10th Int. Partile Accelerator Conf.
5 ISBN: 978-3-95450-208-0

Abstract

Sirius is the new 3 GeV low-emittance Brazilian Syn-
chrotron Light source under installation and commissioning
g at LNLS. The machine control system is based on EPICS
£ and when the installation is complete it should have a few
2 hundred thousand process variables in use. For flexible inte-
§ gration and intuitive control of such sizable system a con-
§ siderable number of high-level applications, input/output
§ controllers and graphical user interfaces have been devel-
E oped, mostly in Python, using a variety of libraries, such
; as PyEpics, PCASPy and PyDM. Common support service
g applications (Archiver Appliance, Olog, Apache server, a
£ mongoDB-based configuration server, etc) are used. Matlab
Z Middle Layer is also an available option to control EPICS
€ applications. Currently system integration tests are being
5 performed concomitant with initial phases of accelerator
E commissioning and installation. A set of functionalities is
;:‘5: already available: Linac’s control; timing subsystem control;
gmachine snapshots; optics measurements and correction;
-2 magnets settings and cycling; Booster orbit acquisition and
2 correction, and so on. From the experience so far, subsys-
% tems communications have worked satisfactorily but there
zhas been a few unexpected component misbehaves. In this
< paper we discuss this experience and describe the libraries
& and packages used in high-level control system , as well as
& the difficulties faced to implement and to operate them.

INTRODUCTION

Sirius is the new synchrotron light source of fourth gen-
- eration and 3 GeV energy, under construction at Brazilian
E Synchrotron Light Laboratory (LNLS) [1]. It is a MBA-type
v lattice designed for very low emittance. The machine is in
z final phases of the Storage Ring installation and beginning of
;5 Booster subsystems commissioning. Its control system has
» been developed over the last few years and it is now being
5 integrated and tested.

Sirius’s Linac, build by SINAP [2] has been delivered,
= commissioned and its control system (CS) successfully inte-
£ grated in 2018. The Linac-Booster transport line has also
g been commissioned last year and, at this moment, the first
§ hundred turns of beam in the Booster have been achieved.
2 Alongside these activities, CS architecture validation and
& components integration were performed, albeit with yet re-
—g duced number of installed devices.

= In the next sections of this paper we present an overview
'é of control system development and we briefly discuss the
£ EPICS server applications and input/output controllers (I0C)
< that give support for the high-level applications (HLA). In

=

hor(s), title of the work, publisher, and D

0 licence (©

the term

de;

* ximenes.resende @Inls.br

Conten

WEPGW003

@ 2462

®

IPAC2019, Melbourne, Australia

JACoW Publishing
doi:10.18429/JACoW-IPAC2019-WEPGWOO3

HIGH-LEVEL APPLICATIONS FOR THE SIRIUS ACCELERATOR
CONTROL SYSTEM

X. R. Resende *, F. H. de S4, G. do Prado, L. Liu, A. C. Oliveira,
Brazilian Synchrotron Light Laboratory (LNLS), Campinas, Brazil

the sequence we detail the architecture of the HLA and its
current development status. Finally we describe how the
integration of the CS has been evolving during machine
commissioning and end the paper with conclusion remarks
on what the next steps are in HLA development and testing.

CONTROL SYSTEM OVERVIEW

The Sirius accelerator control system (SCS) is based on
EPICS [3], version R3.15. All SCS software components
are open-source solutions developed collaboratively using
git version control and are publicly available in the Sirius
organization page [4] at Github.

The naming system used in Sirius for devices and CS prop-
erties is based on ESS naming system [5]. It was adopted
and implemented after SINAP had built the Linac, which
uses a different system.

Control room desktop configuration and device applica-
tion deployment are managed with scripts and Ansible au-
tomation tool [6].

Although exclusively not the only programming language,
Python 3.6 is employed for most of the software development
in the HLAs, and also in a considerable part of soft IOC.

Sirius beamlines control system was developed indepen-
dently but it has a similar software infrastructure [7].

EPICS SUPPORT SERVICES

Various EPICS support service applications are used in
the SCS. All these services run in docker containers to allow
for easy testing, deployment and eventual host migration.

Data archiving, for example, is done with EPICS Archiv-
ing Appliance [8]. Currently there are around 20 thousand
process variables (PVs) being archived and ~100 thousand
channels, with a storage rate of the order of 36 GB/day. The
number of PVs being archived is expected to increase by a
factor of ~20 when the CS components of the Storage Ring
are added in the near future. The storage rate should go up a
more modest factor though, since the most demanding PVs
(from Storage Ring BPMs) are already being archived for
stress testing purposes.

As for activity logging related to machine installation,
operation, component failures and experiments, Olog [9]
is being used. We are yet to implement a software library
that can be used to automate status log insertions and force
predefined formatting suitable for automated performance
analysis of the machine.

An http Apache [10] server is being used to centralize
distribution of static information for system components.
For example, the flexible CS architecture of magnet power

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

TO04 Accelerator/Storage Ring Control Systems



10th Int. Partile Accelerator Conf.
ISBN: 978-3-95450-208-0

supplies is defined in cross-referenced text tables avail-
able through this server. Excitation curves of magnets are
also available in the same way. This allows for rapid re-
configurations without the need of software update deploy-
ments across CS components.

In order to save and restore general machine configura-
tions (machine snapshots, measured and model response
matrices, across-desktop HLA window states, and so on) a
web service has been written with Python back- and front-
ends. The back-end API was developed using the Flask [11]
framework and it interacts with MongoDB [12] database
engine using PyMongo [13]. The front-end API allows for
definition of arbitrary configuration types. Machine snap-
shot configurations, for example, are defined by template
structures and they consist of EPICS PVs name lists.

10CS

Sirius’ control system IOCs were developed using a mix-
ture of EPICS base, module [14] and extension [15] libraries,
such as StreamDevice, areaDetector, EtherIP, asynDriver,
Motor, procServ, PCASPy [16], and others. Most of the
IOCs run as dockerized services.

Linac IOCs were developed by SINAP in Python 2.6 using
both PCASPy version 0.6.3 (power supplies) and EPICS
base extensions (EGun, Low Level RF, Klystrons, Protection
System, etc). Most of the RF subsystem IOCs were based
on an initial version from DIAMOND. For other subsystems
the IOCs were developed at LNLS. IOCs of vacuum gauges
and pumps, temperature sensors, radiation dose acquisition,
pulsed magnet electronics, timing system, BPM acquisition
control, beam loss monitors and some of RF subsystem
components were implemented using EPICS base and its
extensions.

Magnet power supply IOCs, on the other hand, were
written in Python using PCASPy v0.7.1 and currently run
on BeagleBone Black single-board computers (BBB) with
1GHz ARM cores. BBBs communicate with power sup-
ply controllers via RS485 using a proprietary protocol [17].
Counting all subsystems’ single-board computers, around
150 BBBs have been employed so far, but the number will
rise to around 500 when the Storage Ring control is inte-
grated into the system. Additionally, Python soft IOCs were
developed to convert power supply currents to normalized
magnet strengths. These IOCs run in common computer
servers. Finally, there are a few important additional soft
IOCs implemented with PCASPy, such as power supply di-
agnostics, slow orbit feedback correction (SOFB), high-level
timing abstraction, optics tune and chromaticity corrections,
transport lines beam injection control, and so on.

HIGH-LEVEL GUI APPLICATIONS

As for high-level controls, they are done with GUI appli-
cations running in Debian 9 computer desktops. They were
written mostly using PyQt5 [18], PyDM [19], that consists
in a Python layer on top of Qt [20] and PyEpics [21], and an
in-house developed siriuspy package. The choice of PyDM,

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

IPAC2019, Melbourne, Australia

JACoW Publishing

doi:10.18429/JACoW-IPAC2019-WEPGWOO3

Figure 1: An example of a GUI application: an interface to
optimize and control Booster energy ramp process.

a SLAC [22] initiative with outside contributions, including
a few from Sirius staff, allowed for developments concen-
trated in Sirius-specific issues. It proved to have a smooth
learning curve and rapid development using Qt framework’s
drag-and-drop tools and easy integration with other Python
packages.

The GUI applications set is composed of various win-
dows that can be launched from a main application. Among
others, window control components of the GUI collection
are: Linac launcher, power supplies, transport lines, BPMs,
magnet cycling, Booster ramp, configuration loader, SOFB,
etc. Some examples of applications are shown in Figs.1 and
2.

CS-Studio [23] was also used during subsystem develop-
ments and some are still currently in use for commissioning,
SO as to access subsystem’s very specific properties. GUI
for Linac was developed in EDM [24] by SINAP and it is
integrated into the main launcher interface and launched as
separate system processes. There are plans in the future to
progressively rewrite most of Linac’s GUI and CS-Studio

applications in PyDM, in order to have a more uniform look- ;

and-feel system.

The choice of using an http server and the siriuspy li-
brary, thus centralizing many of CS data structures that
EPICS clients and servers need, improved code maintain-
ability through reuse and minimizes chances of Python GUI
client and EPICS server data inconsistencies.

The Matlab Middle Layer toolkit (MML) [25], integrated
with Accelerator Toolbox(AT) version 1.3 [26], is available
to control EPICS applications through LabCA [27] and MCA
[28]. It is currently being used to simulate and to test model
correction matrices in Booster subsystems commissioning.
The plan is to use various algorithms already implemented
in it, like LOCO and matrices measurements.

SYSTEM INTEGRATION DURING
SUBSYSTEMS COMMISSIONING
The first on-site integration tests of in-house HLA devel-
opments began in November 2018, with commissioning of

Linac-Booster transport line, with relatively few CS com-
ponents. These initial tests progressed very well, requiring

WEPGW003
2463

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2019). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©



10th Int. Partile Accelerator Conf.
5 ISBN: 978-3-95450-208-0

Figure 2: Other examples of applications: the main launcher
and a screen device monitor.

‘S only very minor updates of the software, mostly related to
the EPICS network environment.

After the shutdown of 2018, CS integration tests resumed
'S in February 2019 with optimization of the Linac and the
< transport line, and with the initial commissioning of Booster
£ subsystems in March. At this point more components were
—g in use and integration tests enlarged in scope.
E In particular, with timing signals now distributed to mag-
£ net power supplies (PS), other operation modes of the PS for
‘S energy ramp, cycling and for demagnetization were finally
é tested. These tests revealed unanticipated inconsistencies
2 of I0C behaviour triggered by new BBB-PS architectures
Z that had not yet been tested. These inconsistencies were
T identified and corrected.
2 Inorder to reduce the number of single-board computers
& employed in the installation park, in some cases many PS are
§ connected to a single BBB that runs the PS IOC. This econ-
© omy is limiting PV refresh rates that the PCASPy 10C can
8 manage, given the limited CPU resources of single-board
§ computers. IOCs’ code upgrades had to take place in order
Zto improve their responsiveness to HLA applications that
N cycle magnet fields and load machine snapshots. To im-
>
M prove performance, we plan to move the PS IOCs to desktop
O servers with more computational resources. We can do this
£ without much IOC code refactoring by simply replacing the
8 UART library the IOC currently uses with a TCP/IP library
éwith the same API but connecting to a lightweight server
2 running in the BBB and that takes over the communication
< with the power supply over RS485. Moreover, IOCs for
g pulsed magnets, BPMs and timing subsystems also have had
5 minor modifications.
% A single network event in mid-April, not yet understood,
o rendered all PCASPy-based IOCs running in the same sub-
znet, but on different host architectures, unresponsive at the
E same time. It is speculated that Archiver Appliance broad-
§ casts triggered the event, since it coincided with the moment
.« when a considerable fraction of BPM PVs were disconnected.
= None of Linac IOCs running in a separate subnet, but were
S also usgin PCASPy, were affected.
IOCs written in Python and using PCASPy were intention-
< ally designed from scratch so that PCASPy could be easily

WEPGW003

@ 2464

maintain attribution to the author(s), title of the work, publisher, and D

d un

b

ontent from

IPAC2019, Melbourne, Australia

JACoW Publishing
doi:10.18429/JACoW-IPAC2019-WEPGWOO3

swapped out for other EPICS CA servers. This now might
come in handy if spurious events like the one observed start
to happen frequently and we conclude that PCASPy is the
culprit.

Another issue we had until recently was with Olog inad-
vertedly missing entries. It turned out this behaviour was
due to an improper choice of storage disk partitioning in the
server running the application. Increasing the partition size
where application database ran solved the problem.

Generally, the integration tests until now has presented
good progress, despite the fact that they were performed
concomitantly with the commissioning.

CONCLUSION

Sirius is the new 3 GeV low-emittance synchrotron light
source under commissioning at LNLS. Its EPICS based
control system is now under integration tests. Overall the in-
tegration components has been evolving satisfactorily, given
the fact that installation time-line allowed for very limited
before-hand integration. All bugs with impeding or severe
performance limitation impacts have been promptly identi-
fied and fixed. Nevertheless there are a few improvements
that are in order for the near future.

We plan to move power supplies IOCs from single-board
computers to a desktop server with greater processing capac-
ity, which will solve problems of low update rate and that
can be done without major code refactoring. For standard-
ization and better integration of HLAs, we plan to migrate
CS-Studio and EDM GUI applications to PyDM, as well as
translate Linac PV names to Sirius naming convention.

Due to a spurious event occurred during commissioning
that rendered all PCASPy-based IOCs, maybe we will mi-
grate IOCs to another python library, which can rapidly be
performed given the structure in which they were developed.

We plan to continue the development of applications to
ease commissioning and operation, for example through
implementing tools that facilitate debugging and searching
correlations between machine parameters. Another future
step for CS development is the integration of EPICS support
applications to in-house python packages, including script-
ing implementation of data recovery and analyses from the
Archiver, formatted insertion in Olog and generation of ma-
chine performance reports.

ACKNOWLEDGEMENTS

We would like to acknowledge the software development
group (SOL) of the LNLS beamlines division for pointing
out a few years ago to us PyDM as an option for HLA devel-
opment in Python. In particular we thank L. P. Carmo in the
group for the thorough analysis of many HLA architecture
options she did in her internship work. We would also like
to thank some of the ESS Staff, in particular K. Rathsman,
for sharing with us information on ESS naming system and
on their web-based naming service.

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

TO04 Accelerator/Storage Ring Control Systems



10th Int. Partile Accelerator Conf.

ISBN: 978-3-95450-208-0

(1]

[2]

[3]

[4]

(3]

[6]

[7]

[8]

[9]
[10]
(11]
[12]
[13]
[14]

[15]

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

REFERENCES

A.R.D. Rodrigues et al., "Sirius Status Update", presented
at the 10th Int. Particle Accelerator Conf. (IPAC’19), Mel-
bourne, Australia, May. 2019, paper TUPHWO003, this con-
ference.

SINAP - Shangai Institute of Applied Physics, http://
english.sinap.cas.cn/

EPICS - Experimental Physics and Industrial control System,
https://epics.anl.gov/

Brazilian Synchrotron Light Laboratory Organization in
Github, https://github.com/lnls-sirius

ESS Naming System, http://eval.esss.lu.se/DocDB/
0000/000004/010/ESSNamingconvention_20131011_
v2.pdf

Ansible is Simple IT Automation, https://www.ansible.

com/

G.S. Fedel, D. B. Beniz, L. P. Carmo, and J. R. Piton, “Python
for User Interfaces at Sirius”, in Proc. 16th Conf. on Accelera-
tor and Large Experimental Control Systems (ICALEPCS’17),
Barcelona, Spain, 2017, paper THAPLO4, pp. 1091-1097.

EPICS Archiver Appliance,

github.io/epicsarchiver_docs/index.html
Olog, http://olog.github.io/2.2.7-SNAPSHOT/
Apache, https://httpd.apache.org/

Flask, http://flask.pocoo.org/

MongoDB, https://www.mongodb. com/

PyMongo, https://pypi.org/project/pymongo/

EPICS Modules,
index.php

EPICS Extensions,
extensions/index.php

https://epics.anl.gov/modules/

https://epics.anl.gov/

T04 Accelerator/Storage Ring Control Systems

http://slacmshankar.

IPAC2019, Melbourne, Australia

[16]
(17]

(18]

[19]

[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

JACoW Publishing
doi:10.18429/JACoW-IPAC2019-WEPGWOO3

PCASPy, https://pypi.org/project/pcaspy/

Basic Small Message Protocol, https://github.com/
Inls-sirius/control-system-constants/blob/
master/documentation/bsmp/protocol_v2-30_en_
US.pdf

PyQt5, https://www.riverbankcomputing.com/
static/Docs/PyQt5/

PyDM - Python Display Manager, https://slaclab.

github.io/pydm/
Qt, https://doc.qt.io/

PyEpics: Epics Channel Access for Python, https://
cars9.uchicago.edu/software/python/pyepics3/

SLAC Lab Organization at Github, https://github. com/
slaclab

CS-Studio, http://controlsystemstudio.org/

EDM: Extensible Display Manager, https://wuw.slac.

stanford.edu/grp/cd/soft/epics/extensions/
edm/edm.html

G. Portmann, J. Corbett, and A. Terebilo, “An accelerator
control middle layer using Matlab” in Proc. 2005 Particle
Accelerator Conference (PAC 2005), Knoxville, TN, USA,
2005, pp. 4009-4011. doi:10.1109/PAC.2005.1591699

Accelerator Toolbox Collaboration, http://atcollab.

sourceforge.net/

LabCA - EPICS/Channel Access Interface for Scilab and
Matlab, http://www.slac.stanford.edu/~strauman/
labca/index.html

A. Terebilo, “Channel access client toolbox for Matlab”, in
Proc. 8th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS 2001), San Jose, CA,
USA, Nov. 2001, paper THAP030, doi:10.2172/799983

WEPGW003
2465

©

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2019). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI



