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Abstract. The observation of several neutron stars with relatively low values of the
surface magnetic field found in supernova remnants has led in recent years to controversial
interpretations. A possible explanation is the slow rotation of the proto-neutron star at birth
which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility,
the hidden magnetic field scenario, seems to be favoured over the previous one due to the
observation of three low magnetic field magnetars. This scenario considers the accretion of the
fallback of the supernova debris onto the neutron star as the responsible for the observed low
magnetic field. In this work, we have studied under which conditions the magnetic field of
a neutron star can be buried into the crust due to an accreting fluid. We have considered
a simplified toy model in general relativity to estimate the balance between the incoming
accretion flow an the magnetosphere. We conclude that the burial is possible for values of the
surface magnetic field below 10'® G. The preliminary results reported in this paper for simplified
polytropic models should be confirmed using a more realistic thermodynamical setup.

1. Introduction

The hidden magnetic field scenario proposed by Shabaltas & Lay [1] offers a viable explanation
for the unusual features observed in Central Compact Objects (CCOs). CCOs are isolated
young neutron stars with no radio emission and located near the center of young supernova
remnants (SNR). Nowadays, three such neutron stars (PSR E1207.4-5209, PSR J0821.0-4300,
PSR J1852.3-0040) show an inferred magnetic field significantly lower than the common values
for neutron stars. PSR E1207.4-5209 in the supernova remnant PKS 1209-51/52 was the first
discovered CCO [2, 3] and has been extensively studied. Its period P = 424.130751(4) ms
and period derivative P = (9.6 + 9.4) x 107'7s s~! imply a surface magnetic field strength
B, < 3.5 x 10! G, and a characteristic age of 7, = P/2P > 24 Myr. PSR J0821.0-4300 in
Puppis A [4] is a 112 ms pulsar with P < 8.3 x 107'%s s~1. This value of P implies a surface
magnetic dipole field strength B, < 9.8 x 10! G. The characteristic age of PSR J082-4300 is
Te > 220 kyr. Finally, PSR J1852-0040 in Kes 79 [5] has a period of P = 105 ms, a period
derivative of P < 7 x 107 s s~!and a surface magnetic field strength of B, < 3 x 10'2 G, and
its spin-down age is 7 > 24 kyr. In all cases, the difference between the characteristic age of
the neutron star and the age of their the remnant indicates that the neutron stars were born
spinning at their present periods.
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Similar to these observations of CCOs, there also exist three additional observations of
so-called low magnetic field magnetars [6], SGR 041845729, Swift J1822-1606 and 3XMM
J185246.64+003317. SGR 0418+5729 [7] has a period of P = 9.07838822 s and a period derivative
P =4 x 107%s 57!, which leads to a surface dipolar magnetic field of By = 6 x 102 G. This
measurement confirms SGR 041845729 as the lowest magnetic field magnetar known. The
inferred spindown age is ~ 550 kyr. Swift J1822-1606 [8] has a period of P = 8.43772016 s,
a period derivative P = 2.14 x 10~ s s~! a surface magnetic field of By = 1.4 x 10" G and
spindown age of 6300 kyr. Finally, 3XMM J185246.64+003317 [9] has a period of P = 11.55871346
s, a period derivative P < 1.4 x 107%3s s71, which, assuming the classical magneto-dipolar
braking model, gives a limit on the dipolar magnetic field of By < 4.1 x 10'3 G. The spindown
age is > 1300 kyr. The spectral characteristics and activity of these objects confirm their
identification as magnetars but, as in the case of the CCOs presented before, they have values
of the magnetic field significantly lower than the typical values for their class (i.e. 10** — 10%°
G).

The first explanation for the unusual magnetic field found in these objects assumes that the
neutron stars were born with a low value of the magnetic field. This idea is based on field
amplification models where the magnetic field is amplified by the turbulent dynamos of the
proto-neutron star [10, 11]. Therefore, the low values of the magnetic field are due to the fact
that the slow rotation at birth of the neutron star does not sufficiently amplify the magnetic
field. However, recent studies have shown that even in the absence of rapid rotation magnetic
fields in proto-neutron stars can be amplified by other mechanisms such as convection and the
standing accretion shock instability (SASI) [12, 13].

The other possible explanation is the hidden magnetic field model. After the supernova
explosion, when the neutron star is born, the supernova shock is still traveling outwards through
the external layers of the star. When this shock crosses a discontinuity in density, part of it
can be reflected and move backwards towards the neutron star. The total mass accreted by
the reverse shock in this process is ~ 107% — 107! M, in a typical timescale of hours to days
[14]. Such high accretion rate can compress the magnetic field of the neutron star which can
eventually be buried into the neutron star crust. As a result, the value of the external magnetic
field would be significantly lower than the internal ‘hidden’ magnetic field. When accretion
stops, the magnetic field may reemerge after a certain period of time.

There exist several works that have studied the viability of this scenario. On the one hand,
the initial works studied the process of reemergence [15, 16, 17] using simplified 1D models and
dipolar fields. These works established that the timescale for the magnetic field reemergence is
about 1 — 107 kyr, depending on the depth at which the magnetic field is buried. More recent
works have confirmed this result. Ho [18] observed similar timescales for the reemergence using
a 1D cooling code. Bernal, Lee and Page [19] performed 1D and 2D simulations of a single
column of material falling onto a magnetized neutron star and showed how the magnetic field
can be buried into the neutron star crust. Vigano and Pons [20] carried out simulations of the
evolution of the interior magnetic field during the accretion and magnetic field submergence
phase. Our goal is to perform 2D MHD simulations of the accretion phase. In this work we
present preliminary results of initial tests aimed at devising the strategy we must follow to
perform such simulations and at identifying the potential difficulties. Complete result will be
presented elsewhere [21].

2. Pressure balance in an accreting magnetosphere

In this work, we follow the notation defined in [22]. The neutron star magnetosphere refers to the
area surrounding the star where the magnetic pressure dominates over the thermal pressure of
the accreting fluid. We call magnetopause to the interface between the magnetically dominated
area and the thermally dominated area. The space of parameters of the problem includes the
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Figure 1. Radial position of the magnetopause for several values of the accretion rate M and
magnetic field at the pole B),. The lines indicate isocontours of rmp/Tstar referred to the radius
of the neutron star. Values under 1 are shown in white.

surface magnetic field at the pole of the neutron star, typically in the range B, € [1010 — 10%9]
G, and the accretion rate of the infalling material, in the interval 1n € [107% — 107°] M /s. The
latter values are derived from the total mass accreted by the reverse shock in a time scale of a
few hours.

For our first test we model the accretion fluid with the so-called Michel solution describing the
spherical accretion of an unmagnetized relativistic fluid [23]. The magnetosphere is generated
by a simple dipole magnetic field and a polytropic equation of state is used to describe the
fluid. Our aim is to compute the position of the magnetopause at which the balance between
the accreting fluid and the magnetosphere is reached. For this purpose we search for a pressure
balance at the equator for the span of parameters. As the velocity of the fluid plays an important
role in the form of ram pressure, we include in the expression of the pressure balance an extra
term that models the effect of the velocity, namely

B2

- = Phuia + phW2v2, (1)

where %2 and Pquq are the pressures generated by the magnetic field and the fluid respectively,
p is the density of the fluid, h is the specific enthalpy, W is the Lorentz factor and v is the
velocity. The restriction given by this equation must be satisfied at the magnetopause.

Fig. 1 shows the position of the equilibrium magnetopause (mp) for the span of parameters
we are considering. Values of rmp/Tstar < 1 indicate that the pressure equilibrium position is
reached inside the star, and therefore the magnetic field can be buried totally. This is the case
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Figure 2. Magnetosphere generated by the multipolar expansion of a dipole proposed by
Michel [22]. The white circle at center represents the neutron star, where the magnetic field is
not calculated. The scale is normalized to be 1 at the magnetopause.

for magnetic field values below 10'2 G for all accretion rates considered. In the case of magnetars
with B, € [10'* —10'%] G, only the highest accretion rates considered can compress the magnetic
field near the neutron star surface, but not close enough to bury it at the equator. However, it
could still be possible to have the magnetic field partially buried in higher latitudes of the star.

3. Equilibrium magnetosphere

In the second test we compute the magnetosphere structure following the procedure proposed
in [22]. The dipolar magnetic field is confined by gravitationally trapped plasma external to the
star. The magnetic field is modeled as a dipole plus an arbitrary set of multipoles. The vector
potential is

Ay =sinfr? — Z anr™ P, (cos 6)], (2)

n=1

where P;l is the derivative with respect to cos @ of the nth Legendre polynomial. The field lines
are given by lines of constant f = rsinfA, and they are tangent to the surface given by the
magnetopause. The goal of this test is to have an idea of the shape of a magnetosphere confined
by the accreting fluid before performing the actual numerical simulations.

The shape of Michel’s confined magnetosphere is shown in Fig. 2. The radius and the magnetic
field values have been normalized for generality. We can see how the magnetosphere approaches
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zero at the poles as expected for a dipolar magnetic field. This result gives us information of
the changes in the geometry of the magnetic field resulting from the accretion we can expect.
In a more realistic simulation the initial magnetic field has to be confined by the accretion fluid.

4. Conclusions

The initial results presented here provide support to the idea that the hidden magnetic field
scenario is plausible for values of the magnetic field B, € [1010 — 10'3] G, typical in isolated
neutron stars, and for the typical accretion rates produced by the supernova reverse shock. In
the case of magnetars, the scenario seems to be less plausible as the equatorial point of pressure
balance is located far from the neutron star, implying that it could be difficult to bury the
magnetic field. We note however that the models we have used in this preliminary work are
fairly simple and the results may change accordingly when considering a more realistic scenario.
From a technical point of view, the feasibility to carry out the actual simulations is going to
be conditioned by the ratio between the magnetic and the thermal pressure. An ideal MHD
numerical code must separate the thermal and magnetic contributions to the energy, which, in
the scenario under study, is going to be a numerically challenging goal.

The second test reported in this work is key to understand the shape of a confined magnetic
field. In future simulations we must compute a force-free solution for the magnetic field that takes
into account the boundary conditions imposed by the accreting fluid. In the same way, we must
impose very low densities in order to assure a force-free solution in the whole magnetosphere.
However, the multipolar expansion of the dipole given by Eq. (2) is not general due to its
dependence on the number of multipoles NV used to compute the solution, which in our case was
not too large as our algorithm shows stability and convergence problems for large values of N.
In addition, this expression does not allow to impose arbitrary boundary conditions in order to
study different field configurations.

In a future work [21] we plan to use a more realistic equation of state that will allow
us to control the temperature and the composition of the accreting fluid. Furthermore, the
magnetic field must be computed with increased generality to accommodate different magnetic
field configurations and impose distinct magnetopause positions. The incorporation of these
new ingredients in a time-dependent MHD numerical code is ongoing and results for a larger
number of astrophysical scenarios will be presented elsewhere [21].
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