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ABSTRACT The study address the challenge of forecasting per unit energy prices in amicrogrid environment
consisting of solar and hydro power resources under multi-seasonal variations. Traditional deep learning
techniques such as LSTM, GRU and ESN often struggle with non-linear dependencies and volatility in
energy market. To overcome these we propose a hybrid framework incorporating Adiabatic Quantum
Computing (AQC) for electricity price forecasting. The proposed AQCmodel encodes-32 system andmarket
related variables into quantum states and applies adiabatic evolution to derive optimized price prediction.
Simulation results using real microgrid data set-up based on HIL shows that AQC reduces forecasting error
by 17.03% compared to LSTM, 14.29% to GRU and 13.88% to ESN over 24-hrs and 48-hrs horizons.
The enhanced accuracy and robustness of the quantum assisted model demonstrates its potential for next
generation energy market forecasting and decisions making tool. The entire framework is tested using a
synthetic microgrid dataset designed to emulate real-world seasonal and operational dynamics. While this
enables controlled validation of the models, the generalizability of the results to real world deployment
requires further empirical evaluations on physical microgrid data set.

INDEX TERMS AQC, LSTM, GRU, ESN, spot market, energy trading, microgrid.

I. INTRODUCTION
The increase in population and thereby increase in energy
demand dragged the attention of power engineers to provide
Clean and reliable energy 24 × 7. Again, transition of
electrical energy sources from fossil fuel to clean and green
energy sources such as solar photovoltaic system, Wind
Energy System And small Hydro power plant have become
more challenging in terms of energy trading and proper
energy management. Integrating intermittent energy sources
like solar photovoltaic system with small hydropower plant
In a microgrid environment requires addressing of certain
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electrical challenges like a real time power flow for ensuring
grid stability and efficiency under dynamic loading pattern,
Design and implementation of power flow control strategy in
a virtual power plant, Effective planning and installation of
electric vehicle charging station in a micro grid environment
structure And most importantly the peer-to-peer electrical
energy trading in an micro grid environment structure. It is a
usual practice in energymarket trading is tomaintain a perfect
balancing price between the cost of production of per unit of
electricity and that of per unit selling price by considering the
different peak and non-peak hour in a time ahead forecasting
system. Usually in India they ahead forecasting is carried
out based on the previous load demand and the historical
database. It is also worthwhile to mention here that the day
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ahead load forecasting and that of generation is based on
the total available capacity of all the generating stations,
both renewable and non-renewable sources of energy [1].
The accurate forecasting of loading pattern and that of
per unit selling price requires many other factors such as
seasonal variations for solar photovoltaic system in terms
of both generation and demand side analysis and that of
small hydropower plant output in terms of available water
condition which is again a seasonal dependent [2]. Therefore,
the analysis for per unit of energy production and that of
selling price becomes very tedious due to involvement of
complex nonlinearities associated with energy distribution,
Diversified distribution of energy resources in a micro grid
architecture ranging from household applications to grid level
applications [3], [4]. List of Acronyms and Abbreviations
Used in the Manuscript is presented at table-1.

One of the most common classical methods of forecasting
the per unit selling price of electricity in a day ahead
market is based on the Times series regression model [5].
Methods such as auto regressive moving average, auto
regressive integrated moving average and variable vector
based auto regressive model are some of the classical
techniques used for probability-based analysis and prediction
of a regressionmodel [6], [7]. One of themarkable limitations
of these regression model is assumption of the data set
as a stationary data set and requires some preprocessing
steps like differencing which sometimes leads to loss of
data because of over differencing activities [8]. Most of
the electricity Market forecasting is based on a nonlinear
pattern analysis therefore the time regression model using
ARIMA and SARIMA becomes difficult as they capture
only the linear relationship between the data input thereby
making it less effective in terms of forecasting [9], [10].
Another point associated with this model is the searching
mechanism such as grid search pattern and manual search,
which is sometimes time consuming and also very flexible
to error adaptation. Therefore, adaptability of these methods
in day ahead market forecasting in terms of per unit selling
price becomes more difficult when applying to micro grid
level [11], [12].

In another study the author had demonstrated the efficacy
of neural network in deciding per unit energy price in a com-
petitive market by using different clustering algorithm [13].
The author have taken a number of input parameters such
as residential load demand from 24 hours to 48 hours, The
electricity block prices of the previous day, Time lag analysis
of residual demand, Waited population demand varying from
summer to winter, Holidays, Weekdays and other national
holidays [14]. The model Remains effective in deciding the
power unit energy price for one cluster and in another cluster
the same algorithm is not performing well [15]. Therefore,
it puts a constraint in the adaptability of the model to a micro
grid architecture [16]. Again, the use of different weight
function along with the back propagation algorithm has made
the model sluggish interms of analysis [17], [18].

In another analysis the author has considered different
time series regression model of convolutional neural network
to forecast the day ahead electricity spot market price for
a German market [19], [20]. The author had taken into
consideration solar radiation, wind speed, Carbon credit, load
variation as the primary input sources to the CNN module
to effectively forecast the power unit energy cost [21], [22].
The model works well for certain duration of prediction
interval however for long duration prediction the method has
a limitation in estimating the power unit selling price of the
energy. In an attempt to forecast the power unit electricity
prices for an Australian energy market the author has used
different algorithm spreading from time series regression
model to List absolute shrinkage and selection operator based
on back propagation neural network [23]. In this work the
author has tried to remove the performing spikes and carbon
pricing footprint and thereby normalizing the input data
before fitting the data into the model [24], [25].

The impact of solar and wind power forecast on a day
ahead spot electricity market has been studied for a 1000-
megawatt megawatt power plant in Germany. The analysis
carried out by the researcher shows that with increasing
more renewable interconnection to the grid, the impact of
unbalances can not be analyzed properly and thereby leads to
a forecast error [26]. In order to enhance the bidding strategy
in an competitive electrical market the author has studied
three different electrical wholesale market such as Spanish
wholesale market, French wholesale electrical market And
Iberian Peninsula market by considering the permissible
carbon dioxide emission and natural gas prices [27], [28]. The
applied method to understand the bidding strategy is based on
a time series decomposition solution which is given as input
to the clustered network so as to beat the per unit selling price
of energy [29]. The proposed model accurately evaluates the
per unit selling price in a day ahead forecast model. The only
constraint with the developed model is it is effective with
respect to limited input variables however for a micro grid
where numerous parameters are involved, the model becomes
ineffective [30], [31].

In another research the author [32] has taken five different
power markets for evaluating the effectiveness of a proposed
algorithm based on bootstrap aggregation. The proposed
model has been evaluated based on global energy forecasting
competition 2014. In an attempt to utilize the concept of
deep neural network, support vector regression, random
forest and convolutional neural network a study has been
carried out in and around France, Germany and Belgium by
correlating the daily spot electricity market of neighboring
countries [33], [34]. Again, from the literature study it
is found that sometimes it is better to integrate both the
baseline forecast model with the day ahead a Electricity
Spike for a perfect analysis [35]. Due to increasing data input
label the proposed model requires a data reconstructor so
as to combine the Spike and baseline for per unit energy
forecasting in terms of its cost [36].
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Based on auto encoder setup of convolutional neural
network the author has investigated the prediction of per unit
energy price based on number of input parameters ranging
from air temperature, protective humility holiday, day, hour
and week [37]. The method has helped the independent
system operator to forecast the power unit selling price in
a day ahead competitive market and thereby helping all
the DISCOMs to play in the Electricity market in a Win-
Win Situations [38], [39].

The effectiveness of empirical wavelet transform technique
has been applied to a Danish electricity price market by
considering the solar power generation and load as input
parameter to the model to predict the market clearance price
for per unit of generation [40], [41]. The model uses a
combined effort of LSTM and EWT to forecast the energy
selling price. Also to increase the efficiency of the model
a Crisscross optimization algorithm has been applied [42].
The model works well with different renewable energy
system however there is no such description for a micro
grid model where both generation and load are dynamic in
nature [43], [44].

Time Bing the essence of the model, a profitable strategy
for daily Spot market clearance price can be designed by
optimizing and analyzing any model against some data
science based statistical parameters. Most of the literature
study, it is observed that the author have investigated the
effectiveness of their proposed algorithm based on mean
square error, mean absolute error and sometimes R Square
error is also taken into consideration for efficiency evaluation.
Several input features has been taken into consideration for
estimating and balancing the load with the per unit generating
cost by aggregating all the distributed energy resources such
as solar photovoltaic system, wind energy system, thermal
energy system and hydro power energy system [8]. It is
also observed that the classical optimization and regression
analysis technique based on Regressive integration method
Requests a dataset where each data points in the data set
are linearly mapped. Again, for nonlinear data set regres-
sion analysis technique such as long short term memory,
convolutional neural network And deep neural network can
be applied. However one of the biggest advantages of this
model is vanishing gradient problem that means when the
data is being transferred from input layer to forget layer how
much quantity of data from input layer can be mapped to the
forget layer is a constraint. Another problem associated with
these techniques is, they require A static data set rather than
a dynamic data set which is time dependent at the time of its
execution [45].
Quantum computing based on quantum mechanical tech-

nology is an emerging technology providing the analysis
and prediction of power unit selling price of energy by
assuming all the parameters which are affecting the decision
in a bi-stable phase Like qubits. The exponential faster
computational task has made the quantum computing more
reliable in terms of data analysis for forecasting. In this

research an adiabatic quantum computing has been presented
for forecasting the per unit selling price of electricity
in a competitive Micro grid environment by considering
32 different parameters.

The renewable energy forecasting has been approached
through physical models such as numerical weather predic-
tion, solar irradiance model and wind turbine power curve
estimation. Thesemodels simulate the physics of atmospheric
and thermodynamic behavior based on initial conditions
derived from sensors or satellite inputs. Despite offering
a transparent understanding of system behavior, they often
suffer from high computational load, cores of temporal
and spatial resolution which are sensitive to uncertainties
in initial condition. They’re limited adaptability to certain
change in fluctuations in the renewable energy output and
inability to learn from historical trends make them less
effective for such term and high frequency forecasting tasks.
These limitations have motivated the adoption of machine
learning and more recently quantum computing models
which are capable of capturing non-linear dynamics and
improving predictive performance under complex and noisy
environment condition.

Traditional forecastingmodels, such as ARIMA, SARIMA
and ML techniques like LSTM and GRU often strug-
gles With nonlinearity, high dimensionalities and volatility
inherent in energy market. Seasonal variations, integration
of renewable energy source like hydro and solar and
that of the growing complexity of micro grid operations
exacerbate these limitations [46]. The study found that the
trans-formative potential of AQC which offers on parallel
computational efficiency and the ability to optimize complex
multi variable systems. By integrating AQC with renewable
energy forecasting, the present research aims to provide
an innovative solution that ensures higher accuracy faster
computation and robust adaptability addressing both the
computational and operational challenges faced by energy
industry. Recent studies outside the traditional power system
domain have demonstrated the strong generalizability of deep
learning models in time series forecasting. In a research work
carried out by Harrou et al. [47] proposed a hybrid Bi-GRU
model based framework combined with data augmentation
to forecast energy consumption in waste water treatment
system, achieving high accuracy with MAPE of 1.36%
and robustness under variable input condition. Similarly
in another research, Ghods et al. [48] demonstrated the
superiority of LSTM network over ARIMA and SVR models
in predicting wind speeds, with the LSTM reducing RMSE
and MSE significantly across multiple time horizons. These
studies substantiate the choice of advanced recurrent neural
networks for modelling time-variant energy data, particularly
under uncertainty as in the present work on electricity price
forecasting in micro grids.

Recent argument in energy forecasting have introduced
powerful alternatives to recurrent neural network-based
models such as LSTM and GRU. Transformer based
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model like the temporal fusion transformer, Informer and
attention-based architectures have demonstrated state of the
art performance in capturing long range dependencies with
lower training overhead [49]. These models Support the
self-attention mechanism and positional encoding which
further eliminates recurrence and thereby improving parallel
operation and interpretability in time series forecasting.
In parallel hybrid statistical AI model such as ARIMA-
LSTM, Wavelet-GRU and EMD-CNN models. Have gained
traction for combining the interpretability of statistical
models with the non-linear modelling capabilities of neural
networks. Despite their success, these models still face
challenges with non-convexity, constraint inclusion and
computational scalability under high dimensional seasonal
loads that our quantum framework directly addresses by using
Hamiltonian Encoding and adiabatic evolution.

In a recent work by Coban et al. [50], Focused on
forecasting electricity price using a statistical method called
panel regression for electric vehicle applications. Their work
highlights how energy forecasting is becoming important in
areas like transportation and electric vehicle uses. Although
their approach is based on classical models however it
supports the idea that advanced forecasting models such as
quantum based model are needed to handle the growing
complexity and variability in energy system. This study
strengthens the need for accurate and flexible prediction tools
in power system based on data driven analysis. Similarly a
detailed literature survey is presented at table-2 based on the
research carried out on ML and Deep ML in forecasting the
Energy prices for per unit of electricity in the micro grid
environment.

Based on the above literature survey and motivations, the
present research tries to addresses the following objectives in
this article,
• Develop a comprehensive model that integrates oper-
ational parameters of hydro and solar power plants
in a micro grid environment to optimize the total
energy output, considering dynamic environment and
operational factor.

• Use of adiabatic quantum computing to predict electric-
ity prices accurately across different seasons and time
zones.

• Minimize electricity costs while meeting demand and
maintaining grid stability.

This article brings a new look to the existing literature
in the following areas such as integration of quantum
inspired techniques for short term energy price forecasting,
comparative evaluation of advanced time series models
including the benchmarking models and the proposed model
under varying load and generation conditions. Application
of adiabatic quantum computing simulation in the context of
energy market prediction and robustness analysis under noise
conditions using multi metric evaluation has been adopted
and presented in this research work.

Section-I, provides a brief introduction to the topic with
a detailed literature review and research gap analysis.

The objectives of the present research is also presented
towards the end of Section-I. Section-II. provides a detailed
mathematical modeling of the proposed AQC model. The
three bench marking model has been presented at Section-III
namely LSTM, GRU and ESN. Section-IV, shows the
detailed data collection methodology and system set-up
configuration for analysis. Section-V, shows the result
analysis, where a robust comparative analysis among the
models (proposed and 3-benchmarking) has been presented.
the conclusion and future scope of the present research has
been given at Section-VI.

II. THEORETICAL ADVANCES AND QUANTUM
ADVANTAGE IN AQC FORECASTING
The use of adiabatic quantum computing in this study impro-
vises the numerical accuracy and provides a significant shift
in how complex energy price forecasting problems are framed
and solved. In traditional deep learning method, which is
based on iterative back-propagation in high dimensional loss
surface, AQC reforms the forecasting task as a quantum
optimization problem governed by the adiabatic theorem
of quantum mechanics. This section brings the theoretical
advantage by focusing on Hamiltonian modeling, energy gap
dynamics and quantum advantages.

In AQC, the forecasting objective is encoded into final
problem Hamiltonian Hf, which encapsulates the cost
function of the regression model. The system begins in the
ground state of a known initial Hamiltonian H0 and slowly
according to the interpolated Hamiltonian i.e.

H (t) = (1− s(t))H0 + s(t)Hf (1)

Equation-1 is valid s.t = s(t) ∈ [0, 1] where s(t) is a
monotonic function of time, ensuring gradual evolution. The
cost HamiltonianHf is designed to minimize prediction error
i.e. mathematically,

Hf =
N∑
i=1

(Ce(i)− ˆCe(i))2 + λ
∑
j

θ2j (2)

Therefore, equation-2, naturally supports multi-objective
constraints such as seasonal demand and renewable inter-
mittency which are difficult to incorporate in classical RNN
without architecture modification.

The minimal spectral gap 1E = E1 − E0 between the
ground state E0 and the 1st excited state E1 dictates the
required evolution time T to maintain adiabaticity,

T ≫
max| < ϕ1|

dH
dt |ϕ0 > |

1E2
min

(3)

for larger qubit system like 8 and 16-qubits, the T (ref.
equation-3) remain sufficient to ensure smooth ground-state
convergence when scaled appropriately.

Again from computational complexity prospective, while
classical models scales with the number of parameters
(O(n2)), AQC uses the quantum parallelism, achieving
performance comparable to deeper classical networks at
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TABLE 1. List of acronyms and abbreviations used in the manuscript.

lower circuit depth and shorter training times. This makes
AQC particularly advantageous for short term energy market
forecasting, where rapid retraining on dynamic input is
critical. Therefore, the proposed AQC based forecasting
framework offers a fundamentally different approach to
modeling non-linear seasonally influenced price pattern. The
composite Quantum state

|ϕ(t) >=
∑
i,j,k,l

αi,j,k,l |Wi > |Qj > |Ik > |Tl > (4)

The composite quantum state |ϕf >≈ |ϕ > as presented at
equation-4 contains the encoded optimal price prediction Ĉe.
This final state is interpretable and can be read-out classical
or integral hybrid quantum-classical platforms as quantum
hardware improves, ensuring forward compatibility with real
world energy market application.

III. MATHEMATICAL MODELING
The proposed model, Quantum computing (Adiabatic Quan-
tum computing) AQC for electricity price forecasting con-
sisting of many to one approach in a microgrid environment,
where the objective is to forecast per unit Selling Price (SP)
of electricity in a solar and hydro power system architecture.
The model aims to provide the following solution such as
• Integrate the operational parameters of hydro and solar
plants to determine the energy output.

• Predict the per unit electricity SP based on adiabetic
quantum computing principles by analyzing the rela-
tionship between input parameters and markert demand
during different time zone.

• Optimize electricity prices for both peak and non peak
hours.

The total power output from the hydro and solar power plant
in the microgrid environment is

PT = Ph + Ps (5)

In equation-(5), PT represents the total power and Ps
represents the solar power and Ph represents the hydro power.
In equation-(5), Ph and Ps are not constant always, they are
weather dependent and also other factors are involved. In a
hydro power plant.

Ph = η.h.ρ.g.Q.H (6)

Here in equation-(6), ρ is water density (kg/m3), g is
acceleration due to gravity, Q is water flow rate and H is head
height now

H = WL − he (7)

In equation-(7) WL represents the water level and he is the
head loss due to friction and turbulence. Similar to hydro
Power plant, the solar power plant output also depends on the
level of solar irradiance(Is), temperature (T) and area of solar
pannel(A) and also solar efficiency, therefore,

Ps = ηs.A.Is(1− β.(T − TRef )) (8)

In equation-(8), β represents the temperature coefficient and
TRef represents the reference temperature of solar pannel,
A represents the effective area of solar pannels. The hydro
power plant operational cost to real power output (Ph) and
turbine generator cost per kw(Ct) becomes

Ch = Ct .Ph
or
Ch = Ct .ηh.ρ.g.Q.H

(9)

Similar to equation-(9), the operational cost of solar power
plant becomes

Cs = α.T .Is.ts (10)

Here in equation-(10), α is the scaling factor and ts is the time
of operation of the system. Now combining-(9) and -(10). The
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TABLE 2. Literature survey based on the latest state of art energy sport market research focusing on ML and deep ML for day ahead forecasting.

total cost (CT ) is the sum of hydro power plant cost (Ch) and
solar power plant cost(Cs).

CT = Ch + Cs (11)

By using equation-(5) and (11), the electricity price per unit
becomes 

Ce =
Ct
PT

Ce =
Ch + Cs
Ph + Ps

(12)

According to the objectives of the presented research work,
the aim is to minimize the Ce (refer equation-(12)) based on
the following constraints such as

• Demand during peak hours and non peak hours

• Plant operational factor PFh and PFs for variability
under dynamic loading pattern.

In order to achieve this, by applying the langrarsion function
at equation-(13)

α = Ce + λ1(PT − Pdemand )+ λ2(PT − Pnonpeak ) (13)
ς =

Ch + Cs
Ph + Ps

+ λ1(Ph + Ps − Pdemand )

+λ2(Ph + Ps − Pdemand)
δς

δPh
= 0,

δς

δPs
= 0,

δα

δλ1
= 0,

δL
δλ2
= 0

(14)

In the equation-(14) the langrarsion model does not explicitly
consider the dynamic nature of parameters. This makes it
challenging to calculate the per unit price over multiple
time intervals. Another difficulty is the interaction of hydro
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and solar leading to coupled constraints that are difficult
to handle. As the cost function is a non convex function,
therefore, chances are there that the optimization may happen
based on local minima instead of global minima. Therefore,
the objective function presented at equation-(15) becomes,

min
Ph(t),Ps(t)

∫ t1

t0
Ce(t)dt

S.T
PT (t) ≥ PDemand .PT (t) ≥ PNon−PeakDemand
Q(t) ≤ Qmax ,WL(t) ≤ WLmax

Is(t) ≤ Is,max ,T (t) ≤ Tmax

(15)

A. SOLUTION METHODOLOGY
In AQC the problemwill be formulated based onHamiltonian
(Hp) quantum domain. The ground state of Hamiltonian(Ho)
represents the solution. The equation-(12) in Hp form can be
written as

Hcost = Ce(t) =

Ct .ηh.ρ.g.Q(t).(W (t)−
he(t))+]α.T (t).Is(t).ts(t)

ηh.ρ.g.Q(t).(WL(t).(WL(t)− he(t))
+ns.A.Is(t) ∗ (1− β(t(t)− Tref ))

(16)

Similarly, the demand penalty terms encoded as Hamiltonian
penalty becomes

Hdemand = λ1.(Ppeakdemand − PT (t))2+
λ2.(Pnonpeak − PT (t))2

Hconstraints = λ3.(Q(t)− Qmax)2+
λ4(WL(t)−WLmax)2 + λ5(Is(t)− Ismax)2+
λ6(T (t)− Tmax)2

(17)

Now combining equation-(16) and (17), the total Hamiltonian
(Hp) becomes{

Hp = Hcost + Hdemand + Hconstraints (18)

According to Adiabatic quantum Evolution, the initial
Hamiltonian solution becomes HP=

∑
|i >< i|, based on

uniform super-position state and that of the, evolution of
HP (presented at equation-(18)) from Ho follows a path of
H(s)=(1)-S) Ho+SHp, S ∈[0,1]. Here ‘‘S’’ represents the
time independent interpolation parameter. During adiabatic
operation, if evolution is very slow, then Ho represents the
ground state, and evolution represents the final solution.
Therefore, presenting the key parameters of the hydroelectric
power plant and the solar power plant in quantum states using
vectors in the Hilbert space, it becomes the following.

WL(t) =
n−1∑
i=0

xi.2i, xi ∈ |0, 1]

Q(t) =
m−1∑
j=0

yj.2i, yj ∈ |0, 1]

(19)

and 
Is(t) =

p−1∑
k=0

zk .2k , zk ∈ |0, 1]

T (t) =
q−1∑
l=0

wl .2l,wl ∈ |0, 1]

(20)

In equation-(19), n and m represents the qubits, used to
represent the water level (WL) and flow rate(Q) in two
discrete level.Similarly in equation-(20), K and e represents
the qubits to represent solar irradiance(Is) and temperature
(T) in 2n discrete level. By applying the super position
to equation-(19), the quantum state can be written as at
equation-(21)

|Qhydro >= |WL(t) >
⊗
|Q(t) >=∑

ij

αij|Xo,X1 . . . .Xn−1 >
⊗
|Y0,Y1 . . . .Ym−1 >

and

|ψsolar >= |1s(t) >
⊗
|T (t) >=∑

ke

βke|Z0,Z1 . . . . . . .ZP−1 >
⊗
|W0,W1 . . . . . . .Wq−1

(21)

Assuming 96-qubits per day i.e. each reading has been taken
in a 15 minute time interval, the quantum state becomes

|ψ >=
1
√

296

∑
X ,Y ,Z ,W

|X > |Y > |Z > |W > (22)

Therefore, equation-(22) represents the combined nature of
all possible state variables that decide the selling price as
encoded parameter, whose Ho will represent the optimized
solution for the total Hamiltonian function (Hp) as presented
at equation-(18). Hence the energy minimization equation in
the ground can be written as (Refer equation-(23))

lim
parameter

< ψ |Hp|ψ >

Here < ψ | represents the quantum state
(23)

Figure-1 shows the process flowchart of the AQC in
evaluating the SP of per unit energy in a daily spot
market. Equation-(22) and (23) has been used to do the
optimization for ground state evaluation in a Hamiltonian
Hp space. The AQC as formulated here is hardware agnostic
and forward compatible. It can seamlessly migrate to real
quantum annealer (e.g D-wave, Rigetti) or integrated to
hybrid architectures where classical pre-processing feeds
quantum cores. The detailed pseudo code for calculating SP
in the daily spot market is presented at algorithm-1.

B. PROOF OF CONCEPT
Lemma 1: The time-dependent solar power output can be

modeled using the Schrödinger equation, where the Hamilto-
nian represents solar irradiance Is(t), temperature (T ), and
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FIGURE 1. Process flowchart of the AQC in evaluating the per unit SP in
energy spot market.

efficiency. Therefore,

ih̄
∂

∂t
|ψsolar(t)⟩ = Ĥsolar|ψsolar(t)⟩ (24)

and

Ĥsolar = AsÂIs(t)
(
1− β

(
T̂ (t)− Tref

))
. (25)

Proof: The solar irradiance dynamics by considering the
diffusion coefficient and attenuation factor becomes (refer
equation-(26))

δIs
δt
= DI12Is(x, y, t)− α1.Is(x, y, t) (26)

Similarly, the temperature dynamics becomes the following.

δT
δt
= DT12T (x.y, t)+

β1.Is(x, y, t)
ρC

(27)

In equation-(27) DT represents the thermal diffusibility.

Algorithm 1 Calculate SP per Unit of Energy Using AQC
Require: Ph,Ps,Q,WL , Is,D
Ensure: Ce over specified time horizons

X← [0, 1] : Normalization
|x >← Amplitude Encoding-Qubits
H0← Define Hamiltonian for Superposition
HP← Hcost + HConstraints
HCost ← Ch + Cs
HConstraints← Initialize the Constraints
|ϕ(0)← Ground State H0
H0← Hp = Transform
Evaluate=Ground State Hp
Ce← decode from Hp
Validate (Ce)

Lemma 2: Spectral gap stability ensures ground state
robustness in QUBO mapping. Let the cost Hamiltonian Hf
represent an QUBO objective defined over binary variables
encoded in qubits. Under a well framed annealing schedule
H (t) = (1 − s(t))H0 + s(t)Hf , where s(t) ∈ [0, 1] is
monotonic, a minimum spectral gap 1E > 0 exists such
that adiabatic evolution converges to the ground state, thus
minimizing the energy price forecasting error.

Proof: By adiabatic theorem, a quantum system initially
in the ground state of H0 will remain close to the instanta-
neous ground state of H(t), provided the evolution is slow
relative to the square of the inverse minimum spectral gap

T ≫
maxt | < φ1(t)|

dH (t)
dt |φ0(t)|

1E2
min

(28)

Here in equation-(28) φ0 and φ1 are the ground and 1st
excited state. In our encoded QUBO form,

Hf =
∑
i

aizi +
∑
i<j

bijzizj (29)

In equation-(29) zi ∈ [−1, 1] represents spin states of
qubits. For the energy price forecasting, ai and bij encode
the pricing function and constraints from operational and
demand parameters. Using simulations for 8-bit and 16-bit
qubit system, the minimum gap 1E was empirically esti-
mated between 0.08-0.13, maintaining convergence to global
optima over T>100h. Thus the ground state corresponds to
the optimal price vector.
Lemma 3: Let the energy price forecasting problem be

mapped to the ising model form H =
∑

i hiσ
2
+∑

i<j Jijσ
2
i σ

2
j , where σ

2
i = [−1, 1] are pauli z-spin opera-

tors, representing binary pricing decisions. The coefficients
hi represent normalized historical feature (SP, GP, θ ) and
Jij encodes pairwise dependencies (hydro-solar) interactions.
Thus when formulated with sparse interactions and bounded
weight magnitude, AQC can simulate such Hamiltonian
efficiently-even under decoherence.

Proof: Assume the coupling graph G(V, E) formed
by non-zero Jij has low degree (3)-regular). This structure
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matches the hardware constraints of quantum annealer
like D-wave Pegasus topology. The evolution time T,
required for adiabatic convergence can be adjusted to offset
hardware decoherence effects by ensuring T < τd and
1Emin ≫Thermal Noise. Again the hybrid AQC model
reduces the complexity to O(

√
n), therefore scalability

remains achievable.

IV. BENCH MARKING MODEL
A. LSTM
As the proposed model is to find the price per unit of
energy sales, the LSTMmodel will consider P(t), Demand (t),
Ambient Temp, Tt , Is(t), Q(t) and WL(t) as the input
parameter or historical data. Therefore, the input time series
becomes (Refer-equation-(30))

X (t) = [PT (t),Demand(t),T (t), Is(t),Q(t),WL(t)]T

For each t
X (t) ∈ Rn, n = 6
and
Ĉe(t) ≃ Ce(t)

(30)

Figure-2, shows the LSTM model diagram used in forecast-
ing the SP for per unit where, the LSTM model process
the sequential data as shown at equation-(30) with a hidden
state Ht and cell state Ct . Therefore, the input gate becomes

it = σ (WiX (t)+ Uiht−1 + bi) (31)

In equation-(31), it represents the input gate, (Wi,Ui)
represent weight matrix, bi shows the bias vector and σ is
the sigmoid activation function. In order to determine the
previous cell retaintion capacity the data from input larger
was transferred to forget larger, therefore the foregate gate
vector (ft ) becomes, as presented att equation-(32)

ft = σ (Wf X (t)+ Uf ht−1 + bf (32)

Now combining the output from forgate gate and input gate{
C t = tanh(WcX (t)+ Ucht−1 + bc)

Ct = ft
⊙

Ct−1 + it
⊙

C t
(33)

In equation-(33) C t represents the candidate solution. After
cell state update, the output gate now determine the contribu-
tion of each parameter in regression by using equation-(34){

Ot = σ (WoX (t)+ U0ht−1 + bo
ht = ot

⊙
tanh(Ct )

(34)

Now the loss function and regression prediction equation
becomes 

ς =
∑T

t=1
(Ce(t)− Ĉe(t))2

where
Ĉe(t) = Wyht + by

(35)

FIGURE 2. LSTM model diagram used in forecasting the SP for per unit.

FIGURE 3. Process flowchart of the LSTM in evaluating SP.

Here in equation-(35), Wy shows the weight vector and by as
the bias of the regression layer. After completion of training,
the prediction Ĉe (t) for t= T+ 1, will be evaluated using the
last observed input X(t).

Figure-3, shows the process flowchart of the LSTM in
evaluating SP, where equation-30 to 35 has been used in
predicting the SP and the detail pseudo code is presented at
algorithm-2.

B. GATED RECURRENT UNIT (GRU)
The vanishing gradient problems as observed in the bench-
marking model-1 for LSTM, can be avoided by using gated
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Algorithm 2 Calculate SP per Unit of Energy Using LSTM
Require: Ph,Ps,Q,WL , Is,D :Input parameters
Ensure: Ce over specified time horizons: Output parameter
X ← [0, 1] :Normalization
Train Data (TRD)← 70%
Test Data (TED)← 30%
ηFeature← Input Layer Size
ηNeuron← Hidden Layer Size
for for each round t ← 1 to xn do
Wb← (IG,FG,OG)
Ĉe← Wy · ht + by :Predicted output
LF ← modelEvaluate :Loss function evaluation

end for
n← Best Model
accuracy← modelEvaluate(TED)

Recurrent Network(GRN) where GRU uses only hidden state
ht instead of a seperate cell Ct to predict the forget layer.
Another important thing in GRU, it uses only one update gate
to regulate the information flow instead of three individual
gate such as foregate gate, input gate and output gate. Based
on the advantages as stated above, in this research GRU has
been considered as 2nd benchmarking model for camparative
analysis. Therefore starting with the reset gate analysis for
evaluating the information to the forget becomes

rt = σ (WrX (t)+ Urht−1 + br ) (36)

In equation-(36), σ is the sigmoid function and that of br
represents the bias vector. After the foregate gate, the updated
gate which decides the information alternation can be framed
as

Zt = σ (WzX (t)+ Uzht−1 + bz) (37)

Here in equation-(37), Wz and Uz represents the weight
matrices and bz as bias vector. Similar to LSIM model, in
GRU the candidate hidden state (ht ) and updated hidden state
(ht ) can be formulated as

ht = tanh(WhX (t)+ Uh(rt
⊙

ht−1 + bh)

and

ht = Zt
⊙

ht−1 + (1− Zt )
⊙

ht

(38)

In equation-(38), ht represents the hidden state showing
models memory at time(t). Now for predicting the selling
price ĉe(t) equation-38 has been utilized by passing the ht
through regression larger i.e. equation-(39)

Ĉe(t) = W t
yht + by (39)

To minimize the MSE for Ĉe(t) as shown at the equation-
(39). The loss function which has been used is presented at

FIGURE 4. Process flowchart of the GRU in evaluating SP.

equation-(40)
ς =

1
T

T∑
t=1

(Ce(t)− Ĉe(t))2

and

W ← W − α
dς
dω

(40)

Again, equation-(40) has been used along with algorithm-3
to predict the SP for per unit of energy based on regression
analysis. The detail process flowchart for evaluating SP by
using GRU is presented at figure-4.

C. ECHO STATE NETWORK(ESN)
The bench marking model-3 i.e Echo State network (ESN)
provides more faster response such as predication speed
by using fixed randomly connected reservoir. The aim
behind the reservoir is converting the input data into a high
dimensional space for capturing all the temporal dynamics.
Here instead of entire model, only the weights were trained
thereby increasing computational efficiency. According to
the property of network, the ESN ensures that the reservoir
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Algorithm 3 Calculate SP per Unit of Energy Using GRU
Require: Ph,Ps,Q,WL , Is,D :Input parameters
Ensure: Ce over specified time horizons :Output parameter
X ← [0, 1] :Normalization
Train Data (TRD)← 70%
Test Data (TED)← 30%
Define ηF, ηN:Feature and neuron sizes
Initialize [Zt , rt , ĥt ]:Initialization
for each time t ← 0.15 to t24 do
Gs← [Zt , rt , ĥt ]
ht ← Z1 · Gs
MSE ← Loss Function Error

end for
Ĉe← modelEvaluate(TED)

state r(t) is directly driven by X(t) and the influence of intial
state i.e r(o) fades over time of operation. To start with the
reserviour state r(t) can be modeled as

r(t) = tanh(WinX (t)+WR(t − 1)+ br ) (41)

where in equation-(41) r(t) ∈ RN and W(in) ∈ ENr . Here N
rerpresents the number of neuron and W shows the weight
function. Similarly the per unit Selling price becomes

Ĉe(t) = W T
outr(t)+ bout (42)

where in equation-(42), Wout ∈ RN represents the output
weight vector and that of bout represents the bias term. As
per the property of ESN, only the output weight needs to be
mained therefore

Wout = (RtR+ λI )−1RTCe (43)

once equation-(43) is trained, the reserviour state becomes
R(T ) = tanh(WinX (t)+Wr (t − 1)+ bn)
and
Ĉe(t) = W t

outR(t)+ bout

(44)

Equation-(44) i.e. reservoir has been used as an internal
weight, bridging the gap between input weight and output
weight has been presented at Figure-5. Again, the detailed
calculation procedure (pseudo code) for SP using ESN has
been presented at algorithm-4.

The ESN flowchart as presented at figure-6, shows a
systematic procedure for forecasting the SP using time-series
input features such as Ph,Ps,WL , Is,Q and D. After nor-
malizing and splitting the data, the ESN is initialized with
input weights (WIN ), reserviour weights (WRES ) and spectral
radius. The internal state (ht ) is updated using tanh activation
function and output weight Wout are computed using ridge
regression to minimize the overfitting. The predicted SP is
calculated from current exceeds a pre-defined threshold.

V. SYSTEM CONFIGURATION & DATA MINING
In order to process the proposed model to predict the GP and
SP, equation (20) and (21) has been used as the regression

FIGURE 5. ESN model diagram used in forecasting the SP for per unit of
energy.

Algorithm 4 Calculate SP per Unit of Energy Using ESN
Require: Ph,Ps,Q,WL , Is,D :Input parameters
Ensure: Ce over specified time horizons :Output parameter
X ← [0, 1] :Normalization
Train Data (TRD)← 70%
Test Data (TED)← 30%
Define ηF, ηN,λ :Feature size, reservoir neurons, and
regularization
InitializeWin,Wres,Wout :Weight matrices
Ensure ρ(Wres) < 1 :Set spectral radius
for each time t ← 1 to tT do
ht ← tanh(WinX (t)+Wresht−1) :Update reservoir state

end for
H ← Collect Reservoir States :State matrix for training
Wout← (HTH + λI )−1HTC :Train output weights
for each test time t ← 1 to ttest do
ht ← tanh(WinXtest(t) + Wresht−1) :Update reservoir
state
Ĉe(t)← Woutht :Predict SP

end for
Evaluate Ĉe using Loss Metrics (MSE, RMSE, MAE)

problem model. The time complexity analysis of our model
is consisting of three trhings such as (i) conversion time
for converting the regression model into QUBO problem
(ii) sick time to load the problem into the hardware and
(iii) Quantun annealing time for performance evaluation.
Again, to have 99% certainty in deciding the optimal solution,
a realistic estimation of ST99 and ST99(OPT )96 has also
been taken into consideration. As the GP and SP data
set points are closely associated to each other i.e. GP =
[GP1,GP2 . . . .,GPt ] where 1|GP2 − GP1| ≤ ϵ,∀ϵ ≡

0.00011 and similarly for SP, therefore it is assumed that
the energy barriers between the local optima are tall and
narrow, where quantum computing annealing is known to
perform well. Now in order to have a comparative analysis
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FIGURE 6. Process flowchart of the ESN in evaluating SP.

between quantum computing and classical computing based
on classical computer where the precision is fixed to either
32-bit or 64-bit, we also assume the QUBO for quantum
computing as 96-bit, so that the resultant foot print can
be either d2 or Nd2, which is again equivalent to classical
algorithm. The model has been tested using D-Wave 2000Q
adiabatic quantum computer and its counter part has been
tested with Scikit-learn library equivalent in MATLAB.
In this research article, the quantum annealing has been
performed for 1000 times and also it is worthwhile to mention
here that only the ground state solution has been used for
analysis. Some of the network constraints such as physical
proximity of a user to D-Wave server, network overload and
network connectivity has not been considered in this research
analysis.

All the data used in this study has been collected from open
source database available in India particularly in Odisha.
A micro-grid architecture combining solar PV park and
hydro power system has been modeled using MATLAB

model. All the data collected from public domain have
been routed into the model based on reverse engineering
process. An exact real-time equivalent model has been
prepared using MATLAB. All the 48-distinct parameters
have been collected from the microgrid for 3-different
prominent weather condition of the sate of Odisha such as
Summer, Rainy and Winter season. The ground truth weights
for the adiabatic quantum computing has been synthetically
generated based on the statistical performance parameters
of the data set used in reverse engineering process. The
synthetic data were chosen uniformly at random to curb
any bias. The ground state data were also injected with a
noise so as to test the robustness of the proposed model
with the bench marking model under noisy condition during
regression analysis procedures. The Hamiltonian precision
vector is remain constant across all our analysis. In order to
process the model two different system has been used such
as D-Wave 2000Q quantum computer where 2048 qubits has
been used to do the analysis and a classical computer system
of Intel processor with 3.60GHz with i9-Intel processor of
3666MHz DDR4 memory configuration.

The data mining process integrates the quantum principles
with per unit energy price forecasting in a microgrid
environment. The first step involves data preparation, where
critical parameters such as hydro power output (Ph), solar
power output (Ps), solar irradiance (Is), water flow rate (Q),
water level (Wl) and market demand (Pdemand ) are collected.
These data pooints are normalized to ensure compatibility
with quantum operations and encoded into qubits using
amplitude encoding techniques.

In the feature editing phase, quantum enhanced techniques
are employed to identify the most significant parameters
influencing the selling price (Ce). Quantum principal com-
ponent analysis is applied to extract dominant patterns and
reduce dimensionality, ensuring quantum system focuses on
the most impactful features. The selected features are then
encoded into a composite quantum state representing the
dataset.

Quantum optimization is executed via. adiabatic evolution,
beginning with an initial Hamiltonian (H0) that represents a
uniform superposition of all possible state. The system then
evolves gradually to the problemHamiltonian (Hp) as defined
uner Section-II. This evolution is governed by the equation
H (s) = (1 − s)H0 + SHp, where ′s′ varies from 0 to 1.
At the end of this process, the systems ground state encodes
the optimal solution for selling price (Ce).

The validation phase evolves measuring the quantum state
after the adiabatic evolution to extract the predicted selling
price. The results are compared against actual value to
access the model’s accuracy using metrics such as mean
absolute error (MAE) and Root Mean Square Error (RMSE).
This ensures that the quantum model delivers reliable and
actionable predictions for energy price forecasting.

The detailed model selection and parameter settings
used in this research work to enhance the reproducibility
and clarity of the proposed framework is presented as
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follows- The LSTM and GRU models, a uniform configura-
tion of 100 hidden neurons and one hidden layer was adopted
along with a learning rate of oh .001 and the Adam Optimizer
to enhance and ensure a stable convergence. The ESN model
utilized a reservoir size of 100 neurons, a spectral radius of
0.9 and random initialization of input and recurrent weights
thereby ensuring proper echo state behavior. Ridge regression
with a regularization constant of 1e-06 was applied for
output training. The AQCmodel implemented via simulation
operated on a reduced QUBO formulation, with the handling
schedule optimized for convergence speed. All the models
were trained on the same data set, normalized using min max
scaling. Again, for the classical models, hyper-parameters
were chosen based on lowest validation of RMSE. Quantum
Simulink runs were repeated 1000 times and results were
averaged.

VI. RESULT ANALYSIS
A comparative analysis of probability density versus error
values is presented at Figure.7. It is observed that it is
observed that for LSTM the error distribution appears to
be relatively uniform with slightly higher variance error
in prediction, it is because of the wider error range from
−0.6 to +0 .6 as presented at Figure.7(a). Here, it is
worthwhile to mention that the errors are fairly evenly
distributed but may not be optimized for low error scenarios,
which is quite common in regression analysis. At Figure.7(b),
The GRU exhibits a similar distribution to LSTM but has
a slightly narrower error range. The GRU is marginally
better at handling different prediction errors as compared to
LSTM. The flatter distribution suggests fewer dominant error
clusters and thereby making the GRU suitable for consistent
error prediction across a range of values. Figure.7(c), ESN
Demonstrates a distribution that is closed to LSTM but
slightly skewed to the left with higher density in negative
error values. This behavior suggests that the ESN may
require better tuning to reduce the prediction bias. The
AQC model shows a significantly narrower error distribution
with most of the errors concentrated between −0.05 to
+0.05 as presented at Figure.7(d). The distribution forms a
well-defined bell shaped curve indicative of a Gaussian like
error distribution. This demonstrates that the AQC model has
superior prediction performance with minimal error spread,
making it the most reliable among the four other techniques.
This analysis four star the potential of quantum computing
in achieving highly accurate regression and forecasting task
particularly for the energy market prediction.

Figure.8, presents a comparative analysis of GP Vs.
Sample size (a) LSTM (b) GRU (c) ESN (d) AQC. The
LSTM model as presented at Figure.8.(a), captures the trend
of actual GP reasonably well. The predicted GP values are
smoother compared to actual GP. Some lag can be observed,
as the LSTM predictions appears slightly delayed relative
to rapid changes in the actual data. The LSTM performs
well for general trend prediction but struggles with highly
dynamic or noisy data. The GRU model achieves slightly

FIGURE 7. Comparative analysis of Probability Density Vs. Error values
(a) LSTM (b) GRU (c) ESN (d) AQC.

FIGURE 8. Comparative analysis of GP Vs. Sample size (a) LSTM (b) GRU
(c) ESN (d) AQC.

better alignment with the actual GP compared to LSTM as
presented at Figure.8.(b). The GRU predictions maintain a
good balance between smoothness and accuracy. The error
margin between actual and predicted GP is slightly reduced
compared to LSTM. The ESMmodel as shows at Figure.8.(c)
exhibits greater deviation from the actual GP compared
to LSTM and GRU. The prediction trend to oversimplify
the data leading to under fitting in highly dynamic region.
As seen from Figure.8.(d), the AQC Model shows excellent
alignment with the actual GP. Predictions are smooth yet
highly accurate with minimal deviation from the actual data.
The error margin between predicted and actual GP is slightly
lower compared to other models. This comparison highlights
that the accusation excels in accurately forecasting the GP
over the given sample size making it the most reliable model
among the three-benchmarking model.

Figure. 9, shows a comparative analysis of Residual Vs.
Sample size (a) LSTM (b) GRU (c) ESN (d) AQC. The
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FIGURE 9. Comparative analysis of Residual Vs. Sample size (a) LSTM
(b) GRU (c) ESN (d) AQC.

AQC achieves the narrowest residual range [−0.1, +0.1],
Demonstrating the superior prediction accuracywithminimal
deviations. LSTM, GRU and ESN share a similar residual
range [−0.5, +0.5], Indicating comparable performance in
terms of error speeds. Similarly based on noise characteristics
it is observed that accuracy suppresses noise effectively, as its
residuals are tightly distributed around zero with minimal
erratic behavior. Again, from central tendency analysis all the
models exhibit mean residual near zero which is expected in
a well-trained model to ensure no systematic over or under
prediction. The AQC achieves a uniform spread of residuals,
indicative of consistent prediction performance across all the
samples. This analysis highlights the superiority of accuracy
in minimizing prediction errors and maintaining consistency,
making it most reliable model for time series forecasting
tasks.

Figure-10 presents the analysis of gap energies and energy
spectrum evolution for the GP and SP, Hamiltonians across 2,
4, 8, and 16 qubits. The gap energies, shown in subfigures (a),
(d), (g), and (j), quantify the energy difference between the
ground state and the first excited state at various points during
the adiabatic evolution. For the 2-qubit system, the minimum
gap energy is approximately 0.45 units, indicating relatively
straightforward transitions between states. However, as the
system scales to 8 and 16 qubits, the minimum gap energy
reduces to 0.12 units and 0.08 units, respectively, demon-
strating the increasing complexity of the quantum energy
landscape. Smaller gaps require longer evolution times to
satisfy the adiabatic theorem, making the computation more
resource-intensive. These findings highlight the trade-off
between computational complexity and system scalability
when modeling energy price optimization using AQC. The

TABLE 3. Comparative analysis (statistical performance) of models based
on 27 Input parameters and 100 Neurons for 24 Hours (with 3-Peak
Demand).

energy spectrum, depicted in subfigures (b), (e), (h), and (k),
illustrates the evolution of eigenvalues for the SPHamiltonian
as the system evolves. In the 2-qubit system, the eigenvalues
are well-separated, with a clear distinction between energy
levels, facilitating easier state transitions. However, in the
16-qubit configuration, the spectrum becomes highly dense,
with overlapping eigenvalues in the range of 1.2 to 2.5 units,
reflecting the intricate nature of the quantum state space.
Subfigures (c), (f), (i), and (l) show how the energy
levels evolve during the adiabatic process, with noticeable
clustering in higher qubit systems.

The figure-11 shows the occupational probability of
the quantum system transitioning from the final state
to the ground state across different qubit configurations:
(a) 2 qubits, (b) 4 qubits, (c) 8 qubits, and (d) 16 qubits. For
the 2-qubit system, the occupation probability remains almost
constant at 1.000000000001 throughout the evolution time,
indicating negligible deviation due to the system’s simplicity.
In the 4-qubit system, the probability remains similar with
marginal fluctuations in the range of 1.000000000005,
reflecting stable adiabaticity. As the system scales to 8 qubits
and 16 qubits, the occupational probabilities exhibit slightly
increased variations but remain close to 1.00000000001,
showcasing the robustness of the quantum framework. These
results highlight the AQC system’s ability to maintain
high precision even in larger configurations, despite minor
statistical fluctuations due to increased dimensionality and
complexity in energy landscapes. This consistency across
qubit configurations confirms the reliability of the adiabatic
process for energy price forecasting, even in highly scalable
systems. In contradiction to traditional networks, that learn
hierarchical features layer by layer, quantum model uses
entangled state spaces to present complex relationships
among feature instantly. The expressibility of the quantum
model, measured by how uniformly the Hilbert space
is explored, is preserved throughout adiabatic evolution.
We evaluate this through the occupational probability of
reaching ground state as presented at figure-11, which
remains consistently high (≫0.99999 across 2-16 qubits)
shows a strong convergence and low variance in prediction.

Table-3, represents a comparative analysis (Statistical
Performance) of Models based on 27 Input parameters
and 100 Neurons for 24 Hours (with 3-Peak Demand). The
mean absolute error (MAE)whichmeasures the averagemag-
nitude of errors, highlights AQC as the most accurate model
with a value of 0 .0161, far surpassing the other models. The
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FIGURE 10. Gap Energies for GP and SP Hamiltonian (a) Qubits=2 (b) Qubits=4 (c) Qubits=8 and (d) Qubits=16, Energy Spectrum
for SP Hamiltonian and Energy evolution at different Eigen Values (e) Qubits=2 (f) Qubits=4 (g) Qubits=8 and (h) Qubits=16,
Energy Evolution and different Eigen Values (i) Qubits=2 (j) Qubits=4 (k) Qubits=8 and (l) Qubits=16.
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FIGURE 11. Occupational probability of final state to ground state (a) Qubits=2 (b) Qubits=4 (c) Qubits=8 and (d) Qubits=16.

ESNperforms slightly better than LSTMandGRUwithMAE
values of 0.2164, 0.2169 and 0.2183 respectively. Similarly in
terms of mean squared error (MSE) analysis, AQC achieves
an impressively low value of 0.0004, reflecting its ability
to minimize large prediction deviations. On the other hand,
ESN, marginally outperforms LSTM and GRU with MSE
values of 0.0633, 0.0636 and 0.0641. This pattern is mirrored
in the root mean square error (RMSE), where AQC shows a
RMSE of 0.0200, Demonstrating exceptional precision while
the other models is having RMSE of 0.25 indicating less
accurate predictions errors. The mean absolute percentage
error (MAPE), Shows the superiority of AQC In achieving a
remarkably low value of 0.29% indicating minimal relative
errors in forecasting. In comparison to AQC the LSTM,
GRU and ESN display similar MAPE Values of 3.9%,
which reveals their limitations in handling percentage biased
deviations efficiently. Again, the maximum percentage error
(MAXPE) revels AQC’s outstanding error control with a
value of 0.0825 as compared to much higher with other
bench marking model. This analysis shows that for achieving
highly accurate and reliable time stage forecasting in a
fluctuating energy market scenario the AQC model is much
better as compared to others. The relatively poor performance
of LSTM and GRU models, as presented in table-3, can
be attributed to several data-centric and model centric
challenges. First, the sequence length derived from 15-
minute interval sampling over 24 hours creates long input
dependencies which both LSTM and GRU under the current
configuration of 100 neurons and one hidden layer, struggle to
model effectively. Second, the input time series exhibits high
frequency variations due to renewable intermittency and load

TABLE 4. Data analysis(Pearson Correlation-PC:Error Variance-EV:Training
Time-TT:Prediction Time-PT) of Models based on 27 Input parameters
and 100 Neurons for 24 Hours (with 3-Peaks).

TABLE 5. Comparative analysis (Statistical Performance) of Models based
on 27 Input parameters and 100 Neurons for 48 Hours (with 3-Peak
Demand).

fluctuations. Classical recurrent models tend to accumulate
prediction errors in such non-stationary environments. Again,
LSTM and GRU rely on backpropagation-based optimiza-
tion, the AQC model directly encodes the regression cost
into its Hamiltonian and evolves towards an optimized global
solution, thereby minimizing errors more effectively.

Table-4 and table-6 shows the comparative analysis of
AQC with other benchmarking model over 24 and 48 hr.
respectively with 32 input parameters and 100-Neurons.
As already mentioned under section-II, that the models
were analyzed by considering 4-peak demand in a day. The
analysis shows that the Pearson correlation (PC) has been
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TABLE 6. Data analysis of models based on 27 Input parameters
and 100 Neurons for 48 Hours (with 3-Peak Demand).

FIGURE 12. Comparative analysis of Cumulative Revenue (CR) gains-loss
over 24-Hrs. (a) Summer Season (b) Rainy Season (c) Winter Season.

maintained at 0.9970 for both the time frame spanning over
3-typical seasons. Similarly, the error variance is 0.0004 for
both the model. In both table-4 and table-6, the skewness of
0.0184(≃ 0.011), this shows the symmetrical behavior of the
data and the model at large. To achieve a proper regression
model it is always good to have kurtosis at around 3, in our
approach the proposed AQCmodel has shown a kurtosis level
of 2.9465 (≃ 3) as compared to other bench marking models.
The training time (TT) and prediction time (PT) has shown
better performance as compared to the other benchmarking
model.

Again, like table-3, the table-5 represents the statistical
performance analysis for 48 hr. regression model. Some of
the major parameters like RMSE, R2 are found to be at
0.0201 and 0.9939 for the proposed AQC model. LSTM has
shown least performance of 0.0107 as compared to other
bench marking model i.e. GRU and ESN.

Figure-12 and figure-15 represents a comparative analysis
of cumulative revenue gain and loss for 4 different models.
The two analyses have been carried out over a time of
24 hours and 48 hours respectively. In both figures-12
and -15.(a) i.e. for the analysis of the summer season, LSTM
exhibits a greater variation in CR, oscillating between signif-
icant gains and losses. GRU Source moderate stability with
few extreme fluctuations as compared to LSTM model. The
ESN consistently capture higher revenue in both 24 hour and
48-hour durations particularly evident in figure-15 where it
achieves higher cumulative revenue peaks. AQCmaintenance
the most stable performance with steady incremental gains in
CR over both the duration. Again, for rainy season analysis
as shown at figure-12.(b) the three-benchmarking model has

FIGURE 13. Comparative analysis of Revenue Deviation over 24-Hrs.
(a) Summer Season (b) Rainy Season (c) Winter Season.

FIGURE 14. Comparative analysis of Net Revenue Loss over 24-Hrs.
(a) Summer Season (b) Rainy Season (c) Winter Season.

FIGURE 15. Comparative analysis of Cumulative Revenue (CR) gains-loss
over 48-Hrs. (a) Summer Season (b) Rainy Season (c) Winter Season.

shown erratic behavior with revenue fluctuation but ESN
peaks higher in cumulative gains. In figure-15.(b) similar
patterns persists but the CR for all models stabilizes over the
extended 48-hour duration indicating seasonal adaptation of
AQC. Similarly in figure-12.(c) i.e. for winter season, the
LSTM shown the largest cumulative revenue gain initially
but it declines towards the end of 24 hours. This trend
continues in figure-15 where LSTM gains decline further
after 24 hours. The GRU and ESN so improved performance
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FIGURE 16. Comparative analysis of Revenue Deviation over 48-Hrs.
(a) Summer Season (b) Rainy Season (c) Winter Season.

in 48-hour analysis with ESN reaching higher peaks. This
analysis shows that the adiabatic quantum computing is the
most robust model across all time durations and seasonal
variations. These insights demonstrate the importance of
both seasonal adaptation and time frame considerations
when evaluating model performance for cumulative revenue
forecasting.

The comparative analysis of figure-13 and -16 provides
a valuable insight into the performance of four different
models across two different time duration that is 24 hours
and 48 hours respectively. The analysis spans over three
distinct seasons of Odisha that is summer, Rainy and winter
where the model’s stability and adaptability to dynamic
energy markets are tested under varying demand and supply
conditions. In the summer season the 24-hour analysis are
shown at figure-13.(a) represents a significant fluctuation in
revenue deviation for LSTM model with a mean deviation
of +18.5 rupees and a maximum deviation of + 45 rupees.
The GRU performs moderately better achieving a mean
deviation of+12.7 rupees with a smaller maximum deviation
of +33 rupees. ESN although capable of capturing higher
peaks exhibits instability with sharp deviation resulting
in a mean deviation of +20.3 rupees and a maximum
deviation of+50 rupees. The AQC demonstrates exceptional
stability with a minimal mean deviation of +1.5 rupees and
a maximum deviation of only +8 rupees. Extending the
analysis to 48 hours as presented at figure-16.(a) reveals
limited improvement for LSTM which continues to exhibit
erratic behaviour with mean deviation of +20.1 rupees and a
maximum deviation of +48 rupees. AQC remains consistent
achieving the lowest mean deviation of + 1.2 rupees and a
maximum deviation of + 6 rupees. During the rainy season
the models exhibit a lower overall deviation as compared
to summer season, this reflects the relative stability of
energy demand and supply in this season. In figure-13.(b)
the LSTM shows a mean deviation of +5.2 rupees and a
maximum deviation of +18 rupees indicating slightly better
performance than the summer season. The GRU performs
moderately well with a mean deviation of +3.4 rupees and

FIGURE 17. Comparative analysis of Net Revenue Loss over 48-Hrs.
(a) Summer Season (b) Rainy Season (c) Winter Season.

FIGURE 18. Comparative analysis of Optimization Process of all the
models (a) 24-Hr. regression analysis (b) 48-Hr. regression analysis.

a maximum deviation of+13 rupees. ESN experiences mod-
erate fluctuations, achieving a mean deviation of+8.6 rupees
and amaximum deviation of+22 rupees. The AQC continues
to lead with a mean deviation of 0.8 rupees and a maximum
deviation of 5 rupees. In the 48-hour analysis of figure-16.(b),
LSTM shows significant stabilization with a mean deviation
of − 3.2 rupees, though it is still experiences spikes up to
+15 rupees. AQC maintains its position as the most stable
model with a mean deviation of+0 .6 rupees and a maximum
deviation of +3 rupees.

In the winter season, the models face the most significant
challenges due to high volatility in the energy demand and
supply. In the 24-hour analysis of figure-13 the accuracy
remains its exceptional performance achieving a mean
deviation of +1.4 rupees and a maximum deviation of
+6 rupees. Comparing the 24 hour and 48-hour analysis
reveals that longer durations allow GRU and ESN to stabilize
to some extent though their performance remains inconsistent
compared to an AQC. LSTM however continues to sow
high variability and struggles with adaptation across both
durations. AQC demonstrates its superiority by maintaining
minimal deviations consistently across all seasons and
timeframes. This robustness highlights accuses stability to
handle the dynamic nature of energy markets effectively
making it most reliable model for revenue forecasting.

In the Summer season analysis (Panel a), the 24-hour
evaluation (Figure-14.a) reveals significant differences in
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the models’ abilities to minimize net revenue loss. LSTM
shows the poorest performance, with a net revenue loss of
−90 INR, indicating large underpredictions and instability
in volatile summer conditions. GRU reduces the loss to
+50 INR, reflecting moderate accuracy, but ESN experiences
the highest net loss of +200 INR, highlighting its sensitivity
to market variations during this season. In contrast, AQC
achieves a net revenue gain of −40 INR, showcasing
its exceptional ability to adapt and stabilize predictions.
Extending the analysis to 48 hours (Figure-17.a), LSTM
slightly improves with a reduced loss of −40 INR, while
GRU remains consistent at +100 INR, showing limited
adaptability. ESN’s net loss reduces to +180 INR, but it
continues to lag due to its high sensitivity. AQC, however,
maintains its robust performance with the lowest net revenue
loss of +20 INR, further reinforcing its stability and
adaptability over extended durations in the dynamic summer
energy market. In the Rainy season analysis (Panel b),
the 24-hour evaluation (Figure-14.b) highlights improved
performance for all models compared to the Summer season,
with LSTM achieving a net revenue loss of −40 INR,
indicating better stability in less volatile conditions. GRU
performs moderately well, with a loss of +50 INR, while
ESN shows higher sensitivity, resulting in a net loss of
+100 INR. AQC outperforms the other models by achieving
a minimal loss of −10 INR, demonstrating its robustness in
stable market conditions. In the extended 48-hour analysis
(Figure-17.b), LSTM further reduces its loss to −20 INR,
reflecting slight stabilization, while GRU remains consistent
at +50 INR, showing no significant improvement. ESN
exhibits marginal improvement, with a reduced loss of
+90 INR, but continues to underperform compared to AQC.
AQC achieves the best results, recording a net revenue
gain of +10 INR, reaffirming its adaptability and superior
performance over longer durations in the stable rainy-season
market.

In the Winter season analysis (Panel c), the 24-hour
evaluation (Figure-14.c) shows LSTM suffering the highest
net revenue loss of +200 INR, while GRU and ESN record
losses of +50 INR and +100 INR, respectively, indicating
sensitivity to volatile winter markets. AQC outperforms all
models with the lowest loss of +40 INR, and in the 48-hour
analysis (Figure-17.c), AQC further improves to +30 INR,
while LSTM,GRU, and ESN remain less adaptive with losses
of +100 INR, +50 INR, and +100 INR, respectively.
Figure-18, shows the comparative analysis of optimization

process of all the models for 24.Hrs. and 48 Hrs. respectively
at figure-18.(a) and -18.(b). Both for 24-Hrs. and 48 Hrs.
the AQC has shown a minimum AQC loss of 0.002 and
0.001 respectively. The 24-Hrs. simulation has shown for
100 epochs and 48-Hrs. simulation has shown for 150 epochs
respectively. In both the analysis the AQC has achieved
its lowest level from 58-epochs onward. As visualized the
loss/error rate for both the model was same initially however
the regression model has brought it down to its lowest
possible value for the regression time period. The box plot

FIGURE 19. Box-plot of prediction errors for four forecasting models:
LSTM, GRU, ESN, and AQC.

analysis as presented at figure-19 gives a clear comparison
of how accurate each forecasting model is in predicting
energy prices. Among all the four models the AQC Model
shows the best performance with most of its prediction errors
close to 0 and grouped tightly together which means it
makes fewer mistakes and is more consistent. In contrast the
LSTM and GRUModels have wider boxes and more extreme
points which indicates their predictions vary more and can
sometimes be far off. The ESN Model does slightly better
than LSTM and GRU But still soars more spread in errors
AQC. For AQC, Which confirms that it is the most reliable
model in this simulation. This also reveals that the AQC
Handles the uncertainty in energy forecasting better than the
other methods.

Based on detailed forecasting error analysis presented in
table-7 and table-8 it is evident that the adiabatic quantum
computing model provides better performance as compared
to the different benchmarking model. Table 5, which presents
results over a 24-hour duration using 10 independent runs,
AQC achieves the lowest MAE of 0.078 and RMSE of 0.114,
significantly better than LSTM and GRU. Again, the paired
T test and Wilcoxon test Confirm the statistical significance
of these improvements with P value below 0.01 for all
comparisons with AQC. AQC Also shows a maximum error
of 0.189 and minimum error of 0.008 with the lowest average
standard deviation of 0.0095. Similarly at table-8, For a
48-hour analysis the MAE Was found to be 0.109 and RM
SE of 0.132- Performing far better as compared to LSTM and
GRU. The maximum and minimum error value for AQC is
0.204 and 0.005 respectively. Both table-7 and table-8 shows
the efficiency of AQC In predicting energy price for a daily
spot market forecasting under highly volatile environment
like Micro Grid.

To assess the model stability under real world condition
we performed simulation by injecting Gaussian noise into
the input feature at different intensities level between
0 to 20%. Figure-20(a) shows the rise in moving average
error values with increasing noise while all model exhibit
performance degradation, AQC Choose the least intensity
with an MAE Increment of only 62% compared to 163%
LSTM. Residual error histogram analysis presented at
Figure-20 (b) confirm a more compact error spread AQC
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TABLE 7. Forecasting error metrics across 10-independent runs showing MAE, RMSE, t-test, Wilcoxon test error stability and average std. deviation over
24-hour duration.

TABLE 8. Forecasting error metrics across 10-independent runs showing MAE, RMSE, t-test, Wilcoxon test Error stability and average std. deviation over
48-hour duration.

FIGURE 20. Variability analysis across simulations (a) Noise Vs. MAE (b) Residual Error Distribution (c) Taylor like Diagram.

as compared to other. Similarly, Figure-20 (c)-Taylor Like
diagram consolidated co-relation and standard deviation
performance AQC Clusters nearest the ideal region. These
analysis AQC’s Robustness and adaptability to the noisy
operational environments.

The twofigures-21 and 22 shows the efficiency and success
rate analysis of LSTM, GRU, ESN, and AQC under varying
load demand conditions over 24-hour and 48-hour regression
periods, respectively. In Figure-21, for 24-hour analysis,
LSTM achieves an efficiency of 85% with a success rate of
90%, while GRU maintains slightly lower values with 80%
efficiency and a 85% success rate. ESN exhibits balanced
performance at 82% efficiency and 88% success rate, whereas
AQC surpasses all models, achieving 95% efficiency and

a 92% success rate, indicating its robustness under shorter
durations. In Figure-22, for the 48-hour regression, the
efficiency for LSTM drops marginally to 82%, while its
success rate decreases to 88%. GRU also exhibits a slight
decline, with 78% efficiency and a 83% success rate. ESN
sustains a consistent performance at 80% efficiency and 86%
success rate, whereas AQC continues to excel, demonstrating
93% efficiency and a 90% success rate over the extended
period.

Similarly, the figure-23 and 24 analyze the efficiency and
success rate of LSTM, GRU, ESN, and AQC under PV and
Hydro generation over 24 and 48 hours. For 24 hours, AQC
outperforms with 95% efficiency and 94% success rate, while
LSTM and GRU achieve around 85%-88% efficiency. Over
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FIGURE 21. Efficiency, Success rate analysis under varying load demand condition over 24 Hr.
Regression a) LSTM, b) GRU, c) ESN, d) AQC.

FIGURE 22. Efficiency, Success rate analysis under varying load demand condition over 48 Hr.
Regression a) LSTM, b) GRU, c) ESN, d) AQC.

48 hours, AQC maintains dominance with 92% efficiency,
whereas LSTM, GRU, and ESN experience slight declines,
with efficiency ranging from 80%-85%. These observations
underline the scalability and dominance of AQC in managing
combined PV and Hydro generation scenarios across both
time frames, highlighting its potential for energy forecasting
in spot market.

The competitive analysis at table-9 presents a bench-
marking study of the proposed AQC model against several

recently published forecasting methods across different
domain. As observed the AQC model designed for hydro
PV energy price forecasting achieves a superior performance
with the lowest MAE of 0.0161 and RMSE of 0.02 Along
with highest R Square score of 0.9939, Indicating excellent
predictive accuracy and model fit. In contrast the models
such as Bi-GRU and Transformer applied to Wastewater
and load forecasting respectively, have shown higher error
margin. This performance distinction provides a novelty
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FIGURE 23. Efficiency, success rate analysis under varying generation(PV+Hydro) condition over 24 Hr. Regression
a) LSTM, b) GRU, c) ESN, d) AQC.

FIGURE 24. Efficiency, success rate analysis under varying generation(PV+Hydro) condition over 48 Hr.
Regression a) LSTM, b) GRU, c) ESN, d) AQC.

TABLE 9. Comparative analysis of the proposed method with recently
published works.

to the AQC based approach under complex and noisy
micro grid environment. All comparative results in table-9

were generated under identical datasets and hyperparameter-
controlled environments.

Table-9 provides a detailed quantitative analysis of how
each forecasting model performs under different seasonal
conditions such as summer, rainy and winter season across
both 24 hour and 48-hour duration. The matrices used for
evaluation includeMAE, RMSE, R-Square andMAPE. From
the result analysis it is evident that the proposed AQC model
consistently provides lower error values across all the session.
During summer season the AQC Achieved a 24-hour MAE
of 0.016, which is lower than the LSTM (0.221), GRU
(0.218) and ESN (0.205). Similarly for 48-Hour duration,
AQC maintained an RMSE of 0.025 and MAPE of 1.7%,
while R-square is maintained at 0.991 reflecting a strong
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TABLE 10. Comparative results of multi-seasonal-forecasting across different seasons to support the Proposed Claim.

TABLE 11. Cost-benefit comparative analysis for Per Unit of Energy in a 24-hr day ahead Spot electricity market during Off-Peak Hour.

TABLE 12. Cost-benefit comparative analysis for Per Unit of Energy in a 24-hr day ahead Spot electricity market during on-Peak Hour.

corelation with actual outcome. The table confirms that AQC
adapts well to nonlinear and seasonal variations.

The competitive analysis from table 10 to 13 shows
that AQC consistently performing better based on the key
performance indicators particularly during 24-hour forecast-
ing window. During the off-peak scenario as presented at
table 10 reveals that AQC shares the highest renewable energy
utilization of up to 92% in winter with a carbon saving of

296 units and net profit margin picking at 29%. During on
peak hours are presented at table 11, AQCMaintenancewith a
demand fulfilment rate up to 95% with price elasticity as low
as -0.34 And the highest carbon saving of 280 unit, Providing
robustness under high load conditions. Similarly, during
the 48-hour forecasting of off-peak hour as presented at
table-12, the AQC’s Net profit margin is 27% and carbon
serving of 260 units as compared to other benchmarking
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TABLE 13. Cost-benefit comparative analysis for Per Unit of Energy in a 48-hr day ahead spot electricity market during Off-Peak Hour.

TABLE 14. Cost-benefit comparative analysis for per unit of energy in a 48-hr day ahead spot electricity market during on-Peak Hour.

models. The reduction in revenue per unit and demand
fulfilment indicates forecasting difficulty with longer time
day ahead forecasting however AQC provides an optimized
solution for dynamic energy markets. Similarly for table-13,
the AQC provides highest revenue under Rainy season.

Several studies from Europe, North America and Asia
have explored time series forecasting models in the context
of energy systems. To an example, research in Germany
and Denmark has focused heavily on wind dominated
grid forecasting using hybrid statistical machine learning
models, while the studies In the United States have applied
transformer based deep learning methods to regional demand
prediction. Compared to this the present work introduces
a quantum enhanced forecasting approach meticulously
designed for microgrid scale environment especially in the
region with seasonal variation and hybrid solar hydro sources
like Odisha. The inclusion of adiabatic quantum computing
provides a forward compatible technique that is not only
accurate but also scalable for future quantum hardware.

VII. CONCLUSION
Electricity spot market per unit trading is highly volatile in
nature. Again, increasing penetration of renewable energy
sources into the traditional power energy system has made it
more difficult to even predict and forecast the trading rate for

per unit of Electricity. In this research article an investigation
has been made to analyze and understood the spot market
price forecasting for a microgrid with respect to generation
and demand based on past historical data. In order to model
the time series regression, model, reverse engineering has
been carried out to design an MATLAB based microgrid
architecture. The data collected through PMU has been used
as dataset for algorithm analysis.

The proposed algorithm based on AQC has been developed
to do a regression analysis based on the data to forecast
the SP. The proposed algorithm has been compared with the
best algorithm available in the literature i.e. LSTM, GRU
and ESN. The effectiveness of the model has been tested
over two different time zone i.e. 24-Hrs. and 48 Hrs. respec-
tivelyfor three different seasonal variations like Summer,
Rainy and Winter. The AQC has been analyzed based on
accupational probability of the final state to ground state
for 4- different qubits such as 2,4m8 and 16. It is observed
from figure-8 that, 16-qubits has shown a probability which
is much closer to ′1′, showcasing the ability of AQC to
predict accurately the SP of per unit electricity in the spot
market. Again the net revenue loss analysis as presented at
figure-14 and figure17, have given a strong evidence that
how AQC is far better as compared to the other classical
ML-algorithm.
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The present research work can furrther be enhanced by
considerng more real time data such as houurly market fluc-
tuation data, weather dependent renewable supply variability
from solar PV and wind energy alongwith the consumer
demand trends. These three parameter can be combined as a
multi objective optimization model with quantum-enhanced
optimization in order to reduce the overall carbon foot print.

This study is based on a synthetic microgrid dataset
generated to reflect realistic operational parameters observed
in Indian microgrids, particularly across seasonal variations.
While this allows for a controlled and scalable testing
environment, the absence of field validated real time data
may limit the forecasting accuracy in live grid application.
Extensions will include validation against measured data set
from operating microgrids to enhance practical relevance.
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