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The S-matrix for a QFT in 4D Minkowski space is an inherently holographic object, i.e. defined
at the (conformal) boundary of spacetime. A section of this boundary is the celestial 2-sphere
and Lorentz group acts on it by conformal transformations. I will briefly review scattering,
when translated from the basis of plane waves (translation eigenstates) to the conformal basis
(dilatation eigenstates). The resulting object is called a celestial amplitude and the change of
basis is implemented for massless particles by a Mellin transform. I will apply this formalism to
amplitudes of Goldstone bosons with an emphasis on their soft theorems. The illustrative example
will be the U(1) (non)-linear sigma model.
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Celestial amplitudes for Goldstone bosons and soft theorems Petr Vaško

1. Introduction and motivation

The ultimate dream of the celestial holography program [1, 2] is to provide a holographic
description of quantum gravity (in the spirit of the AdS/CFT correspondence) for asymptotically
flat spacetimes.

However, this goal is still a long way ahead, and for the time being there is a more pragmatic
approach. The more modest point of view is that celestial amplitudes are 𝑆-matrix elements in
a new basis of scattering states that make some properties more manifest. In particular, it was
shown [1, 2] that soft theorems for scattering amplitudes can be written as Ward identities for
asymptotic symmetries. This reformulation quickly led to the discovery of a new soft theorem for
gravity [3].

This connection works so far well for gauge theories (e.g. QED, Yang–Mills theory or gravity),
where asymptotic symmetries can be interpreted as “large” gauge transformations (i.e. those that
do not vanish at null or timelike infinity of spacetime).

Yet, there is another class of theories, where soft theorems play a fundamental role. It is thus
interesting to investigate their fate within the celestial holography program. These are theories of
scalar particles with a spontaneously broken continuous global symmetry. Goldstone theorem then
implies the presence of massless modes in the spectrum, whose low energy effective field theory
(EFT) – a non-linear sigma model (NLSM) – implements soft theorems. The simplest of such
models is a single charged (i.e. complex) scalar field with a spontaneously broken U(1) symmetry.

However, Ward identities for the broken currents that produce (the gradients of) the Goldstone
modes from the vacuum cannot be straightforwardly interpreted as soft theorems for celestial
amplitudes. This is due to the fact that they are currents of global symmetries, in contrast to local
asymptotic symmetries for gauge theories.

Plan of the note. I will provide only a very basic motivation for the change of basis for the
𝑆-matrix elements, leading thus to celestial amplitudes. Then I will summarize the non-technical
results of the exploration of celestial amplitudes of Goldstone bosons. Many more details and
explicit computations of celestial amplitudes of various Goldstone boson EFTs can be found in [4].

2. Symmetry considerations

The celestial conformal field theory (CCFT) lives on the celestial sphere C𝑆2, a section of null
infinity in the Penrose diagram of Minkowkski space,

𝑖+ : massive particles exit spacetime

𝑖− : massive particles enter spacetime

𝑖0:
no particles can reach it
(importamt for matching:
antipodal identification)

𝑖0

J+: massless particles exit spacetime

J −: massless particles enter spacetimeJ −

J+

NS

NS

future C𝑆2

past C𝑆2

an
tip
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m
at
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g

that is parametrized via a stereographic projection by a complex coordinate 𝑧.
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S
2+ 1+

2−1−

3+

3−

conformal
primary

wavefunction

=

1−

1+
2−

2+

3−

3+

𝑂−
Δ1
(𝑧1, 𝑧1)

𝑂+
Δ1
(𝑧1, 𝑧1)

stereographic
−−−−−−−−−→

projection

𝑧, 𝑧

stereographic
coordinates

1−

1+
2−

2+

3−

3+

The 2D stereographic plane associated to C𝑆2 can be embedded into the 4D projective Minkowski
lightcone (embedding formalism for 2D CFT), which induces an isomorphism between the 2D
conformal group PSL(2,C) and 4D Lorentz group SO(1, 3)

0
0

0
0







0
0

0
0







D
J

P⃗ − K⃗

P⃗
+
K⃗

commute
⇓

diagonalized
simultaneously

boosts

rot.

induced

action

embedding

formalism

∈ ∈

Conf(CS2) ≃ PSL(2,C) Lor(R1,3) ≃ SO(1, 3)

;
PSL(2,C) ≃ SO(1, 3)

∈ ∈

M
7→

Λ(M)

:

to a point x in Minkowski spacetime
associate a hermitian matrix x̂ = xµσµ;
then the isomorphism between M and Λ
takes the form: Mx̂M † ↔ Λ(M) · x

This isomorphism provides the basic setup for the following step.

3. Motivating the change of basis for 1-particle states (massless particles)

For simplicity, I will sketch the conformal basis construction for massless particles only, as
they are helicity 𝑠 eigenstates. For massless particles it is convenient to work in the spinor-helicity
formalism, where the momentum of a particle gets decomposed into a Kronecker product of a
positive and negative chirality Weyl spinor, 𝑝𝛼 ¤𝛼 = 𝜆𝛼𝜆 ¤𝛼.

Assume, such a particle moves in direction-3. Being a helicity eigenstate with eigenvalue 𝑠
means 𝜆 ↦→ 𝑒

𝑖
𝑠
2𝜆, 𝜆 ↦→ 𝑒

−𝑖 𝑠2𝜆 for a rotation about the 3-axis. This leaves the ratio 𝑧 := 𝜆1
𝜆2

invariant,
which thus gets identified with the direction of movement. Hence the rotation about the 3-axis (i.e.
the 𝐽 generator above) is already diagonalized for a massless particle.

In a (celestial) CFT under construction, a fundamental role is played by the dilatation generator
𝐷 (i.e. a boost around the 3-axis). It is desirable to adapt the basis of 1-particle states to this
generator and thus diagonalize it. A key observation from the isomorphism in the previous section
is that the generators 𝐽 and 𝐷 commute and hence can be diagonalized simultaneously. This implies
that the conformal basis of 1-particle states will be labelled by the helicity 𝑠 (eigenvalue of 𝐽) and
a yet to be specified scaling dimension Δ (eigenvalue of 𝐷).

A conformal transformation 𝑀 ∈ PSL(2,C) acts on the Weyl spinors and by direct substitution
also on the null momentum as(

𝜆1

𝜆2

)
↦→

(
𝑎 𝑏

𝑐 𝑑

) (
𝜆1

𝜆2

)
=⇒ 𝑧 =

𝜆1
𝜆2

↦→ 𝑎𝜆1 + 𝑏𝜆2
𝑐𝜆1 + 𝑑𝜆2

=
𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 , hence 𝑝𝛼 ¤𝛼 = 𝜔

(
𝑧

1

) (
𝑧 1

)
,

where 𝜔 = 𝜆2𝜆2 is the Rindler energy given by 𝐸 = 𝜔 (1 + 𝑧𝑧). Now the action of a dilatation
(boost about the 3-axis) on the null momentum can be easily deduced. It rescales the momentum
by a positive constant 𝜉 ∈ R+, 𝑝𝛼 ¤𝛼 ↦→ 𝜉𝑝𝛼 ¤𝛼. This operation leaves (𝑧, 𝑧) invariant and rescales 𝜔
as 𝜔 ↦→ 𝜉𝜔.
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So far, the momentum 1-particle states are parametrized as | ®𝑝; 𝑠⟩ := |𝜔, (𝑧, 𝑧); 𝑠⟩. To pass
from the momentum basis to the conformal basis of 1-particle states, one needs to diagonalize
the scaling transformation of 𝜔. In analogy to the Fourier transform that diagonalizes the group
of translations R, the group of rescalings R+ is diagonalized by a Mellin transform providing a
definition of the conformal basis of 1-particle states and by the operator state correspondence also
associated primary operators

|∆, (z, z); s⟩ =
∫
R+

dω
ω ω∆ |ω, (z, z); s⟩

integral over
group of

rescalings R+

Haar
measure

character
of R+

momentum
state

conformal basis of
1-particle states

{
O−

∆(z, z) (out)
O+

∆(z, z) (in)
associated

operators

4. LSZ reduction: from conformal primary wavefunctions to celestial amplitudes

Finally, let me motivate the following result [5] – by the change of basis for 1-particle states
from eigenstates of translations to boost/dilatation eigenstates, the S-matrix in the new basis can
be written as a conformal correlator on C𝑆2, i.e. a celestial amplitude

⟨out|𝑆 |in⟩boost := ⟨𝑂±
Δ1
(𝑧1, 𝑧1) . . . 𝑂±

Δ𝑁
(𝑧𝑁 , 𝑧𝑁 )⟩CCFT =


∏

𝑗:massive

∫
𝐻3

𝑑𝑝 𝑗𝐾Δ 𝑗

(
𝑝 𝑗 | (𝑧 𝑗 , 𝑧 𝑗)

)
×

[ ∏
𝑖:massless

∫ ∞

0

𝑑𝜔𝑖

𝜔𝑖

𝜔
Δ𝑖

𝑖

]
⟨out|𝑆 |in⟩transl.,

where each external leg is acted on by a different integral transform, based on whether it is
massive/massless. Massive legs are transformed by a more complicated integral kernel 𝐾 called a
bulk to boundary propagator on the mass-shell hyperboloid 𝐻3 and ⟨out|𝑆 |in⟩transl. is the standard
momentum space scattering amplitude.

This is achieved by a LSZ reduction of correlation (Green’s) functions to 𝑆-matrix elements
with respect to the two different basis of 1-particle states defined above. Performing the reduction
for momentum states, one obtains momentum scattering amplitudes, while for the conformal basis
one obtains celestial amplitudes. The main logic is summarized in the following diagram

A(p1, . . . , pn) = out⟨p⃗n . . . |S|p⃗1 . . .⟩in =
∫
dx1 . . . dxnGamp(x1, . . . , xn) ⟨p⃗n|ϕ(xn)|0⟩ . . . ⟨0|ϕ(x1)|p⃗1⟩

momentum
amplitude

amputated
Green’s
function

1-particle wavefunction:
plane wave e±ip·x

(eigenfunction of translations)

Ã ((∆1, z1, z1), . . . , (∆n, zn, zn)) = out⟨(∆n, zn, zn) . . . |S|(∆1, z1, z1) . . .⟩in =
∫
dx1 . . . dxnGamp(x1, . . . , xn) ⟨(∆n, zn, zn)|ϕ(xn)|0⟩ . . . ⟨0|ϕ(x1)|(∆1, z1, z1)⟩

celestial
amplitude

amputated
Green’s
function

1-particle wavefunction:
conformal primary wavefunction
(eigenfunction of scalings/boosts)

:=

⟨O−
∆n
(zn, zn) · · ·O+

∆1
(z1, z1)⟩

change
basis

|p⃗⟩ := |ω, (z, z)⟩ 7→ |∆, z, z⟩
CPW ⟨0|ϕ(x)|∆, zz⟩ = ⟨0|ϕ(x)

∫∞
0

dω
ω ω∆|p⃗⟩ =

∫∞
0

dω
ω ω∆⟨0|ϕ(x)|p⃗⟩ =

∫∞
0

dω
ω ω∆eip·x = i∆Γ(∆)

(−p̂(z,z)·x+)
∆ ,

where p = ωp̂(z, z) = (1 + zz, z + z,−i(z − z), 1− zz)
x+ = x+ i(−1, 0, 0, 0)

Ã ((∆1, z1, z1), . . . , (∆n, zn, zn)) =
∫∞
0

dω1
ω1
ω∆1
1 · · ·

∫∞
0

dωn
ωn

ω∆n
n A (p1(ω1, z1, z1), . . . , pn(ωn, zn, zn))

wwww� if all external particles are massless
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5. Conclusions

• for the charged scalar model with spontaneously broken U(1) global symmetry, low point
celestial amplitudes of Goldstone bosons can be explicitly computed and their soft theorems
verified [4] (this holds also for a large variety of other models of Goldstone bosons considered
in that paper)

• however, unlike for gauge theories, where soft theorems were equivalent to Ward identities
for asymptotic symmetries (large gauge transformations), in this setting there is no natural
candidate for an asymptotic symmetry, so the connection between soft theorems and Ward
identities remains unclear

• for the celestial amplitude to be well defined, there is tension between IR and UV behavior
of the momentum amplitude – at least one of them should be sufficiently soft (technically,
a fundamental strip of holomorphy is associated with a Mellin transform from which the
function can be analytically continued elsewhere; when these conditions are not satisfied
the strip shrinks and the celestial amplitude is at best defined in a distributional sense as a
function of the scaling dimensions)
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