

∣∣∣ < r, (4.20)

where Snq (x) is the approximate solution after n solver iterations and η(y) is the
noise vector, previously introduced. The global residue r fixes the target precision of
the current inversion.

As a result of Eq. (2.50), two-point correlation functions decay as e−M(x0−y0),
where M stands for the mass of the ground state. The exponential behavior of this
function may provide a negligible contribution to the norm of on the l.h.s of Eq.
(4.20). This issue may introduce problems in the propagator accuracy at large time
extents. Hence, it may lead to noisy solutions at large distances that are not useful
for the extraction of physical results. The problem is aggravated when dealing with
heavy propagators due to the fast exponential decay.

Distance preconditioning [31] is a technique that improves the inversion accuracy.
The system is transformed by adding an exponential factor that partially compensates
for the fast decay of the propagator. Then, the system is solved and the transformation
is reverted.

We introduce a diagonal matrix in Euclidean space P as follows,

P = diag(p1, p2, . . . , pT ), pi = eα|x
i
0−y0|, (4.21)

where the parameter α controls the suppression of the exponential decay. The Dirac
operator and the noise vector are then transformed as

D′ = PDP−1, η′ = Pη,
D′(x, y)S′(x) = η′(y),

(4.22)

where S′ is the preconditioned propagator S′ = PS. Then, S′ is computed by solving
the preconditioned system (Eq. (4.22)). The actual propagator S is computed by
reversing the transformation with P−1.
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The distance preconditioning increases the cost of the inversions roughly propor-
tionally to the value of the α parameter. In our study, we tune the α parameter for
each ensemble such that it is large enough to avoid the deterioration of the signal at
large Euclidean times, while the cost increase is under control. In order to do that,
at fixed global residue r and the source position y0, we compute mass-degenerate
pseudoscalar-pseudoscalar correlators from preconditioned propagators with different
values of α. We choose the minimal value of α that guarantees a clear signal in the
correlator at large distances. This tuning is performed with low-statistics runs for
each ensemble. In figure 4.1 we show a example in a particular CLS ensemble using
propagators around the charm quark mass region.
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Figure 4.1: Values of the average local residue rloc and pseudoscalar-pseudoscalar correlation
function PP (x0) as a function of the Euclidean time x0/a. The two-point correspond to
a mass degenerate meson with twisted mass aµ = 0.2. The inversions are performed on
a 128× 483 lattice and the source position is fixed close to the left boundary. Different
colors represent different combinations of the global residue r and α parameter.

4.3 observables
In this section, we detail the computation of physical observables on the lattice that
we will use in our study. We also introduce the gluonic observable t0 that we use as
a reference scale.

Meson masses and decay constants are extracted from two-point correlation
functions. We recall our convention for the correlators

f q,rX,Y (x0, y0) =
a6

L3
∑
~x,~y
〈Xq,r(x)Y r,q(y)〉 , (4.23)
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where q and r are flavor indices. X and Y represent different Dirac bilinears (see
Appendix A). We use stochastic spin-diluted sources defined at a given time slice in
the middle of the lattice (y0 = T/2) in order to avoid operator couplings to boundary
states, induced by the use of non-periodic boundary conditions in time. We use the
U(1) noise distribution to estimate the propagators. The Distance Preconditioning
technique is used for propagators with masses in the charm region as detailed in
Subsection 4.2.1.

Our mixed-action setup requires additional computations of correlators in the
unitary setup. These correlators are used to match the sea and the valence sectors
for the mixed-action setup and therefore recover unitarity in the continuum limit.
Moreover, the computation of those correlators is crucial in order to compute the
mass corrections to the renormalized chiral trajectory. The procedures are detailed
in Sections 3.4 and 3.3. Notice that valence (Wtm) correlators may be expressed in
the physical or twisted basis. The change of basis is detailed in Appendix B.

In our setup, the quark masses can be measured from the twisted mass parameter
µq. We will describe the determination of renormalization group invariant (RGI)
quark masses from the values of the twisted mass.

4.3.1 Gradient flow scale t0

The gradient flow formalism [32, 44] allows to smooth gauge fields in a field-
theoretically well-controlled way, as a result of which ultraviolet divergences can be
avoided. The gradient flow can be used to define observables that are useful for scale
setting, study of the topological susceptibility, or computing the running couplings,
among other examples. The gauge fields are extended to a 5-dimensional theory
with the flow time t as an extra spacetime dimension. The gauge fields fulfill the
flow equation

a2 dVµ
dt (x, t) = −g2

0
δS[V ]

δVµ(x, t)Vµ(x, t), Vµ(x, t = 0) = Uµ(x), (4.24)

where Vµ(x, t) are the Wilson links extended to the 5-dimensional theory. The flow
time t can be interpreted in terms of the average radius of a 4-dimensional sphere
where the short distance fluctuations are averaged within r ≈

√
8t. This is easily

shown by solving the flow equations at leading order for the gauge fields Bµ(x, t)
and Aµ(x)

Bµ(x, t) = 1
(4πt)2

∫
d4y e

(x−y)2
4t Aµ(y). (4.25)
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By taking the limit t→∞ the classical theory is recovered. The action density is a
finite quantity at non-vanishing flow time and does not require renormalization [45],

〈E(x0, t)〉 = 1
4
∑
x
〈tr (Gµν(x, t)Gµν(x, t))〉 , (4.26)

whereGµν(x, t) is the field strength tensor in the 5d theory. According to perturbation
theory, the energy density E(x0, t) scales towards the continuum as a dimension 4
observable. Following [32], se use the following expression to define the reference
scale t0 〈

〈t2E(x0, t)〉x0

〉∣∣∣
t=t0

= 0.3. (4.27)

The value on the r.h.s of the equation is chosen because the behavior in that region
is very approximately linear with respect to the flow time t, and data points within
that region have low statistical errors.

First of all, we fit the energy density E(x0, t) over plateaux in Euclidean time for
each value of the flow time, i.e.we apply a weighted average in the plateau region.

E(t) = 〈E(x0, t)〉x0
. (4.28)

Then, we perform a polynomial fit of the quantity 〈t2E(t)〉 in the region where
〈t2E(t)〉 ≈ 0.3. As we have mentioned before, the behavior in that region is very
approximately linear. We use a linear fit as our preferred functional form. Once the
fit is performed, we find the value of the flow time t that fulfills Eq. (4.27).

The energy density definition depends on the regularization of the field strength
tensor. We choose the Wilson plaquette action for that purpose.

E(x0, t) = 2
∑
~x

tr{1− Vµν(x, t)}. (4.29)

The physical value of the reference scale t0 has been computed for CLS ensembles
in [16,17].

4.3.2 Meson masses

In our setup, the meson masses are used for computing the renormalized chiral
trajectory and matching the quark masses to some target value. For the light and
strange quarks, we use the pseudoscalar meson masses Mπ and MK to match the
sea and valence sectors, whereas for the charm quark (quenched), we use different
combinations of meson masses to match them to some physical quantity (see Sections
3.3 and 3.4).



40 chapter 4. computation of observables

The ground state meson masses are easily obtained by observing two-point
functions at large time extents in the bulk, where the exponential decay is dominated
by the lowest energy state (see Eq. (2.50)).

In practice, the meson masses are computed through the effective mass that is
defined as follows

aM eff
qr (x0) = ln

∣∣∣∣∣ f q,r(x0, y0)

f q,r(x0 + 1, y0)

∣∣∣∣∣ , (4.30)

where the operator indices are implicit. The effective mass cancels the normalization
of two-point correlation functions and it provides a plateau in the region where the
decay is dominated by the ground state. The actual value of the meson mass is
computed by fitting the effective mass function to a plateau neglecting correlations
between different time slices in the plateau region.

Correlators f q,rPP and f q,rViVi provide information for the pseudoscalar meson masses
and vector meson masses, respectively. Charmed vector meson masses are used in the
spin-flavor averaged mass combination Eq. (3.28) as one of our matching conditions
for the charm quark mass.

4.3.3 Quark masses

Renormalized quark masses are easily determined at maximal twist since there is no
additive renormalization terms to the mass and the twisted mass µq is a parameter
in our computations. As discussed in Section 3.2, renormalized twisted mass takes
the form

µRq = Zµ(g
2
0, aµ)µq, Zµ(g

2
0, aµ) = Z−1

P (g2
0, aµ), (4.31)

where µRq isO(a)-improved up toO(atrMsea) effects that are expected to be negligible
in our current setup.

We use the results from [46] to compute the renormalization group invariant
(RGI) quark masses at Nf = 3,

mRGI
q = Ztm

M (g2
0)µq. (4.32)

The factor Ztm
M (g2

0) contains: the renormalization factor to a hadronic renormalization
scheme and a matching factor between the RGI quark massM and that renormalized
mass m(µhad)

Ztm
M (g2

0) =
M

m(µhad)
Z−1
P (g2

0, aµhad). (4.33)

Notice that, the ratio on the r.h.s. of the equation is independent of the quark flavor
as follows from the use of a mass-independent renormalization scheme.
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4.3.4 Pseudoscalar Decay Constants

Decay constants contain the non-perturbative contribution to the weak leptonic decay
amplitude of flavored mesons. The only matrix element that couples a pseudoscalar
state to a weak interaction defines the decay constant fqr

∣∣∣〈0|Aqr0 |P qr(p = 0)〉
∣∣∣ = fqrMqr√

2MqrL3
, (4.34)

where the state |P qr〉 is the ground state for a pseudoscalar meson. The factor
1/
√

2MqrL3 stand for the usual relativistic normalization of one particle states.
The symmetries in the Wtm setup allow to compute decay constants just with
pseudoscalar-pseudoscalar correlators. Due to the fact that the vector point-split cur-
rent Ṽ qr

µ (Eq. (3.9)) is exactly normalized and therefore Zµ = Z−1
P , the renormalized

decay constant can be computed without need of any renormalization constant.
The zero-momentum projection reads

〈0|∂∗0 Ṽ
qr

0 |P qr(p = 0)〉 = i(µq − µr) 〈0|P qr|P qr(p = 0)〉 . (4.35)

At full twist, the physical axial current is related to the vector current for non-diagonal
flavors that mixes up-type and down-type quarks (see Appendix B)

V qr
µ = −iAqrµ , µq > 0 > µr, (4.36)

We apply this relation to the renormalized currents. Hence, the renormalized
pseudoscalar decay constant is related to

fRqr =

√√√√ 2L3

M3
qr

(|µq|+ |µr|) |〈0|P qr|P qr(p = 0)〉| , µq > 0 > µr. (4.37)

We extract the matrix element by fitting pseudoscalar-pseudoscalar correlators
f q,rPP (x0, y0) to an exponential functional form at large distances, where the exponen-
tial decay is dominated by the ground state.

f q,rPP (x0, y0) ≈ a6L3 |〈0|P qr|P qr(p = 0)〉|2 e−Mqr(x0−y0). (4.38)
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In this chapter we present our results for the charm quark mass and decay constants
of pseudoscalar charmed mesons. We describe the chiral and continuum extrapolation
strategy for the different observables in Section 5.2. In Section 5.3, we show the
numerical results for the physical observables. We follow a similar analysis strategy
to the one proposed in [47].

5.1 run parameters and strategy

We perform simulations on the subset of CLS ensembles listed in Table 3.1. Once the
light-strange sector is tuned to maximal twist and matched to the sea (see Section
3.4), we compute light and strange propagators at the target values of (m, µl, µs).
Then, we compute heavy propagators at three different values of the twisted mass
mass µic around the charm region. The computation of charmed observables at
different values of the charm quark mass allows to interpolate observables at the
physical value of the charm quark mass. In Table 5.1, we specify the run parameters
for each ensemble used in the analysis.

Our error analysis is based on the Γ-method [48], a general framework for error
analysis of autocorrelated data. We briefly review the Γ-method in Appendix C. The
analysis program uses the ADerrors library [3], which implements the Γ-method with
Automatic Differentiation (AD) techniques [49]. Automatic Differentiation plays an
important role in our analysis, as it provides a simple way to propagate errors of
complex functions keeping track of all the covariances. Moreover, AD techniques avoid
the numerical computation of derivatives, which may lead to numerical instabilities.
We developed a Julia package based on ADerrors for the analysis of QCD observables.

As discussed in Subsection 3.4.1, the matching procedure for the charm quark
can be taken into account at the level of analysis. We carry out the charm quark
interpolation within the combined chiral and continuum fits. In order to control
systematic effects, we perform fits with different models for each observable, and we
also impose three different charm matching conditions Eq. (3.30) for each model. We

42
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Id β κcr aµl aµs aµ1
c aµ2

c aµ3
c

H101 3.40 0.137284 0.006591 0.006591 0.237975 0.250500 0.263025
H102 3.40 0.137299 0.004734 0.010090 0.228285 0.240300 0.252315
H400 3.46 0.137299 0.005913 0.005913 0.204155 0.214900 0.225645
N202 3.55 0.137300 0.005228 0.005228 0.167105 0.175900 0.184695
N203 3.55 0.137312 0.002420 0.01077 0.172805 0.181900 0.190995
N200 3.55 0.137309 0.003640 0.008432 0.173375 0.182500 0.191625
N300 3.70 0.137207 0.004132 0.004132 0.130910 0.137800 0.144690
J303 3.70 0.137213 0.001512 0.009570 0.133000 0.140000 0.147000

Table 5.1: List of run parameters for each ensemble in Table 3.1. κcr is the critical value
of the hopping parameter κcr = 1/(2amcr). The values on the fourth and fifth columns
correspond to matched values of the light and strange twisted mass. The last three columns
contain the different values of heavy twisted mass in the charm region.

use a Bayesian model average as proposed in [50] to estimate the systematic errors
(see Appendix D). Functional forms for the observables are discussed in next section.

After having extracted the meson masses, the pseudoscalar decay constants and
the renormalization group invariant charm quark mass, we express those observables
in terms of the reference scale t0. We multiply all the observables in lattice units
by the factor

√
8t0/a2 in order to cancel out the explicit dependence on the lattice

spacing a. Then, observables in units of t0 are shifted to the renormalized chiral
trajectory φ4 = φphys

4 . We determine the values of the mass shift ∆m for each
ensemble as described in Section 3.3. We apply the mass shift to the charmed
observables Oc as

Oc(φphys
4 ) = Oc(φ4) + ∆m

∑
f

dOc
dmf

,

dOc
dmf

= −
∑
i

∂Oc
∂P i

〈(
Pi − P i

)( ∂S

∂mf
− ∂S

∂mf

)〉
.

(5.1)

Valence observables only receive one contribution to the mass shift, since they do
not depend explicitly on the sea quark masses.
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5.2 chiral and continuum extrapolations

After applying the mass shifting, we describe our strategy to extrapolate results to
the continuum limit at physical values of the quark masses. We parametrize the RGI
charm quark mass in the continuum limit with the following ansatz

√
8t0MRGI

c (0,φ2,φc) = p0 + p1φ2 + p2φc. (5.2)

The extrapolation to the physical point is given by φ2 = 8t0M2
π . The renormalized

chiral trajectory guarantees that the physical value of the kaon mass is recovered at
φ2 = φphys

2 . The physical value of φ2 is computed with the isospin symmetric values
of the pion mass in [51] and the physical value of t0 in [17] (see Section 3.5).

According to heavy quark effective theory [52], the charmed meson masses are
expected to behave linearly at leading order with respect to charm quark mass
Mc = mc[1 +O(1/Mc)]. We parametrize this dependence with a term linear in φc.
We will use three different values of φc,i (Eq. (3.30)) that correspond to different
matching conditions for the charm quark. We use the physical values of the charmed
meson masses from the PDG [53] to match φc,i to their physical value.

To parametrize the dependence on the lattice spacing a, we expect O(a2) scaling
up to small corrections of order O(atrMsea). As we have explained in Section 3.2,
we expect those corrections to be negligible for lattice spacings a . 0.086 fm. We
neglect cutoff effects proportional to odd powers of the lattice spacing a.

cM (a,φ2,φc) =
a2

8t0

(
c11 + c12φ

2
c + c13φ2

)
+

(
a2

8t0

)2 (
c21 + c22φ

4
c + c23φ

2
c

)
. (5.3)

We neglect terms proportional O(a4M4
π) and O(a4M2

π) in the ansantz because they
are expected to be subleading in our power counting.

We use different model parametrizations of cm. We consider all the combinations1
terms with coefficients cji , which leads to 25 different functional forms for cM .

For the charm quark mass we consider a linear and non-linear parametrization of
the cutoff effects respectively

√
8t0MRGI

c (a,φ2,φc) =
√

8t0MRGI
c (0,φ2,φc) + cM (a,φ2,φc), (5.4)

√
8t0MRGI

c (a,φ2,φc) =
√

8t0MRGI
c (0,φ2,φc) (1 + cM (a,φ2,φc)) . (5.5)

Thus, we end up with 64 ansätze for each matching condition for the charm quark.

1 In practice, the coefficient c1
1 is always included.
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The decay constants fD and fDs are computed in a similar way. By taking
advantage of Chiral Perturbation Theory with heavy quarks [54, 55], we can perform
global chiral fits for both decay constants. We consider linear chiral fits

√
8t0fD(0,φ2,φc) = p0 + p1φ2 +

p2√
φc

, (5.6)
√

8t0fDs(0,φ2,φc) = p0 + p1(2φ4 − 2φ2) +
p2√
φc

, (5.7)

and fits including chiral logarithm corrections

√
8t0fD(0,φ2,φc) = p̃0 + p̃1φ2 +

p̃2√
φc

+ p̃3

(
3µπ + 2µK +

1
3µη

)
, (5.8)

√
8t0fDs(0,φ2,φc) = p̃0 + p̃1(2φ4 − 2φ2) +

p̃2√
φc

+ p̃3

(
4µK +

4
3µη

)
, (5.9)

where µπ, µK and µη are written in terms of φ2 and φ4 as follows

µπ(φ2) = φ2 ln (φ2) , (5.10)

µK(φ2) =
(
φ4 −

1
2φ2

)
ln
(
φ4 −

1
2φ2

)
, (5.11)

µη(φ2) =
(4

3φ4 − φ2

)
ln
(4

3φ4 − φ2

)
. (5.12)

We consider a similar parametrization for the cutoff effects to cM . However, fits that
include the non-linear term in the combined fit turn out to be more unstable. We
thus only consider the linear combination of cutoff effects for the decay constants, and
end up with 64 different ansäntze for the combined fit for each matching condition.

√
8t0fD(s)

(a,φ2,φc) =
√

8t0fD(s)
(0,φ2,φc) + cf(s)(a,φ2,φc), (5.13)

cf (a
2,φ2,φc) =

a2

8t0

(
c11 + c12φ

2
c + c13φ2

)
+

(
a2

8t0

)2 (
c21 + c22φ

4
c + c23φ

2
c

)
, (5.14)

cfs(a
2,φ2,φc) =

a2

8t0

(
c′11 + c′12 φ

2
c + c′13 φ2

)
+

(
a2

8t0

)2 (
c′21 + c′22 φ

4
c + c′23 φ

2
c

)
. (5.15)

We apply linear chiral fits to extract the ηc decay constant (neglecting disconnected
contributions) following a similar strategy.

Additionally, we study the ratio of fDs and fD. We expand the ratio of decay
constants at first order

fDs
fD

(a,φ2) = 1 + p1

(
φ4 −

3
2φ2

)
+ c1

a2

8t0
+ c2

a2

8t0
φ2, (5.16)
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which does not depend on φc. We only take into account cutoff effects of order O(a2)
and O(a2M2

π). Cutoff effects proportional to φc are suppressed in the ratio. Notice
that the ratio is 1 by construction in the symmetric point (Mπ = MK). Therefore,
symmetric point ensembles do not contribute to the fit but the latter is strongly
constrained by the nature of our chiral trajectory.

Fit parameter estimation can be problematic for highly correlated data [56,57].
The estimation of the covariance matrix requires large samples and the matrix
inverse is completely dominated by the small modes. Fit parameters can be computed
minimizing uncorrelated χ2, which provides a reliable estimation for the fit parameters
with highly correlated data. Nevertheless, the χ2 value is no longer a measure of
the quality of the fit. In order to quantify the goodness-of-fit, we thus use the χ2

expected χ2
exp [58], the expected χ2 value for the estimated model parameters. The

ratio χ2/χ2
exp is a good measure of the fit quality, and therefore we introduce a

corrected χ2 [47]

χ2
corr = (d.o.f.) χ

2

χ2
exp

, (5.17)

where χ2
corr/(d.o.f.) ≈ 1 is a good measure for the likelihood of the data describing

the model. Fit parameters are extracted through minimization of an uncorrelated χ2.
The value of χ2

corr provides a weight to each model in the model average as described
in Appendix D.

5.3 physical results
Following the procedure described in the previous sections, we compute the RGI
charm quark mass and the decay constants fD and fDs . We present continuum and
chiral extrapolations for those observables for the preferred model and matching
condition as given by the Akaike Information Criteria (AIC) (see Appendix D).
Similar plots for different matching conditions can be found in Appendix E.

The behavior of matching conditions along the chiral trajectory is non-trivial.
The values of φc depend on the values of the light-strange quark masses and therefore
physical observables from different matching conditions are only expected to agree
in the continuum and at φphys

2 . In order to validate our matching strategy, we check
the results for each matching condition for the charm quark mass, which is specially
sensitive to the matching procedure. Results can be found in Table 5.2, where
the errors are statistical and systematic, respectively. Values correspond to model
averages of 64 models as described in the previous section. In figure 5.1, we show
the continuum extrapolation for the three different matching conditions with the
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preferred models. We check that results from flavor average and ηc are compatible
at the 1-σ level.

Matching φphys
c,1 φphys

c,2 φphys
c,3 combined√

8t0MRGI
c 3.141(53)(6) 3.276(59)(52) 3.150(49)(13) 3.169(52)(50)

Table 5.2: Results of the Bayesian model average of the RGI charm quark mass for the
three different matching conditions φc,i. The last column corresponds to the combined
result.
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Figure 5.1: Continuum extrapolation of the RGI charm quark mass. Points represent
values of the charm quark mass interpolated with different matching conditions. The fits
correspond the preferred model for each matching condition.

We observe that fits with the matching condition φc,2 have higher systematic
effects that are related to the determination of the vector states. This effect may be
related to contamination with excited states. Since there is tension with respect the
other conditions and fits present higher χ2

corr/(d.o.f.), we decide to discard results
related to the spin-flavor average for that reason.

In Figure 5.2, we show the chiral and continuum extrapolations for the RGI mass
for the preferred model and the flavor average. We observe a smooth O(a2) scaling
in the charm quark mass. We also recognize a smooth linear dependence on φ2 as
expected. The values of χ2

corr/(d.o.f.) ≈ 0.3
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Systematic effects related to the Bayesian model average are plotted in Figure
5.3. One can recognize that the distribution function is unimodal and its maximum
corresponds to the best model with the highest weight.

After combining the results from 128(64× 2) models, we quote:

MRGI
c (Nf = 3) = 1.500(16)(5)GeV. (5.18)

The first error is statistical while the second error is related to systematics.
We make use of perturbation theory to give the result in the MS scheme forNf = 4.

The perturbative calculations are performed with the program RunDec [59–61] at
five-loops. Renormalization group equations are solved with the value of Λ(3)

MS =

338(12)MeV from [62], which allows to extract the mass in the MS scheme from the
RGI mass in the three-flavor theory. Then, we match the Nf = 3 and Nf = 4 theories
at the energy scale of the scale invariant charm quark mass mc(µ = mc,Nf = 3). So,
we can compute the MS charm quark mass in the four-flavor theory. We provide the
RGI mass and the quark mass in the MS scheme for Nf = 4. We quote the results:

mc(µ = 3 GeV,Nf = 4) = 1.013(11)(8)Λ GeV, (5.19)
mc(µ = mc,Nf = 4) = 1.297(10)(13)Λ GeV, (5.20)

MRGI
c (Nf = 4) = 1.565(18)(2)Λ GeV, (5.21)

where the first error comes from the error in MRGI
c (Nf = 3) and the second error

arises from the uncertainty in Λ(3)
MS.

For the decay constants we show in Figures 5.4 and 5.6 the continuum and chiral
extrapolations for the model with higher likelihood. The preferred model shows
linear chiral dependence and cutoff effects of order O(a2). We do not resolve chiral
logarithms for the set of ensembles used in the analysis. Figure 5.8 shows the chiral
extrapolations including logarithmic contributions. We also discern from the figures
on the left a small dependence on φc in our range of charm mass parameters. The
fit with higher weight in the model average has a value of χ2

corr/(d.o.f.) ≈ 0.8. In
Figure 5.5 and 5.7 we exhibit the Bayesian model averages and the histograms.

For the combined fits of both decay constants, we quote

fD = 212.3(6.0)(3.1)MeV, (5.22)
fDs = 243.5(4.2)(1.6)MeV. (5.23)

The error budget for the charm quark mass and decay constants fD and fDs is
given in Figure 5.9. The error of the decay constants is completely dominated by
statistical uncertainty of correlators and the resulting errors on chiral and continuum
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Figure 5.2: Left: Continuum limit extrapolation of the RGI charm quark massMRGI
c (Nf =

3) in terms of the reference scale t0. The red band represent the projection to the physical
point φ2 = φphys

2 and φc = φphys
c . Right: Chiral extrapolation of the RGI charm quark mass

MRGI
c (Nf = 3) in terms of the reference scale t0. The red band represents the projection

to the continuum limit. Dashed lines correspond to chiral extrapolations at finite lattice
spacing. The results of both plots are matched to φphys

c,1 .

fits. As described in Section 4.3, we compute decay constants without requiring
renormalization constants. Renormalization constants introduce the main source of
uncertainty in the RGI quark mass in addition to the scale setting procedure and
two-point correlation functions. Notice that the uncertainty of the charm quark mass
in the MS scheme at the charm scale is dominated by contributions coming from
perturbation theory, reflecting the use of perturbation theory at few-GeV scale. The
addition of more ensembles with finer lattice spacing and lower pion masses could
reduce the uncertainty coming from chiral and continuum extrapolations for all the
observables in the study.

We also consider the ratio of decay constants.

fDs
fD

= 1.1655(60). (5.24)

We do not quote a systematic error estimation for the ratio because we do not have
enough ensembles outside the symmetric point to perform a Bayesian model average.
In Figure 5.12, we show the chiral fit with a value χ2/χ2

exp ≈ 0.7. The ratio is less
sensitive to lattice artifacts since the bulk of discretization effects are canceled. We
observe linear dependence on φ2 for the ratio.

In Figures 5.10 and 5.11, we present a comparison between our results and the
Flavor Lattice Averaging Group (FLAG) summary plots [62]. The value of the charm
quark mass in the MS scheme at µ = mc present a 1-sigma tension with respect
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Figure 5.3: Left: Model average of MRGI
c (Nf = 3). The red band represent the systematic

error and the red point represents the model average with the total error. Right: Histogram
with the results of each model of MRGI

c (Nf = 3). The red band represents the systematic
error.

to the FLAG average at Nf = 2 + 1, dominated by HPQCD 10 [63]. Our result
is compatible within 1-σ errors with ALPHA 21 [47], which carries out a similar
analysis strategy. The result is also compatible with other lattice computations such
as JLQCD 16 [64] and χQCD 14 [65].

The value fD is in agreement with the FLAG average and the uncertainties are
similar to RBC/UKQCD 17 [66] and HPQCD 12 [67]. We observe a 1-σ dispersion
for our determination of fDs with respect to the FLAG average. The independent
determination of the ratio fDs/fD is also 1-sigma below the average and it is
consistent with the independent computations of fD and fDs .

We also compute the results for the decay constant of the connected contribution
of the ηc meson. A very smooth dependence on φ2 in the chiral extrapolation is seen,
as expected. In figure 5.13, we show the continuum and chiral extrapolations for the
connected contribution to the ηc decay constant with a value of χ2

corr/(d.o.f.) ≈ 1.0.
We observe large scaling violations well described by a linear behavior in a2, and a
smooth dependence on the pion mass as expected since the ηc meson does not depend
on valence light-strange quarks. We quote the value for the 64(32× 2) models:

fηc = 382.7(3.5)(2.5)MeV. (5.25)

Our results is more than 2 sigma away from other lattice computation at Nf = 2+ 1
(HPQCD [88]). Further preliminary results for the charmonium sector can be found
in [98].
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6 C O N C L U S I O N S

In this work we have studied a lattice field theory regularization on QCD with a
mixed action. We describe the setup of Wilson O(a)-improved fermions in the sea
and Wilson twisted mass fermions at full twist in the valence sector. The valence
action guarantees automatic O(a)-improvement for the desired quantities up to
residual O(aMsea) cutoff effects that are expected to be negligible at the current
level of precision. Mixed-action setups require a matching procedure between sea
and valence in order to recover unitarity in the continuum limit. We detail a tuning
procedure to match light-strange quarks while the twist angle is fixed to π/2. In
contrast to the light sector, the charm quark is quenched and therefore it only needs
to be matched to a physical observable. The charm matching condition at finite
lattice spacing introduce a dependence on a physical scale, e.g. , tphys

0 . We treat
the matching of the charm quark in combination with the chiral and continuum
extrapolations in global fits to our data.

We present an analysis with a subset of CLS ensembles with four values of
the lattice spacing within the range 0.05 fm . a . 0.087 fm (i.e. , 0.0025 fm2 .
a2 . 0.0076 fm2) and pion masses between 260 MeV and 420 MeV. We compute for
each ensemble three heavy propagators with masses around the charm quark mass.
Therefore, charm observables can be matched to their physical value by performing
interpolations. We use Distance Preconditioning techniques on heavy propagators in
order to deal with precision loss at large distances.

We determine the values of the charm quark mass and decay constants of D and
Ds mesons. We take advantage of Heavy Quark Effective Theory (HQET) and Chiral
Perturbation Theory (χPT) with heavy mesons to parametrize the chiral-continuum
extrapolation combined with the charm scale interpolation. Systematic effects are
estimated in the context of Bayesian statistics. We use a Bayesian model average with
different functional forms to provide a measure of the systematic effects. Additionally,
we introduce in the analysis three different matching condition for the charm mass.
The charm quark mass is tuned by imposing the physical values of meson mass
combinations. For that purpose, we consider the flavor average, spin-flavor average
and the ηc meson mass (neglecting disconnected contributions).
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We observe that models that contain dependence on the spin-flavor average
turn out to have larger values of χ2. We use a model average based on the Akaike
Information Criteria (AIC) using 64 functional forms and the two other matching
conditions for each observable. We quote our final result for the Renormalization
Group Invariant (RGI) quark mass in the three-flavor theory

MRGI
c (Nf = 3) = 1.500(16)(5)GeV,

and we use perturbation theory at 5-loops to compute the charm quark mass in the
MS scheme in the four-flavor theory

mc(mc) = 1.297(10)(13)Λ GeV,

which is well compatible with other lattice Nf = 2 + 1 determinations [47,64,65].
Decay constants fD and fDs are determined using global fits and ansätze based

on χPT with heavy mesons. We take into account different model with and without
chiral logarithmic corrections. We quote the following results for the decay constants

fD = 212.3(6.0)(3.1)MeV, fDs = 243.5(4.2)(1.6)MeV.



C O N C L U S I O N E S

En este trabajo estudiamos una regularización de QCD de teoría de campos en
el retículo con una acción mixta. Describimos el montaje de fermiones de Wilson
mejorados a O(a) en el mar y fermiones Wilson twisted mass a twist máximo en el
sector de valencia. La acción de valencia garantiza el mejorado automático a O(a)
para las cantidades deseadas salvo por efectos residuales de cutoff O(aMsea), que
se espera que sean despreciables con el nivel de precisión actual. Los montajes con
acciones mixtas requieren de un proceso de matching entre mar y valencia para
recuperar la unitariedad en el límite continuo. Detallamos un proceso de calibrado
para imponer igualdad de masas en los quarks ligeros y strange mientras que el ángulo
de twist se fija a π/2. A diferencia del sector ligero, la masa del quark charm no se
encuentra en el mar, y por lo tanto solo necesita coincidir con un observable físico.
La condición de matching del quark charm a espaciado reticular finito introduce una
dependencia en una escala física e.g. , tphys

0 . Tratamos el matching del quark charm
en combinación con las extrapolaciones quirales al continuo.

Presentamos un análisis con un subconjunto de ensembles CLS con cuatro valores
de el espaciado reticular en el rango 0.05 fm . a . 0.087 fm (i.e. , 0.0025 fm2 .
a2 . 0.0076 fm2) y masas de pion entre 260 MeV y 420 MeV. Calculamos en cada
ensemble tres propagadores pesados con masas cercanas a la masa del quark charm.
Por lo tanto, los observables que depende de este quark pueden ser fijados a su valor
físico haciendo interpolaciones. Usamos técnicas de Distance Preconditioning en los
propagadores pesados para prevenir la perdida de precisión a distancias grandes.

Determinamos los valores de la masa del quark charm y de las constantes de
desintegración de los mesones D y Ds. Aprovechamos la Teoría Efectiva de Quarks
Pesados (HQET) y Teoría de Perturbaciones Quirales (χPT) con mesones pesados
para parametrizar las extrapolaciones quirales al continuo en combinación con la
interpolación a la escala del quark charm. Los efectos sistemáticos son estimados en
el contexto de la estadística Bayesiana. Usamos una media de modelos Bayesiana
con diferentes formas funcionales para dar una medida de los efectos sistemáticos.
Adicionalmente, introducimos en el análisis tres condiciones de matching distintas
para el quark charm. La masa de este quark se calibra mediante la imposición de
los valores físicos de las combinaciones de masa. Para este propósito consideramos
la media de sabor, la media de spin-sabor y la masa del meson ηc (despreciando
contribuciones disconexas).
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Observamos que los modelos que contienen dependencia en la media de spin-sabor
resultan tener valores mayores de χ2. Usamos una media de modelos basada en el
Criterio de Información de Akaike (AIC) usando 64 formas funcionales y las otras
dos condiciones de matching para cada observable. Damos un resultado para la masa
de quark Invariante del Grupo de Renormalización (RGI) en la teoría de tres sabores

MRGI
c (Nf = 3) = 1.500(16)(5)GeV,

y usamos teoría de perturbaciones a 5 bucles para calcular la masa del quark charm
en el esquema MS en la teoría de cuatro sabores

mc(mc) = 1.297(10)(13)Λ GeV,

la cuál es compatible con otras determinaciones Nf = 2 + 1 en el retículo [47,64,65].
Las constantes de desintegración fD y fDs se determinan usando ajustes globales y

formas funcionales basadas en χPT con mesones pesados. Tomamos en consideración
diferentes modelos con y sin logaritmos quirales. Damos el siguiente resultado para
las constantes de desintegración

fD = 212.3(6.0)(3.1)MeV, fDs = 243.5(4.2)(1.6)MeV.
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A C O N V E N T I O N S

gamma matrices

Dirac matrices in the Euclidean space satisfy

{γµ, γν} = 2δµν1, γµ = γ†µ. (A.1)

The γ5 matrix is defined as
γ5 = γ0γ1γ2γ3, (A.2)

fulfilling the properties

{γ5, γµ} = 0, γ2
5 = 1, γ5 = γ†5, (A.3)

In the Weyl representation, gamma matrices take the form

γ0 =

(
0 −1

−1 0

)
, γk =

(
0 −iσk
iσk 0

)
, γ5 =

(
1 0
0 −1

)
, (A.4)

where σk (k = 1, 2, 3) are the Pauli matrices. The hermitian tensor σµν ≡ i
2 [γµ, γν ]

in the Weyl representation reads

σ0k =

(
σk 0
0 −σk

)
, σij = −εijk

(
σk 0
0 σk

)
. (A.5)

dirac bilinears

We introduce the notation for the Dirac bilinears in the twisted mass basis {χ, χ̄}

Sqr(x) = χ̄q(x)χr(x), P qr(x) = χ̄q(x)γ5χ
r(x),

V qr
µ (x) = χ̄q(x)γµχ

r(x), Aqrµ (x) = χ̄q(x)γµγ5χ
r(x),

T qrµν(x) = χ̄q(x)σµνχ
r(x).

(A.6)
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In a similar way, Dirac bilinears in the physical basis {ψ, ψ̄} take the form

Sqr(x) = ψ̄q(x)ψr(x), Pqr(x) = ψ̄q(x)γ5ψ
r(x),

Vqrµ (x) = ψ̄q(x)γµψ
r(x), Aqrµ (x) = ψ̄q(x)γµγ5ψ

r(x),
T qrµν (x) = ψ̄q(x)σµνψ

r(x).
(A.7)

We recall the change of basis in our setup

ψ = e−i
π
2
T
2 γ5χ, ψ̄ = χ̄e−i

π
2
T
2 γ5 , T = diag(+1,−1,−1,+1). (A.8)



B C H I R A L R O TAT I O N S

We summarize the change of basis between the twisted {χ, χ̄} and physical basis
{ψ, ψ̄} for the whole set of Dirac bilinears in our setup. We recall the twisted mass
matrix from Section 3.2

µ = diag(µu,µd,µs,µc) = diag (+|µl|,−|µl|,−|µs|,+|µc|) (B.1)

and the relation between both basis in our setup

ψ = e−i
π
2
T
2 γ5χ, ψ̄ = χ̄e−i

π
2
T
2 γ5 , T = diag(+1,−1,−1,+1). (B.2)

We define the sign of the twisted mass for a given flavor such that

ηq = sgn(µq). (B.3)

Therefore, Dirac bilinears transform into the physical basis {χ, χ̄} → {ψ, ψ̄} as
follows:

Sqr(x) =
1
2(1− ηqηr)S

qr(x) +
i

2(ηq + ηr)Pqr(x), (B.4)

P qr(x) =
1
2(1− ηqηr)P

qr(x) +
i

2(ηq + ηr)Sqr(x), (B.5)

V qr
µ (x) =

1
2(1 + ηqηr)Vqrµ (x)− i

2(ηq − ηr)A
qr
µ (x), (B.6)

Aqrµ (x) =
1
2(1 + ηqηr)Aqrµ (x)− i

2(ηq − ηr)V
qr
µ (x), (B.7)

T qrµν(x) =
1
2(1− ηqηr)T

qr
µν (x)−

i

4(ηq + ηr)εµνρσT qrρσ (x). (B.8)
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Therefore, inverse transformations {ψ, ψ̄} → {χ, χ̄} read

Sqr(x) =
1
2(1− ηqηr)S

qr(x)− i

2(ηq + ηr)P
qr(x), (B.9)

Pqr(x) =
1
2(1− ηqηr)P

qr(x)− i

2(ηq + ηr)S
qr(x), (B.10)

Vqrµ (x) =
1
2(1 + ηqηr)V

qr
µ (x) +

i

2(ηq − ηr)A
qr
µ (x), (B.11)

Aqrµ (x) =
1
2(1 + ηqηr)A

qr
µ (x) +

i

2(ηq − ηr)V
qr
µ (x), (B.12)

T qrµν (x) =
1
2(1− ηqηr)T

qr
µν(x) +

i

4(ηq + ηr)εµνρσT
qr
ρσ(x). (B.13)



C E R R O R A N A LY S I S

We present the techniques that we use in our study for error computation. We review
the Γ-method [48], a general framework of error analysis for autocorrelated data.

A general primary observable as Pαi , where i labels the observable and α the
ensemble where it is measured. In practice we only have access to a finite set of
samples for a given primary observable Pαi . We call each measurement in the MC
chain

pαi (k), k = 1, . . . ,Nα, (C.1)

where k is each MC measurement and Nα is the total number of measurements on
that ensemble. For each observable the mean and the deviation can be estimated

pαi =
1
Nα

Nα∑
k=1

pαi (k), (C.2)

δ
α
i = pαi − Pαi . (C.3)

pαi is an unbiased estimators of Pαi , therefore 〈δ
α
i 〉 = 0. We define the function

Γαβij (k)
〈(pαi (k)− Pαi )(p

β
j (k+ t)− P βj )〉 ≡ δαβΓij(k). (C.4)

Since, the MC chain is invariant under translations the Γ-function only depends on
distance differences.

In order to analyze the statistical error for each observable, we recall the Central
Limit Theorem. For a sufficiently large number of samples Nα, the values of pαi are
Gaussian distributed. The Gaussian distribution is defined by the covariance matrix

〈δαi δ
β
j 〉 =

1
N2
α
δαβ

Nα∑
kl

Γij(k− l) =
1
Nα

Cijδαβ, (C.5)

where the covariance matrix can be identified with

Cij =
∞∑

k=−∞
Γij(k). (C.6)
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The estimator for the Γ-function will take the form

Γαβij (t) =
1

Nα − t
δαβ

Nα−t∑
k=1

δ̂αi (t+ k)δ̂αj (k),

δ̂αi (k) = pαi (k)− pαi ,
(C.7)

where δ̂j(k) are the deviations of each measurement with respect to the mean.
Therefore, the statistical error for a primary observable for each ensemble can be
estimated

(σαi )
2 =

1
Nα

∞∑
t=−∞

Γααii (t). (C.8)

A derived quantity is defined through the application of a a given function f to
an observable. The error propagation is based on a Taylor expansion provided that
the observable is precise enough and the δαi (k) is small. We define the value of the
function f applied to the observable Pαi .

F = f(Pαi ). (C.9)

Therefore, the estimator F = f(pαi ) can be expanded around F

F = F + ∂αi (f) δ
α
i +

1
2∂

α
i ∂

β
j (f) δ

α
i δ

β
j + . . . (C.10)

The error of F for a given ensemble is computed

(σF )
2 = 〈(F − F )2〉 '

∑
α

1
Nα

∑
ij

∂αi f∂
α
j f

∑
t

Γααij (t). (C.11)

The integrated autocorrelation time for a derived observable F is defined as

ταint(F ) =
1
2 +

∞∑
t=1

ΓαF (t)
ΓαF (0)

, (C.12)

ΓαF (t) =
∑
ij

∂αi f ∂
α
j f Γααij (t). (C.13)

The quantity ταint(F ) measures the effective number of independent samples in the
MC chain for a given ensemble and a given derived observable F .

In practice, the determinations of the errors and the integrated autocorrelation
times requires a truncation in the time series. The correlation between MC trajectories
decays exponentially with the MC time. Hence, the autocorrelation function Γ(t) t→∞∼
e−t/τ asymptotically vanishes, whereas its error keeps almost constant. So, the signal
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to noise ratio of Γ(t) deteriorates significantly. A truncation window is needed to
avoid that measurements with large noise dominates the summation.

The summation window Wα
F introduce a bias in the error estimation. As shown

in [48]. The systematic uncertainty can be estimated

δαsys
σα
∼ − exp(−Wα/τ ). (C.14)

The summation window has to be chosen larger enough to guarantee that the
systematic effect is under control. However, as the window increases the points with
larger relative errors are added. The statistical error of the autocorrelation function
is

(δαstat)
2

(σα)2 '
2(2Wα + 1)

N
. (C.15)

In order to find the optimal summation window, choose the value that minimizes
the sum of the systematic and statistical contributions.

Wα
F = min

W

exp(−W/(Sτ τint)) +

√
2(2W + 1)

Nα

 , (C.16)

where Sτ is a parameter that can be tuned to modify the summation window. The
value of the parameter must be chosen according to the shape of the autocorrelation
function.

The integrated autocorrelation time and the error estimate are estimated

ταint(F ) =
1
2 +

Wα
F∑

t=1

ΓαF (t)
ΓαF (0)

, (C.17)

(σF )
2 =

∑
α

2ταint(F )

Nα
ΓαF (0). (C.18)

Autocorrelation functions decays asymptotically Γ(t) t→∞∼ e−t/τexp . The exponen-
tial autocorrelation time τexp represents the slowest mode of the transition matrix.
The quantity τexp characterizes the MC chain and is observable independent. In
practice, the optimal summation windows are not large enough to resolve the slowest
decay mode τexp. As proposed in [19], the integrated autocorrelation time can be
improved to include information about the exponential autocorrelation time

ταint(F ) =
1
2 +

Wα
F∑

t=1

ΓαF (t)
ΓαF (0)

+ τexp
ΓαF (Wα

F + 1)
ΓαF (0)

. (C.19)
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The error is estimated with the previous expression in Eq. (C.18).
The value of τexp is computed by analyzing cheap simulations with large MC

chains. We use the value given in [2] for CLS ensembles

τexp = 14(3) t0
a2 . (C.20)
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Systematic effects for each observable are computed using a Bayesian model aver-
age [50], where each model is weighted by the Akaike Information Criteria (AIC) [99].
The AIC is defined with the corrected χ2 for each model Mi such as

AIC(Mi) = (χ2
corr(Mi)) + 2ki, (i = 1, . . . ,NM ), (D.1)

where ki is number of parameters of a given model Mi. The weight of each model wi
can be extracted from the AIC in the following way

wi = N exp(−1
2AIC(Mi)), N−1 =

NM∑
i=1

exp(−1
2AIC(Mi)). (D.2)

Therefore, the Bayesian model average reads

〈Oc〉 =
NM∑
i=1

wi 〈Oc〉i , (D.3)

where 〈Oc〉i are the results of an observable Oc with a given model Mi. We use the
variance of the model average to estimate the systematic error given by the model
choice

σ2
sys(Oc) = 〈O2

c 〉 − 〈Oc〉
2 =

NM∑
i=1

wi 〈Oc〉2i −

NM∑
i=1

wi 〈Oc〉i

2

. (D.4)
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Figure E.1: Left: Continuum limit extrapolation of the RGI charm quark massMRGI
c (Nf =

3) in terms of the reference scale t0. The red band represent the projection to the physical
point φ2 = φphys

2 and φc = φphys
c . Right: Chiral extrapolation of the RGI charm quark mass

MRGI
c (Nf = 3) in terms of the reference scale t0. The red band represents the projection

to the continuum limit. Dashed lines correspond to chiral extrapolations at finite lattice
spacing. The results of both plots are matched to φphys

c,3 .
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Figure E.2: Left: Continuum limit extrapolation of the decay constant fD in units of the
reference scale t0. The red band represent the projection to the physical point φ2 = φphys

2
and φc = φphys

c . Right: Chiral extrapolation of the decay constant fD in units of the
reference scale t0. The red band represents the projection to the continuum limit. Dashed
lines correspond to chiral extrapolations at finite lattice spacing. The results of both plots
are matched to φphys

c,2 .
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Figure E.3: Left: Continuum limit extrapolation of the decay constant fD in units of the
reference scale t0. The red band represent the projection to the physical point φ2 = φphys

2
and φc = φphys

c . Right: Chiral extrapolation of the decay constant fD in units of the
reference scale t0. The red band represents the projection to the continuum limit. Dashed
lines correspond to chiral extrapolations at finite lattice spacing. The results of both plots
are matched to φphys
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reference scale t0. The red band represent the projection to the physical point φ2 = φphys
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and φc = φphys

c . Right: Chiral extrapolation of the decay constant fDs in units of the
reference scale t0. The red band represents the projection to the continuum limit. Dashed
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Figure E.5: Left: Continuum limit extrapolation of the decay constant fDs in units of the
reference scale t0. The red band represent the projection to the physical point φ2 = φphys

2
and φc = φphys

c . Right: Chiral extrapolation of the decay constant fDs in units of the
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Figure E.6: Left: Continuum limit extrapolation of the decay constant fηc in units of the
reference scale t0. The red band represent the projection to the physical point φ2 = φphys

2
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c . Right: Chiral extrapolation of the decay constant fηc in units of the
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c . Right: Chiral extrapolation of the decay constant fηc in units of the
reference scale t0. The red band represents the projection to the continuum limit. Dashed
lines correspond to chiral extrapolations at finite lattice spacing. The results of both plots
are matched to φphys

c,3 .



B I B L I O G R A P H Y

[1] K. G. Wilson, “Confinement of Quarks,” Phys. Rev. D, vol. 10, pp. 2445–2459,
1974.

[2] M. Bruno et al., “Simulation of QCD with Nf = 2 + 1 flavors of non-
perturbatively improved Wilson fermions,” JHEP, vol. 02, p. 043, 2015.

[3] A. Ramos, “Automatic differentiation for error analysis of Monte Carlo data,”
Comput. Phys. Commun., vol. 238, pp. 19–35, 2019.

[4] M. Luscher and P. Weisz, “Computation of the Action for On-Shell Improved
Lattice Gauge Theories at Weak Coupling,” Phys. Lett. B, vol. 158, pp. 250–254,
1985.

[5] H. Nielsen and M. Ninomiya, “A no-go theorem for regularizing chiral fermions,”
Physics Letters B, vol. 105, no. 2, pp. 219–223, 1981.

[6] K. G. Wilson, “Quarks and Strings on a Lattice,” in 13th International School
of Subnuclear Physics: New Phenomena in Subnuclear Physics, 11 1975.

[7] L. Del Debbio, L. Giusti, M. Luscher, R. Petronzio, and N. Tantalo, “Stability of
lattice QCD simulations and the thermodynamic limit,” JHEP, vol. 02, p. 011,
2006.

[8] R. Frezzotti, P. A. Grassi, S. Sint, and P. Weisz, “Lattice QCD with a chirally
twisted mass term,” JHEP, vol. 08, p. 058, 2001.

[9] A. Shindler, “Twisted mass lattice QCD,” Phys. Rept., vol. 461, pp. 37–110,
2008.

[10] K. Symanzik, “Continuum Limit and Improved Action in Lattice Theories. 1.
Principles and phi**4 Theory,” Nucl. Phys. B, vol. 226, pp. 187–204, 1983.

[11] K. Symanzik, “Continuum Limit and Improved Action in Lattice Theories. 2.
O(N) Nonlinear Sigma Model in Perturbation Theory,” Nucl. Phys. B, vol. 226,
pp. 205–227, 1983.

75



76 BIBLIOGRAPHY

[12] M. Bochicchio, L. Maiani, G. Martinelli, G. C. Rossi, and M. Testa, “Chiral
Symmetry on the Lattice with Wilson Fermions,” Nucl. Phys. B, vol. 262, p. 331,
1985.

[13] B. Sheikholeslami and R. Wohlert, “Improved Continuum Limit Lattice Action
for QCD with Wilson Fermions,” Nucl. Phys. B, vol. 259, p. 572, 1985.

[14] R. Frezzotti and G. C. Rossi, “Chirally improving Wilson fermions. 1. O(a)
improvement,” JHEP, vol. 08, p. 007, 2004.

[15] R. Frezzotti and G. C. Rossi, “Chirally improving Wilson fermions. II. Four-
quark operators,” JHEP, vol. 10, p. 070, 2004.

[16] M. Bruno, T. Korzec, and S. Schaefer, “Setting the scale for the CLS 2 + 1
flavor ensembles,” Phys. Rev. D, vol. 95, no. 7, p. 074504, 2017.

[17] J. A. Romero Jurado, Study of mesonic observables from a mixed action lattice
QCD formalism. PhD thesis, Madrid, Autonoma U., 2020.

[18] J. Bulava and S. Schaefer, “Improvement of Nf = 3 lattice QCD with Wilson
fermions and tree-level improved gauge action,” Nucl. Phys. B, vol. 874, pp. 188–
197, 2013.

[19] S. Schaefer, R. Sommer, and F. Virotta, “Critical slowing down and error
analysis in lattice QCD simulations,” Nucl. Phys. B, vol. 845, pp. 93–119, 2011.

[20] M. Luscher, “Topology of Lattice Gauge Fields,” Commun. Math. Phys., vol. 85,
p. 39, 1982.

[21] M. Bruno, S. Schaefer, and R. Sommer, “Topological susceptibility and the
sampling of field space in Nf = 2 lattice QCD simulations,” JHEP, vol. 08,
p. 150, 2014.

[22] M. Luscher, “Topology, the Wilson flow and the HMC algorithm,” PoS, vol. LAT-
TICE2010, p. 015, 2010.

[23] M. Luscher and S. Schaefer, “Lattice QCD without topology barriers,” JHEP,
vol. 07, p. 036, 2011.

[24] D. Becirevic, P. Boucaud, V. Lubicz, G. Martinelli, F. Mescia, S. Simula, and
C. Tarantino, “Exploring twisted mass lattice QCD with the Clover term,” Phys.
Rev. D, vol. 74, p. 034501, 2006.



BIBLIOGRAPHY 77

[25] P. Dimopoulos, H. Simma, and A. Vladikas, “Quenched B(K)-parameter from
Osterwalder-Seiler tmQCD quarks and mass-splitting discretization effects,”
JHEP, vol. 07, p. 007, 2009.

[26] A. Bussone, S. Chaves, G. Herdoíza, C. Pena, D. Preti, J. A. Romero, and
J. Ugarrio, “Heavy-quark physics with a tmQCD valence action,” PoS, vol. LAT-
TICE2018, p. 270, 2019.

[27] K. Osterwalder and E. Seiler, “Gauge Field Theories on the Lattice,” Annals
Phys., vol. 110, p. 440, 1978.

[28] A. Bussone, G. Herdoíza, C. Pena, D. Preti, J. A. Romero, and J. Ugarrio,
“Matching of Nf = 2 + 1 CLS ensembles to a tmQCD valence sector,” PoS,
vol. LATTICE2018, p. 318, 2019.

[29] A. Bussone, A. Conigli, G. Herdoíza, J. Frison, C. Pena, D. Preti, J. A. Romero,
A. Sáez, and J. Ugarrio, “Light meson physics and scale setting from mixed action
with Wilson twisted mass valence quarks,” in 38th International Symposium on
Lattice Field Theory, 2021.

[30] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid Monte
Carlo,” Phys. Lett. B, vol. 195, pp. 216–222, 1987.

[31] G. M. de Divitiis, R. Petronzio, and N. Tantalo, “Distance preconditioning for
lattice Dirac operators,” Phys. Lett. B, vol. 692, pp. 157–160, 2010.

[32] M. Lüscher, “Properties and uses of the Wilson flow in lattice QCD,” JHEP,
vol. 08, p. 071, 2010. [Erratum: JHEP 03, 092 (2014)].

[33] A. D. Kennedy and P. Rossi, “CLASSICAL MECHANICS ON GROUP MANI-
FOLDS AND APPLICATIONS TO HYBRID MONTE CARLO,” Nucl. Phys.
B, vol. 327, pp. 782–790, 1989.

[34] J. C. Sexton and D. H. Weingarten, “Hamiltonian evolution for the hybrid
Monte Carlo algorithm,” Nucl. Phys. B, vol. 380, pp. 665–677, 1992.

[35] I. Omelyan, I. Mryglod, and R. Folk, “Symplectic analytically integrable de-
composition algorithms: classification, derivation, and application to molecular
dynamics, quantum and celestial mechanics simulations,” Computer Physics
Communications, vol. 151, no. 3, pp. 272–314, 2003.

[36] M. Luscher and F. Palombi, “Fluctuations and reweighting of the quark deter-
minant on large lattices,” PoS, vol. LATTICE2008, p. 049, 2008.



78 BIBLIOGRAPHY

[37] M. A. Clark and A. D. Kennedy, “Accelerating dynamical fermion computa-
tions using the rational hybrid Monte Carlo (RHMC) algorithm with multiple
pseudofermion fields,” Phys. Rev. Lett., vol. 98, p. 051601, 2007.

[38] A. D. Kennedy, I. Horvath, and S. Sint, “A New exact method for dynamical
fermion computations with nonlocal actions,” Nucl. Phys. B Proc. Suppl., vol. 73,
pp. 834–836, 1999.

[39] M. Hasenbusch, “Speeding up the hybrid Monte Carlo algorithm for dynamical
fermions,” Phys. Lett. B, vol. 519, pp. 177–182, 2001.

[40] M. Hasenbusch and K. Jansen, “Speeding up lattice QCD simulations with
clover improved Wilson fermions,” Nucl. Phys. B, vol. 659, pp. 299–320, 2003.

[41] T. A. DeGrand, “A Conditioning Technique for Matrix Inversion for Wilson
Fermions,” Comput. Phys. Commun., vol. 52, pp. 161–164, 1988.

[42] J. Viehoff, N. Eicker, S. Gusken, H. Hoeber, P. Lacock, T. Lippert, K. Schilling,
A. Spitz, and P. Uberholz, “Improving stochastic estimator techniques for
disconnected diagrams,” Nucl. Phys. B Proc. Suppl., vol. 63, pp. 269–271, 1998.

[43] J. Foley, K. Jimmy Juge, A. O’Cais, M. Peardon, S. M. Ryan, and J.-I. Skullerud,
“Practical all-to-all propagators for lattice QCD,” Comput. Phys. Commun.,
vol. 172, pp. 145–162, 2005.

[44] M. Luscher, “Trivializing maps, the Wilson flow and the HMC algorithm,”
Commun. Math. Phys., vol. 293, pp. 899–919, 2010.

[45] M. Luscher and P. Weisz, “Perturbative analysis of the gradient flow in non-
abelian gauge theories,” JHEP, vol. 02, p. 051, 2011.

[46] I. Campos, P. Fritzsch, C. Pena, D. Preti, A. Ramos, and A. Vladikas, “Non-
perturbative quark mass renormalisation and running in Nf = 3 QCD,” Eur.
Phys. J. C, vol. 78, no. 5, p. 387, 2018.

[47] J. Heitger, F. Joswig, and S. Kuberski, “Determination of the charm quark mass
in lattice QCD with 2 + 1 flavours on fine lattices,” JHEP, vol. 05, p. 288, 2021.

[48] U. Wolff, “Monte Carlo errors with less errors,” Comput. Phys. Commun.,
vol. 156, pp. 143–153, 2004. [Erratum: Comput.Phys.Commun. 176, 383 (2007)].

[49] J. Revels, M. Lubin, and T. Papamarkou, “Forward-mode automatic differentia-
tion in julia,” CoRR, vol. abs/1607.07892, 2016.



BIBLIOGRAPHY 79

[50] W. I. Jay and E. T. Neil, “Bayesian model averaging for analysis of lattice field
theory results,” Phys. Rev. D, vol. 103, p. 114502, 2021.

[51] S. Aoki et al., “Review of lattice results concerning low-energy particle physics,”
Eur. Phys. J. C, vol. 77, no. 2, p. 112, 2017.

[52] H. Georgi, “An Effective Field Theory for Heavy Quarks at Low-energies,” Phys.
Lett. B, vol. 240, pp. 447–450, 1990.

[53] P. A. Zyla et al., “Review of Particle Physics,” PTEP, vol. 2020, no. 8, p. 083C01,
2020.

[54] B. Grinstein, E. E. Jenkins, A. V. Manohar, M. J. Savage, and M. B. Wise,
“Chiral perturbation theory for f D(s) / f D and B B(s) / B B,” Nucl. Phys. B,
vol. 380, pp. 369–376, 1992.

[55] J. L. Goity, “Chiral perturbation theory for SU(3) breaking in heavy meson
systems,” Phys. Rev. D, vol. 46, pp. 3929–3936, 1992.

[56] C. Michael, “Fitting correlated data,” Phys. Rev. D, vol. 49, pp. 2616–2619,
1994.

[57] C. Michael and A. McKerrell, “Fitting correlated hadron mass spectrum data,”
Phys. Rev. D, vol. 51, pp. 3745–3750, 1995.

[58] M. Bruno and R. Sommer In preparation.

[59] K. G. Chetyrkin, J. H. Kuhn, and M. Steinhauser, “RunDec: A Mathematica
package for running and decoupling of the strong coupling and quark masses,”
Comput. Phys. Commun., vol. 133, pp. 43–65, 2000.

[60] B. Schmidt and M. Steinhauser, “CRunDec: a C++ package for running and
decoupling of the strong coupling and quark masses,” Comput. Phys. Commun.,
vol. 183, pp. 1845–1848, 2012.

[61] F. Herren and M. Steinhauser, “Version 3 of RunDec and CRunDec,” Comput.
Phys. Commun., vol. 224, pp. 333–345, 2018.

[62] Y. Aoki et al., “FLAG Review 2021,” 11 2021.

[63] C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel, and G. P. Lepage,
“High-Precision c and b Masses, and QCD Coupling from Current-Current
Correlators in Lattice and Continuum QCD,” Phys. Rev. D, vol. 82, p. 034512,
2010.



80 BIBLIOGRAPHY

[64] K. Nakayama, B. Fahy, and S. Hashimoto, “Short-distance charmonium corre-
lator on the lattice with Möbius domain-wall fermion and a determination of
charm quark mass,” Phys. Rev. D, vol. 94, no. 5, p. 054507, 2016.

[65] Y.-B. Yang et al., “Charm and strange quark masses and fDs from overlap
fermions,” Phys. Rev. D, vol. 92, no. 3, p. 034517, 2015.

[66] P. A. Boyle, L. Del Debbio, A. Jüttner, A. Khamseh, F. Sanfilippo, and J. T.
Tsang, “The decay constants fD and fDs in the continuum limit of Nf = 2 + 1
domain wall lattice QCD,” JHEP, vol. 12, p. 008, 2017.

[67] H. Na, C. T. H. Davies, E. Follana, G. P. Lepage, and J. Shigemitsu, “|Vcd| from
D Meson Leptonic Decays,” Phys. Rev. D, vol. 86, p. 054510, 2012.

[68] C. Alexandrou et al., “Quark masses using twisted-mass fermion gauge ensem-
bles,” Phys. Rev. D, vol. 104, no. 7, p. 074515, 2021.

[69] D. Hatton, C. T. H. Davies, B. Galloway, J. Koponen, G. P. Lepage, and A. T.
Lytle, “Charmonium properties from lattice QCD+QED : Hyperfine splitting,
J/ψ leptonic width, charm quark mass, and acµ,” Phys. Rev. D, vol. 102, no. 5,
p. 054511, 2020.

[70] A. T. Lytle, C. T. H. Davies, D. Hatton, G. P. Lepage, and C. Sturm, “Determi-
nation of quark masses from nf = 4 lattice QCD and the RI-SMOM intermediate
scheme,” Phys. Rev. D, vol. 98, no. 1, p. 014513, 2018.

[71] A. Bazavov et al., “Up-, down-, strange-, charm-, and bottom-quark masses
from four-flavor lattice QCD,” Phys. Rev. D, vol. 98, no. 5, p. 054517, 2018.

[72] B. Chakraborty, C. T. H. Davies, B. Galloway, P. Knecht, J. Koponen, G. C.
Donald, R. J. Dowdall, G. P. Lepage, and C. McNeile, “High-precision quark
masses and QCD coupling from nf = 4 lattice QCD,” Phys. Rev. D, vol. 91,
no. 5, p. 054508, 2015.

[73] C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, and G. Koutsou, “Baryon
spectrum with Nf = 2 + 1 + 1 twisted mass fermions,” Phys. Rev. D, vol. 90,
no. 7, p. 074501, 2014.

[74] N. Carrasco et al., “Up, down, strange and charm quark masses with Nf =
2+1+1 twisted mass lattice QCD,” Nucl. Phys. B, vol. 887, pp. 19–68, 2014.

[75] P. Petreczky and J. H. Weber, “Strong coupling constant and heavy quark
masses in ( 2+1 )-flavor QCD,” Phys. Rev. D, vol. 100, no. 3, p. 034519, 2019.



BIBLIOGRAPHY 81

[76] Y. Maezawa and P. Petreczky, “Quark masses and strong coupling constant in
2+1 flavor QCD,” Phys. Rev. D, vol. 94, no. 3, p. 034507, 2016.

[77] I. Allison et al., “High-Precision Charm-Quark Mass from Current-Current
Correlators in Lattice and Continuum QCD,” Phys. Rev. D, vol. 78, p. 054513,
2008.

[78] A. Bazavov et al., “Charmed and Light Pseudoscalar Meson Decay Constants
from Four-Flavor Lattice QCD with Physical Light Quarks,” Phys. Rev. D,
vol. 90, no. 7, p. 074509, 2014.

[79] A. Bazavov et al., “B- and D-meson leptonic decay constants from four-flavor
lattice QCD,” Phys. Rev. D, vol. 98, no. 7, p. 074512, 2018.

[80] N. Carrasco et al., “Leptonic decay constants fK , fD, and fDs with Nf =
2 + 1 + 1 twisted-mass lattice QCD,” Phys. Rev. D, vol. 91, no. 5, p. 054507,
2015.

[81] P. Dimopoulos, R. Frezzotti, P. Lami, V. Lubicz, E. Picca, L. Riggio, G. C.
Rossi, F. Sanfilippo, S. Simula, and C. Tarantino, “Pseudoscalar decay con-
stants fK/fπ, fD and fDs with Nf = 2 + 1 + 1 ETMC configurations,” PoS,
vol. LATTICE2013, p. 314, 2014.

[82] A. Bazavov et al., “Charmed and Strange Pseudoscalar Meson Decay Constants
from HISQ Simulations,” PoS, vol. LATTICE2013, p. 405, 2014.

[83] A. Bazavov et al., “Pseudoscalar meson physics with four dynamical quarks,”
PoS, vol. LATTICE2012, p. 159, 2012.

[84] Y. Chen, W.-F. Chiu, M. Gong, Z. Liu, and Y. Ma, “Charmed and φ meson
decay constants from 2+1-flavor lattice QCD,” Chin. Phys. C, vol. 45, no. 2,
p. 023109, 2021.

[85] P. A. Boyle, L. Del Debbio, N. Garron, A. Juttner, A. Soni, J. T. Tsang, and
O. Witzel, “SU(3)-breaking ratios for D(s) and B(s) mesons,” 12 2018.

[86] A. Bazavov et al., “B- and D-meson decay constants from three-flavor lattice
QCD,” Phys. Rev. D, vol. 85, p. 114506, 2012.

[87] Y. Namekawa et al., “Charm quark system at the physical point of 2+1 flavor
lattice QCD,” Phys. Rev. D, vol. 84, p. 074505, 2011.



82 BIBLIOGRAPHY

[88] C. T. H. Davies, C. McNeile, E. Follana, G. P. Lepage, H. Na, and J. Shigemitsu,
“Update: Precision Ds decay constant from full lattice QCD using very fine
lattices,” Phys. Rev. D, vol. 82, p. 114504, 2010.

[89] E. Follana, C. T. H. Davies, G. P. Lepage, and J. Shigemitsu, “High Precision
determination of the pi, K, D and D(s) decay constants from lattice QCD,”
Phys. Rev. Lett., vol. 100, p. 062002, 2008.

[90] C. Aubin et al., “Charmed meson decay constants in three-flavor lattice QCD,”
Phys. Rev. Lett., vol. 95, p. 122002, 2005.

[91] R. Balasubramamian and B. Blossier, “Decay constant of Bs and B∗s mesons
from Nf = 2 lattice QCD,” Eur. Phys. J. C, vol. 80, no. 5, p. 412, 2020.

[92] B. Blossier, J. Heitger, and M. Post, “Leptonic Ds decays in two-flavour lattice
QCD,” Phys. Rev. D, vol. 98, no. 5, p. 054506, 2018.

[93] W.-P. Chen, Y.-C. Chen, T.-W. Chiu, H.-Y. Chou, T.-S. Guu, and T.-H. Hsieh,
“Decay Constants of Pseudoscalar D-mesons in Lattice QCD with Domain-Wall
Fermion,” Phys. Lett. B, vol. 736, pp. 231–236, 2014.

[94] J. Heitger, G. M. von Hippel, S. Schaefer, and F. Virotta, “Charm quark mass
and D-meson decay constants from two-flavour lattice QCD,” PoS, vol. LAT-
TICE2013, p. 475, 2014.

[95] N. Carrasco et al., “B-physics from Nf = 2 tmQCD: the Standard Model and
beyond,” JHEP, vol. 03, p. 016, 2014.

[96] P. Dimopoulos et al., “Lattice QCD determination of mb, fB and fBs with
twisted mass Wilson fermions,” JHEP, vol. 01, p. 046, 2012.

[97] B. Blossier et al., “Pseudoscalar decay constants of kaon and D-mesons from
Nf = 2 twisted mass Lattice QCD,” JHEP, vol. 07, p. 043, 2009.

[98] A. Bussone, A. Conigli, J. Frison, G. Herdoíza, C. Pena, D. Preti, J. A. Romero,
and J. Ugarrio, “Charm physics with a tmQCD mixed action,” in 38th Interna-
tional Symposium on Lattice Field Theory, 12 2021.

[99] H. Akaike, “A bayesian analysis of the minimum aic procedure,” Annals of the
Institute of Statistical Mathematics, vol. 30, pp. 9–14, Dec 1978.


	Portada
	Abstract
	Resumen
	CONTENTS
	Introduction
	Lattice Regularization
	Gauge action
	Fermion action
	Naive regularization
	Wilson fermions
	Twisted mass fermions

	Path integral regularization
	Euclidean correlation functions
	Renomalization and Symanzik's O(a)-improvement

	Setup
	Sea sector
	Valence sector
	Chiral trajectory
	Matching
	Charm sector

	Scale setting

	Computation of observables
	Monte Carlo algorithm
	Hybrid Monte Carlo
	Reweighting

	Inversions
	Distance preconditioning

	Observables
	Gradient flow scale t0
	Meson masses
	Quark masses
	Pseudoscalar Decay Constants


	Results
	Run parameters and strategy
	Chiral and Continuum Extrapolations
	Physical Results

	Conclusions
	Conventions
	Chiral Rotations
	Error analysis
	Systematic Errors
	Additional Plots

